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ABSTRACT While the convergence of Artificial Intelligence (AI) techniques with improved information
technology systems ensured enormous benefits to the Internet of Vehicles (IoVs) systems, it also introduced
an increased amount of security and privacy threats. To ensure the security of IoVs data, privacy preservation
methodologies have gained significant attention in the literature. However, these strategies also need specific
adjustments and modifications to cope with the advances in IoVs design. In the interim, Federated Learning
(FL) has been proven as an emerging idea to protect IoVs data privacy and security. On the other hand,
Blockchain technology is showing prominent possibilities with secured, dispersed, and auditable data
recording and sharing schemes. In this paper, we present a comprehensive survey on the application and
implementation of Blockchain-Enabled Federated Learning frameworks for IoVs. Besides, probable issues,
challenges, solutions, and future research directions for BC-Enabled FL frameworks for IoVs are also
presented. This survey can further be used as the basis for developing modern BC-Enabled FL solutions
to resolve different data privacy issues and scenarios of IoVs.

INDEX TERMS Internet of Vehicle (IoV), Blockchain, Federated Learning, Machine Learning

I. INTRODUCTION

RECENTLY conventional vehicular ad-hoc networks are
progressively advancing towards the Internet of Vehi-

cles (IoVs). IoV is a regular network system with emphasized
sensing, information communication, and computational
abilities such as vehicular sensors and IoT devices, Roadside
Units (RSUs), etc. IoV is the core technology that has the
capability to solve the current traffic problems including
various smart city applications. Road security and gridlock
have been serious issues and will keep on ascending with
the increase in the number of vehicles. In near future, IoV
is expected to be one of the core driving force to solve the
aforementioned challenges.

In an IoV network, vehicles are equipped with mod-
ern communication and sensing technologies enabling data
sharing and trading among vehicles. Vehicles exchanges
communicate essential security messages intermittently just

like other data, for example, crash notice, path change
data, crisis cautioning, latest traffic data, dynamic route,
infotainment, etc. Cellular frameworks and RSUs are set
adjacent to the streets. They provide street safety, routing,
and administration to the other units. The enormous volume
of data captured by vehicle sensors including GPS, RADAR,
etc is promoting data-driven AI models.

Deployed smart devices in IoV are portable and distributed
in nature which draws in various security issues. A digital
attack may be more serious in an IoV setup contrasted with
different domains as it is directly related to the driver’s
or passenger’s physical injury. If a vehicle goes under the
control of a malicious attacker on the roadway, it can prompt
a terrible mishap bringing about a few passings and wounds.
To construct a productive and powerful Intelligent Transport
System (ITS), a learning system should be set up, which
does not just give street safety and other traffic-related
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administrations only, additionally has the option to distin-
guish any sort of inconsistencies and interruption and take
remedial measures. Conventional techniques for countering
security issues ensure safety measurements solely after the
event of explicit sorts of attacks. However, the sorts and
examples of attacks recently have changed radically. Attacks
utilizing polymorphic viruses can not be easily recognized
and predicted as their signatures change continuously. Thus,
the conventional Machine Learning (ML) approach for iden-
tifying any sort of security vulnerabilities in IoV systems is
drawing a lot of attention to researchers in recent years.

Training an autonomous driving model with high accuracy
in a low-latency is difficult as vehicles have a limited number
of resources for computing. To tackle this issue, studies focus
on autonomous driving frameworks based on Multi-access
Edge Computing (MEC) servers. In such cases, mobile de-
vices gather information, and this information is transferred
to a cloud server. The cloud server processes the information
and creates inference models. Powerful MEC servers can
assist autonomous vehicles to train more precise models in
an acceptable latency. But frequent interaction among the end
devices and the server will bring extreme channel pressure.

Also, the original driving data need to be shared which will
reveal a lot of private data including the identity of drivers,
their standard daily practice, and behavior preference, which
is actually inverse to the privacy requirements. The number of
autonomous vehicles is increasing day by day. Again, all the
managerial decisions must be taken within a confined time-
frame. So, a centralized cloud-based methodology can’t offer
scalability and acceptable latency. Another additional chal-
lenge for vehicular networks is that a centralized framework
requires full connectivity.

To adapt to the rise in probable privacy and security issues,
the centralized ML paradigm is moving towards a more de-
centralized and distributed learning framework, specifically
in a Federated learning setup. To mitigate the privacy risks
Google [1] proposed FL, where a model is jointly trained
by multiple parties. A deep neural network model is trained
by the central server with the cooperation of multiple clients
also called workers. The central server initially spreads an
underlying training model to the clients. Each client based on
this model and its local dataset calculates local updates (e.g.
Stochastic Gradient Descent (SGD)) of the global model.
All clients, after a predefined training period, send their own
updates to the central server. The central aggregate the local
models to construct a global model. However, these steps are
kept iterating until an acceptable global model is achieved.
Thus data privacy is ensured, as the clients do not send and
store the local datasets at the central server. FL is expected
to provide more advantages than the traditional decentralized
learning approaches: Followings are some advantages pro-
vided by FL:

• FL can handle the unbalanced distribution of data. It

can properly execute with Non-IID data, where, existing
decentralized methodologies only accept IID data.

• In FL, clients only share the local updates of the global
model with the central server. Thus, FL reduces commu-
nication overhead. Also, it can determine the selection
of clients. Thus communication efficiency and system
performance improvement are also ensured.

• A large number of clients should participate in achieving
high accuracy in deep neural network models. With
some wonderful features like privacy preservation and
low communication overhead, FL can easily involve
such large engagement.

These benefits have highlighted the importance of FL
applications in different areas, including smartphones, supply
chain management, Intelligent medical system, finance, etc.
Vehicular IoT frameworks include a huge amount of vehicle
sensor information and different sorts of utilizations in com-
plex vehicular systems. In such cases, the Quality-of-Service
(QoS) of the end-users must be supported by optimally
utilizing the limited storage and computing capacity and
communication resources [2]. In the meantime, demand for
various autonomous and intelligent transport services is ris-
ing. These services require fast reaction, high dependability,
and precision. A few services face an outrageous change
in their asset requests concerning time and area. Current
IoV frameworks just consider the intelligence of a solitary
vehicle agent. Moreover, it relies upon the storing of vehicle
information in the cloud. Thus it can not fulfill the necessities
of such arising services. Furthermore, vehicles are outfitted
with various kinds of sensors that produce privacy-sensitive
data. Also, the conditions change continuously with time
and street types. FL can coordinate all these necessities,
efficiently utilize vehicle computing capabilities, and secure
the local data.

Though FL gives awesome security to the learning struc-
tures, it actually works based on a centralized aggregator.
Moreover, it requires an economic model to attract mobile
devices in the training process. Again, a malignant vehicle
may cause a poisoning attack and alter information. Again,
a self-centered vehicle may not accommodate information
assortment bringing about wrong weights of a local model.
So, considering the probability of such potential attacks
in FL, BC is being utilized with FL to give a decentral-
ized arrangement, for controlling incentives and dependably
guaranteeing security and protection. Table 1 illustrates the
comparison of ML, FL and BC enabled FL on the basis of
central aggregator, economic modeling, adversary control,
and privacy.

A. CONTRIBUTIONS
This paper aims to review the development of BC-Enabled
FL frameworks for critical infrastructures. The main contri-
butions of this paper are as follows:

1) To the best of our knowledge, this is one of the earliest
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TABLE 1. Comparison of ML, FL, and BC-Enabled FL models on the basis of Central Aggregator, Economic Modeling, Adversary Control, and Privacy

Central Aggregator Economic Modeling Adversary Control Privacy
Machine Learning Requires central aggrega-

tor
Lacks economic modeling No mechanism for adver-

sary control
No data privacy and no
model security

Federated Learning Requires central aggrega-
tor

Lacks economic modeling Requires adversary control Only provide privacy, not
model security

Blockchain Enabled Fed-
erated Learning

No requirement of third
party

Cryptocurrency based in-
centives

Security through smart
contract and inherent
security mechanisms by
BC

Provide both privacy and
data/model security

survey work that surveys the possibilities of the con-
vergence of BC and FL together for IoV applications.

2) Review the development of BC-Enabled FL framework
from the perspective of existing FL problems and the
roles of BC in addressing the FL problems.

3) We not only discuss the frameworks applying BC-
Enabled FL in IoVs but also explain the recent ad-
vances in FL-based IoVs and BC-based IoVs in two
separate sections.

4) Sort out the current challenges and future research
directions of BC-Enabled FL for IoVs.

B. OVERVIEW OF RELATED SURVEY ARTICLES
This survey article on BC-Enabled FL frameworks for IoVs
has some distinct focus compared to the existing studies.
We extensively cover the area of BC-Enabled FL in IoVs.
Previous survey articles have focused on FL-based IoVs, and
few of them focused on BC-based IoVs. However, to the best
of our knowledge, there is no prior detailed survey article that
thoroughly addresses BC-Enabled FL frameworks for IoVs.
Table 2 shows the comparison of previous survey articles on
the IoVs based on FL and/or BC.

C. RELATED COMPONENTS AND TERMS
In this section, we represent some main components and
terms (Table 3) related to IoVs system:

• Roadside Units (RSUs): RSUs are distributed nodes
that collect locally trained ML models in their area to
train global aggregated model.

• Vehicles: Vehicles are dynamic and mobile edge com-
puting devices. Vehicles are of two types: ordinary edge
vehicles and representative vehicles of the group elected
by RSU.

• Certification Authority (CA): The certification author-
ity provides cipher suites for ensuring secure data trans-
mission in the communication network. Registration of
vehicles and RSUs on the IoV system is completed in
the centralized certification authority.

D. PAPER ORGANIZATION
The rest of this paper is structured as follows. Section II
gives background information about FL, BC, and their un-
derlying working processes. It also contains convergence
of FL and BC. In Section III, frameworks, architectures,
and literature on the BC-Enabled FL paradigm for IoV are

identified. Section IV highlights some Application Scenarios
of BC-Enabled FL frameworks for IoVs. In Section V, major
open research challenges, solutions, and possible research
directions are discussed. Finally, Section VI provides the
concluding remarks.

II. BACKGROUND
This article deals with FL frameworks for critical infrastruc-
tures based on BC technology. Hence, background discussion
is divided into three broad categories: FL, BC, and conver-
gence of FL and BC.

A. FEDERATED LEARNING
ML has been advanced by accessibility to large volumes of
data, advanced computation, and DL models with an ad-
mirable achievement rate. However, the following challenges
need to be addressed for wider applications and prospects:

• Issues regarding client information protection, classifi-
cation, and the laws that administer them.

• Inability to construct ML models because of insufficient
data.

• The computational cost of preparing an ML model.
In numerous situations, the conventional cloud-driven ML

approaches are at this point not appropriate because of
the difficulties of following data protection regulations and
handling individual information. Given the challenges related
to the high computation on such personal devices alongside
the increasing privacy issues, the pattern of decentralized AI
has normally risen which meets the MEC [16] with AI/ML
methods in a privacy-preserving decentralized manner.

In such a manner, FL is a better option for the cloud-driven
ML procedure that works with an ML model to be prepared
cooperatively while holding unique individual information
on their devices, consequently possibly mitigating privacy
issues. It covers different software engineering viewpoints in-
cluding ML, distributed computing, information protection,
and security that empowers end-clients devices to locally
prepare a common ML model on neighborhood informa-
tion. Just parameters in the training cycle are traded to the
aggregator. FL is an advancement to distributed learning. It
works efficiently with unbalanced and non-IID data whose
sizes might traverse a few significant degrees. Such hetero-
geneous datasets live at an enormous number of dissipating
mobile devices under temperamental networks and limited
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TABLE 2. Summary comparison of previous survey articles on the Internet of Vehicles (IoVs). ’3’ indicates that the topic is covered, ’7’ indicates that the topic is
not covered, and ’T’ indicates that the topic is partially covered

Ref. Year Federated
Learning Blockchain IoVs Based on

Federated Learning
IoVs Based on

Blockchain

IoV Based on
Blockchain-Enabled
Federated Learning

[3] 2019 3 7 7 7 7
[4] 2020 3 3 7 7 7
[5] 2020 3 7 T 7 7
[6] 2020 3 7 7 7 7
[7] 2020 3 7 7 7 7
[8] 2020 3 7 7 7 7
[9] 2020 7 3 7 T 7
[10] 2021 3 7 7 7 7
[11] 2021 3 7 7 T 7
[12] 2021 7 3 7 T 7
[13] 2021 3 7 7 7 7
[14] 2021 3 3 7 7 7
[15] 2020 7 3 7 3 7

Proposed 2021 3 3 3 3 3

TABLE 3. LIST OF ACRONYMS AND CORRESPONDING DEFINITIONS

Acronyms Definitions
MEC Mobile Edge Computing
IID Independent and Identically-Distributed
CNN Convolutional Neural Network
LSTM Long Short Term Memory
TFP Traffic Flow Prediction
PFP Passenger Flow Prediction
IDS Intrusion Detection System
DMV Department of Motor Vehicles
UAV Unmanned Aerial Vehicle
UGV Unmanned Ground Vehicle
AQI Air-Quality Index
ITS Intelligent Transport System
IoV Internet of Vehicle
BC Blockchain
FL Federated Learning
ML Machine Learning
DL Deep Learning
AI Artificial Intelligence
SGD Stochastic Gradient Descent
SVM Support Vector Machine
QoS Quality-of-Service
DFL Deep Federated Learning
DRL Deep Reinforcement Learning
PoFL Proof-of-Federated Learning
VANET Vehicular Ad-hoc Network

communication bandwidth [1].

FL addresses ML concerns by giving a profoundly pre-
pared ML model without the danger of uncovering preparing
information. FL additionally handles the issue of having lack-
ing information by giving a trust factor among heterogeneous
areas. Such security safeguarding procedures of FL draw
the attention of various communities to use it solely, saving
customer information protection and profiting advantages of
having a model prepared on bigger data. FL is considered
as an iterative interaction wherein every cycle, the main
ML model is improved. FL executions can be summed up
into the accompanying three stages: Model choice, Local
model preparing, and Accumulation of local models. Figure
II-A pictures the FL engineering and preparing approach

according to these three steps.

1) Federated Learning in IoVs
FL for developing IoV has extensively been studied in
the literature. These research works aim to different appli-
cation areas including: Unmanned Aerial Vehicle (UAV),
Autonomous Driving, Electric Vehicle Network (EVN), Ve-
hicle Selection and Resource Optimization, Traffic Flow
Prediction (TFP), Distributed-Map Management, Content
Caching, Vehicle Positioning and Parking-Space Estimation
etc (summarized in Figure II-A1).

UAVs are regularly utilized today to give information
assortment and calculation offloading support in the IoV
system. FL has been deployed in UAVs to deal with data
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privacy and security by numerous analysts. Authors in [17]
proposed an FL-based approach for managing car park oc-
cupancy and traffic prediction in UAVs. To solve the limited
battery life issues of mobile users, [18] proposed a scheme
that applied UAV empowered wireless power transfer for
assuring sustainable wireless networks based on FL. As the
model parameters are exchanged continuously, the FL per-

formance decreases with the failure of communication links
and the presence of missing nodes. Therefore, to improve FL
accuracy and ensure IoV communication between the server
and other components, [19] proposed to use UAVs as wireless
relays. A fully decentralized FL framework named ISPW-
ADMM was developed by [20]. As air quality has significant
effects on human health, accurate and timely prediction of the
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Air-Quality Index (AQI) is getting importance increasingly.
[21] proposed an FL framework to sense the AQI of aerial-
ground efficiently. An image classification method for the
case of UAV-based exploration was considered by [22]. A
ground fusion center normally set in an inaccessible location
played the role of coordinating multiple UAVs. On the other
hand, [23] worked on an AQI data collection system on UAV
swarm based on distributed FL.

A vehicle network connection is normally unreliable
and comparatively slow. So, it is very important to reduce
communication overhead. Considering this issue, a commu-
nication efficient secure FL scheme named ’SFLEC’ was
proposed in [24]. Another work [25] focusing on optimizing
communication cost besides user privacy proposed an FL
framework ’FedLPR’ for recognizing license plates. On
the other hand, both information leakage prevention and
information transformation schemes were considered in the
work [26]. A MEC server empowered synergistic data shar-
ing among vehicles was investigated in [27]. The authors
combined deep Q-network and FL to ensure efficiency and
security. [28] used FL in the 5G vehicular edge computing for
passive mobile attacker detection. In the proposal presented
by [29], models are trained locally by exchanging learning
parameters. Again, Distributed end-edge cloud structure
facilitated the two-layer FL model in the 6G environment
to reduce communication overheads [30].

In [31], the authors proposed an electric vehicle framework
for ensuring energy efficiency. To maximize the charging
station profits, the authors implemented a model based on
contract theory. But charging stations have issues with pri-
vacy protection mechanisms. For this privacy issue, station
operators are unwilling to exchange data. Therefore, [32]
proposed FL based EVN charging station recommendation
system. In another work [33], authors developed an energy
demand prediction system aiming at electric vehicular net-
works. Another profit-maximizing FL framework for auto-
matically charging of electric vehicles was proposed in [34].

For the cases of dynamic and complex IoV environments,
an efficient solution for exchanging information according
to application-specific requirements is required. Therefore,
[35], investigated the problem of resource and power al-
location for communication efficient vehicular networks.
Again, a perfect subset of candidate vehicle selection by the
central server is essential to recover the limited bandwidth
problem. Such a case was considered in the paper [36]. The
authors proposed a resource allocation and vehicle selection
algorithm using dataset content. Similarly, another client
selection scheme was proposed in [37]. In this proposal,
some vehicles were assigned as edge vehicles which were
later used as FL clients for training local models. Another
FL-based economic vehicle selection framework for IoV
was proposed in [38]. In the vehicle selection framework
[39], some vehicle parameters such as velocity and position

of vehicles were considered for choosing the vehicles with
better image quality.

Recently, there have been many advances in developing
sensing accuracies and ranges for the participating vehicles
using the dynamic map fusion technique. For example, in the
work [40], an FL framework based on dynamic map fusion
is presented. The proposed scheme can gain a high-quality
map in spite of uncertainty with sensing, model, numbers of
objects, and missing data labels. Again, in response to the
increasing content requests from various vehicles, a content
caching scheme at edge nodes may be an emerging solu-
tion to decrease service latency and traffic on the network.
However, a DFL-based peer-to-peer caching scheme is pro-
posed in [41]. Nowadays, sensing techniques and vehicle-
to-infrastructure communication have been developed. Thus
vehicles can communicate with neighboring landmarks for
perfect positioning. An FL-based vehicle positioning system
is proposed in [42] which provides accurate positioning and
ensures privacy. Again, a parking management system named
FedParking [43] proposed to collaborate with parking lot
operators for training an LSTM model to estimate parking
space. On the other hand, [44] developed a TFP system
considering the significance of accurate traffic prediction
besides preserving privacy.

B. BLOCKCHAIN TECHNOLOGY
BC provides a decentralized data storage environment be-
sides transparency and security. The basic data unit of a BC
system is a "block", generated by cryptography. The block
records all the valid transaction information. The validity of
this information is evaluated by the peers of the network. The
typical structure of a ’Block’ contains two sections: block
header and body (Figure II-B). Different metadata including
previous hash, timestamp, etc are stored in the block header,
while the block body stores transactions data. However, BC
uses different mechanisms for controlling network access.
Based on these mechanisms, BC can be categorized into the
following types:

• Public Domain: The consensus process is public. Any-
one can participate in reading and accessing the chain
and sending transactions.

• Private Domain: Strict management on access control
does not permit all the nodes to participate.

• Consortium Domain: Considered as partially decen-
tralized as some nodes having authority can participate
in the chain.

However, BC can be a better solution with reliability and
scalability to address the privacy issues of IoV. For example,
all the nodes will have equal rights in a BC-enabled IoV
system. Also, they have to abide by similar obligations. As
a result, though a node can not participate in the process,
it will not affect the IoV operation at all. Again, being an
open and transparent system, it will not require any trust
establishment within the vehicles. Moreover, each and every
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node will participate in the maintenance work of the system.
BC requires the network nodes to have a similar copy of its
ledger which makes the database more reliable. Modifying
a single node is totally impossible, as the data records are
automatically compared.

1) Blockchain Technology in IoVs
This section briefly discusses previous research works on
BC-enabled IoV systems aiming to different application
areas including: Data Sharing and Protection, Traffic and
Vehicle Management, Resource Sharing and Trading, Ride
sharing, Content Broadcasting etc (summarized in Figure
II-B1).

Recently, vehicular data management scenarios have
adopted BC technology to address security and privacy issues
and trust-building. For example, BC was deployed with an
IoV network to securely manage the distributed data in the
work [45], while authors of the work [46] tried to solve the
issues of trust management in the IoV system using a BC-
empowered framework named ’DrivMan’. Again, authors in
[47] presented a BC and cryptography-based multimedia data
sharing technique that can be deployed in vehicular social
networks.

Nowadays, business opportunities have been created in the
field of data and resource trading in IoV systems. This ad-
vancement has brought new security and privacy challenges
also. However, BC technology is being incorporated in IoV
for providing vehicular data trading. As an example, the BC-
enabled framework proposed in the paper [48], efficiently
handles the data trading mechanisms in the IoV. A resource
trading platform using BC is presented in [49]. However,
vehicles can be extensively benefited through resource shar-
ing in the IoV platform. [50] considers the case of resource
sharing using BC technology. The proposed lightweight
consensus mechanism can build trust among clients and
reduce the mining cost.

BC technology can solve the current issues of vehicle
management systems in IoVs. For example, a centralized
parking system will require revealing private information like

destination information during the search for free parking
spaces. If BC is deployed in such management systems,
vehicle drivers will be able to find parking spaces easily
without losing privacy. This decentralized privacy-preserving
mechanism was covered by the work [51]. BC technology
can also be incorporated with the IoV system to manage
vehicle platoon. Actually, vehicle platooning is useful for
fuel-saving and transporting goods long-distance. Such a
scheme is presented in [52] in order to establish a vehicle
platoon.

Ride-sharing services are gaining popularity nowadays due
to the convenience of traveling. But ride-sharing services
are mainly cloud-based and most of the services are facing
some challenges such as unnecessary communication delays,
risk of users’ privacy disclosure. so, researchers are focusing
on integrating BC with these ride-sharing platforms. [53]
attempted to reduce the communication delay and privacy
risks of the ride-sharing platform users. A new BC model
named ’CoRide’ for ride-sharing platform was presented in
[54]. [55] proposed to incorporate BC with the carpooling
system. In the proposed carpooling system, users could share
vehicles with proper privacy and security.

Recently, content broadcasting in IoV scenarios is also
being facilitated by BC technology. This concept is gain-
ing popularity for advertising and promoting products be-
sides entertainment purposes. [56] showed the potential of
blockchain in advertising sectors allowing the customers
to promote their products. On the other hand, a different
application scenario-EDM protocol is proposed in [57] which
facilitates event-based messaging.

Traffic data needs to be stored and transferred especially
among the vehicles and RSUs. But, this transfer and storage
process might face adversarial attacks. To reduce such risks,
different approaches are proposed in the literature. [58]
proposed a signal maintaining procedure for preventing ad-
versarial attacks. The procedure was not fully centralized, but
it could accelerate the efficiency of traffic control systems.
Another noteworthy work [59] proposed an intelligent traffic
system for smart transportation deploying BC technology
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with IoT sensors in vehicles.

Another potential application of BC technology for au-
tonomous vehicles is digital forensics. It can be used for
analyzing traffic accidents. A vehicular forensic frame-
work named Block4Forensic is presented in [60]. This
Block4Forensic framework can be used to investigate and
analyze vehicular accidental events. Software-defined net-
work mechanism was combined with BC technology in [61].
The proposed architecture could facilitate digital forensics
application in the IoV system.

C. CONVERGENCE OF FL AND BC TECHNOLOGY
With a view to addressing the privacy and security issues, the
centralized ML paradigm has adopted an FL framework. FL
is expected to provide more advantages than the traditional
decentralized learning approaches. Hypothetically, FL gives
an awesome security safeguarding learning structure in IoV,
a malignant vehicle may purposely alter information through
poisoning attack [62]. A lot of probable adversarial attacks
including poisoning attacks and reverse engineering attacks
have been reported recently in FL [63], [64]. Again a self-
centered vehicle may not coordinate in information assort-
ment bringing about wrong weights of a local model. FL
faces several security issues including the following:

• FL relies upon a local worker that can be vulnerable
against cyber intrusions. If one local model is attacked,
it may mislead other models and consequently, the
global update is wrong. [65]. Moreover, when various
models are communicated at the same time, the central
server might over-burden the network because of trans-
mission capacity constraints [66].

• Results predicted by the machine learning can be mis-
leading as poisoned training samples or models can be
uploaded by the malicious participants, as FL does not
have the capacity to review malignant trainers.

• FL expects that each local device contributes infor-
mation assets separately. Members may not have the
motivating force to participate in model training.

• FL systems may reveal the privacy and security aspects
of training data, regardless of whether the training re-
source is put away in the local device. A few research
has fostered some infer attacks based on intermediate
gradients of the models [67]. A malignant center may
take advantage of sensitive data by Generative Adver-
sarial Network (GAN).

However, FL has the auspicious capability to build an
ITSs. On the other hand, it is crucial to alleviate any potential
attacks in FL. So, BC technology is being utilized with FL to
give a decentralized arrangement, for controlling incentives
and guaranteeing security and protection in a dependable
way [68]. BC technology consists of many immutable blocks
based on a set of rules named consensus which helps to
form a distributed ledger. BC technology contributes to both
FL and IoV for its decentralized nature [69]. BC has a

unique transaction verification process. So, it can be used for
validating local training models in FL [70]. BC is utilized to
empower secretly and safely sharing of data, and give a com-
pletely auditable log of data. BC empowered FL structures to
empower a protected and dependable collaborative learning
for different ITS features like traffic monitoring, intrusion
detection, autonomous driving, driving in different weather
conditions, perfect routing, etc.

III. HYBRID BC-BASED FL MODEL FOR IOVS
Architectures and frameworks that integrates both BC and
IoV technologies together will be presented in the following
section.

FL appears to be a powerful technique for privacy preser-
vation. However, FL also faces vulnerability to poisoning,
reverse engineering, and other types of attacks. Security
of the clients can be uncovered by the intruders if model
updates received from the clients can be manipulated. Also,
gaining control over the aggregating server, an intruder can
acquire extensive information on historical parameters and
global model structure. This information can then be applied
to reverse engineering for uncovering the client’s security.
Moreover, if the intruder can control the aggregator server,
he/she may produce the global model parameters which may
influence the local model parameters. However, regardless
of whether the intruder has control over the server or local
devices, both of the model’s parameters may, in any case, be
forged while on the way among client and server. In the event
that the attacker deals with the devices and has access to the
local models or data, certainly it will influence the accuracy
of the global model. Because of the promising capability of
FL, especially for building an ITS and the requirement for
relieving potential attacks, various BC-enabled FL schemes
for IoV have been proposed. In this section, we describe
the literature works on hybrid Blockchain-enabled federated
learning frameworks for intelligent transportation systems
in terms of used methods, experimental parameters, dataset,
libraries or platform for implementation, outcome, the main
focus, and application scenarios. The summary table of lit-
erary works of the Hybrid BC-based FL model for IoV is
provided in Table 4.

A. EXPERIMENTAL WORKS ON HYBRID BC-BASED FL
MODELS
Many research works experimented with their proposed
system based on the popular MNIST/CIFAR-10 dataset.
[71] proposed a hierarchical BC-enabled FL framework
focusing on knowledge sharing. They focused on fulfilling
the privacy requirements of IoVs for large-scale vehicular
networks. Authors modeled knowledge sharing as a trading
market process formulated as a multi-player game. Both
the vehicles and RSUs can collect surrounding data. For
attracting participants in knowledge sharing, BC was adopted
to record learning results. In most of the scenarios vehicles
collect data in the diverse region as driving routes also varies.
Considering such cases, the data collection and knowledge
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sharing process was enabled through a hierarchical BC
ledger. However, the proposed ADMM-based algorithm en-
hanced accuracy over 10% compared to conventional FL
algorithms.

Another work [72] simulated on MNIST dataset integrated
blockchain and FL-based directed acyclic graph to build a
hybrid BC architecture. They attempted to mitigate trans-
mission load and solve privacy issues of providers. Deep
Reinforcement Learning was adopted in an asynchronous FL
scheme for node selection to increase efficiency. However, to
simulate the proposed scenario, 1500 by 1000 meter area was
defined on New York City map with Uber pickups datasets
as trace-points of vehicles.

Another paper [73] proposed an IoV system to integrate
MEC with BC-empowered FL framework. Specifically, they
introduced differential privacy techniques to prevent privacy
concerns while the honesty of participants is ensured by
a malicious updates remove algorithm based on the self-
reliability filter. Moreover, a double aggregation frame is
proposed, to guarantee the communication overhead and
ensure the quality of model training. Simulation results on the
MNIST dataset show that it effectively defends the backdoor
attack and remains stable with a 9.54% attack success rate.

Security challenges of the mistrustful centralized trading
model are addressed in the work [74]. The authors proposed a
BC-enabled knowledge trading scheme. An approved market
agency organizes the trading rapidly. Considering the conflict

of knowledge providers, they modeled the pricing mecha-
nism as a non-cooperative game. Simulation of proposed
knowledge trading scheme on MNIST dataset claims to
improve the knowledge accuracy up to 18%.

[75] proposed a framework called SFAC-secured FL
scheme in UAVs assisted mobile crowd-sensing. At first, they
introduced three attacks and investigated the corresponding
defenses. Then Secondly they implemented a decentralized
blockchain network that records and traces UAVs’ contribu-
tions. On the other hand, they devised an LDP mechanism
for securely sharing local models with better aggregation
accuracy. The simulation of the proposed SFAC framework is
carried out in python programming language on the MNIST
dataset. The convergence time (time slot) for the SFAC
framework with four base stations was 2180.

B. THEORETICAL WORKS ON HYBRID BC-BASED FL
MODELS
Some research works focus on the theoretical aspects of
such models. Such literature includes [76], where authors
designed an autonomous transport system that can preserve
the privacy of the vehicles data and vehicles can efficiently
communicate with each other. Updated ML models residing
on the local vehicles are verified and exchanged based on
a distributed fashion. The local models do not require any
centralized training data. Again, the application of the BC
consensus scheme eliminates the necessity of any central co-
ordination. A mathematical framework based on the renewal
reward approach was developed. Different network and BFL
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parameters including frame and block sizes, block arrival
rate, maximum re-transmission were featured to assess their
impact on the performance of the system. In another work
[69], the same author designed an autonomous BC-based
FL scheme. They developed a mathematical framework to
feature the mentioned parameters. They proposed a uniform
random vehicle-miner and a comprehensive mathematical
framework to feature end-to-end delay analysis. Another
theoretical proposal for protecting disaster response systems
through a drone-assisted BC-enabled FL at 6G edge is carried
out by [77]. Their main focus was on reducing latency in
BC and consumption of energy in the drone network. It is
required to maintain low communication delay in wireless
drone networks to reduce the occurrence of forking events in
the BC technology. In this proposal, the author finds out the
probability of such events to anticipate system uncertainty
towards further energy loss.

Another noteworthy proposal on pedestrian safety in au-
tonomous driving systems integrates BC and FL technology
in [78]. The authors proposed a model training paradigm
named ’BlockFITS’ consisting of two-way communication,
Vehicle-to-BC (V2B) and BC-to-Vehicle (B2V). To provide
incentives to the participants, a data augmentation scheme
was operated with cooperative training. In another paper
[79], authors proposed a BC-based model named ’FLchain’
aiming to enhance FL security. A concept of the channel was
used in their proposed work for handling multiple servers
containing global models. After each global iteration, local
model parameters are stored within the channel-specific
ledger as blocks.

[80] presented a theoretical framework scenario of BC-
empowered FL for privacy-preserving and verifiable FL for
IoV to provide secure and trustworthy ITS services. The
proposed approach hypothetically provides assurances to
give a powerful and secure FL environment. The registration
process of the vehicle through authorities like the DMVs
limits the security dangers fundamentally. Moreover, BC
empowers members to utilize pseudonyms as BC identity
to conceal the genuine identity. On the other hand, any
chance of adversarial attacks is eliminated through the use
of pseudonyms and model parameter exchange through BC
networks. Again, the miner vehicles verify the federation
aggregation process to mitigate a single point failure for
malicious activity from the server-side. Though it is hard to
keep clients from acting maliciously (either itself or through
ill-disposed control), BC hubs run IDS that can dissect the
parameters’ history to recognize any adversaries and go to
remedial steps.

C. REAL-TIME WORKS ON HYBRID BC-BASED FL
MODELS
Besides theoretical proposals, some works experimented
with their proposals using real datasets. Vehicular orga-

nizations built by interconnected vehicles are exposed to
adversarial attacks because of the extended use of the soft-
ware. There has been critical advancement in distinguishing
pernicious attacks utilizing machine learning techniques.
[81] proposes an autonomous driving structure in which both
model training efficiency and security of model sharing are
incorporated. There may have some cases when an edge
vehicle will try to corrupt the global model by uploading
malicious updates. To prevent such uploading of poor-quality
edge model parameters, authors designed a mechanism for
tracking data and selecting models for RSU. RSU divides
edge models into different groups and aggregates edge model
parameters for each group. Comparing the aggregation ac-
curacy of the groups, RSU finds out the poisonous model
parameters and avoid poisoning attacks effectively. How-
ever, for implementing the experiment, third-party libraries
Pytorch and Syft and a publicly available KDDCup99 [82]
dataset (US Air Force LAN data) are used. Different mea-
surement of the accuracy of the model (Best accuracy is 96%
for dataset size 10,000 and epoch number 40) is achieved in
accordance with data set sizes and number of epochs.

[83] introduced a FL framework for autonomous vehicles.
Like other FL frameworks, they preserved data in local
vehicles while sharing only the model parameters with the
assistance of the MEC server. Instead of only honest MEC
servers and honest vehicles, the authors also considered the
case of malicious vehicles and MEC servers. In the case of
honest-but-curious MEC servers and malicious vehicles, a
traceable privacy-preserving scheme based on identity was
proposed. This scheme was adopted for protecting vehicular
message privacy. On the other hand, for the case of semi-
honest MEC servers and malicious vehicles, their proposed
privacy scheme was based on anonymous identity.

In [84], authors proposed a blockchain-enabled distributed
federal learning approach to accurately predict the rail transit
passenger flow. Instead of a trusted central server, it performs
distributed machine learning. The management of the whole
federal learning is realized by the blockchain smart contract.
Each station stores corresponding passenger flow data. Those
data were converted into time-series data for training the
LSTM neural network directly. Each station uses its local
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TABLE 4: Summary of literature works of Hybrid BC-based FL model
for IoVs in terms of used methods, experimental parameters, dataset,
libraries or platform for implementation, outcome, main focus and ap-
plication scenarios.

Ref. Year Methods Experimental
Parameters /
Dataset

Libraries /
Platform /
Implementa-
tion

Outcome Main Focus

[85] 2021 Deploy both UAVs and
UGVs in vehicular
environments to
continuously provide
connectivity, UGVs act also
as moving charging stations

traffic data
set extracted
from U.S.
Traffic
Fatality
Records

Python and
the scikit-
learn ML
library, NS-3,
OMNET++,
OverSim
framework

Energy consumption
reduction: 89%,
average network
coverage ratio: 97%,
packet delivery
success rate: 90%

UAV energy
enhancements

[77] 2020 Finds out the probability
forking events to assess
the uncertainty of the sys-
tem towards further energy
wastage

Theoretical
proposal, Not
Implemented

Theoretical
proposal, Not
Implemented

Theoretical proposal,
Not Implemented

blockchain
latency
and energy
consumption

[75] 2021 introduced three attacks, in-
vestigated the correspond-
ing defences, devised an
LDP mechanism-based pri-
vacy preserving local model
sharing algorithm

MNIST The CNN
model is
adopted
for model
training,
Python

Convergence time
(time slot): 2180

High-quality
model sharing
and ensure
privacy
protection for
UAVs

[86] 2021 Blockchain enabled rain
drop optimization (RFO)
algorithm- RAOC-B

Simulation
of urban
mobility
(SUMO)
generated
Data

Network
Simulator-2,
SUMO

End to end delay =
0.3 s for 100 nodes;
maximum Packet de-
livery ratio = 0.9;
Highest throughput =
94%

packet
delivery
ratio, end to
end delay,
throughput,
and cluster
size

[87] 2020 Proof-of-Federated-
Learning (PoFL) based
message dissemination

OMNeT++
simulator
generated
data

OMNeT++,
Python,
SUMO and
VeINS

65.2% faster and at
least 8.2% more effi-
cient in message dis-
semination approach.

message dis-
semination

[76] 2020 Updated machine learning
models residing on the lo-
cal vehicles are verified and
exchanged based on a dis-
tributed fashion

Theoretical
proposal, Not
Implemented

Theoretical
proposal, Not
Implemented

Theoretical proposal,
Not Implemented

Efficient com-
munication of
autonomous
vehicles

[71] 2020 ADMM-based algorithm MNIST,
CIFAR10

No info about
Library/
Environment
except
simulation
parameters

10% more accuracy
enhancement over
conventional FL
algorithms

Knowledge
Sharing in
Internet of
Vehicles

[72] 2020 DRL-based node selection
algorithm.

MNIST matplotlib
basemap
toolkit

Improved accuracy
more than 90%

Secure Data
Sharing in
Internet of
Vehicles
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TABLE 4: Summary of literature works of Hybrid BC-based FL model
for IoVs in terms of used methods, experimental parameters, dataset,
libraries or platform for implementation, outcome, main focus and ap-
plication scenarios.

Ref. Year Methods Experimental
Parameters /
Dataset

Libraries /
Platform /
Implementa-
tion

Outcome Main Focus

[73] 2021 privacy-preserving FL
framework, named BMFL,
mobile edge computing
(MEC), differential privacy
(DP)

MNIST IoV system
with 50
devices, 5
MEC servers
and a cloud
server

effectively defends
the backdoor attack
and remains stable
with 9.54% attack
success rate

reducing
cloud com-
munication
overhead
and ensuring
the quality
of model
training

[88] 2020 decentralization mechanism
was considered in VNet sys-
tems

MATLAB/
Simulink
generated
data

MATLAB/
Simulink;
Contiki
operating
system;
python

97% accuracy Accuracy in
the Vehicular
Network
(VNet)
environment

[78] 2021 Vehicle-to-BlockChain-to-
Vehicle (V2B2V) federated
learning enabled model
training paradigm for ITS
entities

Theoritical
proposal, Not
Implemented

Theoritical
proposal, Not
Implemented

Theoritical proposal,
Not Implemented

Autonomous
driving

[69] 2020 BFL enables oVML without
any centralized training data
or coordination by utilizing
the consensus mechanism of
the blockchain.

Theoritical
proposal, Not
Implemented

Theoritical
proposal, Not
Implemented

Theoritical proposal,
Not Implemented

Autonomous
Vehicles

[79] 2019 Concept of channel was
used on their proposed
work for handling multiple
servers containing global
models

Theoritical
proposal, Not
Implemented

Theoritical
proposal, Not
Implemented

Theoritical proposal,
Not Implemented

Enhancing se-
curity of Fed-
erated Learn-
ing (FL)

[83] 2021 improved Dijk-Gentry-
Halevi-Vaikutanathan
(DGHV) algorithm

Driving
and road
condition data
of Rancho
Palos Verdes
and San Pedro
California

autonomous
driving
simulation in
Python with
the real-world
data

reduce around 73.7%
training loss

Autonomous
car

[74] 2021 CNN model is used as the
local training model

MNIST Numerical
simulation

improves the accu-
racy of knowledge up
to 18%

Knowledge
Trading

[44] 2020 Federated Learning-based
Gated Recurrent Unit
neural network algorithm
(FedGRU)

Caltrans
Performance
Measurement
System
(PeMS)
Dataset

5 time steps, 2
hidden layer,
hidden units
50, 50

Accuracy = 90.96% Traffic Flow
Prediction
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TABLE 4: Summary of literature works of Hybrid BC-based FL model
for IoVs in terms of used methods, experimental parameters, dataset,
libraries or platform for implementation, outcome, main focus and ap-
plication scenarios.

Ref. Year Methods Experimental
Parameters /
Dataset

Libraries /
Platform /
Implementa-
tion

Outcome Main Focus

[89] 2021 construct a lightweight en-
cryption algorithm called
CPC

No
information
found on
dataset

TOSSIM
simulator;
TinyOS
system

rate of predicting
road condition =
84.25%, Required
time = 4000 ms,cost
= 13000 bytes

predicting
road
conditions

[90] 2021 neural network called GRU,
differential privacy, central
server is replaced by a set of
trusted consensus nodes

Caltrans
performance
measurement
system
dataset

PySyft for FL
framework;
consortium
blockchain

MAE = 7.96; MSE
= 101.49; RMSE =
11.04

Traffic Flow
Prediction

[81] 2021 Comparing the aggregation
accuracy of different groups,
RSU infer the poisonous
model parameters

KDDCup9
[82]

Pytorch, Syft
and go lan-
guage

Accuracy = 96% for
Data Size = 10000
and Epoch = 40

Handling poi-
soning attacks

[80] 2021 only restricted parties are
registered; aggregation
is always verified by the
miner vehicles to prevent
malicious activity from the
server side

Theoretical
proposal, Not
Implemented

Theoretical
proposal, Not
Implemented

Theoretical proposal,
Not Implemented

reverse
engineering
attacks
elimina-
tion,intrusion
detection
system

[84] 2020 long short-term memory
(LSTM) network has been
used as the supervised
learning model

passenger
flow data of
Beijing Metro

Linux,
EOS for
blockchain
and Node.js
for test script.

Optimal prediction
of LSTM;

Secure
Railway
passenger
flow
prediction
model

[91] 2020 Support vector machine
(SVM) has been used as the
supervised learning model

train running
data from
Xiaojue
Station of
Shuohuang
Railway to
West Station
of Dingzhou

svm model
based on the
mixed kernel
function

Accuracy with
federated learning is
94.21%.

Intelligent
control model
for heavy haul
trains
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data to train an LSTM model and calculate the gradient
values and error rate of the model. Then the stations upload
the gradients and error rate onto the BC as a transaction. The
model containing the lowest error rate is shared with other
stations, which then use this model for training themselves.
As the station which can not precisely predict using its local
data is assumed to contain more information than others.
Then, this station trains its local data using the first best
model. Above mentioned steps are continued iteratively until
the error rate reaches a predefined threshold.

Authors of the work [84] also proposed another BC-
enabled FL scheme to perform asynchronous and collabo-
rative ML among distributed rail agents in [91]. Like the
previous work, instead of a trusted central server, it performs
distributed ML. The entire FL management is realized by
BC smart contract. To simulate the experiment, the authors
collected historical driving data from rail systems. The tradi-
tional SVM model is optimized by penalizing both majority
classes and minority classes to deal with the imbalanced data.

In the work [90], authors used a lightweight neural net-
work called GRU for processing traffic data. The central
server is replaced by a set of trusted nodes who is responsible
for managing all the local model updates. These nodes are
also called miners to verify the model updates from the
local vehicles, which are then stored on the blockchain.
For ensuring the privacy of the participating client vehicles,
a differential privacy mechanism is applied via the noise-
adding process with the vehicle uploaded local models.
Thus it provides location information privacy and prevents
membership inference attacks to collect vehicle information.
The work is evaluated on Caltrans performance measurement
system [92] dataset and achieves the better result (MAE is
7.96, MSE is 101.49 and RMSE is 11.04).

[44] introduced an FL scheme based on neural network
algorithm named ’FedGRU’ for TFPs. The proposed method
updates the global model through an improved federated
averaging algorithm. It reduces communication overhead
while model parameters are transmitted. In order to improve
scalability, a joint announcement protocol is designed. On
the other hand, an ensemble clustering-based scheme is
proposed which groups the vehicles into clusters. The work is
evaluated on Caltrans performance measurement system [92]
dataset. The FedGRU can produce predictions with a better
result (MAE is 7.96, MSE is 101.49 and RMSE is 11.04).

In the work [85], the authors designed a model that de-
ployed both UAVs and UGVs to reduce the power consump-
tion of aerial vehicles. For ensuring longer and prolonged
service continuity for the UAVs, ground vehicles
were considered as charging stations. An optimization so-
lution was carried out by the authors to ensure a longer
power range for vehicular devices. On the other hand, a
blockchain-enabled FL mechanism is deployed to provide

data privacy. Different experimental environments were set
up to simulate the proposed solution including Python and
the scikit-learn ML library for testing the power management
issue, NS-3 for testing the connectivity issue, OMNET++
for testing the service provisioning process. The proposed
strategy decreases the overall UAV energy consumption by
89% compared to the non-cooperative solution. On the other
hand, the average network coverage ratio is about 97%,
where the packet delivery success rate is 90%.

D. SYNTHETICAL WORKS ON HYBRID BC-BASED FL
MODELS
A good number of research works consider simulators like
Matlab Simulink, OMNET++, Network Simulator-2 (NS-
2), etc for generating synthetic datasets. [88] proposed an
integrated BC-based FL scheme to serve VNet architecture.
To ensure trustworthiness and reduce delay decentralization
mechanism was considered in VNet systems. The proposed
model was simulated using the MATLAB/Simulink package
in Contiki operating system. Testing the proposed hybrid
model on 20 nodes achieved 97% accuracy in the IoV
environment.

A noteworthy work on vehicular message dissemination
is proposed in [87]. Actually to ensure road safety message
exchange among vehicles has an important role. Usually,
emergency message dissemination is performed through
broadcasting. But, increasing vehicle density and mobility
are leading to challenges in message dissemination (e.g.
broadcasting storm and low probability of packet reception).
The authors in this work proposed a BC-based FL solution
for message dissemination. Especially. their proposed Proof-
of-Federated-Learning (PoFL) consensus attracts more vehi-
cles to compete for model training which leads to a more ac-
curate model. The proposed method is claimed to outperform
the other blockchain solutions for message dissemination to
reduce 65.2% time delay in consensus and to improve mes-
sage delivery rate (at least 8.2%). Also, the authors analyzed
the economic model for incentivizing vehicles taking part
in federated learning and message dissemination using the
Stackelberg game model.

Recently, vehicular ad hoc networks also called ’VANET’
have emerged as a key part of IoV systems. [86] introduced
a cluster-based vehicular ad hoc network deploying BC
technology, that can efficiently preserve user privacy during
data transmission. Using ’Rainfall Optimization Algorithm’
the vehicles in the VANET are clustered. ROA creates
different clusters of vehicles, where a vehicle works as
Cluster Head (CH) for every group. This balances the load
effectively and creates less congestion in the network. They
have named this ROA-based technique merged with BC-
enabled data transmission as ROAC-B technique. ROAC-B
primarily groups the vehicles and communication that occur
through BC technology. Various grid sizes are analyzed in
terms of end-to-end delay (0.3 s for 100 nodes), packet
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delivery ratio (0.9), and throughput (94% at 100 seconds of
simulation). To simulate the framework, Network Simulator-
2 is used which needs a ’SUMO’ simulator for generating the
mobility of vehicles.

[89] proposed a framework named BFLP, which allows
local model training tasks without sharing raw data, and it
can select the most perfect FL method according to the appli-
cation scenarios. Considering the poor computing capability
of vehicles, a lightweight encryption algorithm called CPC
is constructed to preserve privacy. The authors conducted ex-
periments in obstacle detection and traffic forecast scenarios.
BC technology was applied at the bottom layer to secure
the data transmission and protect users’ privacy. They used
the TOSSIM simulator to design the vehicle’s base station
model. execution time of CPC was evaluated on TinyOS.
The experiment focused on predicting road conditions and
achieved a rate of predicting road conditions is 84.25%.
Required time and cost (space) for CPC algorithm is 4000
ms and 13000 bytes respectively.

IV. SOME APPLICATION SCENARIOS OF BC-ENABLED
FL FRAMEWORKS FOR IOVS
After going through the works presented in the literature
on how BC-enabled FL technology can be utilized in IoV
application scenarios, we determine that BC-enabled FL
frameworks are anticipated to cope with a number of IoV ap-
plications and services including Unmanned Aerial Vehicle
(UAV), Traffic Flow Prediction (TFP), Intrusion Detection
System (IDS), Passenger Flow Prediction (PFP), Railway
Control System (RCS), and Autonomous Driving as illus-
trated in Fig. IV. In the following subsection, we review and
investigate the incorporation of BC-enabled FL frameworks
and such IoV application scenarios.

A. UNMANNED AERIAL VEHICLE
As modern traffic networks are getting complex day by
day, aerial platforms are gaining importance increasingly
beyond ground data sources. Specially for data collection and
supporting computation offloading in the IoV environment,
UAVs are being used commonly nowadays. Moreover, cost-
effectiveness, high mobility, and flexible deployment are
featured by UAVs besides more effective coverage [93]. The
image capturing for car parking management [94], traffic
monitoring [95], [96], data aggregation from vehicles and
RSUs can also be benefited through the deployment of UAVs.
However, some fundamental challenges should be taken into
consideration to get benefited from federated learning-based
UAV systems. For example, collaborative participation of
UAVs can not be ensured because of resource constraints
and selfishness. Also, there are probabilities of low-quality
sensor data and insufficient training samples. Again, the vul-
nerability in centralized model aggregators can lead to whole
process failure as evidence for rewards of participants can
be tempered. Moreover, all of the privacy concerns can not

be eliminated by federated learning. Thus, several proposals
are found on secured and privacy-preserving UAV schemes
to promote FL collaboration. For example, [85] deployed
both unmanned aerial and ground vehicle systems in the IoV
system to continuously provide connectivity where UGVs
acted as moving charging stations. Based on traffic data set
extracted from U.S. Traffic Fatality Records, they focused
on UAV energy enhancements. Another work [75] attempted
to ensure high-quality model sharing and privacy protection
for UAVs. An exceptional proposal is found in [77], where
the author proposed a disaster management system assisted
by drones. In this work, the main attempt was to minimize
latency in blockchain and consumption of energy in the
network of drones.

B. INTRUSION DETECTION SYSTEM
Cyber-attacks are becoming more common as software and
wireless interfaces become more widely used, as well as ve-
hicle networks and intelligent transportation infrastructure. In
response to these attacks, Intrusion Detection Systems (IDSs)
can be deployed to detect malicious attack traffic. However,
offload the training model to distributed terminal devices,
reduce resource utilization of the central server and pre-
serve security and privacy of the aggregation model, several
schemes are proposed. [81] proposed an IDS that can handle
poisoning attacks with an accuracy rate of 96%. Another IDS
[80] proposed a theoretical scheme to eliminate the probable
chance of spoofing, forging, and reverse engineering attacks
elimination.

C. TRAFFIC FLOW PREDICTION
Traffic Flow Prediction (TFP) is considered a necessary com-
ponent for the effective implementation of ITS subsystems,
particularly sophisticated traveler information, online car-
hailing, and traffic control systems. However, existing TFP
mechanisms based on FL frameworks on a centralized model
still suffer from severe security issues, such as a single point
of failure. To address this problem, BC is combined with the
FL model to provide a decentralized, dependable, and secure
model that does not require a centralized model coordinator.
For instance, [89] constructed a lightweight encryption algo-
rithm called CPC for predicting traffic conditions. Their rate
of predicting road conditions was 84.25% that required 4000
ms time. On the other hand, [90] worked on traffic prediction
using a neural network called GRU and differential privacy
with an RMSE value of 11.04%.

D. RAILWAY CONTROL SYSTEM
Due to the extended train marshaling and complex line condi-
tions in heavy-haul-rail systems, operating modes frequently
change during train passage. Safe operations of trains will be
severely affected by train decoupling because of longitudinal
impact force to trains caused by improper traction or braking
operation. So, manual control should be replaced with intelli-
gent control systems in heavy-haul-rail systems. Traditional
machine learning-based intelligent control mechanisms, on
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the other hand, suffer from insufficient data. Again, data
from multiple train lines or operators cannot be communi-
cated directly in the FL model due to a lack of effective
incentives and trust. An intelligent control mechanism has
been obtained by a fusion algorithm to achieve the intelli-
gent control system of traction/electric brakes of heavy-haul
trains [91]. For simulation, they used train running data from
Shuohuang’s Xiaojue station to Dingzhou’s West station. The
overall prediction accuracy with the FL model is 94.21%.

E. PASSENGER FLOW PREDICTION
The ability to accurately predict passenger flow can aid
in optimizing the vehicle management plan and increasing
operational efficiency. However, only one work is found on
passenger flow prediction of urban rail transit system [84].
From March 1, 2014, to March 31, 2014, full-day passenger
flow data from each line of the Beijing metro were utilized to
train distributed Long Short-Term Memory (LSTM) model
in order to create a secure railway passenger flow prediction
model.

F. AUTONOMOUS DRIVING

With limited processing resources and datasets, vehicles are
unable to train a high-accuracy autonomous driving model in
a low-latency manner. Many studies focus on Multi-access
Edge Computing (MEC) server-assisted autonomous driving
systems to tackle this challenge. Autonomous vehicles could
train a more accurate model in a shorter amount of time with
the help of powerful MEC servers. For example, [86] devel-
oped a BC-enabled Rain Drop Optimization (RFO) algorithm
to increase Packet Delivery Ratio (PDR), throughput, and
decrease End-to-End (ETE) delay of autonomous vehicles.
Another work [87] used Proof-of-Federated Learning (PoFL)
to speed up and improve the efficiency of autonomous vehicle
message distribution by 65.2%. To improve knowledge shar-
ing among autonomous vehicles [71] proposed Alternating
Direction Method of Multipliers (ADMM) based algorithm.
BC-empowered asynchronous FL model for secure data shar-
ing among different channels in the IoV system was proposed
by [72]. [78] proposed Vehicle-Blockchain-Vehicle (V2B2V)
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FL-enabled model for autonomous driving system, pedes-
trian safety, and vehicular object detection. Some theoretical
proposals [69], [76] are also found in focusing on efficient
communication of autonomous vehicles.

V. CHALLENGES, SOLUTIONS, AND FUTURE
RESEARCH DIRECTIONS
A review of BC-enabled FL frameworks is presented in
this research in order to develop fully safe and robust IoV
systems. In this domain, a total of twenty-two (22) research
papers were considered. Some of the studies simply describe
theoretical schemes, while others additionally show simula-
tion results. However, proposed BC-enabled FL frameworks
in IoV systems are still in their early stages. To fully realize
the integration’s potential in this domain, we have listed
the major open research challenges, solutions, and possible
research directions.

1) Most of the research indicates that more participat-
ing vehicles result in higher performance of the final
model. Thus, attracting more vehicles is a key chal-
lenge for the BC-enabled FL model of IoV systems.
Devising a perfect reward mechanism for user devices
can be a proper solution to this problem.

2) For sending every transaction to the BC network, user
devices rely on the integrity of their associated edge
devices or terminal devices.

3) Some of the research works just proposed theoretical
schemes only. Without experiments or simulations, it is
difficult to analyze such proposals. On the other hand,
most of the experiments were based on simulator-
generated data. Deploying real datasets will increase
the acceptability of the proposed schemes.

4) Forking may turn out to be major challenge in real
cases. For example, if a vehicle can not access the most
recent block due to unavoidable network delays, it may
create a different branch chain. But it is not possible to
exist more than one chain. Ultimately, blocks of other
chains will be dropped. Thus, such forking event will
reduce system performance.

5) Though some researchers used consensus algorithms
of BC technology for avoiding poison attacks, these
also face some security flaws. For example, the mis-
deed miners who require maximum computing capac-
ity, may lead to BC forking events.

6) Some studies designed and implemented new consen-
sus algorithms. Though these algorithms reduce power
consumption, but the security is not improved. So,
secured consensus algorithm should be developed in
public blockchain for BC-enabled FL frameworks for
IoV systems is necessary. However, private blockchain
or consortium technology is guaranteed to provide
more security to IoV systems.

7) The security of BC-enabled FL frameworks is im-
proved, but there is no privacy protection. As a result,
additional privacy-preserving approaches such as dif-
ferential privacy should be included. Differential pri-

vacy is able to prevent attackers from inferring privacy
information by extracting the learned model. So, it
is recommended to integrate more privacy-preserving
methods with IoV systems.

8) Different data quality-driven metrics can be added to
improve the incentive techniques. For example, the
client who provides dataset with the highest diversity
or any trend may be considered for providing incen-
tives.

9) Some common performance measurement techniques
have been used by most of the research works to
test their proposed method. More tests should be con-
sidered including accuracy rate, latency, throughput,
required time, lifetime reduction, energy consumption,
cost, network coverage, packet delivery success rate,
packet delivery ratio, throughput, end to end delay, etc.

10) Different FL algorithms including ensemble learn-
ing techniques should be considered with different
datasets.

11) Very few proposals are found to test their model with
different types of attacks such as poisoning attacks,
backdoor attacks, sign-flipping attacks, same-value at-
tacks, and reverse engineering methods. So, the actual
impact of incorporating blockchain with the FL tech-
nique is not well understood.

12) Though many issues of FL technique can be improved
by BC technology, vehicle heterogeneity, systems het-
erogeneity, and statistical heterogeneity may arise as
critical issues which should be resolved to ensure the
efficiency of BC-enabled FL frameworks for IoV sys-
tems.

13) Overhead and transaction throughput of the BC- en-
abled FL frameworks should be assessed in a practical
IoV environment.

14) Though some proposals discussed message dissemi-
nation and relay selection. However, it can further be
improved by including cross-layer information in the
dataset, obtained from physical and MAC layers.

VI. CONCLUSION
Automobile manufacturers are focused on developing com-
pletely autonomous vehicles that will provide enough se-
curity. IoV is the core technology behind any ITS and au-
tonomous driving, and it’s being used to tackle current traffic
challenges like traffic prediction and traffic management
applications. To construct a productive and powerful ITS,
a learning system should be set up, which does not just
give street safety and other traffic-related administrations
only, additionally has the option to distinguish any sort of
inconsistencies and interruption and take remedial measures.
To adapt to the rise in probable privacy and security issues,
the centralized ML paradigm has been transitioned in FL
technology. Though FL gives an awesome security safe-
guarding learning structure, it generally depends on a central
aggregator. Moreover, it needs a supportable economic model
to boost mobile devices for their contributions and adversary
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attacks prevention. Motivated by the auspicious capability of
FL for building an ITS and the requirement for alleviating
any potential attacks in FL, the BC technology is being
utilized with FL to give a decentralized arrangement, for
controlling incentives and guaranteeing security and protec-
tion in a dependable way. In this paper, we have presented
a comprehensive survey on BC-enabled FL frameworks for
the IoV systems. First, we have discussed FL technology
from the perspective of network topology, data partition,
data availability, aggregation algorithm, and open source
frameworks. A brief review of the FL-based IoV system has
also been discussed. Next, we briefly discussed BC technol-
ogy and some noteworthy works on BC-based IoV systems.
Works on the integration of FL and BC in the IoV system on
the basis of proposed methods, dataset, outcome, key-focus,
and platform are presented in this paper. Also, some use cases
of such hybrid frameworks including UAV, TFP, IDS, PFP,
railway, and autonomous driving have also been discussed.
We then concluded by highlighting challenges, open issues,
and future research directions in BC-enabled FL frameworks
for the IoV systems.
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