
Towards securing the
Internet of Things with QUIC

Lars Eggert
Technical Director, Networking
2020-2-23

QUIC: a fast, secure, evolvable transport protocol for the Internet

§ Fast better user experience than TCP/TLS for HTTP and other content

§ Secure always-encrypted end-to-end security, resist pervasive monitoring

§ Evolvable prevent network from ossifying, can deploy new versions easily

§ Transport support TCP semantics & more (realtime media, etc.)
provide better abstractions, avoid known TCP issues

2 © 2020 NetApp, Inc. All rights reserved.

UDP CC TLS HTTP

What motivated QUIC?

3 © 2020 NetApp, Inc. All rights reserved.

The Internet hourglass

§ Inspired by OSI “seven-layer” model
§ Minus presentation (6) and session (5)

§ “IP on everything”
§ All link tech looks the same (approx.)

§ Transport layer provides
communication abstractions to apps
§ Unicast/multicast
§ Multiplexing
§ Streams/messages
§ Reliability (full/partial)
§ Flow/congestion control
§ …

Classical version

© 2020 NetApp, Inc. All rights reserved. 4

Steve Deering. Watching the Waist of the Protocol Hourglass.
Keynote, IEEE ICNP 1998, Austin, TX, USA. http://www.ieee-
icnp.org/1998/Keynote.ppt

email WWW phone...

SMTP HTTP RTP...

TCP UDP…

IP

ethernet PPP…

CSMA async sonet...

copper fiber radio...

Layer 3

Layer 4

Layer 7

Layer 2

Layer 1

Boardwatch Magazine, Aug. 1994.

§ The waist has split: IPv4 and IPv6

§ TCP is drowning out UDP

§ HTTP and TLS are de facto part of
transport

§ Consequence: web apps on IPv4/6

The Internet hourglass
2015 version (ca.)

© 2020 NetApp, Inc. All rights reserved. 5

 ip4
ip6

Link

TCP

Applications

TLS
HTTP

In the meantime...
• The interface at the endpoint is

largely the same as it has been:

• "The network is a file descriptor"

• The waist of the hourglass has crept
up to HTTP: even less flexible.

• Transport is squeezed in the middle.

• Way out: applications implement
their own new transport features.

3

Layer 3

Layer 4

Layer 7

Layer 1/2

B. Trammell and J. Hildebrand, "Evolving Transport in the Internet," in IEEE
Internet Computing, vol. 18, no. 5, pp. 60-64, Sept.-Oct. 2014.

§ Transport slow to evolve (esp. TCP)
§ Fundamentally difficult problem

§ Network made assumptions about what
(TCP) traffic looked like & how it behaved

§ Tried to “help” and “manage”
§ TCP “accelerators” & firewalls, DPI, NAT, etc.

§ The web happened
§ Almost all content on HTTP(S)
§ Easier/cheaper to develop for & deploy on
§ Amplified by mobile & cloud
§ Baked-in client/server assumption

What happened?

Internet
ossification

Slow
transport
evolution

Middlebox
boom

Rise of
the web

© 2020 NetApp, Inc. All rights reserved. 6

TCP is not aging well

§ We’re hitting hard limits (e.g., TCP option space)
§ 40B total (15 * 4B - 20)
§ Used: SACK-OK (2), timestamp (10), window Scale (3), MSS (4)
§ Multipath needs 12, Fast-Open 6-18…

§ Incredibly difficult to evolve, c.f. Multipath TCP
§ New TCP must look like old TCP, otherwise it gets dropped
§ TCP is already very complicated

§ Slow upgrade cycles for new TCP stacks (kernel update required)
§ Better with more frequent update cycles on consumer OS
§ Still high-risk and invasive (reboot)

§ TCP headers not encrypted or even authenticated – middleboxes can still meddle
§ TCP-MD5 and TCP-AO in practice only used for (some) BGP sessions

© 2020 NetApp, Inc. All rights reserved. 7

By Ere at Norwegian Wikipedia (Own work) [Public domain], via Wikimedia
Commons

Middleboxes meddle

Algorithm 1. TCP acceleration algorithm

1: p ¼ receive packetðÞ
2: f ¼ classifyðpÞ
3: if ðis TCPðpÞÞ then
4: if ðis SYNðpÞÞ then
5: if ð!record existsðf ÞÞ then
6: establish buffer spaceðf Þ
7: end if
8: sendðSYN=ACK;upstreamÞ
9: sendðp;downstreamÞ

10: start timerðpÞ
11: else if ððis DATAðpÞÞ&&ðrecord existsðf ÞÞÞ then
12: if ð!buffer fullðf ÞÞ then
13: storeðp; f Þ
14: sendðACK;upstreamÞ
15: if ðoutstanding ACKsðf Þ þ size of ðpÞ <

max windowðf Þ then
16: sendðp;downstreamÞ
17: start timerðpÞ
18: end if
19: end if
20: else if ððis ACKðpÞÞ&&ðrecord existsð!f ÞÞÞ then
21: stop timerð!pÞ
22: releaseð !ðpÞ;!f Þ
23: while ðoutstanding ACKsð!f Þþ

size of ðnext stored packetð!f ÞÞ <
max windowð!f Þ do

24: sendðnext stored packetð!f Þ;!f Þ
25: start timerðnext stored packetð!f ÞÞ
26: end while
27: else if ððis FINðpÞÞ&&ðrecord existsðf ÞÞÞ then
28: sendðFIN=ACK; upstreamÞ
29: sendðp;downstreamÞ
30: start timerðpÞ
31: mark buffer for removalðf Þ
32: else
33: handle exceptionðp; f Þ
34: end if
35: else
36: sendðp; downstreamÞ
37: end if
38:
39: when ðtimeoutðpÞÞ
40: retransmitðpÞ

The flow control window size that is advertised by an accelera-
tor node is the amount of free buffer space up to half of the total
buffer space allocated to the connection (maximum 64 kB). In

addition to the state maintenance as described above, a RTT esti-
mator needs to be maintained for each flow according to the TCP
specification. The timers for each transmitted packet can be imple-
mented efficiently as described in [22]. Since each connection re-
quires buffer space, it might not be possible to accelerate all
connections traversing an accelerator node. In such a case, only a
subset of connections is accelerated (not considered in Algorithm
1). This can be performed as part of the packet classification step
in Line 2.

3.2.3. NP software components
Fig. 3 shows the architecture of a TCP acceleration node on a

network processor. The NP implements two processing paths for
packets. Packets that cannot be accelerated due to resource con-
straints or non-TCP protocols are forwarded without any modifica-
tion. In order to identify such packets, it is necessary to have a
packet classification mechanism (e.g., simple 5-tuple hash func-
tion). Packets that are accelerated require Layer 3 and Layer 4 pro-
cessing, which involves IP input processing, TCP acceleration, and
IP output processing. The TCP accelerator has access to a large
memory to store TCP state (connection state as well as data buf-
fers). It is important to note that packets which are processed in
the TCP accelerator are not addressed to the router system that
performs the acceleration. Instead, the router transparently inter-
cepts these packets and performs the acceleration. The end sys-
tems are also unaware of this processing that is performed by
the router.

3.2.4. Processing and memory resources
TCP processing requires additional computational and memory

resources as compared to plain IP forwarding. The processing con-
sists of IP input and output processing as well as TCP processing.
The total processing requirements in terms of the number of pro-
cessing cycles are presented in Section 5. The memory require-
ments are determined by the size of the TCP connection state
(tens of bytes) and the TCP buffer size (tens of kilobytes). The buf-
fer requirements for a TCP accelerator are determined by the max-
imum window size that is allowed on a connection. The accelerator
needs to reliably buffer all packets that have not been acknowl-
edged by the receiver plus all packets that can possible be sent
by the sender. Thus, the ideal buffer size is two times the maxi-
mum window size of the connection.

Sender Conventional
router

SYN

SYN / ACK 1

Receiver

SYN

SYN / ACK 1

Data 1
Data 1

ACK 2

ACK 2

Data 2
Data 3 Data 2

Data 3
ACK 3

ACK 3

Data 4
Data 4Data 3
Data 3
ACK 3

ACK 5ACK 3

ACK 5

timeout

Sender TCP
accelerator

SYN

SYN / ACK 1

Receiver

SYNSYN / ACK 1

Data 1

Data 1

ACK 2

ACK 2

Data 2
Data 3

Data 2

Data 3

ACK 3

ACK 3

Data 4
Data 3

ACK 4

ACK 5

ACK 5

ACK 3

Accelerator
buffer

1

1 2
timeout

Data 3
3

2

ACK 4

Data 4
3 4

4

timeout

Fig. 2. Message sequence chart of an example connection comparing conventional and accelerated TCP connections.

694 S. Ladiwala et al. / Computer Communications 32 (2009) 691–702Example: TCP accelerators

© 2020 NetApp, Inc. All rights reserved. 8

network. In this section, we first describe the overall idea of trans-
parent TCP acceleration from the perspective of an end-to-end con-
nection traversing the network. Then, we view TCP acceleration
from a router’s point of view.

3.1. Network topology

Fig. 1(a) illustrates a conventional TCP connection where only
the end-systems participate in Layer 4 processing. The network
performs Layer 3 forwarding on datagrams and does not alter
any of the Layer 4 segments. Fig. 1(b) illustrates how TCP acceler-
ation nodes (denoted by ‘A’) change this paradigm. An accelerator
node terminates TCP connections and opens a second connection
to the next Layer 4 node. This allows the accelerator node to shield
the TCP interactions (e.g., packet loss) from one connection to an-
other. As a result, the feedback control loops, which implement the
fundamental mechanisms of reliability, flow control, and conges-
tion control, are smaller with lower delay. As a result, accelerated
TCP can react faster and achieve higher throughput than conven-
tional TCP.

3.2. Node architecture

Before we quantify the performance improvement from TCP
Acceleration in Section 4, we discuss how an accelerator node
implements this functionality.

3.2.1. Acceleration example
To illustrate the behavior of an individual TCP accelerator node,

Fig. 2 shows a space–time diagram for an example connection over
conventional routers and TCP accelerators. For simplicity, unidirec-
tional traffic with 1-byte packets is assumed. The initial sequence
number is assumed to be 1. As Fig. 2(a) illustrates in this example,
conventional routers just forward segments without interacting on
the transport layer. In contrast, the TCP accelerator node in
Fig. 2(b) actively participates in the TCP connection (e.g., responds
to SYN, DATA, ACK, and FIN segments). By receiving packets and

acknowledging them to the sender before they have arrived at
the receiver, the TCP accelerator effectively splits one TCP connec-
tion into two connections with shorter feedback loops. In order to
be able to retransmit packets that may get lost after an acknowl-
edgment has been sent to the sender, the accelerator node requires
a buffer (shown on the side of Fig. 2). The following example shows
the typical behavior of the TCP accelerator:

! Immediate response to sender: SYN and DATA packets are
immediately buffered and acknowledged. The only exception
is the first arrival of DATA 3, where no buffer space is
available.

! Local retransmission: When packets are lost, they are locally
retransmitted (e.g., DATA 3). Due to a shorter RTT for both con-
nections, a shorter timeout can more quickly detect the packet
loss.

! Flow control back pressure: When the connection from the
accelerator node is slower than the one to it, buffer space will
fill up and no additional packets can be acknowledged and
stored. This will cause the sender to detect packet loss and
slow down.

The most important observation in Fig. 2 is that the end-systems
do not see any difference to a conventional TCP connection (other
than packet order and performance).

3.2.2. Acceleration algorithm
The detailed interactions of a TCP accelerator node with a flow

of packets from a connection are shown in Algorithm 1. The steps
of the algorithm are:

! Lines 1–2: A packet is received and classified. The variable p rep-
resents the packet and f represents the flow to which the packet
belongs.

! Lines 3 and 35–36: If a packet is not a TCP packet, it is forwarded
without further consideration.

! Lines 4–10: If a packet is a SYN packet (indicating connection
setup) and no flow record exists, then a flow record is estab-
lished. A SYN/ACK is returned to the sender and the SYN is for-
warded towards the destination (‘‘upstream” and ‘‘downstream”
respectively). Since the SYN can get lost, a timer needs to be
started for that packet. If the SYN/ACK gets lost, the original sen-
der will retransmit the SYN and cause a retransmission of the
SYN/ACK.

! Lines 11–19: If data are received from the upstream sender and
buffer space is available, then the packet is buffered and for-
warded downstream. If no buffer space is available, the TCP
accelerator needs to propagate back-pressure to slow down
the sender. In this case, the packet is not acknowledged and per-
ceived as a packet drop by the sender. The congestion control
mechanism of the sender will slow down the sending rate until
buffer space becomes available. Packets are only forwarded
when the downstream connection does not have too much out-
standing data (lines 15–18).

! Lines 20–26: If an ACK is received, then buffer space in the com-
plementary flow (flow in the opposite direction, denoted by !f)
can be released. This reduces the amount of outstanding data
and (potentially several) packets can be transmitted from the
buffer space of !f .

! Lines 27–31: If a FIN is received, connection teardown can be
initiated.

! Lines 32–33: If a packet does not match the above criteria, it is
handled as an exception.

! Lines 39–40: Whenever a timeout occurs, the packet that has ini-
tiated the timer is retransmitted.

TCP connection

A
A

TCP connection TCP connection TCP connection

Fig. 1. Conventional and accelerated TCP connections. Systems that implement TCP
functionality are marked with ‘A’.

S. Ladiwala et al. / Computer Communications 32 (2009) 691–702 693

Sameer Ladiwala, Ramaswamy Ramaswamy, and Tilman Wolf. Transparent TCP acceleration. Computer Communications, Volume 32, Issue 4, 2009, pages 691-702.

Middleboxes meddle
Example: Nation states attacking end users or services

© 2020 NetApp, Inc. All rights reserved. 9

B. Marczak, N. Weaver, J. Dalek, R. Ensafi, D. Fifield, S. McKune, A. Rey, J. Scott-Railton, R. Deibert, and V. Paxson.
An Analysis of China’s “Great Cannon”. 5th USENIX FOCI Workshop, 2015.

QFIRE Pilot Lead. NSA/Technology Directorate. QFIRE pilot report. 2011.

QUIC components

10 © 2020 NetApp, Inc. All rights reserved.

QUIC in the stack

§ Integrated transport stack on top of UDP

§ Replaces TCP and some part of HTTP; reuses TLS-1.3

§ Initial target application: HTTP/2

§ Prediction: many others will follow

© 2020 NetApp, Inc. All rights reserved. 11

J. Iyengar. QUIC Tutorial A New Internet Transport/ IETF-98 Tutorial, 2017.

TLS

HTTP/2

TCP

IP

QUIC

TCP-like CC +
loss recovery

UDP

HTTP over QUIC

TLS 1.3

Why UDP?

§ TCP hard to evolve

§ Other protocols blocked by middleboxes (SCTP, etc.)

§ UDP is all we have left

§ Not without problems!
§ Many middleboxes ossified on “UDP is for DNS”
§ Enforce short binding timeouts, etc.
§ Short-term issue with hardware NIC offloading

§ Also, benefits
§ Can deploy in userspace (no kernel update needed)
§ Can offer alternative transport types (partial reliability, etc.)

© 2020 NetApp, Inc. All rights reserved. 12

UDP

Image
from http://itpro.nikkeibp.co.jp

Why congestion control?

§ Functional CC is absolute requirement for operation over real networks
§ UDP has no CC

§ First approach: take what works for TCP, apply to QUIC
§ Consequence: need
§ Segment/packet numbers
§ Acknowledgments (ACKs)
§ Round-trip time (RTT) estimators
§ etc.

§ Not an area of large innovation at present
§ This will change
§ <your PhD goes here>

© 2020 NetApp, Inc. All rights reserved. 13

CC

Image from People’s Daily, http://people.cn/

Why transport-layer security (TLS)?

§ End-to-end security is critical
§ To protect users
§ To prevent network ossification

§ TLS is very widely used
§ Can leverage all community R&D
§ Can leverage the PKI

§ Don’t want custom security –
too much to get wrong
§ Even TLS keeps having issues
§ But TLS 1.3 removes a lot of cruft

§ And benefit from new TLS features
§ E.g., 0-RTT handshakes (inspired by gQUIC-crypto)

© 2020 NetApp, Inc. All rights reserved. 14

TLS

Images from Cloudflare.

TLS1.2 TLS1.3
1RTT

TLS1.3
0RTT

Why HTTP?

§ Because that’s where the impact is
§ Web industry incredibly interested in improved UE and security

§ Rapid update cycles for browsers, servers, CDNs, etc.
§ Can deploy and update QUIC quickly

§ Many other app protocols will follow

© 2020 NetApp, Inc. All rights reserved. 15

HTTP

Selected aspects
QUIC

© 2020 NetApp, Inc. All rights reserved. 16

Minimal network-visible header

© 2020 NetApp, Inc. All rights reserved. 17

§ With QUIC, the network sees:
§ Packet type (partially obfuscated)
§ QUIC version (only in long packet header)
§ Destination CID
§ Packet number (obfuscated)

§ With TCP, also
§ ACK numbers, ECN information
§ Timestamps
§ Windows & scale factors

§ Also, entire QUIC header is authenticated,
i.e., not modifiable

§ 32-bit version field
§ IP: 8 bits, TCP: 0 bits

§ Allows rapid deployment of new versions
§ Plus, vendor-proprietary versions

§ Very few protocol invariants
§ Location and lengths of version and CIDs in LH
§ Location and lengths of CID in SH (if present)
§ Version negotiation server response
§ Etc. (details under discussion)

§ Everything else is version-dependent
§ But must grease unused codepoints!

Version negotiation
(Currently under re-design)

© 2020 NetApp, Inc. All rights reserved. 18

Date

IPs

Q0 Q024 Q025 Q026 Q027 Q028 Q029
Q030 Q031 Q032 Q033 Q034 Q035 Q036
Q037 Q038 Q039 Q040 Q041 wwww

1. Oct 2016 1. Jan 2017 1. Apr 2017 1. Jul 2017 1. Oct 2017
0

200k

400k

600k

800k

Source: RWTH QUIC Measurements: https://quic.comsys.rwth-aachen.de/

1-RTT vs. 0-RTT handshakes

§ QUIC client can send 0-RTT data in first packets
§ Using new TLS 1.3 feature

§ Except for very first contact between client and server
§ Requires 1-RTT handshake (same latency as TCP w/o TLS)

§ Huge latency win in many cases (faster than TCP)
§ HTTPS: 7 messages
§ QUIC 1-RTT or TCP: 5 messages
§ QUIC 0-RTT: 2 messages

§ Also helps with
§ Tolerating NAT re-bindings
§ Connection migration to different physical interface

§ But only for idempotent data
© 2020 NetApp, Inc. All rights reserved. 19

§ Inside the crypto payload,
QUIC carries a sequence of frames
§ Encrypted = can change between versions

§ Frames can come in any order

§ Frames carry control data and payload data

§ Payload data is carried in STREAM frames
§ Most other frames carry control data

§ Packet acknowledgment blocks in ACK frames

Everything else is frames

§ PADDING
§ PING
§ ACK
§ RESET_STREAM
§ STOP_SENDING
§ CRYPTO
§ NEW_TOKEN
§ STREAM
§ MAX_DATA
§ MAX_STREAM_DATA
§ MAX_STREAMS
§ DATA_BLOCKED
§ STREAM_DATA_BLOCKED
§ STREAMS_BLOCKED
§ NEW_CONNECTION_ID
§ RETIRE_CONNECTION_ID
§ PATH_CHALLENGE
§ PATH_RESPONSE
§ CONNECTION_CLOSE
§ HANDSHAKE_DONE

© 2020 NetApp, Inc. All rights reserved. 20

Stream multiplexing

§ A QUIC connection multiplexes potentially many streams
§ Congestion control happens at the connection level
§ Connections are also flow controlled

§ Streams
§ Carry units of application data
§ Can be uni- or bidirectional
§ Can be opened by client or server
§ Are flow controlled
§ Currently, always reliably transmitted (partial reliability coming soon)

§ Number of open streams is negotiated over time (as are stream windows)

§ Stream prioritization is up to application

© 2020 NetApp, Inc. All rights reserved. 21

Why? Reuse & leverage
QUIC on IoT devices

22 © 2020 NetApp, Inc. All rights reserved.

§ Minimal, BSD-licensed, zero-copy
UDP/IP/Eth stack

§ Meant to run on netmap,
can use Socket API as fallback

§ 3700 LoC (+ 3000 LoC w/netmap), C

§ Exports generic zero-copy API

§ Device OS has LWIP =
just works (after some patch submissions)

§ RIOT has GNRC = needs own backend
§ RIOT port of LWIP unfortunately broken
§ GNRC lacks key features (poll/select, IPv4, etc.)

Warpcore

§ QUIC transport stack (i.e., no H3)
§ Focus: high-perf datacenter networking
§ Client and server modes
§ 10,300 LoC, C

§ Warpcore for UDP, otherwise uses:
§ khash (from klib, modified)
§ timing wheels (Ahern’s timeout.c, modified)
§ tree.h (from FreeBSD, modified)
§ bitset.h (from FreeBSD, modified)
§ picotls (Kazuho Oku)
§ cifra
§ micro-ecc

23 © 2020 NetApp, Inc. All rights reserved.

Quant

System hardware and software

Particle Argon Platform ESP32-DevKitC V4
Nordic Semiconductor nRF52840 SoC ESP32-D0WDQ6
ARM Cortex-M4F CPU Tensilica Xtensa LX6
32-bit Instruction set 32-bit
64 MHz Clock speed 240 MHz
IEEE 754 single-precision FPU IEEE 754 single-precision
ARM TrustZone CryptoCell-310 HW crypto AES, SHA, RSA, and ECC
256 KB RAM 520 KB
1 MB (+ 4 MB SPI) Flash 4 MB
4 KB EEPROM (emulated) Other mem. 96 B e-Fuse
IEEE 802.11 b/g/n WLAN IEEE 802.11 b/g/n
Device OS 1.4.3 OS RIOT-OS 2019.10
arm-none-eabi-gcc 5.3.1 Toolchain xtensa-esp32-elf-gcc 5.2.0

24 © 2020 NetApp, Inc. All rights reserved.

Code and static data size
Measurements

25 © 2020 NetApp, Inc. All rights reserved.

§ Compiled code and static data size

§ Application
§ Argon app has more features, hence larger

§ QUIC
§ Already only uses single-precision FP

§ TLS

Build size: baseline

26 © 2020 NetApp, Inc. All rights reserved.

Argon

ESP32

§ Eliminate costliest 64-bit math, i.e.,
division and modulus
§ All are by constants, can multiply by magic

number and right shift

§ Use 32-bit width
for many internal variables, e.g.,
§ Packet numbers
§ Window sizes
§ RTT (𝜇s)

§ Not fully spec-conformant,
but unlikely to matter in practice for IoT

Build size: 32-bit optimizations

27 © 2020 NetApp, Inc. All rights reserved.

§ Disable server functionality

§ Unlikely to be of much use for IoT, esp.
when battery-powered

§ Also makes client use zero-length CIDs

§ Large gain at the TLS layer!

§ (Server-only mode: future work)

Build sizes: client-only mode

28 © 2020 NetApp, Inc. All rights reserved.

§ Disable non-required crypto, leaving
§ TLS_AES_128_GCM_SHA256 cipher suite
§ secp256r1 key exchange

§ More gains at the TLS layer!

§ Could fully eliminate cifra & micro-ecc
if HW crypto was accessible from OSs...

§ Together, reductions of 25-30% so far,
without much loss in functionality

§ Can save more by turning off
functionality...

Build sizes: minimally-required crypto

29 © 2020 NetApp, Inc. All rights reserved.

§ Connection migration = switching an
established connection to a new path

§ Likely unnecessary for IoT usage

Build sizes: no migration

30 © 2020 NetApp, Inc. All rights reserved.

§ QUIC allows plaintext “reason” strings
in CONNECTION_CLOSE frames

§ No protocol usage, only for human
consumption

§ Quant by default uses those heavily &
verbosely

§ So don’t

Build sizes: no error reasons

31 © 2020 NetApp, Inc. All rights reserved.

§ Stateless reset = signal to peer that local
end has no more state for a connection

§ To handle, need to be able to identify
which connection RX’ed SR is for

§ Tradeoff: handle SR vs. needlessly RTX

Build sizes: no stateless resets

32 © 2020 NetApp, Inc. All rights reserved.

§ Caching 0-RTT packets arriving out-of-
order can avoid RTX

§ Also has an overhead

§ Tradeoff: cache vs. force RTX

Build sizes: drop reordered 0-RTT

33 © 2020 NetApp, Inc. All rights reserved.

§ Caching any out-of-order CRYPTO or
STREAM data can avoid RTX

§ Also has an overhead

§ Tradeoff: cache vs. force RTX

Build sizes: drop all reordered data

34 © 2020 NetApp, Inc. All rights reserved.

§ Quant maintains a TCP_INFO-like struct
about each connection:

§ Don’t do that

Build sizes: don’t maintain connection info

35 © 2020 NetApp, Inc. All rights reserved.

pkts_in_valid = 40
pkts_in_invalid = 0
pkts_out = 10
pkts_out_lost = 0
pkts_out_rtx = 0
rtt = 0.049 (min = 0.000, max = 0.087, var = 0.027)
cwnd = 14840 (max = 14840)
ssthresh = 0
pto_cnt = 0
frame code out in
PADDING 0x00 2941 1214
PING 0x01 1 1
ACK 0x02 6 7
CRYPTO 0x06 3 5
NEW_TOKEN 0x07 0 3
STREAM 0x08 1 29
MAX_STREAM_DATA 0x11 1 0
NEW_CONNECTION_ID 0x18 3 1
RETIRE_CONNECTION_ID 0x19 1 2
CONNECTION_CLOSE_APP 0x1d 1 1
HANDSHAKE_DONE 0x1e 0 2
strm_frms_in_seq = 33
strm_frms_in_ooo = 1
strm_frms_in_dup = 0
strm_frms_in_ign = 0

Stack and heap usage
Measurements

36 © 2020 NetApp, Inc. All rights reserved.

Stack and heap usage

§ Instrumented binaries to log stack and
heap usage on function enter/exit

§ cifra and micro-cc NOT instrumented
§ Too many small functions, too much log data

§ Shown results are therefore lower bounds
§ Approximate the case if HW did crypto

§ Time units not shown on purpose
§ Run takes tens of seconds due to 112.5Kb/s serial

§ Random 20% of data points plotted
to reduce overplotting

37 © 2020 NetApp, Inc. All rights reserved.

0 B

1 KB

2 KB

3 KB

init open transfer close

St
ac

k
si

ze

0.00
0.25
0.50
0.75
1.00

0 B 1 KB 2 KB

C
D

F

0 B

1 KB

2 KB

3 KB

init open transfer close

St
ac

k
si

ze

0.00
0.25
0.50
0.75
1.00

0 B 1 KB 2 KB

C
D

F

Argon ESP32

Stack usage: init phase

§ Quant and Warpcore
initialization

§ On ESP32, includes WLAN
association = longer duration

§ Minimal stack usage,few 100s
of B

38 © 2020 NetApp, Inc. All rights reserved.

0 B

1 KB

2 KB

3 KB

init open transfer close

St
ac

k
si

ze

0.00
0.25
0.50
0.75
1.00

0 B 1 KB 2 KB

C
D

F

0 B

1 KB

2 KB

3 KB

init open transfer close

St
ac

k
si

ze

0.00
0.25
0.50
0.75
1.00

0 B 1 KB 2 KB

C
D

F

Stack usage: open phase

§ Open connection to server

§ Public key crypto as part of
handshake

§ Stack usage peaks
at almost 3 KB

§ Not great for IoT usage
§ 1 KB RIOT stack default
§ 6 KB Device OS stack default

§ Optimizations needed
§ picotls uses stack-allocated buffers

39 © 2020 NetApp, Inc. All rights reserved.

0 B

1 KB

2 KB

3 KB

init open transfer close

St
ac

k
si

ze

0.00
0.25
0.50
0.75
1.00

0 B 1 KB 2 KB

C
D

F

0 B

1 KB

2 KB

3 KB

init open transfer close

St
ac

k
si

ze

0.00
0.25
0.50
0.75
1.00

0 B 1 KB 2 KB

C
D

F

Stack usage: transfer phase

§ RX data from server

§ Symmetric crypto

§ Stack usage is lower
at around 1 KB

§ Still not super-great for IoT

§ Optimizations needed

40 © 2020 NetApp, Inc. All rights reserved.

0 B

1 KB

2 KB

3 KB

init open transfer close

St
ac

k
si

ze

0.00
0.25
0.50
0.75
1.00

0 B 1 KB 2 KB

C
D

F

0 B

1 KB

2 KB

3 KB

init open transfer close

St
ac

k
si

ze

0.00
0.25
0.50
0.75
1.00

0 B 1 KB 2 KB

C
D

F

Stack usage: close phase

§ Close connection with server
and de-init

§ Stack usage dropping
down to initial values

§ Overall, unfortunately,
peak stack usage
is what matters

41 © 2020 NetApp, Inc. All rights reserved.

0 B

1 KB

2 KB

3 KB

init open transfer close

St
ac

k
si

ze

0.00
0.25
0.50
0.75
1.00

0 B 1 KB 2 KB

C
D

F

0 B

1 KB

2 KB

3 KB

init open transfer close

St
ac

k
si

ze

0.00
0.25
0.50
0.75
1.00

0 B 1 KB 2 KB

C
D

F

0 B
32 KB
64 KB
96 KB

128 KB

init open transfer close

H
ea

p
si

ze

0.00
0.25
0.50
0.75
1.00

0 B 64 KB 128 KB

C
D

F

0 B
32 KB
64 KB
96 KB

128 KB
160 KB

init open transfer close

H
ea

p
si

ze

0.00
0.25
0.50
0.75
1.00

0 B 64 KB 128 KB

C
D

F

Heap usage

§ Heap usage jumps
on allocation/deallocation of
packet buffers

§ 15 buffers @ 1500 B each

§ Baseline heap usage on Argon
much higher
§ DeviceOS executing in background

42 © 2020 NetApp, Inc. All rights reserved.

0 B
32 KB
64 KB
96 KB

128 KB

init open transfer close

H
ea

p
si

ze

0.00
0.25
0.50
0.75
1.00

0 B 64 KB 128 KB

C
D

F

0 B
32 KB
64 KB
96 KB

128 KB
160 KB

init open transfer close

H
ea

p
si

ze

0.00
0.25
0.50
0.75
1.00

0 B 64 KB 128 KB

C
D

F

Heap usage

§ During open phase,
slight increase in heap

§ Allocation of additional per-
connection dynamic state

43 © 2020 NetApp, Inc. All rights reserved.

0 B
32 KB
64 KB
96 KB

128 KB

init open transfer close

H
ea

p
si

ze

0.00
0.25
0.50
0.75
1.00

0 B 64 KB 128 KB

C
D

F

0 B
32 KB
64 KB
96 KB

128 KB
160 KB

init open transfer close

H
ea

p
si

ze

0.00
0.25
0.50
0.75
1.00

0 B 64 KB 128 KB

C
D

F

Heap usage

§ Flat heap usage
during transfer phase

§ Nice!

44 © 2020 NetApp, Inc. All rights reserved.

Energy and performance
Measurements

45 © 2020 NetApp, Inc. All rights reserved.

Energy measurements

§ Argon with 2000 mAh 3.7 V LiPo battery

§ Two runs after full charges
§ Only 1-RTT connections
§ (Initial 1-RTT followed by) only 0-RTT connections

§ Ran for ~2.5 days non-stop
§ 29,338 1-RTT connections (~0.90 J/conn)
§ 31,844 0-RTT connections (~0.83 J/conn)

§ Very preliminary!
§ Argon-internal voltage reporting is coarse
§ Single run only
§ Hesitant to draw conclusions

46 © 2020 NetApp, Inc. All rights reserved.

3.3

3.5

3.7

3.9

4.1

0 10 20 30 40
Time [h]

V
ol

ta
ge

 [V
]

Run
0-RTT
1-RTT

0.00

0.25

0.50

0.75

1.00

4.0 4.5 5.0 5.5
Duration [s]

C
D

F

Performance measurements

§ Data from the same runs used for energy
measurements

§ Median 1-RTT connection took 5.10 s

§ Median 0-RTT connection took 4.74 s

§ Open questions
§ Why does 0-RTT show more of a slope?
§ Why is 1-RTT sometimes faster? (Loss?)

47 © 2020 NetApp, Inc. All rights reserved.

3.3

3.5

3.7

3.9

4.1

0 10 20 30 40
Time [h]

V
ol

ta
ge

 [V
]

Run
0-RTT
1-RTT

0.00

0.25

0.50

0.75

1.00

4.0 4.5 5.0 5.5
Duration [s]

C
D

F

Lots and lots
Future work

48 © 2020 NetApp, Inc. All rights reserved.

Measurements

§ Measure data upload

§ Vary parameters of measurement
§ Object sizes, streams, connections, etc.

§ Compare against other protocols
§ TCP, TLS/TCP, CoAP, MQTT, etc.

§ Compare different IoT boards

§ More accurate energy measurements

Future work

Implementation

§ Add H3 binding & measure

§ Make picotls not use stack buffers

§ Better data structures w/less heap churn

§ Use HW crypto (performance & energy)

§ Drop 0-RTT to shrink code size?

§ IP over BLE or 802.15.4 instead of WLAN
§ WLAN on ESP32 is 115 KB (45% of OS size)

§ Can we scale down to 16-bit controllers?

49 © 2020 NetApp, Inc. All rights reserved.

50

Thank you

Questions later?
lars@netapp.com

© 2020 NetApp, Inc. All rights reserved.

