
Idletime Scheduling with
Preemption Intervals

Lars Eggert (NEC) and Joe Touch (USC/ISI)

20th ACM Symposium on Operating Systems
Principles, Brighton, United Kingdom

October 26, 2005

2005-10-26Lars Eggert <eggert@netlab.nec.de>2

Motivation

• use available bandwidth “in the background”

• best effort vs. “least effort”

• IP differentiated services extensions OK

• but what if the bottleneck is in the host?

• diffserv forwarding at routers is ineffective if
there are no queues

• need diffserv-like mechanism in the OS

2005-10-26Lars Eggert <eggert@netlab.nec.de>3

Challenges
• system bottleneck resource depends on

current workload & changes dynamically

• scheduler of current bottleneck resource
dominates overall system behavior

• don’t want to change all schedulers & queues

• some may be in hardware

• don’t want to modify apps for FG or BG

2005-10-26Lars Eggert <eggert@netlab.nec.de>4

Idletime Service
• system-wide, least-priority service class

• default service class = FG
(inverse of traditional QoS)

• in some sense, generalization of POSIX “idprio”
CPU scheduling

• ideal: utilize all available capacity of all resources for
BG work – with zero impact on FG work

• talk focuses on temporally shared resources, paper
discusses ideas for spatially shared (storage)

2005-10-26Lars Eggert <eggert@netlab.nec.de>5

Applications & Benefits
• prefetching/caching = reduce access costs

• disk: block replication, arm movement

• network: IKE, DNS, PMTU, “prefetch means”

• currently: conservative limits to avoid overload

• system optimization & maintenance

• fsck, defrag, virus scan, update, etc.

• process/data migration systems

• Condor, Sprite, x@home, Mether, etc.

• coarse-grained, single-resource, remote benefit

2005-10-26Lars Eggert <eggert@netlab.nec.de>6

Goals

• ideal: utilize all available capacity of all resources for
BG work with zero impact on FG

• difficult: high preemption costs without hardware
support, always some preemption costs

• primary goal: minimize FG impact

• or people won’t use it

• secondary goal: reasonable BG throughput

2005-10-26Lars Eggert <eggert@netlab.nec.de>7

Idletime Principles
1. isolation

• BG side effects interfere with FG

• can affect FG correctness & performance

2. prioritization

• never serve BG if FG queued

3. preemptability

• preempt/abort BG when FG arrives

• preemption cost – main factor delaying FG

2005-10-26Lars Eggert <eggert@netlab.nec.de>8

Preemption Cost
• BG → FG switch: delay

main cause of FG performance reduction

• limit preemption
cost = limit FG
impact

2005-10-26Lars Eggert <eggert@netlab.nec.de>9

Work Conservation
• never remain idle with work queued

(and never destroy completed work)

• challenge: OS + hardware = queue hierarchy

• hierarchy level implies priority

• causes lower-level BG to delay higher-level FG

2005-10-26Lars Eggert <eggert@netlab.nec.de>10

Idea
• work conservation for BG creates idletime

worst-case

• preemption before each FG request

• up to 50% impact when active BG must
run to completion

• idea: relax work conservation for BG only

• limit preemptions = limit FG impact

2005-10-26Lars Eggert <eggert@netlab.nec.de>11

Preemption Interval

• preemption interval = period of relaxed BG
work conservation

• new FG → start immediately

• BG → if in PI, delay until PI ends

• enter PI
before each
FG → BG
switch

2005-10-26Lars Eggert <eggert@netlab.nec.de>12

Behavior
• PI creates bursts of FG requests

• max. 1 preemption/burst

• limits FG impact

2005-10-26Lars Eggert <eggert@netlab.nec.de>13

Idletime Scheduler
• priority queue + PI scheduling

events
f = FG in queue
b = BG in queue
t = PI expires
i = queue empty

states
F = FG active
B = BG active
P = idle in PI
I = idle

2005-10-26Lars Eggert <eggert@netlab.nec.de>14

Consequences

• idletime scheduling suspends BG work at
higher levels

• can’t interfere with FG at lower levels

• can be implemented as localized
modifications – extend traditional OS

• how long to suspend BG work conservation
for?

2005-10-26Lars Eggert <eggert@netlab.nec.de>15

longer PI

utilize less idle capacity

reduce FG impact

decrease BG performance

shorter PI

utilize more idle capacity

higher FG impact

increase BG performance

PI Length

• parameter: controls scheduler

• FG impact ~ BG performance

• effective PI length?

2005-10-26Lars Eggert <eggert@netlab.nec.de>16

Short PIs
• too short = ineffective

• mechanism degenerates into priority queue

• no cost limit = no FG impact reduction

2005-10-26Lars Eggert <eggert@netlab.nec.de>17

Long PIs
• too long = waste idle capacity

• poor BG throughput

• limited usefulness

2005-10-26Lars Eggert <eggert@netlab.nec.de>18

Effective PI Lengths

• factors: resource, workload, user policy

• lower bound: create FG burst length > 1

• otherwise: no cost amortization

• upper bound: FG inter-arrival gap

• otherwise: BG starvation

2005-10-26Lars Eggert <eggert@netlab.nec.de>19

Future Extensions

• automatic PI length adaptation

• preemptions before FG → lengthen PI

• FG without preemption → shorten PI

• TCP-like AIMD scheme: preemption ~ loss

• tolerate limited FG impact

• skip PI after FG burst = increase BG throughput

2005-10-26Lars Eggert <eggert@netlab.nec.de>20

Implementation

• localized modifications to FreeBSD 4.7

• disk: replace disksort()

• network: new ALTQ discipline, tag packets

• begin PI with FG request, not at end = simplify code

• expectation: PI < service time ineffective

• PI expires while FG active, system degenerates
into priority queue

2005-10-26Lars Eggert <eggert@netlab.nec.de>21

PI length:
variable

FG intensity:
variable

Experimental Setup

(intensity = % cycles used to generate load)

BG intensity:
fixed unlimited

2005-10-26Lars Eggert <eggert@netlab.nec.de>22

Metrics

• FG/BG throughput

• normalize against baseline (= no BG)

• contour plot: lighter shades = better

2005-10-26Lars Eggert <eggert@netlab.nec.de>23

Expectations

2005-10-26Lars Eggert <eggert@netlab.nec.de>24

Disk Setup

• UFS file system, random data

• single disk, isolated ATA channel

• 8.2GB Western Digital Caviar AC28200

• 15ms maximum seek + 5ms latency
(mean)

• FG + BG randomly read 512-byte blocks

• Pentium III SMP, 733Mhz, 512MB RAM

2005-10-26Lars Eggert <eggert@netlab.nec.de>25

Disk: Random Access
• FG > 80%, BG ≤ 90% of baseline throughput

• 20% impact ~ 1 BG request (20ms seek)

2005-10-26Lars Eggert <eggert@netlab.nec.de>26

Network Setup

• direct, isolated LAN link (cross-over cord)

• Intel PRO/1000F 1Gb/s Ethernet fiber

• source + sink hosts

• Pentium III SMP, 733Mhz, 512MB RAM

• combinations of UDP + TCP

2005-10-26Lars Eggert <eggert@netlab.nec.de>27

Network: UDP/UDP
• FG > 90% + BG ≤ 90% of baseline

• except: low intensity = short FG burst

2005-10-26Lars Eggert <eggert@netlab.nec.de>28

Network TCP/UDP
• worst case: FG TCP vs. greedy BG UDP

• PI length ~ RTT? (1.25ms minimum RTT)

2005-10-26Lars Eggert <eggert@netlab.nec.de>29

Related Work
• realtime systems – resource reservations

• computation deadlines, predictability

• network diffserv/QoS – many mechanisms

• L2: drop priority flag (ATM, FR)

• L3: IP TOS, diffserv, intserv, prop-share

• L4: TCP-LP, TCP Nice, MulTCP

• L7: Mozilla, BITS, LSAM, push-polite

2005-10-26Lars Eggert <eggert@netlab.nec.de>30

Related Work (2)
• idle capacity consumers

• process & data migration

• prefetching & caching

• anticipatory scheduling

• disk performance through locality

• MS Manners

• reactive monitoring, app cooperation

• other OS can be configured/extended (Scout, etc.)

2005-10-26Lars Eggert <eggert@netlab.nec.de>31

Additional Work
• paper

• ideas for extending this to storage resources

• idletime networking improvements (inbound
processing)

• elsewhere

• analytical model of idletime scheduling
predicts behavior with >85% accuracy

• experimental analysis of FG/BG latency

2005-10-26Lars Eggert <eggert@netlab.nec.de>32

• generic idletime scheduler based on relaxing
work conservation for BG work during
preemption intervals

• resource + workload independent

• disk + network implementation

• FG > 80%

• BG < 90%
 baseline throughput

Conclusion

