
Security of Blind Signatures Revisited

Dominique Schröder?1 and Dominique Unruh2

1 University of Maryland, USA
2 University of Tartu, Estonia

Abstract. We revisit the definition of unforgeability of blind signatures as proposed by Pointcheval and Stern
(Journal of Cryptology 2000). Surprisingly, we show that this established definition falls short in two ways of
what one would intuitively expect from a secure blind signature scheme: It is not excluded that an adversary
submits the same message m twice for signing, and then produces a signature for m′ 6= m. The reason is that
the forger only succeeds if all messages are distinct. Moreover, it is not excluded that an adversary performs
k signing queries and produces signatures on k + 1 messages as long as each of these signatures does not pass
verification with probability 1.

Finally, we proposed a new definition, honest-user unforgeability, that covers these attacks. We give a simple

and efficient transformation that transforms any unforgeable blind signature scheme (with deterministic

verification) into an honest-user unforgeable one.

Table of Contents

1 Introduction . 2
2 Blind signatures 5
3 Security of blind signatures 5
4 Honest-user unforgeability 7

4.1 Defining honest-user
unforgeability 7

4.2 Unforgeability does not imply
honest-user unforgeability 8

4.3 Strong honest-user unforgeability 10

5 Probabilistic verification 11

5.1 Adapting the definition 15

6 S + U-unforgeability 16

7 From unforgeability to honest-user
unforgeability . 18

? Supported in part by a DAAD postdoctoral fellowship.

1 Introduction

Blind signature schemes have been suggested by Chaum [Cha83, Cha84]. Roughly speaking, this
widely-studied primitive allows a signer to interactively issue signatures for a user such that the
signer learns nothing about the message being signed (blindness) while the user cannot compute
any additional signature without the help of the signer (unforgeability). Typical applications of
blind signatures include e-cash, where a bank signs coins withdrawn by users, and e-voting, where
an authority signs public keys that voters later use to cast their votes. Another application of
blind signature schemes are anonymous credentials, where the issuing authority blindly signs a
key [Bra00, CG08]. Very recently, Microsoft introduced a new technology called U-Prove to “overcome
the long standing dilema between identity assurance and privacy” [Bjo10, UP11]. Their technology
uses as a central building block blind signatures [Bjo10, BP11].

There are two main security requirements for blind signature schemes. First, the scheme should
be blind. That is, a malicious signer should not be able to link the final signatures output by the
user to the individual interactions with the user. In other words, the signer cannot tell which session
of the signing protocol corresponds to which message. Second, the scheme should be unforgeable.
That is, an adversary, even if he can impersonate the user and interact freely with the signer, should
not be able to produce signatures on messages except for those that the signer signed. It is the
notion of unforgeability we are concerned with in this paper.

A formal definition of the unforgeability of blind signatures schemes (or generally interactive
signature schemes) has been proposed by [PS00]. Roughly, their definition states that an adversary
that interacts k times with the adversary cannot produce valid signatures on more than k different
messages.3 At this point, one may wonder why the definition of unforgeability does not just require
that the adversary cannot output a signature for m unless there was an interaction with the signer in
which m was queried. The reason is that in general, it is not well-defined which message is queried in
a given interaction. The message is not sent in clear, and it might be even information-theoretically
impossible to tell from an interaction which message is being signed.4 Thus, in order to be able to
tell which message is signed in a given interaction, we would have to add some kind of extractability
to the security definition; this would be an additional requirement on the protocols and make them
more complex.

Insecurity of unforgeable blind signatures schemes. Unfortunately, however, the definition of un-
forgeability might not cover all cases in which one would intuitively expect unforgeability to be
sufficient. We illustrate this by the following toy protocol:

Consider the setting of an online video store such as Netflix. In our setting, we assume that
the store is implemented via two entities, the content provider and the reseller. We assume that
the contract between client and reseller is a flatrate that allows the client to download a fixed
number of movies. For privacy reasons, we do not wish the reseller to know which movies the client
actually watches. On the other hand, we wish to ensure that underage clients can only download

3 There is also a variant called strong unforgeability which requires that the adversary cannot produce more than k
different message/signature pairs. In particular, this means that the adversary wins even if he produces additional
signatures for an already signed message. In this work, we focus on the weaker notion.

4 This might be the case when signing a message m is implemented by signing an information-theoretically hiding
commitment on m.

!"#"$$"!

%&!"'(&$
)*'(!*$

)*'("'(
%!*+,-"!

)$,"'(

.

/$,'-012 3

! 4*+,"5.

Fig. 1. Setting of an online
video store.

movies suitable for their age. To achieve this, we introduce another
(trusted) entity, the parental control server whose job it is to work
as a proxy between reseller and client and to ensure that the client
only obtains appropriate movies. Then, to download a movie X, the
client first sends X to the parental control server. If X is appropriate
for the client, the parental control server then runs a blind signature
scheme with the reseller to obtain a signature σ on X (the blind
signature is used to protect the privacy of the client, there is no
need for the reseller to know which movies the client watches). Then
σ is sent to the client, and the client uses σ to download X from the
content provider. (We assume that all communication is suitably
authenticated.)

At a first glance, it seems that this protocol is secure. In partic-
ular, the client will not be able to download a movie that is not approved by the parental control
server. It turns out, however, that the client can cheat the parental control server: Assume the client
twice requests a signature on some harmless movie X. He will then obtain two signatures σ1, σ2 on
X from the parental control server. Then, given σ1 and σ2, the client might be able to compute a
signature on an adult movie Y that has not been approved by the parental control server.

It seems that unforgeability should forbid the possibility of such an attack. But it does not.
From the point of view of the signer, two signing queries have been performed, and finally signatures
on two different messages X and Y have been produced. This does not violate the definition of
unforgeability. In fact, we show in Section 4.2 that blind signature schemes exist that allow such
attacks but that are still unforgeable.

What went wrong? The definition of unforgeability covers only partially the case that the user
of the scheme is honest. It only ensures that the number of signed messages is not greater than
the number of interactions with the signer. Only considering the number of messages but not their
content is fine from the signer’s point of view who is not allowed to know the messages anyway.
It is not, however, fine from the user’s point of view. If the user signs some messages m1, . . . ,mk

(by interacting with the signer), he expects that no signature on some different message m′ can
be computed from his signatures. We believe that settings in which the user is honest are natural,
and that the definition of unforgeability should cover this case. We thus propose a new definition,
honest-user unforgeability, which is a strengthening of unforgeability.

Definition 1 (Honest-user unforgeability – informal). If an adversary performs k direct
interactions with the signer, and requests signatures for the message m1, . . . ,mn from the user
(which produces these signatures by interacting with the signer), then the adversary cannot produce
signatures for pairwise distinct messages m∗1, . . . ,m

∗
k+1 with {m∗1, . . . ,m∗k+1} ∩ {m1, . . . ,mn} = ∅.

Notice that this definition also covers the hybrid case in which the adversary interacts with an
honest user and the signer simultaneously. Alternatively, one could also require that security in each
of the setting individually: Security when there is no honest user (that is, the normal definition of
unforgeability), and security when the adversary may not query the signer directly (we call this
S + U-unforgeability). We show in Section 6 that requiring these variants of security individually
leads to a strictly weaker security notion. Notice that S + U-unforgeability would be sufficient to
solve the problem in our video store example. It seems, however, restrictive to assume that in all

3

protocols, there will always be only either queries from honest users or only from dishonest users
but never from both in the same execution.

Achieving honest-user unforgeability. We show that any unforgeable blind signature scheme can
be converted into a honest-user unforgeable blind signature scheme. The transformation is very
simple and efficient: Instead of signing a message m, in the transformed scheme the user signs the
message (m, r) where r is some randomness. Furthermore, we show that if a scheme is already
strongly unforgeable, then it is strongly honest-user unforgeable (as long as the original scheme is
randomized which holds for most signature schemes).

Insecurity with probabilistic verification. Most interactive and non-interactive signature schemes have
a deterministic verification algorithm. In general, however, having a deterministic verification is not a
necessity. Yet, when we allow a probabilistic verification algorithm (and this is usually not excluded),
both the definition of unforgeability as well as the definition of honest-user unforgeability are subject
to an attack: Consider again our video store example. Let λ denote the security parameter. Fix a
polynomial p = p(λ) > λ. Assume that the parental control server and the client are malicious and
collude. The parental control server interacts with the reseller λ times, and produces p“half-signatures”
on movie names X1, . . . , Xp. Here, a half-signature means a signature that passes verification with
probability 1

2 . Then the client can then download the movies X1, . . . , Xn from the content provider.
(If in some download request, a half-signature does not pass verification, the client just retries his
request.) Thus the client got p movies, even if his flatrate only allows for downloading λ movies.

Can this happen? It seems that unforgeability would exclude this because p > λ signatures were
produced using λ queries to the signer. In the definition of unforgeability, however, the adversary
succeeds if it outputs p > λ signatures such that all signatures pass verification. However, the
signatures that are produced are half-signatures: That is, the probability that all p > λ signatures
pass the verification simultaneously is negligible! Thus, producing more than λ half-signatures using
λ queries would not be considered an attack by the definition of unforgeability. In Section 5, we
show that blind signature schemes exist that allow such attacks but that satisfy the definition of
unforgeability. The same applies to honest-user unforgeability as described so far; we thus need to
augment the definition further.

There are two solutions to this problem. One is to explicitly require that the verification algorithm
is deterministic. Since most schemes have deterministic verification, this is not a strong restriction.
To cover the case of probabilistic verification, we propose an augmented definition of honest-user
unforgeability in Section 5: This definition considers a list of signatures as a successful forgery if
each of them would pass verification with noticeable probability (roughly speaking).

We do not propose a generic transformation that makes scheme with probabilistic verification
secure according to our definition. Yet, since most schemes have a deterministic verification anyway;
these schemes will automatically satisfy our augmented definition.

Related work. Many blind signature schemes have been proposed in the literature, these schemes
differ in their round complexity, their underlying computational assumptions, and the model
in which the proof of security is given. For example, some schemes rely on the random oracle
heuristic [PS00, Abe01, BNPS03, Bol03, AO09], some constructions are secure in the standard
model [CKW04, Oka06, HK07, KZ08, AFG+10, SU11], and some constructions are based on
general assumptions [JLO97, Fis06, HKKL07, SU11].

4

Only a few works consider the security of blind signatures [JLO97, PS00, FS09] or their round
complexity [FS10].

Notations. Before presenting our results we briefly recall some basic definitions. In what follows we
denote by λ ∈ N the security parameter. Informally, we say that a function is negligible if it vanishes
faster than the inverse of any polynomial. A function is non-negligible if it is not negligible. If S is a

set, then x
$← S indicates that x is chosen uniformly at random over S (which in particular assumes

that S can be sampled efficiently).

2 Blind signatures

To define blind signatures formally we introduce the following notation for interactive executions
between algorithms X and Y. By (a, b)← 〈X (x),Y(y)〉 we denote the joint execution of X and Y,
where x is the private input of X and y defines the private input of Y. The private output of X
equals a and the private output of Y is b. We write Y〈X (x),·〉∞(y) if Y can invoke an unbounded
number of executions of the interactive protocol with X in arbitrarily interleaved order. Accordingly,
X 〈·,Y(y0)〉

1,〈·,Y(y1)〉1(x) can invoke arbitrarily ordered executions with Y(y0) and Y(y1), but interact
with each algorithm only once.

The invoking oracle machine does not see the private output of the invoked machine. In the
above definition this means that Y does not learn a and X does not learn b0 (resp. b1).

Definition 2 (Interactive signature scheme). An interactive signature scheme consists of a
tuple of efficient5 algorithms BS = (KG, 〈S,U〉 ,Vf) (the key-generation algorithm KG, the signer S,
the user U , and the verification algorithm Vf) where

Key Generation. KG(1λ) for parameter λ generates a key pair (sk, pk).

Signature Issuing. The joint execution of algorithm S(sk) and algorithm U(pk,m) for message
m ∈ {0, 1}∗ generates an output σ of the user (and some possibly empty output out for the
signer.), (out , σ)← 〈S(sk),U(pk,m)〉.

Verification. Vf(pk,m, σ) outputs a bit.

It is assumed that the scheme is complete, i.e., with overwhelming probability in λ ∈ N the following
holds: (sk, pk)← KG(1λ), any message m ∈ {0, 1}∗ and any σ output by U in the joint execution of
S(sk) and U(pk,m) we have Vf(pk,m, σ) = 1.

3 Security of blind signatures

Security of blind signature schemes is defined by unforgeability and blindness [JLO97, PS00].

5 More precisely, KG and Vf run in polynomial-time in the total length of their inputs. The total running time of S is
polynomial in the total length of its input (sk) plus the total length of its incoming messages. The total running
time of U is polynomial in the total length of its input (pk,m). (But the running time of U may not depend on
its incoming messages.) The asymmetry between the running time of S and U is necessary to ensure that (a) an
interaction between U and S always runs in polynomial-time, and (b) that the running-time of S may depend on
the length of the message m that only U has in its input.

5

Unforgeability. An efficient adversary U∗ against unforgeability tries to generate k + 1 valid
message/signatures pairs with different messages after at most k completed interactions with the
honest signer, where the number of executions is adaptively determined by U∗ during the attack.
To identify completed sessions we assume that the honest signer returns a special symbol ok when
having sent the final protocol message in order to indicate a completed execution (from its point of
view). We remark that this output is “atomically” connected to the final transmission to the user.

Definition 3 (Unforgeability). An interactive signature scheme BS = (KG, 〈S,U〉 ,Vf) is called
unforgeable if for any efficient algorithm A(the malicious user) the probability that experiment
UnforgeBSA (λ) evaluates to 1 is negligible (as a function of λ) where

Experiment UnforgeBSA (λ)
(sk, pk)← KG(1λ)

((m∗1, σ
∗
1), . . . , (m∗k+1, σ

∗
k+1))← A〈S(sk),·〉

∞
(pk)

Return 1 iff
m∗i 6= m∗j for i, j with i 6= j, and

Vf(pk,m∗i , σ
∗
i) = 1 for all i, and

S has returned ok in at most k interactions.

An interactive signature scheme is strongly unforgeable if the condition “m∗i 6= m∗j for i, j with i 6= j”
in the above definition is substituted by “(m∗i , σ

∗
i) 6= (m∗j , σ

∗
j) for i, j with i 6= j”.

Observe that the adversary A does not learn the private output out of the signer S(sk). We
assume schemes in which it can be efficiently determined from the interaction between signer and
adversary whether the signer outputs ok. If this is not the case, we need to augment the definition
and explicitly give the adversary access to the output out since out might leak information that the
adversary could use to produce forgeries.

Blindness. The blindness condition says that it should be infeasible for a malicious signer S∗ to
decide which of two messages m0 and m1 has been signed first in two executions with an honest user
U . This condition must hold, even if S∗ is allowed to choose the public key maliciously [ANN06]. If
one of these executions has returned ⊥ then the signer is not informed about the other signature
either.

Definition 4 (Blindness). A blind signature scheme BS = (KG, 〈S,U〉 ,Vf) is called blind if for
any efficient algorithm S∗ (working in modes find, issue and guess) the probability that the following
experiment BlindBSS∗ (λ) evaluates to 1 is negligibly close to 1/2, where

Experiment BlindBSS∗ (λ)
(pk,m0,m1, stfind)← S∗(find, 1λ)

b
$← {0, 1}

stissue ← S∗〈·,U(pk,mb)〉
1,〈·,U(pk,m1−b)〉1(issue, stfind)

and let σb, σ1−b denote the (possibly undefined) local outputs
of U(pk,mb) resp. U(pk,m1−b).

set (σ0, σ1) = (⊥,⊥) if σ0 = ⊥ or σ1 = ⊥
b∗ ← S∗(guess, σ0, σ1, stissue)
return 1 iff b = b∗.

6

4 Honest-user unforgeability

In this section we introduce a stronger notion of unforgeability that we call honest-user unforgeability.
In the traditional definition of unforgeability due to [JLO97, PS00], the adversary fulfills the role
of the user. This means that the attacker may choose all messages that are exchanged during the
signature issue protocol at will. In particular, the attacker may sample random message without
fixing a specific message and a certain randomness for the user algorithm. Even if the adversary
runs the honest user algorithm, due to the blindness, it is impossible to tell which message has
been used. Thus, from a definitional perspective, one has to count the number of executions and
produced signatures in order to determine the success condition for the attacker.

This, however, might not be sufficient. Consider an attacker that queries twice the same message
m (through, say, some third party honestly implementing the user’s algorithm) and is then able to
compute a valid signature on some message m′ 6= m. Since this adversary queried twice the same
message, it still has to output three distinct messages in order to succeed in the unforgeability game.

In this section we show that giving the attacker, in addition to controlling the user, access to a
protocol oracle (that takes as input a message and returns the signature and the user’s transcript)
yields a strictly stronger definition.

4.1 Defining honest-user unforgeability

Before proposing the new definition, we fix some notation. Let P(sk, pk, ·) be an oracle that on input
a message m runs the signature issue protocol 〈S(sk),U(pk,m)〉 obtaining a signature σ. Let trans
denote the transcript of the messages exchanges in that interaction. We assume that the transcript
consists of all messages exchanged between the parties.6 This oracle then returns (σ, trans).

Definition 5 (Honest-user unforgeability). An interactive signature scheme BS = (KG, 〈S,U〉 ,
Vf) is honest-user unforgeable if Vf is deterministic and the following holds: For any efficient
algorithm A the probability that experiment HUnforgeBSA (λ) evaluates to 1 is negligible (as a function
of λ) where

Experiment HUnforgeBSA (λ)
(sk, pk)← KG(1λ)

((m∗1, σ
∗
1), . . . , (m∗k+1, σ

∗
k+1))← A〈S(sk),·〉

∞,P(sk,pk,·)(pk)
Let m1, . . . ,mn be the messages queried to P(sk, pk, ·).
Return 1 iff

m∗i 6= mj for all i, j
m∗i 6= m∗j for i, j with i 6= j, and

Vf(pk,m∗i , σ
∗
i) = 1 for all i, and

S has returned ok in at most k interactions.

(When counting the interactions in which S returns ok, we do not count the interactions simulated
by P.)

6 The definition of honest-user unforgeability could be easily strengthened by including the randomness of U in
trans. Our results also hold with respect to that strengthened definition. However, it is not clear that giving the
honest-user’s randomness to the adversary models any realistic attacks.

7

An interactive signature scheme is strongly honest-user unforgeable if the condition “m∗i 6= mj

for all i, j” in the above definition is substituted by “(m∗i , σ
∗
i) 6= (mj , σj) for all i, j” and if we change

the condition “m∗i 6= m∗j for i, j with i 6= j” to “(m∗i , σ
∗
i) 6= (m∗j , σ

∗
j) for i, j with i 6= j”.

Notice that we require Vf to be deterministic. When we drop this requirement, the definition
does not behave as one would intuitively expect. We explain this problem in detail in Section 5.

4.2 Unforgeability does not imply honest-user unforgeability

We show that unforgeability does not imply honest-user unforgeability. The high-level idea of our
counterexample is to change the verification algorithm of an interactive signature scheme such that
it accepts a message m′ if it obtains as input two distinct and valid signatures on some message
m 6= m′ (in addition to accepting honestly generated signatures). More precisely, fix an unforgeable
and blind signature scheme BS = (KG, 〈S,U〉 ,Vf) that is strongly unforgeable. Fix some efficiently
computable injective function f 6= id on bitstrings (e.g., f(m) := 0‖m). We construct a blind
signature scheme BS1 = (KG1, 〈S1,U1〉 ,Vf1) as follows:

– KG1 := KG, S1 := S, and U1 := U .
– Vf1(pk,m, σ) executes the following steps:
• Invoke v := Vf(pk,m, σ). If v = 1, return 1.
• Otherwise, parse σ as (σ1, σ2). If parsing fails or σ1 = σ2, return 0.
• Invoke vi := Vf(pk, f(m), σi) for i = 1, 2. If v1 = v2 = 1, return 1. Otherwise return 0.

Lemma 6. If BS is complete, strongly unforgeable, and blind, then BS1 is complete, unforgeable,
and blind.

Blindness and completeness of BS1 follow directly from the blindness and completeness of BS. The
main idea behind unforgeability is the following: The only possibility for the adversary to forge a
signature is to obtain two different signatures σ1, σ2 on the same message m. Then (σ1, σ2) is a valid
signature on f(m). However, since the underlying scheme BS is strongly unforgeable, the adversary
can only get σ1, σ2 by performing two signing queries. Thus, using two queries, the adversary gets
two signatures on the message m and one on f(m). This is not sufficient to break the unforgeability
of BS1 since the adversary would need to get signatures on three different messages for that.

Proof (of Lemma 6). Assume for the sake of contradiction that BS1 is not unforgeable. Then, there
is an efficient adversary A that succeeds in the unforgeability game for BS1 with non-negligible
probability. This attacker, when given oracle access to the signer S1, returns a (k + 1)-tuple
((m1, σ1), . . . , (mk+1, σk+1)) of message/signature pairs, where Vf1(pk,mi, σi) for all i and mi 6= mj

for all i 6= j and where S has returned ok at most k times. In the following, we call such a tuple
k-bad. We now show how to build an algorithm B that wins the strong unforgeability game of BS.

The input of the algorithm B is the public key pk, it runs a black-box simulation of A on input
pk, and answers all oracle queries with its own oracle by simply forwarding all messages. Eventually,
A stops, outputting a tuple F := ((m1, σ1), . . . , (mk+1, σk+1)). Suppose in the following that A
succeeds. Then the tuple F is k-bad. We will show how to efficiently construct from F k+ 1 distinct
message/signature pairs (m∗i , σ

∗
i) that verify under Vf(pk, ·, ·). Now, consider a message/signature

pair (m,σ) and observe that the verification algorithm Vf1 outputs 1 if Vf(pk,m, σ) = 1 or if
σ = (σ1, σ2) (where σ1 6= σ2) and Vf(pk, f(m), σ1) = Vf(pk, f(m), σ2) = 1. We define two sets V0
and V1 where V1 is the set that contains a message/signature pairs (mi, σi) that verify under the

8

first condition, and the set V0 contains all pairs (mi, σi) (with σi = (σ1i , σ
2
i)) that verify under the

second condition, i.e.,

V1 := {(mi, σi) : Vf(pk,mi, σi) = 1} and V0 := {(mi, σi) : Vf(pk,mi, σi) = 0}.

Clearly, since A succeeds and F is k-bad, all messages mi are distinct and hence |V0|+ |V1| = k + 1.
Next, we define the set V ′0 that consists of a message/signature pairs (f(mi), σ

1
i), (f(mi), σ

2
i), i.e.,

all message/signature pairs that verify under the second condition. Formally,

V ′0 := {(f(mi), σ
1
i), (f(mi), σ

2
i) : (mi, (σ

1
i , σ

2
i)) ∈ V0}.

Note that V0 contains only elements (mi, σi) with Vf ′(mi, σi) = 1 and Vf(mi, σi) = 0. By
definition of Vf ′ this implies that σi = (σ1i , σ

2
i) with σ1i 6= σ2i and Vf(f(mi), σ

1
i) = Vf(f(mi), σ

2
i) = 1.

Thus |V ′0 | = |V0| and for all (m,σ) ∈ V ′0 ∪ V1 we have that Vf(pk,m, σ) = 1. We proceed to show
that |V ′0 ∪ V1| ≥ k + 1 and we then let B output this set. First note that for any (mi, (σ

1
i , σ

2
i)) ∈ V0,

at most one of (f(mi), σ
1
i), (f(mi), σ

2
i) is contained in V1. Otherwise, V1 would either contain

two pairs (m,σ) with the same m, or σ1i = σ2i . Furthermore, since f is injective, for any distinct
(mi, (σ

1
i , σ

2
i)), (mj , (σ

1
j , σ

2
j)) ∈ V0 we have mi 6= mj . Hence (f(mi), σ

a
i) 6= (f(mj), σ

b
j) for any

a, b ∈ {1, 2} and i 6= j. Thus |V ′0 \ V1| ≥ |V0| and therefore∣∣V ′0 ∪ V1∣∣ =
∣∣(V ′0 \ V1) ∪̇ V1∣∣ =

∣∣V ′0 \ V1∣∣+ |V1| ≥ |V0|+ |V1| = k + 1.

The algorithm B then computes the set V ′0 ∪ V1, and then picks distinct pairs

(m∗1, σ
∗
1), . . . , (m∗k+1, σ

∗
k+1) ∈ V ′0 ∪ V1

and outputs (m∗1, σ
∗
1), . . . , (m∗k+1, σ

∗
k+1).

Analysis. Obviously, B is efficient because A is efficient and because the overhead of handling all
queries can be done efficiently. Since A outputs a k-bad tuple with non-negligible probability in the
unforgeability game for BS1, it follows that B outputs k + 1 distinct (m∗i , σ

∗
i) with Vf(m∗i , σ

∗
i) = 1

in the unforgeability game for BS with at least the same probability. Thus, B breaks the strong
unforgeability of BS. Since we assumed that BS is strongly unforgeable, we have a contradiction,
thus our initial assumption that BS1 is not unforgeable was false.

Before proving the next lemma, we need to define what a randomized (interactive) signature is.
Roughly speaking, schemes that have this property output the same signature in two independent
executions with same message only with negligible probability.

Definition 7 (Randomized signature scheme). An interactive signature scheme BS = (KG,
〈S,U〉 ,Vf) is randomized if with overwhelming probability in λ ∈ N the following holds: for
any (sk, pk) in the range of KG(1λ), any message m ∈ {0, 1}∗, we have σ1 6= σ2 where σ1 ←
〈S(sk),U(pk,m)〉 and σ2 ← 〈S(sk),U(pk,m)〉.

Note that any scheme can easily be modified such that is satisfies this definition by letting the user
algorithm pick some random value r, setting m′ ← m‖r, and by including r in the signature.

Lemma 8. If BS is complete and randomized, then BS1 is not honest-user unforgeable.

9

Proof. We construct an efficient adversary A against BS1 as follows: Let m ∈ {0, 1}∗ be such that
f(m) 6= m. Recall that f 6= id , and therefore such a value m exists. Note that we can hardcode m
directly into the adversary and therefore it is not necessary that m can be efficiently found.

The attacker A queries P(the machine simulating 〈S1,U1〉) twice, both times with the same
message f(m) and obtains the signatures σ1 and σ2. Since BS is randomized, and S1 = S and U1 = U ,
with overwhelming probability σ1 6= σ2. Since BS is complete, Vf(pk, f(m), σ1) = Vf(pk, f(m), σ2) = 1
with overwhelming probability. Hence with overwhelming probability, Vf1(pk,m, σ) = 1 for σ :=
(σ1, σ2). The adversary A outputs (m,σ). Since A never queried S, and because A only queries
f(m) 6= m from P, this breaks the honest-user unforgeability of BS1.

Theorem 9. If complete, blind, and strongly unforgeable interactive signature schemes exist, then
there are complete, blind, and unforgeable interactive signature schemes that are not honest-user
unforgeable.

Proof. If complete, blind, and strongly unforgeable interactive signature schemes exist, then there
is a complete, blind, strongly unforgeable, and randomized interactive signature scheme BS (e.g.,
by applying the transformation from Section 7). From BS we construct BS1 as described at the
beginning of the section. By Lemmas 6 and 8, BS1 is complete, blind, and unforgeable but not
honest-user unforgeable.

4.3 Strong honest-user unforgeability

In this section we show that strong unforgeability implies strong honest-user unforgeability.

Lemma 10. Assume that BS is complete,7 randomized, and strongly unforgeable. Then BS is
strongly honest-user unforgeable.

Proof. Assume that BS is not strongly honest-user unforgeable. Then there is an adversary A in
the strong honest-user unforgeability game for BS such that with non-negligible probability, the
following holds:

(i) The adversary outputs a tuple ((m∗1, σ
∗
1), . . . , (m∗k+1, σ

∗
k+1) for some k.

(ii) The signer S outputs ok at most k times.
(iii) For all i 6= j, we have (m∗i , σ

∗
i) 6= (m∗j , σ

∗
j).

(iv) For all i, we have Vf(pk,m∗i , σ
∗
i) = 1.

(v) Let m1, . . . ,mn be the messages queried from the user U (which is part of the oracle P), and
let σ1, . . . , σn be the corresponding answers. Then (mi, σi) 6= (m∗j , σ

∗
j) for all i, j.

Furthermore, since BS is complete, with overwhelming probability we have that

(vi) Vf(pk,mi, σi) = 1 for all i.

And since BS is randomized, with overwhelming probability we have that

7 Completeness is actually necessary to show this lemma: For example, let BS′ be a scheme derived from a complete
and strongly unforgeable scheme BS in the following way: All machines except for the user are the same in BS
and BS′. When the user U ′ should sign a message m, he signs m+ 1 instead. Since the user does not occur in the
definition of strong unforgeability, the strong unforgeability of BS implies the strong unforgeability of BS′. Yet BS′

is not strongly honest-user unforgeable: By performing a signature query for m from the user U ′, the adversary can
get a valid signature for m+ 1.

10

(vi) (mi, σi) 6= (mj , σj) for all i 6= j.

This implies that, with non-negligible probability, properties (i)–(vi) hold. Let (m̃∗1, σ̃
∗
1), . . . ,

(m̃∗k+n+1, σ̃
∗
k+n+1) be the sequence (m∗1, σ

∗
1), . . . , (m∗k+1, σ

∗
k+1), (m1, σ1), . . . , (mn, σn). From proper-

ties (iii), (v), and (vi), it follows that (m̃∗i , σ̃
∗
i) 6= (m̃∗j , σ̃

∗
j) for all i 6= j. From (iv) and (vi), it follows

that Vf(pk, m̃∗i , σ̃
∗
i) = 1 for all i.

Let B be an adversary for the strong unforgeability game, constructed as follows: B simulates A
and U in a black-box fashion. Whenever A queries U , then B invokes the simulated user algorithm
U . If the simulated user U or the simulated A communicate with the signer, then B routes this
communication to the external signer S. Finally, B outputs (m̃∗1, σ̃

∗
1), . . . , (m̃∗k+n+1, σ̃

∗
k+n+1). Then

we have that in the strong unforgeability game, with non-negligible probability, B outputs a tuple
(m̃∗1, σ̃

∗
1), . . . , (m̃∗k+n+1, σ̃

∗
k+n+1) such that (m̃∗i , σ̃

∗
i) 6= (m̃∗j , σ̃

∗
j) for all i 6= j and Vf(pk, m̃∗i , σ̃

∗
i) = 1

for all i and the signer outputs ok at most k + n times (k times due to the invocations from A, and
n times due to the invocations from the simulated U). This violates the strong unforgeability of BS,
we have a contradiction, and thus BS is strongly honest-user unforgeable.

5 Probabilistic verification

In this section we show that, if we allow for a probabilistic verification algorithm, both the definition
of honest-user unforgeability, as well as the usual definition of unforgeability will consider schemes
to be secure that do not meet the intuitive notion of unforgeability.

One may argue that discussing problems in the definition of blind signature schemes in the
case of probabilistic verification is not necessary because one can always just use schemes with
deterministic verification. We disagree with this point of view: Without understanding why the
definition is problematic in the case of probabilistic verification, there is no reason to restrict oneself
to schemes with deterministic verification. Only the awareness of the problem allows us to circumvent
it. We additionally give a definition that works in the case of probabilistic verification. This is
less important than pointing out the flaws, since in most cases one can indeed use schemes with
deterministic verification. But there might be (rare) cases where this is not possible (note that
no generic transformation outside the random oracle model is known that makes the verification
deterministic).

First, we give some intuition for our counterexample and formalize it afterwards. Assume an
interactive signature scheme BS3 that can distinguishes two kinds of signatures: A full-signature that
will pass verification with probability 1, and a half-signature that passes verification with probability
1
2 . An honest interaction between the signer S3 and the user U3 will always produce a full-signature.
A malicious user, however, may interact with the signer to get a half-signature for arbitrary messages.
Furthermore, the malicious user may, by sending λ half-signatures to the signer (λ is the security
parameter) and executing a special command, get two half-signatures instead of one. (“Buy λ+ 1
signatures, get one free.”) At the first glance, one would expect that such a scheme cannot be
honest-user unforgeable or even unforgeable. But in fact, the adversary has essentially two options:
First, he does not request λ half-signatures. Then he will not get a signature for free and thus will
not win in the honest-user unforgeability game. Second, he does request λ half-signatures and then
performs the extra query and thus gets λ+ 2 half-signatures using λ+ 1 queries. Then, to win, he
needs that all λ+ 2 signatures pass verification (since the definition of unforgeability/honest-user
unforgeability requires that Vf3(pk,m∗i , σ

∗
i) evaluates to 1 for all signatures (m∗i , σ

∗
i) output by the

11

adversary) However, since each half-signature passes verification with probability 1
2 , the probability

that all signatures pass verification is negligible (≤ 2−λ). Thus, the adversary does not win, and the
scheme is honest-user unforgeable. Clearly, this is not what one would expect; so Definition 5 should
not be applied to the case where the verification is probabilistic (and similarly the normal definition
of unforgeability should not be applied either in that case).

More precisely, let BS = (KG, 〈S,U〉 ,Vf) be a randomized, complete, blind, and honest-user
unforgeable interactive signature scheme. Let Q be an efficiently decidable set such that the
computation of arbitrarily many bitstrings m ∈ Q and m′ /∈ Q is efficiently feasible.

We define the scheme BS3 = (KG3, 〈S3,U3〉 ,Vf3) as follows:

– KG3 := KG.
– S3(sk) behaves like S(sk), except when the first message from the user is of the form (extrasig,
m◦1, . . . ,m

◦
λ, σ

◦
1, . . . , σ

◦
λ,m

′
1, . . . ,m

′
q) where λ is the security parameter. Then S3 executes the

following steps:
• Check whether m◦1, . . . ,m

◦
λ ∈ Q are pairwise distinct messages, and for all i = 1, . . . , q we

have m′i /∈ Q, and for all i = 1, . . . , λ we have Vf(pk, 1‖m◦i , σ◦i) = 1.8 If not, ignore the
message.
• If the check passes, run 〈S(sk),U(pk, 1‖m′i)〉 for each i = 1, . . . , q, resulting in signatures σ̃i,

and set σ′i := 1‖σ̃i.
• Then S3 sends (σ′1, . . . , σ

′
n) to the user, outputs ok and does not react to any further messages

in this session.
– U3(pk,m) runs σ ← U(pk, 0‖m) and returns 0‖σ.
– Vf3(pk,m, σ) performs the following steps:
• If σ = 0‖σ′ and Vf(pk, 0‖m,σ′) = 1, Vf3 returns 1.
• If σ = 1‖σ′ and Vf(pk, 1‖m,σ) = 1, Vf3 returns 1 with probability p := 1

2 and 0 with
probability 1− p.
• Otherwise, Vf3 returns 0.

Lemma 11. If BS is blind and complete, so is BS3.

Proof. Blindness and completeness of BS3 follow directly from that of BS. The only difference
between the schemes is that instead of a message m, a message 0‖m is signed and 0 is prepended
to the signatures (as long as the user is honest as is the case in the definitions of blindness and
completeness).

Lemma 12. If BS is honest-user unforgeable, so is BS3.

Proof. We first fix some notation. A pair (m,σ) is

- a full-signature if σ = 0‖σ′ and Vf(pk, 0‖m,σ′) = 1;
- a half-signature if σ = 1‖σ′ and Vf(pk, 1‖m,σ′) = 1;
- and a non-signature otherwise.

Note that if (m,σ) is a full-, half-, or non-signature, then Vf3(pk,m, σ) is 1, p = 1
2 , or 0, respectively.

An interaction between A and S3 that begins with a (extrasig, . . .)-message passing the check in
the definition of S3 is called an extra-query. Other interactions between A and S3 that lead to an
output ok from S3 are called standard-queries.

8 Without loss of generality, we assume that the public key pk can efficiently be computed from the secret key sk.

12

Fix an efficient adversary A against the honest-user unforgeability game for BS3. Without loss
of generality, we assume that the output of A is always of the form ((m∗1, σ

∗
1), . . . , (m∗k+1, σ

∗
k+1)) for

some k. Let ke denote the number of extra-queries and ks the number of standard-queries performed
by A. Let m1, . . . ,mn be the messages queried by A to the oracle P (which simulates 〈S3,U3〉, and
let σ1, . . . , σn be the answers from P. In an execution of the game, we distinguish the following
cases (each case implicitly excludes all preceding cases):

(i) ke + ks > k, or for some i, (m∗i , σ
∗
i) is a non-signature, or for some i 6= j, m∗i = m∗j , or for some

i, j, m∗i = mj .

(ii) For h > λ different indices i, (m∗i , σ
∗
i) is a half-signature.

(iii) No extra-query was performed.

(iv) All other cases.

In case (i), by definition, the adversary does not win.

In case (ii), the probability that Vf3(pk,m∗i , σ
∗
i) = 1 for all i is upper-bounded by the probability

that Vf3(pk,m, σ) = 1 for all half-signatures (m,σ) output by A. That probability, in turn, is
bounded by ph = 2−h ≤ 2−λ because each invocation of Vf(pk,m, σ) succeeds with probability p for
a half-signature (m,σ). Thus the adversary wins with negligible probability in case (ii).

Hence A only wins with non-negligible probability, if either case (iii) or (iv) occurs with non-
negligible probability.

Assume that case (iii) happens with non-negligible probability and observe that any full- or
half-signature on a message m can be efficiently transformed into a signature on 0‖m or 1‖m,
respectively (with respect to the original scheme BS). We construct an adversary B against the
honest-user unforgeability game for the original scheme BS. B runs a black-box simulation of A and
behaves as follows: Whenever A performs an extra-query, then B aborts. If A queries σi ← P(mi),
then B sets m′i = 0‖mi, sends m′i to its own oracle P (which simulates 〈S,U〉); it then obtains a
signature σi and returns 0‖σi to A. Whenever A queries the signer directly, then B forwards all
messages in both directions.

When A outputs ((m∗1, b
∗
1‖σ∗1), . . . , (m∗k+1, b

∗
k+1‖σ∗k+1)) with b∗i ∈ {0, 1}, then the algorithm B

outputs ((b∗1‖m∗1, σ∗1), . . . , (b∗k+1‖m∗k+1, σ
∗
k+1)). Obviously, if all m∗i are distinct and different from

all mi, then all b∗i ‖m∗i are distinct and different from all 0‖mi. And if Vf ′(m∗i , b
∗
i ‖σ∗i) = 1 then

Vf(b∗i ‖m∗i , σ∗i) = 1. Thus, when (iii) occurs with non-negligible probability in the honest-user
unforgeability game with A and BS3, then B wins with non-negligible probability in the honest-
user unforgeability game with BS. By assumption BS is honest-user unforgeable, so we have a
contradiction. Thus our assumption that case (iii) occurs with non-negligible probability was false.
Hence case (iii) occurs with negligible probability.

Now assume that case (iv) occurs with non-negligible probability. In this case, let Σf be the
set of all full-signatures output by A. Note that this is not the set of all k + 1 signatures output
by A because A may also output half-signatures.Let Σh denote the set of all half-signatures
used in the first extra-query. More precisely, (m,σ) ∈ Σh iff there the first extra-query was
of the form (extrasig,m◦1, . . . ,m

◦
λ, σ

◦
1, . . . , σ

◦
λ,m

′,m′′) with (m,σ) = (m◦i , σ
◦
i) for some i. Let

Σe denote the half-signatures returned by extra-queries, i.e., (m′, σ′) ∈ Σe iff an extra-query
(extrasig,m◦1, . . . ,m

◦
λ, σ
◦
1, . . . , σ

◦
λ,m

′
1, . . . ,m

′
q) was answered with (σ′1, . . . , σ

′
q) such that (m′, σ′) =

(m′i, σ
′
i) for some i. Let Σu be the set of all full- or non-signatures received from the user, i.e.,

Σu = {(m1, σ1), . . . , (mn, σn)}. Let ` be the number of half-signatures in the output of A. We have
` ≤ λ since otherwise we would be in case (ii).

13

Given a set Σ of pairs of messages and signatures , let Σ∗ denote the set Σ∗ := {(b‖m,σ′) :
(m, b‖σ′) ∈ Σ, b ∈ {0, 1}}.

Since the messages in Σf are distinct, and the messages in Σh are distinct, and Σf contains
only full-signatures, and Σh contains only half-signatures, we have that all messages in Σ∗f ∪Σ∗h are
distinct, that |Σ∗f ∪Σ∗h| = |Σf | + |Σh| ≥ (k + 1 − `) + λ ≥ k + 1, and that all (m,σ) ∈ Σ∗f ∪Σ∗h
satisfy Vf(pk,m, σ) = 1.

Furthermore, the messages in Σ∗h are different from those in Σ∗u because Σh contains only half-
and Σu only full-signatures or non-signatures. The messages in Σ∗f are different from those in Σ∗u
because the messages in Σf are different from those in Σu (otherwise we would be in case (i)). The
messages in Σ∗h are different from those in Σ∗e since by definition of extra-queries, the messages in
Σh are in Q while the messages in Σe are not in Q. The messages in Σ∗f are different from those in
Σ∗e because Σf contains only full- and Σe only half-signatures. Thus, the messages in Σ∗f ∪Σ∗h are
different from the messages in Σ∗u ∪Σ∗e .

Summarizing, in case (iv), we have |Σ∗f ∪Σ∗h| ≥ k + 1, the messages in Σ∗f ∪Σ∗h are pairwise
distinct and different from the messages in Σ∗u∪Σ∗e , and all (m,σ) ∈ Σ∗f ∪Σ∗h satisfy Vf(pk,m, σ) = 1.

We then construct an adversary B against the original scheme BS. The attacker B simulates A
with the following modifications. When A queries the oracle P on a message mi, then B invokes
its external oracle P (which simulates 〈S,U〉) on input (0‖mi), gets an answer σ′i, and returns
σi := 0‖σ′i to A. If A performs an extra-query (extrasig, . . . ,m′1, . . . ,m

′
q), then B answers with

(σ′1, . . . , σ
′
q) := (1‖U(1‖m′1), . . . , 1‖U(1‖m′q)) instead. Suppose that A outputs a message/signature

sequence, then B computes the sets Σ∗u, Σ∗h, Σ∗f , and Σ∗e instead and outputs the message/signature
pairs contained in the set Σ∗f ∪Σ∗h. Notice that B only queries messages from U that are in the set
Σ∗u ∪Σ∗e . If (iv) occurs with non-negligible probability, then we have an adversary B that outputs
at least k+ 1 message/signature pairs (m,σ) that are valid (i.e., Vf(pk,m, σ) = 1), that are pairwise
distinct, and that also differ from all message queried to P with non-negligible probability. Thus, B
breaks the honest-user unforgeability of BS. Since by assumption, BS is honest-user unforgeable,
our assumption that case (iv) occurs with non-negligible probability was false.

Summing up, we have shown that both case (iii) and case (iv) happen only with negligible
probability. Since in cases (i) and (ii) the adversary A wins only with negligible probability, it follows
that overall, A wins only with negligible probability. Since this holds for any adversary A, BS3 is
honest-user unforgeable.

The following lemma shows that, although BS3 is honest-user unforgeable (and thus also
unforgeable), it should not be considered secure! Namely, an adversary can, given λ queries, produce
λ+ 1 message/signature pairs, each of which passes verification with probability 1

2 . In particular
in a setting where the machine which verifies the signatures is stateless and where the adversary
may thus just resubmit a rejected signature, such signatures are as good as signatures that pass
verification with probability 1. Thus, the adversary has essentially forged one signature.

Lemma 13. We call (m,σ) a half-signature (with respect to some implicit public-key pk) if the
probability that Vf(pk,m, σ) = 1 is 1/2. If BS is complete, then for any polynomial p, there is
an adversary A that performs λ + 1 interactions with S3 and does not query P and that, with
overwhelming probability, outputs p(λ) half-signatures (m∗1, σ

∗
1), . . . , (m∗p(λ), σ

∗
p(λ)) such that all m∗i

are distinct.

Proof. The adversary A that performs λ interactions with S3 and that never queries P works as
follows. It picks λ distinct messages m◦1, . . . ,m

◦
λ from Q and chooses p(λ) additional distinct messages

14

m′j 6∈ Q. It then queries the signer sequentially on the message 1‖m◦i and obtains the corresponding
signature σ◦i for i = 1, . . . , λ. Since BS is complete, with overwhelming probability the (m◦i , σ

◦
i) are

half-signatures. Afterwards, the adversary A initiates another signature issue protocol session with
the signer and sends as the first message: (extrasig,m◦1, . . . ,m

◦
λ, σ

◦
1, . . . , σ

◦
λ,m

′
1, . . . ,m

′
p(λ)). The

signer answers with signatures σ′1, . . . , σ
′
p(λ). Since BS is complete, with overwhelming probability

the (m′i, σ
′
i) are half-signatures.

Finally, A stops, outputting (m′1, σ
′
1), . . . , (m

′
p(λ), σ

′
p(λ)).

Thus A outputs p(λ) half-signatures while performing only λ+ 1 queries.

5.1 Adapting the definition

We have shown that, if we allow for a probabilistic verification algorithm in the definition of honest-
user unforgeability (and similarly in the definition of unforgeability), schemes that are intuitively
insecure will be considered secure by the definition. There are two possible ways to cope with this
problem.

The simplest solution is to require that the verification algorithm is deterministic. This is
what we did in Section 4.1 (Definition 5). This choice is justified since almost all known blind
signature schemes have a deterministic verification algorithm anyway. Thus restricting the verification
algorithm to be deterministic may be preferable to getting a more complicated definition.9

In some cases, however, it might not be possible to make the verification deterministic. In such
cases, it is necessary to strengthen the definition of honest-user unforgeability. Looking back at our
counterexample, the problem was the following: If the adversary produces many signatures that
each pass verification with non-negligible but not overwhelming probability, this is not considered
an attack: The probability that all signatures pass verification simultaneously is negligible. In order
to fix this problem, we thus need to change the definition in such a way that a signature that is
accepted with non-negligible probability is always considered a successful forgery. More precisely, if
a signature passes verification at least once when running the verification algorithm a polynomial
number of times, then the signature is considered valid. This idea leads to the following definition:

Definition 14 (Honest-user unforgeability with probabilistic verification). Given a prob-
abilistic algorithm Vf and an integer t, we define Vft as follows: Vft(pk,m, σ) runs Vf(pk,m, σ)
t-times. If one of the invocations of Vf returns 1, Vft returns 1. If all invocations of Vf return 0,
Vft returns 0.

A blind signature scheme BS = (KG, 〈S,U〉 ,Vf) is called honest-user unforgeable (with proba-
bilistic verification) if the following holds: For any efficient algorithm A and any polynomial p, the
probability that experiment HUnforgeBSA (λ) evaluates to 1 is negligible (as a function of λ) where

Experiment HUnforgeBSA (λ)
(sk, pk)← KG(1λ)

((m∗1, σ
∗
1), . . . , (m∗k+1, σ

∗
k+1))← A〈S(sk),·〉

∞,P(sk,pk,·)(pk)
Let m1, . . . ,mn be the messages queried to P(sk, pk, ·).
Return 1 iff

m∗i 6= mj for all i, j

9 Notice that one could weaken the requirement and only require that two invocations of the verification algorithm
output the same value with overwhelming probability. This would allow for verification algorithms that essentially
compute a deterministic function but have to solve problems in BPP during that computation.

15

m∗i 6= m∗j for i, j with i 6= j, and

Vfp(λ)(pk,m∗i , σ
∗
i) = 1 for all i, and

S has returned ok in at most k interactions.

(When counting the interactions in which S returns ok, we do not count the interactions simulated
by P.)

Notice that the only difference to Definition 5 is that we additionally quantify over a polynomial p,
and use Vfp(λ) instead of Vf. If a signature is accepted with non-negligible probability, then there is
a polynomial p such that Vfp(λ) will accept that signature with overwhelming probability. (For our
counterexample BS3, one can choose p(λ) := λ to show that it does not satisfy Definition 14.)

Notice that there is no obvious transformation for taking a signature scheme satisfying the
regular unforgeability definition and constructing a scheme secure with respect to Definition 14 out
of it. One obvious approach would be to include the randomness for verification in the message
and thus to make the scheme deterministic. This might, however, make the scheme totally insecure
because in this case a forger might include just the right randomness to get a signature accepted
(if that signature would be accepted with negligible but non-zero probability otherwise). Another
obvious approach would be to change the verification algorithm such that it verifies each signature p
times (for a suitable polynomial p) and only accepts when all verifications succeed. This would make,
e.g., half-signatures into signatures with negligible acceptance probability. But also this approach
does not work in general: For any p, the adversary might be able to produce signatures that fails each
individual verification with probability 1/2p and thus passes the overall verification with constant
probability.

6 S + U-unforgeability

Reconsider the counterexample from Section 4.2 and think about it in another way: Instead of seeing
the oracle P as an honest signer that runs the signature issue protocol with the honest user, think
about it as a signing algorithm of a common (non-interactive and non-blind) signature scheme S.
This intuition seems to be true as the oracle P takes as input a message, it then performs some
internal computations using the private key, and finally outputs a signature for this message. The
question now is whether the previously described attack can easily be prevented by requiring in
addition to the interactive unforgeability, that the signature scheme S is unforgeable in the common
meaning That is, for the forgery m∗ w.r.t. S it must hold that m∗ /∈ {m1, . . . ,mn}, where m1, . . . ,mn

are the queries to the signing oracle Sig of S. We first give a formal definition:

Definition 15 (S + U-unforgeability). Let BS = (KG, 〈S,U〉 ,Vf) be an interactive signature
scheme. We define Sig as the algorithm thatgets as input (pk, sk,m) and simulates (out , σ) ←
〈S(sk),U(pk,m)〉 and returns σ. The scheme BS is S + U-unforgeable (resp. strongly unforgeable),
if (KG,Sig,Vf) is unforgeable (resp. strongly unforgeable).

Let us rephrase our question: If a scheme is interactively unforgeable and S + U-unforgeable, is it
then automatically honest-user unforgeable? We then settle this question, somehow surprisingly,
in the negative. The main intuition why this is not implied is that both properties are consider
independent of each other. Thus, we construct the following counterexample where we can forge a
signature if we combine malicious queries together with honest protocol executions.

16

Fix an interactive signature scheme BS = (KG, 〈S,U〉 ,Vf) that is complete, randomized, blind,
and strongly unforgeable. Fix some efficiently computable injective function f 6= id on bitstrings
(e.g., f(m) := 0‖m) and let g be a one-way function. We construct an interactive signature scheme
BS2 = (KG2, 〈S2,U2〉 ,Vf2) as follows:

– KG2(1
λ)computes a key pair (sk, pk)← KG(1λ), it picks a random x in the domain of g, it sets

y := g(x), sk2 := (sk, x), and pk2 := (pk, y) and returns (sk2, pk2).

– S2((sk, x)) behaves like S(sk), except for the following extension: At any point in the interaction,
the user may send a message getx (which is supposed never to be sent by the honest-user U),
whereupon S2 will return x. Thereafter, the interaction continues as with S. (In other words, a
malicious user may retrieve x for free.)

– U2((pk, y),m) executes U(pk,m).

– Vf2((pk, y),m, σ) executes the following steps:

• Invoke v := Vf(pk,m, σ). If v = 1, return 1.

• Otherwise, parse σ as (σ1, σ2, x
′). If parsing fails or σ1 = σ2 or f(x′) 6= y, return 0.

• Invoke vi := Vf(pk, f(m), σi) for i = 1, 2. If v1 = v2 = 1, return 1. Otherwise return 0.

Notice that the only change with respect to the counterexample from the previous section is that
the secret key now contains a secret value x that is needed to “unlock” the possibility of producing
additional signatures. This value x can be accessed easily by a malicious user, but an honest user
will never get this value.

Lemma 16. If BS is complete, strongly unforgeable, and blind, then BS2 is complete, unforgeable
and blind.

The proof is analogous to that of Lemma 6 and is omitted.

Lemma 17. If BS is strongly unforgeable, complete, and randomized, then BS2 is strongly S + U-
unforgeable.

Proof. We define Sig2 as the algorithm thatgets as input (pk, sk,m)and simulates (out , σ) ←
〈S2(sk),U2(pk,m)〉 and returns σ. Analogously, we define Sig simulating S and U . By definition,
to show that BS2 is strongly S + U-unforgeable, we have to show that (KG2,Sig2,Vf2) is strongly
unforgeable.

Assume that this is not the case and that there is an adversary A that breaks the the strong
unforgeability game for (KG2,Sig2,Vf2). Note that since U2 never sends getx, Sig2 never accesses x.
Thus, in the strong unforgeability game, x is only used to produce y = f(x). Since g is one-way,
the probability that the signature σ = (σ1, σ2, x

′) output by the adversary A contains x′ such that
f(x′) = y is negligible. On the other hand, if the signatures do not contain such an x′, then Vf2
coincides with Vf. But then, A breaks the unforgeability game for (KG,Sig,Vf), which would imply
that (KG,Sig,Vf) is not strongly unforgeable.

However, since BS is strongly unforgeable, complete, and randomized, by Lemma 10, BS is strongly
honest-user unforgeable which is easily seen to imply that BS is S + U-unforgeable. By definition,
this contradicts the fact that (KG,Sig,Vf) is not strongly unforgeable. Hence our assumption that
(KG2,Sig2,Vf2) is not strongly unforgeable was false.

Lemma 18. If BS is complete and randomized, then BS2 is not honest-user unforgeable.

17

Proof. We construct an adversary A against BS2 as follows: Let m ∈ {0, 1}∗ be such that f(m) 6= m
and fix some m′ with m 6= m′ 6= f(m). The adversary A queries P (the oracle simulating 〈S2,U2〉)
twice, both times with the same message f(m). Call the resulting signatures σ1 and σ2. Since BS
is randomized, and both S1 = S and U1 = U except for the different format of the public and
secret key and for the fact that S1 additionally reacts to the message getx, with overwhelming
probability, we have σ1 6= σ2. Since BS is complete, with overwhelming probability, we have
Vf(pk, f(m), σ1) = Vf(pk, f(m), σ2) = 1. Then the adversary A interacts with S2 directly to get a
signature σ′ for m′. Here A behaves like an honest U2, except that it additionally sends the message
getx and learns x. Since BS is complete, with overwhelming probability, we have Vf(pk,m′, σ′) = 1.
Since y = f(x) and Vf(pk, f(m), σ1) = Vf(pk, f(m), σ2) = 1 and σ1 6= σ2, with overwhelming
probability, we have Vf2(pk2,m, σ) = 1 for σ := (σ1, σ2, x). The adversary A outputs (m,σ) and
(m′, σ′). Since A queried S only once, and because A only queries f(m) 6= m,m′ from U , this breaks
the honest-user unforgeability of BS2.

Theorem 19. If complete, blind, and strongly unforgeable interactive signature schemes exist, then
there are complete, blind, unforgeable, and strongly S + U-unforgeable interactive signature schemes
that are not honest-user unforgeable.

Proof. If complete, blind, and strongly unforgeable interactive signature schemes exist, then there
is a complete, blind, strongly unforgeable, and randomized interactive signature scheme BS (e.g.,
by applying the transformation from Section 7). From BS we construct BS2 as described at the
beginning of this section. By Lemmas 16, 17, and 18, BS2 is complete, blind, unforgeable, and
strongly S + U-unforgeable, but not honest-user unforgeable.

7 From unforgeability to honest-user unforgeability

In this section we show how to turn any unforgeable interactive signature scheme into an honest-user
unforgeable one. Our transformation is extremely efficient as it only adds some randomness to the
message. Therefore, it not only adds a negligible overhead to original scheme, but it also preserves
all underlying assumptions. The construction is formally defined in Construction 1 and depicted in
Figure 2.

Construction 1 Let BS′ = (KG′, 〈S ′,U ′〉 ,Vf ′) be an interactive signature scheme and define the
signature scheme BS through the following three procedures:

Key Generation. The algorithm KG(1λ) runs (sk′, pk′)← KG′(1λ) and returns this key-pair.
Signature Issue Protocol. The interactive signature issue protocol for message m ∈ {0, 1}∗ is

described in Figure 2.
Signature Verification. The input of the verification algorithm Vf is a public key pk, a message

m, and a signature σ′ = (σ, r). It sets m′ ← (m‖r) and returns the result of Vf ′(pk,m‖r, σ).

We first show that our transformation preserves completeness and blindness.

Lemma 20. If BS′ is a complete and blind interactive signature scheme, so is BS.

Since the proof follows easily, we omit it here.
Now, we prove that our construction turns any unforgeable scheme into an honest-user unforgeable

one.

18

Signer S(sk) User U(pk,m)

r
$← {0, 1}λ

m′ ← m‖r

S(sk) U(pk,m′)
msg1←−−−−−−−−−−−−−−

...

msgn−−−−−−−−−−−−−−→ compute σ = σ(m′)

output m,σ′ = (σ, r)

Fig. 2. Issue protocol of the blind signature scheme

Lemma 21. If BS′ is an unforgeable interactive signature scheme, then BS is an honest-user
unforgeable interactive signature scheme.

Proof. Assume for the sake of contradiction that BS is not honest-user unforgeable. Then there
exists an efficient adversary A that wins the honest-user unforgeability game with non-negligible
probability. We then show how to build an attacker B that breaks the unforgeability of BS′.

The input of the algorithm B is a public pk. It runs a black-box simulation of A and simulates
the oracles as follows. Whenever A engages in an interactive signature issue protocol with the signer,
i.e., when the algorithm A plays the role of the user, then B relays all messages between A and

the signer. If A invokes the oracle P on a message m, then B picks a random r
$← {0, 1}λ, sets

m′ ← m‖r, and engages in an interactive signature issue protocol where B runs the honest user
algorithm U ′. At the end of this protocol, the algorithm B obtains a signature σ on the message m′.
It sets σ′ ← (σ, r), stores the pair (m′, σ′) in a list L and returns σ′ together with the corresponding
transcript trans to the attacker A.

Eventually, the algorithm A stops, outputting a sequence of message/signature pairs (m∗1, σ
∗
1),

. . . , (m∗k+1, σ
∗
k+1). In this case, B recovers all message/signature pairs (m′1, σ

′
1), . . . , (m

′
n, σ

′
n) stored

in L, it parses σ∗i as (σ′i, r
′
i), it sets m̃i ← m∗i ‖r∗i and σ̃ ← σ′i for all i = 1, . . . , k + 1 and outputs

(m′1, σ
′
1), . . . , (m

′
n, σ

′
n), (m̃1, σ̃1), . . . , (m̃k+1, σ̃k+1).

Analysis. For the analysis first observe that B runs in polynomial time because A is efficient
and because the handling of all queries can be done efficiently. Suppose that A succeeds with
non-negligible probability. Then it outputs (k + 1) message/signature pairs that verify under Vf.
Since B runs the honest user algorithm to compute the signatures σ′1, . . . , σ

′
n it follows (from the

completeness) that all message/signature pairs that B returns, verify with overwhelming probability.
It is left to show that a) the algorithm B output one more message/signature pair (than queries to
the signing oracle with output ok took place) and b) all messages are distinct.

The distinctness property follows immediately from the definition of the success probability
in the honest-user unforgeability game and from the construction. More precisely, consider the
messages (m′1, . . . ,m

′
n) and (m̃1, . . . , m̃k+1), where m′i = mi‖ri and m̃j = m∗j‖r∗j . According to our

19

assumption that A succeeds, it follows that all message pairs m∗r and m∗s (for all r 6= s) differ from
each other. But then it follows easily that m̃∗r and m̃∗s are also distinct (for all r 6= s). Since the
ri are chosen randomly, the messages (m′1, . . . ,m

′
n) also differ from each other with overwhelming

probability. Now, consider the messages (m1, . . . ,mn) that A send to the oracle P. Note that all
these messages must differ from the messages (m∗1, . . . ,m

∗
k+1) returned by A by definition. This

means, however, that m̃∗r differs from m′i for all i, r.
Finally we have to show that B returns one more message/signature pair (property (a)) than

protocol executions with the signer S ′ took place (and that produced output ok). Since A wins
the game, it follows that in at most k of the protocol executions that B forwarded between A and
its external signer, the signer returned ok. B itself has executed n user instances to simulate the
oracle P. Since A outputs k + 1 message signature pair (s.t. mi 6= m∗j for all i, j) it follows that
B has asked at most n + k queries in which the signer S ′ returned ok, but B returned n + k + 1
message/signature pairs. This, however, contradicts the assumption that BS is unforgeable.

Putting together the above results, we get the following theorem.

Theorem 22. If complete, blind, and unforgeable interactive signature schemes exist, then there
are complete, blind, unforgeable, and honest-user unforgeable interactive signature schemes.

The proof of this theorem follows directly from Lemmas 20 and 21.

20

Bibliography

[Abe01] Masayuki Abe. A secure three-move blind signature scheme for polynomially many
signatures. In Birgit Pfitzmann, editor, Advances in Cryptology – EUROCRYPT 2001,
volume 2045 of Lecture Notes in Computer Science, pages 136–151, Innsbruck, Austria,
May 6–10, 2001. Springer, Berlin, Germany.

[AFG+10] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako
Ohkubo. Structure-preserving signatures and commitments to group elements. In
Advances in Cryptology – CRYPTO 2010, Lecture Notes in Computer Science, pages
209–236, Santa Barbara, CA, USA, August 2010. Springer, Berlin, Germany.

[ANN06] Michel Abdalla, Chanathip Namprempre, and Gregory Neven. On the (im)possibility of
blind message authentication codes. In David Pointcheval, editor, Topics in Cryptology –
CT-RSA 2006, volume 3860 of Lecture Notes in Computer Science, pages 262–279, San
Jose, CA, USA, February 13–17, 2006. Springer, Berlin, Germany.

[AO09] Masayuki Abe and Miyako Ohkubo. A framework for universally composable non-
committing blind signatures. In Mitsuru Matsui, editor, Advances in Cryptology –
ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer Science, pages 435–450,
Tokyo, Japan, December 6–10, 2009. Springer, Berlin, Germany.

[Bjo10] Ronny Bjones. U-prove technology overview. http://www.itforum.dk/downloads/

Ronny_Bjones_Uprove.pdf, October 2010.
[BNPS03] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko. The

one-more-RSA-inversion problems and the security of Chaum’s blind signature scheme.
Journal of Cryptology, 16(3):185–215, June 2003.

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based
on the gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor, PKC 2003:
6th International Workshop on Theory and Practice in Public Key Cryptography, volume
2567 of Lecture Notes in Computer Science, pages 31–46, Miami, USA, January 6–8,
2003. Springer, Berlin, Germany.

[BP11] Stefan Brands and Christian Paquin. U-prove cryptographic specification
v1.0. http://connect.microsoft.com/site642/Downloads/DownloadDetails.aspx?
DownloadID=26953, March 2011.

[Bra00] Stefan A. Brands. Rethinking Public Key Infrastructures and Digital Certificates: Building
in Privacy. MIT Press, Cambridge, MA, USA, 2000.

[CG08] Jan Camenisch and Thomas Groß. Efficient attributes for anonymous credentials. In
Peng Ning, Paul F. Syverson, and Somesh Jha, editors, ACM CCS 08: 15th Conference
on Computer and Communications Security, pages 345–356, Alexandria, Virginia, USA,
October 27–31, 2008. ACM Press.

[Cha83] David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L.
Rivest, and Alan T. Sherman, editors, Advances in Cryptology – CRYPTO’82, pages
199–203, Santa Barbara, CA, USA, 1983. Plenum Press, New York, USA.

[Cha84] David Chaum. Blind signature system. In David Chaum, editor, Advances in Cryptology
– CRYPTO’83, page 153, Santa Barbara, CA, USA, 1984. Plenum Press, New York, USA.

[CKW04] Jan Camenisch, Maciej Koprowski, and Bogdan Warinschi. Efficient blind signatures
without random oracles. In Carlo Blundo and Stelvio Cimato, editors, SCN 04: 4th

http://www.itforum.dk/downloads/Ronny_Bjones_Uprove.pdf
http://connect.microsoft.com/site642/Downloads/DownloadDetails.aspx?DownloadID=26953

International Conference on Security in Communication Networks, volume 3352 of
Lecture Notes in Computer Science, pages 134–148, Amalfi, Italy, September 8–10, 2004.
Springer, Berlin, Germany.

[Fis06] Marc Fischlin. Round-optimal composable blind signatures in the common reference
string model. In Cynthia Dwork, editor, Advances in Cryptology – CRYPTO 2006,
volume 4117 of Lecture Notes in Computer Science, pages 60–77, Santa Barbara, CA,
USA, August 20–24, 2006. Springer, Berlin, Germany.

[FS09] Marc Fischlin and Dominique Schröder. Security of blind signatures under aborts. In
Stanislaw Jarecki and Gene Tsudik, editors, PKC 2009: 12th International Conference
on Theory and Practice of Public Key Cryptography, volume 5443 of Lecture Notes in
Computer Science, pages 297–316, Irvine, CA, USA, March 18–20, 2009. Springer, Berlin,
Germany.

[FS10] Marc Fischlin and Dominique Schröder. On the impossibility of three-move blind signature
schemes. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume
6110 of Lecture Notes in Computer Science, pages 197–215, French Riviera, May 30 –
June 3, 2010. Springer, Berlin, Germany.

[HK07] Omer Horvitz and Jonathan Katz. Universally-composable two-party computation in
two rounds. In Alfred Menezes, editor, Advances in Cryptology – CRYPTO 2007, volume
4622 of Lecture Notes in Computer Science, pages 111–129, Santa Barbara, CA, USA,
August 19–23, 2007. Springer, Berlin, Germany.

[HKKL07] Carmit Hazay, Jonathan Katz, Chiu-Yuen Koo, and Yehuda Lindell. Concurrently-secure
blind signatures without random oracles or setup assumptions. In Salil P. Vadhan, editor,
TCC 2007: 4th Theory of Cryptography Conference, volume 4392 of Lecture Notes in
Computer Science, pages 323–341, Amsterdam, The Netherlands, February 21–24, 2007.
Springer, Berlin, Germany.

[JLO97] Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind digital signatures (ex-
tended abstract). In Burton S. Kaliski Jr., editor, Advances in Cryptology – CRYPTO’97,
volume 1294 of Lecture Notes in Computer Science, pages 150–164, Santa Barbara, CA,
USA, August 17–21, 1997. Springer, Berlin, Germany.

[KZ08] Aggelos Kiayias and Hong-Sheng Zhou. Equivocal blind signatures and adaptive UC-
security. In Ran Canetti, editor, TCC 2008: 5th Theory of Cryptography Conference,
volume 4948 of Lecture Notes in Computer Science, pages 340–355, San Francisco, CA,
USA, March 19–21, 2008. Springer, Berlin, Germany.

[Oka06] Tatsuaki Okamoto. Efficient blind and partially blind signatures without random oracles.
In Shai Halevi and Tal Rabin, editors, TCC 2006: 3rd Theory of Cryptography Conference,
volume 3876 of Lecture Notes in Computer Science, pages 80–99, New York, NY, USA,
March 4–7, 2006. Springer, Berlin, Germany.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and
blind signatures. Journal of Cryptology, 13(3):361–396, 2000.

[SU11] Dominique Schröder and Dominique Unruh. Round optimal blind signatures. Cryptology
ePrint Archive, Report 2011/264, 2011. http://eprint.iacr.org/.

[UP11] MICROSOFT U-PROVE. Microsoft u-prove ctp release 2. http://connect.microsoft.
com/site642/Downloads/DownloadDetails.aspx?DownloadID=26953, March 2011.

22

http://eprint.iacr.org/
http://connect.microsoft.com/site642/Downloads/DownloadDetails.aspx?DownloadID=26953

	Introduction
	Blind signatures
	Security of blind signatures
	Honest-user unforgeability
	Defining honest-user unforgeability
	Unforgeability does not imply honest-user unforgeability
	Strong honest-user unforgeability

	Probabilistic verification
	Adapting the definition

	S+U-unforgeability
	From unforgeability to honest-user unforgeability

