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Abstract

Some nodes are only intermittently connected to the Internet. When they

use different access networks, their IP addresses change, which disrupts

ongoing connections. Even if IP addresses do not change, connections

abort if disconnection periods are too long. Every disconnection period

decreases the performance of ongoing TCP connections, because TCP does

not resume data transfer immediately after connectivity is re-established.

This thesis introduces the TCP Abort Timeout Option in conjunction with

the Host Identity Protocol to solve the problem of connection abortion and

introduces the TCP Retransmission Trigger to improve the performance of

data transmissions. Detailed experiments with a prototype implementation

of these mechanisms evaluate the effectiveness of the proposed solution.

Measurements show that the proposed solution lets TCP tolerate arbitrary-

length disconnections and IP addresses changes. Transfer time of a fixed

amount of data could be reduced by a maximum of nearly 120 seconds and

43 seconds on average for one intermediate disconnection period.
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Chapter 1

Introduction

Within the last years, many users have started to use mobile devices such

as notebooks, PDAs or mobile phones. They connect to the Internet using

various access technologies, mainly GSM, UMTS or Wireless LAN. When

the Internet was established, hosts were stationary and connected through

wires links. Therefore, locations and network addresses of hosts were rather

static and changed only very seldom. Link outages were mainly caused by

hosts shutting down or broken cables. They lasted for rather long periods

in the order of hours or days. In contrast, mobile devices can change their

locations and access networks quite frequent. This implies frequent changes

of network addresses, because most access network use a different address

range. Leaving the coverage area of a wireless access point is a new source

for link outages in the range of seconds, minutes or hours.

This chapter presents the basic scenario (see Section 1.1) that has to

be supported by an appropriate network solution. Section 1.2 discusses

networking problems that arise from this scenario. Section 1.3 summarizes

the main contributions of this thesis. Finally, a short overview of the

document structure is given is Section 1.4.
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CHAPTER 1. INTRODUCTION

1.1 Basic Scenario

In the basic scenario of this thesis a mobile user is moving, for example by

car or by train. The user connects to the Internet using wireless technologies

such as GSM, UMTS or Wireless LAN. Physical connections are lost when

entering tunnels or areas with bad coverage by base stations (see Figure 1.1).

Access networks and internet service providers are switched on demand.

Periods with high quality connections alternate with periods where there is no

connection at all. In such scenarios, network services usually get interrupted.

coverage area

wireless connection

Internet

ISP 2ISP 1

ISP internet service provider

Figure 1.1: Example scenario

However, delay-tolerant applications like file download or web services

do not rely on immediate or permanent responses by their communication

peers. In this case, communication does not have to fulfil any real-time

requirements. Guaranteed data delivery at any time in the future is more

important than meeting Quality of Service parameters like maximal round-

trip time or minimal bandwidth.

2



1.2. PROBLEM STATEMENT

This type of applications can be supported by transparently reconnecting

to the Internet and seamlessly continuing network services as soon as an

access networks become available. For example, field managers might want

to update databases or download files while travelling. In such a scenario, it

is not important that the data transfer is finished within a few seconds, but

it should be finished when he arrives at the next customer. In this case, each

period of connection should automatically be used to send or receive data.

Remote connections often break if nodes move or temporarily loose

network connectivity. Most of the time, these remote connections have to be

re-established manually by providing username and password. If network

support is able to keep remote connections open during disconnection

periods, they could be continued immediately as soon as network connectivity

is back again.

1.2 Problem Statement

Several networking problems arise from the scenario described above. Mobile

nodes change geographic location and access networks. Short or long

disconnection periods can occur at any time without prior warning. The

transport protocols TCP and UDP as well as the Domain Name System

(DNS) are not designed for such scenarios. In the following, the effects of

these problems are discussed in more detail.

Mobility: When mobile nodes change location, they may change their

access network, too. In this case, mobile nodes are assigned new IP

addresses.

Communication end-points of TCP or UDP connections are identified

by a triplet containing the IP address, port number and the transport

3



CHAPTER 1. INTRODUCTION

protocol that is used. This information is set up when a connection

is established and cannot change over the lifetime of a connection.

Therefore, changing the IP address of a mobile node invalidates

communication end-points. This means that each TCP or UDP

connection breaks as soon as a mobile node changes its IP address.

The problem arises from the dual role of IP addresses. They serve

as node identifiers and locators at the same time. Ideally, identifiers

should only names to uniquely identify nodes while locators should

define the current location of nodes in the network.

Lookup services such as DNS experience problems with IP address

changes as well. If a node should always be addressable by a static

fully qualified domain name, DNS entries have to be updated on each

IP address change. Therefore, frequently moving nodes imply a high

load on DNS. Furthermore, DNS entries are usually cached for several

minutes, hours or even days. Even with Dynamic DNS, cache times

are in the order of several minutes. Consequently, propagation of new

IP addresses might be delayed for several minutes as well.

In addition to these problems, new authentication mechanisms might

be desirable to ensure that communication partners are still the same

even if their IP address changes.

Disconnection: It is a challenging task to decide when a peer node should

be treated as unreachable. With TCP, this decision is based on

timeouts. Long timeouts waste resources like buffers, ports, memory

and CPU time. However, dropping connections to early incurs bad

service.

The TCP specification [Pos81] defines a user timeout. Connections

4



1.2. PROBLEM STATEMENT

abort when a TCP segment remains unacknowledged for a time longer

than the user timeout. Currently, most TCP/IP stacks use a local

default policy that applies to all connections on a host [Ste96, p. 299].

This implies that hosts are not able to adapt to current networking

conditions of a particular connection.

In addition, adjusting local policies is not sufficient. If a host decides

to extend its timeout values, connections might still be aborted by its

peer hosts. Therefore, policies have to be propagated to or negotiated

with the peer hosts.

TCP Performance: TCP is a reliable transfer protocol. Its reliability

mechanisms are based on acknowledgements and timeouts. A segment,

which is not acknowledged by the receiver before a retransmission

timeout occurs, is treated as lost. Lost segments are retransmitted

to ensure reliable delivery. Retransmission timeouts are generated by

a timer called retransmission timer.

When TCP was developed, segment losses were mainly caused by

congestion within an overloaded part of the network. Therefore, the

retransmission timer was designed with an exponential backoff [Ste96,

p. 299]. A segment is retransmitted several times if no

acknowledgements are received. However, the value for the

retransmission timeout is doubled after each retransmission attempt

(see Figure 1.2). Therefore, retransmission timeouts grow

exponentially. Most TCP/IP implementations use an upper limit of

one to two minutes1 for retransmission timeouts.

1Retransmission timeouts on a SuSE Linux 8.2 operating system are limited to 120

seconds by default.

5



CHAPTER 1. INTRODUCTION

Exponential backoff rapidly reduces the load on the network and

adjusts to an assumed congestion within the network. In the case of

physical disconnection, the retransmission timeout grows very soon to

values of tens of seconds or up to minutes (compare Figure 1.2).

4000000

3000000

2000000

1000000

0
4003002001000 s
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Figure 1.2: TCP retransmissions with exponential backoff

Exponential backoff leads to poor performance in scenarios where

communicating hosts are temporarily disconnected. If a physical

connection becomes available, TCP still waits until the next

retransmission timeout expires. Retransmission timers are not

influenced by events in lower network layers. Potential sending time

is wasted if a physical connection is available but no segments are

scheduled for transmission. In the extreme case, the retransmission

timeout value might even be larger than the period of physical

connections. TCP might not even try to transmit a segment, although

network connectivity is available. Waiting for retransmission timeouts

does not only lead to poor performance for bulk data transfer, but also

incurs bad response times for interactive applications like ssh or web

services.
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1.3 Contributions

This thesis proposes a system that supports TCP-based communication for

intermittently connected nodes and improves performance in such cases. The

system is designed as an end-to-end solution and is therefore well supported

by the current Internet infrastructure. It consists of three complementary

parts. First, the Host Identity Protocol (HIP) serves as a mobility solution.

It decouples connection end-points from IP addresses. End-hosts inform

each other about IP address changes such that connections can be redirected

after movements. HIP also includes a mechanism for host authentication.

The second part is the TCP Abort Timeout Option that allows end-hosts to

negotiate appropriate abort timeout values. Consequently, TCP can tolerate

arbitrary-long disconnection periods if the negotiated timeout values are

sufficiently large. The third part is a TCP Retransmission Trigger to improve

TCP performance. It reschedules timeouts for outstanding retransmissions

to occur immediately after re-establishment of network connectivity. This

way, TCP connections resume data transfer earlier than with standard TCP.

The thesis also presents an experimental evaluation of the proposed

system based on a prototype implementation. Results show that each part

of the system fulfils its task. TCP connections tolerate IP address changes as

well as long disconnection periods. The TCP Retransmission Trigger is able

to reduce data transfer times by 43 seconds on the mean in the presence of one

intermediate disconnection. In the best case, data transfer timer was even

reduced by nearly 120 seconds. The maximum saving is limited by the upper

limit for retransmission timeout values2. In the evaluation scenario, worst

case bandwidth usage could be raised from 14% without TCP Retransmission

Trigger to 69% with TCP Retransmission Trigger.

2This upper limit is 120 seconds on Linux systems.

7



CHAPTER 1. INTRODUCTION

1.4 Document Structure

Chapter 2 provides an overview of possible approaches to solve the

problems of intermittently connected nodes. A few existing solutions are

summarized in chapter 3. Chapter 4 presents the proposed system, which is

experimentally evaluated in chapter 5. A summary and an outlook on future

extensions is provided in chapter 6

8



Chapter 2

Design Space Analysis

This chapter provides an overview on different approaches that could support

communication for intermittently connected mobile nodes. Two major

aspects span the design space for such solutions: First, solutions can

be introduced on different layers of the ISO/OSI reference model [Tan96,

p. 28-35] (see Section 2.1). Second, different nodes throughout network

infrastructure can provide these solutions (see Section 2.2). In the following,

these two design options are discussed in more detail.

2.1 Network Layers

Support for mobility and disconnection as well as performance optimisations

can be introduced on different layers of the network architecture.

Sections 2.1.1 to 2.1.3 present various approaches.

2.1.1 Mobility Support

Node mobility can cause a change of IP addresses. This disrupts TCP and

UDP connections, because bind to IP addresses of communicating hosts.

9



CHAPTER 2. DESIGN SPACE ANALYSIS

Therefore, mobility support must either decouple connection end-points

from IP addresses or it has to provide a mechanism to dynamically update

connection end-points. Link layer mechanisms operate only on connections

to direct neighbours. Thus, they cannot provide mobility support if a node

moves from one network to another. Consequently, mobility support can

only be introduced on network layer or a layer above.

Network Layer

If mobility support is introduced in network layer, transport protocols like

TCP and UDP still bind their connection end-points to IP addresses. TCP

segments are encapsulated in IP packets that are sent to the IP address

specified by transport layer. These packets have to be redirected if a mobile

node changes its IP address. This can either be done by changing the

destination address of the original IP packets or by IP-over-IP tunnelling.

A tunnelling solution works as follows. On the sending side, the original IP

packet is encapsulated in a new IP packet. The destination of the new IP

packet is the foreign tunnel end-point, for example the current IP of a mobile

node. On the receiving side, the original IP packet is retrieved by unpacking

the received packet. Mobile IP ([Per02], [JPA03]) is an example for such a

solution (see Section 3.1).

Indirection Layer between Network and Transport Layers

Another approach introduces a new layer in between network and transport

layers. Its task is to separate the dual role of IP addresses. Currently,

IP addresses identify a node and specify its location. An indirection layer

allows the transport layer to bind connection end-points to identifiers that

are independent of IP addresses. In this way, connection end-points remain

10



2.1. NETWORK LAYERS

valid even if nodes change their IP addresses. Transport-layer segments are

passed to the indirection layer, which resolves the current IP address of the

destination node and generates an IP packet addressed to the destination.

Several solutions that follow this approach have already been developed.

Sections 3.2 and 3.3 present two examples for this approach, Virtual

IP [YGD+01] and the Host Identity Protocol ([MN03], [MNJ03]).

Transport Layer

Transport-layer solutions bind connection end-points to IP addresses.

Usually, this implies that IP addresses changes invalidate connection end-

points. Thus, transport protocols must dynamically update connection end-

points on demand during ongoing connections. If a mobile node changes its

IP address, all of its peer nodes must update their connection end-points

accordingly. This way, connection end-points remain valid and connections

are not disrupted by IP address changes. Mobile SCTP [XKWM02] is an

extension to the Stream Control Transmission Protocol [SRX+03] that follows

this approach.

Session/Socket Layer

A last possibility to deal with IP address changes is to hide disruption of

transport layer connections from the application layer. Therefore, new TCP

connections have to be re-established automatically. This can be either be

done on socket1 or a new session layer on top of transport layer.

Mobile TCP Sockets [QYB97] and Persistent Connections [ZD95] modify

socket implementations. Applications open TCP connections as with

1The socket layer is not an actual layer in the ISO/OSI reference model. It is the

Application Programming Interface of the TCP implementation.

11



CHAPTER 2. DESIGN SPACE ANALYSIS

standard TCP. Thus, mobility is completely transparent to the application. If

a TCP connection is disrupted due to changing IP addresses, the specialized

implementations still accept I/O calls. In the background, a new TCP

connection is established that can continue data transfer. This new TCP

connection binds to the new IP addresses of the communicating nodes.

A second approach is to introduce a new session layer in between the

transport and the application layer. Applications explicitly open a session

instead of a standard TCP connection. This means that this solution is not

completely transparent to applications, as they have to open a session instead

of a TCP connection. However, mobility is still transparent once the session is

established. Similar to a socket layer solution, the session layer transparently

exchanges underlying TCP connections if one of the communicating nodes

changes its IP address. Migrate [Sno03] is such a session-based solution.

2.1.2 Disconnection Support

In contrast to mobility support, disconnection support is difficult to solve in

a layer lower than transport layer. This is due to the abort timeouts of TCP.

Even if the network layer is able to delay packet transmission until a end-to-

end connectivity is available, TCP aborts connections as it does not receive

any acknowledgements. Thus, disconnection support has to be introduced in

the transport layer or higher layers. This thesis concentrates on support for

TCP connections. UDP connections do not provide reliable data transfer,

such that packets could be discarded during periods of disconnection.

Transport Layer

Connection-oriented transport protocols, like TCP, abort connections after

certain timeouts. Therefore, transport layer connections are disrupted if

12
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periods of disconnections become too long. Transport layer support can be

provided by modifying those protocols to allow longer timeout values.

However, simply extending timeout values is not appropriate. It is

desirable to introduce mechanisms that enable hosts to react to network

conditions. Furthermore, a decision should not only be based on local

information. In the best case, timeout values would be negotiated between

communicating hosts.

Session/Socket Layer

Transport-layer solutions try to avoid disruption of ongoing connections.

Another approach allows disruption of ongoing connections but hides these

disruptions from applications by changing socket layer or introducing a

session layer.

Disconnection support based on session- or socket-layer mechanisms

is similar to mobility support at the same layers. If a connection is

disrupted due to disconnection, I/O calls are still accepted. If necessary,

data is buffered. As soon as a new end-to-end connection is possible, a

new transport layer connection is established that continues data transfer.

The three mobility solutions Mobile TCP Socket [QYB97], Persistent

Connection [ZD95] and Migrate [Sno03] also integrate such a disconnection

support.

2.1.3 Performance Optimisation

As mentioned in Section 1.2, TCP experiences severe performance problems

in disconnecting environments, because retransmission timeouts grow to

large values. Thus, lost segments are not retransmitted as soon as end-

to-end connectivity becomes available after a disconnection. Restarting data
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transfer earlier can enhance performance.

One approach buffers a few packets at the link layer. This allows

the link layer to retransmit these packets as soon as the disruption

ends. If this link provides an end-to-end connection to the destination,

retransmitting the packets fakes TCP retransmissions. The Implicit Link-

Up notification [DW03] and the Smart Link Layer [SM03] serve as examples

for link layer solutions (see Sections 3.8 and 3.9).

A similar approach can be applied at the network layer. In this case, the

network layer buffers IP packets created by TCP connections. However, the

network layer has more information about network topology. If a new link

does not provide IP connectivity to a destination host, than retransmission

of these IP packets is useless. Thus, the network layer only retransmits

buffered packets over links that are likely to provide IP connectivity to the

destination.

Finally, TCP’s retransmissions themselves can be pre-scheduled. In this

case, TCP segments are not buffered in lower layers, but new retransmission

are generated immediately network connectivity is re-established. If TCP

implementation offers a mechanism to pre-schedule retransmissions, this

mechanism could be triggered when new IP connectivity becomes available.

Thus, TCP retransmits lost segments earlier and data transfer is restarted

earlier.

2.2 Network Nodes

Different nodes throughout the network can provide mobility or disconnection

support. This section provides an overview three different possibilities. A

comparison is given in Section 2.2.4.
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2.2.1 End-Host Approach
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Figure 2.1: End-Host approach

In an end-host approach, communicating nodes have to support mobility

and disconnection themselves.

A mobile node (MN) and a peer node (PN) establish a TCP or

UDP connection when an initial end-to-end connection is available (see

Figure 2.1(a)). If MN looses network connection, no data can be exchanged

between MN and PN (see Figure 2.1(b)). When a new network connection

is available, MN and PN have to ensure that data transfer is continued(see

Figure 2.1(c)). This can either be done by redirecting the old connection or

by establishing a new one.
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2.2.2 Middlebox Approach
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Figure 2.2: Middlebox approach

In a middlebox approach, connections are split into two parts (see

Figure 2.2(a)). The first part connects the mobile node with the middlebox.

The second part connects the middlebox with the peer node. The middlebox

serves as a buffering proxy server.

This architecture completely hides mobility and disconnection from the

peer node. If the mobile node looses network connection, the connection

between middlebox and peer node is not affected (see Figure 2.2(b)). The

connection between mobile node and middlebox has to be handled as in an

end-host approach.
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2.2.3 Store-and-Forward Approach
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Figure 2.3: Store-and-Forward approach

The Store-and-Forward approach is a continuation of the middlebox

approach. It introduces many proxy-like servers to network infrastructure.

Instead of using only one middlebox, data is forwarded from one proxy server

to the next using short term connections (see Figure 2.3(a)). This way, data

is pushed through the network until it finally arrives at the destination node.

If MN is disconnected, data that PN sends to MN is still pushed

through the network (see Figure 2.3(b)). On reconnection, each proxy

server that stores data destined for MN forwards this data towards MN (see

Figure 2.3(c)). In reverse direction, MN transfers data to the first proxy
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server when an connection is available. Even if MN is disconnects after that,

proxy servers forward data until it reaches PN.

2.2.4 Comparison

An end-host approach has two main advantages. First, it does not rely

on any changes of network infrastructure. Second, it keeps TCP’s reliable

end-to-end semantics of TCP as a node only receives acknowledgements

if its peer node has received data. The main disadvantage is that end-

to-end communication is only possible when an end-to-end connection is

available. If both communication nodes are mobile, it is possible that always

at least one of them is disconnected. Therefore, these two nodes then cannot

communicate.

This problem is solved by the middlebox approach. Data can be

exchanged between a connected node and a middlebox. The communication

partner can retrieve the data from and buffer a response on the middlebox as

soon as it is connected. Thus, two nodes can communicate although no end-

to-end connections exists at any time. A second advantage is that mobility

and disconnection of mobile nodes is hidden from their peer nodes. Peer

nodes only communicate with stationary middleboxes. However, a middlebox

approach needs new elements in network infrastructure that have to be setup.

A second disadvantage is, that middlebox solutions change TCP’s reliable

end-to-end semantics, because TCP connections are only established to the

middlebox. Thus, a node assumes successful transfer to the destination as

soon as data is received by the middlebox. However, it is still possible that

data never reaches destination.

It is a trade-off decision whether a end-host or a middlebox approach

should be preferred. This decision must be based on application and
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user requirements as well as on the possibilities to change or add network

infrastructure elements.

The Store-and-Forward approach has many drawbacks. Reliable end-

to-end transfer is not supported at all. End-hosts as well as many

nodes throughout the whole network infrastructure have to be modified.

Buffered data is spread over several proxy servers and mobile nodes have

no information about these locations. Store-and-Forward implies a high

overhead, because a separate connection has to be setup between each pair

of proxy servers. The main advantage of a Store-and-Forward approach is

its ability to deliver data if network infrastructure is unreliable. This means

that many links throughout the infrastructure frequently disconnect. In this

case, data can still be forward as soon as a connection between two proxy

servers is available.

However, only links to end-hosts are subject to fail, such that the main

advantage of a Store-and-Forward architecture does not come into account.

Therefore, it is ill-suited to be used within this thesis.
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Chapter 3

Related Work

This chapter gives an overview of existing solutions. Sections 3.1 to 3.3

present mobility solutions that are compatible with TCP. In Section 3.4,

Mobile SCTP is presented as an example for transport layer mobility. The

Mobile TCP Socket and Migrate solve both, mobility and disconnection

problems (see Sections 3.5 and 3.6). Section 3.7 describes the Delay-Tolerant

Networking architecture that uses an Store-and-Forward approach. Solutions

for performance optimisations are shown in Sections 3.8 and 3.9.

3.1 Mobile IP

Mobile IP [Per02] provides a mechanism such that mobile nodes are always

addressable with static IP address. This static IP address is called home

address. Legacy nodes communicating with Mobile IP nodes do not have to

support Mobile IP themselves.

The network that its home address belongs to is the mobile node’s home

network. All other networks are called foreign networks. The visited network

is a foreign network that a mobile node is currently connected to.
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Mobile IP defines several architectural entities. First, a mobile node (MN)

is a node that is able to communicate using a constant IP address independent

of its current point of attachment. Second, a home agent (HA) is a router

in MN’s home network. The HA tunnels incoming data towards the mobile

node if it is outside the home network. Third, a foreign agent (FA) is a

router in a visited network which extracts tunnelled data delivered received

from HA and forwards it to MN.

CN
MN

HA

(a) Mobile node in home network

tu
n
n
e
lle

d


CN

MN
FA

HA

(b) Mobile node in foreign network

Figure 3.1: Communication with Mobile IPv4

Communication partners of a MN are referred to as correspondent node

(CN). If a CN starts to communicate with MN, it always uses MN’s home

address.

If MN is in its home network, routing is performed like in usual IP

networks. Packets are routed to the home network, pass through HA and

finally arrive at MN (see Figure 3.1(a)).

If MN is connected to a foreign network, it is assigned a second IP address,

the so-called care-of address. This care-of address is propagated to HA. If CN

is communicating with MN, CN still sends IP packets to the home address

of MN. However, HA intercepts these packets and tunnels them to FA. FA

finally delivers them to MN. In reverse direction, two route are possible. With
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the first alternative, packets are passed from MN to FA, which tunnels them

back to HA. From there, they are sent back to CN. The second alternative

optimises the routing path. FA does not tunnel the packets to HA but sends

them directly CN. However, these IP packets carry MN’s home-address as

the source address. Thus, they originate from a different network than the

source address belongs to. Routers do not forward these packets if they use

network ingress filtering [FS00] to prevent address spoofing.

3.2 Virtual IP

Virtual IP [YGD+01] introduces a new layer in between transport and

network layer to support node mobility. Nodes are identified by fully qualified

domain names (FQDNs). An FQDN is not directly mapped to an IP address

but to a virtual IP (VIP). In a second step, VIPs are mapped to IP addresses.

Like IP addresses, VIPs are 32 bit identifiers to provide compatibility with

existing protocols. However, they are formed of Class E addresses1 that are

currently not used within the Internet. This way, IP addresses and VIP

can be easily distinguished. VIPs are not globally valid. Instead, they are

pair-wise negotiated identifiers between two communicating nodes.

If a VIP node wants to contact its peer node PN, it sends two DNS

queries. The first query requests the current IP address of PN. The second

query prepends the so-called VIP MAGIC NUMBER to the FQDN of PN.

This returns a proposed VIP for PN that can be used to start a VIP

negotiation. This creates a pair of locally unique VIPs that are used during

later communication. The mapping from VIP to IP address is locally cached.

A mobile node MN updates its IP address in Dynamic DNS on each IP

1Class E addresses are in the range of 240.0.0.0 - 247.255.255.255
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address change. Additionally, it sends an invalidation hint to its peer nodes.

Thereupon, peer nodes start a new DNS query to retrieve the new IP address

of MN and update the cached VIP to IP mapping accordingly. VIP to IP

mappings are only valid for a certain lease time. It the lease expires, nodes

also issue DNS queries to retrieve actual IP addresses of peer nodes.

All VIP traffic is encrypted using IPsec [KA98a]. The keys used to encrypt

and decrypt packets are bound to VIPs instead of IP addresses. Thus, keys

remain valid even if IP addresses change.

3.3 Host Identity Protocol

The Host Identity Protocol (HIP) introduces a new protocol layer in between

the network and transport layers ([MN03],[MNJ03]). It defines a new

namespace that decouples fully qualified domain names from IP addresses.

The new namespace is called the Host Identity Namespace. Its primary goal

is to provide a mechanism for host authentication. FQDNs are not directly

mapped to IP addresses. They map to a Host Identity, which identifies

a host. The HIP layer maps host identities to IP addresses, which define

the physical location of nodes in the network. Transport layer connections

bind their end-points to host identities and are therefore independent of IP

addresses.

A Host Identity identifies the abstract entity that has to be addressed,

a host for example. HIP defines three representations to refer to a specific

Host Identity.

Host Identifier: The public key of an asymmetric key pair is used to

address a Host Identity. This public key is the Host Identifier HI. A host

holding the corresponding private key is the Host Identity addressed
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by a Host Identifier.

Host Identifier Tag: HIs can be of variable length. This is not ideal for

use within a protocol. The Host Identifier Tag (HIT) is a hash value

of the HI with a fixed length of 128 Bit. The HIT can be used for

addressing within transport layer protocols.

Local Scope Identity: In IPv4 based protocols and Application

Programming Interfaces (APIs), 128 Bit addressing schemes are

not supported. The Local Scope Identity (LSI) is a 32 Bit compression

of the HIT to be used in these situations. However, the LSI has only

a local scope. Each host communicating with a specific Host Identity

chooses its own LSI to represent the Host Identity.

Host Identities can either be public or anonymous. Public ones should be

stored in a DNS so they can be resolved by all other hosts.

On a first connection, two hosts start the so-called HIP base exchange.

The base exchange is a four way handshake that includes a Diffie-Hellman

key exchange [MvOV97, p. 515] and host authentication. As the Host

Identifiers are the public part of an asymmetric key pair, they can be used

for authentication purposes.

The symmetric key that is generated during base exchange is used to

set up a pair of IPsec security associations on communicating hosts. The

security associations are bound to the Host Identifiers that performed the

base exchange. All later traffic between the two Host Identifiers is transferred

as ESP packets [KA98b] using these security associations.

Transport protocols bind their end-points to HIs. Within the HIP layer,

these HIs are mapped to the actual IP address. This architecture is a first step

to provide mobility support, as communication end-points remain unmodified
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on IP address changes.

Nikander [NA03] defines an extension to HIP that supports end-host

mobility and multi-homing. A host accepts HIP packets of its peer from

arbitrary IP source addresses. If the peer is assigned a new address, it

announces this new address to all of its communication partners. Thus,

those partners can send all further packets the new IP address of the peer.

However, a host checks the availability of a peer at the new address before

redirecting data traffic. This is to prevent denial-of-service (DoS) attacks

against third parties.

HIP’s mobility and multi-homing extension (HIP MM) provides a

mechanism to support mobility while a HIP connection is already established.

It does not solve the problem of retrieving an initial HI-IP mapping for

contacting a new host. For this purpose, HI-IP mappings might be stored

in a Dynamic DNS. However, nodes that are subject to frequent IP address

changes would overload dynamic DNS. In addition, Dynamic DNS updates

propagate quite slow, as DNS entries are cached for tens of seconds or

minutes.
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rendezvous
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1: query: IP of mobile host?

2: response: IP of rendezvous server

3: first packet
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5: first response

6: further packets

Figure 3.2: Initial communication setup using HIP

Therefore, HIP introduces a new infrastructure element called rendezvous

server. Instead of registering its own IP address in Dynamic DNS, a
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mobile host registers the IP address of a dedicated rendezvous server. This

rendezvous server is updated on each IP address change, such that it always

stores a valid HI-IP mapping.

On connection setup, an initiator retrieves the IP address of a mobile

host’s rendezvous server from DNS (Steps 1 and 2 in Figure 3.2). It sends

the first packet to the rendezvous server, which transparently forwards the

packet to the current IP address of the mobile node (Steps 3 and 4). After

the mobile host sent a first response packet (Step 5), the initiator can update

its HI-IP mapping according to the source address of the response packet.

All further packets are directly sent to the current IP address of the mobile

node (Step 6)

3.4 Mobile SCTP

Mobile SCTP (M-SCTP) [XKWM02] is an extended version of the Stream

Control Transmission Protocol (SCTP) [SXM+00]. It provides mobility

support in when one node changes its IP address. Similar to TCP, SCTP is a

connection-oriented transport protocol that offers error-free, non-duplicated

and reliable data transfer. However, SCTP adds some new features. It

supports multiple independent streams, each of them supporting in-order

delivery. End-points of SCTP connections are not bound to only one IP

address, but to a set of IP addresses. Data can be sent from each source

address to each destination address.

M-SCTP uses the Dynamic Address Reconfiguration extension [SRX+03],

that allows SCTP end-points to dynamically add or remove IP addresses of

established connections. If a mobile node receives a new IP address, it adds

this IP address to the connection’s set of active addresses. When an old IP
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address gets invalid, it is removed from the set.

One major drawback is that this readdressing mechanism only works if

an old IP addresses is still valid when a new one is assigned. Therefore, this

mobility solution can only be applied if the coverage areas of access networks

are overlapping.

The Mobile SCTP described in [RT03] and Cellular SCTP [AS03] are

other solutions that use similar techniques to provide mobility support with

SCTP.

3.5 Mobile TCP Socket

Qu, Yu and Brent [QYB97] propose Mobile TCP Sockets to support

mobility. They define mobility as a combination of portability and continuity.

Portability supports communication for mobile nodes while they stay in an

arbitrary network. However, no communication service can be provided

during movement. This kind of support as well as support for overcoming

periods of (short) disconnection periods is provided by a continuity solution.

Portability is provided by an approach similar to Mobile IPv6 [JPA03]. A

portable host has a home address belonging to its home network. When away

from home, it is assigned a current address by a Foreign Portable Support

System in visited networks. The current IP address is registered with the

Home Portable Support System. A host wanting to contact the portable node

sends a request to the Home Portable Support System using the portable

node’s home IP address. The Home Portable Support System replies by

sending the portable host’s current IP address. Having this information, the

host can setup direct communication with the portable host.

Continuity is provided within socket API. Qu, Yu and Brent distinguish
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between a TCP association and a TCP connection. While a TCP connection

is a communication channel bound to specific IP addresses, a TCP association

is a reliable communication channel between two communication end-points,

independent of IP addresses. With Mobile TCP Socket, sockets do not open

a TCP connection but a TCP association. A TCP association is based on

TCP connection, but if IP addresses change, underlying TCP connections

have to be exchanged. To keep TCP semantics, the socket API accepts I/O

calls even if there is currently no TCP connection at all. In this case, data is

buffered and send out later when a new TCP connection can be established.

3.6 Migrate

Migrate is a session-based architecture to provide mobility support. A session

layer on top of the transport layer is introduced. Applications open a session

that remains valid even if underlying transport layer connections are aborted.

On disconnection, Migrate explicitly suspends processes that communicate

over a session. These processes are resumed when a new transport layer

connection is available.

Migrate is designed to support arbitrary naming schemes and transport

protocols. Therefore, an application is responsible to setup an initial

transport layer connection. On session creation, it passes this connection

to the session. In addition, an application has to pass the name lookup

function.

Session layer is responsible to exchange transport layer connections as

needed. If a node changes its network address, the session layer propagates

this address to all peer nodes change by sending a binding update. Thereupon,

peer nodes create new connections. All connections that are bound to the
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old address are aborted. Binding updates are encrypted with cryptographic

keys, which are exchanged during session creation.

If both communicating nodes move during a period of disconnection, a

binding update cannot be sent to the peer node because its new address is

unknown. In this case, the session layer uses the lookup function provided

by the application to retrieve the new address of its peer node. Using the

retrieved address, it creates a new connection to the peer node and resumes

the session.

3.7 Delay-Tolerant Networking

The Delay-Tolerant Networking Research Group (DTNRG) is working on

an architecture to interconnect disparate networks. Each single network

may experience different networking conditions and use different network

protocols. Especially, communicating hosts can not rely on available end-

to-end connections, continuous connectivity or a common naming scheme

throughout all networks. Therefore, the Delay-Tolerant Networking (DTN)

architecture defines the Bundle Layer Protocol [SB03].

The DTN architecture builds an overlay network to span over different

existing networks. Routers at the borders of networks must support all

network protocols of all adjacent networks. The Bundle Layer Protocol is

used to bridge between these different networks.

Nodes implementing the Bundle Layer Protocol are called DTN nodes.

Data that has to be delivered is grouped into bundles. These bundles are

transferred to a DTN node within the same network using a local transport

protocol. This DTN node uses the Bundle Layer Protocol to transfer the

bundle to a DTN node in the network of the destination node. From there,
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it forwarded to the destination using a local transport protocol.

Bundle Layer Protocol operates in a Store-and-Forward manner. A

bundle is locally stored until it can be forwarded to another DTN node that is

nearer to the destination. However, each receiving DTN node has to ensure

that the bundle will be delivered towards destination as soon as possible.

This way, the Bundle Layer Protocol does not rely on an available end-to-

end connection. Instead, it uses temporary connections between neighboured

DTN nodes to forward data towards destination.

3.8 Implicit ”Link-Up” Notification

Dawkins and Williams [DW03] propose a mechanism to notify TCP

connections if new link layer connections are available. To accomplish this,

they propose that subnetwork implementations on end-hosts store the last

packet of each open TCP connection. If a new link is available, these packets

are transmitted again. This Implicit ”Link-Up” Notification fakes a TCP

retransmission and may restart TCP data flow under certain conditions.

However, not all subnetwork systems are able to track TCP connections.

In addition, TCP segments cannot be tracked they are sent encrypted in ESP

packets. In these cases, a subnetwork system can only store the last packet

per destination host, which limits the effectiveness of an Implicit ”Link-Up”

Notification.

3.9 Smart Link Layer

Scott and Mapp [SM03] propose a link layer approach to improve TCP

performance in disconnecting environments. Similar to the Implicit ”Link-
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Up” Notification, the Smart Link Layer buffers one packet per TCP

connection. However, this buffered packet is not necessarily the last one sent

over a TCP connection. The Smart Link Layer selects packets such that they

most likely restart an idle TCP connection. This decision is mainly based

on the acknowledgement and sequence number fields of TCP segments. A

second difference to the Implicit ”Link-Up” Notification is that the Smart

Link Layer may be introduced on any system in the network. It does not

necessarily have to be an end-host.

The Smart Link Layer was tested by Scott and Mapp with two different

modes, either re-receiving or re-sending packets. In re-receiving mode,

hosts retransmit packets that they received over a disconnecting link before

disconnection occurred. In re-sending mode, hosts retransmit packets over

an upcoming link that they already transmitted before disconnection.

Scott and Mapp showed in experiments [SM03] that re-sending packets

is more effective than re-receiving packets. In some cases, re-sending packets

leads to a link utilisation of nearly 100%. However, the Smart Link Layer

must read TCP segments to buffer appropriate packets. This is a layering

violation. In addition, TCP segments can only be read if they are not

encrypted with IPsec.
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System Design

The main objective for this thesis is a networking solution supporting

intermittently connected mobile nodes that is backwards compatible with

existing applications and services. It should not rely on major changes

throughout the whole network infrastructure. Especially, TCP should

be supported well because it is the most important transport protocol.

As long as it can still be used, TCP-based applications need no or

only minor modifications to benefit from the provided network support.

Therefore, this thesis concentrates on supporting TCP-based communication

for intermittently connected mobile nodes. To keep TCP semantics

unchanged, the concept is designed as an end-to-end approach. Consequently,

modifications only apply to end-hosts.

The Host Identity Protocol including its mobility and multi-Homing

extension provides necessary mobility support (see Section 4.1). A TCP

Abort Timeout Option offers the possibility to negotiate appropriate abort

timeout values for TCP on a per-connection basis (see Section 4.2).

Thus, TCP connections should be able to tolerate long periods of

disconnection if abort timeout values are chosen sufficiently large. Finally,
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a TCP Retransmission Trigger introduces a mechanism to improve TCP

performance in disconnecting networks (see Section 4.3).

4.1 Mobility Support

This thesis uses the Host Identity Protocol (see Section 3.3) with its mobility

and multi-homing extension to provide mobility support. HIP meets the

main objective for this thesis, which is support of TCP-based applications

with minimal changes to network infrastructure and applications. Although

HIP introduces rendezvous servers, this is only a minor change to network

infrastructure. Rendezvous servers can be located anywhere in the network.

In addition, relatively few of them are needed as each is able to serve a large

amount of clients [MN03, p. 12]. In general, rendezvous servers are only

needed if mobile nodes operate as servers. Only in this case the peer nodes

have to retrieve the current IP address of a mobile node. If the mobile node

acts as a client, it implicitly propagates its current IP address to the server

on connection setup.

VIP (see Section 3.2) meets the main objective, too, but HIP is preferred

over VIP for the following reasons. First, HIP is based on globally valid Host

Identifiers, whereas VIP uses only locally valid identifiers that have to be

negotiated on connection setup. Second, HIP introduces rendezvous servers

for frequently moving nodes. VIP completely relies on Dynamic DNS. This

might overload the Dynamic DNS and propagates updates only slow, as DNS

entries are cached for tens of seconds or minutes.

All other mobility approaches presented in Chapter 3 violate the main

objective and are therefore not used in this thesis. For example, Mobile

IP needs a home agent in a nodes home network and a foreign agent in
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visited networks (see Section 3.1). Similar, the Mobile TCP Socket needs a

Home Portable Support System and Foreign Portable Support Systems (see

Section 3.5). Mobile SCTP does not support TCP at all, as it is a transport

layer protocol itself (see Section 3.4).

4.1.1 HIP Mobility and Multi-Homing

The basic functionality of HIP is described in Section 3.3. In the following,

HIP’s mobility and multi-homing extension [NA03] is depicted in more detail.

HIP decouples transport layer protocols from IP addresses. Connection

end-points are bound to the HI, not to the IP address of a peer. This way, IP

addresses of communicating hosts may change, but the connection end-points

remain the same. In the extreme case, hosts may even switch from IPv6 to

IPv4 communication or vice-versa and keep transport layer connections open.

However, the mapping from HI to IP address has to be updated each

time a host changes its IP address. During an ongoing connection, HI-IP

mappings are stored locally on the communicating hosts. If a mobile host

changes its IP, it informs each of its known peer hosts about the address

change such that they can update their local HI-IP mappings. The packet

flow for this so called HIP readdressing is shown in Figure 4.1.

HIP readdressing is a three-way handshake. First, the mobile host (MH)

sends a readdressing (REA) packet to a peer host (PH) to announce its new

address. In the next step, PH tries to verify whether MH is really reachable

at the new address. Therefore, it sends an Address Check (AC) packet to

the new IP address. On reception of an AC packet, MH has to confirm its

new IP address by replying with an Address Check Reply (ACR) packet. PH

does not send any data to the new IP address of MH before receiving the
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Figure 4.1: Packet flow for HIP readdressing

ACR packet1.

The address check procedure helps to prevent distributed denial-of-service

attacks. If no address check is performed, an IP address X might be attacked

in the following way: A set of attackers request data transfers from any

hosts. Then, all attackers spoof an IP address change to IP address X at the

same time. Consequently X would be flooded, as all ongoing transfers are

redirected to X. However, if the sending host first checks the availability of

its peers at X, such attacks would not work.

HIP MM supports multi-homing in addition to mobility. A host may store

several valid HI-IP mappings per peer host. Therefore, a host that changes

an IP address does not only announce its new address but announces all its

valid IP addresses. If an IP address becomes unreachable during an ongoing

connection, a host can switch to one of the other known IP addresses of its

peer.

1According to [NA03], an AC packet announces the SPI of a newly created SA. MH

then has to create a new SA as well. When data arrives at PH using the new SPI, this is

treated as the ACR packet.
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4.1.2 Discussion

From all mobility solutions presented in Chapter 3, HIP MM turned out

to fit best to the main objective of this thesis. It supports TCP-based

communication without changes to applications and incurs only minor

additions to network infrastructure. Mobility for ongoing connections is

support end-to-end as each host updates its peers about IP address changes.

HIP already ships with an authentication mechanism and uses IPsec to

encrypt data. This way, a security architecture is automatically included in

this thesis’ concept.

Although security is an important aspect, encrypting all data might

be unnecessary for some applications. A music or video stream does not

necessarily have to be transmitted in a secure manner. Encrypting such high

volume data traffic implies high overhead and system load, which might even

limit data rate on end-systems with poor CPU power.

4.2 Disconnection Support

In environments with periodic disconnections, TCP-based applications

suffer from breaking connections if disconnection periods are too

long. The corresponding abort timeouts are not defined by the TCP

specification [Pos81]. Each host uses a default value that applies to all of

its TCP connections.

This thesis tries to hide these periods of disconnection from applications.

As it focuses on supporting TCP-based applications in an end-to-end

approach, solution space is mainly reduced to two possibilities.

First, TCP is extended by a mechanism that allows the communicating

hosts to keep TCP connections open, even if no physical connection
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+----------+----------+

| Kind=X | Length=6 |

+----------+----------+----------+----------+

| Abort Timeout |

+----------+----------+----------+----------+

Figure 4.2: Format of TCP Abort Timeout Option

is available. The main advantage of this approach is that TCP state

information is maintained and buffers are not flushed. Therefore, no

additional mechanisms are needed to maintain TCP’s reliable transfer

semantics. In a second approach, TCP connections may be aborted, but

they are transparently re-established if a new end-to-end connection is

available (compare Section 3.5). This prevents resource exhaustion during

disconnection because no TCP state has to be maintained. However, new

mechanisms are needed to keep TCP semantics. I/O calls have to be

accepted, although no actual TCP connection is available. Data that is

not acknowledged before disconnection has to be retransmitted with a new

TCP connection after reconnection. Consequently, the second approach is

much more complex. Therefore, this thesis uses a solution following the first

approach, the TCP Abort Timeout Option.

4.2.1 TCP Abort Timeout Option

The TCP Abort Timeout Option can be used at connection setup. End-hosts

negotiate a duration for abort timeouts on a per-connection basis. This can

be used to extend abort timeouts such that longer periods of disconnection

do not cause an abortion of TCP connections.

Eggert [Egg04b] already proposed a first version of the TCP Abort

Timeout Option. Figure 4.2 shows the format of the TCP Abort Timeout
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Option. Kind is the option number that has to be assigned by IANA2. Length

specifies an option size of 6 bytes. Abort Timeout is 4 byte value representing

the proposed abort timeout in seconds.

Hosts that want to negotiate on abort timeouts have to include the TCP

Abort Timeout Option with a proposed abort timeout value in their SYN

segments during TCP connection setup. A host receiving a TCP segment

with an Abort Timeout Option may either accept, shorten or reject the

proposed abort timeout.

If it accepts or shortens a proposed abort timeout, then it includes the

corresponding timeout value in a TCP Abort Timeout Option with the next

segment it sends. From that time on, it has to use exactly this value as the

abort timeout for the connection. The host that initiated the abort timeout

negotiation has to use the value it receives.

Rejecting an Abort Timeout Option means that a host is not willing to

negotiate on abort timeout values. In this case, a host must not include an

Abort Timeout Option in the next segment. Both hosts must then use their

default abort timeout values.

This version of the TCP Retransmission Trigger has certain drawbacks

that could limit the effectiveness in disconnecting environments. First, the

initiator of an abort timeout negotiation can only propose a value, but the

receiver may arbitrarily shorten this value. If the initiator wants to increase

abort timeouts over its default value, it proposes large abort timeout values.

However, the peer might shorten this value such that it is even less than

the default one. Second, abort timeout negotiation can only be started with

SYN segments on connection setup. If networking conditions change during

the established state of a TCP connection, abort timeout values cannot

2Internet Assigned Numbers Authority
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+----------+----------+

| Kind=X | Length=6 |

+----------+----------+----------+----------+

| Min. Abort Timeout | Max. Abort Timeout |

+----------+----------+----------+----------+

Figure 4.3: Format of Extended TCP Abort Timeout Option

be adjusted. The next section proposes two extensions that could help to

overcome these drawbacks.

4.2.2 Extensions

The extensions proposed in the following are based on the TCP Abort

Timeout Option by Eggert [Egg04b].

Lower and Upper Limits for Abort Timeouts

As a first extension, the initiator does not only propose a single value.

Instead, the TCP Abort Timeout Option specifies a desired value range.

This is done by including a minimum and a maximum value in the option

format. The new extended format is shown in Figure 4.3.

Kind and Length have the same meaning as in Section 4.2.1. Min. Abort

Timeout and Max. Abort Timeout define a lower and upper limit for a desired

abort timeout. To keep same option size as before, each timeout value is now

a 2 Byte value. This limits the maximum abort timeout to 18.2 hours. If

it turns out that longer abort timeouts are needed, abort timeouts could be

specified in minutes instead of seconds. If using minutes, the 2 byte value

limits maximum abort timeout to 45.5 days.

The minimum abort timeout defines a minimum value that has to be

guaranteed, otherwise a negotiation is needless. This prevents negotiations
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ending up with undesirable short abort timeout values. If a mobile node

knows that it experiences long periods of disconnection very often, then

it might consider resetting all TCP connections that won’t overcome those

periods. Thus, it can save resources for connections, which are probably not

aborted.

The maximum abort timeout is used to specify a maximum useful value.

If a node that opens a connection is short on system resources, it might

consider limiting the abort timeout. Another reason for putting an upper

limit on an abort timeout could be an application that does not benefit from

long abort timeouts. If, for example, a client wants to retrieve up-to-date

information on stock exchange rates, there is no need to keep the connection

open for hours. In this case, the client could specify a maximum value of a

few minutes or even seconds.

A receiver of the extended option may either choose an arbitrary value

in the proposed range or reject the negotiation. If it chooses an appropriate

value, it includes an extended Abort Timeout Option with minimum and

maximum value set to this value. After negotiation, both hosts must use

this value for abort timeouts.

Negotiation in Established State

Abort timeout negotiation can only be started during connection setup. One

reason is that most TCP implementations drop TCP segments that contain

unknown option fields if the connection is in established state. However, if a

negotiation has already been executed on connection setup, then both hosts

support the TCP Abort Timeout Option. Consequently, negotiation during

established state could be allowed in this case.

As described in Section 4.2.1, a host that rejects a negotiation does not
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include a TCP Abort Timeout Option in the next segment. Unfortunately,

the missing option does not indicate whether the peer node rejects the abort

timeout option or if it simply does not support it. As a consequence, no

other negotiation can be initiated in established state.

This thesis proposes a second method to signal rejection. A host that

rejects negotiation may include the TCP Abort Timeout Option in its next

segment, but the abort timeout value has to be set to 0. This signals that

it does not want to negotiate but still indicates that it supports the TCP

Abort Timeout Option.

The same method can be used by the initiator. To signal a peer node that

the TCP Abort Timeout Option is supported, even though no negotiation is

initiated, the initiator includes an abort timeout value of 0.

With these two modifications, a host can inform its communication

partner that negotiation is not wanted now, but may be desired later in

the established state.

4.2.3 Discussion

The problem with TCP in disconnecting environments is connection abortion

after a certain timeout. The TCP Abort Timeout Option is a mechanism to

negotiate on this timeout. Consequently, it can help to prevent unnecessary

abortion of TCP connections if hosts agree on sufficiently large timeout

values.

However, it does not provide any policy mechanisms that decide which

timeout values should be proposed or accepted. These decisions are still local

to the hosts and may be based on history information, geographic positions,

or availability of system resources.

Although primarily designed for extending abort timeouts, the TCP
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Abort Timeout Option can also be used to save system resources. If two

hosts use different abort timeout values, one aborts a connection earlier than

the other. Thus, the latter wastes system resources by keeping TCP state

for an aborted connection.

System resources can also be saved if applications request real-time data

such as stock market information. In this case, TCP connections should

be aborted as soon as possible in the event of disconnection, because the

requested data will be outdated anyway by the time the node reconnects. As

a result, hosts may agree on abort timeout values that are shorter than the

default ones.

4.3 Performance Enhancements

If a node loses its physical connection, running TCP connections will

encounter segment losses. Consequently, TCP stops sending further segments

and waits for retransmission timeouts. Only after such a timeouts, it

retransmits lost segments. Timeout values grow exponentially with each

retransmission attempt. Therefore, retransmission timeout values rapidly

reach an order of tens of seconds when a node is physically disconnected.

If the node gets reconnected, TCP remains idle and waits until the next

retransmission timeout occurs. The time that a physical connection is

available, but not used by TCP is called idle time in this thesis (see

Figure 4.4).

The idle time is one of TCP’s major problems in disconnecting

environments. When a physical connection is re-established, the transport

protocol should immediately resume transmission of data instead of waiting

for any timeouts.
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The time a physical connection is available during the lifetime of a TCP

connection is called the net connect time within this thesis (see Figure 4.4).

In other words, it is the total connect time of a TCP connection less the

physically disconnected time.
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Figure 4.4: Total connect time, net connect time and idle time with one

period of disconnection

As this thesis proposes an end-to-end solution, data transfer is only

possible during net connect time. Thus, the goal is to optimise usage of

net connect time.

This thesis concentrates on minimising TCP’s idle times, because

reducing idle times implicitly increases usage of the net connect time.

Different approaches to minimise idle times were already presented in

Section 2.1.3. Link layer and network layer solutions have certain drawbacks.

Buffering segments for a complete period of disconnection could violate
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TCP’s specification for a maximum segment lifetime3 (see RFC793 [Pos81]).

In addition, these solutions have to analyse the payload of IP packet to

interpret the TCP header. First, this is a layering violation. Second,

interpreting TCP headers is impossible if they are encrypted with IPsec.

As HIP is used to provide mobility, TCP segments are transmitted as ESP

packets, which can not be read by lower layers. Consequently, this thesis

uses a transport layer approach called TCP Retransmission Trigger (see

Section 4.3.1).

It should be noted here that TCP experiences additional problems if

running over wireless connections. However, this thesis focuses on problems

that result from disconnection and mobility, which also occur with wired

links4.

4.3.1 TCP Retransmission Trigger

The TCP Retransmission Trigger is a mechanism to reschedule outstanding

retransmissions. This can be used to kick-start idle TCP connections

immediately after a new link is available.

Assuming that retransmitted segments do not get lost, peer nodes will

reply by sending acknowledgements for received data. As soon as the

acknowledgements arrive, corresponding TCP connections can schedule new

data for transmission and data transfer is continued.

Calling such a TCP Retransmission Trigger can reduce net connect time.

If a physical connection becomes available, the TCP Retransmission Trigger

3TCP segments must be discarded if they do not reach their destination after 120

seconds.
4An employee might change from one office to another, connecting his notebook to

Ethernet in both of them.
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is used to reschedule planned retransmissions to be sent immediately after

such an event.
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Figure 4.5: Time-Sequence graphs for reconnecting TCP streams

The effects of such a configuration are shown in Figure 4.5. Both TCP

traces are captured on the same system with same timing for disconnection

and reconnection. While Figure 4.5(a) shows the results of standard TCP,

Figure 4.5(b) illustrates the effects of TCP using the retransmission trigger.

As the retransmission trigger pre-schedules a retransmission, data transfer

restarts than with standard TCP. Total and net connect time drop by the
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same amount of time as the retransmission is pre-scheduled. Standard TCP

finishes data transfer after 190 seconds, but TCP with retransmission trigger

already finishes after 118 seconds, thus saving 72 seconds of connect time.

The upper bound for retransmission timeouts on Linux systems is 120

seconds. Theoretically, a retransmission could be pre-scheduled by these 120

second. Therefore, calling a TCP Retransmission Trigger can reduce idle and

net connect time by an amount of nearly 120 seconds, in the best case.

The evaluation presented in Chapter 5 was done using only a simple

version of the TCP Retransmission Trigger. It tries to trigger all open TCP

connections of a node. Rescheduling of retransmissions is performed for each

TCP connection that meets two conditions. The first condition is that the

TCP connection has to be bound to an IPv6 address or a HIT. It should be

noted here that Host Identifier Tags are 128 bit numbers and look like IPv6

addresses. The second condition for rescheduling retransmissions is that a

TCP connection has to be in a retransmitting state. This means, that there

is unacknowledged data that was already retransmitted at least once.

A TCP Retransmission Trigger meeting these conditions is sufficient for

the evaluation scenario. As only one TCP connection is active at a time,

it does not have to precisely select the connections that benefit from being

triggered. For use in realistic environments, a TCP Retransmission Trigger

should be extended by some features described in Section 4.3.3.

4.3.2 Calling the TCP Retransmission Trigger

The TCP Retransmission Trigger offers a mechanism to reschedule TCP’s

planned retransmissions. Still, it has to be discussed which events should

really trigger such retransmissions.

This thesis assumes that network interfaces are reconfigured when a new
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physical connection gets available. Consequently, the trigger should be called

when an IP address is added or changed. This works fine if TCP is used on

top of IP and the mobile node is always assigned the same IP. As TCP

endpoints are bound to IP addresses, segments can be transmitted as soon

as IP connectivity is restored.

Unfortunately, this is not true for TCP over HIP. If a mobile node is

assigned a new IP address, HIP first has to update the HI-IP mapping on

its peer node before bidirectional communication is possible. Even though it

would be possible to send retransmissions to a peer node before readdressing

is completed, the peer node might not be able to reply with an appropriate

acknowledgement. Retransmissions are then treated as lost by the mobile

node, and the TCP Retransmission Trigger fails to restart the data transfer.

Therefore, the TCP Retransmission Trigger cannot schedule

retransmissions immediately after a new IP address is configured.

Retransmissions have to be delayed by a time that is long enough

such that HIP is able to complete its readdressing procedure first. Since

this involves a three-way packet exchange, HIP readdressing can take

arbitrary time. Its duration depends on the current round-trip time as

well as on the system load of involved nodes. Triggering TCP connections

after too short delays would fail, because HIP readdressing is not finished

before retransmission. Delaying the trigger too long would waste valuable

connection time, if HIP readdressing finishes early.

Consequently, the TCP Retransmission Trigger used in this thesis was

directly coupled with the HIP readdressing mechanism. TCP connections are

triggered immediately after HIP sends out an Address Check Reply packet,

the last packet of HIP’s readdressing mechanism. No delay is needed in

this case because it is very unlikely that a retransmission arrives at the peer
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node before the Address Check reply packet, e.g. by using another route.

When the retransmitted segment arrives at the peer node, HIP readdressing

is already finished. Thus, the peer node is able to send an acknowledgement

back to the new IP address of the mobile node. This triggers transmission

of new data.

4.3.3 Trigger Extensions

Selecting appropriate TCP connections

A problem arises when a mobile node has more than one peer node at the

same time. HIP readdressing must then be performed for each of them. In

this case, all TCP connections are triggered multiple times, once for each

peer node.

As the trigger is called from the HIP layer when an Address Check Reply

packet is sent, the HIP layer could pass the HIT of the peer node to the TCP

Retransmission Trigger. Instead of triggering all TCP connections, only those

that are bound to this HIT should reschedule their retransmissions.

Triggering a peer node

So far, the trigger mechanism only works if a mobile node sends data. If it

does not send data, no retransmissions will be scheduled. However, a mobile

node’s peer node might want to send data but waits for a retransmission

timeout.

In conjunction with HIP, the trigger mechanism can also be used on

the peer nodes. HIP readdressing is executed when a mobile node moves.

Consequently, peer nodes are implicitly notified about reconnection of a

mobile node. Peer nodes should call the TCP Retransmission Trigger each
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time a HIP readdressing is finished.

Without HIP, the TCP Retransmission Trigger has to be extended,

because a peer node is not notified about reconnection of a mobile node.

The TCP Retransmission Trigger should be extended to send at least four

segments that acknowledge the last data received from the peer node. Thus,

the peer node receives four acknowledgements for the same segment, such

that the fourth one is a triple duplicate acknowledgment. This activates fast

retransmit algorithm [Ste96, p. 312]. The four acknowledgements may either

be sent piggy-bagged on data segments or as pure acknowledgements.

4.3.4 Trigger Characteristics

The TCP Retransmission Trigger does not change the basic congestion

control algorithms of TCP. Therefore, TCP is not getting more aggressive to

the network when the retransmission trigger is used.

Segment losses still cause the same recalculations for slow start thresholds

and congestion windows. The only modification is rescheduling of single

retransmissions on the mobile node in response to an address change. Even

if the mobile node has no data to send, it injects only four acknowledgements

that carry no data. Consequently, if the TCP Retransmission Trigger fails,

then it transmits one additional maximum segment5 in the worst case. If

the TCP Retransmission succeeds, then it only sends data that has to be

transferred anyway.

The TCP Retransmission Trigger modifies TCP to use more physically

connected time, but it does not change its behaviour during an ongoing

5Inserting one retransmission corresponds to a maximum of one segment size. Pure

Acknowledgements carry only header information for TCP and IP packets which is in the

order of 40 Bytes (excluding option headers).
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transfer. TCP implementations with a TCP Retransmission Trigger are fair

to all other TCP implementations.

4.3.5 Trigger Implementation

The TCP Retransmission Trigger has been implemented for the Linux 2.4.20

Kernel as part of this work. The current implementation does not include the

extensions of Section 4.3.3. The source code can be found in Appendix A.

Background

The Linux TCP stack holds a hash table tcp_ehash. For all TCP connections

in established state, this table contains a pointer to a corresponding sock

struct that stores information about the corresponding sockets. Among other

information, a sock struct contains the connection type, protocol family and

the addresses of both connection end-points. For TCP connections, it also

stores pointers to a tcp_opt struct.

The tcp_opt struct holds status information about a TCP connection.

Most important for the TCP Retransmission Trigger, it has an element called

retransmit_timer. This is the timer that schedules retransmissions.

In Linux, TCP timers are implemented as timer_list structs. Among

other elements, the timer_list struct contains a variable expires and a

pointer to a function that has to be called when the timer expires. A timer

expires when the system time passes the value defined by variable expires6.

In particular, the retransmit_timer points to function

tcp_write_timer, which is responsible for retransmitting lost TCP

6In Linux, timers do not operate on milliseconds but on jiffies. That is the number of

clock ticks since last reboot. On an i386 platform clock frequency is 100 Hz by default.
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segments. Thus, unacknowledged TCP segments are retransmitted as soon

as the retransmit_timer expires.

The TCP stack offers a function tcp_reset_xmit_timer. It is used to

change expiration times for TCP timers. A caller has to pass the sock struct

of a TCP connection and the expiration time as a time offset from the current

time.

Implementation

The TCP Retransmission Trigger is implemented in one function (see

Appendix A):

void tcp_trigger_retransmit_timers(unsigned int when)

It steps through the hash table tcp_ehash to retrieve all appropriate TCP

sockets. For these sockets, it overrides the expires value of the corresponding

retransmit_timer by calls to tcp_reset_xmit_timer. The new timeout

value is set to the current time plus the delay when that is requested by the

caller of the TCP Retransmission Trigger.

Note, the TCP Retransmission Trigger does not override the

retransmission timeout values for all TCP connections. It checks the address

family of a TCP socket. Sockets that are not bound to IPv6 addresses

are skipped7. The function also checks whether a TCP connection is in a

retransmitting state. This means that there is at least one TCP segment,

which is unacknowledged although it was already retransmitted before. In

addition, retransmission timeout values are only overridden if the new value

is lower than the old one. Therefore, retransmission timeouts are either pre-

scheduled or kept unmodified, but they are never delayed.

7As already mentioned in Section 4.3.1, HITs are treated as IPv6 addresses.
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4.3.6 Discussion

The TCP Retransmission Trigger provides a mechanism to restart TCP

data transfer if a physical connection is re-established. Although it

optimises TCP’s usage of available bandwidth, it does not change its basic

retransmission and congestion avoidance algorithms. Thus, it provides a

performance enhancement without adding significant traffic to the network.

There are two main advantages over existing link-layer approaches. It

operates directly on transport layer, such that lower layers do not have to

read the TCP segments. This eliminates the overhead for reading these

segments remains working even when segments are encrypted with IPsec.

4.4 Summary

The system is designed as an end-to-end approach. Thus, major changes

are only applied to end-hosts. For the intermediate nodes, all traffic is seen

as pure IP traffic. Consequently, the system provides a network solution

that operates on current network infrastructure. It consists of the three

elements HIP MM for mobility support, TCP Abort Timeout Option for

disconnection support and TCP Retransmission Trigger to enhance TCP

performance. Together, they form a complete solution to efficiently support

TCP-based applications for intermittently connected nodes.

However, the three elements have an orthogonal design. This means

that the elements do not affect each other. Each of them might be

exchanged by another solution while keeping the whole system operational.

For example, it should be possible to replace HIP with Mobile IP and

leave disconnection support unchanged8. Similarly, the TCP Abort Timeout

8Only a call to the TCP Retransmission Trigger after an IP address change has to be
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Option and TCP Retransmission Trigger can be exchanged without affecting

the other elements.

Although the system is designed as an end-host approach, it is conceivable

to combine it with a middlebox solution as described in Section 2.2. In this

case, mobile node and middlebox could communicate using enhanced network

support while peer node and middlebox use standard protocols.

implemented in MobileIP.
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Chapter 5

Experimental Evaluation

This chapter provides an experimental evaluation of the system proposed in

chapter 4. It is based on a simplified version of the scenario in Section 1.1.

This experimental scenario is described in Section 5.1. Sections 5.2 and 5.3

present the test network and how it simulates the scenario. Three cases

are evaluated. First is the baseline case, where only HIP’s mobility and

multi-homing extension is used (see Section 5.5). The second case adds the

TCP Abort Timeout Option on top of HIP (see Section 5.6). The third case

measures the complete system. HIP, TCP Abort Timeout Option and TCP

Retransmission Trigger are enabled in this case (see Section 5.7).

5.1 Experimental Scenario

The experimental scenario is very similar to the base scenario described

in Section 1.1. However, only one period of disconnection occurs in the

evaluation scenario. Consequently, the experimental scenario has three

distinct phases. In the initial connection phase, the mobile node (MN) is

connected to the Internet via access point 1 (see Figure 5.1). MN opens a
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Figure 5.1: Initial connection phase

TCP connection to the peer node (PN) and starts a data transfer. After a

certain amount of time, MN moves out of the coverage area of access point

1 and looses connectivity to the Internet, and consequently to PN.
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Figure 5.2: Disconnection phase

This is the beginning of the second phase, the disconnection phase (see

Figure 5.2). During the disconnection phase, no network connectivity is
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available. MN keeps moving and reaches coverage area of access point 2

after some time. Network connectivity again becomes available starting the

InternetPN

MN

R
e
c
o
n
n
e
c
ti
o
n


p
h
a
s
e


ti
m

e


Access

Point 1

Access

Point 2

Figure 5.3: Reconnection phase

third and last phase, called the reconnection phase. In this phase, MN stops

moving and remains in the coverage area of access point 2 until data transfer

is complete.

Both access points provide the same quality of network connections.

Bandwidth is limited to a maximum of 10 Mb/s. This is more than the

Internet currently offers, but it is reasonable that a bandwidth of 10 Mb/s

will be offered by next generation Internet in the future. One-way delay

from MN to PN is set to about 50ms. This results in a round-trip time of

100ms. It should be noted here, that bandwidth and round-trip delay have

only minor influence on the general effects inspected by this thesis. They

only limit maximum throughput.

A network with these properties incurs a relatively high bandwidth-delay

product. In order to eliminate the possibility of TCP socket buffers to limit

throughput in such environments, they are set to 1 MB, which empirically
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proved to be sufficiently large during some preliminary testings.

5.2 Network Configuration

The test network consists of three identical PCs. Each is equipped with a

Pentium IV 2.8 GHz and 256 MB DDR memory. Four network interfaces

are available:

• 1x Intel 82557/8/9 Ethernet Pro 100, 100Mb/s

• 1x Intel 82540 Gigabit Ethernet Controller, 1Gb/s

• 2x Intel 1000MT Pro, 1Gb/s

The topology of the test network is shown in Figure 5.4. The PCs play

the roles of mobile node MN, peer node PN and an intermediate router R.

Peer Node Router Mobile Node

2000:2::1 2000:2::2

Hub:

subnet1

IPv4

2000:3::1 2000:3::2

2000:4::1 2000:4::2
subnet 2

IPv6

subnet 3

IPv6

subnet 4

IPv6

Test Network

Control Network

10.17.1.1 10.17.1.310.17.1.2

Gateway

eth0

eth0

eth1

eth0

eth1

eth2

Figure 5.4: Network topology

PN connects to R via subnetwork 2. MN has two connections to R, either

via subnetwork 3 or via subnetwork 4. These subnetworks are configured as

IPv6 networks and use Gigabit Ethernet cards. Subnetwork 1 is an IPv4
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control network, which is only used for executing commands on remote

machines. The 100 Megabit Ethernet cards are used to connect to the control

network.

5.3 Simulating the Scenario

The test network uses three stationary nodes with wired connections.

Therefore, mobility and disconnection will be simulated.

As shown in Figure 5.4, two network interfaces connect MN to R.

Configuration settings described in the following apply for MN only. R and

PN remain unchanged during simulation. In initial connection phase, only

interface eth0 is configured with an IPv6 address. The default route for IPv6

traffic is set to interface eth0 with R as a gateway. This provides an initial

connection to PN. At the end of initial connection phase, the IPv6 address

and as well as the default route is removed from eth0. This simulates a

disconnection, because MN cannot communicate with R and PN anymore.

After disconnection phase has elapsed, a reconnection at a different access

point has to be simulated. Therefore, interface eth1 is configured. As eth1

belongs to a different subnetwork than eth0 (see Figure 5.4), it is assigned

another IPv6 address than the one used in initial connection phase. Again,

R is the gateway for IPv6 traffic, but the default route uses eth1 instead of

eth0. Consequently, MN reappears in the network using a different link and

subnetwork than before, just like it had moved to another location.

Interfaces and routes are configured manually with bash scripts. It would

be easier and more realistic to use IPv6 auto-configuration, instead. In this

case, interfaces eth0 and eth1 only have to be brought up or shut down at the

appropriate times. Addresses and default routes would be set automatically.
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Unfortunately, the HIP implementation used for the evaluation is still in

experimental state and crashes in conjunction with IPv6 auto-configuration.

Mobility and disconnection are not the only features that have to be

simulated. Network properties like bandwidth and round-trip time have to be

simulated as well. Otherwise, the evaluation network provides a bandwidth

of 1 Gb/s and a round-trip time of less than one millisecond, which is not

comparable to Internet communication. Running a Modular Click Router on

R allows modelling of these properties. The Modular Click Router [KMC+00]

is a software router that is able to simulate various router behaviours like

queuing, dropping and scheduling packets.

Wireless link characteristics are not simulated. As already mentioned in

Section 4.3, this thesis focuses more on the impacts of disconnection and not

on those of wireless links.

5.4 Parameters and Metrics

The evaluation scenario defines a mobile node that wants to transfer data

to a peer node. Performance of the transfer can be measured in two ways.

Either, the mobile node is sending data for a predefined duration and the

amount of transferred data is measured. Or, the amount of data is predefined

and performance is measured by the duration of the transfer. The second

approach is nearer to a real use case. In general, a certain amount of data,

like a file, has to be transferred. Another advantage is, that a broken TCP

connection can easily be pointed out. If a TCP connection breaks before data

transfer is complete, then the received amount of data is less than expected.

Therefore, experiments are designed to transfer a certain amount of data and

measure the duration of the transfer.
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5.4.1 Parameters

The concept is evaluated for different movement characteristics of the mobile

node. These are represented by two parameters, the duration of initial

connection phase as well as the duration of disconnection phase. Therefore,

a complete set of experiments for all possible parameter combinations has to

be executed.

The duration of a transfer should be long enough, such that - for some

settings of initial connection phase - TCP reaches a steady state before and

after disconnection. Slow start effects are already finished after a few seconds,

such that TCP should be in a steady state after 10 seconds at the latest.

Thus, a data transfer should last at least 20 seconds, such that an initial

connection phase of about 10 seconds splits up the data transfer into two

halves of 10 seconds each. Preliminary tests have shown that 25 MB of data

is an appropriate value, as it is transferred in about 20 to 22 seconds, if no

disconnection occurs.

As data transfer lasts for about 20 to 22 seconds, initial connection phase

was parameterized by values from 2 to 26 seconds. A value of 2 seconds

corresponds to a scenario where the initial connection breaks very soon after

TCP connection setup. On the other hand, an upper bound of 26 seconds

should be long enough, such that data transfer is always completed before

disconnection phase is entered. Consequently, a parameter range from 2 to 26

seconds will cover all possible scenarios. Choosing a resolution of 2 seconds,

the parameter space for initial connection phase is

2, 4, 6, 8, 10 ,... , 22, 24, 26.

Parameter space for disconnection space should start with 0 seconds of

disconnection. This corresponds to a scenario, where the mobile node can
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immediately switch from one access point to another without experiencing

disconnection in between. The upper limit and resolution can be arbitrarily

chosen. It is only restricted by the time that is available for running

experiments. This thesis uses durations of disconnection phase from 0 to

208 seconds with a resolution of 13 seconds. Therefore, parameter space for

disconnection phase is

0, 13, 26, 39, ..., 195, 208.

One set of experiments consists of experiments for all possible parameter

combination. This means that 13 parameter values for initial connection

phase have to be combined with 17 parameter values for disconnection phase.

Therefore, one set of experiments consists of 13∗17 = 221 single experiments.

Each experiment underlies certain deviations. Several runs for each

experiment are executed to get more reliable results. The number of runs is

only restricted by time. For the evaluation, 10 runs are executed which takes

about 5 days to complete.

5.4.2 Metrics

As the concept is an end-to-end approach, the total connect time for a data

transfer is not an appropriate performance metric to evaluate the concept.

During a disconnection phase, data cannot be transferred end-to-end because

no connected path is available. Consequently, a data transfer takes at least as

long as the disconnection phase. Therefore, duration of disconnection phase

should not be included in the performance metric.

Net connect time meets this condition. As already defined in Section 4.3,

net connect time is calculated by subtracting the disconnected time from the

total connect time of a data transfer.
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net connect time = total connect time - disconnected time

Net connect time only measures that part of a data transfer, that can be

influenced by an end-to-end approach. System performance is better if net

connect time is shorter. The best end-to-end solution leads to a minimal net

connect time.

As already mentioned in Section 5.4.1, each experiment is repeated 10

times. The results presented later, show the median that is calculated over

these 10 runs. The median is preferred over the better known mean because

results showed to be heavy tailed.

Deviations are usually reflected by the standard deviation if mean values

are used to aggregate data. The inter-quartile gap is the corresponding metric

for median values. Narrow inter-quartile gaps indicate that deviation is low.

Median values do not reflect whether the data transfer was completed

successfully for all runs or only for some of them. It just aggregates those

that succeeded. Therefore, median values may indicate good results even if

the experiment fails to complete the transfer in some cases. To avoid this

misrepresentation, no values are presented for experiments where at least one

run failed to complete the data transfer.

5.5 Baseline Case: Simple HIP

For evaluation of the baseline case, MN and PN use HIP’s mobility and

multi-homing extension to provide mobility support1. Unmodified TCP

connections are used to transfer data. This is called the baseline case, because

no measurements are possible without HIP or another mobility solution.

TCP connections would break after initial connection phase, because MN

1Appendix B presents the implementation used for this thesis.
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changes its IP address in the reconnection phase.

On Linux systems, TCP aborts a connection if the last retransmission

is lost. For the baseline case, TCP is configured to use a maximum of 9

retransmissions, which corresponds to an abort timeout of 2 to 3 minutes,

depending on the actual retransmission timeout values. Some other TCP

implementations use an abort timeout of 2 minutes by default (see [Ste96, p.

299]).

5.5.1 Expected Behaviour

Changing the input parameters of the experiments can have two effects.

First, experiments could fail to deliver the data for some parameter

combinations. Second, it can influence net connect time of those that succeed.

In the following, the expected behaviour is discussed.

Increasing duration of disconnection phase

With short disconnection phases, all runs of the experiments should complete

and transfer the full amount of data. As long as disconnection phases are

shorter than TCP’s abort timeout, MN retransmits a segment any time after

reconnection. Retransmitted segments are acknowledged by PN and MN can

send new segments, thus restarting data transfer.

As durations of disconnection phases approach the abort timeouts,

some experiment runs will fail. Section 4.3 already discussed that TCP

retransmission timeouts do not occur at specific times, but underlie certain

deviations. Therefore, in some runs the last retransmission will be scheduled

before reconnection phase and for others in the reconnection phase. Only

those runs where it is scheduled in reconnection phase can restart and

complete data transfer.
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Further increasing the duration of the disconnection phase should cause

all runs of the experiments to fail. This is the case, when the disconnection

phase always exceeds TCP’s abort time.

So far, the impact of disconnection phase on the success of a data transfer

was discussed. However, it influences TCP performance as well. An increase

of the duration of disconnection phase can influence net connect time, either

increasing or decreasing it.

If duration of the disconnection phase is longer, TCP’s retransmission

timeout periods are longer as well. Therefore, idle time can be longer if

disconnected phase is longer. As a tendency, idle time should increase with

longer disconnection phases. As idle time directly influences net connect

time, net connect time should increase with longer disconnection phases as

well.
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Figure 5.5: Idle time and net connect time with different disconnect times

However, if the increase of disconnection phase is less than the idle time,
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5.5. BASELINE CASE: SIMPLE HIP

it only reduces the duration of idle time (see Figure 5.5). Total connect time

will remain the same, as the same number of retransmissions is needed to

restart data transfer. Consequently, net connect time is reduced by same

amount as disconnection phase was increased.

Altogether, it is expected that net connect time follows a zigzag course

with increasing disconnection phases. If the increase of disconnection phase

is less than current idle time, then net connect time decreases with the same

amount as disconnection phase is increased. If increase of disconnection phase

is larger than current idle time, then TCP needs additional retransmissions

to restart data transfer. Net connect time grows by a value near the

next TCP timeout value. As the TCP timeout value grows exponentially

with the number of retransmissions, peaks of the zigzag course should grow

exponentially as well.

Increasing duration of initial connection phase

In the best case, data transfer already completes in initial connection

phase. Net connect time cannot be lower than in this case, because TCP

will reach steady state and send at maximum rate until data transfer

is complete. Transfer of the 25 MB takes about 20 to 22 seconds (see

Section 5.4.1). Consequently, when initial connection time exceeds 22

seconds, all connections should finish in the initial connection phase.

5.5.2 Measurement Results

Figure 5.6 shows the results for the baseline case. Results are presented as a

surface plot and as a density plot. Both plots are based on the same data.
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(b) Median net connect time (density plot)

Figure 5.6: Measurement results for Simple HIP
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Increasing duration of disconnection phase

Up to a disconnection time of 130 seconds, data is available for all

experiments. All runs for those experiments completed their data transfers

and TCP connections were not aborted. This shows, that HIP is working as

a mobility solution because TCP connections are able to deliver data after

an IP address change in reconnection phase.

However, no data is available for disconnection phases that are longer

than 143 seconds. This means, that at least one run per experiment failed to

transfer the full amount of data. As expected, TCP connections are aborted

if disconnection phase gets to too long. Figure 5.7 shows whether only some

runs or all runs failed for an experiment. At the latest, all experiment runs
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Figure 5.7: Failed experiment runs due to long disconnection phases
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failed for disconnection phases of 195 seconds and more. This means, that

no TCP connection survives a disconnection period that is longer than 195

seconds if it is using a maximum of 9 retransmissions.

Performance is generally bad with a net connect time of more than

100 seconds in the worst case. As expected, net connect time follows a

zigzag course with increasing disconnection phase. Peaks are observed at

disconnection phases of 39, 65 and 91 seconds. Peak values are increasing

with longer disconnection phases up to values of more than 100 seconds,

which corresponds to a network throughput of 25MB

100s
= 2.0Mb/s. This is

only 20% of available bandwidth.

Increasing duration of initial connection phase

Experiments with an initial connection phase of 24 or 26 seconds finish their

data transfer before disconnection. Otherwise, data transfer cannot complete

as TCP connections are aborted on long disconnection phases. As already

mentioned in Section 5.5.1, this kind of experiments highlights the best case,

where net connect times are measured with about 22 seconds.

Influence of initial connection phase is very low when increasing from

12 to 20 seconds. Net connect time differs only about 1 second. In the

evaluation network, only one TCP connection is active at a time. Thus,

segment losses only occur if the data rate of this connection exceeds network

capacity. Therefore, TCP raises its data rate until it reaches maximum data

rate and then enters steady state. During the experiments, TCP reaches a

steady state already after about 3 seconds. Consequently, TCP connections

reach a steady state before and after disconnection phase for most of the

experiments such that the duration of initial connection phase has only minor

influences on net connect time.
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However, some jitter is visible for lower initial connection times. This

thesis does not investigate this effect further, but one explanation could

be that TCP’s round-trip time estimations are not very accurate at the

beginning of a connection. If disconnection occurs in an early phase of a TCP

connection, then retransmission timeouts will be based on inaccurate round-

trip time estimations. Therefore, retransmission timeouts have a higher

jitter if initial connection phase is shorter. This jitter is magnified by each

retransmission attempt due to exponential backoff. Consequently, the net

connect time is different for short initial connection phases, as it is dependent

on retransmission timeout values.

Inter-Quartile gaps

High inter-quartile gaps of more than 40 seconds are mainly observed when

initial connection phase is 22 seconds. This is due to the fact that some

runs complete data transfer before disconnection phase and others have to

complete in reconnection phase. For other initial connection phases, inter-

quartile gaps are lower with a maximum of about 18 seconds.

Generally, inter-quartile gaps are higher near the peaks of net connect

time. As described in Section 5.5.1, peak values are generated by delaying

reconnection after a TCP retransmission. Consequently, reconnection and

TCP retransmission are close to each other near peak values. Then, for some

runs reconnection might occur before and for others after that retransmission.

In the latter case, TCP needs an additional retransmission attempt. This

leads to a higher net connect time. Therefore, net connect time shows higher

differences for the two cases.
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Figure 5.8: Simple HIP: inter-quartile gaps for net connect time

5.5.3 Summary

HIP proves to be a working solution to provide mobility support. Data

transfer continues after reconnection even though IP addresses change.

However, if disconnection phase is too long, TCP connections abort and

data transfers do not complete. Net connect time is generally bad. In the

worst case, it is more than 100 seconds, which is already more than four

times the optimal value of 22 seconds.

As deviation is high for some experiments, results should be treated as

a global picture. They do not reflect exact values, but show the general

behaviour of TCP in disconnecting environments.
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5.6 HIP with TCP ATO

Measurements presented in this section are based on systems using HIP

with additional support for the TCP Abort Timeout Option. MN and PN

can negotiate appropriate abort timeout values on connection setup. It is

assumed that MN requests an abort timeout value that is larger than any

disconnection that occurs in the scenario. In addition, PN is assumed to

accept all timeout values proposed by MN. Both assumptions are reasonable

because the longest disconnection phase is only 208 seconds.

The TCP Abort Timeout Option will be simulated because no

implementation exists at this time. This is done by increasing the maximum

number of TCP’s retransmission attempts to 15 on both nodes. In this

case, TCP abort timeout is about 15 to 16 minutes, depending on the first

retransmission timeout value. Therefore, TCP connections use an abort

timeout that is longer than the maximal disconnection phase of 208 seconds.

5.6.1 Expected Behaviour

Introducing the TCP Abort Timeout Option should allow all experiment

runs to complete their data transfer. TCP retransmits data up to a duration

of 15 or 16 minutes, but reconnection already happens after 208 seconds at

the latest. Consequently, at least one retransmission should arrive at PN

before the timeout. PN acknowledges reception and MN can restart sending

data.

Changing the abort timeout of TCP does not influence its behaviour

while the connection is in an established state. Thus, net connect time for

experiments that succeed without a TCP Abort Timeout Option should be

the same as before.
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However, some experiments with long disconnection phases should result

in net connect times that are even longer than in Section 5.5.2. As longer

abort timeouts allow more retransmissions, the retransmission timeout values

grow to larger values as well2. Consequently, TCP’s idle time can be longer,

too, which results in longer net connect time.

5.6.2 Measurement Results

Results are presented similar to Section 5.5.2. Same axis scaling and same

greyscales are used to allow easy comparison of the plots.

Figure 5.9 shows, that all runs complete now. Negotiating appropriate

abort timeout values at connection setup allows connections to tolerate long

periods of disconnection. If MN and PN request or accept those values, TCP

connections are not aborted in disconnecting environments.

In addition, Figure 5.9 shows that net connect time is very high for

disconnection phases of 169 seconds or more. Net connect time is then

measured with values about 105 to 140 seconds in most of the cases. The

worst case of 140 seconds is more than six times the optimum value of

22 seconds. The corresponding network throughput computes as 25MB

140s
=

1.4Mb/s, which is only 14% of the available bandwidth.

As expected, net connect time is similar to the results without a TCP

Abort Timeout Option for shorter disconnection phases. Differences are less

than 5% for most of the experiments.

Inter-quartile gaps are again measured with very high values of up to

70 seconds for initial connection times of 22 seconds (see Figure 5.10). For

other parameter settings, inter-quartile gaps are measured with less than

15 seconds. Again, these deviations can be explained by the dynamics of

2The upper limit for retransmission timeouts is 120 seconds on Linux systems
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(b) Median net connect time (density plot)

Figure 5.9: Measurement results for HIP with TCP Abort Timeout Option

73



CHAPTER 5. EXPERIMENTAL EVALUATION

0

10

20

30

40

50

60

70

80

2 4 6 8 10 12 14 16 18 20 22 24 26
0

13

26

39

52

65

78

91

104

117

130

143

156

169

182

195

208

In
te

r−
Q

ua
rti

le
 G

ap
 [s

ec
]

Initial connection phase [sec]

D
is

co
nn

ec
tio

n 
ph

as
e 

[s
ec

]

Figure 5.10: HIP with TCP ATO: inter-quartile gaps

TCP’s retransmission timeout calculation and TCP’s congestion avoidance

algorithms. Results may not show exact values, but they still show the

general characteristics of TCP in disconnecting environments.

5.6.3 Summary

Measurement results indicate that a TCP Abort Timeout Option helps

to prevent TCP connections from aborting in disconnecting environments.

However, performance is still very bad. In the worst case, TCP connections

only use 14% of available bandwidth.
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5.7 HIP with TCP ATO and Retransmission

Trigger

For the last set of experiments, the TCP Retransmission Trigger was enabled

in addition to HIP and TCP Abort Timeout Option. The HIP layer triggers

TCP connections immediately after it completes a readdressing. Thereupon,

TCP reschedules outstanding retransmissions to be sent at once.

5.7.1 Expected Behaviour

The TCP Retransmission Trigger causes a retransmission of lost segments

immediately after HIP completes its readdressing handshake. HIP

readdressing is executed as soon as a new connection is available.

Consequently, TCP’s idle time should be very short. If HIP readdressing

always takes the same time, then idle time should not change for different

disconnection phases. As net connect time is mainly influenced by idle time,

it is expected to be rather independent from disconnection phase. Its value

should be near to the sum of the optimum value of 22 seconds plus the time

needed for HIP readdressing.

As a TCP Abort Timeout Option is used, all experiments should succeed

in delivering the full amount of data.

5.7.2 Measurement Results

Measurement results are presented similar to the previous results. Again,

same axis scaling and same greyscales are used to simplify comparison of the

results.

Figure 5.11(a) shows an almost flat surface plot for net connect time.

75



CHAPTER 5. EXPERIMENTAL EVALUATION

20

40

60

80

100

120

140

2
4

6
8
10

12
14

16
18

20
22

24
26

0 13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 208

20

40

60

80

100

120

140

Disconnection phase [sec]

Initial connection phase [sec]

N
et

 C
on

ne
ct

 T
im

e 
[s

ec
]

(a) Median net connect time (surface plot)
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(b) Median net connect time (density plot)

Figure 5.11: Measurement results for HIP with TCP ATO and

Retransmission Trigger
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5.7. HIP WITH TCP ATO AND RETRANSMISSION TRIGGER

Accordingly, only few differences for grey-values are visible in the density

plot (see Figure 5.11(b)). This shows that net connect time is now nearly

independent of the durations of initial connection phase and disconnection

phase. The TCP Retransmission Trigger seems to restart data transfer in a

very reliable and homogenous manner.

Most experiments completed after about 24.5 to 27 seconds. This

corresponds to a network throughput of 7.4 to 8.1 Mb/s and a usage of

74-81% of available bandwidth.
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Figure 5.12: HIP with TCP ATO and Retransmission Trigger: inter-quartile

gaps

Inter-Quartile gaps are very low with a maximum of only 2.5 seconds (see

Figure 5.12). Again, this shows the reliability of the TCP Retransmission

Trigger.

An additional analysis of packet flow was accomplished to measure the

time that is needed for a HIP readdressing. HIP readdressing is a three-way
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CHAPTER 5. EXPERIMENTAL EVALUATION

packet exchange. First, MN informs PN about its new IP address. Then, PN

sends an Address Check packet to MN. Last, MN confirms its new address

by sending an Address Check Reply packet to PN.
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Figure 5.13: Packet flow after reconnection

The packet flow after reconnection is shown in Figure 5.13. The time

for a HIP readdressing was estimated by measuring the time slip between

reception of the first readdressing packet and the address check reply packet.

This time difference is about 2.15 seconds in the mean.

5.7.3 Summary

The TCP Retransmission Trigger seems to work very well for the evaluation

scenario. Net connection time is mostly reduced to values of 24.5 to 27

seconds. These values already include the time that is needed for the HIP

readdressing. During readdressing, no data is sent to PN. Consequently,

TCP remains idle for at least 2.15 seconds after reconnection. Still, 24.5 to
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5.8. DISCUSSION

27 seconds is already quite near to the optimum value of 22 seconds. It has

to be considered, that the optimum value is based on a data transfer without

readdressing. Thus, it does not experience any idle time.

5.8 Discussion

Measurement results indicate that all three parts of the proposed system

improve different aspects of the scenario. Together they let TCP tolerate

mobility and long periods of disconnection and reduce net connect time by

nearly 120 seconds in the best case. HIP provides mobility support, such that

IP address changes are transparent to TCP connections. Modifying TCP

abort timeouts with the TCP Abort Timeout Option helps TCP connections

to survive long periods of disconnection. Last, the TCP Retransmission

Trigger proved to restart data transfer from mobile node to peer node in a

reliable manner. Net connect time is reduced to a value near the optimum

in this case.

22 seconds seem to be the lower limit for net connect time to transfer 25

MB of data with TCP over HIP. Some additional measurements showed that

transferring this amount of data with TCP over pure IP connections takes

about 21 seconds in the same network. The overhead that HIP introduces

can be estimated as only 22s−21s

22s
= 4.5%. However, this overhead can increase

in faster networks. As all traffic running on HIP connections is encrypted by

IPsec, CPU power is a potential bottleneck3 for network throughput.

As already mentioned before, the mobile node does not use IPv6 auto-

configuration. In reality, most IP address changes after a movement are

3On the machines used for the evaluation, maximal throughput on HIP connection was

limited with 70 Mb/s. In this case, CPU usage was 100%.
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CHAPTER 5. EXPERIMENTAL EVALUATION

managed by DHCP or IPv6 auto-configuration. This would add some

additional idle time after reconnection. First, the IP address has to be

configured automatically. Only when this is finished, HIP will start its

readdressing. In the evaluation, this additional idle time is not included,

as reconnection is simulated by configuring the IP address manually. Thus,

reconnection and IP address happen at the same time.

5.9 Summary

This chapter evaluated different parts of the concept by measuring net

connect time for a data transfer from a mobile node to a peer node.

Measurements in Section 5.5 show, that HIP solves the mobility problem.

TCP connections can survive IP address changes if they bind their end-

points to Host Identity Tags instead of IP addresses. Section 5.6 tested

the TCP Abort Timeout Option. If this option is used to extend TCP

abort timeout values, then TCP connections are able to survive long periods

of disconnection. Last, measurements of Section 5.7 show, that the TCP

Retransmission Trigger dramatically decreases net connect time for the

evaluation scenario.
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Chapter 6

Conclusion and Outlook

6.1 Summary

In the basic scenario of this thesis, mobile users are travelling while using

mobile devices such as notebooks, PDAs or mobile phones to connect

to the Internet. When entering areas with bad network coverage, they

temporarily loose connection. They change access networks when moving to

a different location, which implies IP address changes. Ongoing connections

are disrupted in such a scenario, because connections are bound to fixed IP

addresses. TCP connections are also aborted if disconnection periods are

too long. Disconnections decrease TCP performance because data transfer

is not immediately resumed when network connectivity is re-established.

Instead, TCP waits for retransmission timeouts that grow exponentially

during periods of disconnection.

This thesis proposes a system that enables TCP connections to efficiently

transfer data in the presence of IP address changes and periods of

disconnection. It consists of three complementary parts. HIP is the first part.

It decouples transport layer connections from IP addresses. Consequently,
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CHAPTER 6. CONCLUSION AND OUTLOOK

connection end-points remain valid even if communicating nodes change IP

addresses due to mobility or temporary disconnection. The second part is the

TCP Abort Timeout Option, which allows communicating nodes to negotiate

and extend abort timeout values for TCP connections. Thus, connections

can tolerate arbitrary-long periods of disconnection if communicating nodes

negotiate sufficiently large abort timeout values. The third and last

part of the system is a TCP Retransmission Trigger. It increases TCP

performance in disconnecting environments. The retransmission trigger

schedules retransmissions immediately after network connectivity is re-

established, thus restarting idle TCP connections earlier than the usual

retransmission timeouts.

The measurements presented in Section 5 indicate that the proposed

system is very effective. TCP connections tolerate IP address changes as

well as periods of disconnection. Net connect time is independent of the

duration of disconnection periods and reduced by a maximum of nearly 120

seconds and by 43 seconds on average in the presence of one intermediate

disconnection.

Finally, the proposed system is well supported by current Internet

infrastructure, because all three parts of the system operate on an end-to-

end bases. Mobility and disconnection support is entirely implemented on

end-hosts such that data is transferred as standard IP traffic, which does not

rely on any modifications on intermediate routers.
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6.2 Future Work

6.2.1 Abort Timeout Policies

The TCP Abort Timeout Option offers a mechanism to negotiate on

abort timeout values. However, the negotiating nodes still have to choose

appropriate values. This thesis does not address such selection policies.

During evaluation, all nodes were assumed to propose and accept abort

timeout values that are sufficiently large. Adaptive selection policies should

be developed to choose timeout values that are large enough to tolerate

disconnection and short enough to prevent resource exhaustion. For example,

policies could be based on information about geographic location of nodes and

access points, movement directions and speed or current resource utilisation

of the communicating hosts.

6.2.2 Connection Selection for TCP Retransmission

Trigger

The TCP Retransmission Trigger is designed to work well in conjunction

with HIP. TCP connections that should be triggered are selected on the

basis of Host Identifiers (see Section 4.3.3). Another selection mechanism

has to be introduced, such that nodes can benefit of a TCP Retransmission

Trigger even if they are not using HIP. One possible approach could be that

a caller passes a pointer to a evaluation function to the TCP Retransmission

Trigger. This function must be able to conclude whether a TCP connection

can benefit from rescheduling of retransmissions. This decision can be based

on TCP socket information. The TCP Retransmission Trigger should only

reschedule retransmissions for those TCP connections that are selected by
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the evaluation function.

6.2.3 HIP Extensions

The HIP protocol architecture proposes the use of rendezvous servers for

frequently moving nodes. However, no exact specification of a rendezvous

server is currently available. A common standard has to be defined. Eggert

proposes the use of rendezvous brokers [Egg04a]. A rendezvous broker is a

rendezvous servers that provides bridging functionality for communication

between HIP and non-HIP nodes.

HIP communication is always encrypted which is unnecessary for many

applications. In such cases, encryption produces a high overhead on end-

hosts such that CPU power might become the limiting factor. Therefore,

applications could benefit from a new HIP option that allows non-encrypted

data transfer.

6.2.4 Optimisation of Throughput during Connected

Time

This thesis concentrates on maximizing TCP’s usage of net connect time by

minimizing idle time. In this way, TCP restarts data transfer earlier after a

reconnection.

No changes are applied to TCP’s congestion control algorithms. TCP still

performs slow start at connection setup and after each reconnection even if

network conditions do not change. Thus, TCP throughput during connected

time could be further optimised if data rates would be adapted to current

network conditions faster than with current congestion control algorithms.

XCP [KHR02] is one example for such an approach.
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6.2.5 Experimental Evaluation for Interactive

Applications

This thesis evaluated the proposed system based on bulk data transfer

from a mobile node to a peer node. The results show that the system is

very effective within the experimental scenario. Further evaluations could

be carried out for interactive communications. The TCP Retransmission

Trigger should improve responsiveness of interactive applications, because it

decreases TCP’s idle time after reconnection.

6.2.6 Disconnection Tolerance for Other Mobility

Solutions

In this thesis, the TCP Abort Timeout Option extends TCP to deal with

periods of disconnection. This kind of disconnection tolerance works well

as long as TCP is used as the transport protocol. Therefore, the proposed

disconnection tolerance solution is expected to function in conjunction with

mobility solutions that operate only on layers lower than transport layer (e.g.

Mobile IP). Further evaluations could be carried out for mobility solutions

other than HIP to verify this assumption.
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Appendix A

Source Code

The implementation of the TCP Retransmission Trigger is described

in Section 4.3.5. The corresponding source code of function

tcp_trigger_retransmit_timers is presented in the following.

void tcp_trigger_retransmit_timers(unsigned int when) {

struct tcp_opt *tp = NULL;

struct sock *sk = NULL;

struct tcp_ehash_bucket *ebucket = NULL;

/* loop over all known open tcp sockets */

int i;

/* for each bucket in hash table */

for (i = 0; i < tcp_ehash_size; i++) {

ebucket = &tcp_ehash[i];

read_lock(&ebucket->lock);

/* for each socket in bucket */

for (sk = ebucket->chain; sk != NULL; sk = sk->next) {
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/* check for inet6 family */

if (sk->family != PF_INET6)

continue;

tp = &sk->tp_pinfo.af_tcp;

/* check whether retransmissions scheduled */

if (!tp->retransmits) {

continue;

}

/* override retransmission timer if retransmission */

/* gets pre-scheduled */

if (jiffies+when < tp->retransmit_timer.expires) {

tcp_reset_xmit_timer(sk,TCP_TIME_RETRANS,when);

}

/* decrease number of retransmits and backoffs, */

/* because this is an additional retransmit*/

if (tp->backoff > 0)

tp->backoff--;

tp->retransmits--;

}

read_unlock(&ebucket->lock);

}

}
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Appendix B

HIP for Linux

Helsinki Institute for Information Technology and Helsinki University of

Technology are developing a HIP implementation for Linux (HIPL)1. Current

Implementation supports IPv6 and includes the mobility and multi-homing

extension. HIPL is based on Linux 2.4.20 kernel. The experimental

evaluation presented in chapter 5 uses HIPL patch version 60.

HIPL provides a new libinet6 library. Applications either have to link

dynamically to the new libinet6 library or they have to be recompiled if they

link statically. The library offers a new version of function getaddrinfo,

which is used to lookup an IP address of a host. If a HIT is registered for

this host further communication is run over HIP. Otherwise, communication

uses standard IP.

1HIPL is available at http://gaijin.iki.fi/hipl
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