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Summary

Many of server applications are running on computers which are deployed in data centers.

There is a requirement that those applications are able to handle huge amount of requests

with low-latency. On the other hand, operating systems which are used widely today are not

designed for high rate network transaction and they cannot achieve wire rate on 10 Gbps

NIC for small message exchanges. Many of researches attack this issue and improve the

performance in exchange for less of deployability. This thesis attacks the problems including

packet I/O subsystem, synchronization, APIs and other software problems which are not

solved by existing researches. This thesis proposes FrankenStack that solves those problems

and improves operating systems’ TCP/IP stack performance while keeping deployability.

The key idea of FrankenStack is combining operating systems’ TCP/IP stack and fast packet

I/O framework which are designed for different purposes. On request-response workloads,

FrankenStack improves throughput by 8.1 to 139.6 % and reduces latency by 7.7 to 58.8 %

in 64 to 1024 byte serving message sizes and 1 to 1024 concurrent TCP connections.
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Chapter 1

Introduction

This chapter describes the background of this research and gives a
brief overview of this thesis.
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1.1 Background

Cloud computing is a today’s computing trend. Powerful computing nodes

are deployed in data centers and many of services are running on them. Cloud

computing vendors such as Google and Amazon build data centers and supply

computing resources to developers. By using those services, developers can

allocate and deallocate development platforms and it allows us to create

variety of applications.

On the client side, the number of mobile devices is increasing. Smart phones

are getting the majority of mobile phones and huge amount of network traffic

is generated from them.

Many of inter communications of server to server and server to client are

based on the request-response model. For example, many people use web

browsers for fetching web contents and the client devices send HTTP requests

to web servers. In the server side, a web server which receives a request makes

queries to servers such as storage servers and cache servers for making a re-

sponse. Those communications are critical for the quality of services and the

demand for low-latency and high-throughput communications is increasing.

1.2 Motivation

Request-response is a common and legacy workload of networked applica-

tions. While data centers are spreading and many of services are running on

them, the importance of such workloads is also increasing. Networked server

applications running in data centers need to response to huge amount of re-

quests in low latency. While an important characteristic of request-response

2



messaging applications is that their message sizes are relatively small (less

than MTU of Ethernet which is 1500 bytes in many cases), multi-purpose

operating systems which are widely used are not designed for handling huge

amount of small packets in a short time. That design mismatch brings big

performance problems in the combination with high-performance hardware

which is getting cheap and common. For example, 10 Gbps NIC becomes

the commodity hardware in data centers, but it is difficult for multi-purpose

operating systems to achieve wire rate with small size packets. As a result,

design and implementation of operating systems’ network stacks become one

of the major problems in today’s data center network.

There are many of researches attacking these problems. The details of

them are described in section 2. In section 2, analyses of those works and

categorization of them from the point of view of deployablility are shown.

First type is API improvement which requires kernel modifications and API

changes for applying it to existing applications. They are using whole of op-

erating systems’ network stacks for TCP/IP processing. Second is user space

network stack implementation. Minimizing the features of network stacks

might improve performance of network processing and it is easy to develop

user space network stacks independently to operating systems. For exam-

ple, netfilter which is provided as default in today’s multi-purpose operating

systems and it is widely used. However it interferes network transactions

and can reduce the performance, and skipping such kind of features will con-

tribute for improving the efficiency of network processing. For applying this

type of network stacks, modifications of existing applications are required,

but kernel modifications are not necessary. On the other hand, new network
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stack implementations do not have well organized development community

and they cannot be comparable in terms of stability and capability with oper-

ating systems’ network stacks which are developed by many of developers for

long time. Third is redesigning new operating systems. Since multi-purpose

operating systems are designed for flexible and capability of many types of

features, they contain many of ineffective parts. New operating system im-

plementation can remove those inefficiency and might be the best option for

achieving high-performance processing. However, they do not have compat-

ibility to many of important applications which run on Unix and there is

also a problem of the development community which is same as user space

network stacks.

1.3 Problem Statement

Today’s data centers are constructed with commodity hardwares and multi-

purpose operating systems since they are widely used and the qualities of

them are reliable. In data centers, the cost for applying new technology

should be low and several existing researches do not meet this requirement.

Especially, using new or unexperienced operating systems and network stack

implementations is risky because they might be fragile and have security

problems. On the other hand, network stacks implemented in legacy op-

erating systems are updated frequently for fixing bugs and security issues,

and emerging techniques are applied quickly. For these advantages of net-

work stacks in multi-purpose operating systems, improving the performance

of them is valuable.
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This work focuses on achieving low-latency and high-throughput with op-

erating systems’ network stacks. The proposed system reduces the costs of

network processing except TCP/IP processing which are not addressed by

existing researches yet. The key idea is adopting fast packet I/O framework

for existing TCP/IP stack for providing fast data paths for applications. This

architecture brings several design problems since TCP/IP stack and packet

I/O framework are designed for completely different purposes and this work

proposes the solutions for solving the conflicts of them effectively.

1.4 Contributions of this Thesis

This thesis proposes FrankenStack, a new architecture for improving the

performance of operating systems’ TCP/IP stacks. FrankenStack marries

TCP/IP stack to fast packet I/O. This design choice provides following ca-

pabilities for applications.

• Zero-copy I/O.

• I/O batching.

• Efficient I/O event handling.

• Reducing scheduling delay between application processing and network

stack execution.

Upper 3 capabilities are typical characteristics of packet I/O frameworks

and FrankenStack puts those features and operating systems’ network stack

together. The last capability is deriving from the design choice that Franken-

Stack executes all network stack processing in systemcall context. This ar-

chitecture reduces the scheduling delay for switching from network stack pro-
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cessing to application processing while network stacks are executed in a kernel

thread in multi-purpose operating systems.

FrankenStack is implemented on Linux and evaluate it through benchmarks

for identifying how the proposed architecture improves the performance.

FrankenStack improves throughput by 8.1 to 139.6 % and reduces latency

by 7.7 to 58.8 % in 64 to 1024 byte serving message sizes and 1 to 1024

concurrent TCP connections.

The contributions of this thesis are as follows.

• Design FrankenStack, a new architecture for improving throughput and

latency of small data exchanges by extending operating systems’ TCP/IP

stacks.

• Implement FrankenStack and evaluate its performance through several

benchmarks and the costs in network stacks except TCP/IP processing

are shown.

1.5 Thesis Outline

This chapter describes the background of this work. Chapter 2 shows the

existing works which are attacking the performance problems in the TCP/IP

stack implementation and clarify the contribution of this work. Chapter 3

describes the design of the proposed system. Chapter 4 describes the details

of the implementation of this system. Chapter 5 describes the experiments.

Finally this thesis is concluded in chapter 6.
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Chapter 2

Related work

This chapter describes existing approaches for improving the perfor-
mance of networking transaction and clarify what this thesis focuses
on.
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Following sections describe the related works with the categorization of

them from the point of view of a trade off between performance and deploy-

ability.

2.1 Systemcall Batching

Basically applications access the features of operating systems by using

systemcall. In networked applications, they call systemcalls for sending and

receiving data. Systemcall invokes context switch which changes the mem-

ory region and CPU previreges from user space to kernel. Soares and Stumm

found out the actual cost of context switch which is not only switching the

memory region but also the cashe polution. They have shown the perfor-

mance reduction caused by frequent systemcall execution. For reducing sys-

temcall related costs, they proposed FlexSC[24] which is a new interface for

executing systemcalls. Basic idea of FlexSC is batching. FlexSC makes a

systemcall table on the special memory region which is shared between user

space and kerenel and it also makes kernel threads for executing systemcalls

which are requested by an application via the systemcall table. For executing

a systemcall, an application puts a request on the systemcall table. When

FlexSC’s kernel threads are scheduled by the kernel, they execute the re-

quested systemcalls. Since the requested systemcalls are not executed until

the kernel threads are scheduled, systemcall executions are batched. In their

paper, they have shown that FlexSC improves the performance of systemcall

intensive applications.
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2.2 Packet I/O

As described in the previous section, in multi-purpose operating systems, an

application has to call systemcalls for asking operating systems to transmit

and receive packets. However, since multi-purpose operating systems are not

designed for small packet processing, they are ineffective for handling huge

amount of small packets. For example, in each send( )/recv( ) systemcall,

the operating systems allocate the memory region for the payload. This won’t

be a problem when the payload is big (more than 1K Byte), however memory

allocation is a heavy workload and frequent memory allocation invoked by

frequent packet processing causes big performance degradation.

A new idea is creating a new data path for packet I/O. Packet I/O frame-

work provides zero-copy packet I/O by making the memory region which

is shared between user space and kernel, and is DMA mapped to NIC. For

reducing the cost of memory allocation, the memory region for payload is

preallocated and persistent.

There are several packet I/O framework implementations, netmap[21], DPDK[1],

PacketShader I/O Engine[9].

Packet I/O frameworks have been used for packet forwarding purpose, for

example high-performance virtual machine inter-connection[22] and middle-

box implementation[16].

2.3 Multi-core Scalability

One of the simplest approaches for improving the performance is using mul-

tiple CPU cores. However, there are bottlenecks in multi-purpose operating
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systems for the scalability of multi-core.

2.3.1 accept( ) Performance

Request-response is one of the most common workload in today’s networked

applications. Request-response service is constructed with 3 phases, estab-

lishing TCP connection, receiving a request, replying a response.

Pesterev et al. found accept( ) which is called for TCP connection setup

does not scale for multi-core systems since multi-purpose operating systems

has a single accept queue. For solving the problem, they proposed affinity

accept[18]. In affinity accept, operating systems make multiple accept queues

which are corresponding to cores for eliminating the contentions for accept

queues.

Han et al. also adopting the same idea in MegaPipe[10]. MegaPipe also pro-

vides multiple accept queues to improve the multi-core scalability of accept(

).

2.3.2 File Descriptor Space

In MegaPipe, they reported the single file descriptor space becomes a prob-

lem for multi-core scalability. Since the number of file descriptor is allocated

with incremental fashion, all cores need to get a lock of a queue of file de-

scriptor for getting an appropriate number. MegaPipe makes multiple file

descriptor spaces and all cores occupy their corresponding spaces.

10



2.4 Userspace TCP

Since context switch caused by systemcall is a big cost, user space TCP im-

plementation becomes an attractive option. Because its implementation is on

user space, it is easier and more flexible to develop new network stacks than

in kernel, however packet I/O was the bottleneck in terms of performance

of them. Emerged fast packet forwarding techniques described in section 2.2

solved the problem and enable us to develop high-performance user space

network stacks. mTCP[12] is an examle of the high-performance user space

TCP stack implementation. mTCP runs on fast packet I/O framework and

it adopts several promising techniques, I/O batching, unshared file descrip-

tor spaces and unshared accept queues. SandStorm[15] is also an user space

network stack implementation. SandStorm is designed for the specific net-

worked applications which are required to have high-capability for high-rate

transaction. SandStorm is bypassing kernel for fast I/O by using netmap.

2.5 Specific operating system

The drastic approach is redesigning operating systems for networking trans-

action. IX[3] and Arrakis[19] are new operating system implementations for

high-performance networked applications. They are adopting user space net-

work stack implementations and their packet I/O are bypassing kernel. For

accessing NIC, they are using NIC’s virtualization support[13] which gives

virtual ports to virtual machines directly. In their case, they do not use

virtual machines, but assign a virtual port to an application. This design

allows applications to access NIC ports directly, and because of the virtual-
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ization assist, operating systems can isolate the applications’ memory region

for safety.

2.6 Categorization and Analysis

Batching Pkt I/O accept( ) FD OS NetStack Multi-purpose OS

FlexSC o x x x o o
Affinity accept x x o x o o

MegaPipe o x o o o o
mTCP o o o o x o

IX, Arrakis o o o o x x

Table 2.1: Summary of related works

I categorized related works for analysing unsolved problems in network

stacks. I discuss them from the point of view of performance and deploy-

ability. I show the summary of related works on table 2.6. I do not put

packet I/O to any category since they are not the techniques of network

stacks. They support the enhancement of network stack performance, and

approaches belonging to most of categories can adopt them.

2.6.1 API Improvement

I pick systemcall batching and several optimizations related to multi-core

scalability for this category. Performance improvement is limited if I compare

with the other categories since they run on multi-purpose operating systems

which contains many inefficiency that must be necessary for flexibility. How-

ever, the quality of implementations of network stacks are higher than the

other options because they have good development communities and they are
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developed for long time. We can enjoy new emerging technologies and secu-

rity updates which are provided by development communities. For deploying

these techniques, we need to modify API used in existing applications, but we

do not need to reinstall operating system at least. Basically, those techniques

can be applied to the other categories and actually they are adopting.

2.6.2 Userspace Network Stack

The second category is user space network stack. Their implementations

are independent from operating systems and relatively easy to develop. It is

also easy to minimize the features of network stacks and reduce ineffective

procedures. Userspace network stack can mitigates the performance reduc-

tions coming from systemcall since they do not need to switch their context

and go to kernel for the network processing. However, lack of features brings

deploying problems for the case where the systems are depending on them.

2.6.3 New operating system

Newly designed operating systems have completely different architectures

from widely used operating systems. They eliminate inefficiency in operating

systems and network stacks for the performance gain. For applying them,

we need to reinstall and replace operating systems and application softwares.

Since they are new, they are not experienced well. As a result, deploying

reliable systems is difficult because of operating systems’ unreliability. It

takes many time for softwares to become reliable and it also needs good

development communities which are not easy to be established and organized.
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2.6.4 Analysis and Design Decision

As many researchers report, multi-purpose operating systems contain inef-

fectiveness and bigger changes improve their performance much more. On

the other hand, there is a tradeoff that the bigger changes result worse back-

ward compatibility and less of features. operating system reimplementation

produces the best performance improvement and the worst compatibility to

existing systems. Though Userspace network stacks can run on multi-purpose

operating systems and have better performance than operating systems’ net-

work stacks in many cases, there are many lacks of capabilities. API im-

provements extend operating systems’ network stacks and it is easier to de-

ploy them than the other types of solutions. However, their improvement is

limited.

For better deployability and quality of source code, the proposed system is

built on existing operating systems’ network stacks. When this thesis focuses

on the network stacks implemented in operating systems, the competitive

option is MegaPipe. MegaPipe adopts other proposed techniques, system-

call batching and affinity accept. The big part of MegaPipe’s performance

enhancement is deriving from improved multi-core scalability and the im-

provement of single CPU efficiency is limited since systemcall batching only

contributes to it. This thesis addresses the single CPU efficiency which is the

room for improving TCP/IP stack performance.
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2.7 Summary of this Chapter

This chapter shows the related works and clarify unsolved problems. There

are 3 important ideas, improving multi-core scalability, redesigning API and

reimplementing network stacks. On the other hand, there is the space for im-

proving single CPU efficiency while using existing operating systems’ TCP

implementations. From the analyses, this thesis proposes a system for en-

hancing operating systems’ TCP stack performance by improving single CPU

efficiency. Chapter 3 gives the details of unsolved problems and show the so-

lutions for them.
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Chapter 3

Design

This chapter shows design of the proposed system. This chapter
describes problems of existing systems and shows the solutions of
them as an architecture of the proposed system.
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3.1 Problems and Design Space

This section shows the problems that the proposed system attacks. This

thesis is addressing following problems.

• Context Switch and Synchronization

• Packet I/O Subsystems

• Application I/O

• operating systems’ Generality and Flexibility

• TCP Implementation

For solving those problems, this thesis proposes FrankenStack which is a

new architecture for providing operating systems with network services. The

following sections describe the details of those problems and show the solu-

tions which are adopted by FrankenStack.

3.1.1 Context Switch and Synchronization

In multi-purpose operating systems, received packets are processed in hard-

ware interruption contexts or kernel threads which are prepared by operating

systems. The received packets processed in HW/Soft IRQ context are pushed

to appropriate queues which are bound to applications’ sockets. An operat-

ing system makes an event signaling and wakes up a process for notifying

that there is a packet which is destined to an application. The application

which receives an event notification wakes up and dequeues the received data

and processes it. Until a packet is processed in an application process, there

is a context switch from kernel to user space. There are process scheduling

17



procedures between them. This scheduling delay can increase the latency of

request-response server applications.

For reducing this scheduling delay, FrankenStack executes all network pro-

cessing in systemcall context. After finishing the procedures of systemcall,

the processing returns to user space without process scheduling.

3.1.2 Packet I/O Subsystems

Multi-purpose operating systems allocate memory for every data unit. When

an application calls a send( ) systemcall for sending data, an operating sys-

tem allocates memory in kernel whose size is enough for storing the data.

There are packet representation structures like sk buff in Linux and they

are also allocated for every data unit. This happens for each send( ) sys-

temcall and receiver side also has the same kind of memory allocation. Basi-

cally, memory allocation is a heavy workload and frequent memory allocation

should be avoided for the system’s performance. In the case where sending

big data (bigger than MTU), this is not a problem because a single memory

allocation supplies the space for multiple packets and the memory alloca-

tion frequency is not high. However, in high-rate request-response messaging

workload, the small memory allocation happens for each reply and brings the

performance reduction.

For reducing the cost of memory allocation, FrankenStack preallocates

memory region for packets and packet representation structures. Since the

size of preallocated memory region is limited, the same region for multiple

different packets have to be reused and this is one of the design problems. A

design solution for this problem is described in section 4.2.
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3.1.3 Application I/O

For sending and receiving data, applications must do it via systemcall.

Systemcall does not meet the execution model of I/O batching. Every send(

) systemcall reaches to NIC’s data transmission. For the communication

between user space and kernel, memory copies are necessary. Copies are not

too much big overhead if the data was on the cache. However, zero-copy

helps to improve I/O performance in some cases.

For effective application I/O, FrankenStack gives the control of NIC’s I/O

scheduling to applications. This design allows applications to batch I/O

and control their I/O rate based on their requirements for the latency and

the throughput. FrankenStack provides effective data paths to applications.

FrankenStack shows NIC’s buffer directly to applications and gives the ca-

pability of zero-copy I/O. FrankenStack adopts the packet I/O framework

for these features. Though improved application I/O enforces the perfor-

mance, the combination of the packet I/O framework gives us several design

problems. The problems and the solutions for them are seen in section 4.2.

3.1.4 Generality and Flexibility

File descriptor allows us to design and implement flexible and generic appli-

cations. File descriptor contains several abstraction layers and these abstrac-

tions make applications simple. Applications can access network connections,

disk I/O and different processes through file descriptor.

However, there are implementation and procedure overheads which de-

grades systems’ performance for keeping the compatibility to systemcall inter-

19



faces. Event notification APIs like select( ) and poll( ) take many time

for preparing event information in callbacks which are bound to operating

systems’ event notification schemes.

For example, epoll wait( ) has linear complexity with the number of file

descriptors although it is a Linux extension to POSIX poll( ) to improve

the scalability of this number. In particular, its method to build an array

of ready file descriptors has such complexity, which takes several tens of

micro seconds depending on the number of file descriptors (figure 3.1(a))).

Even worse, concurrent TCP connections increase the average number of file

descriptors returned by epoll wait( ) (3.1(b)).
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Figure 3.1: epoll wait() complexity versus the number of concurrent TCP connections

[14] also reports long epoll wait( ) time when a load is high. I believe

it is an unfortunate to preserve semantics in existing software components,

such as file structures and synchronization primitives in Linux.

For reducing the costs deriving from the design of operating systems’ event
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API, FrankenStack provides a new event API which is light-weight and fast.

Since FrankenStack has a role for managing the packet I/O layer for the pur-

poses described in this section, FrankenStack can have information of packet

I/O events and it is easy to prepare and provide the required information to

applications.

3.1.5 TCP Implementation

Recent work has justified TCP stacks in user-space [12, 15] or virtualiza-

tion execution environments [3] that are implemented almost from scratch

or based on a legacy implementation for performance. However, none of

them implements modern features, such as latency reduction [2, 5], loss-

recovery [6, 17], spurious timeout detection [23], fast connection setup [20]

and congestion control [8, 25] algorithms that are necessary to cope with var-

ious network conditions. This is not a surprise, because TCP is a complex

protocol that supports the Internet; for example, Linux TCP implementation

consists of approximately 25K LoC.

This work is motivated to reuse these codes, as well as to follow their active

updates. To identify viability of this option, I analysed the latency of TCP/IP

“protocol” processing which is only a part of the entire network stack. An

observation shows that Linux IPv4 and TCP input packet processing can be

reduced to 1–1.5 us (figure 5.5) by improving packet I/O subsystem and APIs,

and eliminating context switch overheads. This is not a surprise, because it

is known that TCP protocol can be processed very quickly in common cases

using a header prediction technique [4].

21



3.2 Overview of FrankenStack Architecture

Application
User

Kernel FrankenStack APISocket API

TCP/IP

FrankenStack I/O Shared
Memory

NIC Ring

socket( ), bind( ) fks_write( ), fks_read( )

TCP/IP
send/recv

NIC
TX/RX

Data Access

Figure 3.2: FrankenStack architecture: An application actively instruments NIC’s I/O and
TCP/IP protocol processing via FrankenStack API. The application and TCP/IP directly
read and write data on a NIC ring exported by FrankenStack I/O.

Analyses described in section 3.1 bring a set of design principles.

• Context switches between packet I/O, a network stack and an applica-

tion must be avoided.

• A low cost-per-packet I/O subsystem that uses preallocated, simple

packet buffers shared with user space must be needed.

• Low-latency application I/O and event notification must be needed.

The FrankenStack architecture is shown on figure 3.2. For realizing those

design principles, FrankenStack adopts packet I/O framework. FrankenStack

is constructed with 2 components. First is FrankenStack API which is a set

of interfaces for accessing the features of FrankenStack. Second component

is FrankenStack I/O which handles packet I/O and is built based on packet

I/O framework.
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3.3 FrankenStack I/O

Network I/O optimization is a important part of FrankenStack. Franken-

Stack adopts netmap for improving I/O efficiency. Section 3.3.1 describes

the details of netmap.

3.3.1 netmap

Application

Hardware
TX RX

Kernel

netmap

Figure 3.3: netmap architecture

netmap is a fast packet I/O framework which provides fast communication

channels for applications. netmap has an abstraction for NIC and it can

provides virtual ports which have the same abstraction structure as physical

NIC. netmap can achieve line rate of 10Gbps NIC (14.88 Mpps). In Franken-

Stack, netmap gives fast data paths and enhances packet I/O efficiency.
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The architecture overview of netmap is shown on figure 3.3. An important

characteristic is that netmap won’t crash operating system kernel because

their applications run in user space. netmap is an architecture which gives

applications fast I/O data paths and efficient synchronization mechanisms.

The synchronization is achieved by using systemcall. netmap creates a char-

acter device and applications call systemcalls for file descriptors which are

bound to the character device. Since netmap’s features are executed in-

side systemcall context, applications cannot execute unexpected behavior for

controlling NICs. This architecture allows applications to control NIC safely.

The difference from DPDK is that the driver codes are implemented inside the

kernel. While DPDK’s driver code works in user space, netmap applications

need to call a systemcall for accessing NICs.

Effective Packet I/O Subsystem

netmap exposes NIC’s buffer to applications directly. Those buffers are

preallocated and persistent for reducing the overhead of memory allocation.

netmap API

netmap APIs are implemented by select( )/poll( )/ioctl( ) system-

calls. Those systemcalls can be used to invoke NIC’s data reception and NIC’s

data transmission. This API design allows systems to control the timing of

NIC’s tx/rx and applications can batch their transmissions and receptions

by their control.

netmap API provides two types of NIC fetch, blocking and non-blocking.

select( ) and poll( ) yields CPU when there is no received data and the
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process is waken up when a new packet arrives for it. ioctl( ) returns

always even if there is no data. In this time, FrankenStack always polls NICs

actively by ioctl( ).

The following is the pseudo code of a netmap application for explaining

how an application reads received data from a NIC.

void netmap_read_buf(void)

{

struct netmap_ring *rx_ring;

struct netmap_slot *slot;

int fd, j, k;

struct nmreq req;

fd = open("/dev/netmap", O_RDWR);

bzero(req, 0, sizeof(req));

strcpy(req.nr_name, "netmap:eth0");

ioctl(fd, NIOCREGIF, &req);

while (true) {

ioctl(fd, NIOCRXSYNC, NULL);

rx_ring = NETMAP_RXRING(nifp, 0);

j = rx_ring->cur;

k = rx_ring->tail;

while (j != k) {

slot = rx_ring->slot[j];

buf = NETMAP_BUF(rx_ring, slot->buf_idx);

printf("received data %s", buf);

j = nm_ring_next(rx_ring, j);

}

rx_ring->head = rx_ring->cur = j;

}

}

After an application calls ioctl( ) with NIOCRXSYNC option, the rx

ring’s information is updated. An application checks the indexes of the rx

ring and reads buffers which are placed on indicated slots.
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Buffer Swapping
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Figure 3.4: netmap buffer swapping example

For achieving zero-copy packet forwarding between different NICs, netmap

provides the capability of buffer swapping. Figure 3.4 shows the behavior

of it. For swapping buffers, FrankenStack just needs to swap the indexes of

NICs’ slots. FrankenStack uses this feature for saving un-consumable data.

3.4 FrankenStack Behavior

3.4.1 Getting Packets

Figure 3.5(a) and 3.5(b) show the comparison the behavior of packet recep-

tion between multi-purpose operating systems’ network stack and Franken-

Stack. An application on top of FrankenStack actively polls a NIC in its own

kernel context by calling a FrankenStack systemcall (fks read( )), rather
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Figure 3.5: Comparison of the packet reception between multi-purpose operating systems
and FrankenStack

than running a separate, dedicated kernel thread. This allows us to execute

device I/O, network stack and application processing in turn without a con-

text switch, thereby avoiding problems with an expensive context switch and

synchronization. FrankenStack instruments a NIC to store packets on preal-

located buffers whose memory region has already been mapped into applica-

tion’s virtual address space. This allows the application to access packet data

without copy or systemcall after network stack’s packet processing. There-

fore, this avoids application I/O and packet I/O subsystem problems. There
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is an option to use interrupts to detect new packets on a NIC. In this case,

NIC’s RX interrupt handler just wakes up a userprocess. This option would

be useful when he systems want to save CPU cycles in idle periods. Since

the focus of this thesis is to reduce latency, I leave exploring this option to

future work.

3.4.2 TCP Receive Processing

Returning from each NIC polling with one or more packets received, Franken-

Stack pushes these packets into a TCP/IP protocol suite. The TCP/IP imple-

mentation processes these packets in turn as if these packets are coming from

the operating system’s packet I/O subsystem. If a packet is an in-order TCP

segment, the TCP implementation enqueues it into a socket buffer so that

an application can consume its data later. Since FrankenStack is running

in application’s systemcall context, FrankenStack can skip synchronization

procedures that are necessitated by executing a network stack in a software

interrupt context .

3.4.3 Application Processing

Immediately after returning from the FrankenStack systemcall or fks read(

), an application consumes data that are made available in the last network

stack processing. The application is notified of ready file descriptors in a

similar way to epoll wait( ) or with an array of them. However, to avoid

inefficiency of epoll wait( ), FrankenStack uses the lightweight version.

The applications could generate new data, such as ”HTTP OK” in response

to ”HTTP GET”. Application I/O to and from the network stack can be done
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without read ()/write( ) systemcalls, because as mentioned earlier, both

TX and RX packet buffers have been mapped into application’s address space.

It should be noted that while standard write( ) invokes network stack’s

output processing and device I/O immediately, FrankenStack postpones it

until the application explicitly triggers it.

3.4.4 TCP Send Processing

After filling up TX buffers, the application invokes another FrankenStack

systemcall (fks write( )) to trigger TCP/IP stack to process these packets

and push them out. In this systemcall, the network stack processes these

buffers by putting protocol headers, but does not trigger device I/O yet.

After all the sending packets have been ready to send, this systemcall kicks

device I/O. This allows us to push packets over multiple TCP connections in

a single device I/O trigger action.

3.4.5 Timer Processing

To avoid locking a TCP connection structure, FrankenStack replaces all the

timer event handlers, such as a retransmission timeout handler, just to post

occurrence of their timeouts. FrankenStack executes their original handlers

every time an application executes the network stack or calls fks read( )

or fks write( ).
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Name Description

int fks write(int fd, const void *buf,
struct nm desc *nmd, size t count, int ring id) Write data to NIC ring directly

int fks read(int fd, void *buf, struct nm desc *nmd,
struct nm desc *exd, size t count,
struct fks winfo *fwi, int ring id) Read data to NIC ring directly

int fks close(int fd, int ring id) Close socket
int fks reg session(int fd, int sock) Register socket with FrankenStack

Table 3.1: Overview of FrankenStack API

3.5 API Design

3.5.1 Comatibility to POSIX API

FrankenStack API is designed for applying FrankenStack to exiting systems

easily. Table 3.5 shows the API examples. For the better compatibility to

the existing systems, FrankenStack API provides read( )/write( ) API.

Basic parts of fks read( )/fks write( ) are same as POSIX API’s read(

)/write( ). Additional arguments such as ring id and nm desc are needed

for netmap specific information including the pointers to netmap’s packet

buffers.

3.5.2 Event Notification API

I believe an application wants to process TCP connections or file descriptors

in turn as with today’s event notification API like epoll wait( ). However,

scanning all the received packets in the ring for every file descriptor has

a scalability problem, particularly when the number of file descriptors is

large. Unfortunately, this is the case in transaction workload that handles a

large number of concurrent TCP connections. On the other hand, the event
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Figure 3.6: Algorithm to build a ready file descriptor list

notification API, or epoll wait( ), has linear complexity when it builds an

array of ready file descriptors that is returned to the application.

To avoid these problems, FrankenStack builds such an array during the

network stack execution or fks read( ). Figure 3.6 shows the algorithm

with an example that packet 0, 2 and 3 go to a file descriptor (fd) 4, packet 1

and 5 go to fd3, and packet 4 and 6 go to fd5. Note that fd is guaranteed to

be a unique number in the entire user process. When packets in the receive

ring are processed, each packet buffer keeps a next buffer index that goes to

the same fd. FrankenStack uses a table (FD table) that is indexed by fds to

keep a head and tail packet index for each fd. The tail is used to append a

new packet to a fd without having to traverse the ring, and the head is used

by an application to find the first packet for each ready fd also without having

to traverse the ring. The table size is a product of 32 byte (two 16 byte buffer

indexes) and the maximum number of file descriptors (65K in Linux). While

it is not so large, FrankenStack can further save memory using a flexible array

as file descriptors are allocated from lower integers. FrankenStack also builds

an array whose element contains a ready file descriptor (not present in the
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figure). By scanning this array, identifying the first packet buffer index for

each file descriptor and traversing next buffer index alongside each packet

buffer, the application can process ready file descriptors.

3.6 Summary of this Chapter

This chapter shows the details of the addressing problems and overview of

solutions. This chapter describes the design of the proposed architecture,

FrankenStack.
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Chapter 4

Implementation

This chapter describes the implementation of the proposed system.
The proposed system brings several feasibility challenges and the
solutions for them are also shown in this chapter.
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4.1 Software Components

FrankenStack is implemented with a kernel module, packet I/O framework

and kernel modification. FrankenStack is implemented based on Linux 3.16.

The biggest part of FrankenStack is implemented in the kernel module and

the kernel module glues the features of packet I/O framework and the kernel

TCP/IP stack.

4.1.1 Kernel Modification

Linux kernel is modified 188 LoC (61 LoC additions and 12 LoC deletions in

11 existing files and two new files) for adding fields in exiting data structures

of kernel for keeping the FrankenStack’s metadata.

4.1.2 Packet I/O Framework

FrankenStack adopts netmap[21] for packet I/O framework. netmap code

is modified with 68 LoC for adding variables in existing structures which are

needed for keeping metadata used in FrankenStack.

4.1.3 FrankenStack Kernel Module

FrankenStack kernel module is a 2200 LoC character device that imple-

ments FrankenStack systemcalls or fks recv( ) and fks send( ) to steer

packets between Linux TCP/IP implementation and netmap-based packet

I/O subsystem.
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4.2 Feasibility Challenges

4.2.1 Buffer Manipulation

FrankenStack needs packet buffers used by operating system bypass, user

space packet I/O framework. How can we glue such a packet buffer to pass

into operating system’s network stack? Simply gluing each of packet buffers

with operating system’s standard one brings overhead associated with al-

location and deallocation cost which is known to be expensive. Franken-

Stack therefore pre-allocates operating system’s packet representation struc-

ture alongside each of preconfigured, fixed-sized packet buffers. A free rou-

tine of kernel’s memory allocator is modified such that a buffer is not ac-

tually freed. As a result, FrankenStack can remove the vast majority of

overheads with packet representation and preserve zero-copy and systemcall-

batching capability achieved by operating system bypassed user space packet

I/O framework.

4.2.2 Handling Non-Consumable Packet

After TCP’s input packet processing, a packet buffer cannot be freed when

its packet has not been consumed. This is the case when a received TCP

segment was out-of-order. To be effective, device drivers only sequentially

process packets in their ring buffer so that just two pointers indicate ”avail-

able” and ”occupied” blocks. This means, if an unconsumed packet sits in

the middle of the ring, the driver cannot use buffers after this position. To

cope with this problem, FrankenStack swaps such a packet buffer with a free

packet buffer. The free packet buffer is configured in the same contiguous
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memory region such that an application can access it using a unique index

or offset after it becomes consumable. After swapping, FrankenStack sets

the new buffer brought into the ring structure to DMA. Although buffer

swapping comes with some costs as it requires DMA remapping, it could be

negligible as far as it is not very frequent. This buffer swapping technique was

originally introduced by netmap[21] to achieve zero-copy packet forwarding

between different rings or NICs. In the paper of netmap, he reports one swap-

ping on every minimumsized packet forwarding between 10 Gigabit ethernet

NICs easily achieves the line rate. The similar, but severer condition would

happen in a transmission path. Transmitted TCP packets on a NIC ring

cannot be released until they are acknowledged by the receiver. Therefore, it

might seem that these in-flight packets quickly exhaust packet buffers in the

transmission ring or very frequent buffer swapping is needed. However, this

does not happen so frequently. PacketRate×RTT packets could be sent in

one RTT. For example, on a 10 Gbps link whose line rate is 810 Kpps with

1500 byte packets, 162 packets could be sent at the same time when RTT is

200 us, which is relatively long or happens when some intermediate switch

queues have been built up. The ring buffer typically has a few thousands of

packet slots (e.g., Linux driver for Intel 82599 10 GbE NIC supports up to

4K descriptors), which allows FrankenStack to wait for all the packets ac-

knowledged for several RTTs. Therefore, to avoid buffer swapping as much

as possible, FrankenStack does not perform that until it is needed. It should

be noted that as explained in the next section, FrankenStack explicitly tells

the application the number of available slots and bytes with regard to TCP’s

window.
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4.2.3 The Case for TCP Transmission Pending
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Figure 4.1: Procedure flow for TCP transmission pending

FrankenStack provides a safety data saving technique for the case where

an application pushes too much data and exceeds TCP’s transmission capac-

ity. Figure 4.1 shows how FrankenStack handles TCP’s congestion control.

FrankenStack checks the specified data is transmitted or not after a send

function returns and if the data is not transmitted, FrankenStack saves the

data by using buffer swapping. The reason why FrankenStack use buffer

swapping for this purpose is that buffer swapping allow us to keep TCP/IP

stack’s packet representation structures and they are not needed to be modi-

fied. Because those structures are used in many parts in kernel for providing

many features, they are very complicated and they should not be touched for

simplicity. When the system recovers the capacity of TCP transmission after
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it receives several ACKs, TCP tries to transmit the pending packets. Because

their packet representation structures are not modified, TCP’s transmission

works as usual.

4.2.4 Avoiding Sparse Transmission

After a TCP implementation processes an application’s data waiting to be

sent on the TX ring, FrankenStack flushes these packets by triggering the

NIC’s I/O. In order for fast packet I/O, FrankenStack has to transmit all the

packets from a head to tail position on the TX ring. However, if an application

has put an arbitrary amount of data on the ring for multiple TCP connections,

packet transmission could have to be sparse due to lack of the window size

on some TCP connections, causing excessing buffer swapping. FrankenStack

therefore notifies an application of perconnection available bytes (the smaller

of advertised receiver window and congestion window) and total number of

available slots.

4.3 API

4.3.1 Event Notification API

Variables are added in the netmap’s structure (netmap ring) for storing

the number of events and file descriptors of the events. This is the same

fashion as epoll and it is easy to apply to applications which adopt epoll

based event notification. The variables indicating the status of events are

updated in the kernel space. Since FrankenStack has the control of NIC, it

can prepare required event information quickly.
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4.3.2 Comparison with POSIX API

For comparison, the pseudo codes for implementing simple HTTP servers

with FrankenStack API and POSIX API are shown below.

FrankenStack micro HTTP server

void franken_http_server(void)

{

struct netmap_ring *rx_ring;

struct fks_winfo fwi;

int i, fd, nfd;

char buf[256];

char *httpmsg;

ssize_t len;

rx_ring = NETMAP_RXRING(na->nifp, ring_id);

nfd = rx_ring->nevt;

for (i = 0; i < nfd; i++) {

fd = rx_ring->evts[i];

bzero(&fwi, sizeof(struct fks_winfo));

len = fks_read(fd, buf, na, exna,

sizeof(buf), &fwi, ring_id);

if (len < 0) {

fprintf(stderr, "read failed");

continue;

}

len = http_parse_and_create_response(httpmsg, buf, len);

if (httpmsg) {

fks_write(fd, httpmsg, na, len, ring_id);

} else {

fks_close(fd, ring_id);

}

}

rx_ring->head = rx_ring->cur = rx_ring->tail;
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}

POSIX micro HTTP server

void posix_http_server(int epfd, struct epoll_event *evts)

{

int i, fd, nfd;

char buf[256];

char *httpmsg;

ssize_t len;

nfd = epoll_wait(epfd, evts, SESSION_MAX, -1);

for (i = 0; i < nfd; i++) {

fd = evts[i].data.fd;

len = read(fd, buf, sizeof(buf));

if (len < 0){

fprintf(stderr, "read failed");

continue;

}

len = http_parse_and_create_response(httpmsg, buf, len);

if (httpmsg) {

write(fd, httpmsg, len);

} else {

close(fd);

}

}

}

Those pseudo codes indicate that the required modification for applying

FrankenStack is not big. The basic components of a server application is event

API and network I/O. FrankenStack replaces the event API with Franken-

Stack’s effective API which keeps high readability since its way of description

is close to epoll. The APIs for network I/O are also easy to understand
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because they are based on file descriptor. We can apply FrankenStack by

replacing POSIX API.

4.4 UNIX Socket Operation

FrankenStack relies on operating systems’ socket API for setting up TCP

connections. FrankenStack does not have features for making sockets, but

just uses created sockets by operating systems’ API. This means Franken-

Stack is completely compatible to file descriptor and it is easy to apply exist-

ing applications which are handling TCP connections based on file descriptor.

FrankenStack works just for specified sockets and packets for unspecified

sockets are steered to the normal operating system’s TCP/IP stack. By this

design, FrankenStack achieves transparency for non-FrankenStack enabled

applications. FrankenStack does not occupy NICs for FrankenStack’s purpose

but shares with the other running applications.

For enabling FrankenStack on a specific socket, an application registers it

by using FrankenStack API. After the registration, FrankenStack can identify

which received packets should be processed by it.

4.5 Summary of this Chapter

This chapter describes the implementation details of FrankenStack. The

feasibility challenges which are brought by FrankenStack’s design choices are

shown and the solutions for those design challenges are proposed.
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Chapter 5

Evaluation

This chapter describes the evaluation of the proposed system. Ex-
periments are purposed to measure how FrankenStack improves the
throughput and latency. In this time, HTTP workloads are adopted
for the benchmarks. Through the experiments, characteristics and
benefits of the prosed system are shown.
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5.1 Experiment Setup

Experiments are executed for the FrankenStack prototype to analyze its

latency and throughput as well as to validate the design decisions. This thesis

focuses on transaction workloads on a server that serves request-response

traffic with small packets on a large number of concurrent TCP connections.

Two machines are used for the experiments. They are connected via a

single 10 Gigabit Ethernet link, which are called server machine and client

machine. Both machines are equipped with Intel Xeon E5-2650 (2.00 GHz)

CPU, 128 GB RAM and an Intel 82599ES chipset 10 Gigabit Ethernet card.

The server runs either Linux network stack or FrankenStack. On top of

them, Linux or FrankenStack version of a simple HTTP server runs, respec-

tively. The Linux version runs on epoll event loop and processes events on file

descriptors in turn. Every processed event includes read( )ing the client’s

request, matching the first four-byte string to check ”HTTP GET”, copying a

pre-generated HTTP response into a buffer and write( )ing this buffer into

the file descriptor. The FrankenStack version runs on fks read( ) event loop

and bypasses all of the epoll wait( ), read( ) and write( ) systemcalls.

On the client machine the Linux network stack is used and run an existing

HTTP benchmark tool wrk[7]. wrk initiates a given number of TCP connec-

tions, then continually sends an HTTP GET request to receive an HTTP OK

response over them. On each TCP connection it does not send a next request

until it receives a response for the last one. The client reuses TCP connec-

tions or never re-establishes TCP connections, because this thesis focuses on

the small message exchange problem.
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In all the experiments the server machine uses only one CPU core, because

this is the first experiment and I am interested in how FrankenStack solves the

problems described in chapter 3. The client machine uses all the 32 CPU cores

as well as RSS to efficiently utilize these cores. Unless otherwise stated, all

considerable hardware/software offloading options for default TCP/IP stack

are enabled. For FrankenStack case, all of hardware offloading features are

disabled because FrankenStack conflicts with them.

5.2 Message Sizes and Throughput
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Figure 5.1: Transaction rates and throughput on different message sizes

Figure 5.1 shows throughput and transaction rates on different response

message sizes. Response messages that are 2048 bytes or larger consists of

multiple packets to fit into 1500 byte link MTU. FrankenStack is compared
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with two versions of Linux that enables and disables TSO. Note that TSO

is effective only when a response message includes multiple packets. This

experiment purposes to measure the achievable throughput for different mes-

sage sizes; the benchmark therefore increases the number of concurrent TCP

connections from 1 to 2048, and figure 5.1 plots the best numbers for each

message size and network stack. Analyses of the relationship between con-

current TCP connections, throughput and latency are shown later. Franken-

Stack achieves 27.2 % to 77.5 % higher throughput than Linux with TSO

when the response message consists of one or two packets or its size is 2048

bytes or smaller. FrankenStack competes with Linux with TSO for 4096 byte

message size, and its throughput is lower than Linux with TSO when the

message size is 8192 or larger. FrankenStack’s throughput is slightly lower

than Linux even without TSO. This is because of Generic Segmentation Of-

fload (GSO) which is a software version of TSO but still reduces the number

of IPv4 and TCP protocol processing executions. In future work I plan to

support GSO or TSO in FrankenStack.

5.3 Concurrent TCP Connections

The throughput and latency of FrankenStack are measured with regard to

the number of concurrent TCP connections or transactions. Figures 5.2, 5.3

and 5.4 show throughput and latency with three message sizes. FrankenStack

improves throughput by 8.1 to 139.6 % and reduces latency by 7.7 to 58.8

% in 64 to 1024 byte serving message sizes and 1 to 1024 concurrent TCP

connections.
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From these experiment results, I see that the performance gains are deriv-

ing from the event API improvements. In Linux, the increased number of

concurrent TCP connections increases latency exponentially. This is because

it increases the number of file descriptors returned by epoll wait( ). Since

FrankenStack eliminates the complexity with epoll wait( ) by the algo-

rithm in section 3.5.2 and reduces read( )/write( ) systemcall overhead,

the latency reductions by higher margin with an increased number of the

concurrent TCP connections are seen.

The observations show the reduced number of TCP connections processed

by a single event notification, which is 62 and 235 for 128 and 1024 concurrent

TCP connections, respectively (not present in the plots). This contrasts

to Linux with epoll where almost all the concurrent TCP connections are

processed on every event notification.
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Figure 5.2: Throughput and latency with the number of concurrent TCP connections (hor-
izontal axis) for 64 byte messages
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Figure 5.3: Throughput and latency with the number of concurrent TCP connections (hor-
izontal axis) for 256 byte messages
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Figure 5.4: Throughput and latency with the number of concurrent TCP connections (hor-
izontal axis) for 1024 byte messages
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5.4 TCP Latency

Finally, this section analyzes latency in TCP protocol processing to see the

least possible latency with FrankenStack architecture that leaves Linux TCP

implementation. The elapsed time from the beginning of TCP/IPv4 input

packet processing to the end of that is observed. Figure 5.5 shows the re-

sults. The Linux network stack and FrankenStack take 1.3-1.9 us and 1.0-1.5

us at 50th percentile, respectively. These latency reductions are effects of

eliminated synchronization from a network stack to an application. Out of

these latencies, 0.4-0.7 us (Linux) or 0.3-0.5 us (FrankenStack) are spent by

the IPv4 implementation. Overall, latency in the Linux TCP implementa-

tion is quite low, and it is further reduced to 1 us or less by FrankenStack

architecture.
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Figure 5.5: Elapsed time in IPv4 and TCP input packet processing (napi gro receive( ))
for 1, 8 and 128 concurrent TCP connections: FrankenStack takes shorter because it avoids
synchronization procedures.

5.5 Summary of this Chapter

This chapter shows the details of experiments. For measuring the improve-

ments of the throughput and latency of FrankenStack in request-response

server applications, experiments are executed for HTTP server workloads.

Regarding the throughput, experiment results show that FrankenStack achieves

27.2 % to 77.5 % higher throughput than Linux in the case where the message

sizes are less than 2048 bytes. FrankenStack produces the better performance

than Linux if the message size is less than 2048. If the message size is bigger

than 4096 bytes, FrankenStack could not produce performance improvements.

I see this is because of the procedures of TCP checksum and packet fragmen-
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tation which can be done by hardware assist in Linux TCP stack. Regarding

the latency, experiment results show that FrankenStack reduces the latency

by 7.7 to 58.8 % in 64 to 1024 byte serving message sizes and 1 to 1024

concurrent TCP connections. Especially the measurement results for elapsed

time in TCP receive processing show that FrankenStack reduces its packet

processing time. This is because FrankenStack reduces the synchronization

costs including process wake up and the preparation of event information.
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Chapter 6

Conclusion and Future Work

This chapter describes future work and concludes this thesis.
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Request-response is an important workload in today’s data center networks.

Especially small message exchanges can be seen widely, for example HTTP

and memcached protocol. On the other hand, multi-purpose operating sys-

tems cannot achieve high performance with small packet sizes. Several re-

searches rebuild the implementation of TCP stack itself for the performance.

However, being motivated by the fact that operating system’s TCP imple-

mentation is the most state-of-the-art in terms of features and it is the most

actively maintained, this thesis addressed problems with operating system’s

network stack while preserving its TCP implementation. This thesis pre-

sented FrankenStack and improved throughput and latency in transaction

workloads.

There are still questions, such as scalability with the increased number

of CPU cores and how to run a large number of applications concurrently.

One issue is protection which is an important role of operating systems.

FrankenStack allows an application to see all the NIC’s buffers and this might

bring the security problems. Second is the resource sharing schema, this is

also a feature which should be provided by operating systems. A considerable

solution for them is adopting MultiStack[11] which runs multiple different

protocol stacks on virtual ports which are provided by VALE[22]. Since each

virtual port is assigned to each application process and packet buffers are

copied to each process’s memory region, the kernel does not need to show

NIC’s buffers to any application. Because packet steering is executed by

VALE, the resource sharing can be achieved by it.

For identifying the viability of FrankenStack, more experiments in different

situations are needed, for example, the validation of multi-core scalability
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and benchmarks for existing applications.

I will address these problems and validate the system in future work.
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