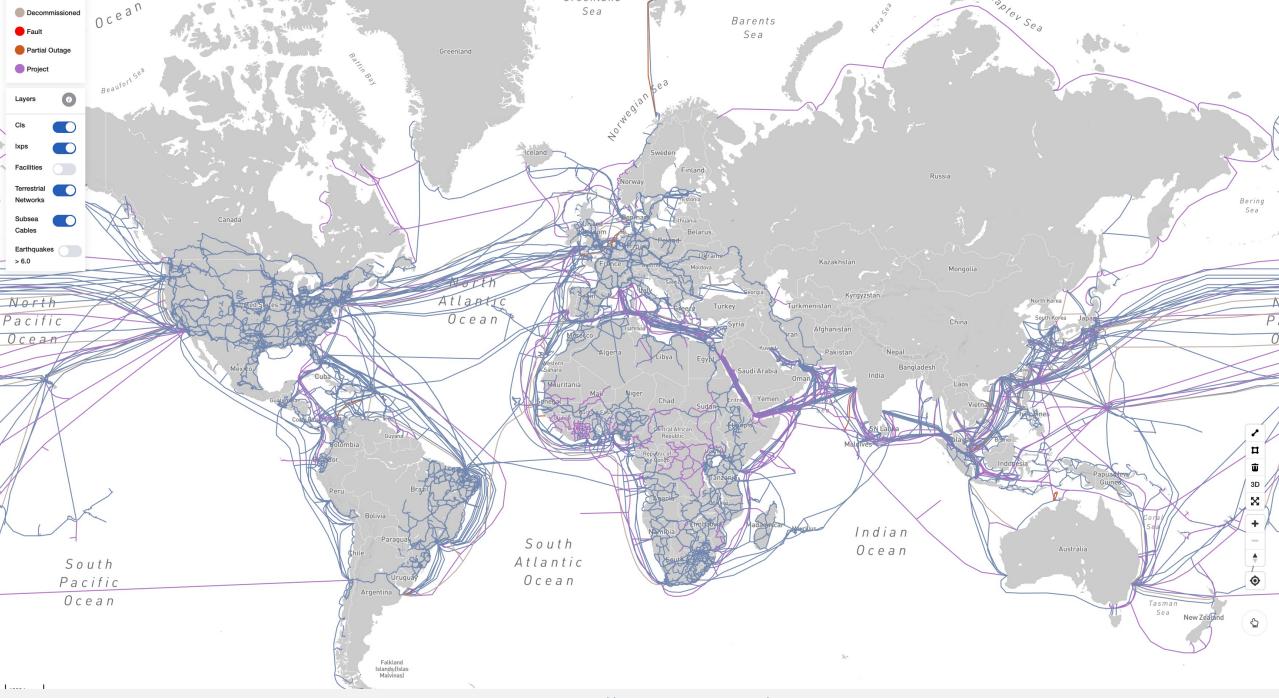
Exploring (a bit of the) Internet Infrastructure


Lars Eggert

lars@eggert.org

2023-6-18

About

- Distinguished Engineer for Internet Standards at <u>NetApp</u>
- Current chair of the Internet Engineering Task Force (<u>IETF</u>)
 - Many other roles since starting at IETF in 2000
- Ph.D. in Computer Science from the University of Southern California (<u>USC</u>) in 2003
- Principal Scientist at <u>Nokia</u> and served on the corporation's CTO and CEO Technology Councils
- 2009-2014, Adjunct Professor at <u>Aalto University</u>
- 2003-2006, senior researcher at <u>NEC</u> Labs

| IETF Work Areas

Operations & Managemen (OPS) network manageme operationa best pract

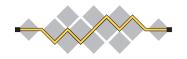
& nt	Applications & Realtime Media (ART) application protocols over end-to-end transports	Security (SEC security & prive at all layers &		
ient & nal	Transport (TSV) end-to-end transmission mechanisms over network paths	for all protocols		
ctices	Routing (RTG) stable paths across dynamically interconnected networks			
	Internet (INT) how to carry IP packets over different link layers			

Link Layers (IEEE, 3GPP, etc.)

Security (SEC)

security & privacy

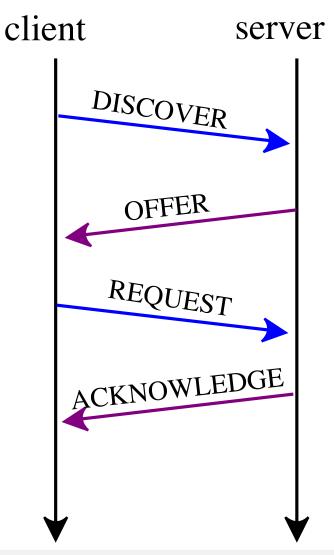
IETF Key Technologies and Protocols


Oper Man (OP YΑ NE S R

erations & nagement PS)	Applications & Realtime Media (ART) HTTP, voice & video, SIP, RTP, email	Security (SEC) TLS IPsec
ANG NETCONF SNMP	Transport (TSV) TCP, UDP, QUIC, congestion control	PGP S/MIME PKIX
RADIUS	Routing (RTG) BGP, OSPF, IS-IS, MPLS, RSVP, VPNs, SFC, multicast	
	Internet (INT) IPv6, IPv4, DNS, DHCP, NTP, mobility, multihoming	
	Link Layers (IEEE, 3GPP, etc.)	

Internet-Infrastructure-Related Organizations

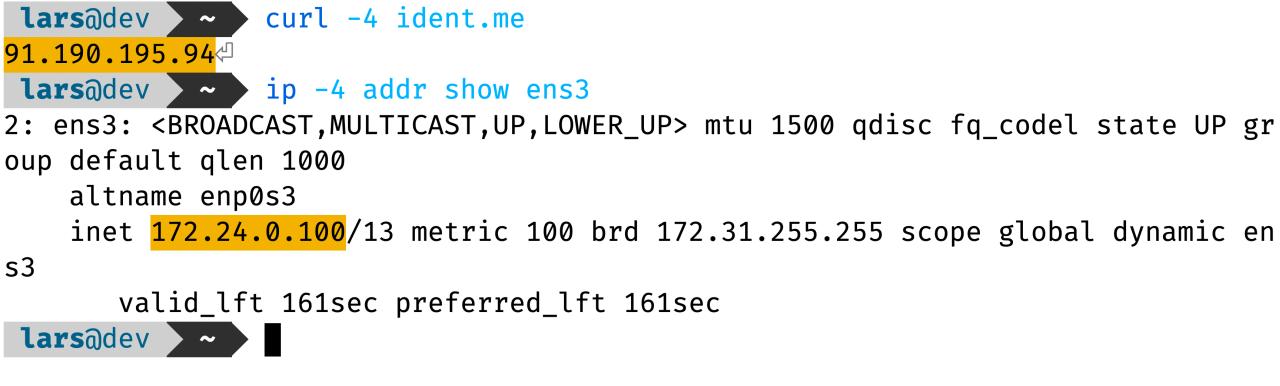
- Internet Engineering Task Force (IETF)
 - Develops and maintains Internet standards (RFCs) and protocols
- Internet Assigned Numbers Authority (IANA)
 - Coordination of DNS root, IP addresses, & other Internet resources
- Regional Internet Registry (RIR)
 - Manages allocation and registration of IP addresses within a region
- Internet Corporation for Assigned Names and Numbers (ICANN)
 - Coordinates DNS functions; contracts with registries (ccTLDs & others) and registrars (sellers of DNS names)


lars@dev ~	route -n						
Kernel IP routi	ng table						
Destination	Gateway	Genmask	Flags	Metric	Ref	Use	Iface
0.0.0	172.24.0.1	0.0.0	UG	100	0	0	ens3
172.24.0.0	0.0.0	255.248.0.0	U	100	0	0	ens3
172.24.0.1	0.0.0	255.255.255.255	UH	100	0	0	ens3
lars@dev ~							

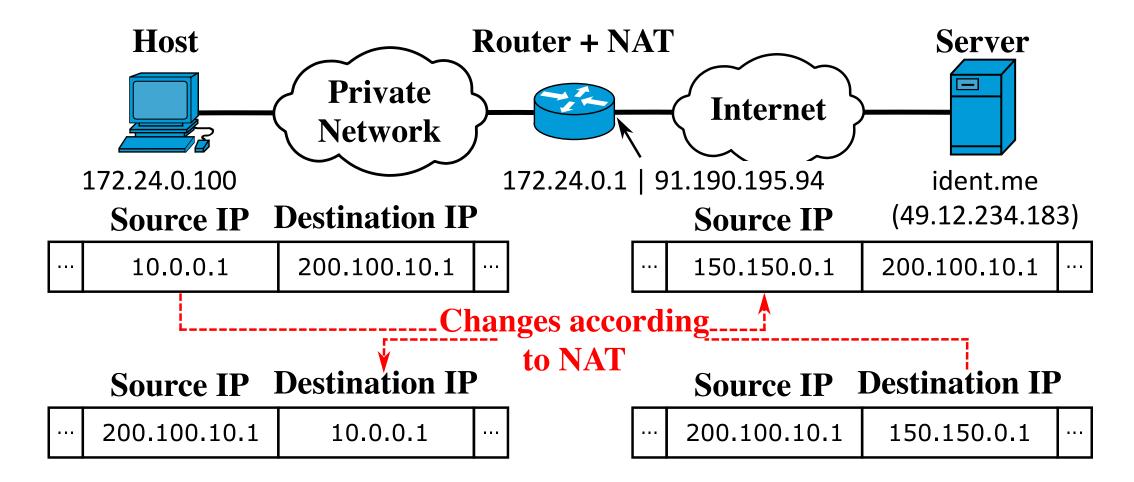

```
lars@dev ~ sudo tcpdump -i ens3 -v -n src port bootps
tcpdump: listening on ens3, link-type EN10MB (Ethernet), snapshot length 26214
4 bytes
17:38:19.820045 IP (tos 0x0, ttl 64, id 56276, offset 0, flags [none], proto U
DP (17), length 328)
    172.24.0.1.67 > 172.24.0.100.68: BOOTP/DHCP, Reply, length 300, xid 0xa6ef
96d3, secs 3323, Flags [none]
          Client-IP 172.24.0.100
          Your-IP 172.24.0.100
          Client-Ethernet-Address 00:a0:98:11:cc:4f
          Vendor-rfc1048 Extensions
           Magic Cookie 0x63825363
           DHCP-Message (53), length 1: ACK
            Server-ID (54), length 4: 172.24.0.1
            Lease-Time (51), length 4: 300
           Subnet-Mask (1), length 4: 255.248.0.0
            Default-Gateway (3), length 4: 172.24.0.1
           Domain-Name-Server (6), length 4: 172.24.0.1
            Hostname (12), length 3: "dev"
            Domain-Name (15), length 10: "eggert.org"
```

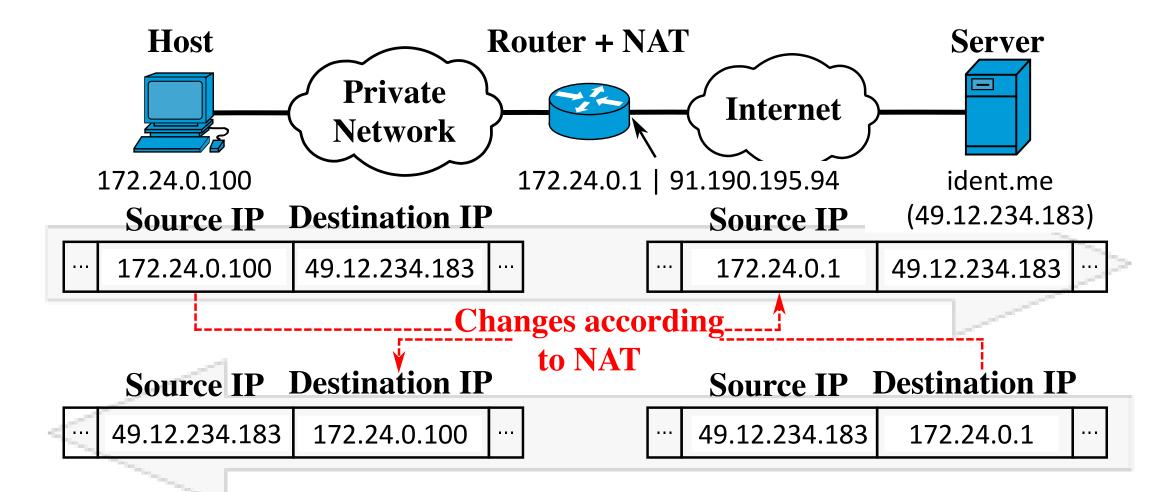
Dynamic Host Configuration Protocol (DHCP)

- Each of the (many) DHCP deployment is independent
- No coordination between deployments
- Hence, not typically thought of as Internet infrastructure



"The Dynamic Host **Configuration Protocol** (DHCP) is a network management protocol used og Internet Protocol (IP) ngtworks for automatically assigning IP addresses and other communication parameters to devices connected to the network using a <u>client-server</u> architecture."


[Wikipedia]



Network Address Translation (NAT)

Network Address Translation (NAT)

Michel Bakni, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

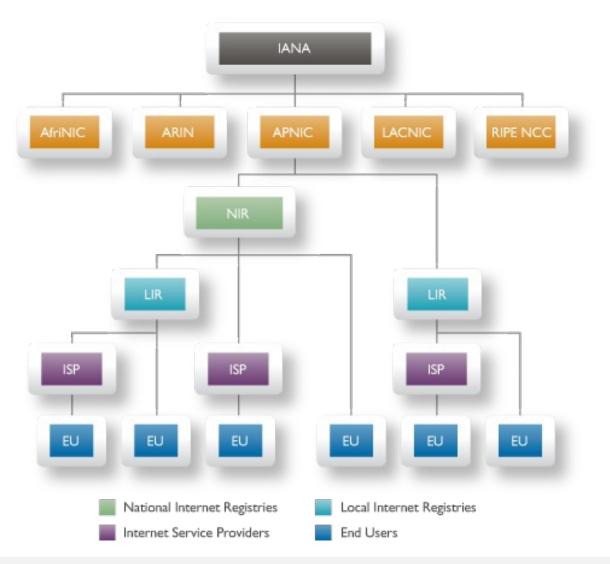
Network Address Translation (NAT)

- Each of the (many) NAT deployment is independent
- No coordination between deployments
 - Exception: NAT inside/behind NAT
 - This requires extensive coordination/configuration and is difficult to operate
- Servers inside/behind NAT require careful configuration
 - Port forwarding
 - Reverse proxy
- Not typically thought of as Internet infrastructure

larsadev v ip -6 addr show ens3

2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP gr oup default qlen 1000

altname enp0s3


inet6 2a00:ac00:4000:400:2a0:98ff:fe11:cc4f/64 scope global dynamic mngtmp
addr noprefixroute

valid_lft 85885sec preferred_lft 13885sec inet6 fe80::2a0:98ff:fe11:cc4f/64 scope link valid_lft forever preferred_lft forever

```
larsadev > ip -6 addr show ens3
2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP gr
oup default qlen 1000
   altname enp0s3
   inet6 <a>2a00:ac00:4000:400:2a0:98ff:fe11:cc4f</a>/64 scope global dynamic mngtmp
addr noprefixroute
      valid_lft 85885sec preferred_lft 13885sec
   inet6 fe80::2a0:98ff:fe11:cc4f/64 scope link
      valid_lft forever preferred_lft forever
lars@dev ~ curl -6 ident.me
2a00:ac00:4000:400:2a0:98ff:fe11:cc4f
lars@dev ~
```

IP Address Space Management

- IANA (Internet Assigned Numbers Authority) allocates address space to RIRs
- **RIR** (Regional Internet Registry) redistributes in its geographic region
- Customers (ISPs and end users) obtain address space from their RIR

APNIC. Understanding address management hierarchy. https://www.apnic.net/manage-ip/manage-resources/address-management-objectives-2/address-management-objectives/

whois -I <mark>91.190.195.94</mark> grep -Ev '^% ^\$' head -n 14
whois.ripe.net
<mark>91.0.0.0 - 91.255.255.255</mark>
RIPE NCC
ALLOCATED
whois.ripe.net
2005-06
IANA
91.190.192.0 - 91.190.199.255
FI-SELTIMIL-20101014
FI
ORG-SO31-RIPE
ST5534-RIPE
ST5534-RIPE
ALLOCATED PA

lars@dev **>** sudo traceroute -A -T -n ietf.org traceroute to ietf.org (104.16.44.99), 30 hops max, 60 byte packets 1 91.190.195.93 [AS51728] 6.541 ms 6.415 ms 6.377 ms 2 * * * 3 * * * 4 * * * 5 * * * 6 62.115.44.164 [AS1299] 11.150 ms 11.307 ms 11.193 ms 7 62.115.122.147 [AS1299] 12.151 ms 12.548 ms 12.447 ms 8 213.248.94.67 [AS1299] 12.403 ms 12.338 ms 12.561 ms 9 104.16.44.99 [AS13335] 12.193 ms 12.432 ms 12.071 ms lars@dev ~

Autonomous System (AS)

- The Internet is a network of networks
- Each such network is also sometimes called an

Autonomous System

- Because they retain internal autonomy
- These ASs connect together, often at Internet Exchange Points (IXPs)
- ASs can be peers or have provider/customer relationships
 - This is individually negotiated

ASN lookup for AS51728

AS Number>	51728
AS Name>	SELTIMIL-AS, FI
Organization —>	Seltimil Oy (FI-SELTIMIL-20101222)
Abuse contact —>	abuse@seltimil.fi
AS Reg. date>	2010-10-03 12:42:11
Peering @IXPs>	FICIX 2 (Helsinki): IPv4+IPv6 MTU 1500

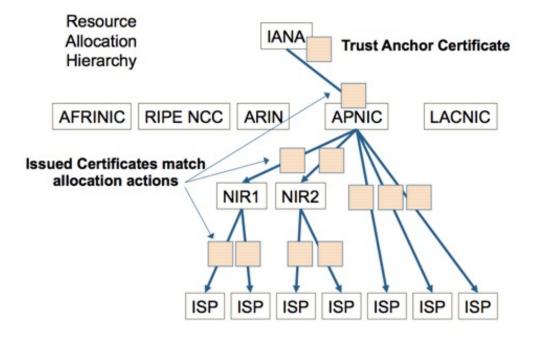
ASN lookup for AS1299

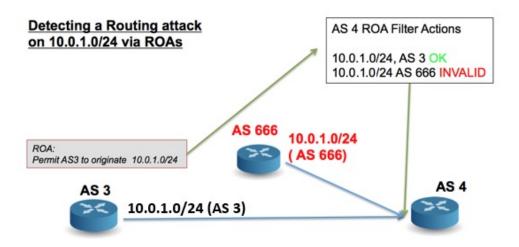
AS Number	—>	1299
AS Name	—>	TWELVE99 Arelion, fka Telia Carrier, SE
Organization	>	Arelion Sweden AB (SE-TWELVE99-20040510)
Abuse contact	>	abuse@twelve99.net
AS Reg. date	>	2020-12-06 01:41:55
Peering @IXPs	>	NONE


ASN lookup for AS13335

AS Number>	13335
AS Name>	CLOUDFLARENET, US
Organization —>	CLOUDFLARENET (Cloudflare, Inc.)
Abuse contact —>	abuse@cloudflare.com
AS Reg. date>	2010-07-15 02:12:53
Peering @IXPs>	1-IX UA • 48 IX • ABQIX • AKL-IX (Auckland NZ): AKL-IX • AM
S-IX • AMS-IX BA •	AMS-IX Caribbean • AMS-IX Chicago • AMS-IX Hong Kong • AMS-
IX Lagos: Main • A	ny2Denver • Any2East • Any2West • APE • AR-IX Cabase • Balca
n-IX • BALT-IX: BA	LT-IX • BBIX Chicago • BBIX Dallas • BBIX Fukuoka • BBIX Hon
• •	on • BBIX Marseille • BBIX Osaka • BBIX Singapore • BBIX Tok
yo • BBIX US-West	• BCIX: BCIX Peering LAN • Beirut IX • BelgiumIX: Peeringlan
 BFIX Ouagadougou 	u: BFIX Ouaga2000 Peering LAN • Bharat IX - Mumbai: Bharat I

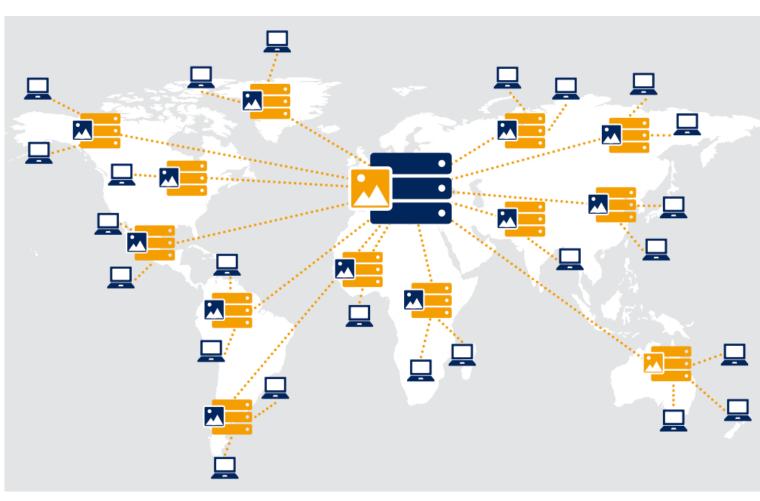
X Peering LAN • BiX • B-IX • BIX.BG: Main • BIX Jakarta • BNIX • Borneo-IX • B oston Internet Exchange • btIX: TTPL-LAN • CAS-IX: Main • CATNIX • CHC-IX (Chr


Border Gateway Protocol (BGP)


- ASs exchange IP address reachability information via BGP
- Routers participating in the global BGP exchange then compute preferred next hops
- End system traffic is then forwarded to the computed next hop at each router
- traceroute makes these paths visible

RPKI & BGPsec

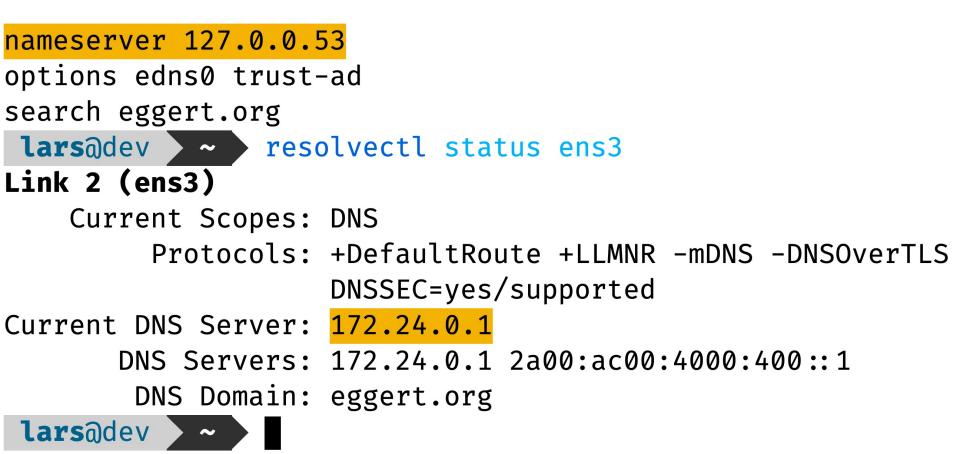
- RPKI connects AS numbers (etc.) to a trust anchor
- Certificate structure mirrors the way in which Ass (etc.) are distributed
- BGPsec provides security for the path of ASes through which a BGP update message propagates



pi@raspberrypi:~ \$ sudo traceroute -A -T -n ietf.org

pi@raspberrypi :~ \$ sudo traceroute -A -T -n ietf.org
traceroute to ietf.org (104.16.45.99), 30 hops max, 60 byte packets
1 192.168.2.1 [*] 0.550 ms 0.363 ms 0.335 ms
2 62.155.246.159 [<mark>AS3320</mark>] 1.675 ms 1.621 ms 1.481 ms
3 217.0.203.22 [<mark>AS3320</mark>] 4.835 ms 217.5.67.242 [AS3320] 4.988 ms 4.621 ms
4 80.156.162.178 [<mark>AS3320</mark>] 15.259 ms 15.189 ms 15.067 ms
5 * * *
6 195.219.148.122 [<mark>AS6453</mark>] 5.221 ms * *
<mark>7</mark> 162.158.108.2 [<mark>AS13335</mark>] 4.886 ms 162.158.84.53 [<mark>AS13335</mark>] 5.438 ms 172.70
.244.3 [<mark>AS13335</mark>] 9.078 ms
8 104. <mark>16.45.9</mark> 9 [<mark>AS13335</mark>] 3.779 ms 4.520 ms 4.320 ms
pi@raspberrypi:~ \$

Content Delivery Network (CDN)


- A CDN replicates content and services at many different points on the Internet
- Improves user experience, performance and resiliency
- Different types of CDNs
 - DNS-based, anycast
 - For web and other content
 - From hyperscalars and specialized providers

pi@raspberrypi:~ \$ ping -4 -n -c 10 eggert.org

pi@raspberrypi:~ \$ ping -4 -n -c 10 eggert.org PING (91.190.195.94) 56(84) bytes of data. 64 bytes from 91.190.195.94: icmp_seq=1 ttl=54 time=46.5 ms 64 bytes from 91.190.195.94: icmp_seq=2 ttl=54 time=46.0 ms 64 bytes from 91.190.195.94: icmp_seq=3 ttl=54 time=45.9 ms 64 bytes from 91.190.195.94: icmp_seq=4 ttl=54 time=45.8 ms 64 bytes from 91.190.195.94: icmp_seq=5 ttl=54 time=46.1 ms 64 bytes from 91.190.195.94: icmp_seq=6 ttl=54 time=46.0 ms 64 bytes from 91.190.195.94: icmp_seq=7 ttl=54 time=46.1 ms 64 bytes from 91.190.195.94: icmp seq=8 ttl=54 time=46.2 ms 64 bytes from 91.190.195.94: icmp_seq=9 ttl=54 time=46.0 ms 64 bytes from 91.190.195.94: icmp_seq=10 ttl=54 time=45.9 ms

— ping statistics — 10 packets transmitted, 10 received, 0% packet loss, time 9013ms rtt min/avg/max/mdev = 45.757/46.050/46.472/0.181 ms pi@raspberrypi:~ \$ lars@dev ~ cat /etc/resolv.conf | grep -v '^#'

<pre>lars@dev</pre>					
<pre>;; QUESTION SECTION: ;ietf.org.</pre>		IN	ANY		
;; ANSWER SECTION:					
ietf.org.	294	IN	А	104.16.44.99	
ietf.org.	294	IN	А	104.16.45.99	
ietf.org.	294	IN	AAAA	2606:4700::6810:2c63	
ietf.org.	294	IN	AAAA	2606:4700::6810:2d63	
ietf.org.	105	IN	MX	<pre>0 mail.ietf.org.</pre>	

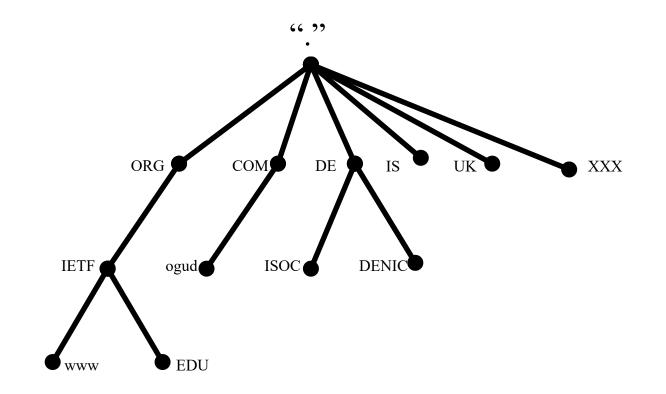
Received 135 bytes from 127.0.0.53#53 in 4 ms

larsadev ~ whois -I ietf.org | head -n 20

% IANA WHOIS server % for more information on IANA, visit http://www.iana.org % This query returned 1 object

refer: whois.publicinterestregistry.org

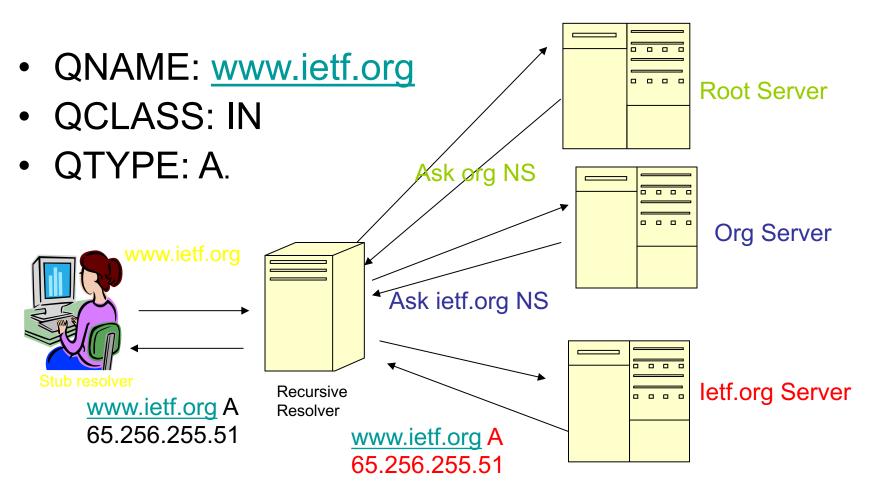
domain: ORG


organisation:	Public Interest Registry (PIR)
address:	11911 Freedom Drive,
address:	10th Floor, Suite 1000
address:	Reston VA 20190
address:	United States of America (the)

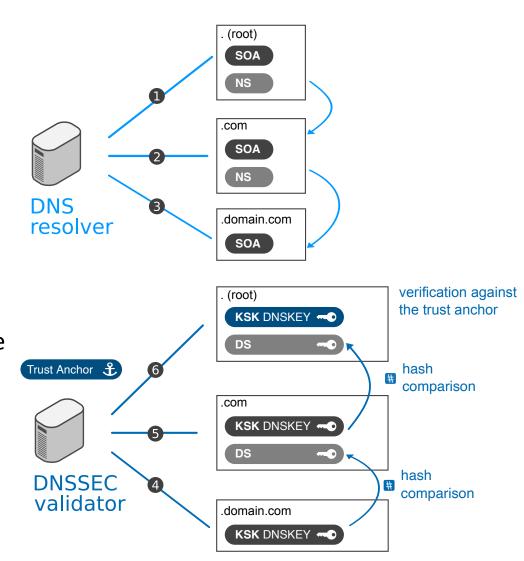
contact: administrative name: Director of Operations, Compliance and Customer Support organisation: Public Interest Registry (PIR) address: 11911 Freedom Drive, address: 10th Floor, Suite 1000

What is DNS?

- DNS is one of the core Internet Protocols required for operation of the Internet
- Routing and DNS are the most important infrastructure protocols as without them nothing else will work
- DNS Provides:
 - Mapping from names to addresses
 - Mechanism to store and retrieve information in a global data store

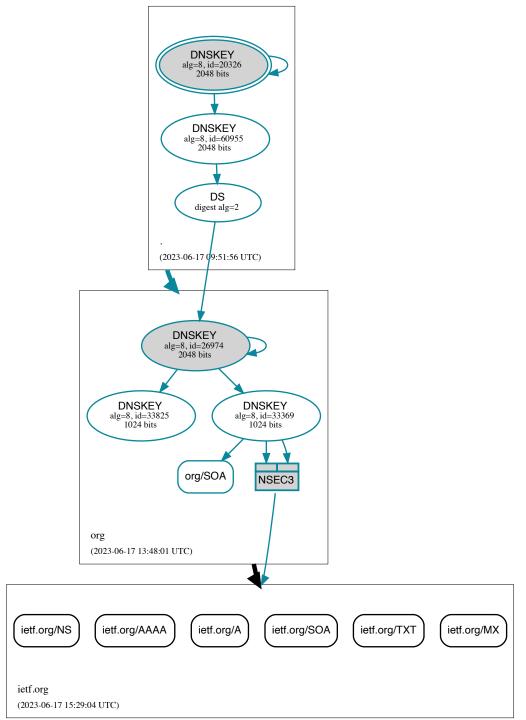

DNS tree

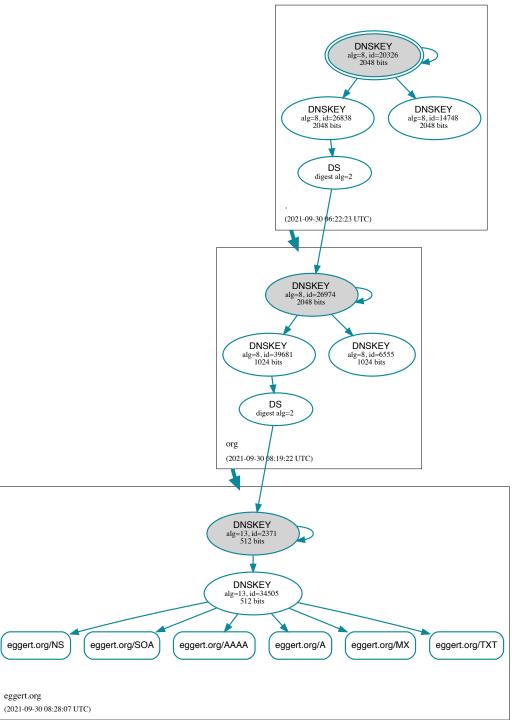
DNS Elements


- Resolver
 - stub: simple, only asks questions
 - recursive: takes simple query and makes all necessary steps to get the full answer,
- Server
 - authoritative: the servers that contain the zone file for a zone, one Primary, one or more Secondaries,
 - caching: A recursive resolver that stores prior results and reuses them
 - Some perform both roles at the same time.

DNS query

DNSSEC


- **DNSSEC** provides data authentication and integrity, and authenticated denial of existence
 - but not availability or confidentiality
- DNSSEC digitally signs records with public-key cryptography
- A DNSKEY record is authenticated via a chain of trust
 - Starting with verified public keys for the DNS root zone
 = the trusted third party
- Domain owners generate their own keys publish them to their registrar
- Which in turn pushes them to the zone operator who signs and publishes them in DNS



lars @dev	~ de	elv ietf.org			
; <mark>unsigned</mark>	answer				
ietf.org.		300	IN	А	104.16.44.99
ietf.org.		300	IN	А	104.16.45.99

lars@dev ~ de	<pre>lv ietf.org</pre>			
; unsigned answer				
ietf.org.	300	IN	A	104.16.44.99
ietf.org.	300	IN	А	104.16.45.99
lars@dev ~ de	lv eggert.or	.'g		
; fully validated				
eggert.org.	49	IN	А	91.190.195.94
eggert.org.	49	IN	RRSIG	A 13 2 300 20230618202915 2023
0616182915 34505 e	ggert.org. l	_CnxqYet	rTROnuYwC ^y	XaX91lrT8tDmfda11/AfWBB988XpwM31
ZORnHkG sWjtC6IrNX	GWBlviuYW99J	pCUbMGc	A=	

Conclusion

Covered

- IP addresses
- ASs
- BGP, ~BGPsec
- DNS, ~DNSSEC
- WHOIS
- (DHCP, NAT, CDN)

Not Covered

- Network Time Protocol (NTP)
- HTTPS, TLS & WebPKI
- Global services at content layer
- Physical layer (fiber, cables, satellites, etc.)

Thank you!

Questions later? <a>lars@eggert.org