Capacity Sharing: IETF Activities

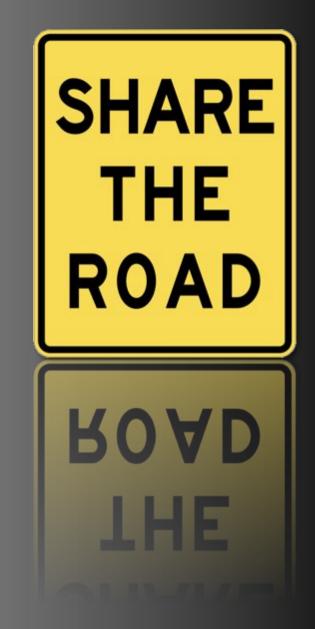
NOKIA

Lars Eggert Nokia Research Center

Bandwidth Bandwagon: An ISOC Briefing Panel Hiroshima, Japan November 11, 2009

The Internet is all about capacity sharing

connection-less no isolation between flows

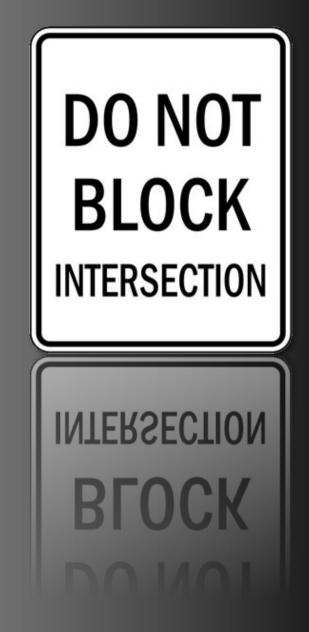

best-effort no strict delivery guarantees

end-to-end

smart edges, dumb core

result: dramatic scaling potential that enabled entire new industries

hard to imagine how another approach could have resulted in similar bang-for-the-buck


And sharing means caring

packets belonging to different flows share the path – and the behavior of each affects the others

congestion queuing delay

apps & protos need "social" behavior otherwise the Internet stops being a useful shared resource

the IETF provides a toolbox of mechanisms that allow apps to share capacity intelligently

Architectural principles

remember: smart edges, dumb core

means that – in general – the responsibility is split between the apps & the network

network provides app- & serviceagnostic information about path conditions in a timely manner incl. loss = "am really overloaded"

apps (or the transport protocols they use) act on this information how to act can be app-specific

So what is in the IETF toolbox?

Congestion control: TCP friendly

TCP + TCP friendly congestion control hosts: determine transmission rate according to path conditions based on observed RTT and loss

optimizations/extensions:

Explicit Congestion Notification (ECN) net: mark before drop hosts: react to marks as if loss

Active Queue Management (e.g., RED) net: progressive mark/drop

Low extra delay background transport

goal: transmit bulk data without substantially affecting the delay seen by other users and apps

approach: congestion control to: saturate the bottleneck = bulk data maintain a low extra delay yield to standard TCP = background

combine with less-than-best-effort DiffServ + ISP pricing to give additional incentives for deployment

Fri 9:00 LEDBAT WG (new!)

TRUCKS USE RIGHT LANE LANE RIGHI

Multipath TCP

extend TCP to allow one connection to transmit data along multiple paths between the same two end systems

pools capacity & reliability of multiple paths

traffic quickly moves away from congested paths

backwards compatible with TCP

Mon 17:40 MPTCP WG (new!)

App-layer traffic optimization

improve P2P performance

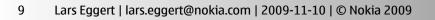
while at the same time aligning P2P traffic better with ISP constraints

provide P2P apps with network, topology & other info

enable P2P apps to do better-thanrandom initial peer selection

Wed 9:00 ALTO WG (new!)

Congestion exposure


explicitly reveal the expected congestion along an Internet path

new capability: allows even greater freedom over how capacity is shared better info = better mechanisms

can be used for several purposes congestion policing accountability SLAs traffic engineering

Tue 15:20 CONEX (BOF – not a WG)

Rec's for home gateways

goal: improve the network experience that a user of a home gateway gets when using the Internet

give an overview for implementers by collecting together requirements from different RFCs, e.g.,

IPv4 & IPv6 ECN & RED DNSSEC & DNS proxies

Mon 15:20 HOMEGATE (BOF)

We have many tools to share capacity fairly, effectively and efficiently.

And the IETF is designing new & better tools where needed.

A lot could already be gained by more consistently and more appropriately using the tools we have.