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Abstract. The deterministic ECDSA and EdDSA signature schemes
have found plenty of applications since their publication, e.g., block chain
and Internet of Thing, and have been stated in RFC 6979 and RFC 8032
by IETF respectively. Their theoretical security can be guaranteed within
certain well-defined models, and since no randomness is required by the
algorithms anymore their practical risks from the flaw of random number
generators are mitigated. However, the situation is not really optimistic,
since it has been gradually found that delicately designed fault attacks
can threaten the practical security of the schemes.

In this paper, based on the random fault models of intermediate values
during signature generation, we propose a lattice-based fault analysis
method to the deterministic ECDSA and EdDSA algorithms. By virtue
of the algebraic structures of the deterministic algorithms, we show that,
when providing with some faulty signatures and an associated correct
signature of the same input message, some instances of SVP or CVP
problems in some lattice can be constructed to recover the signing key.
The allowed faulty bits in the method are close to the size of the signing
key, and obviously bigger than that allowed by the existing differential
fault attacks. In addition, the lattice-based approach supports more alter-
native targets of fault injection, which further improves its applicability
when comparing with the existing approaches.

We perform some experiments to demonstrate the effectiveness of the
key recovery method. In particular, for deterministic ECDSA/EdDSA
algorithm with 256-bit signing key, the key can be recovered efficiently
with significant probability even if the targets are affected by 250/247
faulty bits. However, this is impractical for the existing enumerating
approaches.

Keywords: Side channel attack · Fault attack · Lattice-based attack ·
Deterministic ECDSA · EdDSA



1 Introduction

As a fundamental building block of modern cryptography, digital signature has
been widely used in practice. For its efficiency and standardization in FIPS 186
and ANSI X9.62, ECDSA has found various applications since its publication.
In spite of the fact that the theoretical security of ECDSA has not been proven
finally, it is still believed to be secure and connected with some hard problems
in mathematics. However, side channel attacks on various implementations of
ECDSA have been continuously discovered during the last decades. Some of the
attacks, for example, are induced by the deficiency of the ephemeral random
numbers (denoted nonce hereinafter) required by the scheme. If the nonce has
a few bits leaked or repeated, some lattice-based approaches [12,16,23] can be
employed to extract the private key by BDD [19]. This has been demonstrated
several times in real IT products with ECDSA implementations [2,6,7,14,21].
Hence, an intuition to improve the security of ECDSA is to remove the random-
ness requirement from the algorithm. This gave birth to a study of deterministic
signature schemes. In particular, deterministic ECDSA and EdDSA have re-
ceived plenty of attention in the research of applied cryptography since recent
years. They were respectively standardized in RFC 6979 and RFC 8032 and re-
alized in cryptographic libraries of OpenSSH, Tor, TLS, etc. The deterministic
version of ECDSA derives the nonce just from the private key and the input
message by means of cryptographic hash or HMAC primitive. In this way, no
randomness is required on the implementation platform, and it seems the threat
from physical attacks is mitigated.

But the situation is not improved too much, since some new flaws in deter-
ministic signature algorithms have been gradually identified when considering
differential fault attacks (DFA) [5,27,28,29]. DFAs have been proven to be valid
for different types of cryptographic schemes [8,9] in the literature. Generally, a D-
FA adversary manages to disturb the signature generation procedure (by means
of voltage glitches, laser or electro-magnetic injection and so on [17]) and make
the platform output faulty results, and then exploits them to do key recovery.

The first DFA introduced in [5] shows that if a fault is injected to produce
a faulty signature (r′, s′) during the calculation of the scalar multiplication of
deterministic ECDSA or EdDSA, then by the help of the correct signature (r, s)
from the same signing key d and input message m, the key d can be recovered by
solving some linear equations. Although the approach puts no limitation on the
number of allowed faulty bits, it is limited by the possible locations (or rather
targets) of fault injection (mainly targeting the scalar multiplication). As a re-
laxation, another approach was introduced in [5], which assumes only limited
bits of the target (e.g., the nonce k) would be randomly affected by each fault
(hereafter called storage fault). Denote the faulty value by k′ = k + ε2l, with
limited ε and known l to the adversary. Then by constructing a differential dis-
tinguisher, the signing key d in deterministic ECDSA can be recovered efficiently
by enumerating ε. Both of the approaches have been improved later, especially
by those in [27,28,29], where different fault injection methods and targets are
exploited and experimented on different hardware platforms. A recent extension
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was presented in [1], where more targets of fault injection have been identified
and analyzed.

From a common point of view, for the storage fault, the signing key of de-
terministic schemes can be recovered theoretically by adjusting fault injection
actions and enumerating the possible faults. The efficiency of the existing attack-
s [1,5,27,28] is obviously constrained by the enumeration complexity, thus they
are feasible only if the fault injection is controlled and limited bits of the targets
are affected. Another limitation of the existing attacks lies in the optional types
of targets that can be used for fault injection. Generally, the more targets the
attack supports, the more possibility of attack paths it has, and thus the more
difficult the attack is to be resisted. In fact, the targets that were considered
in the existing attacks are constrained. For example, the first attack in [5] only
supports two targets (i.e., the scalar multiplication kG and the nonce k when
calculating s during the signature generation), and although some more targets
were considered later in [1], it is still far away from covering all the possible
attack paths.

A promising solution is to develop lattice-based approaches. It is noticed
that lattice-based fault attacks were used in analyzing plain (EC)DSA and qD-
SA. Targets of fault injection in [10,21,26,30] are usually the nonce itself or the
scalar multiplication (with a nonce as the scalar). For those attacks to be ef-
fective, the nonce in the plain signature is supposed to be a random number.
Hence it is generally thought that deterministic ECDSA is immune to them be-
cause of the deterministic nonce generation approach. This conception was later
disproved by [15], where a lattice-based attack was devised to compromise de-
terministic signatures. The attack is specific to lattice-based cryptography, and
the lattice constructed for the attack is also specific to the signature scheme.
Although it casts a new light on the study of lattice-based fault attacks on more
deterministic signature schemes, it is still not known whether the method is ef-
fective to deterministic ECDSA or EdDSA (since they have different algebraic
structures).

In this paper, we show lattice-based fault attacks can also be applied to
deterministic ECDSA and EdDSA schemes. We consider the attacks in a ran-
dom fault model where a continuous bits block of fault targets is disturbed
randomly. Under this model, a corresponding lattice-based key recovery method
is proposed. Essentially, by virtue of the special algebraic structures of the sig-
nature generation algorithms, the method reduces the key recovery problem to
the shortest/closest problems in some lattice, with the instances of the prob-
lems being constructed from the collected faulty signatures. Since the problems
can be solved within some scale, the signing key can be recovered subsequently
(provided that the faulty signatures are valid as per some criteria).

In comparison, some advantages of our lattice-based method over the existing
approaches [1,5,27,28] makes it more practical. This is summarized as follows.

– The proposed method allows more choices of target for fault injection. A tar-
get of fault injection is denoted by the notation of the interested intermedi-
ate and the timing of using it in computation. Since a general representation
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method of fault is adopted to remove the discrepancies of various targets, a
number of possible targets are allowed by our attacks, which relatively covers
more possibilities than existing approaches. See Section 3.1 for detail. There
are 13 and 8 fault targets for deterministic ECDSA and EdDSA respectively,
even including the hash functions and the private key itself.

– The proposed method can tolerate more faulty bits. The proposed lattice
method is not to enumerate all the faulty patterns, but rather to solve the
instances of lattice problems. This makes the tolerable faulty bits can be
close to the size of the signing key. For instance, the case of faulty bits up to
250(for 256-bit deterministic ECDSA)/247(for ed25519) has been validated
in experiments efficiently. As discussed above, this is infeasible for existing
approaches. See Section 5 for detail.

The remainder of this paper is organized as follows: Section 2 describes the spec-
ification of deterministic ECDSA and EdDSA, and refers some results about lat-
tices. Section 3 introduces the fault model and lists all the fault targets. Section 4
illustrates three representative lattice-based attacks based on the described mod-
el. Section 5 describes the experimental facets of the validity of the lattice-based
key recovery method. The discussion about the corresponding countermeasures
is given in Section 6. More attacks with other fault targets are presented in
Appendix A.

2 Preliminaries

2.1 Notations

We denote the finite field of prime order q by Fq, the field of real numbers by R,
and the additive group of integer modulo n by Zn. Bold lowercase letters such
as v denote vectors, while bold uppercase letters such as M denote matrix. The

norm of vector v = (v1, . . . , vN ) ∈ RN is denoted by ∥v∥ =

√
N∑
i=1

v2i , while the

multiplication of v and M is denoted by vM.

2.2 The deterministic signature algorithms

We recap the deterministic signature generation algorithms below by abstracting
from some less important details in the specifications of RFC 6979 and RFC 8032
respectively. As shown in Algorithms 1 and 2, the analysis focuses on Step 6 of
Algorithm 1 and Step 4 of Algorithm 2 during the signature generations, where
the order n is a prime. Moreover, in EdDSA signature, the two b-bit subkeys
d0 and d1 are derived by the hash function H(d) = (h0, h1, ..., h2b−1), where

d is the private key, d0 = 2b−2 +
b−3∑
i=3

2ihi and d1 = (hb, ..., h2b−1). The public

key P satisfies P = d0G. The hash functions employed in deterministic ECDSA
are generally SHA-1 and SHA-2(e.g., SHA-256 and SHA-512), which all belong

4



to the structure of message digest. For EdDSA, the default hash function(i.e.,
H(.)) is SHA-512. In addition, there still exist other hash functions belonging
to the sponge structure, such as SHAKE256(SHA-3) for Ed448. For the sake
of simplicity, we just consider the compression function of SHA-2. As shown
in Figure 1, input IV and a group of message(which is extended into L Wis),
execute L-round compressions and output the final result of compression plus
IV as the hash value or the next group of IV .

Algorithm 1 Signature generation of deterministic ECDSA

Require: The definition of a specific elliptic curve E(Fq), a base point G of the curve
with order n, message m, private key d.

Ensure: Signature pair (r, s).
1: e = H (m), where H is a cryptographic hash function;
2: Generate k = F (d, e) mod n, where F (d, e) denotes the HMAC DRBG function

with d as its input;
3: Q(x1, y1) = kG;
4: r = x1 mod n;
5: if r = 0 then goto step 2;
6: s = k−1(e+ dr) mod n;
7: if s = 0 then goto step 2;
8: return (r, s)

Algorithm 2 Signature generation of EdDSA

Require: The definition of a specific elliptic curve E(Fq), a base point G of the curve
with order n, message m, private key (d0, d1), and public key P (P = d0G).

Ensure: Signature pair (R, s).
1: k = H(d1,m) mod n, where H is SHA-512 by default;
2: R(x1, y1) = kG;
3: r = H(R,P,m) mod n;
4: s = k + rd0 mod n;
5: return (R, s)

2.3 Problems in some lattice

Since the proposed attacks on deterministic signature schemes are related to the
construction and computation of some problems in some lattice, we give a basic
introduction on the relevant conceptions and results.

In a nutshell, a lattice is a discrete subgroup of Rm, generally represented as
a spanned vector space of linearly independent row vectors b1, b2, . . . , bN ∈ Rm
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Fig. 1. Compression function of SHA2

of matrix M ∈ RN×m, in the form of

L = L (b1, b2, ..., bN ) = {z =

N∑
i=1

xi · bi|xi ∈ Z}. (1)

The vectors bis are called a basis of L, and N is the dimension of L. Ifm = N ,
then L is full rank. Moreover, if bi belongs to Zm for any i = 1, ..., N , L is called
an integer lattice. In this way, it is straightforward to find that for every z ∈ L,
there must exist x = {x1, ..., xN} ∈ ZN such that z = xM.

In lattice, a few well-known problems have been studied, such as the shortest
vector problem(SVP) and closest vector problem(CVP), which are believed to be
hard in computation theoretically.

SVP: given a basis bis of L, find a nonzero vector v ∈ L such that

∥v∥ = λ1(L), (2)

where λ1(L) means the length of the shortest vector in L.
CVP: given a basis bis of L and a target vector u ∈ Rm, find a nonzero

vector v ∈ L such that
∥v − u∥ = λ (L,u) , (3)

where λ (L,u) is the closest distance from vector u to lattice L.
Generally, the best algorithms for solving SVP and CVP are LLL algorith-

m [18] or BKZ algorithm [33,31,32] to find their approximate solutions, i.e., solve
approximate SVP and CVP. For an N -dimensional approximate SVP, a short
lattice vector can be output when the approximate factor is large enough. The
approximate factor of the LLL algorithm is given from Lemma 1.
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Lemma 1. [20,18] Given an integer basis B of N -dimensional lattice L, there
exists a polynomial time algorithm to find a nonzero lattice vector x satisfying

∥x∥ ≤ (2/
√
3)Nλ1 (L) .

Hence, the exact SVP and CVP can be approximated within an exponetial factor
in polynomial time.

For random lattices with dimension N , Gaussian heuristic [22] expected the
shortest length could be defined to be

σ(L) =
√

N

2πe
vol(L)1/N ,

where vol denotes the volume or determinant of L.
Actually, the exact shortest vector of N -dimensional random lattices is much

easier to be found along with the increment of the gap between the shortest
length and σ(L). If it is much shorter than σ(L), it shall be founded in poly-
nomial time by using LLL and related algorithms. Heuristically, as introduced
in [26], assuming the lattice L behaves like a random lattice, if there exists a
lattice vector whose distance from the target is much shorter than σ(L), this
lattice vector is expected to be the closest vector from the target. Accordingly,
this special instance of CVP usually could be solved by Babai algorithm [4] or
embedding-based SVP [25].

3 Adversarial model

In regard to fault attacks on signature schemes, the adversary is allowed to query
and at the same time disturb the signing procedure to collect the correct or faulty
signatures (in the fault injection phase), then employs the collected signatures
to recover the private key (in the key recovery phase). The difference between
various fault attacks lies in the approaches used for both fault injection and key
recovery. The following describes the adversarial model for these two phases.

3.1 Fault injection model

During the fault injection phase, we assume the adversary is capable of inducing
transient faults to some specific intermediates in computation. That is, during
the invocation of signature generation, faults can be injected to the data when it
is transmitted over the physical circuit (such as buses), or stored in the memory
cells or CPU registers. Then, after the invocation, the computation device will
restore to a normal state and the faults will not be passed on to the next invo-
cation. In this way, the computation may be temporarily tampered to produce
available faulty results for the adversary.

The fault model assumes that a random fault is induced to a specific inter-
mediate v ∈ Zn and thereby there are (at most) w bits of v disturbed randomly,
which is formalized as an addition with a (bounded) random value ε ∈ Z in the
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form of v + ε2l mod n, where −2w < ε < 2w, l is a random integer in interval
[0, lv − w] and lv is the maximum bit length of v (which is usually equal to the
bit length of n). That means, there are continuous w bits of v (starting from
l-th bit) disturbed randomly. It is noted that we do not use modulo-2 addition
as in [13] (e.g., v ⊕ β2l mod n and β is a w-bit random number) but rather the
equivalent group addition in Zn to represent the effect of a fault to an inter-
mediate. In addition, although it is hard to determine the concrete bit index l
of the faulty starting location and number w of the faulty bits for each faulty
signature generation, we can conservatively estimate the maximum number w
of faulty bits starting from highest or least significant bit to determine l for all
the faulty signature generations. For example, if we estimate there are at most
w continuous faulty bits starting from the highest (or least) significant bit of v,
then l = lv − w (or l = 0). Hence, in the following analysis, w is the pre-set
maximum number of faulty bits and l(= lv − w or 0) is known.

To facilitate the description, the specific intermediates which may suffer from
faults are called (potential) targets of fault injection in this paper. All the po-
tential targets that can be exploited by the proposed attacks are listed in Table
1, in which there are 13 and 8 targets for deterministic ECDSA and EdDSA
respectively. It is noted that a target is determined by two factors, i.e., the nota-
tion of the variant (corresponding to the intermediate), and the timing for fault
injection. For example, the two items “k before the calculation of scalar multi-
plication kG” and “k during the calculation of s” are recognized as two different
targets in this paper. In comparison, although some of the identified targets in
Table 1 have also been considered in [1], not all of them can be exploited to do
key recovery in their method, especially when the target is affected by lots of
faulty bits.

On the other hand, different targets may be equivalent if considering the final
effect of fault injection. For example, the targets on hash function in deterministic
ECDSA: “registers before outputting the hash value F (d, e)”, “last modular
additions before outputting the hash value F (d, e)” and “hash value F (d, e)
during the reduction of k” are equivalent to the target “k before the calculation
of kG”, since the fault injection to the four targets will produce a same type
of faulty k to construct the same key recovery model. Therefore, we define ‘k
before the calculation of kG” as the representative target of the four targets,
and indicate it in bold type in the table. Similarly, other representative targets
are also indicated in Table 1 in the same way. In addition, it is noted that all
the hash functions in the targets refer to SHA-2 hash function (see Section 2.2).

In each of the proposed attack, the adversary is required to pre-determine at
most one target and then fix the choice throughout the signature queries. Note
that we don’t consider the possibility that more than one target is chosen in a
query, since the key recovery model doesn’t support this case. Hence, there is no
guarantee that the key can be recovered successfully. A set of faulty signatures
are called valid if they are computed with the same message as input and the
same equivalent target for fault injection.
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Table 1. The fault targets and solved problem in our attacks on deterministic ECDSA
and EdDSA.

Algorithm Target of fault injection Related problem

r during the calculation of s SVP
Deterministic k−1 during the calculation of s SVP

ECDSA k during the calculation of s SVP
d during the calculation of s SVP

e during the calculation of s
SVP–Registers before outputting hash value H(m)

–Last modular additions before outputting H(m)
rd during the calculation of s SVP

e+ rd during the calculation of s SVP
k before the calculation of kG

CVP
–Registers before outputting hash value F (d, e)
–Last modular additions before outputting F (d, e)
–Hash value F (d, e) during the reduction of k

EdDSA

r during the calculation of s

SVP
–Registers before outputting hash value H(R,P,m)
–Last modular additions before outputting H(R,P,m)
–Hash value H(R,P,m) during the reduction of r

k before the calculation of kG

CVP
–Registers before outputting hash value H(d1,m)
–Last modular additions before outputting H(d1,m)
–Hash value H(d1,m) during the reduction of k

It is noted that, since the paper aims to examine the conception that some
deterministic signature schemes may be threatened by lattice-based fault attacks,
we don’t consider the so-called instruction skipping attacks (where the execution
flow is disturbed such that some instructions are skipped without being executed)
and persistent faults (i.e., permanently modifying data in the memory), although
the model may be somehow extended to cover these cases.

3.2 Key recovery by solving problems in some lattice

When enough faulty results are collected, the adversary manages to recover the
signing key. This section is devoted to describe the fundamental idea behind the
attacks, the instantiation is left to be described in Section 4.

Intuitively, the proposed attacks in this paper exploit some special algebraic
structures of the signature generation algorithm of deterministic ECDSA and
EdDSA, which are discovered by the following observations.

We found the lattice-based attacks on plain (EC)DSA [12] have demonstrated
that when there are small partial bits fixed between the random nonces, for
instance, the nonces ki and kj for any i and j (i ̸= j) satisfy ki = c2l + bi and
kj = c2l + bj (where bi ̸= bj and c is the fixed bits of the nonces), an instance of
CVP in some lattice can be constructed to recover the private key. Heuristically,
although our fault models (there are many partial bits disturbed randomly) are
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different from that in [12], the same type of faulty nonces (consisting of fixed
partial bits and random partial bits) can be derived and thereby the similar
instance of CVP can be constructed to recover the private key. Moreover, our
fault models are more feasible than that in [12], since many of the bits can be
changed randomly except several fixed bits. Furthermore, due to the particularity
of deterministic signature, our attack not only targets the nonce to construct an
instance of CVP, but also targets the signature result r, the hash value e, the
private key and so on to construct some instances of SVP (see Table 1). The
following universal representation of faults and key recovery can be extracted
from all the fault models (i.e., v+ε2l mod n), targets in Table 1 and the algebraic
structures (i.e., step 6 in Algorithm 1 and step 4 in Algorithm 2).

a)Representation of faults. Firstly, due to the special structure of the
deterministic ECDSA and EdDSA, when gathering a correct signature and N−1
faulty results for a common message, the adversary can construct one of the
following two relations(corresponding to SVP and CVP) for the random faulty
values {εi}N−1

i=1 ∈ Z(corresponding to the faulty signatures):

εi = AiD + hin, (4)

εi = AiD + hin−Bi (5)

with −2w < εi < 2w < n, where Ai, Bi, w, n are known values (with prime n
being the order of base point G), and D, εi, hi are unknown values.

In detail, D ∈ Zn is a function of the private key, the input message and some
known variables. Then it is important to notice that when the input message is
known, D is reversible and subsequently the key can be recovered. This is true
when the input message is not affected by the injected faults, and by the fact
that the input message is chosen and known to the adversary before the attack.
Thus the goal of the proposed attacks is translated to recover D.

b)Key recovery using lattice. Based on the above observation, we can
construct a lattice L with a basis being the row vectors of a matrix M as

M =


n 0 · · · 0

0
. . .

...
... n 0
A1 · · · AN−1 2w/n

 .

It is noted that, under the random models of faults injection, L behaves like
a random lattice. Then, a target vector v ∈ L can be constructed from the
coordinate vector x = (h1, . . . , hN−1, D) ∈ ZN as

v = xM = (A1D + h1n, . . . , AN−1D + hN−1n,D2w/n).

The given volume of L meets vol(L) = det(M) = nN−22w, where det(M)
denotes the determinant of M. Under the condition of |εi| < 2w, supposing

f = ⌈log n⌉, w < f − log
√
2πe and N ≫ 1 + f+log

√
2πe

f−w−log
√
2πe

, one of the following

relations will hold:
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(i) when the faulty value is represented by equation (4), we have

∥v∥ <
√
N2w ≪

√
N

2πe
vol(L) 1

N ; (6)

(ii) when the faulty value is represented by equation (5), then for vector
u = (B1, . . . , BN−1, 0) ∈ ZN /∈ L, we have

∥v − u∥ <
√
N2w ≪

√
N

2πe
vol(L) 1

N . (7)

Then, heuristically we expect that the vector v in inequalities (6) is the
shortest vector in L and the v in inequalities (7) is the closest vector to u in
L as introduced in [26]. By the discussion in Section 2.3, when N is bounded,
vector v can be found efficiently by solving the SVP or CVP with LLL or other
related algorithm, and then the value of D can be recovered, which immediately
leaks the private key d in deterministic ECDSA or d0 in EdDSA. To have a
complete view about the proposed attacks, Table 1 relates the targets with the
relevant problems in some lattice.

4 Concrete lattice-based fault attacks on deterministic
ECDSA and EdDSA algorithms

In this section, we instantiate the idea of the attacks discussed in Section 3. The
key point is to show that equations (4) and (5) can be constructed when concrete
targets are selected. Then, the lattice-based approach described in Section 3.2
can be followed to do key recovery. Since most of the attacks presented in this
paper are of similar structure in description, to simplify presentation, only three
representative attacks are described in this section, while other attacks, with
targets shown in Table 1, are gathered in Appendix A.

4.1 Fault attacks with target r during the calculation of s

Suppose the adversary decides to inject a fault against r before using it to
calculate s. Then after getting a correct signature for a message m (chosen by
the adversary in advance), the adversary manages to get N −1 faulty signatures
with the same message m as input, and r as the target of fault injection.

4.1.1 Attacks on deterministic ECDSA

Step 1: inject fault to r during the calculation of s
During the calculation of s, if injected with a fault, r can be represented

as ri = r + εi2
li for i = 1, ..., N − 1, where εi is a random number satisfying

−2w < εi < 2w < n (by the random fault model) and the known li ∈ N satisfies
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li = f − w or 0 (see Section 3.1, f = ⌈log n⌉). The correct signature (r, s0) and
N − 1 faulty results (ri, si) for the same input message m can be represented as{

s0 = k−1 (e+ rd) mod n
si = k−1

(
e+ (r + εi2

li)d
)
mod n (for i = 1, ..., N − 1).

(8)

Step 2: recover the private key d by solving SVP

After reduction, equation (8) can be transformed as

εi = (si − s0) 2
−lid−1k mod n. (9)

Let Ai = (si − s0)2
−li mod n and D = d−1k mod n. There must exist hi ∈ Z

for i = 1, ..., N − 1 such that

εi = AiD + hin, (10)

where D is a fixed value due to the same input message m for all the signature
queries.

It is clear that equation (10) is exactly equation (4). Then following the

strategy described in Section 3.2, if w < f − log
√
2πe and N ≫ 1+ f+log

√
2πe

f−w−log
√
2πe

(N ≈ 1 + f+log
√
2πe

f−w−log
√
2πe

in practice), D can be recovered by solving SVP and

subsequently the private key d can be recovered by virtue of the equation

d = (Ds0 − r)−1e mod n.

4.1.2 Attacks on EdDSA

Before we proceed, it should be noted that the existing DFAs against Ed-
DSA [1,5,27,28,29] do not recover the private key d, but rather recover the sub-
keys d0 or d1. This is still a real risk to the security of EdDSA since knowing a
partial key d0 or d1 suffices to forge signatures [28].

Just like in the case of deterministic ECDSA, if the target r during the
calculation of s is chosen, the correct and faulty signatures can be expressed as{

s0 = k + rd0 mod n
si = k + (r + εi2

li)d0 mod n(i = 1, ..., N − 1).
(11)

After reduction, there must exist hi ∈ Z for i = 1, ..., N − 1 such that equation
(11) can be transformed as

εi = AiD + hin, (12)

where Ai = (si − s0)2
−li mod n, and D = d−1

0 mod n.

Equation (12) is exactly equation (4). Analogously, by applying the general
strategy described in Section 3.2, D can be found by solving SVP and subse-
quently the signing key d0 can be obtained.

12



4.2 Fault attacks with target k before the calculation of kG

Suppose the adversary decides to inject a fault to k before using it to calculate
kG. Then after getting a correct signature for a message m (chosen by the
adversary also), the adversary can manage to get N − 1 faulty signatures with
the same message m as input, and k as the target.

4.2.1 Attacks on deterministic ECDSA

Step 1: inject fault to k before the calculation of kG
When k is injected with a fault, we have ki = k + εi2

li for i = 1, ..., N − 1,
where εi satisfying −2w < εi < 2w is a random number and li = f −w or 0 (see
Section 3.1). The correct signature (r0, s0) and N − 1 faulty ones (ri, si) for the
same message m can be represented as{

k = s0
−1 (e+ r0d) mod n

k + εi2
li = si

−1 (e+ rid) mod n(i = 1, ..., N − 1).
(13)

Step 2: recover the private key d by solving CVP
After reduction, equation (13) can be transformed as

εi =
(
si

−1ri − s0
−1r0

)
2−lid−

(
s0

−1 − si
−1

)
2−lie mod n. (14)

Let Ai =
(
si

−1ri − s0
−1r0

)
2−li mod n, Bi = (s0

−1 − si
−1)2−lie mod n and

D = d mod n. Then there must exist hi ∈ Z for i = 1, ..., N − 1 such that

εi = AiD + hin−Bi. (15)

Equation (15) is exactly equation (5). Analogously, by applying the general

strategy described in Section 3.2, if w < f − log
√
2πe andN ≫ 1+ f+log

√
2πe

f−w−log
√
2πe

,

D, i.e., the private key d can be obtained in polynomial time in N .

4.2.2 Attacks on EdDSA

Just like in the case of deterministic ECDSA, if the target k before the calculation
of kG is chosen, the correct and faulty signatures can be expressed as{

s0 = k + r0d0 mod n
si = k + εi2

li + rid0 mod n(i = 1, ..., N − 1).
(16)

After reduction, there must exist hi ∈ Z for i = 1, ..., N−1 such that equation
(16) can be transformed as

εi = AiD + hin−Bi, (17)

where Ai = (r0 − ri)2
−li mod n, D = d0 mod n and Bi = (s0 − si)2

−li mod n.
Equation (17) is exactly equation (5). Analogously, by applying the strategy

described in Section 3.2, d0 can be obtained in polynomial time in N .
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4.3 Fault attacks with the targets during the calculation of k

As described in Section 4.2, if injecting a fault into the target “k before the
calculation of kG” to obtain some faulty kis satisfying ki = k+εi2

li(−2w < εi <
2w, w < f − log

√
2πe and i = 1, ..., N−1), then equation (5) can be constructed

to recover the private key in deterministic ECDSA or EdDSA. As in Table 1,
besides the target “k before the calculation of kG”, we found some other fault
targets during the calculation of k also can generate the same type of faulty
kis, including “registers before outputting hash value F (d, e) (or H(d1,m))”,
“last modular additions before outputting hash value F (d, e) (or H(d1,m))”
and “hash value F (d, e) (or H(d1,m)) during the reduction of k”.

The following will introduce the three targets and the fault models whose
final purpose is to generate some faulty signatures satisfying ki = k + εi2

li(
−2w < εi < 2w and w < f − log

√
2πe). For simplicity, we just consider the case

when li = 0 for i = 1, ..., N − 1(i.e., the continuous w bits of k starting from the
least significant bit are disturbed randomly) and the hash function is SHA-2, to
which the other cases are similar.

4.3.1 Hash Function Generating k

Although different SHA2-based derived functions are employed for generating
k in deterministic ECDSA and EdDSA (for example, HMAC DRBG SHA256
F (d, e) is utilized in deterministic ECDSA and hash algorithm SHA512H(d1,m)
is utilized in EdDSA by default), they all have the similar final computational
steps before outputting the hash value to generate k (as shown Figure 1). As
shown in Figures 2 and 3, after the L-round compression, the modular additions
(mod2t, t is bit length of register) of the registers (aL−1, . . . , gL−1) ∈ [0, 2t) and
(a0, . . . , h0) ∈ [0, 2t) are calculated and the results are assigned to the registers
(aL, . . . , hL) ∈ [0, 2t) as the hash value. Hence, once a fault is injected into these
registers, the calculation of the additions or the hash value during the following
reduction, k will be affected by the fault.

Fig. 2. Fault targets in the hash function
of determinsic ECDSA

Fig. 3. Fault targets in the hash function
of EdDSA
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Table 2. The targets of fault injection during the calculation of k.

target algorithm concrete location of fault injection

registers before deterministic ECDSA
(partial bits of a0, aL), (b0, ..., h0),

(bL, ..., hL), (aL−1, ..., gL−1)

outputting hash values EdDSA
(partial bits of e0, eL), (f0, g0, h0),
(fL, gL, hL), (eL−1, fL−1, gL−1)

modular additions before deterministic ECDSA all the modulo-2t additions
outputting hash values EdDSA modulo-2t additions in the right half

hash value during deterministic ECDSA the value of F (d, e)
the reduction of k EdDSA the value of H(d1,m)

Table 2 gives an overview of all the fault targets before outputting the hash
value and during the reduction of k for deterministic ECDSA and EdDSA re-
spectively. The following sections will describe the detailed attack process with
the targets in Table 2.

4.3.2 Fault Attacks with Target: Registers before Outputting Hash
Value

Attacks on deterministic ECDSA
For the HMAC DRBG SHA256 during signature generation of deterministic

ECDSA, the final output registers (aL, . . . , hL) can be reduced into a big number
k = T28t + aL2

7t + . . .+ gL2
t + hL mod n, where T is the concatenation of the

previous u-times HMAC values, i.e., T = HMAC0||HMAC1|| . . . ||HMACu−1

(T = 0 in 256-bit deterministic ECDSA), and t is the bit length of register.
As shown in Figure 2, assuming that all or arbitrary one of the registers

(a0, . . . , h0), (aL−1, . . . , gL−1) before the last additions and (aL, . . . , hL) before
outputting the hash value are affected with a fault, the consequent k can be
represented as ki = T28t + (aL2

7t + bL2
6t + . . . + gL2

t + hL + εi) mod n for
i = 1, . . . , N − 1, with a random faulty value εi satisfying −2w < εi < 2w and
w < f − log

√
2πe ≤ 8t − log

√
2πe (8t = f for 256-bit deterministic ECDSA).

That is, ki, which is derived from the faulty hash value and is to participate in
the next calculation of kG, is equal to k + εi mod n.

Similar to the key recovery with target “k before the calculation of kG”,
equation (5) can be constructed. Then following the general strategy described
in Section 3.2, the private key d can be recovered by solving the instance of CVP
in lattice.

Note that in 256-bit deterministic ECDSA, to make sure w < f − log
√
2πe,

the register hL−1 can not be viewed as target, and as listed in Table 2, more than
⌈log

√
2πe⌉ most significant bits of the registers a0 and aL can not be disturbed

when a fault is injected into them. Except this, all the fault injections against
the other registers are arbitrary and uncontrolled.

Attacks on EdDSA
In the hash algorithm SHA512 H(d1,m) of EdDSA, the final output 512-

bit registers (aL, . . . , hL) as the hash value must be reduced into the nonce
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k = aL2
7t + . . . + gL2

t + hL mod n, where t as the bit length of register equals
to 64 in SHA512. For 256-bit EdDSA, e.g., Ed25519, the modular reduction will
reduce the 512-bit hash value into a 253-bit nonce k. Hence, in order to obtain
available faulty signatures, fault injection here will take the four registers in the
right half as the targets.

As shown in Figure 3, when all or arbitrary one of the registers (e0, . . . , h0),
(eL−1, . . . , gL−1) before the last additions and (eL, . . . , hL) before outputting
hash value are injected with a fault, the consequent k can be represented as
ki = aL2

7t+ . . .+dL2
4t+(eL2

3t+ . . .+hL+εi) mod n for i = 1, . . . , N −1, with
a random faulty value εi satisfying −2w < εi < 2w and w < f − log

√
2πe ≤

4t− log
√
2πe (f ≈ 4t for 256-bit EdDSA). That is, ki = k+εi mod n. Similar to

the key recovery with target “k before the calculation of kG”, equation (5) can
be constructed. Then according to the general strategy described in Section 3.2,
the private key d0 can be recovered by solving the instance of CVP in lattice.

Note that in 256-bit EdDSA, to make sure w < f − log
√
2πe, only the right

half of the registers are viewed as targets, and as listed in Table 2, at least
4t − f + ⌈log

√
2πe⌉ most significant bits of the registers e0 and eL can not be

disturbed when a fault is injected into them. Except this, the fault injection to
the remaining three registers is arbitrary and uncontrolled. In addition, if the
registers in the left half are disturbed, then ki = k + εi2

4t mod n. Similarly, we
also can construct an instance of CVP in lattice to recover the private key.

4.3.3 Fault Attacks with Target: Last Modular Additions before Out-
putting Hash Value

As described in Section 4.3.1 and 4.3.2, if the last modulo-2t additions are dis-
turbed by a fault to generate a group of faulty hash value {aL, ..., hL}, then the
nonce k derived by the hash value has w bits disturbed, by which equation (5)
can be constructed to recover the private key d.

For 256-bit deterministic ECDSA, as shown in Figure 2, all or arbitrary one
of the last modulo-2t additions could be affected with a fault. Moreover, it is
noted that the fault injection towards the first addition on the left must ensure
more than ⌈log

√
2πe⌉ most significant bits of aL undisturbed.

Similarly, for 256-bit EdDSA, as shown in Figure 3, all or arbitrary one of
the last modulo-2t additions in the right half could be affected with a fault.
Moreover, the fault injection towards the first addition in the right half must
ensure more than 4t − f + ⌈log

√
2πe⌉ most significant bits of eL undisturbed.

In addition, similarly, if the additions in the left half are disturbed, we also can
construct an instance of CVP in lattice to recover the key.

4.3.4 Fault Attacks with Target: Hash Value during the Reduction
of k

After calculating the last modular additions in the hash function, the final reg-
isters are combined into a big number E(E = F (d, e) in deterministic ECDSA
or E = H(d1,m) in EdDSA), and E must be reduced into nonce k, That is,
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k = E mod n. Assuming that a fault is injected into E during the reduction, the
reduction k = E mod n is changed into ki = E+εi2

li mod n for i = 1, . . . , N−1.
Hence, as long as the random number εi satisfying −2w < εi < 2w and w <
f − log

√
2πe, equation (5) can be constructed. Thereby, the private key can be

recovered by solving an instance of CVP in lattice.
To sum up, the three fault targets above during the calculation of k are equiv-

alent to the representative target “k before the calculation of kG”, and thereby
equation (5) can be constructed to recover the private key d in deterministic
ECDSA and d0 in EdDSA. The other attacks targeting the hash functions gen-
erating e and r have the similar procedures, which are specified in Appendix A.5
and A.6.

5 Experiment and complexity discussion

The validity of the proposed attacks lies in two aspects, namely, the validity of
fault injection and the validity of key recovery. Section 3 presents the conditions
and allowed adversarial actions for fault injection, and it is reasonable to be-
lieve that suitable faults can be induced during the signature generation process
since our adversarial model is not completely new compared with the models
in [13,27,28,29]. Thus, we do not conduct concrete experiments to demonstrate
the applicability of these fault injections. On the other hand, experiments are
performed to check the validity of lattice-based key recovery algorithms. This is
helpful to understand the relations between the allowed faulty bits(w), the re-
quired number of faulty signatures (N), and the success rate (γ) of the presented
key recovery.

The experiments are conducted in a computer with 2.4GHz CPU, 8GB mem-
ory and Windows7 OS. The BKZ algorithm with block size of 20 implemented
in NTL library [34] is employed to solve the instances of SVP/CVP. The ex-
perimental results for 256-bit deterministic ECDSA(based on NIST P-256) and
EdDSA(based on curve25519, i.e., Ed25519) under some specific elliptic curve
parameterized, are listed in Table 3 and Table 4 respectively.

Table 3. Success rate when attacking 256-bit deterministic ECDSA (f = 256)

target of fault injection
w = 250 w = 245 w = 192 w = 160 w = 128
N γ N γ N γ N γ N γ

r during the calculation of s 80 100% 29 100% 6 96% 4 85% 3 70%
k−1 during the calculation of s 80 100% 29 100% 6 96% 4 89% 3 65%
k during the calculation of s 80 100% 29 100% 6 97% 4 87% 3 82%

e, rd, e+ rd during
80 100% 27 100% 6 97% 4 87% 3 67%

the calculation of s
d during the calculation of s 80 100% 26 100% 6 95% 4 85% 3 67%
k before the calculation of kG 80 74% 30 100% 6 100% 4 100% 3 55%
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Table 4. Success rate when attacking 256-bit EdDSA(f = 253)

target of fault injection
w = 247 w = 245 w = 192 w = 160 w = 128
N γ N γ N γ N γ N γ

r during the calculation of s 80 100% 45 98% 6 97% 4 84% 3 23%
k before the calculation of kG 110 13% 29 100% 6 100% 4 100% 3 12%

Before proceeding to describe the experiment results some points should be
clarified. First, to simplify the experiments, we only conduct key recovery exper-
iments for representative targets (defined in Section 3.1). Similarly, due to the
similarity of key recovery for targets e, rd, e+ rd during the calculation of s, we
just conduct key recovery experiments with the target e.

Then, for each experiment of key recovery, we use a pseudo-random generator
to generate the input message m and N − 1 groups of w-bit random numbers
βis. For simplicity, the chosen target v is set to be v ⊕ βi for i = 1, . . . , N − 1,
which is equivalent to v + εi mod n (where li = 0 and εi is also random with
bound −2w < εi < 2w). Then the simulated faulty signatures are used to do key
recovery. If the signing key can be recovered finally, the experiment is marked
successful, otherwise failed. A such-designed experiment could fail because the
short (or close) vector derived by LLL algorithm could be not the shortest (or
closest) one if the selected N is not big enough, or the constructed lattice basis
is not nice due to the oversize w and so on. For simplicity, we record the success
rate of the experiments as γ = number of successful experiments

total number of experiments . In addition, when
li ̸= 0, e.g., li = f −w, the experiments are similar and will not be detailed here.

Third, for each selected fault target (corresponding to each row of Table 3
and Table 4), we illustrate the validity of attacks in five groups, each of them
corresponding to a specific value of parameter (w,N). Note that when n is fixed,
the range of w and N can be determined from the relations w < f−log

√
2πe and

N ≫ 1 + f+log
√
2πe

f−w−log
√
2πe

respectively. Hence, when f = ⌈log n⌉ = 256(or f = 253

in Ed25519), the tolerant bound of w can be up to 253(or 250) in theory. Then,
for each pair (w,N), a number of experiments are conducted to validate the
effectiveness of key recovery.

Regarding the experiment number of each case, when w ≤ 245, we conduct
1000 experiments to derive each success rate γ; when w = 250 or 247, only 100
experiments is conducted since our experiment platform cannot afford the signif-
icant computational cost of BKZ algorithm. The maximal w in our experiments
is considered as 250(or 247), which is slightly less than the tolerable bound(i.e.,
253 or 250) in theory. It is hopeful that if some other improved lattice reduction
algorithms, such as BKZ 2.0 [11] with some optimum parameters, are utilized
in the experiments, the theoretical bounds (i.e., 253 and 250) could be achieved.
Moreover, as the previous lattice reduction, the needed N is approximate to

1 + f+log
√
2πe

f−w−log
√
2πe

in experiments, which is obviously better than the N needed

in theory. In addition, the success rate γ is tightly related to the parameters
w and N . When w is set to be closed to 245, 30 and 45 faulty signatures suf-
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fice to recover the key with absolute success rate for deterministic ECDSA and
Ed25519 respectively. However, when w is significantly less than the bound, a
few faulty signatures suffice to recover the key. For example, when w = 128, 1
correct signature and 2 faulty signatures suffice to recover the key with success
rate over 12% in experimental time 2 ∼ 3ms (with block size of 20). As a com-
parison (without considering the number of fault injections), it is impractical for
the existing DFAs [1,5,27,28] to break the deterministic signature when w ≥ 64,
since exponential complexity O(2w) is required to enumerate the faulty patterns.
In addition, as introduced in Section 3.1, since w is unknown and required to
preset in practice, a conservative way is to set w as the (practical) maximum
tolerable bound such that the key recovery can succeed.

Table 5. Comparison of attack complexity on 256-bit deterministic ECDSA or EdDSA

Item
Scheme

Our attacks
Previous DFAs

[1,5,27,28]
tolerable bound of faulty bits (in w) 250 or 247 ≈ 64

asymptotic time complexity O(N5(N + logA) logA)* O(2w)
time cost in experiments (w = 128) 2 ∼ 3 ms (N = 3) impractical
* N ≈ 1 + f+log

√
2πe

f−w−log
√

2πe
.

To have a more complete view about the computational complexity of the
proposed key recovery algorithms, we compare them with the existing attack-
s in Table 5. In our experiments, the block size of BKZ algorithm is set as
20, and thus the LLL-based reduction with asymptotic complexity O(N5(N +
logA) logA) [24] consumes the main time, where A is the maximum length in
the original lattice vectors. When N is chosen as a polynomial of (f, w) (where
f is a fixed value in a concrete algorithm), the computational complexity is
thus polynomial in w, which is obviously less than the exponential complexity
required by the existing approaches [1,5,27,28].

As a conclusion, our approach has obvious advantages over the mentioned
existing approaches in terms of the tolerance of faulty bits (characterized by
w) and time complexity, which also means the proposed attacks are of higher
applicability when comparing with those approaches.

6 Countermeasures

In this section, we discuss the effectiveness of some possible countermeasures.
-Randomization. As introduced above, the proposed attacks take advan-

tage of the fact that k is determined by the input message and the private key,
and remains unchanged during the process of signature queries. Intuitively the
condition can be removed by reintroducing randomness to the derivation of k.
This is the exact idea of hedged signature schemes, where the input message,
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secret key and a nonce are input to generate the per-signature random k. The
security of hedged signature schemes against fault attacks has recently been
proven under some limited models [3]. This strategy can theoretically defeat our
attacks but it remains unclear whether it can be used to resist all fault attacks.

-Data integrity protection. Integrity protection is a natural choice for
fault attacks resistance. It is a fact that the security of data transmission and
storage can be consolidated by adopting error detection (or correction) code in
the circuit level. However, limited by the computing power and cost factors, it
is usually impossible to adopt strong integrity protection in the smart card like
products. Thus the usually implemented Parity check and Cyclic Redundancy
Code will leave rooms for fault injection. Namely, though they can be used to
resist our attacks to some extent, more considerations are required to validate
the real effectiveness of the mechanism. In addition, though the strategy that
checking whether the input and output points are on the original elliptic curve
can be used to resist the attacks in [1], our attacks are still effective in this case.

-Signature verification before outputting. Note the signature result of
the two targeted deterministic algorithms is the form of (r, s). If k is tampered
before the the calculation of kG, the result (r, s) is derived by the faulty k.
Hence, verifying the signature before outputting cannot detect the fault. This
means the attack selecting k before the calculation of kG as the representative
target can survive, but the other proposed attacks can be prevented.

-Consistency check of repeated computations. In this strategy, the
signature calculation on an input message is repeated for two or more times,
and the signature result will be output only when all the computation results
are consistent. This can be effective to resist all the proposed attacks since there
is no guarantee that the fault induced each time will be the same under the
random fault model. But this countermeasure may not be efficient, since in this
case two scalar multiplications have to be computed, which is unaffordable for
some devices (such as IoT devices) whose computing power is very limited.

-Infective computation. This strategy is graceful in that the adversary in
this case cannot distinguish whether the faulty signature is valid or not, thus
the key recovery can be defeated. We propose two infective countermeasures to
resist the proposed attacks to a considerable extent, where the hash function is
SHA-2(Figure 1) by default.

(i) For EdDSA, the final 8-round compressions in the hash function H(d1,m)
generating k are calculated twice to obtain two identical nonces k1 and k2, and
the final 8-round compressions in the hash function H(R,P,m) generating r are
calculated twice to obtain two identical r1 and r2; moreover, a random infective
factor β is introduced, which has the same bit length with k, and is regenerated
per signature. Then compute s = (1 + β)(k1 + d0r1)− β(k2 + d0r2) mod n.

(ii)For deterministic ECDSA, the final 8-round compressions in the hash
function F (d, e) generating k are calculated twice to obtain two identical nonces
k1 and k2. The final 8-round compressions in the hash function H(m) generating
e are calculated twice to obtain two identical e1 and e2. The reduction(i.e., r = x1

mod n) generating r is calculated twice to obtain two identical r1 and r2. The
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private key d defined as d1 and d2 is invoked twice during the calculation of s,
respectively. Then compute s = (1+β)k1

−1(e1+d1r1)−βk2
−1(e2+d2r2) mod n.

7 Conclusion

We present a new fault analysis method to deterministic ECDSA and EdDSA.
In the new model, the faulty intermediate can be characterized as an addition
of the original intermediate with a random value of left-shifted l bits. The range
of the random value is determined by and close to the size of the signing key.
This makes the method much more practical than the existing enumerating
approaches [1,5,27,28] in terms of tolerance of faulty bits.

The advantage is guaranteed by the lattice-based key recovery method. By
noticing the algebraic structures of the deterministic algorithms, we show that,
when providing with some faulty signatures and an associated correct signature
of the same input message, some instances of lattice problems can be constructed
to recover the signing key. Moreover, the lattice-based approach supports much
more alternative targets of fault injection than the existing approaches, which
further improves the applicability of the approach.

Experiments are performed to validate the effectiveness of the key recovery
method. It is demonstrated that, for 256-bit deterministic ECDSA and EdDSA,
the signing key can be recovered efficiently with high probability even if the in-
termediates are affected by 250 and 247 faulty bits respectively. This is, however,
impractical for the existing faulty pattern enumerating approaches to achieve the
same objective.
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A Appendix

This appendix will introduce the attacks with the remaining targets listed in
Table 1 to deterministic ECDSA and EdDSA, including the attacks with targets
k, k−1, e, rd, e+ rd and d during the calculation of s and the attacks taking the
hash functions generating e and r as fault targets.

A.1 Fault attacks with target k during the calculation of s to
deterministic ECDSA

Suppose the adversary decides to inject a fault to k before using it during the
calculation of s. Then after getting a correct signature for a message m (chosen
by the adversary in advance), the adversary can try to get N−1 faulty signatures
with the same message m as input, and k as the target.

Step 1: inject fault to k during the calculation of s
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When k is injected with a fault, we have ki = k + εi2
li for i = 1, ..., N − 1,

where εi satisfying −2w < εi < 2w < n is a random number and li = f −w or 0
(see Section 3.1). The correct signature (r, s0) and N − 1 faulty ones (r, si) for
the same input message m can be represented as{

k = s0
−1 (e+ rd) mod n

k + εi2
li = si

−1 (e+ rd) mod n(i = 1, ..., N − 1)
. (18)

Step 2: recover the private key d by solving SVP
After reduction, equation (18) can be transformed as

εi =
(
si

−1 − s0
−1

)
2−li (e+ rd) mod n. (19)

Let Ai = (si
−1 − s0

−1)2−li mod n and D = e+ rd mod n. There must exist
hi ∈ Z for i = 1, ..., N − 1 such that

εi = AiD + hin, (20)

where D is a fixed value due to the same input message m for all the signature
queries.

Equation (20) is exactly equation (4). Then following the general strategy

described in Section 3.2, if w < f − log
√
2πe and N ≫ 1+ f+log

√
2πe

f−w−log
√
2πe

, D can

be found by solving an instance of SVP and subsequently the private key d can
be recovered by virtue of the equation

d = r−1(D − e) mod n.

A.2 Fault attacks with target k−1 mod n during the calculation of
s to deterministic ECDSA

Suppose the adversary decides to inject a fault to k−1 mod n (after being gen-
erated by modular inversion of k) before using it during the calculation of s.
Then after getting a correct signature for a message m, the adversary can try to
get N − 1 faulty signatures with the same message m as input, and k−1 as the
target.

Step 1: inject fault to k−1 mod n during the calculation of s
When k−1 mod n derived by k is injected with a fault, we have k−1

i = k−1 +
εi2

li mod n for i = 1, ..., N − 1, where εi satisfying −2w < εi < 2w is a random
number, w is a preset value and li = f − w or 0 (see Section 3.1). The correct
signature (r, s0) and N − 1 groups of faulty (r, si) for the same input message
m can be represented as{

s0 = k−1 (e+ rd) mod n
si =

(
k−1 + εi2

li
)
(e+ rd) mod n(i = 1, ..., N − 1).

(21)

Step 2: recover the private key d by solving SVP
After reduction, equation (21) can be transformed as

εi = (e+ rd)
−1

(si − s0) 2
−li mod n. (22)
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Let Ai = (si − s0)2
−li mod n and D = (e+ rd)

−1
mod n. There must exist

hi ∈ Z for i = 1, ..., N − 1 such that

εi = AiD + hin, (23)

where D is a fixed value due to the same input message m for all the signature
queries.

Equation (23) is exactly equation (4). Then following the general strategy

described in Section 3.2, if w < f − log
√
2πe and N ≫ 1+ f+log

√
2πe

f−w−log
√
2πe

, D can

be found by solving an instance of SVP and subsequently the private key d can
be recovered by virtue of the equation

d = r−1(D−1 − e) mod n.

A.3 Fault attacks with target d during the calculation of s to
deterministic ECDSA

Suppose the adversary decides to inject a fault to d before using it during the
calculation of s. Then after getting a correct signature for a message m, the
adversary can try to get N − 1 faulty signatures with the same message m as
input, and d as the target.

Step 1: inject fault to d during the calculation of s
When d is injected with a fault, we have di = d + εi2

li for i = 1, ..., N − 1,
where εi satisfying −2w < εi < 2w is a random number, w is a preset value and
li = f −w or 0 (see Section 3.1). The correct signature (r, s0) and N − 1 groups
of faulty (r, si) for the same input message m can be represented as{

s0 = k−1 (e+ rd) mod n
si = k−1

(
e+ r(d+ εi2

li)
)
mod n(i = 1, ..., N − 1).

(24)

Step 2: recover the private key d by solving SVP
After reduction, equation (24) can be transformed as

εi = (si − s0) 2
−lir−1k mod n. (25)

Let Ai = (si − s0) r
−12−li mod n and D = k mod n. There must exist hi ∈ Z

for i = 1, ..., N − 1 such that

εi = AiD + hin, (26)

where D is a fixed value due to the same input message m for all the signature
queries.

Equation (26) is exactly equation (4). Then following the general strategy

described in Section 3.2, if w < f − log
√
2πe and N ≫ 1+ f+log

√
2πe

f−w−log
√
2πe

, D can

be found by solving an instance of SVP and subsequently the private key d can
be recovered by virtue of the equation

d = r−1 (Ds0 − e) mod n.
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A.4 Fault attacks with targets e, rd and e + rd during the
calculation of s to deterministic ECDSA

If the targets e, rd and e + rd targets are disturbed by fault injection, a same
model of key recovery can be constructed. Therefore, for simplicity, we define mv
as any one of the three targets, that is, mv could be e, rd or e+ rd. Suppose the
adversary decides to inject a fault to mv before using it during the calculation
of s. Then after getting a correct signature for a message m, the adversary can
try to get N − 1 faulty signatures with the same message m as input, and mv
as the target.

Step 1: inject fault to mv during the calculation of s
Whenmv is injected with a fault, we havemvi = mv+εi2

li for i = 1, ..., N−1,
where εi satisfying −2w < εi < 2w is a random number, w is a preset value and
li = f − w or 0 (see Section 3.1). The correct signature (r, s0) and N − 1 faulty
ones (r, si) for the same input message m can be represented as{

s0 = k−1 (e+ rd) mod n
si = k−1

(
e+ rd+ εi2

li
)
mod n(i = 1, ..., N − 1).

(27)

Step 2: recover the private key d by solving SVP
After reduction, equation (27) can be transformed as

εi = (si − s0) 2
−lik mod n. (28)

Let Ai = (si − s0) 2
−li mod n and D = k mod n. There must exist hi ∈ Z

for i = 1, ..., N − 1 such that

εi = AiD + hin, (29)

whereD is a fixed value due to the same input messagem for all the signature
queries.

Equation (29) is exactly equation (4). Then following the general strategy

described in Section 3.2, if w < f − log
√
2πe and N ≫ 1 + f+log

√
2πe

f−w−log
√
2πe

, D

can be found by solving an instance of SVP. Naturally, as mentioned above, the
private key d can be recovered by virtue of D.

A.5 Fault attacks with targets during the calculation of e to
deterministic ECDSA

As introduced in Appendix A.4, if injecting a fault into e before using it during
the calculation of s to obtain some valid eis satisfying ei = e + εi2

li (−2w <
εi < 2w and li = f − w or 0), then equation (4) can be constructed to recover
the private key in deterministic ECDSA.

Similarly, besides directly injecting fault into the target “e during the cal-
culation of s”, there still exist two other fault targets during the calculation of
e which can generate some valid faulty eis for key recovery, including “register-
s before outputting the hash value H(m)” and “last modular additions before
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outputting the hash value H(m)”. The models of fault injection with these two
targets are similar to the ones introduced in Sections 4.3.2 and 4.3.3, and thereby
equation (4) which is similar to that with target “e during the calculation of s”,
can be constructed to recover the private key in deterministic ECDSA.

A.6 Fault attacks with targets during the calculation of r to EdDSA

As introduced in Section 4.1.2, if injecting a fault into r before using it during the
calculation of s to obtain some valid ris satisfying ri = r+εi2

li (−2w < εi < 2w,
w < f − log

√
2πe and li + w ≤ f), equation (4) can be constructed to recover

the private key in EdDSA.
Similarly, besides directly injecting fault into the target “r during the calcu-

lation of s”, there still exist another three fault targets during the calculation
of r which can generate some valid faulty ris for key recovery, including “regis-
ters before outputting hash value H(R,P,m)”, “last modular additions before
outputting hash value H(R,P,m)” and “hash value H(R,P,m) during the re-
duction of r”. The models of fault injection with these three targets are similar
to the ones in Sections 4.3.2, 4.3.3 and 4.3.4, and thereby equation (4) which is
similar to that with target “r during the calculation of s”, can be constructed
to recover the private key in EdDSA.
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