
Phantom: A CUDA-Accelerated Word-Wise Homomorphic
Encryption Library

Hao Yang1, Shiyu Shen2, Wangchen Dai3, Lu Zhou1, Zhe Liu3, and Yunlei Zhao2

1 Nanjing University of Aeronautics and Astronautics, Nanjing, China
crypto@d4rk.dev

2 Fudan University, Shanghai, China
crypto@sher1e.dev

3 Zhejiang Lab, Hangzhou, China
w.dai@my.cityu.edu.hk

Abstract. Homomorphic encryption (HE) is a promising technique for privacy-preserving computa-
tions, especially the word-wise HE schemes that allow batching. However, the high computational
overhead hinders the deployment of HE in real-word applications. GPUs are often used to accelerate
execution, but a comprehensive performance comparison of different schemes on the same platform is
still missing.
In this work, we fill this gap by implementing three word-wise HE schemes BGV, BFV, and CKKS
on GPU, with both theoretical and engineering optimizations. We enhance the hybrid key-switching
technique, significantly reducing the computational and memory overhead. We explore several kernel
fusing strategies to reuse data, resulting in reduced memory access and IO latency, and enhancing the
overall performance. By comparing with the state-of-the-art works, we demonstrate the effectiveness of
our implementation.
Meanwhile, we introduce a unified framework that finely integrates our implementation of the three
schemes, covering almost all scheme functions and homomorphic operations. We optimize the man-
agement of pre-computation, RNS bases, and memory in the framework, to provide efficient and low-
latency data access and transfer. Based on this framework, we provide a thorough benchmark of the
three schemes, which can serve as a reference for scheme selection and implementation in constructing
privacy-preserving applications.
Our library is available for access at https://github.com/encryptorion-lab/phantom-fhe. It is re-
leased under the GPLv3 license.
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1 Introduction

Homomorphic encryption (HE) is a class of cryptosystem that enables computations to be performed on
encrypted data without requiring knowledge of secret keys. This allows for the construction of secure compu-
tational models that are non-interactive and do not require users to remain online throughout the evaluation
process, resulting in lower communication overhead compared to other techniques like multi-party compu-
tation. HE is currently viewed as a promising building block for privacy-preserving applications such as
secure neural network inference [14, 20], private set union and intersection [15], and private decision tree
evaluation [36].

In 2009, Gentry introduced the concept of bootstrapping [25,26] to bring homomorphic encryption from
Somewhat Homomorphic Encryption (SHE), which requires a predetermined circuit depth, to the Fully
Homomorphic Encryption (FHE) era that supports an arbitrary number of operations. Most FHE schemes
currently in use are based on the (Ring-)Learning with Errors ((R-)LWE) problem [37]. These schemes can
be classified as bit-wise FHE and word-wise FHE depending on the type of data and basic operations. The
first class includes FHEW [21] and TFHE [18], which encrypt only a few bits per ciphertext and perform
logical operations. Although they support computation of non-polynomial functions and fast bootstrapping,
their ciphertext-to-message size expansion ratio is huge. Additionally, they suffer from limited message
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space and parallelism, which leads to low amortized runtime on arithmetic operations such as addition
and multiplication. The second class contains BGV [13], BFV [12, 22] and CKKS [17]. BGV and BFV
perform exact operations on finite fields while CKKS supports approximate computations over real and
complex numbers. Compared to bit-wise HE schemes, word-wise HE schemes are more efficient because they
support batch processing, where multiple plaintexts can be packed into a ciphertext and evaluated in a
single-instruction-multiple-data (SIMD) manner.

Many software HE libraries, including HElib [3], PALISADE [5], SEAL [41], HEEAN [1,2] and OpenFHE
[4], implement RNS variants of these schemes [11, 16, 27–29] Despite the attention HE attracts, its perfor-
mance is still inadequate to meet practical requirements. For instance, Brutzkus et al.’s low-latency privacy-
preserving inference [14] reduces execution time for a single prediction to 2.2 seconds; however it takes over 6
hours to complete computations on the MNIST dataset [35], which only provides 10 classes and is relatively
small compared to current applications such as ImageNet (1000 classes) [40].

Hardware acceleration using Graphics Processing Units (GPUs) or Field Programmable Gate Arrays
(FPGAs) can help alleviate the problems mentioned above by enabling parallel execution. GPU accelera-
tion is currently important in areas such as machine learning and has been used to speed up homomorphic
encryption schemes and privacy-preserving applications in previous researches [6–8,10,31,42]. They concen-
trate on implementing one single scheme or some HE operations and achieve speedups compared to software
implementations. However, current research on accelerated homomorphic encryption schemes is still lacking
in the GPU domain. Many of the latest proposed techniques have not yet been introduced into this field, and
existing works only support inadequate parameter sizes with some functions that could be further optimized.
Additionally, focusing on one scheme may be insufficient for real-world applications. In some cases, floating-
point numbers are taken as input and approximate computation is required, while in some others precision
loss may not be tolerable. These facts lead to the demand for insight into the performance of each HE scheme
on the GPU under different parameter configurations. Nevertheless, it is insufficient to provide the conclusion
according to current researches due to various targeted platforms and implementation approaches.

Contributions. In this work, we introduce Phantom, a GPU library for homomorphic encryption, specif-
ically designed for high-performance, GPU-optimized implementation of three advanced word-wise HE
schemes, i.e., the RNS variants of BGV [27], BFV [11, 28], and CKKS [29]. Phantom stands as the most
comprehensive implementation to date, surpassing previous state-of-the-art works in terms of performance.
The contributions of our work are outlined as follows:

– Theoretical Optimizations: We introduce several theoretical optimizations, with certain enhancements
specifically tailored for GPU architecture. This includes a generalization of the Number-theoretic Weighted
Transform for polynomial multiplication, achieving hierarchical implementation through arithmetic re-
construction. This approach effectively minimizes data access and IO latency for RNS polynomials across
various dimensions. Additionally, we optimize the key-switching operation, reducing computational com-
plexity, and apply the Karatsuba technique to homomorphic multiplication, thereby decreasing compu-
tational overheads. These advancements collectively contribute to reductions in both computational and
memory demands in GPU-based designs.

– Unified and Optimized GPU Implementation: For the BGV, BFV, and CKKS schemes, we develop
generalized and unified arithmetic expressions, ensuring compatibility within a single framework. This
foundation supports our GPU framework, and we integrate our highly parallel GPU implementation of
the schemes. We propose several GPU optimization methods, including comprehensive pre-computation,
effective modulus chain and RNS base management, and a memory pool mechanism for efficient and
secure data access and transfer. We also exploit diverse kernel fusing strategies and data reuse techniques
to minimize data access and I/O latency, and align the implementations of the three schemes more closely.

– Comprehensive Benchmarks: Our framework facilitates the benchmarking of all functions of the three
schemes under various parameter sets. Notably, this is the first work to comprehensively report the
performance of the BGV scheme on GPU. Moreover, our implementations of the BFV and CKKS schemes
outperform existing state-of-the-art works [8,31] and support larger parameter sizes, demonstrating both
the efficiency and scalability of our approach.
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Table 1. Summary of supported features in related works [6,8,10,31] and this work. The notations are given in Sec
2.1.

Supported features [8] [6] [10] [31] This work

Parameter |N | [11, 14] [12, 16] [13, 16] [16, 17] ≥ 11

Schemes
BGV ✓
BFV ✓ ✓ ✓
CKKS ✓ ✓ ✓

Scheme
functions

PreComp ✓
KeyGen ✓ ✓
Enc ✓ ✓
Dec ✓ ✓ ✓
Ecd ✓
Dcd ✓

Operations

HAdd ✓ ✓ ✓ ✓
CAdd ✓ ✓ ✓
HMult ✓ ✓ ✓ ✓
CMult ✓ ✓ ✓
HRot ✓ ✓

Comparisons with Related Works. There have been several works on accelerating word-wise HE schemes
using GPUs, and the most related works are [6, 8, 10, 31, 42]. The comparisons are summarized in Table 1.
In detail, the work [8] presents a GPU implementation of the BEHZ-variant BFV, focusing on KeyGen, Enc,
Dec, HAdd and HMult with small and medium parameter sets N ∈ {211, · · · , 214}. The work [6] provides both
BEHZ- and HPS-variant with lager parameter sets N ∈ {212, · · · , 216}, but only implements the Dec and
HMult functions. Both [10] and [31] study the acceleration of CKKS and implement HAdd, HMult/CMult and
Rescale, which report N ∈ {213, · · · , 216} and {216, 217} respectively, while only [10] supports CAdd and
only [31] supports HRot. The work [42] proposes a framework that accommodates three schemes, BGV, BFV
and CKKS, but only provides HMult without Reline. To the best of our knowledge, there is no work so far
that contains the GPU implementation of all functions of BGV, BFV and CKKS.

2 Preliminaries

2.1 Notation

Let Z and C be the group of integers and complex number, and Zq = Z∩ [−q/2, q/2). For an integer q and a
2-power integer N , we denote the quotient ring as R = Z[X]/(XN + 1) and the corresponding residue ring
modulo q as Rq = R/qR. We use bold lower-case letters to represent ring elements (polynomials) such as

a =
∑N−1

i=0 aiX
i, where ai denote the i-th coefficient of a. With a “hat” symbol such as â, we indicate that

this element is in the frequency domain. The notation ⌊·⌋, ⌈·⌉, ⌊·⌉, and [·]q refer to flooring, ceiling, rounding,
and modular reduction by q, respectively, which can be extended to ring elements by performing coefficient-
wisely. We use ∗ to denote the convolution of two sequences and ⊙ to denote the point-wise multiplication.

For a finite set S, we use a
$←S and a← X to denote sampling from S uniformly or according to a distribution

X on S, respectively.

Throughout this paper, we use KeyGen, Enc, Dec, Ecd, and Dcd to denote the key generation, encryption,
decryption, encoding and decoding of a HE scheme, respectively. The function PreComp denotes the pre-
computation process. The function HAdd (HMult) refers to the ciphertext-ciphertext homomorphic addition
(multiplication with relinearization), CAdd (CMult) refers to the ciphertext-plaintext homomorphic addition
(multiplication), and HRot refers to the rotation operation. The Rescale conducts the rescaling operation
on ciphertexts.
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2.2 Polynomial Multiplication

The Fourier transform (F) and its inverse (F−1) build a bridge between operations in time and frequency
domain. Namely, the convolution in one domain corresponds to the point-wise multiplication in the other
domain, which can be expressed as f ∗g = F−1 (F(f)⊙F(g)), where f and g are two digit sequences in time
domain. Instead of complex elements, the number-theoretic transform (NTT) performs on a finite field of
integers. In this work, we apply a more generic form, i.e., the Number-theoretic Weighted Transform (NWT)
[19]. Formally, let ω be the primitive N -th root of unity in Zq such that ωN ≡ 1 mod q and ωk ̸= 1 mod q
for all integers 0 < k < N , and denote the weight vector d := {di : di ̸= 0, di ∈ Z, i = 0, . . . , N − 1} and

d−1 =
{
d−1
i mod q

}
, theN -point forward and backward NWT of a polynomial f =

∑N−1
i=0 fiX

i is formulated
as:

f̂ := NWTd,N (f), f̂j =

N−1∑
i=0

fidiω
ij (mod q)

f := INWTd,N (f̂), fi =
1

N · di

N−1∑
j=0

f̂jω
−ij (mod q)

(1)

Indeed, it turns out that NWTd,N (f) = NTTN (f ⊙ d) and INWTd,N (f̂) = d−1 ⊙ INTTN (f̂) (mod q). NTT can
be viewed as a special case for d = {1, . . . , 1}, and when d = {ψi : i = 0, . . . , N − 1}, where ψ =

√
ω mod q,

it is equivalent to the negacyclic convolution. Combined with the Fast Fourier Transform (FFT) technique,
we can reduce the computational complexity from O(N2) to O(N logN).

Since the multiplication of polynomials f =
∑N−1

i=0 fiX
i and g =

∑N−1
i=0 giX

i produces another poly-

nomial h =
∑N−1

i=0 hiX
i of which the coefficients are the negacylic convolution of the sequences denoted

as {fi : i = 0, . . . , n− 1} and {gi : i = 0, . . . , n− 1}, this technique gives us an efficient way to compute
polynomial multiplication. Throughout this paper, we perform the multiplication of two polynomials by
f · g = INWT(NWT(f)⊙ NWT(g)) with d = {ψi} and the FFT technique.

2.3 Basics of BGV, BFV and CKKS

In this work, we implement the RNS variants of the three schemes. Below we use BGV, BFV, and CKKS to
denote for simplicity. The three schemes share several algebraic similarities but differ in some design rationales
and constructions. In the following, we denote t as the plaintext modulus in BGV and BFV, the moduli chain
Q = ΠL

i=0qi as the ciphertext modulus, and P = Πk−1
i=0 pi as the special modulus. During processing, we set

the ciphertext modulus to Q′. For leveled schemes BGV and CKKS, Q′ := Qℓ = Πℓ
i=0qi when the ciphertext

is at level ℓ, 0 ≤ ℓ ≤ L. For scale-invariant scheme BFV, Q′ := Q. The RNS-decomposition number is
dnum := ⌈(L + 1)/k⌉. For each ℓ, let α := k and β := ⌈(ℓ + 1)/α⌉. Below we give the specifications of the
implemented schemes. A summary of important notations utilized in these schemes is provided in Table 2.

– Key generation. This module consists of the generation of public-secret key pair denoted as (pk, sk), and
the key-switching keys ksksk′→sk.

• Public-secret key pair. Sample a
$←RQ, s ← X , e ← Xe, and compute b := [−a · s + t′e]Q, where

t′ := t for BGV and t′ := 1 for others. Set the public key as pk := (b,a) ∈ R2
Q and the secret key as

sk := (1, s) ∈ R2.

• Key-switching key. Given two secret keys sk = (1, s) and sk′ = (1, s′), sample a′
j

$←RPQ and e′j ←
Xe, and compute b′j = [−a′

j · s + t′e′j + PBj · s′]PQ. Set the key-switching key from sk′ to sk as

ksksk′→sk := {(b′j ,a′
j)}0≤j<dnum ∈ R2×dnum

PQ , where Bj ∈ ZQL
and satisfies that Bj = 1 (mod qi) for

jα ≤ i < (j + 1)α and is zero otherwise.
– Encryption. Given a public key pk = (b,a) ∈ R2

Q, sample r ← X and e0, e1 ← Xe, compute Encpk(0) :=
[r · (b,a)+ t′(e0, e1)]Q. To encryption a plaintext m, set m∗ = [µm]t in BGV, m∗ = ⌊Q/t⌋[m]t in BFV,
or m∗ = m in CKKS. Here, the correction factor µ is initially set to µ := 1 and adjusted to [q−1 ·µ]t upon
scaling down the ciphertext by q. The resulting ciphertext is ct := Encpk(m) := [Encpk(0) + (m∗, 0)]Q.
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Table 2. Summary of Notations Used in BGV, BFV, and CKKS Schemes.

Notation Description Notation Description

Rqi Rqi = Zqi [X]/(XN + 1) X Noise distribution

t Plaintext modulus L Maximum level

Q Q = ΠL
i=0qi Qℓ Qℓ = Πℓ

i=0qi
Q′ Q′ := Qℓ or Q P P = Πk−1

i=0 pi
Qi Qℓ = {q0, q1, . . . , qi} P P = {p0, p1, . . . , pk−1}
m Plaintext ct ct = (c0, c1) ∈ R2

Q′

µ Correction factor δ δ := P · [[ct′]P · P−1]t
sk sk := (1, s) ∈ R2 pk pk := (b,a) ∈ R2

Q

q∗i q∗i = Qℓ/qi q̃i q̃i = [q∗−1
i ]qi

ν ν =
⌊∑ℓ

i=0 [xi · q̃i]qi /qi
⌉

ρς ρς(X) : X 7→ X5ς

Dj Dj = Πα−1
i=0 qjα+i D∗ D∗ = Παβ−1

i=ℓ+1qi
Q∗

j Q∗
j = QL/Dj Q̃j Q̃j = [Q∗−1

j ]Dj

Bj Bj = Q̃jQ
∗
j dnum dnum := ⌈(L+ 1)/k⌉

α α := k β β := ⌈(l + 1)/α⌉
m∗ m∗ = [µm]t, ⌊Q/t⌋[m]t, or m

ksk ksksk′→sk := {(b′j ,a′
j)}0≤j<dnum ∈ R2×dnum

PQ

– Decryption. Given a ciphertext ct = (c0, c1) ∈ R2
Q′ and a secret key sk = (1, s), compute m′ :=

[c0 + c1 · s]Q′ . The decryption result is [µ−1m′] in BGV and m′ in CKKS. While in BFV, the result is
⌊t/Q′ ·m′⌋.

– Addition. Given two ciphertexts ct1 = (c
(1)
0 , c

(1)
1 ) and ct2 = (c

(2)
0 , c

(2)
1 ) in R2

Q′ , and a plaintext x ∈ R, the
plaintext-ciphertext addition is CAdd(ct1,x) := (c

(1)
0 + [x]Q′ , c

(1)
1 ). The sum of two ciphertext is defined

as HAdd(ct1, ct2) := [(c
(1)
0 + c

(2)
0 , c

(1)
1 + c

(2)
1 )]Q′ for all three schemes. For BGV, ct1 and ct2 should be

scaled first when the correction factors are mismatched.
– Multiplication. Given ciphertexts ct1 = (c

(1)
0 , c

(1)
1 ), ct2 = (c

(2)
0 , c

(2)
1 ) ∈ R2

Q′ , a plaintext x ∈ R, and the
relinearization key rlk = ksksk2→sk, the plaintext-ciphertext multiplication is defined as CMult(ct1, a) :=

[([x]Q′ ·c(1)0 , [x]Q′ ·c(1)1 )]Q′ , and the product of two ciphertexts is described as HMult(ct1, ct2) := [(c0, c1)+

⌊P−1 · c2 · rlk⌉]Q′ . Let ct′ := (c
(1)
0 · c

(2)
0 , c

(1)
0 · c

(2)
1 + c

(1)
1 · c

(2)
0 , c

(1)
1 · c

(2)
1 ), the triple (c0, c1, c2) is defined

as [ct′]Q′ in BGV and CKKS, and [⌊ t
Q′ ct

′⌉]Q′ in BFV.

– Rotation. Given a ciphertext ct = (c0, c1) ∈ R2
Q′ that encrypts a plaintext m(X), a rotation index ς

and a rotation key rtkς = kskρς(sk)→sk, output the encryption of m(ρς(X)) by computing HRot(ct, ς) :=

[(ρς(c0), 0) + ρς(c1) · rtkς ]Q′ , where the automorphism ρς : R → R is defined by X 7→ X5ς .

Batching. Batching is a technique that supports SIMD operations on ciphertexts by encoding multiple
plaintexts into separate slots. Due to the different plaintext space, these three schemes require differ-
ent mappings to the slots, i.e., Rt = R/tR in BGV and BFV and R = Z[X]/(XN + 1) in CKKS. As

XN + 1 =
∏N−1

i=0 (X − ζ2i+1) mod t and the Chinese Remainder Theory (CRT) establishes a natural ring
isomorphism from Rt = Zt/(X

N + 1) to the product space Zt/(X − ζ) × Zt/(X − ζ3) × · · · × Zt/(X −
ζ2N−1) ∼= ZN

t , we can perform N integer additions/multiplications modulo t via a single polynomial ad-
dition/multiplication in Rt. Formally, the decoding in BGV and BFV is given by BatchDcd : Rt →
ZN
t , p(X) 7→ (p(ζ), p(ζ3), . . . , p(ζ2N−1)) and the encoding BatchEcd is defined to be the inverse, which

can be computed efficiently through an N -point NWT/INWT over Zt. While in CKKS the transfor-

mation is conducted through two steps: R[X]/(XN + 1)
σ−→H π−→CN/2. First, the canonical embedding

σ : p(X) 7→ (p(ξj))j∈Z∗
2N

maps p(X) ∈ R[X]/(XN + 1) to H = {(zj)j∈Z∗
2N

: z2N−j = z̄j} ⊆ CN . Then,
define T as a subgroup of the multiplicative group Z∗

2N with order N/2, the subring H can be identified
with CN/2 via the natural projection π : (zj)j∈Z∗

2N
7→ (zj)j∈T . Through this we have the encoding and
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decoding functions in CKKS, i.e., CKKSEcd(z ∈ CN/2;∆) : CN/2 → R, z 7→ m = ⌊∆ · σ−1(π−1(z))⌉ and
CKKSDcd(m ∈ R;∆) : R → CN/2,m 7→ z = π ◦ σ(∆−1 · m), respectively. Here, the σ map is performed
through FFT and σ−1 is the inverse.

RNS Representation. The residue number system (RNS) is often applied to handle the computation of
elements larger than machine word-size. With the RNS base {q0, q1, . . . , qℓ}, a polynomial f ∈ RQℓ

can be
represented as (f0, . . . ,fℓ) ∈ Πℓ

i=0Rqi , and multi-precision arithmetic can be replaced by a set of residues-
wise arithmetic through the isomorphism RQℓ

→ Rq0 ×Rq1 × · · · × Rqℓ . The RNS-friendly feature of BGV

and CKKS allows double-CRT representation of ciphertexts most of the time, i.e., (f̂0, . . . , f̂ℓ) ∈ Πℓ
i=0Rqi

in frequency domain. For BFV that additional RNS base conversions are needed to solve the compatibility
of some operations, it is better to store ciphertexts in the RNS representation.

Modulus-Switching. We define the modulus-switching as switching the modulus (equivalently, RNS base)
of a ring element from one to another. Two methods are commonly utilized for fast RNS base conversion
from Qℓ = {q0, q1, . . . , qℓ} to B = {r0, r1, . . . , rl−1}, i.e., the BEHZ-type [11] and the HPS-type [28], which
are illustrated as:

ConvBEHZ
Qℓ→B(x) =

[ ℓ∑
i=0

[xi · q̃i]qi · q
∗
i

]
rj

l−1

j=0

ConvHPS
Qℓ→B(x) =

[ ℓ∑
i=0

[xi · q̃i]qi · q
∗
i − νQℓ

]
rj

l−1

j=0

(2)

Here, ν =
⌊∑ℓ

i=0 [xi · q̃i]qi /qi
⌉
, q∗i = Qℓ/qi, and q̃i = [q∗−1

i ]qi . The method to extend and reduce the

RNS base are based on this technique, defined as ModUpQℓ→Qℓ∪B([c]Qℓ
) := ([c]Qℓ

, ConvQℓ→B([c]Qℓ
)) and

ModDownQℓ∪B→Qℓ
([c]Qℓ

, [c′]B) := ([c]Qℓ
− ConvB→Qℓ

([c′]B)) · [R−1]Qℓ
, where R = Π l−1

j=0rj . For a given ci-

phertext ct ∈ R2
Qℓ

, the Rescale operation scales down the modulus of ct from Qℓ to Qℓ−1, by computing
ModDownQℓ→Qℓ−1

(ct).

For the BGV scheme, the ModDown is slightly distinct, which necessitates a correction to ensure accuracy.
Given that it involves a plaintext modulus t, the conversion of ct from RQR to ct′ ∈ RQ must satisfy the
condition ct′ ≡ ct (mod t). Denoting cts = ⌊ct/R⌉ as the item after scaling, a rounding error ϵ = ct− Rcts
is observed. Consequently,

ct′ = (ct− ϵ+R · [ϵ ·R−1]t) ·R−1 (3)

Since ϵ = ct − Rcts, it follows that ϵ = [ct]R. Therefore, in the ModDownQℓ∪B→Qℓ
for BGV, it is imperative

to add the term δ := R · [[ct]R ·R−1]t to the ciphertext prior to performing the final multiplication by R−1.
Meanwhile, the correction factor µ should be updated as [R−1 · µ]t.

Key-Switching. We implement an optimized key-switching procedure with the HPS technique [28]. Given
a key-switching key ksksk′→sk and a ciphertext ct′ = (c′0, c

′
1) ∈ R2

Q′ under sk′ = (1, s′), this procedure
splits c′1 into β digits with base D′

j = {qjα, . . . , q(j+1)α−1} for j ∈ [0, β − 1) and D′
β−1 = {qα(β−1), . . . , qℓ},

then it raises the base of each digit to Q′ ∪ P, and computes the ciphertext ct = (c0, c1) ∈ R2
Q′ by ct =[

(c′0, 0) +
⌊
P−1 · [

∑β−1
j=0 c

′
1,j · ksksk′→sk,j ]PQ′

⌉]
Q′
. Through this process, the ciphertext ct′ is transformed into

ct that encrypts an approximately equivalent message using another key sk = (1, s), i.e., ⟨ct, sk⟩ = ⟨ct′, sk′⟩+
eks, where eks is the noise.
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Fig. 1. The CPU-GPU computational model and the architecture of GPU.

2.4 GPU Programming

We summarize the computational model and the architecture of GPU in Figure 1. The GPU memory can
be classified into two types. The first is the read-write memory, including the global memory (GMEM), the
shared memory (SMEM), and the register file (RF), where the access speed is from slow to fast as listed.
The second is the read-only memory, including the constant memory and the texture memory, and both of
them can be cached. A CUDA kennel is run concurrently on GPU by many threads, which is the minimum
execution unit and can be grouped into a block. Every thread has its private RF, and the SMEM is shared
by all threads within a block. The GMEM and read-only memory are accessible for all threads, which have
the longest lifetime that encompass the entire computational task. During execution, threads are bundled
per 32 in a warp. A streaming multiprocessor (SM) holds one or multiple blocks, and each warp scheduler
(WS) in the SM schedules and executes one warp at a time. In a heterogeneous platform that equipped
with CPU and GPU, a common and straightforward collaborative computing mechanism is that the CPU
schedules the tasks in the execution queue, launches the corresponding kernels to the GPU and transfers
essential data through PCIe, and then waits for the GPU to execute and return the results. In this case,
fusing data-dependent kernels can reduce the IO latency caused by data transfer and memory access to some
extent. For better performance, over-fusing should be prevented, as the SM occupancy will decrease if the
resource consumption of a block is too high.

3 Implementation Details and Optimizations

In this section, we present the implementation details of Phantom. First, we develop a framework for im-
plementing and benchmarking the three HE schemes. The architecture of the framework is summarized in
Sec 3.1. Then, we describe the design of essential modules from the low-level operations to the high-level
schemes, covering the implementation and optimization of kernels, and methods to adapt the three schemes.

3.1 Framework Structure of Phantom

We show the structure of the implemented framework in Figure 2 to give a concise overview. In functionality,
it consists of two main parts, one serving for pre-computation and the other containing optimized implemen-
tation of the HE schemes that can be divided into three layers: a math/polynomial layer, a RNS arithmetic
layer and a scheme layer.

The basic layer contains the low-level modular operations for both 64-bit and 128-bit integers, a pseudo-
random generator and polynomial arithmetics. For the integer operations, we provide well-optimized constant-
time implementation and minimize the number of machine instructions and register usage. Based on this, we
implement polynomial arithmetic, such as NWT and FFT for fast and low-complexity computation. At the
middle layer, we implement the sampling and RNS arithmetic modules, of which the operands are polynomi-
als under RNS or double-CRT representation. The sampling module consists of three approaches for sampling
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Fig. 2. Structure of our benchmarking framework. The implemented functions are organized into three layers, i.e., a
math/polynomial layer, an RNS arithmetic layer and a scheme layer.

polynomial coefficients from ternary, uniform and centered binomial distribution. The RNS module offers
efficient polynomial arithmetics, and we implement common algorithms of both BEHZ- and HPS-type base
conversion. The top layer offers high-level unified implementation of the BGV, BFV and CKKS schemes. For
all schemes, our framework supports the following features: (1) both symmetric and asymmetric encryption;
(2) homomorphic addition, subtraction and multiplication of two or multiple plaintexts and ciphertexts; (3)
in-place homomorphic exponentiation, negation, and rotation of a single ciphertext.

Our optimizations are primarily targeted towards memory efficiency in addressing the significant memory
consumption and data access demands of HE schemes. Firstly, we optimize the data access patterns to
eliminate stride GMEM access, ensuring that warp-level memory requests are executed within a single
cycle for increased efficiency. Secondly, we introduce a memory pool mechanism for the efficient and secure
handling and transfer of large data volumes. Thirdly, our approach includes the development of various kernel
fusion techniques. This encompasses both intra-kernel fusion, which consolidates arithmetic operations within
a single kernel allowing for the reuse of temporary elements in registers, and inter-kernel fusion, which
amalgamates adjacent kernels sharing similar parallelism. This latter technique is designed to maintain
temporary data in lower latency memory, thereby reducing the need for time-consuming GMEM transfers.
Overall, these enhancements contribute to a reduction in memory request instructions and IO latency, thus
significantly improving the performance of our HE implementations.

3.2 Number-theoretic Weighted Transform

We implement the NWT using two distinct methodologies, aiming at maximizing parallelism and minimizing
total IO latency within the hierarchical memory structure of GPUs across various input data sizes.

NWT-1D. For the NWT of a polynomial f ∈ RQℓ
in RNS representation, a widely applied approach [8,39]

involves deploying a single kernel where each block performs residue-wise transform under qi. In a block, each
thread is responsible for loading ι coefficients and executing a radix-ι butterfly operation. For larger N , this
kernel is called recursively to process polynomial segments in cases of limited memory. However, this approach
encounters challenges with increasing N . Firstly, a single kernel results in an exponential increase in per-
thread register usage, causing register overuse and a decline in SM occupancy. Secondly, decreasing register
usage per thread requires to reduce coefficients loaded per thread and butterfly radix, leading to increased
register-memory interaction and IO latency, especially problematic when SMEM capacity is insufficient for
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large N . Lastly, while recursive processing is feasible, it is not generic and necessitates multiple kernels,
leading to excessive GMEM access.

NWT-2D. To address these challenges, we apply arithmetic reconstruction, aiming to divide the process
into as few kernels as possible, thus minimizes overall GMEM access and reduces overhead of each kernel.
This approach follows a hierarchical methodology [31, 34, 42]. Here, we divide the N -point NWT into two
stages using suitable N1 and N2 where N = N1N2. Let ψ

2N ≡ 1 mod q, we define NWTd,N and INWTd,N with
d = {ψi : i = 0, . . . , N − 1} as follows:

x̂y+N1z =

N2−1∑
j=0

N1−1∑
i=0

xiN2+jψ
2(iN2+j)(y+N1z)+(iN2+j)
N

=

N2−1∑
j=0

(
ψ2jy+j
N ·

(
N1−1∑
i=0

xiN2+jψ
2iy+i
N1

))
ψ2jz
N2

mod q

xiN2+j =
1

N1N2

N2−1∑
z=0

N1−1∑
y=0

x̂y+N1zψ
−2(iN2+j)(y+N1z)−(iN2+j)
N

=

N1−1∑
y=0

ψ−2iy−i
N1

N1

(
ψ−2jy−j
N

N2

(
N2−1∑
z=0

x̂y+N1zψ
−2jz
N2

))
mod q

(4)

This pattern enables us to implement two kernels, each responsible for one of the sub-procedures. Actually,
the one kernel NWT-1D is equivalent to one phase in NWT-2D. This method significantly reduces the total
GMEM access and IO latency, as GMEM access is required only between the two kernels.

Detail Instantiation. The NWT-1D method exhibits high hardware consumption for large N , but is suf-
ficiently memory-efficient for small N , since it obviates the need for dual kernels and GMEM interactions.
However, given that HE parameters often require large N values, with |N | ≥ 12, we opt for the NWT-2D

method, which strikes a balance between performance and memory usage. We incorporate NWT-1D with ι = 8
as the building block for the two kernels in NWT-2D. For the (N1, N2) configuration, we set |N1| = 6 for
|N | = 12, |N1| = 7 for |N | = 13, and |N1| = 8 for |N | ∈ [14, 17]. This setup minimizes SMEM interactions
and achieves a near-equal split between N1 and N2, which provides better theoretical complexity. In each
kernel, multiple RNS polynomials under different moduli are batched. Unlike previous works, where both [34]
and [31] only support |N | ∈ [14, 17], and [42] supports |N | ∈ [11, 17] but fixes N2 = 211, our implementation
can handle polynomials of |N | ≤ 17 and is more flexible.

Optimization in INWT. The inverse transformation involves handling the division by N . Prior works [31,
34,42] adopt a divide-by-2 strategy and integrate this division into the pre-compute table of ψ. However, this
method poses limitations with the GS butterfly [24,30], as it affects only half of the coefficients, necessitating
additional steps for the remaining half. To address this, we retain the divide-by-N operation in the final level
of INWT process. This approach ensures a more balanced processing between the left and right branches
of the butterfly algorithm. Furthermore, we can fuse the division operation with other processes to reduce
computational overhead, such as scaling in modulus-switching.

3.3 RNS Base Management

We implement an RNS base management module to provide direct access and conversion of ciphertext moduli,
of which the structure is shown in Figure 3. This module consists of two parts. The first part provides access
to the RNS bases at each level, including the ciphertext base Q, the base P for key-switching, and the
auxiliary base. The second part is implemented to offer pre-computed values for base conversions used in
operations such as key-switching and division-and-rounding. The instantiation is according to the pre-set
base conversion technique, i.e., BEHZ [11] or HPS [28].
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Fig. 3. Design of the RNS base management module and base converter in our framework. The auxiliary base and
the base converter are initialized depending on the conversion type of BEHZ or HPS.

Modulus-switching. To switch the RNS base of an element x from base Qℓ = {q0, q1, . . . , qℓ} to R =
{r0, r1, . . . , rl−1}, we implement both ConvBEHZ

Qℓ→R(x) and ConvHPS
Qℓ→R(x). Since the computational flow has

different dimensions for parallel execution, i.e., (ℓ+ 1)-parallelism or l-parallelism, implementing one kernel
and setting the parallelism directly to one of the values can lead to some computations being repeatedly
executed. Based on this consideration, we implement two kernels for the RNS base conversion. In the first
kernel, we compute [xi · q̃i]qi and utilize (ℓ + 1) · N threads. In the second kernel, we launch l · N threads
to compute the modular multiplication with q∗i and the accumulation. We store the accumulated values in
the RF and reduce the number of modular reductions by lazy reduction. Each thread takes a polynomial
coefficient and multiplies it with the corresponding elements of the conversion matrix, which are pre-computed
and provided by the base converter. For HPS-type conversion, we fused the process of subtracting [νQ]R
into the second kernel. In this case, each thread also needs to compute ν as an index to obtain the value of
[νQ]R from the converter and subtract it from the result.

3.4 Key-Switching

The hybrid key-switching technique is first proposed for CKKS in [29] and then introduced into BGV and
BFV in [33]. It is the most practical method, which has been demonstrated in the work [31] on accelerating
CKKS with GPUs. In our implementation, we first utilize two techniques to obtain a more efficient key-
switching procedure. Then, we give a generic design compatible with the three schemes and methods to
optimize the memory usage.

Optimized Key-Switching Procedure. We first recall the original design in [29, 31]. Denote Dj =

Πα−1
i=0 qjα+i, D

∗ = Παβ−1
i=ℓ+1qi, Q

∗
j = QL/Dj , and Q̃j = [Q∗−1

j ]Dj
. Given the ciphertext ct′ = (c′0, c

′
1) ∈ R2

Qℓ

under sk′ = (1, s′), this procedure first raises the modulus of c′1 to the nearest Πβ−1
j=0 Dj by multiplying D∗,

such that Πβ−2
j=0 Dj < Qℓ ≤ Πβ−1

j=0 Dj . Then, the polynomial is divided into β digits. Afterwards, it raises
the modulus of each digit to Qαβ−1P to multiply with the ksksk′→sk, and at last reduce the modulus of the
accumulation result to Qℓ. In our implementation, we eliminate the Modup of c′1, i.e., we keep the base of c′1
in Qℓ and extend the base of each digit to QℓP. This saves αβ− ℓ−1 (I)NWTs and point-wise multiplications
of polynomials. Additionally, we apply the HPS technique [28] by setting Bj = Q̃jQ

∗
j in the generation of

key-switching keys, j ∈ [0, β), as illustrated in Sec 2.3. With this optimization, we do not need to perform
the scalar multiplication with Q̃j and the RNS decomposition is executed implicitly without additional
consumption.

Generic Design. The homomorphic multiplication and rotation over ciphertexts both change the underly-
ing secret key implicitly, but differ in the input formats. Meanwhile, the ciphertexts of the three schemes are
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kept in different representations. This motivates us to explore a generic design that is compatible with all HE
operations of the three schemes. In detail, the homomorphic multiplication yields a triple (c0, c1, c2) under
secret key (1, s2), and the automorphism ρς applied in rotation produces (ρς(c0), ρ

ς(c1)) under (1, ρς(s)).
Thus, we unify the input of key-switching module to (g0, g1, g2), and instantiate it as (c0, 0, c1) in normal
switching case and (c0, c1, c2) in relinearization. Figure 5 shows the details of our design. We adapt the entire
procedure to three steps. First, for the schemes BGV and CKKS that keep the ciphertexts in the double-
CRT representation, we transform them to the normal domain before ModUp by INWT. Then, we perform
the same computational sequences for all three schemes, i.e. digit-wise ModUp, NWT, inner product, and INWT.
At last, we apply three branches to handle different cases of the three schemes, containing the ciphertexts
representation, the multiplication of P−1, and the correction in ModDown for BGV.

base base base base base

base base base

... ...

...

&

&
base

...

...

Fig. 4. The computational flow of optimized key-
switching procedure.
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Fig. 5. The generic design of the key-switching module
for three schemes. We use the symbol “&” to mark the
fused operation in our implementation.

Kernel Fusing. We introduce three specific types of kernel fusing in key-switching aimed at optimizing
data access patterns. Firstly, for the ModUp operation, we reorganize the storage sequence of the original
digits and conversion results. This rearrangement enables the fusing of cudaMemcpy operations for base
conversion results and digits into a single, streamlined process, thereby simplifying the computation and
reducing IO latency in data copying. Secondly, in BGV scheme, the ModDown operation necessitates a term
δ := P · [[ct′]P · P−1]t for correction, as described in (3). We perform an intra-fusing strategy by integrating
this step with the residue-wise subtraction in base conversion, capitalizing on their identical parallelism and
shared modulus qi. Thirdly, considering that both BGV and CKKS schemes require a scaling operation
adjacent to the NWT, we conduct an inter-fusing approach by amalgamating this scaling operation within
the INWT kernels for these schemes. These intra-fusing and inter-fusing approaches allow for the retention
of temporary data and most intermediate values between the two processes within the RF, enabling direct
processing and eliminating the need for supplementary data transfers, thus ensuring minimal IO latency.
As a result, all these techniques effectively reduce the overall data access demands, thereby enhancing the
operational efficiency of these HE schemes.
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3.5 Homomorphic Multiplication

The multiplication of two given ciphertexts ct1 = (c
(1)
0 , c

(1)
1 ), ct2 = (c

(2)
0 , c

(2)
1 ) ∈ RQ′ consists of two phases

of tensor product and relinearization. Figure 6 gives the concise design for the first phase, in which we obtain

the triple ct′ = (d0,d1,d2) := (c
(1)
0 ·c

(2)
0 , c

(1)
0 ·c

(2)
1 +c

(1)
1 ·c

(2)
0 , c

(1)
1 ·c

(2)
1 ). For BGV and CKKS, since we keep

the ciphertext under double-CRT representation, there is no need for NWT/INWT transformation before
and after the tensor product compared to BFV of which the ciphertexts are under RNS representation. The
main reason for this is that BFV needs the scaling [⌊ t

Q′ ct
′⌉]Q′ , which the BEHZ- [11] and HPS-variant [28]

adopt different methods to adapt.

In the tensor product kernel, we consider all possible circumstances, depending on the size of the input
ciphertexts. The default and more recommended case is that every ciphertext contains two ring elements,
since a large size leads to more consumption for computation and memory. The common method to compute

d̂1 is implemented by d̂1 = [ĉ
(1)
0 ⊙ ĉ

(2)
1 ]Q′ + [ĉ

(1)
1 ⊙ ĉ

(2)
0 ]Q′ . In our implementation, we apply the Karatsuba

technique [32] by first computing d̂′
1 = [(ĉ

(1)
0 + ĉ

(1)
1 ) ⊙ (ĉ

(2)
0 + ĉ

(2)
1 )]Q′ , and then obtain d̂1 through d̂1 =

[d̂′
1 − d̂0 − d̂2]Q′ . As the 128-bit product result is obtained through two 64-bit CUDA PTX instructions,

the eliminated point-wise multiplication by Karatsuba technique actually trades two 64-bit multiplication
instructions by cheaper addition and shift-right instructions per coefficient.

BFV variants. To solve the compatibility of division-and-rounding with RNS, both BEHZ- and HPS-
variant require an auxiliary base, denoting as Bsk ∪ m̃ and R respectively, as well as the modulus-switching
to the extended base and to the original base Q′ before and after the tensor product. Since the most
time-consuming parts are the NWT/INWT and the tensor product, the overall difference in computational
overhead between these two variants is not significant. However, the memory consumption is different. The
BEHZ-variant requires three base converters, including Q′ → Bsk ∪ m̃, Q′ → Bsk, and Bsk → Q′, while
the HPS-variant needs Q′ → B and B → Q′. For base conversion Q → B, each converter pre-computes
{[q̃i]qi , [q∗i ]rj} for BEHZ-variant and {[q̃i]qi , [q∗i ]rj , [νQ′]rj} for HPS-variant. Additionally, the HPS-variant
also needs pre-computation of [tRq̃i/qi]rj and tRq̃i/qi.
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4 Performance Evaluation and Comparison

In this section, we present the performance of the three HE schemes and the comparisons with related works.

4.1 Experiment Setup

We compile the implementations using g++ 11.4 and CUDA 12.2 on Ubuntu Server 22.04. CPU experiments
are performed on an Intel(R) Core(TM) i9-12900KS CPU with 16 cores. GPU experiments are performed
on NVIDIA Tesla A100 80G PCIe GPU. The performance results are the median of 100 tests.

Table 3. Maximum Ciphertext Modulus Size |QP | Corresponding to Various Security Levels

|N | 11 12 13 14 15 16 17

λ = 80 86 173 348 704 1428 2889 5868
λ = 128 54 108 218 438 881 1777 3576
λ = 192 37 75 151 304 611 1229 2469

All parameter sets that we used to evaluate the performance of schemes achieve 128 bit security, except in
testing the key-switching procedure (in Table 5), for maintaining the same parameter configuration with [31].
In Table 3, we detail the maximum size of the ciphertext modulus |QP | corresponding to security levels of
80, 128, and 192 bits, as calculated using the LWE estimator [9]. The choice of security parameters influences
performance, particularly because the selection of the modulus chain. When the number of moduli in QP
increases, specifically qi and pi, there may be a decrease in the security level but an allowance for a deeper
multiplication depth. Concurrently, the residue-wise computation overhead escalates, leading to an overall
increase in execution time.

The CPU baseline is obtained from SEAL benchmarking [41] with the default parameter sets. We compare
our GPU implementation with the works [8, 31, 38]. Currently, there is no complete GPU implementation
of BGV. The works [8, 31] are the state-of-the-art implementations of BFV and CKKS, respectively, and
the work [38] present a latest GPU implementation of BFV. The work [31] open-sources some code of the
lower-level operations of CKKS, and we run their code on our GPU to compare the performance. For the
performance of the high-level homomorphic operations that are closed-source, we used the data provided in
their papers. In [23], the authors present a GPU implementation of CKKS using Tensor Core Units. We do
not compare our implementation with this work because they implement 32-bit arithmetic, which leads to
significant speedup since [31] focuses on 64-bit arithmetic.

4.2 Comparison with State-of-the-Art Work

Our comparisons focus on (I)NWT and key-switching implementations against [31]. These operations are
crucial in HE and often represent significant computational bottlenecks, which also encompass almost all
low-level implementation.

In Table 4, we present an analysis of this work (abbreviated as TW) and [31], which includes single
(I)NWT executions under identical modulus and same platform. The metrics include execution time and
DRAM bandwidth. Due to our optimized and constant-time low-level arithmetic implementation, our im-
plementation outperforms [31] across all |N | ∈ [12, 17], both in speed and memory efficiency. Specifically,
for NWT, we achieve improvements of up to 8.3% in speed and 9.1% in memory throughput. For INWT,
our divide-by-N optimization yields even greater enhancements, with speedups of up to 19.8% and a 24.7%
increase in memory throughput.

Table 5 compares the performance of key-switching module. Because the authors do not release the com-
plete key-switching implementation, we compare the three individual steps: ModUp, Product, and ModDown,
and ModDown, and the total time is estimated from these. The released code [31] contains pure kernel imple-
mentation, omitting additional processing such as memory and scheme management, which, though adding
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Table 4. Comparison of (I)NWT implementation in this work (TW.) and related work [31] on Tesla A100 GPU.

NWT INWT

Execution time (µs) Bandwidth (GB/s) Execution time (µs) Bandwidth (GB/s)

|N | [31] TW. [31] TW. [31] TW. [31] TW.

12 - 18.87 - 3.47 - 17.34 - 3.78

13 - 20.16 - 6.50 - 17.91 - 7.32

14 22.18 20.64 11.82 12.70 23.54 19.25 11.14 13.62

15 24.30 22.28 21.58 23.54 24.94 20.01 21.02 26.21

16 24.08 22.82 43.55 45.96 26.02 21.38 40.30 49.05

17 26.04 25.51 80.54 82.20 28.28 27.16 74.15 77.22

Table 5. Performance break down of the hybrid key-switching module of our CKKS implementation and [31] on Tesla
A100 GPU. The functions ModUp, Product, and ModDown denote the modulus-raising, inner product, and modulus-
down, respectively.

Execution time (µs)

[31] TW. [31] TW.

|N | 15 15 16 16 16 16 16 16 16
|Q| 1,510 1,510 2,260 2,260 2,260 2,260 2,260 2,260 2,260
|QP | 2,410 2,410 3,160 3,160 3,160 3,160 3,160 3,160 3,160
ℓ 15-29 15 30-44 44 42 39 36 33 30
k 15 15 15 15 15 15 15 15 15

dnum 2 2 3 3 3 3 3 3 3

ModUp 253 169 874 938 887 818 769 700 648
Product 76 55 244 236 228 217 206 196 185
ModDown 144 106 324 348 336 317 300 283 265

Total 617 436 1,766 1,870 1,787 1,669 1,575 1,462 1,363
(1.4×) (1.3×)

some overhead in our case, are necessary for practical use. Despite this, our implementation demonstrates
superior performance as ciphertext level decreases. In contrast, the execution time in [31] remains constant,
as the raised modulus is unchanged. Our method shows a gradual reduction in total time with decreasing
modulus levels, enabling a key-switching speedup of more than 1.3×.

4.3 Effectiveness of Memory Optimizations

In Fig. 7, we present the execution times before and after implementing our memory optimization strategies.
These results correspond to the three kernel fusing techniques we proposed in Section 3.4, evaluated for
|N | ∈ {14, 15, 16}.

Our first optimization involves the fusion of cudaMemcpy operations. By reorganizing the data sequence,
we simplify the data copying process, enabling it to be executed with a single cudaMemcpy call instead of
multiple calls. This change nearly doubles the efficiency of the process. In the second optimization, we fuse
the correction step into the ModDown operation in the BGV scheme. This integration allows the addition of the
correction term directly into the residue-wise arithmetic operation in ModDown, effectively utilizing RF and
reducing the need for extensive GMEM load and store requests. As a result, we observe a speedup ranging
from 1.73× to 1.90× across the three parameter sets. The third optimization fuses the scaling operation
into the INWT kernels. This approach significantly reduces overhead associated with scaling computations,
primarily due to decreased memory access requirements. Here, we achieve a speedup of up to 1.48×. These
results demonstrate the substantial effectiveness of our proposed optimizations in enhancing the overall
performance of the operations.
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Fig. 7. Execution time comparison before and after kernel fusion (in µs) for |N | ∈ {14, 15, 16}: (a) impact of fusing
cudaMemcpy operations; (b) efficiency gained by integrating ModDown with correction in BGV; (c) improvements from
combining the NWT with the scaling operation.

Table 6. Performance of our BGV implementation on NVIDIA Tesla A100 GPU.

Execution time (µs)

SEAL This work

|N | 15 12 13 13 13 14 14 14 15 15 15 16 16 16
|Q| 825 70 162 180 144 378 396 288 825 828 576 1,721 1,729 1,152
|QP | 881 108 218 218 218 438 438 438 881 881 881 1,777 1,777 1,777
L 14 1 2 4 3 6 10 7 14 22 15 30 46 31
k 1 1 1 1 2 1 1 4 1 1 8 1 1 16

dnum 15 2 3 5 2 7 11 2 15 23 2 31 47 2

KeyGensk 7692 27.6 30.7 31.7 31.7 39.9 46.1 45.0 86.0 116.7 116.7 270.3 398.3 398.3
KeyGenpk 15444 45.1 50.2 51.2 52.2 61.4 70.6 69.6 126.9 172.0 172.0 396.2 583.6 583.6

KeyGenrlk 226471 94.2 151.6 251.9 107.5 419.8 747.5 145.4 1,888.2 3,927.0 356.3 12,272.6 27,482.1 1,201.1
Ecd 220 28.7 29.7 29.7 29.7 40.9 40.9 41.0 58.3 58.3 55.3 78.8 76.8 76.8
Dcd 254 32.2 43.6 44.0 44.2 48.2 47.4 47.9 62.3 62.3 57.6 83.6 81.6 81.8
Enc 36167 205.8 239.6 275.5 260.1 345.0 432.1 385.0 740.3 1,061.8 916.4 2,089.9 3,101.7 2,909.1
Dec 6912 25.6 27.6 28.7 28.7 33.8 37.8 34.8 59.4 82.9 60.4 197.6 302.1 205.8

HAdd 311 8.2 9.2 9.2 9.2 10.2 11.3 10.2 14.3 19.4 15.3 71.6 102.4 74.7
CAdd 5076 33.8 51.2 81.9 66.6 115.7 179.2 132.1 276.5 457.7 299.0 635.9 962.5 652.2
HMult 88570 154.6 182.3 224.3 179.2 314.3 448.5 218.1 949.2 1,772.5 473.0 5,197.8 10,975.2 1,892.3
CMult 6410 36.9 55.3 86.0 70.7 119.8 184.3 136.2 280.5 469.0 308.2 672.7 1,015.8 684.0
HRot 87009 157.7 184.3 226.3 181.2 311.3 445.4 215.0 941.0 1,752.0 460.8 5,109.7 10,852.4 1,807.3

4.4 Performance of HE Schemes

We summarize the performance of our BGV, BFV, and CKKS implementations in Table 6, 7, and 8, respec-
tively. The tables include execution time of SEAL and Phantom on our platform, and the performance of
related works.

In general, the most time-consuming modules are the homomorphic operations that require key-switching,
and the execution time of the scheme functions is relatively small. We provide the performance of two cases
with different dnum when |N | > 12. Note that choosing a smaller dnum leads to a smaller multiplication depth
for leveled HE schemes at the same security level.

Similar to BGV, BFV has a plaintext modulus and performs over finite field. However, in the asymmetric
encryption Enc, since BFV does not need to deal with the correction in ModDown, the computational overhead
of this function is smaller compared to BGV in which the correction is required. Moreover, according to our
experimental results, the HPS-variant performs better compared with the BEHZ-variant in the Dec and
HMult functions. Compared to [8], we offer more functionality as well as larger parameter sets, such as
enabling the hybrid key-switching technique.

The CKKS scheme allows input types of rational numbers and, unlike BGV and BFV, it does not require
a plaintext modulus. This leads to slower encoding and decoding of the inputs, where the (I)FFT needs
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Table 7. Performance of our BFV implementation and the comparison with [8, 38].

Execution time (µs)

SEAL [8]1 [38]2 This work

|N | 15 14 15 12 13 13 13 14 14 14 15 15 15 16 16 16
|Q| 825 720 70 162 180 144 378 396 288 825 828 576 1,721 1,729 1,152
|QP | 881 881 108 218 218 218 438 438 438 881 881 881 1,777 1,777 1,777
L 14 12 1 2 4 3 6 10 7 14 22 15 30 46 31
k 1 1 1 1 2 1 1 4 1 1 8 1 1 16

dnum 15 2 3 5 2 7 11 2 15 23 2 31 47 2

KeyGensk 7,692 27.6 30.7 31.7 31.7 39.9 45.0 45.0 86.0 116.7 116.7 270.3 398.3 398.3
KeyGenpk 15,444 174,508 41.9 47.1 48.1 48.1 57.3 65.5 65.5 120.8 163.8 165.8 379.9 560.1 560.1

KeyGenrlk 226,471 88.0 142.3 235.5 101.3 392.2 699.4 137.2 1,798.1 3,743.7 342.0 11,794.4 26,354.7 1,152.0
Ecd 223 26.6 29.7 29.7 29.7 39.9 40.9 39.9 57.3 57.3 54.2 75.7 75.7 75.7
Dcd 256 32.8 43.1 43.1 43.1 47.3 47.2 47.2 60.2 60.0 56.4 80.6 81.0 78.8
Enc 23,049 3,296 104.4 115.7 119.8 120.8 150.5 174.0 174.0 329.7 451.5 455.6 1,106.9 1,634.3 1,813.5

DecBEHZ 11,294 252 59.3 61.4 63.5 62.4 70.6 74.7 71.6 120.8 156.6 124.9 349.1 551.9 360.4
DecHPS 46.0 48.1 49.1 49.1 55.3 59.4 57.3 101.3 134.1 105.4 309.2 483.3 316.4

HAdd 1,078 53 44 8.1 9.2 9.2 9.2 10.2 11.2 10.2 14.3 19.4 14.3 73.7 102.4 74.7
CAdd 1,348 5.1 6.1 6.1 6.1 6.1 7.1 7.1 10.2 12.2 10.2 26.6 38.9 27.6

HMultBEHZ 228,308 11,747 6,907 440.3 492.5 545.8 497.6 695.3 878.6 616.4 1,818.6 3,075.0 1,586.1 8,611.8 17,795.1 6,797.3
HMultHPS 281.6 323.5 387.0 334.8 562.1 766.9 489.4 1,732.6 3,057.6 1,332.2 9,101.3 20,055.0 6067.2
CMult 21,071 82.9 88.0 89.1 88.0 97.2 101.3 99.3 182.2 250.8 189.4 555.0 818.1 567.3
HRot 86,788 3464.5 100.3 126.9 168.9 129.0 247.8 379.9 158.7 863.2 1,674.2 379.9 4,981.7 10,759.2 1,610.7

1The performance of [8] is obtained on an NVIDIA Tesla P100 GPU.
2The performance of [38] is obtained on an NVIDIA RTX 3060 Ti GPU.

to be computed. Additionally, since CKKS does not need to raise the modulus of plaintexts to add with
ciphertexts in the CAdd function, the overall computational overhead difference of its homomorphic addition is
not significant. Keeping the ciphertexts in the double-CRT representation makes CKKS has lower complexity
in the implementation of operations such as homomorphic multiplication, which shows an advantage in speed
compared to BFV.

5 Conclusion

In this work, we propose optimized GPU implementations of BGV, BFV and CKKS, and evaluate the
performance. We reduce the computational and memory overhead of operations and show methods to achieve
optimal performance under parameters of different magnitudes. We develop a framework to integrate the
implementation of the three schemes, and provide a thorough benchmark of the implemented schemes. For the
deployment of HE schemes in privacy-preserving applications, our experimental results provide a reference
for scheme selection and implementation.
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