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Abstract. In this paper, we present a factoring algorithm that, assum-
ing standard heuristics, uses just (logN)2/3+o(1) qubits to factor an in-
teger N in time Lq+o(1) where L = exp((logN)1/3(log logN)2/3) and
q = 3

√
8/3 ≈ 1.387. For comparison, the lowest asymptotic time com-

plexity for known pre-quantum factoring algorithms, assuming standard
heuristics, is Lp+o(1) where p > 1.9. The new time complexity is asymp-
totically worse than Shor’s algorithm, but the qubit requirements are
asymptotically better, so it may be possible to physically implement it
sooner.

1 Introduction

The two main families of public-key primitives in widespread use today rely
on the presumed hardness of the RSA problem [22] or the discrete-logarithm
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Fig. 1. Tradeoffs between factorization time and number of logical qubits; i.e., evolution
of time as more and more qubits become available.

problem [13] respectively. Shor’s algorithm [25] provides an efficient solution to
both the factorization problem and the discrete-logarithm problem, thus break-
ing these primitives, assuming that the attacker has a large general-purpose
quantum computer.

Shor’s algorithm has motivated a new field of research, post-quantum cryp-
tography, consisting of cryptographic primitives designed to resist quantum at-
tacks. It is clear that the main public-key primitives will have to be replaced
before the practical realization of large-scale quantum computers. However, the
precise time line remains an important open question that can have significant
economic consequences. In particular, the community needs to predict the point
in time when quantum computers will threaten commonly deployed RSA key
sizes, whether through Shor’s algorithm or any other quantum factoring algo-
rithm.

An obvious obstruction to the implementation of Shor’s algorithm is the
number of qubits necessary to run it. The number of qubits used by Shor’s
algorithm is Θ(logN), where N is the integer being factored; i.e., the number of
qubits grows linearly with the number of bits in N . There has been some effort
to reduce the Θ constant; see, e.g., [27], [4], [24], [3], and [26].

1.1. Contributions of this paper. We present a factoring algorithm that,
assuming standard heuristics, uses a sublinear number of qubits, specifically
(logN)2/3+o(1) qubits, to factor N in time Lq+o(1) where q = 3

√
8/3 ≈ 1.387 and

L = exp((logN)1/3(log logN)2/3).

To put this in perspective: The lowest asymptotic time complexity for known
pre-quantum (0-qubit) factoring algorithms, assuming standard heuristics, is
Lp+o(1) where p =

3
√

92 + 26
√
13/3 ≈ 1.902. This exponent p is from a 1993

algorithm by Coppersmith [12], slightly improving upon the exponent 3
√

64/9 ≈
1.923 from [18].
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The new time complexity is asymptotically worse than Shor’s algorithm,
but the qubit requirements are asymptotically better, so it may be possible to
physically implement the new algorithm sooner than Shor’s algorithm.

The fact that we use fewer qubits than Shor’s algorithm for all sufficiently
large key sizes does not answer the question of whether we use fewer qubits than
Shor’s algorithm to break, e.g., common 2048-bit RSA keys. Optimization of
exact qubit requirements for this algorithm is a challenging open problem.

1.2. Discrete logarithms. The same idea can also be used for multiplicative-
group discrete logarithms. (On the other hand, the idea has no obvious impact
upon the number of qubits needed for elliptic-curve discrete logarithms.)

Specifically, the idea of NFS has been adapted to solving discrete-logarithm
problems in the multiplicative group of any prime field. See [14, 23] for early
work and [2] for the latest optimizations.

The first stage of these algorithms computes discrete logarithms of many
small numbers in the field. The best pre-quantum complexity known for this
stage is Lp+o(1). Here p ≈ 1.902 as before, and the N used in defining L is re-
placed by the number of elements of the field. The idea of our factoring algorithm
adapts straightforwardly to this context, reducing the cost of the first stage to
Lq+o(1), where q ≈ 1.387 as before.

The second stage deduces the discrete logarithm of the target. This stage
takes time Ld+o(1) where d ≈ 1.232. If many discrete-logarithm problems are
posed for the same field then this second stage is the bottleneck (since the first
stage is reused for all targets), and we have not found a way to speed up this stage
using sublinear quantum resources. On the other hand, if there are relatively few
targets then the first stage is the bottleneck.

There is a fast-moving literature (see, e.g., [20]) on pre-quantum techniques
to solve discrete-logarithm problems in the multiplicative group of extension
fields. We expect our approach to combine productively with these techniques,
but we have not attempted to analyze the details or the resulting costs.

1.3. Notes on fault tolerance. Our primary cost metrics are time and the
number of logical qubits. Beware, however, that an improved tradeoff between
these metrics does not guarantee an improved tradeoff between time and the
number of physical qubits.

In what Gottesman calls the “standard version” (see [15]) of the threshold the-
orem for fault-tolerant quantum computing, a logical circuit using Q qubits and
containing T gates is converted into a fault-tolerant circuit using Q(logQT )O(1)

physical qubits. This bound is too weak to say anything useful about our algo-
rithm: for us log T is (logN)1/3+o(1), so all the bound says is that the resulting
fault-tolerant circuit uses (logN)O(1) physical qubits.

Gottesman in [15] introduced a different approach to fault-tolerant quantum
computing, encodingQ logical qubits as just O(Q) physical qubits, without much
overhead in the number of qubit operations. However, Gottesman’s analysis is
focused on the case that T is in QO(1). While extending the analysis to larger T
may yield useful results in terms of quantum overhead, it is important to note
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that Gottesman explicitly disregards the cost of pre-quantum computation (for
decoding error-correcting codes), while we take all computations into account.

To factor in time Lq+o(1) with a sublinear number of physical qubits, it
would be enough to encode Q logical qubits as, e.g., Q1.49+o(1) physical qubits,
with time overhead at most exp(Q0.49+o(1)) and with logical error rate at most
1/ exp(Q0.51+o(1)). We leave this as another challenge.

1.4. Notation. We use the standard abbreviation “Z/M ” for the quotient
Z/MZ.

2 Factoring integers with NFS

The number-field sieve (NFS) is a factoring method introduced by Pollard [21]
and subsequently improved by many authors. NFS produced the Lp+o(1) asymp-
totic speed record mentioned above; it was also used for the latest RSA factor-
ization record, the successful factorization of a 768-bit RSA modulus [17]. Our
Lq+o(1) algorithm, described in Section 3, uses quantum techniques to accelerate
the relation-collection step in NFS.

This section gives a high-level description of NFS. For simplicity we restrict
attention to the version of NFS introduced by Buhler, Lenstra, and Pomerance
in [10], without the subsequent multi-field improvement [12] from Coppersmith
(which does not seem to produce a better exponent in our context).

NFS begins as follows. Assume that N is an odd positive integer. Compute
m = bN1/dc; here d ≥ 2 is an integer parameter optimized below. Assume
that N > 2d

2

; then N < 2md by [10, Proposition 3.2]. Write N in base m as
md + cd−1m

d−1 + · · ·+ c1m+ c0 where each of cd−1, . . . , c1, c0 is between 0 and
m− 1. Define f = Xd + cd−1X

d−1 + · · ·+ c1X + c0 ∈ Z[X], so that f(m) = N .
Check whether f is irreducible; if not then the factorization of f immediately
reveals a nontrivial factorization of N , as noted in [10, Section 3].

Let α be a root of f , and let φ be the ring homomorphism
∑
i aiα

i 7→
∑
i aim

i

from Z[α] to Z/N . Find, as explained below, a nontrivial set S of pairs (a, b)
such that the following two properties hold simultaneously:

“rational side”:
∏

(a,b)∈S

(a+ bm) is a square X2 in Z,

“algebraic side”: f ′(α)2
∏

(a,b)∈S

(a+ bα) is a square β2 in Z[α].

Then compute Y = φ(β). Note that Y 2 = φ(β2) = φ(f ′(α))2
∏
φ(a + bα) =

f ′(m)2
∏
(a+bm) = (f ′(m)X)2 in Z/N since φ(a+bα) = a+bm in Z/N . Check

whether gcd{N,Y − f ′(m)X} is a nontrivial factor of N .
NFS actually produces many sets S at negligible extra cost, leading to many

such potential factorizations. Conjecturally every odd positive integer N is fac-
tored by this procedure into products of prime powers.

2.1. Finding squares on the rational side. Consider first the simpler problem
of finding S such that

∏
(a,b)∈S(a+ bm) is a square. NFS handles this as follows.
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Define an integer as “y-smooth” when it is not divisible by any primes >y.
Here the “smoothness bound” y is a parameter optimized below.

Find many y-smooth integers of the form a+bm, and combine these y-smooth
integers to form a square. More specifically, search through the space

U = {(a, b) : a, b ∈ Z, gcd{a, b} = 1, |a| ≤ u, 0 < b ≤ u} ,

where u is another parameter optimized below. For each (a, b) ∈ U such that
a+ bm is y-smooth, factor a+ bm as (−1)e0pe11 · · · p

eB
B where p1 < · · · < pB are

the primes ≤y, and compute the exponent vector

e(a, b) = (e0 mod 2, . . . , eB mod 2) ∈ FB+1
2 .

If there are at least B + 2 such pairs (ai, bi) then the vectors e(ai, bi) must
have a nontrivial linear dependency: linear algebra reveals bits xi ∈ F2, not
all zero, such that

∑
i xie(ai, bi) = 0 in FB+1

2 , which directly yields a square∏
i:xi 6=0(ai + bim).

2.2. Finding squares on the algebraic side. The search for S such that
f ′(α)2

∏
(a,b)∈S(a+ bα) is a square is handled similarly.

Define g(a, b) = (−b)df(−a/b) = ad−cd−1ad−1b+· · ·+c1a(−b)d−1+c0(−b)d.
Search for pairs (a, b) in the same space U such that g(a, b) is y-smooth.

There is a standard definition of an exponent vector e′(a, b) ∈ FB
′+B′′

2 for any
such pair (a, b). This vector has the following properties: if f ′(α)2

∏
(a,b)∈S(a+bα)

is a square then
∑

(a,b)∈S e
′(a, b) = 0; conversely, if

∑
(a,b)∈S e

′(a, b) = 0 then
f ′(α)2

∏
(a,b)∈S(a + bα) is a square, assuming standard heuristics; the vector

length B′ + B′′, like B + 1, is approximately y/log y; and e′ is not difficult to
compute. See [10, Sections 5 and 8] for the detailed definition of e′, involving
ideals and quadratic characters of Z[α]; the point of g(a, b) is that N (a+ bα) =
g(a, b), where N is the norm map from Z[α] to Z.

2.3. Overall algorithm. Algorithm 1 combines all of these steps. It searches
through U for pairs (a, b) such that both a + bm and g(a, b) are y-smooth,
i.e., such that (a + bm)g(a, b) is y-smooth. If there are enough such pairs (a, b)
then linear algebra finds a nontrivial linear dependency between the vectors
(e(a, b), e′(a, b)) ∈ FB+1+B′+B′′

2 , i.e., a set S of pairs (a, b) such that both∏
(a,b)∈S(a+ bm) and f ′(α)2

∏
(a,b)∈S(a+ bα) are squares.

By generating some further pairs (a, b) one obtains more linear dependencies,
obtaining further sets S as noted above. For simplicity we omit this refinement
from the algorithm statement.

3 Accelerating NFS using quantum search

The main loop in Algorithm 1 searches for y-smooth integers (a + bm)g(a, b),
where (a, b) ranges through a set U of size u2+o(1). If the number of y-smooth
integers (a+bm)g(a, b) is at least B+2+B′+B′′ then the algorithm is guaranteed
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Algorithm 1 Conventional NFS

Input: Odd positive integer N and parameters d, y, u with N > 2d
2

.
Output: A divisor of N (conjecturally often nontrivial when N is not a prime power).
1: Compute m = bN1/dc.
2: Write N in base m as md + cd−1m

d−1 + · · ·+ c1m+ c0.
3: Define f = Xd + cd−1X

d−1 + · · ·+ c1X + c0 ∈ Z[X].
4: If f has a proper factor h in Z[X], return h(m).
5: Define g(a, b) = ad − cd−1a

d−1b+ · · ·+ c1a(−b)d−1 + c0(−b)d.
6: for each (a, b) ∈ Z× Z with gcd{a, b} = 1, |a| ≤ u, 0 < b ≤ u do
7: if a+ bm and g(a, b) are y-smooth then
8: Compute the vector (e(a, b), e′(a, b)) ∈ FB+1+B′+B′′

2 .
9: end if
10: end for
11: If these vectors are linearly independent, return 1.
12: Find a nonempty subset S of {(a, b)} where the corresponding vectors have sum 0.
13: Compute X =

√∏
(a,b)∈S(a+ bm) and β =

√
f ′(α)2

∏
(a,b)∈S(a+ αb).

14: return gcd{N,φ(β)− f ′(m)X}.

to find a linear dependency, and conjecturally has a good chance of factoring N .
This cutoff B + 2 + B′ + B′′ is in y1+o(1), and standard parameter choices are
tuned so that there are in fact this many y-smooth values.

Algorithm 2 uses Grover’s algorithm for the same search. Other steps of
the algorithm remain unchanged. In this section we analyze the impact of this
speedup upon the overall complexity of NFS.

The main appeal of this algorithm, compared to Shor’s algorithm, is as fol-
lows. When NFS parameters are optimized, the number of bits in (a+bm)g(a, b)
is at most (logN)2/3+o(1). With careful attention to reversible algorithm design
(see Sections 4, 5, and 6) we fit the entire algorithm into (logN)2/3+o(1) qubits.
This is asymptotically sublinear in the length of N .

Note that our optimization here is for time. We would not be surprised if
allowing a somewhat larger exponent of L in the time allows a constant-factor
improvement in the number of qubits, but establishing this requires solving the
challenging qubit-optimization problem mentioned in Section 1.

3.1. Complexity analysis. The following analysis shows, under the same
heuristics used for previous NFS analyses, that the optimal time exponent q
for this algorithm is 3

√
8/3. As in the conventional NFS analysis by Buhler,

Lenstra, and Pomerance [10], we choose

• y ∈ Lβ+o(1),
• u ∈ Lε+o(1), and
• d ∈ (δ + o(1))(logN)1/3(log logN)−1/3,

where β, ε, δ are positive real numbers and L = exp((logN)1/3(log logN)2/3).
Conventional NFS takes ε = β, but we end up with ε larger than β; specifically,
our optimization will produce β = 3

√
1/3, ε = 3

√
9/8, and δ = 3

√
8/3.
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Algorithm 2 New: NFS accelerated using quantum search

Input: Odd positive integer N and parameters d, y, u with N > 2d
2

.
Output: A divisor of N (conjecturally often nontrivial when N is not a prime power).
1: Compute m = bN1/dc.
2: Write N in base m as md + cd−1m

d−1 + · · ·+ c1m+ c0.
3: Define f = Xd + cd−1X

d−1 + · · ·+ c1X + c0 ∈ Z[X].
4: If f has a proper factor h in Z[X], return h(m).
5: Define g(a, b) = ad − cd−1a

d−1b+ · · ·+ c1a(−b)d−1 + c0(−b)d.
6: Use Grover’s algorithm to search for all (a, b) ∈ Z× Z with gcd{a, b} = 1, |a| ≤ u,

0 < b ≤ u such that a+ bm and g(a, b) are y-smooth.
7: for each such (a, b) do
8: Compute the vector (e(a, b), e′(a, b)) ∈ FB+1+B′+B′′

2 .
9: end for
10: If these vectors are linearly independent, return 1.
11: Find a nonempty subset S of {(a, b)} where the corresponding vectors have sum 0.
12: Compute X =

√∏
(a,b)∈S(a+ bm) and β =

√
f ′(α)2

∏
(a,b)∈S(a+ αb).

13: return gcd{N,φ(β)− f ′(m)X}.

The quantities a+ bm and g(a, b) that we wish to be smooth are bounded in
absolute value by, respectively, u + uN1/d ≤ 2uN1/d and (d + 1)N1/dud. Their
product is thus bounded by x = 2(d+ 1)N2/dud+1. Note that

log x = log(2(d+ 1)) +
2

d
logN + (d+ 1) log u

∈
(
2

δ
+ δε+ o(1)

)
(logN)2/3(log logN)1/3.

A uniform random integer in [1, x] has y-smoothness probability v−v(1+o(1)),
where

v =
log x

log y
∈ 1

β

(
2

δ
+ δε+ o(1)

)
(logN)1/3(log logN)−1/3.

We have log v ∈ (1/3 + o(1)) log logN so this smoothness probability is

exp(−(1+o(1))v log v) = exp

(
− 1

3β

(
2

δ
+ δε+ o(1)

)
(logN)1/3(log logN)2/3

)
,

i.e., L−(2/δ+δε+o(1))/3β . We heuristically assume that the same asymptotic holds
for the smoothness probability of the products (a+ bm)g(a, b).

The search space has size u2+o(1) = L2ε+o(1) and needs to contain y1+o(1) =
Lβ+o(1) smooth products. We thus need 2ε−(2/δ+δε)/3β ≥ β for the algorithm
to work as N →∞; i.e., we need 2 > δ/3β and ε ≥ (β + 2/3βδ)/(2− δ/3β).

There is no point in taking ε larger than this cutoff, so we assume from now
on that ε = (β+2/3βδ)/(2− δ/3β). (In this equality case we also need to take a
large enough o(1) for u to ensure enough smooth products, but this affects only
the o(1) in the final complexity.) The smoothness probability is now L−2ε+β+o(1).
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The conventional pre-quantum complexity analysis continues by saying that
searching L2ε+o(1) integers takes time L2ε+o(1). We instead search with Grover’s
algorithm. Specifically, we partition the search space U in any systematic fashion
into Lβ+o(1) parts, each of size L2ε−β+o(1), each (with overwhelming probability)
producing Lo(1) smooth values. Grover’s algorithm takes time Lε−β/2+o(1) to
search each part, for total time just Lε+β/2+o(1).

Linear algebra takes time L2β+o(1). The pre-quantum-search exponent 2ε
is balanced against 2β when ε = β, i.e., β2 − βδ/3 − 2/3δ = 0, forcing β =
(δ+

√
δ2 + 24/δ)/6 since δ−

√
δ2 − 24/δ is negative. It is now a simple calculus

exercise to see that taking δ = 3
√
3 produces the minimum β = 3

√
8/9, satisfying

the requirement 2 > δ/3β, and thus total time L
3
√

64/9+o(1), roughly L1.923.
Our quantum-search exponent ε+β/2 is balanced against 2β when ε = 3β/2,

i.e., β2−βδ/4−1/3δ = 0, forcing β = (δ+
√
δ2 + 64/3δ)/8. This time the calculus

exercise produces δ = 3
√

8/3 and the minimum β = 3
√

1/3, again satisfying
2 > δ/3β, and thus total time L

3
√

8/3+o(1), roughly L1.387.
Note that a more realistic cost model for two-dimensional NFS circuits was

used in [7], assigning a higher cost L2.5β+o(1) to linear algebra and ending up
with exponent approximately 1.976 for conventional NFS. An analogous analysis
of our algorithm ends up with exponent approximately 1.456.

4 A quantum relation search

This section presents an algorithm to find a λ-bit string s such that F (s) is
y-smooth. If many such strings exist then the algorithm makes a random choice;
if no such string exists then the algorithm fails.

We assume that F (s) is an integer between −x and x for each λ-bit string
s. We also assume that log y ∈ Θ(λ); that log x ∈ (log y)2+o(1); and that the
function F is computable by a reversible (log x)1+o(1)-bit circuit in time 2o(λ).

Our time budget for the search algorithm is 2(0.5+o(1))λ. Our qubit budget is
(log x)1+o(1) = λ2+o(1).

4.1. ECM as a subroutine. The usual pre-quantum approach is as follows.
Lenstra’s elliptic-curve method (ECM) [19], assuming standard heuristics and
again assuming log x ∈ (log y)2+o(1), takes time exp((log y)1/2+o(1)) and space
O(log x) to find all primes ≤y dividing a nonzero input integer in [−x, x]. By
trial division, within the same space, one sees whether the integer is y-smooth.

Generic techniques due to Bennett [5] convert any algorithm taking time T
and space S into a reversible algorithm taking time T 1+ε and space O(S log T ).
For us T 1+ε ∈ yo(1) = 2o(λ) and S log T ∈ (log x)(log y)1/2+o(1) = (log x)5/4+o(1).
Applying Grover’s algorithm then takes time 2(0.5+o(1))λ using (log x)5/4+o(1)

qubits. This is beyond our budget. (The NFS application takes time Lq+o(1)
using (logN)5/6+o(1) qubits, which meets our goal of sublinearity but is not as
strong as we would like.)



A low-resource quantum factoring algorithm 9

4.2. Shor as a subroutine. To do better we replace the ECM subroutine with
Shor’s factoring method. We emphasize that here Shor is being applied only to
integers between −x and x; these are asymptotically much smaller than N .

Recall that, to find y-smooth integers F (s), Grover’s search algorithm uses
a quantum circuit UF,y such that

• UF,y|s〉 = −|s〉 if F (s) is y-smooth.
• UF,y|s〉 = |s〉 if F (s) is not y-smooth.

This circuit does not need to be derived from a pre-quantum circuit; it can carry
out quantum computations, such as Shor’s algorithm. The main challenge is to
minimize the number of qubits used to compute UF,y, while staying within a
2o(λ) time bound. Grover’s algorithm then takes time 2(0.5+o(1))λ.

Section 5 explains how to apply Shor’s algorithm to a superposition of odd
positive integers, factoring with significant probability each integer that is not a
power of a prime. Section 6 explains how to use Shor’s algorithm repeatedly to
recognize y-smooth integers.

4.3. Application to NFS. For our NFS application in Section 3, we choose
an even integer λ so that 2λ ∈ L2ε−β+o(1). We map λ-bit strings s to pairs
(a, b) in a straightforward way, choosing a range of 2λ/2 consecutive integers a
within [−u, u] and a range of 2λ/2 consecutive integers b within [1, u]. We define
x and y as in the previous section, and we define F (s) as (a + bm)g(a, b). The
assumptions of this section are satisfied.

The algorithm in this section finds a, b in these ranges such that (a+bm)g(a, b)
is y-smooth. The algorithm takes time 2(0.5+o(1))λ = Lε−β/2+o(1) and works with
(log x)1+o(1) = (logN)2/3+o(1) qubits as desired. Repeating the same algorithm
Lo(1) times finds all such pairs (a, b) with overwhelming probability. (This is
overkill: Section 3 needs enough pairs to find a nontrivial linear dependency but
does not need to find all pairs.) Repeating for Lβ+o(1) ranges covers all pairs
(a, b) in the set U defined in the previous section. That set omits pairs (a, b)
with gcd{a, b} > 1; we simply discard such pairs.

5 Shor’s factorization method in superposition

The conventional view is that Shor’s algorithm is applied to one odd positive in-
teger M ∈ [1, x], obtaining a (hopefully nontrivial) divisor M1 of M . We instead
factor a superposition of inputs M , obtaining a superposition of divisors M1 of
M . This changes costs: in particular, Shor’s original algorithm uses (log x)2+o(1)
qubits when it is run in superposition.

This section reviews the relevant features of Shor’s algorithm, and explains
a variant of the algorithm that fits into (log x)1+o(1) qubits even when run in
superposition. This section also explains a further variant (applicable to both
the conventional case and the superposition case) that often finds more factors
at the same cost.

5.1. Review of Shor’s algorithm. Shor starts with some a coprime toM and
precomputes a2 modM , a4 modM , a8 modM , etc., along with their inverses.
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Shor then carries out a quantum computation, ending with a measurement,
yielding an approximation z/2m of a fraction of the form k/r, where r is the
order of a modulo M .

Ifm is chosen large enough, at least twice the number of bits ofM , then, with
probability Ω(1/ log logM), the largest denominator below M in the continued
fraction of z/2m will be exactly r. “Probability” here implicitly assumes that the
random variable a is uniformly distributed in (Z/M)∗.

One can switch to more reliable methods of finding r, improving the prob-
ability to Ω(1) at constant overhead, as discussed in, e.g., [25] and [11]. For us
Shor’s original method is adequate: the log log factor is subsumed by (log x)o(1).

Usually r is even. Shor then finishes by computing M1 = gcd
{
M,ar/2 − 1

}
.

5.2. Shor in superposition without many qubits. Using the same method
to factor a superposition of inputs M means that we also need to execute the
selection of a, the precomputation of a2 modM etc., the continued-fraction com-
putation, and the computation of gcd

{
M,ar/2 − 1

}
in superposition. We need to

be careful here to fit these computations into our space budget, just (log x)1+o(1)
qubits.

As an example of what can go wrong, consider the seemingly trivial first
step in typical statements of Shor’s algorithm, namely generating an integer a
uniformly at random between 1 and M − 1 (assuming M > 1). The textbook
implementation of this step is rejection sampling: generate b = dlog2 xe random
bits; interpret those bits as an integer R between 0 and 2b − 1; restart if R ≥
(M − 1)

⌊
2b/(M − 1)

⌋
; compute a = 1 + (R modM − 1). The restart happens

with probability <1/2, so on average <2 values of R are required.
The obvious way to handle a superposition of M is to choose in advance how

many R’s to generate, and to choose this number to be large, so that failures
cannot be expected to occur. In the context of NFS, generating (logN)1/3+o(1)

values of R is adequate, for a total of (logN)1+o(1) random bits. This might not
sound like a problem, but storing this number of qubits is beyond our budget.

We instead generate one value of R and define a = 1 + (R modM − 1),
skipping the rejection step. This cannot reduce the success probability of Shor’s
algorithm by more than a factor 2. We could bring this factor arbitrarily close
to 1 by generating a few more bits in R, but a factor 2 is already not a problem
for us: it is subsumed by (log x)o(1) at the level of detail of our analysis.

Furthermore, there is no reason for us to store R in superposition: we use
one R for all choices of M , so we do not need to spend qubits storing it. We
do vary R across the multiple Shor calls explained in Section 6, so that each M
is overwhelmingly likely to be factored; i.e., the function of M defined by our
choice of the sequence of R is overwhelmingly likely to equal the desired function
of M , recognizing whether or not M is y-smooth.

There is a more serious problem with the precomputation in Shor’s algo-
rithm: Shor uses a quadratic number, (log x)2+o(1), of bits to store the sequence
a2 modM , a4 modM , etc. This precomputation is important for Shor’s method
of computing ae modM with e in superposition: namely, Shor uses the ith bit of
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e to control a multiplication by ai modM and then to control a multiplication
by 1/ai modM (used to erase the previous temporary value).

We use, instead of Shor’s strategy, a conventional pre-quantum “square and
multiply” exponentiation algorithm taking time (log x)O(1) and space O(log x).
Bennett’s generic conversion then produces a reversible algorithm taking time
(log x)O(1) and space O(log x log log x), i.e., space (log x)1+o(1) as desired.

Finally, standard pre-quantum algorithms take time (log x)O(1) to compute
continued fractions, m-bit powers modulo M , gcd, and inverses mod M , all in
space O(log x). Again generic conversion produces reversible algorithms for the
same computations taking time (log x)O(1) and space O(log x log log x).

5.3. Further factorization for free. We point out an easy tweak to Shor’s
algorithm that, starting from r, often finds more factors of an odd integer M
in the same time (and space), and that is also much more reliable at separating
any particular prime divisors ofM from each other. (See also [16] for some other
post-r tweaks that do not provide the same reliability but that sometimes help.)

Understanding this tweak requires a review of the probability that r produces
a nontrivial divisor M1 = gcd

{
M,ar/2 − 1

}
of M . Assume that M has prime

factorization pe11 p
e2
2 · · · p

ef
f , and write (pj − 1)p

ej−1
j as 2tjuj where uj is odd.

By assumption M is odd so each tj ≥ 1. The group (Z/M)∗ is isomorphic
to the product of the groups Z/2t1 ,Z/2t2 , . . . ,Z/2tf ,Z/u1, . . . ,Z/uf ; choosing
a uniform random element a ∈ (Z/M)∗ is equivalent to choosing independent
uniform random elements x1, x2, . . . , xf , y1, y2, . . . , yf of these groups.

Write the order of xj as 2cj , and write the order of yj as dj . The order r
of a is then 2max{c1,...,cf}d, where d is an odd integer, namely lcm{d1, . . . , df}.
Note that cj is tj with probability 1/2; tj − 1 with probability 1/4; and so on
through 1 and 0, each with probability 1/2tj . For any particular value of c1, the
chance that c2 = c1 is at most 1/2, and similarly for c3 etc., so the chance of all
of c1, . . . , cf being identical is at most 1/2f−1.

Assume from now on that c1, . . . , cf are not identical. Thenmax{c1, . . . , cf} >
0 so r is even. By construction ar = 1 in (Z/M)∗, so ar = 1 in (Z/pejj )∗, so
ar/2 = ±1 in (Z/pejj )∗. The case +1 occurs exactly when (r/2)xj = 0 in Z/2tj ,
i.e., when cj < max{c1, . . . , cf}; so M1 = gcd

{
M,ar/2 − 1

}
is divisible by pj

exactly when cj < max{c1, . . . , cf}.
In other words, computing M1 splits the prime divisors pj of M into two

nonempty classes: those for which cj < max{c1, . . . , cf}, and those for which
cj = max{c1, . . . , cf}. Hence M is nontrivially factored into M1 and M/M1.

Our tweak (inspired by “strong probable prime” tests [1]) is to compute

gcd{M,ar/2 + 1}, gcd{M,ar/4 + 1}, gcd{M,ar/8 + 1}, . . . ,
gcd
{
M,ad + 1

}
, gcd

{
M,ad − 1

}
.

These divisors of M have product exactly M and fit into essentially the same
space as M . This splits the prime divisors into more classes, namely those for
which cj = max{c1, . . . , cf}, those for which cj = max{c1, . . . , cf} − 1, those for
which cj = max{c1, . . . , cf} − 2, and so on, ending with those for which cj = 0.
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Shor’s algorithm is unlikely to split pi from pj when ti and tj are significantly
below max{t1, . . . , tf}. For example, if f = 3 and (t1, t2, t3) = (20, 3, 2), then c1
is almost always larger than c2 and c3, so Shor’s algorithm will almost always
factor M into pe11 and pe22 p

e3
3 . For our tweak, each pair (i, j) with i 6= j has

chance at least 50% of being split, since ci = cj with probability at most 50%.
We also briefly mention a different way to avoid biases towards particular

primes, namely to change the group used in Shor’s algorithm from (Z/N)∗ to a
randomly selected elliptic-curve group E(Z/N). This is analogous to the change
in [19] from the p− 1 factorization method to ECM.

6 Recognizing smooth integers

We present two constructions of fast quantum circuits UF,y usable in Section 4.
Recall that the job of UF,y, given a superposition of inputs s, is to recognize for
each s whether F (s) ∈ {−x, . . . , x} is y-smooth.

6.1. Parallel construction. Starting with M = F (s), declare non-smoothness
if M = 0. Otherwise replace M by its absolute value, and remove all powers of
2 from M . From now on, M is an odd positive integer.

Use the tweaked version of Shor’s algorithm presented in Section 5.3 to
obtain a factorization of M into various divisors. Repeat this t times, where
t ∈ (log x)o(1) is a parameter chosen below, obtaining t factorizations ofM . This
consumes (log x)1+o(1) qubits.

Use the algorithm of [8] to factor all the divisors, and thus also M , into
coprimes. Use the algorithm of [6] (or, alternatively, [9]) to write each of the
coprimes as a maximal power of a root. Note that if all the roots are ≤y then
M has been proven to be y-smooth; save one bit indicating whether this is the
case. These algorithms take time and space (log x)1+o(1), so reversible versions
take time (log x)1+ε+o(1) and space (log x)1+o(1).

If M is in fact y-smooth but this algorithm fails to prove it, then one of the
roots is >y, and thus contains two distinct prime divisors p, q of M . This means
that all t factorizations of M failed to split p from q.

There are at most log2M ≤ log2 x prime divisors of M , and thus fewer than
(log2 x)

2 pairs of distinct prime divisors. Fix a pair (p, q). Recall that each run
of Shor’s algorithm has probability Ω(1/ log log x) of finding r. For the tweaked
version, given that r is found, there is conditional probability ≥ 1/2 of splitting
p from q, and thus probability Ω(1/ log log x) of splitting p from q. The prob-
ability of a failed split after t repetitions is thus 1/ exp(Ω(t/ log log x)). Now
let (p, q) vary: the total probability is below (log2 x)

2/ exp(Ω(t/ log log x)). We
choose t just large enough for this probability bound to be below 1/4; then
t ∈ (log log x)2+o(1), so t ∈ (log x)o(1) as claimed above.

We now uncompute everything except for the qubit indicating whether M
was proven y-smooth. We then reuse the same temporary storage to repeat the
entire procedure T times, accumulating T independent proof qubits. Together
these qubits reliably indicate whether M is y-smooth; the failure probability is
at most 1/4T . We take T as, e.g., (logN)1/2+o(1), consuming only (logN)1/2+o(1)
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qubits and reducing the failure probability to 1/ exp((logN)1/2+o(1)). This fail-
ure probability can safely be ignored, since all our computations take time at
most exp((logN)1/3+o(1)).

6.2. Serial construction. As an alternative approach, we apply Shor’s algo-
rithm serially. First we use Shor’s algorithm to split M into two factors, then
we use Shor’s algorithm to split the largest factor that remains, etc.

Like the parallel approach, this serial approach runs Shor’s algorithm on a
superposition of odd positive integersM , as explained in Section 5, after reducing
to the odd case. Unlike the parallel approach, this serial approach does not need
the tweak from Section 5.3: it is enough here to have a significant probability
of splitting M whenever M is not a power of a prime. This serial approach also
does not need factorization into coprimes as a subroutine.

As in the parallel approach, factoring M into factors ≤y proves that M is y-
smooth; and it is sufficient to achieve, e.g., probability 3/4 of finding a proof when
a proof exists, since an outer loop can then amplify the proof-finding probability.
An advantage of the serial approach is that this outer loop is unnecessary: we
simply repeat Shor’s algorithm enough times (see below) that every y-smooth
input integer will, with overwhelming probability, be factored into factors ≤y.
The parallel approach could not afford the qubits for so many repetitions.

This serial approach requires care at three points. First, Shor’s algorithm—as
we have stated it—has no chance of factoring powers of primes. If the largest
factor that remains is (e.g.) p2, where p is prime, then Shor’s algorithm will
repeatedly try and fail to factor p2. Postprocessing the list of factors to find
powers, as in the parallel construction, will split p2, but if the list also contains
a product qr > y then the overall algorithm will not recognize M as smooth.

To avoid this case we incorporate power detection into each run of Shor’s al-
gorithm. As noted above, there are pre-quantum power-detection algorithms that
take time and space (log x)1+o(1), so reversible versions take time (log x)1+ε+o(1)
and space (log x)1+o(1).

(Whether this case needs to be avoided is a different question. It seems un-
likely that prime powers larger than y are common, and it seems unlikely that
throwing away smooth numbers with such factors noticeably affects the perfor-
mance of NFS. But we prefer to have subroutines that always work, so that such
questions do not need to be asked.)

Second, we need to ensure that we have run Shor’s algorithm enough times. A
y-smooth positive integer M ≤ x will have many factors: at least (logM)/ log y,
and perhaps as many as log2 x. A product ≤y does not need to be factored
further, but Shor’s algorithm will need to succeed many times before the largest
factor is so small.

We maintain a list of integers >1 whose product is M . Initially this list
contains simply M (unless M = 1, in which case the list is empty). An iteration
of the algorithm uses power detection, followed by Shor’s algorithm, to try to
split the largest element of the list into ≥2 factors, each factor being >1. We
define the iteration to be successful if either (1) this splitting succeeds—this
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happens fewer than log2 x times, since each splitting increases the list size—or
(2) the largest element of the list is prime.

Each iteration succeeds with probability Ω(1/ log log x). Specifically: If the
largest element of the list is prime, then the iteration succeeds by definition.
If the largest element of the list is a square, cube, etc., then power detection
succeeds. Otherwise Shor’s algorithm succeeds with probability Ω(1/ log log x).

We run t iterations. We choose t to guarantee that, except with probabil-
ity O(1/x), there are at least log2 x successful iterations—which cannot all be
splittings, so the largest element of the list must be prime, and then this largest
element is ≤y if and only if M is y-smooth. Concretely, we choose t with a
Θ(log log x) factor accounting for the success probability of each iteration, a
log2 x factor for the number of successful iterations desired, and a further con-
stant factor to be able to apply a Chernoff-type bound on the overall failure
probability; see Appendix A. Note that t ∈ (log x)1+o(1).

Third, we need to record enough information for each iteration to be re-
versible, and we need to do this while still fitting into (log x)1+o(1) qubits.

Along with the list of factors of M , we keep a journal of actions taken by the
iterations. Each iteration produces exactly one journal entry. An iteration that
splits the ith list entry into two factors, replacing it by one factor at position i in
the list and one factor added to the end of the list, records a journal entry (2, i).
More generally, an iteration that splits the ith list entry into k ≥ 2 factors (e.g.,
splitting p3 into p, p, p) records a journal entry (k, i). Reversing this iteration
means multiplying the last k − 1 entries of the list into the ith entry of the list,
removing those k − 1 entries, and removing the journal entry. An iteration that
does not split the list records a journal entry (0, 0).

The list always has at most log2 x entries, so recording a journal entry takes
O(log log x) bits. The total number of journal entries is t ∈ (log x)1+o(1), so the
total journal size is (log x)1+o(1).
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A Number of iterations for the serial construction

This appendix justifies the claim in Section 6.2 that choosing a sufficiently large
t ∈ O(log x log log x) produces at least log2 x successful iterations except with
probability O(1/x).

We abstract and generalize the situation in Section 6.2 as follows. The algo-
rithm state evolves through t iterations: from state S0, to state S1 = A1(S0),
to state S2 = A2(S1), and so on through state St = At(St−1). We are given
a positive real number p and a guarantee that each iteration is successful with
probability at least p. Our objective is to put an upper bound on the chance
that there are fewer than s successful iterations.

More formally: Fix a finite set X. (The algorithm state at each moment will
be an element of this set.) Also fix a function f : X → Z. (For each algorithm
state S, the value f(S) is the total number of successes that occurred as part of
producing this algorithm state; we augment the algorithm state if necessary to
count the number of successes.) Finally, fix a positive real number p.

Let A be a random function from X to X. (This will be what the algorithm
does in one iteration.) Note that “random” does not mean “uniform random”;
we are not assuming that A is uniformly distributed over the space of functions
from X to X.

Define A as admissible if the following two conditions are both satisfied:

– f(A(S))− f(S) ∈ {0, 1} for each S ∈ X.
– q(A,S) ≥ p for each S ∈ X, where q(A,S) by definition is the probability

that f(A(S))− f(S) = 1.

(In other words, no matter what the starting state S is, an A iteration starting
from S has probability at least p of being successful.)

Let t be a positive integer. (This is the number of iterations in the algorithm.)
Let A1, A2, . . . , At be independent admissible random functions from X to X.
(Ai is what the algorithm does in the ith iteration; concretely, these functions
are independent if the coin flips used in the ith iteration of the algorithm are
independent of the coin flips used in the jth iteration whenever i 6= j.)

Let S0 be a random element of X. (This is the initial algorithm state.)
Note that again we are not assuming a uniform distribution. Recursively de-
fine Si = Ai(Si−1) for each i ∈ {1, 2, . . . , t}. (Si is the state of the algorithm
after i iterations.)
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Proposition 1. Let s be a positive real number. Assume that tp ≥ s. Then
f(St)− f(S0) ≤ s with probability at most exp(−(1− s/tp)2tp/2).

In other words, except with probability at most exp(−(1−s/tp)2tp/2), there
are more than s successes in t iterations.

In the application in Section 6.2, we take p ∈ Ω(1/ log log x) to match the
analysis of Shor’s algorithm; we take s = log2 x; and we compute t as an integer
between, say, (4 log2 x)/p and (4 log2 x)/p+1.5. (Taking a gap noticeably larger
than 1 means that we can compute t from a low-precision approximation to
(4 log2 x)/p.) Then t ∈ O(log x log log x). The condition tp ≥ s in the proposition
is satisfied, so there are more than log2 x successes in t iterations, except with
probability at most exp(−(1−s/tp)2tp/2). The quantity tp is at least 4 log2 x, and
the quantity 1−s/tp is at least 3/4, so (1−s/tp)2tp/2 ≥ (9/8) log2 x > 1.6 log x,
so the probability is below 1/x1.6.

Proof. Chernoff’s bound says that if v1, v2, . . . , vt are independent random ele-
ments of {0, 1}, with probabilities µ1, µ2, . . . , µt respectively of being 1 and with
µ = µ1 + µ2 + · · · + µt, then the probability that v1 + v2 + · · · + vt ≤ δµ is at
most exp(−(1− δ)2µ/2) for 0 < δ ≤ 1.

It is tempting at this point to define vi = f(Si)− f(Si−1), but then there is
no reason for v1, v2, . . . , vt to be independent.

Instead flip independent coins c1, c2, . . . , ct, where ci = 1 with probability
p/q(Ai, Si−1) and ci = 0 otherwise. Define vi = ci(f(Si)− f(Si−1)).

By assumption Si = Ai(Si−1), so f(Si)− f(Si−1) = f(Ai(Si−1))− f(Si−1).
This difference is 1 with probability exactly q(Ai, Si−1), and 0 otherwise. Hence
vi is 1 with probability exactly p, and 0 otherwise. This is also true conditioned
upon v1, v2, . . . , vi−1, since Ai and ci are independent of v1, v2, . . . , vi−1; hence
v1, v2, . . . , vt are independent.

Now substitute µ1 = µ2 = · · · = µt = p, µ = tp, and δ = s/tp in Chernoff’s
bound: we have 0 < δ ≤ 1 (since 0 < s ≤ tp), so the probability that v1 + v2 +
· · ·+ vt ≤ s is at most exp(−(1− s/tp)2tp/2).

Note that vi ≤ f(Si)− f(Si−1), so v1 + v2 + · · ·+ vt ≤ f(St)− f(S0). Hence
the probability that f(St) − f(S0) ≤ s is at most exp(−(1 − s/tp)2tp/2) as
claimed. ut


