
Deterministic Identity-Based Signatures

for Partial Aggregation

Javier Herranz

INRIA Futurs, Laboratoire d’Informatique,

École Polytechnique, 91128 Palaiseau cedex, France

e-mail: herranz@lix.polytechnique.fr

Abstract

Aggregate signatures are a useful primitive which allows to aggregate into
a single and constant-length signature many signatures on different messages
computed by different users. Specific proposals of aggregate signature schemes
exist only for PKI-based scenarios. For identity-based scenarios, where public
keys of the users are directly derived from their identities, the signature schemes
proposed up to now do not seem to allow constant-length aggregation.

We provide an intermediate solution to this problem, by designing a new
identity-based signature scheme which allows aggregation when the signatures
to be aggregated come all from the same signer. The new scheme is deterministic
and enjoys some better properties than the previous proposals. We formally
prove that the scheme is unforgeable, in the random oracle model, assuming
that the Computational co-Diffie-Hellman problem is hard to solve.

1 Introduction

Identity-based (from now on, ID-based) cryptography was introduced by Shamir in
[15] as an alternative to traditional public key cryptography, based on infrastructures
(PKI). In PKI-based cryptography, each user generates on his own his secret and
public keys. A certification authority must sign a digital certificate which links the
identity of the user and his public key. The validity of this certificate must be checked
before using the public key of the user, when encrypting a message to him or when
verifying a signature from him. Obviously, the management of digital certificates
decreases the efficiency of practical implementations of public key cryptosystems.

The idea of ID-based cryptography is that the public key of any user directly
infers from his identity (e-mail address, telephone number, etc.). Later, the user
contacts with a master entity who uses some secret information to compute the
secret key related to the identity of the user. This secret key is sent to the user
throughout a secure channel. ID-based cryptography has been the object of a lot of
research during the last years, specially since the discovery that efficient ID-based
cryptosystems can be designed by using bilinear pairings, which can be implemented

1

on some elliptic curves over a finite field (see [16] for a complete bibliography of
cryptographic works based on pairings).

On the other hand, the concept of aggregate signature schemes was introduced
by Boneh et al. in [4]. The idea is that many signatures on different messages
computed by different users can be aggregated into a single signature. Later, the
correctness of all the signatures can be verified from the aggregate signature. Ideally,
the length of the aggregate signature (excluding the messages and the public keys
of the signers) should be constant, independent of the number of signed messages.
This concept is very useful in situations where a device must store many signatures,
for example routing protocols in wireless networks requiring authentication.

The only known proposals of aggregate signature schemes work in PKI-based
scenarios. Our initial goal was to design ID-based aggregate signature schemes.
However, by using the ID-based signature schemes existing in the literature (see
[15, 13, 8, 6]) this does not seem to be possible at all, because the length of the re-
sulting aggregate signatures would be linear on the number of aggregated signatures.
In order to (partially) solve this problem, we design in this work a new ID-based
signature scheme, which allows a more compact aggregation, that we denote as par-
tial: the length of the resulting aggregate signatures will not depend on the number
of signed messages, but on the number of signers. This improvement, which can be
considered in principle as a minor one, becomes very important in situations where
a device must store many signatures coming from a small set of users.

The idea of the new ID-based signature scheme is quite simple. The phase
where the master entity generates secret keys for users is probabilistic, contrary
to what happens in previous schemes; in fact, it consists in computing a Schnorr
[14] signature (R, σ) on the given identity. Later, the signature phase itself will
be deterministic: a user employs part of his secret key, the value σ to compute
a signature ω on the message, using the signature scheme of Boneh, Lynn and
Shacham [5] (from now on, denoted as BLS signature scheme), and then he appends
the other part of his secret key, R. Therefore, the final signature is the pair (R,ω).
The scheme can be implemented in groups which admit bilinear pairings. We prove
with detail that the resulting ID-based signature scheme is existentially unforgeable
under adaptive chosen message attacks in an ID-based scenario (following the model
introduced in [6]), in the random oracle model for the two employed hash functions,
and assuming the hardness of the Computational co-Diffie-Hellman problem.

The new scheme is as efficient as the previously proposed ID-based signature
schemes. Furthermore, it enjoys some new desirable properties, apart from the
possibility of partial aggregation; for example, if the master entity wants to compute
a new secret key for some user, he must not update the secret keys of the rest of
users in the system, as it happens in other approaches to ID-based signatures.

The rest of the paper is organized as follows. In Section 2 we explain the protocols
of an ID-based signature scheme and the security requirements that such schemes
must satisfy. In Section 3 we detail the design of the new ID-based signature scheme
and we formally prove its unforgeability. In Section 4 we compare the new scheme
with previous ID-based signature schemes, we explain some properties enjoyed by the

2

new scheme, and we show how the new one can be used to achieve partial aggregation
of signatures in ID-based scenarios. Finally, we conclude with a summary of the work
and some open problems in Section 5.

2 Identity-Based Signature Schemes

An ID-based signature scheme consists of the following probabilistic algorithms:

Setup: it takes as input a security parameter k and returns, on the one hand, the
system public parameters params and, on the other hand, the value master-key,
which is known only to the master entity.

Extract: it takes as inputs params, master-key and a string ID ∈ {0, 1}∗ spec-
ifying some identity; the algorithm returns a private key SKID to the user with
identity ID. This step must be done over a secure channel.

Signature: the signature algorithm takes as inputs params, a message M ∈ M
(where M is the message space specified in params), an identity ID and a secret
key SKID, and returns a signature θ for the message M .

Verification: finally, the verification algorithm takes as inputs params, a message
M , a signature θ and an identity ID; it returns 1 if the verification is correct, and
0 if not.

2.1 Correctness

We say that an ID-based signature scheme satisfies the correctness property when, for
every message M ∈ M and any signature θ =Signature(params,M, ID, SKID), it
holds Verification(params,M, θ, ID) = 1, provided that Setup(k) = (params,master-key)
and Extract(params,master-key, ID) = SKID.

2.2 Unforgeability

With respect to security, we follow the model introduced in [6], which extends to the
ID-based scenario the standard security model for signature schemes introduced in
[7]: an ID-based signature scheme is existentially unforgeable under chosen message
attacks if any probabilistic polynomial time adversary A has a negligible advantage
in the following game, that it plays against a challenger:

Setup: the challenger takes a security parameter k and runs the Setup algorithm
of the ID-based signature scheme. It gives to the adversary the resulting params.
The challenger keeps secret the master-key.

3

Queries: the adversary makes different queries to the challenger.

• Extraction queries < IDi >. The challenger responds by running algorithm
Extract of the scheme, to obtain the private key SKi which corresponds to
the identity IDi. The value SKi is sent to the adversary.

• Signature queries < IDi,Mi >. The challenger first obtains the corresponding
private key SKi by executing the algorithm Extract, and then it executes
Signature(params,Mi, IDi, SKi) = θi. The resulting signature θi is given to
the adversary.

• Hash queries. If the scheme involves some hash function Hi which is assumed
to behave as a random oracle [2] in the security proof, then the challenger must
answer queries of the adversary to this oracle, providing it with consistent and
totally random values.

All these queries can be made in an adaptive way; that is, each query may depend
on the answers obtained to the previous queries.

Forgery: the adversary A outputs a tuple (ID,M, θ). We say that A succeeds if:

• Verify(params,M, θ, ID) = 1; and

• the adversary has not requested an extraction query for ID; and

• θ has not been obtained as an answer of the challenger to a signature query
< ID,M >.

The advantage of such an adversary is defined as

AdvCMA
A (k) = Pr[A succeeds].

Definition 1. An adversary A is a (T, ε,Qi, Qe, Qs)-forger against an ID-based
signature scheme if it runs in time at most T , its advantage is at least ε, and it
is allowed to make Qi queries to the random oracle which models Hi, to make Qe

extraction queries, and to make Qs signature queries.

3 A New Deterministic ID-Based Signature Scheme

Our goal was to design aggregate signature schemes in ID-based scenarios. Since this
does not seem to be possible starting from the existing ID-based signature schemes,
we propose a new one which is suitable for aggregation of signatures coming from
the same signer.

The idea of the new scheme is quite simple: in the extract phase, the master
entity uses his secret key to compute a Schnorr [14] signature on the given identity.
This signature is the secret key of the user, who employs a part of it to compute a
BLS [5] signature on the desired message. In this way, the signature phase of the
scheme is itself deterministic, as it is the BLS signature scheme. The protocols that
take part in the new scheme are detailed below.

4

Setup: on input a security parameter k, the master entity generates two mul-
tiplicative groups G and GT of prime order q > 2k, along with a generator g of
G, such that these groups admit a pairing e : G × G → GT , which must be ef-
ficiently computable, non-degenerate (that is, e(g, g) 6= 1) and bilinear (that is,
e(ga, gb) = e(g, g)ab , for any a, b ∈ Zq).

The master entity sets the message space M = {0, 1}∗ and chooses two hash
functions H1 : {0, 1}∗ → Zq and H2 : {0, 1}∗ → G.

Finally, the master entity chooses an element x ∈ Z
∗
q at random and computes

Y = gx.
The public outputs of the protocol are params= (k, q, G, g, GT , e,H1,H2, Y).

The secret information stored by the master entity is master-key= x.

Extract: when a user with identity ID ∈ {0, 1}∗ requests for his secret key, the
master entity computes a Schnorr signature on the message ID. That is:

1. he chooses uniformly at random an element r ∈ Z
∗
q;

2. he computes the value R = gr;

3. finally, he computes the value σ = r + xH1(ID,R)mod q.

The master entity privately sends the secret key SK = (R, σ) to the user, who can
verify the correctness of the received secret key by checking if gσ = R · Y H1(ID,R).

In fact, the value R can be sent to the user throughout public channels, because
it will be later part of the (public) signatures computed by the user. Therefore, the
secret key of the user is actually limited to the value σ.

Signature: to sign a message M ∈ {0, 1}∗, a user with identity ID and secret
key SK = (R, σ) computes the value ω = H2(M, ID)σ . The signature is the pair
θ = (R,ω).

Verification: given a signature θ = (R,ω) computed by a user with identity ID
on a message M , the recipient verifies its correctness by checking if

e(ω, g) = e
(

H2(M, ID), R · Y H1(ID,R)
)

.

If the equality holds, then the output of the verification algorithm is 1 (valid
signature). Otherwise, the output is 0 (invalid signature).

3.1 Correctness of the Scheme

It is quite easy to see that this property is achieved. In effect, if a user ID receives
a correct secret key SK = (R, σ) satisfying gσ = R · Y H1(ID,R), and later this user
proceeds, as specified above, to compute a signature θ = (R,ω) on a message M as
ω = H2(M, ID)σ , then the verification equation is satisfied:

e(ω, g) = e(H2(M, ID)σ , g) = e(H2(M, ID), gσ) = e
(

H2(M, ID), R · Y H1(ID,R)
)

.

5

We have used the bilinearity property of the pairing e, which ensures in particular
that e(gab, g) = e(ga, gb) for all values a, b ∈ Zq.

3.2 Unforgeability of the Scheme

We will prove that the proposed scheme is unforgeable under adaptive chosen mes-
sage attacks, in the random oracle model for the hash functions H1 and H2, assuming
that the Computational co-Diffie-Hellman problem is hard to solve in the group G.

Definition 2. Let G and GT be two multiplicative groups with prime order q, ad-
mitting a bilinear pairing e : G × G → GT . Let g be a generator of G chosen at
random, and let a, b be two elements chosen independently and at random from Z

∗
q.

We say that an algorithm F solves the Computational co-Diffie-Hellman (co-
CDH) problem in G if it receives as input the tuple (q, G, GT , e, g, ga , gb) and outputs
the element gab.

In the proof of unforgeability, we will need a well-known result of elementary
probability (the proof can be found in [12]).

Lemma 1. (The Splitting Lemma). Let X and Y be two finite sets where two
probability distributions are considered. Let A ⊂ X×Y be a set such that Pr [A] ≥ γ,
where the probability distribution in X×Y is the joint probability distribution induced
by the distributions in X and Y . For any α < γ, let us define

B = {(x, y) ∈ X × Y | Pr
y′∈Y

[

(x, y′) ∈ A
]

≥ γ − α} and B̄ = X × Y − B,

then the following statements hold:

1. Pr [B] ≥ α.

2. for any (x, y) ∈ B, Pry′∈Y [(x, y′) ∈ A] ≥ γ − α.

3. Pr [B|A] ≥ α/γ.

We will prove that a hypothetic successful attack against our ID-based signature
scheme could be used to construct an algorithm which solves the co-CDH problem
with non-negligible probability and in polynomial time. Since this is assumed to
be unfeasible, we conclude that there cannot exist successful attacks against our
scheme, and so it is secure.

Theorem 1. Let A be a (T, ε,Q1, Q2, Qe, Qs)-forger against our ID-based signature
scheme, where the groups G and GT have prime order q. Then the co-CDH problem
can be solved in G with probability ε′ and within time T ′ satisfying

ε′ ≥

(

q − 1

q

)3 ε2

16ê4Q1(Qe + 1)2(Qs + 1)2
and T ′ ≤ 2T+Texp (2Qe + 4Qs + 2Q1 + 3Q2) ,

where Texp denotes the time needed to perform a modular exponentiation in G and
ê is the base of natural logarithms.

6

Proof. We are going to construct a probabilistic polynomial time Turing machine
F which will use the attacker A as a sub-routine in order to solve a given instance
of the Computational co-Diffie-Hellman problem. Therefore, F will try to perfectly
simulate the environment of A.

The machine F receives the public data (q, G, GT , e, g, ga, gb), and its goal is to
compute the value gab. The public key of the master entity is defined to be Y = ga

and is sent to the attacker A. After that, F runs the attacker A against the ID-
based signature scheme, answering to all the queries that A makes. To do this, F
maintains three tables TAB1, TAB2 and TABSK, which are updated as explained below.
Let µ and δ be two real parameters in the interval (0, 1) that will be specified later.

First query involving IDi. The first time F receives a query from A involving
an identity IDi, it chooses a bit ci ∈ {0, 1} such that Pr[ci = 0] = µ. According to
the result of this choice, F proceeds as follows:

• If ci = 0, then F chooses σi, h1i ∈ Zq independently and at random; later, it
computes Ri = gσi · Y −h1i . Then F stores the tuple (IDi, Ri, h1i) in the table
TAB1, and stores the tuple (ci, IDi, Ri, h1i, σi) in the table TABSK.

• If ci = 1, then F chooses Ri ∈ G and h1i ∈ Zq independently and at random;
then it stores the tuple (IDi, Ri, h1i) in the table TAB1, and stores the tuple
(ci, IDi, Ri, h1i, σi) in the table TABSK, where σi =⊥ meaning that this value is
unknown by F .

Hash queries to H1. These queries are answered in the standard way when
considering the random oracle model: when A makes a query (IDj , Rj) to H1, the
machine F looks for (IDj , Rj) in the table TAB1. If it is already there, then F
answers the stored value h1j . Otherwise, F chooses at random h1j ∈ Zq, sends it to
A and stores the new tuple (IDj , Rj , h1j) in TAB1.

Hash queries to H2. When A makes a query (Mi, IDi) to the oracle which models
the behavior of the hash function H2, the machine F first looks for (Mi, IDi) in
the table TAB2. If it is already there, then the stored value h2i is answered to A.
Otherwise, F chooses ti ∈ Z

∗
q at random, and chooses a bit di ∈ {0, 1} according to

the distribution Pr[di = 0] = δ. If di = 0, then F defines h2i = gti . If di = 1, then
F defines h2i = (gb)ti . The machine F stores the tuple (di,Mi, IDi, h2i, ti) in the
table TAB2 and returns the value h2i to A.

Extraction queries. When A asks for the secret key corresponding to an identity
IDi, the machine F looks for IDi in the table TABSK. If it is not already there, then
this is the first query involving identity IDi; in this case, F can impose ci = 0,
proceed as explained above and store the resulting tuple (ci, IDi, Ri, h1i, σi) in the
table.

Anyway, if ci = 0, the pair SKi = (Ri, σi) is returned to A. Otherwise, if ci = 1,
the machine F halts.

7

Signature queries. A can ask for a valid signature for pairs (Mi, IDi) of its
choice. Without loss of generality, we can assume that A has queried before this
pair (Mi, IDi) to the oracle for H2. To answer the signature query, the machine
F looks for the entry (ci, IDi, Ri, h1i, σi) in the table TABSK and for the entry
(di,Mi, IDi, h2i, ti) in the table TAB2. We consider three cases.

• If ci = 0, then F can use the secret key pair SKi = (Ri, σi) to compute a valid
signature for (Mi, IDi) and return it to A.

• If ci = 1 and di = 0, then we have that h2i = gti . In this case, F computes
the value

ωi =
(

Ri · Y
h1i

)ti

and returns the valid signature θi = (Ri, ωi) to A.

• Finally, if ci = 1 and di = 1, which happens with probability (1 − µ)(1 − δ),
then the machine F halts.

A first forgery. Provided the machine F does not halt, the environment of A
is perfectly simulated; in this case, the machine A will produce with probability at
least ε a valid forged signature (M, ID,R, ω) satisfying

e(ω, g) = e
(

H2(M, ID), R · Y H1(ID,R)
)

.

Note that the probability that F does not halt when asking extraction and signature
queries is µQe · (1 − (1 − µ)(1 − δ))Qs . For simplicity, we consider a more simple
lower bound: this probability is greater than µQeδQs .

We need that the forged signature (M, ID,R, ω) satisfies that, in the correspond-
ing entry (c, ID,R, h1, σ) in the table TABSK, the bit c is equal to 1. This happens
with probability 1−µ, and in this case we can be sure that the value h1 = H1(ID,R)
has been chosen after the value R (note that this is not true when the bit c is 0).

We denote by χ the whole set of random tapes that take part in an attack by A,
with the environment simulated by F , but excluding the randomness related to the
oracle H1. The success probability of A in forging a valid signature scheme is then
taken over the randomness (χ,H1).

In an execution of the attacker A, we use the notation Q1,1,Q1,2, . . . ,Q1,Q1 for
the different queries that A makes to the random oracle H1, and we denote by
ρ = (ρ1, . . . , ρQ1) the list of the Q1 answers of the random oracle H1. So we can see
an instantiation of the random oracle H1 as a random choice of such a vector ρ.

If A produces a valid forged signature (M, ID,R, ω), by the ideal randomness
of the oracle H1, the probability that A has not asked to this oracle for the corre-
sponding tuple (ID,R), and so A must have guessed the corresponding output, is
less than 1

q . We define β = ∞ in this case; otherwise, β denotes the index of the
query where (ID,R) was asked. That is, Q1,β = (ID,R).

We denote by S the set of successful executions of A, with F simulating its
environment, and such that c = 1 and β 6= ∞. We also define the following subsets

8

of S: for every i = 1, 2, . . . , Q1, the set Si contains the successful executions such
that c = 1 and β = i. This gives us a partition {Si}i=1,...,Q1 of S in exactly Q1

classes.
Summing up, the probability ε̃ that an execution (χ,H1) of A with the environ-

ment simulated by F results in a valid forgery with β 6= ∞ and where the bit c is
equal to 1, is

ε̃ = Pr[(χ,H2) ∈ S] ≥ µQeδQsε(1 − µ)

(

1 −
1

q

)

.

The oracle-replay technique. At this moment, we use a well-known technique
(see [12], for example) which consists in repeating the attack A, simulated by F ,
with the same random tapes but with a different instantiation of the random oracle
for H1, from the query Q1,β = (ID,R) on.

We define the set of indexes which are more likely to appear as

I = {i such that Pr[(χ,H1) ∈ Si | (χ,H1) ∈ S] ≥
1

2Q1
}.

And the corresponding subset of successful executions as SI = {(χ,H1) ∈ Si such
that i ∈ I}. For a specific index i ∈ I, the following inequality holds:

Pr[(χ,H1) ∈ Si] = Pr[(χ,H1) ∈ S] · Pr[(χ,H1) ∈ Si | (χ,H1) ∈ S] ≥ ε̃ ·
1

2Q1
.

Lemma 2. It holds that Pr[(χ,H1) ∈ SI | (χ,H2) ∈ S] ≥ 1/2.

Proof. Since the sets Si are disjoint, we can write

Pr[(χ,H1) ∈ SI | (χ,H1) ∈ S] =
∑

i∈I

Pr[(χ,H1) ∈ Si | (χ,H1) ∈ S] =

1 −
∑

i/∈I

Pr[(χ,H1) ∈ Si | (χ,H1) ∈ S].

Since the complement of I contains at most Q1 indexes, we have that this probability
is greater than 1 − Q1 ·

1
2Q1

= 1/2.

We come back to the first execution of A with the environment simulated by F .
With probability at least ε̃, such an execution (χ,H1) results in a valid forgery with
β 6= ∞ and c = 1. In this case, applying Lemma 2, we know that this successful
execution belongs to SI with probability at least 1/2. If this happens, then β ∈ I
and so Pr[Sβ] ≥ ε̃/2Q1.

Now we split H1 as (H1β− ,H1β+), where H1β− = (ρ1, . . . , ρβ−1) corresponds
to the answers of all the queries to H1 that happen before the query Q1,β, and
H1β+ = (ρβ, . . . , ρQ1) corresponds to the rest of answers.

We apply the Splitting Lemma (Lemma 1), taking X = (χ,H1β−), Y = H1β+,
A = Sβ, γ = ε̃

2Q1
and α = ε̃

4Q1
. The lemma says that there exists a subset of

executions Ωβ such that

Pr[(χ,H1) ∈ Ωβ | (χ,H1) ∈ Sβ] ≥
α

γ
=

1

2

9

and such that, for any (χ,H1) ∈ Ωβ:

Pr
H̃1β+

[(χ,H1β− , H̃1β+) ∈ Sβ] ≥ γ − α =
ε̃

4Q1
.

Running A again. With probability at least ε̃
2 , the first execution (χ,H1β− ,H1β+)

of A simulated by F is successful (with bit c = 1) and the index β belongs to the
set I. Furthermore, in this case we have that (χ,H1β− ,H1β+) ∈ Ωβ with probability
at least 1/2.

If F repeats this simulated execution of A with fixed (χ,H1β−) and randomly

chosen H̃1β+ = (ρ̃β, . . . , ρ̃Q1) ∈ (Zq)
Q1−β+1, then we know that (χ,H1β− , H̃1β+) ∈ Sβ

and furthermore ρ̃β 6= ρβ with probability at least ε̃
4Q1

(

1 − 1
q

)

. Here ρβ denotes the

answer to the query Q1,β in the first execution of the attack.
This means that the second execution of A, with a different instantiation H̃1 of

the hash function H1, provides a new valid forged signature (M̃ , ˜ID, R̃, ω̃) such that
Q1,β = (˜ID, R̃). Recall that the forged signature obtained in the first execution
is denoted as (M, ID,R, ω). Since the attacks are exactly equal until the query
Q1,β = (ID,R), we have that ˜ID = ID and R̃ = R. Furthermore, the answers of
the oracle to this query are different, so h1 = H1(ID,R) 6= H̃1(ID,R) = h̃1.

Now let us consider the corresponding entries (d,M, ID, h2, t) and (d̃, M̃ , ID, h̃2, t̃)
in the table TAB2 corresponding to the two forged signatures in the two executions
of A simulated by F . With probability (1− δ)2 we have that d = d̃ = 1. This means
that h2 = H2(M, ID) = (gb)t and h̃2 = H2(M̃ , ID) = (gb)t̃. In this case, considering
the two verification equations satisfied by the two forged signatures (M, ID,R, ω)
and (M̃ , ID,R, ω̃), and taking into account that Y = ga, we have

e(ω, g) = e
(

(gb)t , R · (ga)h1

)

,

e(ω̃, g) = e
(

(gb)t̃ , R · (ga)h̃1

)

.

Raising the second equation to t/t̃ and dividing then the two equations, we obtain

e(ω/ω̃t/t̃, g) = e
(

(gb)t , (ga)h1−h̃1

)

.

By the non-degeneration property of the bilinear pairing e, this equality implies
that ω/ω̃t/t̃ = (gab)t(h1−h̃1), so the solution of the given instance of the Computa-
tional co-Diffie-Hellman problem is finally

gab =

(

ω

ω̃t/t̃

)
1

t(h1−h̃1)

.

Revisiting all the intermediate probabilities, we have that the total probability
ε′ of solving the co-CDH problem has been

ε′ ≥
ε̃

2
·
1

2
·

ε̃

4Q1
·
q − 1

q
· (1 − δ)2 ≥

ε̃2

16Q1
· (1 − δ)2 ·

q − 1

q
≥

10

≥ µ2Qeδ2Qs(1 − µ)2(1 − δ)2
(

q − 1

q

)3 ε2

16Q1
.

The values of the parameters µ and δ which maximize this expression are µ =
Qe

Qe+1 and δ = Qs

Qs+1 . With this choice, the final expression is

ε′ ≥
1

(Qe + 1)2
1

(Qs + 1)2

(

q − 1

q

)3 ε2

16ê4Q1
,

where ê is the base of natural logarithms.
With respect to the execution time T ′ of the solver F of the co-CDH problem, it

is easy to see that the bound T ′ ≤ 2T + Texp (2Qe + 4Qs + 2Q1 + 3Q2) is satisfied,
where Texp is the time needed to compute a modular exponentiation in G.

4 Comparisons and Applications

We can compare our scheme with previously proposed ID-based signature schemes,
such as the original RSA-based one in [15] or the ones in [13, 8, 6], with respect to
efficiency, security and applications.

4.1 Efficiency

The reductions in the security proof of our scheme is far from being tight, as it
happens in the case of the schemes in [15, 8, 6]. This is due to the fact that the
security proofs of all these schemes employ the oracle-replay techniques (following
the ideas of [12]). This leads to results of the following type, for the schemes in
[15, 8, 6]: if there exists a (T, ε,Qi, Qe, Qs)-forger against the corresponding ID-
based signature scheme, then some hard computational problem (in this case, either
the RSA or the CDH problem) can be solved in time T ′ = O(T + Qi + Qe + Qs)

and with probability ε′ = O
(

ε2

QeQi

)

. In the case of our scheme, the reduction that

we have have proved is even less tight, since the relation is ε′ = O
(

ε2

Q2
eQ2

sQi

)

. Note,

however, that the factor Q2
s can be removed from this relation if we apply to our

scheme the techniques introduced by Katz and Wang in [9], at the cost of increasing
by one bit the length of the resulting signatures.

For the scheme designed in [13], tight security reductions are possible as shown in
[10]. See also [1] for a complete work about the security of identity-based signature
schemes.

In all the previously cited schemes [15, 13, 8, 6], the basic idea is the opposed
as in our scheme: the deterministic process to generate secret keys from identities
consists in computing a FDH-RSA [3] or BLS [5] signature on the identity, whereas
the signature phase is probabilistic, consisting in the application of some generic
(as defined in [12]) signature scheme. As a result, the final signature on a message
M has the form (R,ω), where R is a new value chosen at random for each new
signature.

11

In the case of our scheme, the probabilistic extraction phase is a bit more costly,
but the deterministic signature phase can be run more efficiently, since it only con-
sists in computing a hash value and a modular exponentiation. This makes sense in
many real situations, where the signature phase is run more often than the extrac-
tion phase. Furthermore, recall that in our scheme the final signature on a message
M by some user with identity ID has the form (R,ω), where the value R is fixed for
this user, independently of the signed message. This means that in situations where
ID has to sign a lot of messages for the same(s) receiver(s), he can send (R,ω1)
for the first message M1, but later he can send only the value ωi for the following
messages Mi, if the receivers are supposed to store the value R.

With respect to the verification of signatures, the efficiency of the new scheme
is the same as in the most efficient ID-based schemes previously proposed: the most
costly operation is the evaluation of two bilinear pairings.

4.2 Updating Secret Keys

The new approach to ID-based signatures that we propose in this work has some
advantages. The main one, which was the initial motivation for this work and
which is explained in the next section, is the computation of partially aggregated
signatures.

A second advantage is the flexibility that has the master entity to update secret
keys of the users in the system. Let us first consider the typical approach to ID-based
signatures: the secret key SKID = xH1(ID) for a user with identity ID is a BLS
signature on the message ID, computed by the master entity by using his secret
key x ∈ Zq and the public hash function H1 : {0, 1}∗ → G. What happens if the
secret key SKID is compromised before its expiry date, for example because of an
attack or an accidental exposure? If the master entity wants this user to stay active
in the system, then he must provide a new secret key to him. But to do this, the
only solution consists in changing either his secret key x or the public hash function
H1. Both solutions imply that the secret keys of all the users in the system must be
computed and distributed again.

This problem disappears with our approach, because the Extract phase of our
ID-based signature scheme is probabilistic: the secret key for an identity ID is a
Schnorr (probabilistic) signature SKID = (R, σ) obtained by the master entity by
choosing at random a ∈ Zq and then by computing R = ga and σ = a+xH1(ID,R).
If this secret key is compromised, the master entity can compute and distribute a
new secret pair (R′, σ′) for ID just by choosing a different random value a′. In
this way, the rest of users can keep their secret keys, because the parameters of the
master entity remain unchanged.

For the same reason, the global security of our approach is higher than in the
typical one, provided the master entity deletes from his memory (just after sending
SKID = (R, σ) to the user ID) the values a and σ that he obtains during the
generation of SKID. In this case, even if the secret key x of the master entity
is compromised, the secret key value σ of ID remains secure, because an attacker
cannot obtain it from the knowledge of the values x,R, ID. Therefore, the user

12

ID could still sign messages in a secure way, despite the master entity being out of
service for a moment.

4.3 Signatures with Partial Aggregation

The concept of aggregate signature schemes, introduced in [4], is very useful in
network applications requiring authentication, for example e-commerce or routing
protocols in wireless networks. The goal is to store many signatures without em-
ploying too much memory space. To do this, aggregate signatures allow to combine
n different signatures θi on n different messages Mi by n (possibly different) users,
and produce a single aggregate signature θ. The idea is that the length of θ should
be constant, independent of the number n of aggregated signatures. Note, however,
that the stored information will be always linear on the number of messages, since
the identities (or public keys) of the signers and the messages themselves must be
stored.

In [4] the authors propose a specific scheme based on the BLS signature scheme,
for PKI-based scenarios. The common parameters of the scheme are the groups
G = 〈g〉 and GT of order q, the bilinear pairing e : G×G → GT and a hash function
H : {0, 1} → G. Each user Ui chooses his secret key as a random value xi ∈ Z

∗
q;

the matching public key is Yi = gxi . To sign a message Mi, the user Ui computes
θi = H(Mi)

xi . To verify the correctness of such a signature, the recipient of the
message checks if the equality e(θi, g) = e(H(Mi), Yi) holds or not.

To aggregate a set {θ1, θ2, . . . , θn} of n valid signatures on messages {M1,M2, . . . ,Mn}
computed respectively by users with public keys {Y1, Y2, . . . , Yn}, one computes the
value

θ =

n
∏

i=1

θi.

In effect, it is possible to verify if θ contains the n valid signatures, by checking the
equation

e(θ, g) =

n
∏

i=1

e(H(Mi), Yi).

The same idea can be applied to the Full Domain Hash RSA signature scheme
[3], but in this case only signatures coming from the same signer can be aggregated
(what we will call partial aggregation). In [11], a general construction of sequential
aggregate signature schemes is proposed, where the order in which signatures are
aggregated is important.

If we try to extend the idea of aggregate signatures to identity-based scenarios, we
find some problems. Considering previous ID-based signature schemes (like [15, 13,
8, 6]), we have that the signature on a message Mi has the form θi = (Ri, ωi). Let us
assume that we have n different signatures {θi}1≤i≤n on n messages {Mi}1≤i≤n. It is
not difficult to see that the values {ωi}1≤i≤n can be aggregated into a single value ω =

∏

1≤i≤n
ωi as before. However, the values {Ri}1≤i≤n can not be aggregated, because

they all must be explicitly known to verify the correctness of the aggregate signature.

13

Therefore, the length of the resulting aggregate signature (ω,R1, R2, . . . , Rn) would
be linear on the number of aggregated signatures.

The design of our new ID-based signature scheme does not allow to totally solve
this problem, but it allows to provide an intermediate solution, that we call partial
aggregation: all the signatures coming from the same signer can be aggregated into
a constant-length signature. In this way, the length of an aggregate signature will
be linear on the number of signers, and not on the number of signed messages. This
solution can represent an important improvement in situations where some device
must store many signatures coming from a small set of signers, for example in small
networks, restricted e-mail applications, transactions between big companies, etc.

Specifically, let us assume that someone wants to aggregate n =
∑

1≤i≤m ni sig-
natures on n messages from m users with identities {IDi}1≤i≤m, where the ni mes-
sages and signatures coming from IDi are denoted as {Mij}1≤j≤ni

and {θij}1≤j≤ni
.

Recall that the signatures have the form θij = (Ri, ωij). Then one computes the
value

ω =

m
∏

i=1

n1
∏

j=1

ωij,

and defines the aggregate signature to be the tuple θ = (ω,R1, R2, . . . , Rm). To
verify the correctness of such a signature, one must check if the following equality
holds:

e(θ, g) =

m
∏

i=1

e
(

n1
∏

j=1

H2(IDi,Mij) , Ri · Y
H1(IDi,Ri)

)

.

Security. Extending the model in [4], we can define the security of an ID-based
aggregate signature scheme by considering the following game played by an adversary
against a challenger: the challenger executes Setup phase of the ID-based scheme,
then he gives params to the adversary and keeps secret the master-key. After that,
the adversary can make hash queries (if the security proof is done in the random
oracle model), extract queries < ID >, standard signature queries < ID,M >
and aggregate signature queries < (IDi1 ,Mi1), . . . , (IDis ,Mis) >, for inputs that it
adaptively chooses. The challenger uses his knowledge of the master-key to properly
answer all these queries.

Finally, the adversary outputs an aggregate signature θ on a set of n pairs of
identities and messages W = {(ID1,M1), (ID2,M2), . . . , (IDn,Mn)}. The adver-
sary succeeds if:

(i) the signature θ is valid; and

(ii) there is at least one pair (IDi,Mi) ∈ W such that: < IDi > has not been
queried to the extract oracle and (IDi,Mi) is not included in any query made
to the standard or aggregate signature oracles.

An aggregate signature scheme is secure if any such adversary running against
the scheme in polynomial time has a negligible probability of success (in the security
parameter of the scheme).

14

In the case of our scheme, by using very similar techniques to those in [4] and
those in the proof of Theorem 1 above, it is possible to reduce the security of the
resulting aggregate signature scheme to the hardness of the Computational co-Diffie-
Hellman problem.

5 Conclusion

We propose in this paper a new identity-based signature scheme which is determin-
istic. This fact makes it different from the previously proposed ID-based signature
schemes [15, 13, 8, 6], and provides it with some good properties with respect to
efficiency and length of the signatures. Furthermore, the new scheme allows partial
aggregation: all the signatures coming from the same signer can be aggregated into
a single one which has the same length as the original signatures. The security of the
new scheme is formally proved by reduction to the difficulty of the Computational
co-Diffie-Hellman problem.

Two problems related to this work remain open: on the one hand, to find a tighter
security reduction for our deterministic ID-based signature scheme, if possible; on
the other hand, to design aggregate signature schemes for identity-based scenarios
where the length of the aggregate signature is totally constant, depending of neither
the number of signed messages nor the number of signers.

References

[1] M. Bellare, C. Namprempre and G. Neven. Security proofs for identity-based
identification and signature schemes. Proceedings of Eurocrypt’04, LNCS 3027,
Springer-Verlag, pp. 268–286 (2004).

[2] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for
designing efficient protocols. Proceedings of 1st Conference on Computer and

Communications Security, ACM, pp. 62–73 (1993).

[3] M. Bellare and P. Rogaway. The exact security of digital signatures - How to
sign with RSA and Rabin. Proceedings of Eurocrypt’96, LNCS 1070, Springer-
Verlag, pp. 399–416 (1996).

[4] D. Boneh, C. Gentry, B. Lynn and H. Shacham. Aggregate and verifiably en-
crypted signatures from bilinear maps. Proceedings of Eurocrypt’03, LNCS
2656, Springer-Verlag, pp. 416–432 (2003).

[5] D. Boneh, B. Lynn and H. Shacham. Short signatures from the Weil pairing.
Journal of Cryptology, Vol. 17 (4), Springer-Verlag, pp. 297–319 (2004). An
extended abstract had appeared in the Proceedings of Asiacrypt’01.

[6] J.C. Cha and J.H. Cheon. An identity-based signature from gap Diffie-Hellman
groups. Proceedings of PKC’03, LNCS 2567, Springer-Verlag, pp. 18–30 (2002).

15

[7] S. Goldwasser, S. Micali and R. Rivest. A digital signature scheme secure
against adaptative chosen-message attacks. SIAM Journal of Computing, 17

(2), pp. 281–308 (1988).

[8] F. Hess. Efficient identity based signature schemes based on pairings. Proceed-

ings of Selected Areas in Cryptography’02, LNCS 2595, Springer-Verlag, pp.
310-324 (2003).

[9] J. Katz and N. Wang. Efficiency improvements for signature schemes with tight
security reductions. Proceedings of the 10th Conference on Computer and Com-

munication Security, ACM, pp. 155–164 (2003).

[10] B. Libert and J.J. Quisquater. The exact security of an identity based signature
and its applications. Preprint available at http://eprint.iacr.org/2004/102
(2004).

[11] A. Lysyanskaya, S. Micali, L. Reyzin, H. Shacham. Sequential aggregate signa-
tures from trapdoor permutations. Proceedings of Eurocrypt’04, LNCS 3027,
Springer-Verlag, pp. 74–90 (2004).

[12] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, Vol. 13 (3), Springer-Verlag, pp. 361–396
(2000).

[13] R. Sakai, K. Ohgishi and M. Kasahara. Cryptosystems based on pairing. Pro-

ceedings of the Symposium on Cryptography and Information Security, SCIS’00,
Okinawa, Japan, pp. 26–28 (2000).

[14] C.P. Schnorr. Efficient signature generation by smart cards. Journal of Cryp-

tology, Vol. 4, Springer-Verlag, pp. 161–174 (1991).

[15] A. Shamir. Identity-based cryptosystems and signature schemes. Proceedings

of Crypto’84, LNCS 196, Springer-Verlag, pp. 47–53 (1984).

[16] The Pairing-Based Crypto Lounge, Web page maintained by Paulo Barreto:

http://planeta.terra.com.br/informatica/paulobarreto/pblounge.html

16

