
Master’s Thesis

Evaluation and implementation of a
network performance measurement tool

for analyzing network performance under
heavy workloads

Kuralamudhan Ramakrishnan

Hamburg, 04 May 2015

http://www.tuhh.de
http://www.tuhh.de/comnets

Evaluation and implementation of a network performance measurement tool for
analyzing network performance under heavy workloads

Kuralamudhan Ramakrishnan
Immatriculation number: 21263139
Program: Information and Communication Systems

Hamburg University of Technology
Institute of Communication Networks

First examiner: Prof. Dr.-Ing. Timm-Giel
Second examiner: Dr.-Ing. habil. Rainer Grünheid
Supervisor: Dr. Alexander zimmermann, NetApp

Hamburg, 04 May 2015

Declaration of Originality

I hereby declare that the work in this thesis was composed and originated by myself
and has not been submitted for another degree or diploma at any university or other
institute of tertiary education.

I certify that all information sources and literature used are indicated in the text and a
list of references is given in the bibliography.

Hamburg, 04 May 2015

Kuralamudhan Ramakrishnan

Acknowledgment

This thesis is carried out as part of M.Sc degree program in Information and Communic-
ation System in Hamburg University of Technology (TUHH). The thesis work is done
with the collaboration of Institute of Communication Networking at TUHH and NetApp
GmbH Research Lab in Munich

I would like to take this opportunity, to thank Prof. Dr.-Ing. Andreas Timm-Giel, Vice
President for Research and Head of Institute of Communication Networks at TUHH, for
his support during the course of this project and my NetApp supervisor Dr. Alexander
Zimmermann for his vital support and guidance through the study. He provided me
the platform to work in the advanced technologies and also guided me with valuable
advice and technical support. I also like to extend my special thanks to the Advanced
Technology Group members Dr.Lars Eggert, Dr. Doug Santry and Dr. Michio Honda for
guiding me throughout the project work.

Abstract

Transmission Control Protocol (TCP) is the most prominently used transport layer
protocol in the Internet[26]. The Internet performance experienced by the users of all
Internet applications totally relies on the efficiency of the TCP layer. Hence, understand-
ing the characteristics of the TCP is vital to properly design, employ, and evaluate the
performance of the Internet, for the research work based on network design. So the aim
of the project is to study the TCP performance to provides information on the speed
and reliability of an unreliable network present in modern Internet. On the quest of this
issue, today’s research is focused on the Internet community equipped with a number of
performance metrics measurement tool.

With the emerging Internet growth, the ultra-high speed data connections are no longer
considered as the greater achievements for the modern communication networks. Gigabit
Ethernets are already being dominated with 40 and 100 Gbit/s data rates [61], which
are standardized in Institute of Electrical and Electronic Engineers (IEEE) 802.3bj [7].
The recent development in the latency sensitive application in the communication
networking arise the concerns about latency measurement. Unfortunately there are little
or no research tools available to calculate precisely the latency in the network, according
to the standard procedure.

This thesis explores the latency measurement in standard methodology using the
Internet Engineering Task Force (IETF) standard procedure [6] and aims to implement
the latency performance measurement tool using the Linux kernel time stamping[43]
feature. Subsequently, their performances are evaluated. The result shows that latency
measurement at different stacks are affected by the network stack, device drivers and by
the user space, than the actual latency in the network.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 2
1.3 Approach . 3
1.4 Overview . 4

2 Standardization of performance 5
2.1 IETF . 5
2.2 BMWG . 5
2.3 IPPM . 6
2.4 Bulk Transport Capacity (BTC) – Request for Comment (RFC) 3148 . . . 7
2.5 One way delay . 8

2.5.1 One way delay methodology . 8
2.5.2 Errors and uncertainty . 9
2.5.3 Wire time vs Host timestamp . 9

2.6 Two way delay . 9
2.6.1 Two way delay measurement methodology 10
2.6.2 Errors and uncertainty . 10

2.7 Measurement protocol . 11
2.7.1 One-Way Active Measurement Protocol (OWAMP) – RFC 4656 . 11
2.7.2 Two-Way Active Measurement Protocol (TWAMP) -RFC 5357 . . 13

2.8 Conclusion . 13

3 Performance tools 15
3.1 ICMP Ping . 15
3.2 Thrulay . 16
3.3 TTCP and NUTTCP . 16
3.4 Iperf . 17
3.5 Netperf . 18
3.6 Drawback of existing performance tools 20
3.7 Conclusion . 21

4 Traffic Generation model 23
4.1 Introduction to Traffic Generation model 23
4.2 Mathematical Background . 24
4.3 Traffic model . 25
4.4 Traffic generation use cases . 25

i

Contents

4.5 Conclusion . 26

5 Flowgrind 27
5.1 Introduction to flowgrind . 27
5.2 History . 27
5.3 Flowgrind architecture . 29
5.4 Flowgrind interprocess communication 30
5.5 Command line arguments . 30
5.6 Traffic dumping . 33
5.7 Flow scheduling . 34
5.8 Traffic Generation . 35
5.9 Rate - limited flows . 36
5.10 Work flow in the flowgrind . 36

5.10.1 Controller and Data connection . 36
5.10.2 Test flow operation . 38
5.10.3 Read and write operation . 38
5.10.4 Controller reporting procedure . 39

5.11 Performance metrics measurement . 39
5.11.1 Throughput . 39
5.11.2 Round-trip time . 39
5.11.3 RTT measurement in the flowgrind 40

5.12 Conclusion . 41

6 Implementation 47
6.1 Time stamping in Linux . 47

6.1.1 Linux Kernel Timestamping control Interface 47
6.1.2 Time stamping generation inside the kernel 48
6.1.3 Reporting the timestamp value . 49
6.1.4 Additional options in the timestamping 49
6.1.5 Bytestream (TCP) timestamp in Linux 51
6.1.6 Data Interpretation . 51
6.1.7 Hardware Timestamp . 53

6.2 Latency measurement in Flowgrind . 54
6.2.1 Enabling the Hardware timestamping 54
6.2.2 Enabling the time stamping feature in Linux 54
6.2.3 Timestamping procedure in the flowgrind 55
6.2.4 Processing the timestamp data . 55
6.2.5 Processing timestamp values . 58
6.2.6 Round trip time calculation . 58

6.3 Conclusion . 59

7 Flowgrind Measurement Results 63
7.1 Methodology . 63
7.2 Testbest . 63

ii

Contents

7.3 Testing Scenarios . 65
7.4 Test schedule . 68
7.5 Results . 68

7.5.1 Two way delay . 68
7.5.2 Performance result . 69
7.5.3 Analysis . 71

7.6 Conclusion . 74

8 Conclusion 77
8.1 Summary . 77
8.2 Future work . 78

iii

1 Introduction

1.1 Motivation

The TCP was born to avoid the congestion in the network and ensure goodput, quality
of service, and fairness. The traditional measure of network is expressed in the terms
of bandwidth. In Open System Interconnection (OSI) – 7 layer model, the end users of
the traffic model in a network are the application layer. Each request submitted to the
computer must be done within a particular time frame, whereas the applications like
file download, email exchange are not sensitive to per packet delivery time. These are
categorized as the throughput-oriented application. But in recent applications like VoIP,
interactive video conferencing, network gaming, and automatic algorithmic trading, the
per packet delivery time is very important. These applications involve humans and
machines, where operations are multiple parallel requests and response loops involve
thousands of servers. Currently we are in a scenario where the measurement of precise
latency of individual request ranges from milliseconds to microseconds. So the data
centers are now focusing in areas toward the improvement of low latency in their
network infrastructure [3].

Traditionally for a decade, the primary focus in terms of performance metrics in the
networking has been bandwidth. With growing capacity in the Internet, bandwidth is
not the main concern anymore [11]. The network – induced the latency as one-delay [4]
or Round Trip Time (RTT) [5] often has noticeable impact on the network performance
[11].

We are inclined towards the accuracy and reliability of the latency measurement as
a primary metric for evaluating the current generation networks and data center. A
significant amount of storage, computing and communication are shifting towards data
centers [3]. Within a boundary scope, data centers are characterized by propagation
delays, delay in network stack, queue delay in the switches. Delivering predictable low
latency appears more tractable than solving the problem in the internet at large.

Applications like high performance computing, and RAMCloud [44] [46] involves
multiple parallel requests – response loop and remote procedure calls to thousands of
servers. Platforms like RAMcloud integrates into the search engine and social networking,
and such an application must share the network with throughput-oriented traffic which
consistently deals with terabytes of data [3]. So measuring the latency in this heavy
loaded condition is absolutely necessary.

1

1 Introduction

Traditionally latency is measured with Internet Control Message Protocol (ICMP) ping.
Although ICMP is a great way to check for the link availability, it is not the standard way
to test for latency or delay in a network. The ping uses a series of ICMP, echo messages to
determine the link availability, round-trip delay in communication with the destination
devices. The ICMP ping command sends an echo request packet to destination address,
then waits for a reply and the destination sends an echo reply back to the source within
a predetermined time called a “timeout”. The default time out duration depends on the
routers [32].

ICMP message are considered to be low priority messages, so the routing platform will
respond to other higher priority messages, such as routing updates. The kernel also
introduces tens of milliseconds of processing delay to ICMP message handling and even
these delays are not uniform. ICMP ping latency is not a recommended way of testing
latency in the network. One of the accurate and best ways to calculate the latency is to
stimulate data traffic, using the traffic generator for the transit traffic [32].

1.2 Objective

The main objective of the thesis is to standardize and define a particular metrics (latency)
to be developed under the general framework developed by the IETF [6], IP Performance
Metrics (IPPM) [53] of the Transport Area.

The thesis begins by laying out criteria for the latency metrics that has been adopted
from the IPPM. These criteria are designed based on the IPPM standards and methods
that will maximize an accurate common understanding regarding metrics definition.

This project then defines the fundamental concepts of latency metrics and measurement
methodology, which clearly explains about the measurement issues. Given these
concepts, the latency measurement uncertainties and errors are discussed later.

The latency metric is defined in the two metrics one – way delay [4] and round-trip delay
[5] of packets across the internet paths. There are separate RFCs for each metric. In
some cases, IPPM working group mentions that there might be no obvious means to
effectively measure the metrics. Hence difficulty in practical measurement is sometimes
allowed, but ambiguity in meaning is not allowed [60].

The measurement methodology for the latency metrics are defined in the IPPM RFC,
but for a given well defined metrics there might be different measurement methodology
as defined in the RFC 2330 [60]. The methodology for a metric should have attributes
and principle that the methodology is repeated multiple times in the similar condition
and their results are consistent [60].

Even the best methodology for the measurement metrics would result in errors. So
the measurement tool should understand the source of uncertainties/errors, and also
should minimize and quantify the amounts of uncertainties / errors [60]. The derived

2

1.3 Approach

metrics [2] and metrics by spatial [25] and temporal composition [2] cause measurement
uncertainties.

Measurement of time plays a crucial part in designing a methodology for measuring a
metric, where the uncertainties/errors are introduced by the imperfect clock synchroniza-
tion. So the objective of this project is to standardize the performance metrics according
to the standards and property mentioned in the IPPM RFC’s.

Implementation of latency measurement under load measurement, unlike ICMP ping,is
done by looking in the adaptation of open source TCP/IP measurement tools, which
provides a platform for the effective and efficient way to stimulate the TCP traffic under
the heavy load condition. Evaluating the fairness and correctness of the measurement is
carried out using different network load and using different stimulation scenarios to
justify the correctness, and accuracy of latency measurement. Then the evaluation the
performance metrics by comparing the results of existing measurement tools is done.

1.3 Approach

In this section, the general approach for the latency measurement under the heavy load
condition will be discussed. As mentioned in the section 1.2, the latency measurement is
incorporated as a separate module in the open source existing measurement tools. The
existing standard open source measurement tools for the TCP/ IP measurements are
Iperf [33], Netperf [41], Thrulay [58], TTCP [13], NUTTCP [42].

These measurement tools are compared based on their features, architecture, feasibility
in adopting the latency measurement, performance, supported protocols, Central
Processing Unit (CPU) utilization, directionality , Inter process communication, metrics
supported, user interface(Command line Arguments), fairness issues, socket options,
and QoS.

The details regarding all these features and also comparison between the measurement
tools will be discussed in the chapter 3. Based on the comparison of the features between
these tools, the new measurement tool flowgrind is found to be superior to the other
standard measurement tools in terms of architecture and the feasibility of implementation
of latency measurement, under heavy loaded condition.

The methodology of the latency measurement is based on the standard definition of
one-delay [4] and two-delay [5] as mentioned in the IPPM standard working group of
IETF.

The implementation of the latency measurement is done by using the linux timestamping
option available in the Linux kernel. Linux timestamping is used to timestamp each
and every event handling of data buffer in the Linux kernel and in addition to it, it
also handles the timestamping in the Network Interface Controller (NIC). These kernel
level timestamping are mentioned as software timestamping and the Network interface

3

1 Introduction

level timestamping are mentioned as the hardware timestamping. These hardware
timestamping are used to record the received timestamping and transmit timestamping
via network adaptor. Linux kernel timestamping or software timestamping supports
more event timestamping than the network adaptor hardware timestamping. The
software timestamping support both to receive and transmit timestamping, it also
supports data buffer acknowledgment, packet scheduler timestamping, which will be
discussed in detail regarding these timestamping in the section 6.1.

1.4 Overview

The thesis is organized as follows: In chapter 2, the basis standard procedure to measure
the performance metrics as mentioned in the IETF, the sections discuss in details regarding
the working groups, and standard procedure to measure the one-delay and two way
delay. In chapter 3, discuss regarding the current performance measurement tools and
discuss in details regarding their merit and demerit. The chapter 4 gives the general
idea regarding the traffic generation and discuss in details regarding the stochastic
traffic generation and the traffic model. The chapter 5 introduces the flowgrind, and
explains the merits and advantage of developing the latency measurement module in the
flowgrind. The chapter 6, explains the actual implementation of the latency measurement
module in the flowgrind using the Linux timestamping feature. In chapter 7 evaluate the
latency measurement using stochastic traffic generation. Finally chapter 8 give insight
regarding the potential future work.

4

2 Standardization of performance

2.1 IETF

The standardization of protocol and procedure is carried out by the Internet Engineer-
ing Task Force (IETF), which is considered as international platform for the network
engineers, operator, designer and research community. The main activity of the IETF is
to standardize the internet infrastructure and operation procedure [6]. Any person can
contribute their work to the IETF. The technical competence work is done in its working
group, through the working group mailing list [6]. Let us look into the “standard”
definition in the IETF from the Request for Comment (RFC) 3935. Standard is the term,
which define a specification of a protocol, procedure or system behavior, “if you want to
do a certain thing, and this gives the description of how to do it” [6]. But it is not mentioned to
use procedure as the mandate or the compulsory one. It is only mentioned in the RFC
3935 that if someone says that he or she is doing his/her research work according to this
standard, it benefits interoperability in the internet. The multiple products, which are
implemented according to the standard procedure, can work together and which could
be used widely as valuable functions to the Internet users [6].

As mentioned earlier in the section 1.4, the IETF has many working group for several
research area. In this chapter, the two working group for the performance metrics
standardization and the bench marking methodology will be discussed.

2.2 BMWG

The Benchmarking Methodology Working Group (BMWG) from the IETF charter [53],
recommends the standardization of the metrics mainly for the internetworking technolo-
gies. Internetworking technology devices are mainly network router, switch, services
and system. The recommendation of standardization for a class of equipment involves
the discussion of performance metrics that are apt to that class. The BMWG differentiate
itself from other working group for the performance metric measurement by limiting
its scope for the internetworking technology [53]. It means that their performance
metrics methodologies are not applicable to the benchmarking functional networks. It
is applicable only to the controlled laboratory networks. BMWG works closely with
the network operators, network test tool developers to do the benchmarks that are
independent of the vendor specific and testing methodology is applicable universally to
the all internetworking technology class [53].

5

2 Standardization of performance

Data center benchmarking in the BMWG is used to evaluate the data center performance.
This benchmarking includes the network congestion scenarios, data center switch buffer
analysis and traffic conditions. The RFC 1242 [8], defines the latency definition in the
terms of store and forward devices , “the time interval starting when the last bit of the input
frame reaches the input port and ending, when the first bit of the output frame is seen on the
output port” [8]. And for the bit forwarding devices, “The time interval starting when the
end of the first bit of the input frame reaches the input port and ending when the start of the
first bit of the output frame is seen on the output port” [8]. The RFC 2544 [48] gives the
methodology to implements the definition as mentioned in the RFC 1242.

The RFC 2544 discusses the throughput measurement, latency and frame loss rate for
the networking devices and used for benchmarking the performance metrics for the
data plane for the networking interconnection device. But the RFC 2544 defines the
pre-defined frame size for testing. This procedure is tested by using the IxCloudPerf
QuickTest [34], the main objective of this testing is to test the client – server and server -
server traffic. The switches are tested with both the client – server traffic and server –
server traffic with different frame size packet. The results are different for different frame
size, traffic patterns and also affect the latency and throughput. So this is considered as
the disadvantage and shows the inefficiency of the RFC 2544 testing methodology.

2.3 IPPM

From the IP Performance Metrics (IPPM) working group from the IETF charter [53], IPPM
is working in developing and maintaining the standardizing of the performance metrics,
that could be applied to the performance and reliability of the application that running
over the transport layer protocols (For Example, Transmission Control Protocol (TCP),
User Datagram Protocol (UDP)) over IP and it is out of scope for IPPM to work on
the metrics that are applicable to the lower layer Ethernet Operations, Administration
and Management(OAM) mechanism. This is the main difference between the BMWG
and IPPM, and the methodology of measuring metrics in both the working group
reflects this objective. For example, in BMWG it deals with the Ethernet frame for the
measurement of the performance metrics and in the IPPM it deals with the packets for
the metrics measurement. The metrics designed by the IPPM could be used by network
operators and also by the end users. But in the case of BMWG, it could be used by the
network operators and testing groups. Because of these reasons, the performance metrics
designed by the IPPM is taken into the consideration for the designing the performance
metrics in this project [53].

IPPM RFC is used to document the definition of each and every performance metrics and
defines the methodology for accurately measuring and documenting these metrics. The
following are the performance metrics discussed and documented in the IPPM working
group.

6

2.4 Bulk Transport Capacity (BTC) – RFC 3148

• Bulk Transport Capacity (BTC) – RFC 3148

• One way delay – RFC 2679

• Inter packet delay variation – RFC 5481

• Packet Duplication metric – RFC 5560

• Packet loss metric – RFC 2680

• Packet reordering metric – RFC 4737

• Round trip/two-way delay metric – RFC 2681

• Round trip/two-way packet loss metric – RFC 6673

In this section, each performance metrics and the measurement of the Bulk Transport
Capacity BTC, one way delay, and two delay metrics and also regarding the test
equipment design mentioned in the IPPM working group will be discussed in detail.

• One-way Active Measurement Protocol (OWAMP) RFC 4656

• Two-way Active Measurement Protocol (TWAMP) RFC 5357

2.4 Bulk Transport Capacity (BTC) – RFC 3148

The Bulk Transport Capacity BTC is a measurement of a network’s ability to transfer
certain amount of the data from the single transport connection with the congestion
awareness (e.g., TCP). The nonrational definition of the BTC is average data rate that
are expected over the long term in bits per second over a single connection ideally with
TCP implementation. BTC definition is generic to the entire congestion algorithm, since
many congestion algorithm is allowed by the IETF community. The difference between
the implementation in the congestion algorithm leads to define the transport capacity in
the transport algorithm. So the definition of the generic formula for the BTC leads to the
non-comparable results [39].

In the application level, the BTC of the network layer below the application level or user
space is dominated by the overall elapsed time of the application by the user. According
to the RFC 3148 [39], BTC is the long average data rate expressed in the bits per second
over a single TCP or any congestion aware connection over the path between the source
and destination. All BTC tool should report the BTC as follows

BTC =
data_sent

elapsed_time

where data_sent represent the useful data that it means that doesn’t include the header
bit or a copy of it and even if the packet is retransmitted, it should be counted only
once.

7

2 Standardization of performance

2.5 One way delay

The RFC 2679 [4] defines the one delay between the source hosts to destination host. The
motivation for measuring the one way delay along with the two way delay has number
of advantages.

• The path between source to destination host need not be the same from the
destination to source. The reason is obviously due to the different sequence
of routers that are between the source and destination, which will change the
path between source and destination both in the forward and reverse direction.
The routers use the difference forward and reverse path between the source and
destination [4]

• Measuring round trip time for the asymmetric path results in the two distinct path
measurement.

• Even if the path between the source and destination are symmetric, there might be
difference in the distinct direction due to asymmetric queues between source host
and destination host.

• For the application, the performance is mainly depends on the direction in which
the data is forwarded, than the direction in which they are acknowledged [4].

The RFC 2679 definition for the one way delay is given as below,
"The one way delay dT between Src to Dst at time T, where dT is the time delay between Src sent
the first bit of packet to Dst at time T and Dst received the last bit of that packet at time T+dT"
[4].

• Where T is the time value

• Src is source IP address

• Dst is destination IP address

The value of dT, has to be positive value, but if the value is zero or negative, then it shows
that there is a problem in the clock synchronization between the source and destination
host. Testing equipment should take into account of the packet duplication, if the
destination receives more copies of the data, then first data is taken into the consideration
for calculating the one way delay. And also note the packet fragmentation for measuring
the one way delay.

2.5.1 One way delay methodology

The following steps explains the one way delay measurement methodology

• Both the source and destination clock should be synchronized with each other.

8

2.6 Two way delay

• The source should have arrangement to send packets to destination IP address, and
the destination should have arrangement to receive the packets from the source.

• Before sending the packet, the source should take a timestamp T1, then send the
packet towards the destination.

• After getting the packet from the source at the destination within the reasonable
time period. Then the destination should take the timestamp T2, the difference
between the T2 � T1 should give as the one way delay.

2.5.2 Errors and uncertainty

The synchronization issues between the source clock and destination clock lead to the
error in the one way delay measurement. The synchronization error is termed as the
Tsynch. If the Tsynch is known before the start of test, then one way delay error could be
minimized. For instance, let it be assumed that source clock is ahead of destination clock
by Tsynch. Then the error value could be minimized by adding the Tsynch between T2
� T1. The Tsynch in other words is the function of skew between the source and the
destination clock [4].

2.5.3 Wire time vs Host timestamp

The duration of the time between the packet leaves the network interface of the source
and when it arrives the network interface at the destination is defined as wire time, which
will be discussed in detail in the chapter 6. The measure of time when the application in
the user space in source host grabs the timestamp before sending the packet from the
user space and the application in the destination grabs the timestamp after receiving the
packet in the user space is defined as the host wire.

The estimation between the wire time and host time should be included in the measure-
ment implementation. This is discussed in the results in the chapter 7. The methodology
discussed in the RFC 2679 is applicable to the IP packets, for the both UDP and TCP
packets.

2.6 Two way delay

The RFC 2681 [5], defines the two way delay or the round trip delay, let us discuss the
motivation for the two way delay in this section from the RFC 2681.

• This metrics provides the indication of the congestion present in the path.

• The minimum value indicates the delays due to the propagation and transmission
delay in the network.

9

2 Standardization of performance

• The deployment of the round trip time is easier than the one way delay, since round
trip time requires only source clock for the measurement and it doesn’t requires to
do install measurement-specific software at the destination. This principle is used
in the ICMP ping and in the well-known TCP-based methodology connectivity
measure [5].

The RFC 2681 definition for the two way delay is given as below,
"The two way delay dT between Src to Dst at time T, where dT is the time delay between Src sent
the first bit of packet to Dst at time T and Dst immediately send back the packet to Src, and Src
receive the last bit of the same packet at T+dT" [5]
The abbreviation is the same as discussed in the section 2.5 for the one - way delay.

In the RFC 2681, even if the two way delay measurement requires only one clock
source at the source, but this clock synchronization with other time servers, could
cause uncertainties and error in the round trip measurement. For instance, Network
Time Protocol (NTP) is used to synchronize the system clock with time servers, if the
synchronization is done in between the initial timestamp and the final timestamp then it
leads to the uncertainties in the round trip measurement [5].

2.6.1 Two way delay measurement methodology

The following steps explains the two way delay measurement methodology

• The source host must grab the timestamp before sending the packet to the destina-
tion IP address, there should be an information for identifying request packet from
the source to the destination, and the source can identifies the response packet from
the destination. This identifying information is generally placing the timestamp in
the packet itself before sending it to the destination IP address.

• At the destination, the host should have the arrangement to send back the response
packet to the source as soon as possible, once the packet received by the destination.

• The source hosts get the final timestamp once response packet reaches it. By
subtracting, this initial timestamp and final timestamp will give us the round trip
time.

Packet format by which the destination could response back to the source, is not discussed
in the RFC 2681.

2.6.2 Errors and uncertainty

Similar to the one way delay, two way delays also has error and uncertainty. But when
comparing to one way delay, the factors affecting the two way delay is less [5], lets
discuss the error and uncertainty in this section.

10

2.7 Measurement protocol

• Error and uncertainty is added to source host primarily by the source clock.

• Similar to the one delay, error and uncertainty is added by the difference between
the wire time vs host time.

• Processing time taken by destination to send back the response packet to the source
will also add the uncertainty and error in the source host.

• Uncertainty is added by the source clock, when skew is introduced in between the
initial and final timestamp between the round trip times. The problem with the
two way delay is the self clock synchronization.

Error and uncertainty caused by wire time and host time is similar as discussed in the
section 2.5.3

2.7 Measurement protocol

In this section, the measurement protocol to measure the performance metrics will be
discussed as in IPPM working group. The RFC 4656 and RFC 5357 propose the standards
for the one-way active and two-way measurement protocol for both unidirectional and
bidirectional performance metrics. These RFC documents the standards for the one way
delay and round trip time measurement using the standard generic testing tool.

2.7.1 One-Way Active Measurement Protocol (OWAMP) – RFC 4656

This OWAMP discuss methodology to create an environment to collect IPPM metrics
from mesh of Internet paths. OWAMP consist of two protocols: OWAMP – Control and
OWAMP – test. The OWAMP Control is used to initiate, start and stop the test sessions,
and OWAMP test actually engage itself test data exchanges between the OWAMP
servers [49]. The correlation between this methodology and flowgrind is discussed in
the section 5.3.

The OWAMP – Control entity involves the session initiation, which basically exchange
the source and destination address, port number between the OWAMP servers, and
exchange of the testing parameter like test session length, test packet size, and it also
discusses regarding the per session encryption and authentication, but these topics are
out of scope of this section [49]. OWAMP divides the each entity into a logical model,
and each logical model has its own standard definition and functionality. It is shown in
the figure 2.1 [49].

Session Sender: The sending terminal in the OWAMP – test session.

Session Receiver: The receiving terminal in the OWAMP – test session.

11

2 Standardization of performance

Server: The node that actually involves in least one test session or more, and returns
the test result to the client.

Control – Client: The node that request for the test session with servers, induces start
and termination for the test session.

Fetch – Client: The entity that fetch the results from the server for the terminated
test session OWAMP protocol is actually an UDP test traffic, which uses TCP
connection for the OWAMP Control and UDP connection for the measurement
session in the OWAMP test. The discussion regarding the implementation of the
OWAMP-Control, Connection Setup and the modes of operation is out of scope
for this section.

The one way delay measurement is done according to methodology in RFC 2679; the
send timestamp is filled in the test data along with the error estimate, error estimate is
used to share the information, regarding the clock synchronization with the UTC, using
GPS hardware, or by using NTP [49]. The logical model as shown in the figure 2.1 can
also be configured as client-server architecture as shown in the figure 2.2 [49].

 Session – Sender
OWAMP-Test

Session – Receiver

Session – Sender

Control-Client Fetch-Client

OWAMP-
Control

OWAMP-
Control

Figure 2.1: One-way active measurement protocol architecture

12

2.8 Conclusion

Control – Client

Fetch-Client

Session – Sender

Server

Session - Receiver

OWAMP
Control

OWAMP
Test

Figure 2.2: One-way active measurement protocol client and server architecture

2.7.2 Two-Way Active Measurement Protocol (TWAMP) -RFC 5357

For the two way delay measurement, there is no need for the both source and destination
clock to be synchronized with each other. TWAMP implementation uses the methodology
and procedure as mentioned in the OWAMP. But in addition to the OWAMP, the
destination echo backs the source timestamp back to the source as response packet from
the destination [35].

There are few differences between the OWAMP and TWAMP logical model, the role and
function of the different logical entities are given as below. The logical model in the
client - server architecture is shown in the figure 2.3.

Session-Reflector: The session receiver is called as session reflector, since session
reflector has the ability to send back or echo back the packets, which it receives
from the source and it doesn’t collect any information regarding the packet from
the server.

Server: The TWAMP server is similar to the OWAMP server but the TWAMP server
doesn’t have the capability to return the results because the results are not calculated
at the server.

Fetch-client: This item doesn’t exist in the TWAMP, since session reflector doesn’t
collect any information from the server. So there is no need to fetch information
from the server.

The methodology to measures the two delays in TWAMP is similar to the procedure
explained in the RFC 2681.

2.8 Conclusion

This chapter explains in detail, regarding the standard procedure maintained in the
IETF’s IPPM working group for measuring the one way delay and two delay performance
metrics. This gives us the overall picture regarding the one way delay and two way

13

2 Standardization of performance

Control – Client

Session – Sender

Server

Session - Reflector

TWAMP
Control

TWAMP
Test

Figure 2.3: Two-way active measurement protocol client and server architecture

delay definition, methodology, errors and uncertainty in the results due to the clock
synchronization issues in both source and destination side. The standard methodology to
measure the latency as defined by the IETF working group and the latency measurement
implementation by the performance metrics are correlated in the upcoming chapters.

14

3 Performance tools

With more advancement and increasing level of research in the forms of high speed
networks to meet today’s internet there lies a motivation to find genuine and objective
benchmarks against the quality of services offered in a network. With the increase in the
speed with broadband services, there is always a concern for the end users about the
performance of the network.

High speed networking is not the answer in terms of performance for the broad spectrum
[32]. The ability of the network to support the transactions that include the transfer of
large amount of data and also support multiple and parallel transactions will give an
overall picture of large network with heavy load condition and also network performance
[3].

A good approach to measure the network performance is to inject test traffic into the
network and measure the network performance, and then relate the performance of the
test traffic to the performance of the network in carrying the normal payload. In this
chapter, the performance tools and their measurement methodology will be discussed in
detail.

3.1 ICMP Ping

Most widely used measurement tool is ping. The ping is a very simple tool to generate
the Internet Control Message Protocol (ICMP) echo request packet, and directs it to
destination host. When the packet is sent, the source host will start system clock timer
operation. The destination host reverses the ICMP headers and sends back the ICMP
echo reply packet to the source. When source receive the ICMP echo reply packet, then
the timer is halted and the elapsed time is reported [32].

This indicates that the destination system is connected to the network, and is reachable
from the source system. Failure of response from the destination host is not much
informative, because it cannot be actually interpreted and that the destination system
is not available in the network. Reason for this is that the destination response packet
may have been discarded in the network due to the network congestion, and also the
network path is not available to the destination. The firewall rules between the source
and destination may block the destination response packet from being delivered [32].

The ICMP ping results can give some useful performance metrics information. The
elapsed duration for a ping packets response, from the destination to source giving the

15

3 Performance tools

depiction of the response time and their standard deviation, suggests the load being
experienced on the network path between the source and destination. The increased
load in the network will be revealed as increased delay and their standard deviation,
since the presence of large router buffers along the network path [32].

The ICMP packets could be discarded by router, if there is buffer overflows in the router.
This will result in the increase of the ping loss in the network. The unpredictable high
latency and loss within ping packets shows the instability within the network path.
Several router architectures use fast switching paths for data transmit, however the
Central Processing Unit (CPU) of the router process the ping request and response. So
the ping response might be given lesser scheduling priority because router functions
represent more critical operation. So in this case, there is a possibility that extended
delays will be reported by the ICMP ping [32].

In more details, the typical Transmission Control Protocol (TCP) flow behavior is
vulnerable to cluster into bursts of packet transmission. But ping doesn’t need or not
having any necessities to echo similar behavior. So the ping can only be used in a
primordial way to discover the provisioned capacity of network connectivity [32].

3.2 Thrulay

Thrulay stands for THRUput and deLAY. The feature, which distinguishes the thrulay
from the previous performance tools, is that thrulay reports delay information in
addition to the throughput metrics. Thrulay measures throughput and round trip
time by transmitting a bulk TCP stream over the network. Thrulay also supports UDP
protocol in addition to the TCP, but it measures only the one-way delay for UDP packets.
In UDP testing, thrulay sends a Poisson stream of very precisely positioned UDP packets
[51].

The thrulay is initially developed for the measuring Round Trip Time (RTT) for the FAST
TCP, but useful for standard loss – based TCP too [52]. The figure 3.1 shows the Thrulay
example output for the bulk Transfer test.

3.3 TTCP and NUTTCP

The Test TCP (TTCP) [13] used to measure goodputs for both TCP and UDP packets.
For the UDP packets it also displays packet loss rate. TTCP is client-server architecture,
which means it can measure only unidirectional flows from client to the server [13].

The tool NUTTCP is the successor of TTCP, which has several additional features
compare to the TTCP. The NUTTCP starts the test between two servers, whereas the test

16

3.4 Iperf

phobos2:~/thrulay-ng-0.6.2/src% ./thrulay 172.16.121.21 -t 10s
local window = 425984B; remote window = 425984B
block size = 8192B
MTU: 1500B; MSS: 1448B; Topology guess: Ethernet/PPP
MTU = getsockopt(IP_MTU); MSS = getsockopt(TCP_MAXSEG)
test duration = 10s; reporting interval = 1s
#(ID) begin, s end, s Mb/s RTT, ms: min avg max
(0) 0.000 1.000 14311.627 0.083 0.285 0.613
(0) 1.000 2.000 15691.994 0.142 0.243 0.430
(0) 2.000 3.000 15724.855 0.142 0.241 0.433
(0) 3.000 4.000 15855.333 0.144 0.239 0.364
(0) 4.000 5.000 15777.006 0.151 0.241 0.426
(0) 5.000 6.000 15895.364 0.151 0.239 0.368
(0) 6.000 7.000 15860.941 0.145 0.239 0.361
(0) 7.000 8.000 15791.112 0.151 0.241 0.373
(0) 8.000 9.000 15908.691 0.151 0.238 0.426
(0) 9.000 10.000 15872.557 0.150 0.240 0.361
#(0) 0.000 10.000 15668.922 0.083 0.244 0.613
#(**) 0.000 10.000 15668.922 0.083 0.244 0.613

Figure 3.1: Thrulay example output: TCP bulk transfer test

started by NUTTCP client could be from the system. The NUTTCP client submit the
test parameters to servers and then servers will establish the data connection between
them to perform the measurements [42]. The test results are aggregated and sent back to
the NUTTCP client, where it is displayed. The figure 3.2 shows the NUTTCP example
output for the bulk Transfer test.

The NUTTCP report the total amount of data sent, average throughput per second, CPU
usage in percentage for both source and destination, uses the TCP_INFO socket option to
display the number of retransmission on NUTTCP data connection between the servers,
and average RTT measured. NUTTCP also reports the results per interval.

3.4 Iperf

Iperf is relatively simple tool, it is based on the client-server architecture. It is primarily
used to measure the goodput. To start the test, the Iperf client connects to the Iperf server
and sends the test parameter to the server and then starts the bulk data transfer between
client and server. The Iperf measures both the TCP and User Datagram Protocol (UDP)
bulk transfer test. By optional in the TCP bulk transfer test, data can optionally be
sent in parallel with multiple connections to the same server via multiple threads. The
Intermediate tests are displayed at the both Iperf server and client according to the
configured time interval testing. The UDP bulk transfer test can also measure the
datagram loss rate and delay jitter [33].

But in addition to these advantages, the Iperf also have few demerits. Iperf can only test
against one server at a time and unlike NUTTCP does the Iperf does not support third
party tests. The Iperf can measure the parameter unidirectional from server to client

17

3 Performance tools

phobos1:~/nuttcp -5.5.5% nuttcp -v -v -i1 172.16.121.22
nuttcp-t: v5.5.5: socket
nuttcp-t: buflen=65536, nstream=1, port=5001 tcp -> 172.16.121.22
nuttcp-t: time limit = 10.00 seconds
nuttcp-t: connect to 172.16.121.22 with mss=1448
nuttcp-t: send window size = 23040, receive window size = 178560
nuttcp-r: v5.5.5: socket
nuttcp-r: buflen=65536, nstream=1, port=5001 tcp
nuttcp-r: interval reporting every 1.00 second
nuttcp-r: accept from 172.16.121.21
nuttcp-r: send window size = 23040, receive window size = 179520
2580.6250 MB / 1.00 sec = 21646.5311 Mbps
2635.6250 MB / 1.00 sec = 22110.5074 Mbps
2637.6250 MB / 1.00 sec = 22125.5597 Mbps
2641.1875 MB / 1.00 sec = 22156.3519 Mbps
2640.3125 MB / 1.00 sec = 22148.3029 Mbps
2646.1250 MB / 1.00 sec = 22196.9724 Mbps
2643.8750 MB / 1.00 sec = 22178.9855 Mbps
2644.5000 MB / 1.00 sec = 22183.6739 Mbps
2644.6250 MB / 1.00 sec = 22183.7907 Mbps
2645.6875 MB / 1.00 sec = 22194.3677 Mbps

nuttcp-t: 26366.3125 MB in 10.00 real seconds = 2699908.24 KB/sec = 22117.6483 Mbps
nuttcp-t: 421861 I/O calls, msec/call = 0.02, calls/sec = 42186.07
nuttcp-t: 0.1user 4.8sys 0:10real 49% 0i+0d 1118maxrss 0+0pf 142104+37csw

nuttcp-r: 26366.3125 MB in 10.00 real seconds = 2699623.97 KB/sec = 22115.3196 Mbps
nuttcp-r: 421864 I/O calls, msec/call = 0.02, calls/sec = 42181.92
nuttcp-r: 0.0user 9.9sys 0:10real 99% 0i+0d 96maxrss 0+16pf 4+105csw

Figure 3.2: NUTTCP example output: TCP bulk transfer test

and it doesn’t support bidirectional TCP and UDP goodput. In order to simulate the
bidirectional TCP connection, the two unidirectional connections are used in the parallel.
The figure 3.3 shows the Iperf example output for the bulk Transfer test.

3.5 Netperf

Netperf is also a client-server based measurement tool, similar to Iperf and doesn’t
support the third party test. It can also only test against one single server at a time.
Netperf is able to use Unix Domain sockets and the data link provider interface and
supports Stream Control Transmission Protocol (SCTP) in addition to the TCP and UDP
protocol. It is developed by Hewlett-Packard. Netperf provides different testing for the
different protocol. TCP_Steam is the most basic test for the TCP protocol, which used to
measure unidirectional TCP good put for the bulk data transfers. The figure 3.4 shows
the Netperf example output for the bulk Transfer test.

Netperf also supports the request-response test called as TCP_RR in which Netperf
measure the transaction rate [41]. In addition to these tests, Netperf is used to measure
TCP connection establishment and also the closure. If these tests are combined with the
request-response (TCP_RR), the resulting network load is not equivalent to the Hypertext

18

3.5 Netperf

phobos1:~/iperf/src% iperf3 -c 172.16.121.22 -B 172.16.121.21 -l 8192 -i 1
Connecting to host 172.16.121.22, port 5201
[4] local 172.16.121.21 port 36904 connected to 172.16.121.22 port 5201
[ID] Interval Transfer Bandwidth Retr
[4] 0.00-1.00 sec 1.91 GBytes 16.4 Gbits/sec 0
[4] 1.00-2.00 sec 1.91 GBytes 16.4 Gbits/sec 0
[4] 2.00-3.00 sec 1.91 GBytes 16.4 Gbits/sec 0
[4] 3.00-4.00 sec 1.92 GBytes 16.5 Gbits/sec 0
[4] 4.00-5.00 sec 1.91 GBytes 16.4 Gbits/sec 0
[4] 5.00-6.00 sec 1.92 GBytes 16.5 Gbits/sec 0
[4] 6.00-7.00 sec 1.92 GBytes 16.5 Gbits/sec 0
[4] 7.00-8.00 sec 1.92 GBytes 16.5 Gbits/sec 0
[4] 8.00-9.00 sec 1.92 GBytes 16.5 Gbits/sec 0
[4] 9.00-10.00 sec 1.92 GBytes 16.5 Gbits/sec 0
- -
[ID] Interval Transfer Bandwidth Retr
[4] 0.00-10.00 sec 19.2 GBytes 16.5 Gbits/sec 0 sender
[4] 0.00-10.00 sec 19.2 GBytes 16.5 Gbits/sec receiver

iperf Done.

Figure 3.3: Iperf example output: TCP bulk transfer test

Transfer Protocol (HTTP) traffic. The results in such scenarios could be considered as
basic traffic generation test. The Netperf can measure the overall CPU utilization on
both source and destination host as well as the service demand, which is the number of
CPU time spent per measurement unit, for example, the CPU time needed for a single
transaction for the request- response tests.

phobos1:~/netperf/src% ./netperf -L 172.16.121.21 -H 172.16.121.22 -p 4500 -v 2 -- -M
8192 -m 8192

MIGRATED TCP STREAM TEST from 172.16.121.21 () port 0 AF_INET to 172.16.121.22 () port
0 AF_INET : interval

Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec

87380 16384 8192 10.00 12704.16

Alignment Offset Bytes Bytes Sends Bytes Recvs
Local Remote Local Remote Xfered Per Per
Send Recv Send Recv Send (avg) Recv (avg)

8 8 0 0 15881691136 8192.00 1938683 8192.00 1938684

Maximum
Segment
Size (bytes)

1448

Figure 3.4: Netperf example output: TCP bulk transfer test

19

3 Performance tools

3.6 Drawback of existing performance tools

The main drawback of previously discussed performance measurement tools is their
client-server architecture, which makes the transmission of test data through the network
along multiple paths in parallel difficult. To test the multiple paths, the clients need
to execute in parallel on different nodes and have to run the server multiple times as
well. Using the client – server architecture based tools to set up testing framework that
involves multiple clients in a monotonous task. As well as these scenarios lead to the
synchronization problems as well. For example, even if the two clients start the testing
at the same time, there might be a chance that one client is still exchanging the testing
parameters with its server, while the other clients have already begun the actual data
testing with the server. The consequence of this lack of synchronization leads to the
inaccurate results in the testing [62].

The bidirectional protocols like TCP can send the data in the both directions at the
same time. But unfortunately all these tools support only unidirectional data transfer
that means these tools can only generate unidirectional traffic on an individual test
connection. Trying to simulate the bidirectional loads through the use of two parallel
unidirectional test connections doesn’t represent the accurate model of true bidirectional
test connections [62].

Table 3.1: Performance measurement tools feature matrix

Feature nuttcp iperf thrulay netperf
TCP X X X X
UDP X X X X
IPv6 X X X X
RTT X - X -
IAT X - X -
Network Transactions/s - - - X
CPU utilization X - - X
third party tests X - - -
interval reports X X X X
scheduling - - - -
control/test interface separated X - - -
bi-directional traffic X X(pseudo) - -
select congestion control X X - -
TCP_INFO X(partial) X(partial) - - -
Rate Limiting - X UDP only X
Request Response - - - X(basic)

20

3.7 Conclusion

3.7 Conclusion

This chapter discuss in details regarding the present performance measurement tools
and the comparison regarding their features is shown in the table 3.1. All the tools
discussed in this chapter couldn’t generate the realistic internet traffic. This is considered
as the one of the disadvantage of these tools. The details regarding the traffic generation
is discussed in the next chapter.

21

4 Traffic Generation model

This chapter gives an overview regarding the stochastic traffic generation in the flowgrind.
Additionally this section gives the mathematical model behind the stochastic traffic
generation in basic. The section gives the details regarding the traffic model and scenarios
generated by traffic generation.

4.1 Introduction to Traffic Generation model

Developing a traffic generation, for example a pragmatic internet is a challenge task. In
general there are two primitive methods to generate manifold internet traffic. A basic and
easy approach is to record cluster of traffic, and subsequently re-run them. This approach
is called traffic replay [31]. Another approach to generate pragmatic traffic by using the
stochastic process, this method is called as the stochastic traffic generation [47]. Both the
methods, has its own advantages and disadvantages, because of their way, in which
these approaches are developed. The traffic replay method is more pragmatic, since trace
record is the combination of the data streams and the traffic attributes and it reproduces
the trace records with the same traffic attributes [31]. Despite the easy implementation of
the traffic replay, it has its own demerits because traffic replay considers the trace records
as the black box and it is difficult to change the traffic to test different test scenarios
[47]. And other demerits of the traffic replay approach are that it requires additional
procedure and resources to record the traces, process and store them.

In contrast, the stochastic traffic generation generates the traffic based on the mathematical
model for different traffic and workload characteristics. One of the useful features in
the stochastic model is that the parameters can be extracted from quantitative analysis.
This feature in the stochastic traffic generation compels it to do experiment protocols
and evaluate them, before actually doing the implementation work for the protocols
[47]. Another disadvantage of the traffic replay method is that difference between the
traffic noise and the payload in the trace records requires additional information for
boundaries in the data set [47]. The whole trace records are needed to store in traffic
replay, but in contrast to it, the stochastic traffic generation, requires to store only the
parameter to generate the stochastic traffic generation and random state number.

The flowgrind stochastic traffic generation has been discussed in this section 5.8

23

4 Traffic Generation model

4.2 Mathematical Background

The branches of mathematics namely probability theory and statistics are the bases for
the stochastic. The probability distribution plays a vital role in the probability theory.
The random variable is the basis for the probability distribution. For each experiment,
the random element allocates a value to each possible result [10].

For instance, let us take a scenario of random variable Y for a coin flipping, which could
be like this

Y =

{
0, if head,
1, if tail.

In the following procedure, let us add the probability to the value of possible results
which leads to the probability distribution. In our experiment of coin flipping, the value
of the probability for the head and tail should be 0.5. But let us consider that the coin is
biased or manipulated and the final results could be possible as.

Y =

{
1/3, 0, if head,
2/3, 1, if tail.

The given resultant value is called as the discrete probability distribution. If there is a
finite set in the probability distribution, where the sum of the set is 1, then that probability
distribution is considered as the discrete [10].

The continuous probability distribution in contrast to discrete probability distribution
has a continuous random element Y with a probability density function f (Y):

Pr [a ≤ Y ≤ b] =
∫ b

a f (y)dy

A probability density function for the random element Y plots the corresponding
possibility for this element to exist at a given point in a set. The integral of random
element density result in the probability for the random element within the given set.
This statement implicit the probability of single value is zero, for instance for the z value,
the probability z ≤ Y ≤ z is zero. This is because the integral value with same upper and
lower bound is always zero [10].

24

4.3 Traffic model

4.3 Traffic model

This section contains information regarding the cdma 2000 Evaluation methodology
theoretical mode [1] for the internet traffic, mainly for the HTTP protocol.

The reference to the technical document, which describes the traffic model for the
different network traffic, is designed on the concepts of empirical analysis of cellular
network traffic [1]. Although this model is recommended for the traffic model for the 3G
hardware evaluation, the basic traffic model for the Hypertext Transfer Protocol (HTTP)
traffic can be adopted for other protocol evaluation as well. From the technical document
[1], the HTTP traffic has six components. The main object size (SM), the embedded object
size (SE), the number of embedded objects per page (Nd), the reading time (Dpc), the
initial reading time (Dipc) and the parsing time (Tp) taken from the technical document
[1]. The HTTP request size is fixed for 350 byte in this model.

The requirement for the traffic model is simple. The implementation of passing parameter
should be simple and at the same time, it should be able to emulate protocol, for instance
like the HTTP traffic and Teletype Network (TELNET). Since the cdma 2000 evaluation
methodology uses more parameter, it should be designed with less parameter. The
chosen parameter for the traffic models are given below.

Request size: This size represents the single request block. For example, in a single
website the block represent the smallest unit of the transferred data. It is denotes as Sq

Response size: This size represents the single response block. If the response block is
greater than zero, then with each request block, a response block is requested according
to the response size. It is denoted as Sp

Interdeparture time: The time gap between two request size block can be used for the
two purposes, one is for the rate limit request, in the case of reading a website in HTTP
protocol and another one is to achieve the wait time, in the case of waiting for the user
input in the TELNET protocol. It also represents the Interdepature Gap. It is denoted as
Tg

The parameter is used in the cdma 2000 Evaluation methodology. For instance, the
parsing time (Tp), reading time (Dpc), initial reading time (Dipc) can be managed by using
only the Interdepature time Tg

4.4 Traffic generation use cases

This section generally list the possible and general use cases possible through the
Traffic model, this gives a general overview picture of the use cases used in the actual
measurement scenario and discussed in detail in result section 7.3

25

4 Traffic Generation model

Rate limited flows: This scenario is used in generation use case for rate timed media
streaming and sender limited flows. The interdeparture Tg is added between two
request block. The sending rate can be expressed as byte/s , or in the block/s format. The
interpacket gap can be computed from specifying the target sending rate.

Interdepature time Tg [s] =
block size

[
bytes

]
write rate

[
bytes

s

]
The burst behavior in the Transmission Control Protocol (TCP) can be affected by
changing the written or request block size from the above formula. It always writes the
whole data into socket at a single shot, this leads to a smooth data transfer, whether the
block size is of greater or smaller value. This transfer characterizes could be made less
deterministic, by applying the normal distribution for the interpacket gap.

Bulk transfer flow: The bulk transfer flow can be modelled using the traffic generation
model with constant distribution for the request size Sq, and both respond size Sp and
interdeparture time Tg are set to zero. For instance, File Transfer Protocol (FTP) the file
transfer protocol could be emulated by the bulk transfer flow.

Request-Response flow: The common flow for many existing traffic model is the
request-response flow. The simple concept of the request and response flow is that a
sender sends a block (the request size block) and receiver responds back to the sender
with another block(the response block). This communication model can be emulated by
changing the request size Sq and response block Sp. And the interdeparture time Tg with
different values, can emulate different protocols like HTTP, TELNET and Simple Mail
Transfer Protocol (SMTP).

4.5 Conclusion

This chapter gives the over views of the fundamental and basic procedure to implement
the generic traffic model and in addition it also explains actual implementation of
the Stochastic model in the flowgrind. The practical use of different use cases for the
measurement results are discussed in this section and these are directly applied to the
test procedure. In order to understand the flowgrind traffic generation in the section 5.8
and the test procedure in the section 7.3 this chapter is useful.

26

5 Flowgrind

The objective of the thesis is to develop the latency measurement module using the existing
and suitable performance tools. The chapter 2 discusses regarding the methodology of
latency measurement procedure, and chapter 4 discusses regarding the generation of
diverse traffic to emulate the workload condition. This chapter gives details regarding
performance measurement tool flowgrind, which supports the traffic generation and also
discuss the advantage of implementation of the latency measurement module in the
flowgrind.

5.1 Introduction to flowgrind

Flowgrind supports distributed architecture and performs measurements against an
arbitrary number of end-points simultaneously. One or more test connections are called
as “flows” in the flowgrind. These flows could be scheduled to run consecutively,
interleaved and fully synchronized. Each flow could be assigned with a duration and an
initial delay. Actual test connection starts after the initial delay. In addition to this, each
flow have its own testing parameters, which are called as “flow options”, which can be set
individually for each direction [62].

The flowgrind continuously outputs the data according to the flow option interval
timing, which can be configured individually with millisecond precision. This provides
not only very fine grained reporting, but also coarse intervals like reporting in seconds
and minutes. Flowgrind have an extra feature to report regarding the Transmission
Control Protocol (TCP)-specific performance metrics. These metrics are obtained from
the linux kernel using the TCP_INFO socket option. Similar to all other performance
metrics, TCP-specific metrics are collected by the flowgrind and sample at the end of
reporting time interval specified by its flow option. The figure 5.1 and 5.2 shows the
basic flowgrind output

5.2 History

The flowgrind performance tool is loosely related to thrulay tool developed by Stanislav
Shalunow [50] which has been developed back 2005. These inspired researchers [62]
developed a performance measurement tool specialized for evaluation of TCP/IP stack
and measuring the performance metrics. The earlier version of the flowgrind aimed to

27

5 Flowgrind

phobos2 : ~ / f lowgrind% . / f lowgrind −c through , t ransac , i n t e r v a l , i a t , b locks − i 1 −T s=3 −A s −H s = 1 7 2 . 1 6 . 1 2 1 . 2 2 , d
=1 7 2 . 1 6 . 1 2 1 . 2 1

Date : 2015−04−26−21:42:25 , c o n t r o l l i n g host = phobos2 .mgmt . muclab , number of flows = 1 , repor t ing i n t e r v a l = 1 . 0 0 s
, [through] = 10**6 b i t / second (flowgrind −0.7.5−124− gfd4c00)

ID begin end through t r a n s a c requ resp min RTT avg RTT max RTT min IAT avg IAT max IAT
[s] [s] [Mbit / s] [# / s] [#] [#] [ms] [ms] [ms] [ms] [ms] [ms]
S 0 0 .000 1 .000 10833.598809 164564 .66 165321 0 0 .272 4 .473 5 .079 0 .272 i n f i n f
ID begin end through t r a n s a c requ resp min RTT avg RTT max RTT min IAT avg IAT max IAT
[s] [s] [Mbit / s] [# / s] [#] [#] [ms] [ms] [ms] [ms] [ms] [ms]
D 0 0 .000 1 .000 52 .685356 0 . 0 0 0 164642 i n f i n f i n f i n f 0 .006 0 .118
D 0 1 .000 2 .000 54 .543320 0 . 0 0 0 170456 i n f i n f i n f i n f 0 .006 0 .070
S 0 1 .000 2 .000 11171.223886 170459 .35 170448 0 4 .199 4 .341 4 .513 4 .199 i n f i n f
D 0 2 .000 3 .000 54 .608431 0 . 0 0 0 170642 i n f i n f i n f i n f 0 .006 0 .070
S 0 2 .000 3 .000 11182.850713 170644 .76 170633 0 4 .211 4 .336 4 .515 4 .211 i n f i n f

ID 0 S : 1 7 2 . 1 6 . 1 2 1 . 2 2 (Linux 3 . 1 9 . 0 . muclab+) , random seed : 2373624646 , sbuf = 16384 /0 [B] (r e a l / req) , rbuf =
87380 /0 [B] (r e a l / req) , SMSS = 1448 [B] , PMTU = 1500 [B] , I n t e r f a c e MTU = 1500 (Ethernet / PPP) [B] , durat ion =
3 . 0 0 0 / 3 . 0 0 0 [s] (r e a l / req) , through = 1 1 0 6 2 . 5 4 4 4 4 8 /5 3 . 9 3 7 9 3 0 [Mbit / s] (out / in) , t r a n s a c t i o n s / s = 168556 .03
[#] , request blocks = 506402 /0 [#] (out / in) , response blocks = 0 /505667 [#] (out / in) , RTT = 0 . 2 7 2 / 4 . 3 8 2 / 5 . 0 7 9
[ms] (min / avg /max)

ID 0 D: 1 7 2 . 1 6 . 1 2 1 . 2 1 (Linux 3 . 1 9 . 0 . muclab+) , random seed : 2373624646 , sbuf = 16384 /0 [B] (r e a l / req) , rbuf =
87380 /0 [B] (r e a l / req) , SMSS = 1448 [B] , PMTU = 1500 [B] , I n t e r f a c e MTU = 1500 (Ethernet / PPP) [B] , through =
5 3 . 9 4 5 6 8 1 /1 1 0 4 8 . 0 7 5 4 6 3 [Mbit / s] (out / in) , request blocks = 0 /505740 [#] (out / in) , response blocks = 505740 /0
[#] (out / in) , IAT = 0 . 0 0 3 / 0 . 0 0 6 / 0 . 1 1 8 [ms] (min / avg /max) , delay = 0 . 1 9 2 / 4 . 2 6 4 / 4 . 9 4 4 [ms] (min / avg /max)

Figure 5.1: Flowgrind example output: Measurement without kernel output

phobos2 : ~ / f lowgrind% . / f lowgrind −c through , kernel , − i 1 −T s=3 −A s −H s = 1 7 2 . 1 6 . 1 2 1 . 2 2 , d=1 7 2 . 1 6 . 1 2 1 . 2 1
Date : 2015−04−26−21:46:29 , c o n t r o l l i n g host = phobos2 .mgmt . muclab , number of flows = 1 , repor t ing i n t e r v a l = 1 . 0 0 s

, [through] = 10**6 b i t / second (flowgrind −0.7.5−124− gfd4c00)
ID through min RTT avg RTT max RTT cwnd s s t h uack sack l o s t r e t r t r e t fack reor bkof r t t

r t t v a r r t o ca s t a t e smss pmtu
[Mbit / s] [ms] [ms] [ms] [#] [#] [#] [#] [#] [#] [#] [#] [#] [#] [ms] [

ms] [ms] [B] [B]
S 0 10967.540876 0 .220 4 .394 4 .982 204 171 136 0 0 0 0 0 3 0 0 . 1

0 . 0 201 .0 open 1448 1500
S 0 11160.996149 4 .180 4 .326 4 .499 204 171 34 0 0 0 0 0 3 0 0 . 1

0 . 0 20 1 .0 open 1448 1500
D 0 53.336954 i n f i n f i n f 10 17 1 0 0 0 0 0 3 0 0 . 1

0 . 0 2 01 .0 open 1448 1500
D 0 54.499789 i n f i n f i n f 10 17 1 0 0 0 0 0 3 0 0 . 1

0 . 0 201 .0 open 1448 1500
S 0 11174.307930 4 .153 4 .320 4 .499 204 171 9 0 0 0 0 0 3 0 0 . 1

0 . 0 201 .0 open 1448 1500
D 0 54.573222 i n f i n f i n f 10 17 1 0 0 0 0 0 3 0 0 . 1

0 . 0 201 .0 open 1448 1500

ID 0 S : 1 7 2 . 1 6 . 1 2 1 . 2 2 (Linux 3 . 1 9 . 0 . muclab+) , random seed : 3826289759 , sbuf = 16384 /0 [B] (r e a l / req) , rbuf =
87380 /0 [B] (r e a l / req) , SMSS = 1448 [B] , PMTU = 1500 [B] , I n t e r f a c e MTU = 1500 (Ethernet / PPP) [B] , durat ion =
3 . 0 0 0 / 3 . 0 0 0 [s] (r e a l / req) , through = 1 1 1 0 0 . 9 5 0 7 1 9 /5 4 . 1 2 5 0 3 5 [Mbit / s] (out / in) , t r a n s a c t i o n s / s = 169140 .73
[#] , request blocks = 508165 /0 [#] (out / in) , response blocks = 0 /507426 [#] (out / in) , RTT = 0 . 2 2 0 / 4 . 3 4 6 / 4 . 9 8 2
[ms] (min / avg /max)

ID 0 D: 1 7 2 . 1 6 . 1 2 1 . 2 1 (Linux 3 . 1 9 . 0 . muclab+) , random seed : 3826289759 , sbuf = 16384 /0 [B] (r e a l / req) , rbuf =
87380 /0 [B] (r e a l / req) , SMSS = 1448 [B] , PMTU = 1500 [B] , I n t e r f a c e MTU = 1500 (Ethernet / PPP) [B] , through =
5 4 . 1 3 6 6 2 0 /1 1 0 8 7 . 1 7 9 7 7 0 [Mbit / s] (out / in) , request blocks = 0 /507530 [#] (out / in) , response blocks = 507530 /0
[#] (out / in) , IAT = 0 . 0 0 3 / 0 . 0 0 6 / 0 . 0 8 5 [ms] (min / avg /max) , delay = 0 . 0 2 1 / 4 . 2 2 4 / 4 . 8 4 8 [ms] (min / avg /max)

Figure 5.2: Flowgrind example output: Measurement with kernel output

evaluate the TCP in Wireless Mesh Network (WMN), but it was found out that, at that
time there was no appropriate tool available for evaluating the TCP for the WMN. So
the flowgrind performance tool was developed based on the inspiration and concepts
of the thrulay. In the later release, distributed architecture feature was added to the
flowgrind to overreach the distributed architecture issue related with the WMNs. Now
the flowgrind is a completely independent performance tool, which has improved a lot
when compared to the thrulay performance metrics. Unlike thrulay measure, it is used
to measure both the bulk traffic, request-respone test, show the TCP-specific information,

28

5.3 Flowgrind architecture

latency measurement. Next logical steps towards the flowgrind is to improve the
performance and stability in the tool [62].

5.3 Flowgrind architecture

As mentioned earlier, flowgrind supports distributed architecture. This is because the
flowgrind by itself is splitted into two parts, the flowgrind daemon (flowgrind) and
flowgrind controller. The flowgrind controller doesn’t take part in actual testing and
measurement. It is rather used to pass the flow options and flow testing parameter
to daemons which are running between the two servers and then these daemons will
actually start the testing and measurement process. The performance metrics are sampled
by daemons running on the servers. The controller will contact the daemons at the end
of every reporting interval. Then the daemons will send back the collected performance
metrics data to the controller, and controller displays the results. So the controller doesn’t
need to be a part of the tested network. So it is possible to conduct testing between
arbitrary servers running flowgrind daemons [62]. So the flowgrind architecture can be
correlated with One-way Active Measurement Protocol (OWAMP) in the subsection 2.7.1
and with Two-way Active Measurement Protocol (TWAMP) in subsection 2.7.2 and the
logical model for the flowgrind architecture can be drawn as shown in the figure 5.3
based on the logical model discuss in these subsection.

Control – Client

Fetch – Client
(Controller)

Server

Session – Sender
(Daemon)

Server

Session – Receiver
(Daemon)

OW/TWAMP
Test

Figure 5.3: Flowgrind architecture

29

5 Flowgrind

5.4 Flowgrind interprocess communication

The Interprocess communication between the daemon and controller is realized by the
Remote Procedure Call (Remote Procedure Call (RPC)). As the name suggests RPC
facilitates one process to execute a function in another process and the returned values
are transferred back to the caller. Flowgrind employs Extensible Markup Language
Remote Procedure Call (XML-RPC) [24] for their inter-process communication between
the daemon and controller. It uses Extensive Markup Language (XML) [30] to encode
its data by serializing it, which makes implementation, handling and debugging easy
tasks and Hypertext Transfer Protocol (HTTP) [55] as a transport mechanism. Hence the
flowgrind controller don’t even need to run on the same machine, with the daemon, as
standards for handling RPC over network connections exist.

The library used by the flowgrind is XML-RPC for C+/C++ (XML-RPC), which offers
functionality to transport XML-RPC data and provide an interface between daemon
and controller to construct and parse the XML encoded messages. But it is possible to
communicate with daemon from another client other than flowgrind controller through
XML-RPC communication.

XML-RPC makes it possible to create flows between any arbitrary nodes running the
daemon. The flowgrind controller processes the flow options and testing parameter and
transmits these data to daemons using RPC and as well the daemons will send back the
test results using RPC. So that the results get aggregated in one location in the controller
for the further analysis. Flowgrind daemons have flow option to set XML-RPC to bind to
different network interface, so they do not influence the actual test connection between
the testing daemons. This is essential factor for the tests which involves with relatively
low bandwidth as the fraction of control data gets higher and the lower the overall
bandwidth [62].

5.5 Command line arguments

The flowgrind controller supports a large number of flow configuration options. As
discussed in the earlier section, the flowgrind supports the bidirectional flows, and
the flow configuration can be applied individually to each daemon (referred as flow
endpoint). Beside the flow options, the flowgrind has general options as shown in the
figure 5.5, which applies to all the flows in the controller. General option includes the
number of flows, displaying particular performance metrics and report intervals. The
flow option as shown in the figure 5.6 includes test option for each flow. For example to
set block (message) size for each endpoint: - S x=#, the flowgrind endpoints are denoted
by ’x’. The x need to be replaced with either ‘s’ for the source daemon and ‘d’ for the
destination daemon or ’b’ for both source and destination daemon. For example to set
source and destination message block size, the corresponding flow option is -S s=4096,
d=512. By default all the flow options are applied to all flows. Using -F # , #* flow option,

30

5.5 Command line arguments

a particular flows can be configured. For instance -F 1, 4, 6 sets all further flow options
up to the next -F would apply to flows 1, 4 and 6 flow IDs and flow ID numbering starts
with 0 [62].

To set the flowgrind endpoint host, the -H option is used. In addition to the ad-
dress of the test host it is also possible to give an alternative RPC address for the
controller to connect to daemon for each flowgrind endpoints by using the option -H
x=HOST[/CONTROL[:PORT]], for example

-H s=192.168.10.1/host1:9000,d=192.168.11.1/host2:9000
would set up a flow connection or control connection between 192.168.10.1 interface in
the host1 and 192.168.11.1 interface in the host2 at the port number 9000. The controller
can address the daemon machine using the Domain Name System (DNS) names host1
and host2 respectively [62].

Another interesting flowgrind flow options are TCP socket options (refer the figure 5.7),
-O x=OPT, where the OPT are the test socket option. For example, TCP_NODELAY disable
Nagle algorithm on test socket. This option allows the flowgrind to check with various
socket options. The flow duration and initial delay before the host starts to send are set
using the option -T and -Y. The flow options can be applied to the individual endpoints
as similar to the message size example shown above.

When the test runs, the flowgrind controller gets the interval reports from the flowgrind
daemons and prints the report lines as shown in the figures 5.1 and 5.2. The flowgrind
doesn’t make any guarantees on the order that the reports from different flows or
endpoint get printed. Only the reports from the same flow and endpoint are shown in the
order. The reason is that gathering and displaying the results are done asynchronously.
The needs are to be taken into consideration when parsing the output.

The header with performance metrics named in the column and units are displayed
periodically. The column width will be resized dynamically according to the use of the
available space. The columns can be disabled according to the configuration option.
Final results are displayed after the test duration is completed or if the test is finish
forcefully interrupted. Final test report contains more information regarding send buffer
and receive buffer size and also all the cumulated results from the daemon.

#: Represents the flow endpoint, either S for sender or R for receiver.

ID: The flow Identifier, if the number of flows are 3, then ID values 0, 1, and 2 represents
the flow ID of source and destination.

begin /end : Represent the time the daemon begin and end the results for the interval
duration.

through: The throughput of the flow endpoint during this report interval.

transac: The Network Transaction per second.

31

5 Flowgrind

requ/ resp: The number of successful written request and response blocks in the report
interval. This column is not shown by default because it is the similar to the transac
column.

IAT/RTT: The application level block inter-arrival time and Application level block
Round Trip Time (RTT). For both values the minimum, average and maximum
encountered values in that interval are displayed in addition to the arithmetic
mean. The flowgrind displays “inf”, if no corresponding block arrives during the
report interval [62].

The following values are extracted from the kernel from the socket option TCP_INFO at
the end of every reporting interval and represent the internal state of the Linux TCP
stack; according these are only available in Linux. Also the meaning can differ in newer
versions of Linux.

cwnd: Size of TCP congestion window (in number of segments).

ssth: The slow start threshold of the sender in the number of segments. Arbitrary
numbers are optionally replaced by their symbolic name to enhanced readability.
Linux for example initializes the SSTHRESH with INT_MAX (2147483647).

uack/sack: Number of unacknowledged and selectively acknowledged segments.

lost: Number of segments assumed lost at the end of the report interval.

retr/ tret: This represents the number of all retransmission (retr) and timeout based
retransmission (tret).

fack: Number of segments between the highest selectively acknowledged sequence
number and Send Unacknowledged.

reor: Segment reordering metric. The Linux kernel can detect the reordering and cope
up without loss of performance, whenever the distance a segment gets preempted
does not exceed the reordering measurement [30].

bkof: Number of consecutive exponential back offs in the current recovery phase.

rtt/rttvar: TCP round trip time estimation and its variation in the millisecond (ms)

rto: The TCP retransmission timeout is given in the ms

ca state: Internal state of the congestion control state machine as implemented in the
linux kernel. The ca state is as follows open, disorder, cwr, recovery or loss [30].

Open: It is the normal state. This statement shows that there are no issues with
the TCP connection

Disorder: This status is similar to the Open, but TCP enter this status upon
obtaining duplicate ACKs or selective acknowledgements

32

5.6 Traffic dumping

CWR: TCP enters this status when the size of the congestion windows get lowered
due to the receiving Internet Control Message Protocol (ICMP) Source Quench
message or a notification from Explicit Congestion Notification (ECN).

Recovery: This status represents that TCP is in the fast-retransmitted and that
the congestion window get lowered.

Loss: This TCP status shows that the Retransmission Timeout (RTO) expires.
Similar to Recovery state this represents that the congestion window got
lowered in this state.

smss: This performance metrics represent the number of segments, and this shows the
sender maximum segment size that is the size of the largest segment the sender
can transmit.

pmtu: This performance metrics represent the Path Maximum Transmission Unit (MTU),
the MTU along the path between the source and destination in the flow.

After the interval test results, a final report is displayed for each flow end-points with
their flow ID. The final report consists of the flow endpoint server name, OS, size of the
send and receives buffer and the initial advertised window. Flowgrind try to guess the
network type by using the value of the Maximum Segment Size (MSS) and MTU, if it
couldn’t find the network used, then it displays UNKNOWN. After that the initial delay for
the flow is displayed, in the case that is given through the controller and as well as the
flow duration for each flow endpoint.

Afterwards, the average goodputs and number of block will be sent and then received
by the flowgrind. Following the final report, the flowgrind controller closes its log file,
kill and tear down its RPC client.

5.6 Traffic dumping

Flowgrind is not only for analysis the TCP, and measuring the performance metrics by
doing the bulk transfer and request-response test but it can also be used to analyze the
a qualitative analysis of the behavior of the TCP stack. For incorporating qualitative
analysis of TCP, flowgrind gathers the needed information by recording the whole TCP
connection. Such recording is usually called as dump.

A famous tool to perform this task is tcpdump [59], which is developed on the top of the
libcap [17]. Even the usage of the tcpdump is easy, but the scheduling and multiplexing
different flows along with flowgrind is not easy. To facilitate this process, flowgrind is
supported with extension to support the automatic dump for each flow. Flowgrind by
itself use the libcap to regenerate the dump automatically, which produces the same
output format similar to the tcpdump.

33

5 Flowgrind

The dump request for the particular flow endpoint daemon is done by using the flowgrind
controller. Then flowgrind daemon creates an auxiliary thread per flow which dumps the
TCP information with respective data test connection in the flow it maintains. Once the
data test duration is finished then the corresponding thread for the dump is destroyed
and then all additionally allocated resources are freed. The dump extension is supported
to the both source and destination, and also could be on the both sides. For the bulk
transfer, running dump extension in the source side make more sense because it is
active part where behavior has to be analyzed. But in the case request and response
test, depending upon the source request and destination response, it is always good to
extend the dump extension in both source and destination side.

5.7 Flow scheduling

Comparing with Netperf performance tool, flowgrind doesn’t use multiple process nor
threads to handle multiple and parallel, and concurrent data test connection between
daemons. The flowgrind daemon actually multiplexes all the flows into a single thread.
Maintaining all the flows in the single thread make sense because most of the performance
tools are I/O bound and most of the time, they wait for the network. Test connection
with multiple flows with separate thread and process scheduler of the OS can lead to
inaccurate results with multiple flows handled by different thread [62]. The inaccuracy
in the results occurs because different threads are often scheduled and implicitly gets
different shares of the possible bandwidth. By using single thread for processing flows,
flowgrind avoids the plausible unfairness issues caused by the task scheduler of the OS
[62].

Flowgrind basically iterates through non-blocking select-loop over the socket file
descriptors of all active flows, processing the file descriptors which are ready for
read and respectively for write. Introducing the scheduling in flowgrind might lead
to possible inaccuracy of test duration and the reporting intervals. For example, when
thread involves in read or writes operation, then the report thread might not able to
operate and this leads to miss its report interval. These cases arise especially during large
block messages for example 1MB, since read and write operations will take a significant
time. Flowgrind checks the timing before the read or write operation instead of planned
report interval using scheduling. Control operation using XML-RPC is done by separate
auxiliary threads, to avoid it influencing the actual data test connection between the
daemons. Processing both the data test connection and XML-RPC in the same thread
would defeat the purpose of handling all flows in the same thread.

34

5.8 Traffic Generation

5.8 Traffic Generation

Based on the discussion in the Traffic generation in the section 4.3, the flowgrind has a
simple and efficient traffic generation system. The flowgrind controller has the separate
option for the traffic generation as show in the figure 5.8, to support all the options as
discussed in the section 4.4. According to the mathematical model discussed in section 4.2,
the flowgrind are provided with random seed, which initializes the random number
generator. If no seed is passed to the flowgrind, then flowgrind uses random number
provided by the OS. For each and every flow, the random number is reinitialized. The
flowgrind relies on the LibGSL [27] for the calculation of values of the random number
distribution. See the table 5.1 for the over all distribution possible in the flowgrind.

After initializing the random number, the daemons at sender side runs over the select()
loop, and call the write_data(), if there is any file descriptor for write operation. The
flowgrind daemon generates the block size for the response size and request size
according to the distribution. If the inter departure time is set, then the daemon wait for
that duration and then write the data into the socket.

The daemon in the receiver side also runs over the select () loop, and read the block,
once the file descriptor is ready to read. Each data block have an application header as
shown in the figure 5.4. If the requested_block_size is set, then receiver daemon writes
the respond block. This mechanism is used to calculate the Application level RTT, which
is discussed in the subsection 5.11.3. In this section, the discussion is limited to the fields
this_block_size and requested_block_size.

Table 5.1: Probability distribution available in flowgrind.

Distribution Parameters Native support LibGSL support
Constant value a X X
Uniform min a, max b X X
Exponential mean µ - X
Normal mean µ, variance σ2 - X
Log normal mean µ, standard deviation σ - X
Pareto shape xmin, scale k - X
Weibull shape α, scale β - X

this_block_size: This is size of the current block size. This provide the information
regarding the boundaries between two consecutive blocks and help to find the
application header for the each blocks.

requested_block_size: This represents the size of the response block requested by the
sender to the receiver. If it is set to -1, then it indicates the sender, that it is response
block from the receiver.

35

5 Flowgrind

tail

this_block_size (int32_t)

requested_block_size (int32_t)

timestamp value (struct timespec)

Figure 5.4: Flowgrind application header

5.9 Rate - limited flows

The Flowgrind provides the rate-limited flows features in them. This feature enables
the flowgrind to generate the definite load. The rate limited feature emulates the live
multimedia communication with the steady throughput and round trip value [62].

The rate limiting feature is done on the source host. The destination host processes the
request as soon as it gets the data block from the source host. The flow is rate-limited by
using the stochastic feature discussed in the section 4.4. The interdepature time is used
to introduce the additional delay between the two data blocks, there by reduces the data
transfer between the source and destination.

5.10 Work flow in the flowgrind

The workflow in the flowgrind can be divided into 3 major parts controller and data
connection, flow operation in the daemon and test report display in controller.

5.10.1 Controller and Data connection

The flowgrind controller initializes the flow structure and parse the testing parameter
from the command line argument by parsing general options and the flow options as
shown in the figures 5.5 and 5.6. The flowgrind controller checks the flowgrind daemon

36

5.10 Work flow in the flowgrind

state and the flowgrind release version in the daemon and if there is a mismatch then
corresponding warning sign, is issued in the controller terminal.

Before understanding the data test connection between the flowgrind daemons, one has
to understand that the flowgrind daemon runs the daemon in two difference process.
One process is used to communicate with the flowgrind controller through the XML-RPC
with default port number 5999, and the next process is actually used to run the data test
connection between the daemons. The user only has the control to bind the interface and
the port only for XML-RPC. The flowgrind daemon data connection is not controlled
by the user. The flowgrind by itself set the port connection for the test data connection
between the daemons. By default the flowgrind daemon runs in the wildcard address,
until it bind explicitly to an IP address.

The communication between the two process is done by pipe(), this is the unidirectional
data channel between the flowgrind XML-RPC connection process and flowgrind data
connection process. The pipe file descriptor is used to read at one end of the pipe and
write in the other end of the pipe. Once the flowgrind XML-RPC process get the test
parameter from the flowgrind controller, it will write the data in the pipe file descriptor
and the flowgrind data test process read the data from the another end of the pipe. The
data remains in the write end of the pipe by kernel buffering until it is read by the read
end of the pipe. The separate thread is used to dispatch the request from XML-RPC
connection process to the test data connection.

The flow preparation for the source daemon and the destination daemon is done
separately by the controller. First the flowgrind controller queries the flowgrind daemon
through the XML-RPC connection and pass the test configuration parameter to daemon
through the add_flow_destination(), test configuration parameter includes destination
host binding address, initial delay, test duration and reporting interval for report from
the daemon to the controller.

Once the XML-RPC is established between the controller and the flowgrind daemon for
the XML-RPC connection process, then the flowgrind daemon dispatch the request to
the flowgrind daemon test connection process. The flowgrind daemon test connection
process actually bind the controller with the given flowgrind interface address and the
listen port set by the kernel in the socket.

The flowgrind daemon data connection process send back the listen port information back
to the flowgrind control connection process through the pipe interprocess communication.
Then the controller gets this information from the destination daemon and set this value
as the destination address and destination port to the source flowgrind daemon. And
the source flowgrind daemon connects to the destination address and destination port.
Then the destination flowgrind daemon accepts the data test connection with source
flowgrind daemon.

37

5 Flowgrind

5.10.2 Test flow operation

The flowgrind controller starts the test flow in the both source and destination daemon
endpoints, after that the data connection between the source and destination daemon is
established. The flowgrind daemon sets the test duration and report interval timeout
and start the test flow between the source and destination. The flowgrind daemon
runs in a non-blocking select -loop over the socket file descriptor over all the active
flows. Depending upon the read and write file descriptor, the corresponding function
read_data() or write_data() is called. In addition to the read and write operation, select –
loop also look for the pipe read end to get the data from the flowgrind daemon XML-RPC
connection process. The flowgrind daemon is used to check the timer value in a loop, if
the timer value exceeds the timer report interval, then the flowgrind daemon reports the
interval flow report. When the test runs, the flowgrind daemon periodically sample and
collect the report for the each flow. The flowgrind daemon make the report statistics to
maintain the records for the interval and final report. The interval statistics records are
reset after sending the report interval to the controller. But final report, aggregates all
the report records.

The flowgrind controller fetches the reports for each flow from the daemon using the
XML-RPC connection. Then the flowgrind controller decode the report and break it
down to individual performance metrics, and then the performance metrics is used
to display the report interval in the controller host. If either the flow gets completed
successfully or exited due to the error, then the final report can be fetched from the
daemon and displayed in the flowgrind controller host. One can also create the log file
for the report using the controller option as shown in the figure 5.5. Once all the active
flows are completed in the daemon, the daemon returns to the idle state. The daemon
can again further run the test.

5.10.3 Read and write operation

The flowgrind maintains a separate application header for each data block in the test
data connection. For more information refer the section 5.8 and the figure 5.4. So in the
write operation depending upon the stochastic process, the block size is written in the
data block. Before writing the data into the socket, the source daemon fills the 3th field
in the application header with the timestamp values and then checks the interdepature
gap as discussed in the section 5.9 to introduce the delay between the next block for the
rate limitation.

In read operation, the flowgrind reads the block data with the minimum block size of 40
bytes to read the application header. This information is used to identify the data block
as a request block or response block. If the block is the response block, then the round
trip value is calculated and the result is aggregate in the report. And if the block is the
request block then Inter Arrival Time is calculated.

38

5.11 Performance metrics measurement

5.10.4 Controller reporting procedure

Once the test data connection is established between the source and destination daemon
as discussed in the subsection 5.10.1. The flowgrind controller fetch the reports from the
daemon and suspends itself from the execution by calling usleep() for the report interval
and then fetch the reports from the controllers. The controller fetches the reports from
all the flow endpoints in the test. Each flow in the flowgrind could have different test
duration and reporting time interval. This scenario is also taken into the consideration by
the flowgrind controller and fetches the results according to their time duration, interval
report and if the tests are set with the initial time delay. Once the flow test is completed,
the flowgrind controller fetches the final reports from the each flow endpoints, and
displays the final results at the end of the test. After this flowgrind controller tears down
all XML-RPC connection with the daemons and terminate itself.

5.11 Performance metrics measurement

In this section, we will discuss regarding the performance metrics measurement for the
throughput, and round-trip time in the flowgrind, netperf and Iperf.

5.11.1 Throughput

As discussed in the section 2.4, the standardization of the bulk transfer capacity (BTC)
from the RFC 3148 [39], where the BTC is defined as follows.

BTC =
data_sent

elapsed_time

According to this definition, the flowgrind calculated the elapsed time by taking the
time interval between the daemon report begin timestamp and daemon report end
timestamp. The data sent is calculated and aggregated after the each write operation.
The throughput calculation methodology in the flowgrind, netperf and iperf are the
same.

5.11.2 Round-trip time

Netperf can test the round trip time measurement for both TCP and UDP protocol
using the TCP_RR and UDP_RR tests. The round trip time calculation is done at the
application level. So the latency measurement in this test involves the entire layer
below the application level. It includes kernel Network stack and the Network Interface
Controller (NIC) device drivers. So the point should be noted out that the network
stack contribute to the overall latency in the application layer. Netperf server and client

39

5 Flowgrind

transfer only one byte of data between them in the request-response test. The actual
throughput is defined as the number of transaction, the transaction is defined as the
number of transaction between netperf client single request and netperf server single
response.

throughput =
Number_of_Transacc

elapsed_time

Transaction rate is defined as the transaction per second and the Round trip time latency
is calculated as follows

Round Trip Time =
1

throughput

UDP Request-Response test(UDP_RR) works in the same way as the TCP_RR but the
only difference between is that it uses connection-less sockets, but TCP_RR test includes
connection-oriented socket. Iperf is used to measure the TCP throughput and jitter only
in the UDP protocol. It doesn’t support to measure the round trip time in the TCP.

5.11.3 RTT measurement in the flowgrind

RTT measurement in the flowgrind is done in the Application level for the request
response test. As shown in the figure 5.4 from the section 5.8, each data block has an
application header. This application header is used to develop the stochastic traffic model,
but the interesting field for the RTT calculation in the application header are the 2nd field
(requested_block_size), 3rd field to hold the timestamp values.The requested_block_size
is used to indicate whether the current data block request responds by setting the field
value as 0 or -1.

Timestamp field consists of a 16 byte timespec struct as the 3rd field to hold the timestamp
value, which is grabbed just before writing the data block into the socket. This data block
is transferred from the source daemon to the destination daemon through the socket
connection. Once the data block is received at the destination daemon, the destination
daemon parses the application header and looks for the request_block_size field. If the
request_block_size is greater than the minimum block size, which is discussed in the
section 5.8, then current block is identified as the response request block from the source
daemon. Then destination daemon writes a new response block with request response
size from the source destination. The new data block is set as the response block by
setting the field as -1, then destination daemon copy exact timestamp from the request
data block and then fill the same timestamp in response data block, which is sent from
the destination daemon to the source daemon.

Once the response data block reach the source daemon, then the source daemon identify
the current data block as the response block by parsing the 3rd field in the application

40

5.12 Conclusion

header. After the response block identification, source daemon gets the present timestamp
from the host. The current timestamp and the timestamp value from the response block,
give the round trip time for the current data block. The implementation of the round
trip time is similar to the standard and methodology discussed in the RFC 2681, but the
implementation part is done in the application level, which means that round trip also
include the network stack over all latency and application level system call latency.

Table 5.2: Performance measurement tools feature matrix with flowgrind added

Feature nuttcp iperf thrulay netperf flowgrind
TCP X X X X X
UDP X X X X -
IPv6 X X X X -
RTT X - X - X
IAT X - X - X
Network Transactions/s - - - X X
CPU utilization X - - X -
third party tests X - - - X
interval reports X X X X X
scheduling - - - - X
control/test interface separated X - - - X
bi-directional traffic X X(pseudo)- - X
select congestion control X X - - X
TCP_INFO X(partial) X(partial) - - - X
Rate Limiting - X UDP

only
X X

Request Response - - - X(basic) X

5.12 Conclusion

In this chapter, flowgrind is introduced and discussed in details regarding its operation
and architecture with traffic generation. From the table 5.2, which show the performance
measurement matrix of the various tools with the flowgrind. From the table, the
flowgrind has more advantages comparing to the other performance measurement tools.
So the flowgrind is selected to implement the latency measurement module for this
thesis project.

41

5 Flowgrind

phobos2:~/flowgrind% ./flowgrind -h
Usage: flowgrind [OPTION]...
Advanced TCP traffic generator for Linux, FreeBSD, and Mac OS X.

Mandatory arguments to long options are mandatory for short options too.

General options:
-h, --help[=WHAT]

display help and exit. Optional WHAT can either be ’socket’ for
help on socket options or ’traffic’ traffic generation help

-v, --version print version information and exit

Controller options:
-c, --show-colon=TYPE[,TYPE]...

display intermediated interval report column TYPE in output.
Allowed values for TYPE are: ’interval’, ’through’, ’transac’,
’iat’, ’kernel’ (all show per default), and ’blocks’, ’rtt’,
’delay’ (optional)

-e, --dump-prefix=PRE
prepend prefix PRE to pcap dump filename (default: "flowgrind -")

-i, --report-interval=#.#
reporting interval, in seconds (default: 0.05s)

--log-file[=FILE]
write output to logfile FILE (default: flowgrind -’timestamp’.log)

-m report throughput in 2**20 bytes/s (default: 10**6 bit/s)
-n, --flows=# number of test flows (default: 1)
-o overwrite existing log files (default: don’t)
-p don’t print symbolic values (like INT_MAX) instead of numbers
-q, --quiet be quiet, do not log to screen (default: off)
-s, --tcp-stack=TYPE

don’t determine unit of source TCP stacks automatically. Force
unit to TYPE, where TYPE is ’segment’ or ’byte’

-w write output to logfile (same as --log-file)

Figure 5.5: Flowgrind general options

42

5.12 Conclusion

Flow options:
Some of these options take the flow endpoint as argument , denoted by ’x’ in
the option syntax. ’x’ needs to be replaced with either ’s’ for the source
endpoint , ’d’ for the destination endpoint or ’b’ for both endpoints. To
specify different values for each endpoints , separate them by comma. For
instance -W s=8192,d=4096 sets the advertised window to 8192 at the source
and 4096 at the destination.

-A x use minimal response size needed for RTT calculation
(same as -G s=p,C,40)

-B x=# set requested sending buffer, in bytes
-C x stop flow if it is experiencing local congestion
-D x=DSCP DSCP value for TOS byte
-E enumerate bytes in payload instead of sending zeros
-F #[,#]... flow options following this option apply only to the given flow

IDs. Useful in combination with -n to set specific options
for certain flows. Numbering starts with 0, so -F 1 refers
to the second flow. With -1 all flow are refered

-G x=(q|p|g):(C|U|E|N|L|P|W):#1:[#2]
activate stochastic traffic generation and set parameters
according to the used distribution. For additional information
see ’flowgrind --help=traffic’

-H x=HOST[/CONTROL[:PORT]]
test from/to HOST. Optional argument is the address and port
for the CONTROL connection to the same host.
An endpoint that isn’t specified is assumed to be localhost

-J # use random seed # (default: read /dev/urandom)
-I enable one-way delay calculation (no clock synchronization)
-L call connect() on test socket immediately before starting to

send data (late connect). If not specified the test connection
is established in the preparation phase before the test starts

-M x dump traffic using libpcap. flowgrindd must be run as root
-N shutdown() each socket direction after test flow
-O x=OPT set socket option OPT on test socket. For additional information

see ’flowgrind --help=socket’
-P x do not iterate through select() to continue sending in case

block size did not suffice to fill sending queue (pushy)
-Q summarize only, no intermediated interval reports are

computed (quiet)
-R x=#.#(z|k|M|G)(b|B)

send at specified rate per second, where: z = 2**0, k = 2**10,
M = 2**20, G = 2**30, and b = bits/s (default), B = bytes/s

-S x=# set block (message) size, in bytes (same as -G s=q,C,#)
-T x=#.# set flow duration , in seconds (default: s=10,d=0)
-U x=# set application buffer size, in bytes (default: 8192)

truncates values if used with stochastic traffic generation
-W x=# set requested receiver buffer (advertised window), in bytes
-Y x=#.# set initial delay before the host starts to send, in seconds

Figure 5.6: Flowgrind flow options

43

5 Flowgrind

phobos2:~/flowgrind% ./flowgrind --help=socket
flowgrind allows to set the following standard and non-standard socket options.

All socket options take the flow endpoint as argument , denoted by ’x’ in the
option syntax. ’x’ needs to be replaced with either ’s’ for the source endpoint,
’d’ for the destination endpoint or ’b’ for both endpoints. To specify different
values for each endpoints , separate them by comma. Moreover , it is possible to
repeatedly pass the same endpoint in order to specify multiple socket options

Standard socket options:
-O x=TCP_CONGESTION=ALG

set congestion control algorithm ALG on test socket
-O x=TCP_CORK

set TCP_CORK on test socket
-O x=TCP_NODELAY

disable nagle algorithm on test socket
-O x=SO_DEBUG

set SO_DEBUG on test socket
-O x=IP_MTU_DISCOVER

set IP_MTU_DISCOVER on test socket if not already enabled by
system default

-O x=ROUTE_RECORD
set ROUTE_RECORD on test socket

Non-standard socket options:
-O x=TCP_MTCP

set TCP_MTCP (15) on test socket
-O x=TCP_ELCN

set TCP_ELCN (20) on test socket
-O x=TCP_LCD set TCP_LCD (21) on test socket

Examples:
-O s=TCP_CONGESTION=reno,d=SO_DEBUG

sets Reno TCP as congestion control algorithm at the source and
SO_DEBUG as socket option at the destinatio

-O s=SO_DEBUG ,s=TCP_CORK
set SO_DEBUG and TCP_CORK as socket option at the source

Figure 5.7: Flowgrind socket options

44

5.12 Conclusion

phobos2:~/flowgrind% ./flowgrind --help=traffic
flowgrind supports stochastic traffic generation , which allows to conduct
besides normal bulk also advanced rate-limited and request-response data
transfers.

The stochastic traffic generation option ’-G’ takes the flow endpoint as
argument , denoted by ’x’ in the option syntax. ’x’ needs to be replaced with
either ’s’ for the source endpoint, ’d’ for the destination endpoint or ’b’ for
both endpoints. However, please note that bidirectional traffic generation can
lead to unexpected results. To specify different values for each endpoints ,
separate them by comma.

Stochastic traffic generation:
-G x=(q|p|g):(C|U|E|N|L|P|W):#1:[#2]

Flow parameter:
q = request size (in bytes)
p = response size (in bytes)
g = request interpacket gap (in seconds)

Distributions:
C = constant (#1: value, #2: not used)
U = uniform (#1: min, #2: max)
E = exponential (#1: lamba - lifetime, #2: not used)
N = normal (#1: mu - mean value, #2: sigma_square - variance)
L = lognormal (#1: zeta - mean, #2: sigma - std dev)
P = pareto (#1: k - shape, #2 x_min - scale)
W = weibull (#1: lambda - scale, #2: k - shape)

-U x=# specify a cap for the calculated values for request and response
size (not needed for constant values or uniform distribution),
values over this cap are recalculated

Examples:
-G s=q:C:40

use contant request size of 40 bytes
-G s=p:N:2000:50

use normal distributed response size with mean 2000 bytes and
variance 50

-G s=g:U:0.005:0.01
use uniform distributed interpacket gap with minimum 0.005s and
maximum 0.01s

Notes:
- The man page contains more explained examples
- Using bidirectional traffic generation can lead to unexpected results
- Usage of -G in conjunction with -A, -R, -S is not recommended , as they

overwrite each other. -A, -R and -S exist as shortcut only

Figure 5.8: Flowgrind traffic options

45

6 Implementation

This chapter discuss the implementation of the latency measurement in the flowgrind
using the Timestamping feature in the linux. This chapter is divided into 2 sections,
the section 6.1 discuss regarding the timestamp feature in linux kernel and Network
Interface Controller (NIC) timestamping features in depth. The understanding of this
section is essential for the latency measurement implementation in the flowgrind. The
section 6.2 discuss regarding the constrain in the latency measurement implementation
and also the solution for it.

6.1 Time stamping in Linux

Time stamping capability in the network interface card is used to keep the track of packet
arrival and transmit it into the wire. The time stamping service in the network interface
supports the affirmations of evidence that a datum existed before a particular system
clock time [9]. NIC gets the incoming packets from the kernel, and these packets are time-
stamped before they are sent out to the wire. Before discussing the NIC timestamping, it
is essential to understand the Linux kernel timestamping control Interface [43].

6.1.1 Linux Kernel Timestamping control Interface

The kernel timestamping interface supports both the unidirectional (only receiving
or transmitting timestamping) and bidirectional (supports both the receiving and
transmitting) time stamping. The receiving network timestamps are listed as follows,

SO_TIMESTAMP: The timestamps for recording each arriving packet in system time.
The timestamp are reported in the struct timeval (usec resolution), through the
recvmsg system call in the form of ancillary messages(refer the subsection 6.1.6 for
more information). This timestamps enables the socket option for time stamping
the datagrams on the receiver side.

SO_TIMESTAMPS: The timestamping generation follows the same mechanism as the
SO_TIMESTAMP, with one additional feature that the timestamp is reported as
struct timespec (nsec resolution). This timestamping is used for the higher data
rate NIC like 40 - 100 Gbit/s card. While using such NIC, it is recommended to use
the struct timespec for the higher resolution (ns), than the struct timeval [45].

47

6 Implementation

SO_TIMESTAMPING: It supports both the hardware and software time stamping for
both transmission and reception. I also transmits and receives at the same time.
This timestamping option supports the multiple request of the time stamp features
at the same time. Since this timestamping option support multiple type, the input
to the socket is given in the form of the bitmap flags, not as Boolean input parameter
to the previous time stamping options [43].

6.1.2 Time stamping generation inside the kernel

The timestamp bitmap is requested to Linux kernel through the socket option to generate
the timestamp from the network stack. All the combination of timestamping is valid in
the Linux, but the NIC should support the combination of timestamping as well. Once
the bitmap of flags are changed for the socket it is set to newly create packets, but this
option is not applicable to the packets already existing in the network stack. This gives
an advantage in the Linux kernel to do selective timestamping generation for the subset
of packets by setting an send system call, between two socket set function to enable and
disable the time stamping. For example, to do sampling with a subset of packets [43].

Timestamps feature is not only used for the reception and transmitting packet timestamp-
ing, but also used for another features as follows:

SOF_TIMESTAMPING_RX_HARDWARE: This feature enables the Linux kernel to get
the NIC reception timestamps from the PTP Hardware clock in the NIC

SOF_TIMESTAMPING_RX_SOFTWARE: This option enables the Linux kernel to get
the reception timestamps, when the packet enters the kernel. This means that
timestamps are recorded just after the NIC driver hand over the packet to the
kernel TCP/IP stack

SOF_TIMESTAMPING_TX_HARDWARE: This feature enables the NIC to get the trans-
mit timestamps from the PTP Hardware clock in the NIC, just prior it leaves the
device driver to the wire.

SOF_TIMESTAMPING_TX_SOFTWARE: This option enables the network interface
card to get the reception timestamps, when the packet enters the NIC device driver.
This means that timestamps are recorded just after the NIC driver gets the packet
from the wire.

SOF_TIMESTAMPING_TX_SCHED: This enable the Linux kernel to get the transmit
timestamp prior to entry point into the packet scheduler. The kernel packet
processing time highly depends on the queueing delay in the kernel. The latency
independent of protocol processing can be approximately found by using the
timestamp difference between this timestamp and the software transmit timestamp.
The overall latency in the kernel can be computed by taking time difference between
this timestamp and the timestamp taken before and prior to the write or send
function. In the host with the virtual devices, the packet used to transmit between

48

6.1 Time stamping in Linux

the different multiple devices, which indirectly means that packet travels through
multiple packet scheduler. With this timestamp enabled, it generates timestamp at
each layer, which can be used to the measure the fine grained of queueing delay
[43].

SOF_TIMESTAMPING_TX_ACK: This timestamp generated when all the packets sent
in the send buffer are acknowledged by the NIC. This timestamp supports only
for stream socket, because it only supports the reliable protocol. In Linux kernel,
this timestamp only supported for Transmission Control Protocol (TCP) currently.
The timestamp is generated, when all the packets are acknowledged for the data
sent from the send buffer. Thus, this support the cumulative acknowledge [43].

6.1.3 Reporting the timestamp value

The timestamp reporting feature in the Linux kernel is done by the 3 bits control, which
controls the timestamps to be generated via the socket control message. These bit control
is used to control the location from where the timestamps are to be reported from the
stack. The timestamp are generated only to those packets, where the requests are made
through the socket option in the generation request set. The Linux currently support the
following timestamp options,

SOF_TIMESTAMPING_SOFTWARE: This timestamp is used to generate the timestamp
support by the Linux kernel.

SOF_TIMESTAMPING_RAW_HARDWARE: This enable the timestamp at the NIC
device driver level, the timestamping are generated by the PTP hardware clock
inside the NIC card [14].

SOF_TIMESTAMPING_SYS_HARDWARE: Current Linux kernel ignored and deprec-
ated this timestamp enable option, this is currently supported in the Linux 3.16.
This is also used to generate the NIC timestamp and later convert it to system
clock time. But today’s NIC support the conversion inside the PTP hardware API,
currently all timestamp supported NIC, do the conversion from the RAW PTP
hardware clock timing to the system timing [38].

6.1.4 Additional options in the timestamping

Linux kernel provide additional options to support the timestamp feature than mere only
generate timestamp values for the both transmit and receive packets. The additional
feature options help to accurately identify the timestamp from the exact location from
the kernel. In this subsection, we will discuss regarding the timestamping additional
features,

49

6 Implementation

SOF_TIMESTAMPING_OPT_ID: This feature generate an identifier along with each
packet generation in the Linux, these identifier are unique to each and every
packets. There would be multiple existing timestamp request for a process, in
this case the packets could be reordered in the both receive and transmit path,
while handling the packet in the network stack. For example, this could occur in
the packet scheduler. So in this particular case the packet timestamp will also be
queued out of order from the original queue in which it is send from the send or
write function. Due to this problem, Linux get the timestamp of the reordered
packet. So there must be mechanism, by which a process can identify which
timestamp it belongs to and which packet is sent from the send buffer [43].

This feature associate each packet sent from the send buffer with an identifier,
which is only unique for that particular send buffer packet. The unique identifier
is generated by the u32 counter of socket. For the reliable protocol, like TCP, this
unique identifier is based on the byte size of the send buffer. If the process transmit
8 byte of send buffer, then the unique identifier is 8. When the same socket send 2
byte of data into Linux kernel, then the unique identifier is 10. Unique identifier for
the TCP timestamp is increment of byte size of the send buffer. For the datagram
sockets, the identifier is just counter increment for each packet generate from the
Linux kernel [43].

The socket counter starts, when this feature is enabled in the socket and the counter
get reset, when the option is disabling in the socket. This feature supports sub
sampling in the packets. The disabling option in the socket doesn’t affect the
unique identifier generated for the existing packets in the stack. This option only
support the transmit timestamping packet in the Linux timestamping.

SOF_TIMESTAMPING_OPT_CMSG: It is a special case to coexist both the IP_PKTINFO
information and timestamping information in the control message header. The
control message is supported already for the all the timestamping feature. The
process receives the timestamping information in the control message from the
recv() or recvmsg().

SOF_TIMESTAMPING_OPT_TSONLY: This timestamp option only transmits the
timestamp information in the control message with empty packet, which always
piggybacked with all the control messages. This is supported only from the Linux
kernel 3.19, this reduce the memory usage of the receive socket and this feature dis-
able SOF_TIMESTAMPING_OPT_CMSG, so we won’t get the IP_PKTINFO inform-
ation simultaneously. In order to get good utilization of timestamp feature in the
Linux, it is always recommended to use both the SOF_TIMESTAMPING_OPT_ID
and SOF_TIMESTAMPING_OPT_TSONLY option [43].

But there is exception in the usage for these timestamp options;
it is possible to use only SOF_TIMESTAMPING_OPT_TSONLY or
SOF_TIMESTAMPING_OPT_CMSG, because SOL_IP/IP_PKINFO is used to detect

50

6.1 Time stamping in Linux

the outgoing packet information through the NIC, comes along with the original
packet. So combining both options to co-exist is not possible [43].

6.1.5 Bytestream (TCP) timestamp in Linux

Linux timestamp option supports timestamping every byte in a bytestream, that
is when a request is made to Linux to timestamp the bytestream. Then Linux
recorded all bytes that have passed the timestamping point. For instance,
SOF_TIMESTAMPING_TX_SOFTWARE takes timestamp of all bytes that leaves the
Linux kernel to NIC device driver from the send buffer, despite how data buffer is
converted into the packets.

Inside the Linux kernel, bytestream might be split bytes across the segments, and the
segment can merge with each other, or reordered and bytes can exist simultaneously in
multiple segment. So in general, bytestream has no boundary, so timestamping byte is
not a trite issue. The timestamping option should be uniform in the implementation;
otherwise comparing the timestamp result is not possible [43].

The implementation of timestamping and correlating it with the segment of byte result in
consistent, if only both timestamping and timing measurement are chosen logically. Let
us see the logical conclusion for the two scenarios. For instance,the acknowledgement
timestamp is generated, when all bytes passed the timestamping point and other one is
timestamping for IP Fragmentation in the device drivers. In case of fragmentation, only
the first IP fragment is taken into the consideration for the transmit timestamp.

In case of TCP, it can simply break in 1:1 mapping, when travelling from the buffer
to the skbuff due to the fact of existence of GSO, segmentation, Nagle, cork and auto
cork in the transport control protocol. In this case, the individual last byte passed to
send data buffer is tracked, even though it is not the last byte after the skbuff merge or
extend operation. The skbuff stores only one sequence number in it structure tskey, so
depending upon the tskey only one timestamp can be generated [43].

In the extremely unusual case, two requests for the timestamping are emerged into
the same skb. In this case, by enabling the SOF_TIMESTAMPING_OPT_ID, we
could compare the unique identifier and also the byte offset at the send time. The
SOF_TIMESTAMPING_OPT_ID option ensures that the timestamp is generated only
when the packet across the timestamping point.

6.1.6 Data Interpretation

In the Linux, the timestamp information is retrieved from the ancillary control message
by using feature supported in the recv()/ recvmsg(), which sends back the control message
data along with the read buffer. In this is section, we will look into the getting the

51

6 Implementation

timestamp for the SOF_TIMESTAMP, SOF_TIMESTAMPNS and SOF_TIMESTAMPING
option in the Linux.

Timestamp records

Timestamp records are stored in the SCM_TIMESTAMPING structure. The timestamp
record is send back through the ancillary data feature in the recvmsg(), with the control
message level, and control message type. The SCM_TIMESTAMPING structure support
3 timestamps in it. But the structure can hold only one timestamp at a time; it is a legacy
feature in the Linux [43].

The ts [0] hold most of the timestamp record in it. The ts [1] used to store the hardware
timestamp, which is converted to the system time. The direct hardware timestamp from
the PTP hardware in the nsec resolution is passed in the ts [2]. The ts [2] can be directly
used in the user space to get the raw PTP hardware clock timing information, which can
be used to synchronize system time with the PTP hardware clock [43].

Transmitting timestamp to user space

The timestamp are transmitted to the user space by using the MSG_ERRQUEUE flag
in the recv()/recvmsg(). The Linux timestamp module utilizes the socket’s error queue
information to send back the timestamp record from the Linux kernel network stack
to the user space. And the control message buffer must be sufficiently large enough
to hold the relevant metadata structure. The recvmsg function returns the two control
message along with its incoming packet information from the Linux network stack [43].
As show in the figure 6.1 [29], the control message consist of timestamp information
and also socket error information, which embedded into control message through the
sock_extended_err structure. The user space distinguish the message using the message
cm_level and cm_type, for the socket error information the cm_level is SOL_IP and
cm_type is IP_RECVERR. For the timestamping information, cm_level is SOL_SOCKET
and for the cm_type is SCM_TIMESTAMPING.

Timestamp type in the control message

The type of timestamping record is passed through the sock_extended_err ee_info. The
SCM_TSTAMP define, from where the timestamp is generated inside the network stack.
SCM_TSTAMP_SND is to pass the timestamp records to the skb from the PTP hardware
clock timestamp. It supports both the SOF_TIMESTAMPING_TX_SOFTWARE and
SOF_TIMESTAMPING_TX_HARDWARE timestamp.

52

6.1 Time stamping in Linux

CMSG_SPACE CMSG_SPACE

CMSG_LEN CMSG_LEN

cmsghdr

padding cmsg_len()

cmg_level()

cmsg_type() padding cmsg_len()

cmsg_level()

cmsg_type()

Ancillary object -
Timestamp

data

Ancillary object -
sock_extended_err

cmsg_data() cmsg_data()

Figure 6.1: Ancillary data object in Linux timestamping

Timestamp in fragmentation

If the transmit packet is fragmented, then only first fragment is recorded for the timestamp
and send back through the sending socket.

Reading the timestamp value

The message error queue is always read through the non-blocking operation. For the
block waiting socket, poll or select function could be used. Poll has an advantage of using
it return event - pollfd.revents. The poll() return the error events using the POLLERR,
which mentions that the message error queue is ready to read.

Receiving timestamp

In the reception, there is no need to call the recvmsg() with the MSG_ERRQUEUE flag.
Because the SCM_TIMESTAMPING is sent back to the user space through the ancillary
control message along with receive buffer. This socket error doesn’t contain the message
for the SOL_IP/IP_RECVERROR [43].

6.1.7 Hardware Timestamp

The hardware timestamping support depends on the NIC device driver. The hardware
timestamp could be checkout using ethtool tool with the option -T. The hardware
timestamp requires admin privileged user to enable and disable time stamping by calling
the ioctl function. Hardware time stamping is enabled by using the SIOCSHWTSTAMP
to set and get the configuration information.

53

6 Implementation

6.2 Latency measurement in Flowgrind

Hardware timestamping in the flowgrind is used to find precisely the network level
latency in the networks. The development of the hardware timestamping is based on
the usage of the kernel timestamping features support. For more information, regarding
the timestamping feature in the Linux, refer the section 6.1. This section looks into the
implementation of timestamp and methodology to calculate the Round Trip Time (RTT)
measurement.

6.2.1 Enabling the Hardware timestamping

The hardware timestamping feature is enabled in the source flowgrind daemon, once the
socket file descriptor is created with the flowgrind destination address and destination
listen port. This file descriptor enables the hardware timestamping feature in the
PTP hardware clock supported by the NIC. Refer to the section 6.1.2, to check the
timestamping feature in the NIC.

Enabling the hardware timestamping feature with the Precision Time Protocol (PTP)
hardware clock requires admin rights user to enable or disable the timestamp in an
interface. The flowgrind daemon identifies the interface name in the host machine
by using the flowgrind source daemon binds address. The flowgrind daemon get the
interface name using the getifaddrs() system call to get the network interface name by
parsing into the each element and comparing the address of interface with the flowgrind
bind address to retrieve the interface name from the host machine. This interface name
is used to make the interface request through the socket ioctl() to enable the hardware
timestamp in interface using the SIOCSHWTSTAMP flag. Before making ioctl() call, As
shown in the listing 6.1 flowgrind daemon configure the interface, to get the timestamp
for outgoing packets and disable the incoming packet filter by using the following option.
In this expression, tstconfig is the hwtstamp_config struct.

Listing 6.1: To enable Transmit timestamp for a net device
t s t c o n f i g . tx_type = HWTSTAMP_TX_ON;
t s t c o n f i g . r x _ f i l t e r = HWTSTAMP_FILTER_NONE;

6.2.2 Enabling the time stamping feature in Linux

Time stamping feature in the Linux is not enabled by default, to enable the timestamping
feature flowgrind call the setsockopt() with SO_TIMESTAMPING with timestamping
multi flag bit. From the section 6.1.1, SO_TIMESTAMPING value is enabled as shown in
the listing 6.2.

54

6.2 Latency measurement in Flowgrind

Listing 6.2: To enable the timestamps for Multi flags
rc = se tsockopt (fd , SOL_SOCKET, SO_TIMESTAMPING, (void *) val , \& val) ;

val takes the multi flags to enable the timestamp value in the flowgrind. The flowgrind
enables the timestamping feature in the Linux and also the timestamp value for the each
acknowledgement with timestamp ID option enabled.

6.2.3 Timestamping procedure in the flowgrind

The sections 6.2.1and 6.2.2, discuss regarding the the hardware timestamping enabling
for the NIC in Linux. This section discuss, how the timestamping works in the flowgrind,
after enabling the option in the flowgrind. The section 6.1.2, which gives the overall
picture of the timestamping support in the Linux. For the RTT measurement, flowgrind
works mainly with the following timestamp options in the flowgrind.

• SOF_TIMESTAMPING_TX_ACK

• SOF_TIMESTAMPING_OPT_ID

• SOF_TIMESTAMPING_OPT_TSONLY

The SOF_TIMESTAMPING_TX_ACK is used to enable the acknowledgement for every
data block transmitted from the NIC. For each data block acknowledgement, the PTP
hardware clock timestamp value is stored in the scm_timestamping struct. Refer the
section 6.1.6 and 6.1.6, for more information for the SCM_TIMESTAMP records. The
timestamp for the acknowledgment supported in the Linux is applicable only for the
reliable protocols - TCP.

The SOF_TIMESTAMPING_OPT_ID (refer the section 6.1.4) is used to give unique
identifier for each data block transmitted from the network stack. Basically this feature
is obtained from per socket namely u32 counter. For TCP protocol, this counter values
increment every data block size. In the flowgrind, the default message size is 8192 byte,
so the first data block ID has 8192 byte, the next message size also will be also 8192 byte,
but second data block ID would be 16384.

The SOF_TIMESTAMPING_OPT_TSONLY is the additional extra feature provided in
Linux 3.19 to get only the timestamp back from the message error queue (this is discussed
in the section 6.1.6). This feature minimizes the amount of memory charged for the
socket receive operation [43].

6.2.4 Processing the timestamp data

The timestamp values are processed from the network stack using the ancillary data
structure in the Linux kernel. The application in the user space can retrieve the timestamp
using the recv() system call with the MSG_ERRQUEUE flag.

55

6 Implementation

Ancillary Data

The ancillary data basically used to send and receive the user credentials over the internet
[29]. The ancillary data is the additional data along with the normal data. But the
ancillary data concept is based on the certain defined format. This section discuss the
details regarding the ancillary data usage in the flow grind.

Timestamp records in the Linux kernel

Timestamp value is piggybacked with the socket’s error queue in the recvmsg() with
flag MSG_ERRQUEUE flag. The overall picture regarding this ancillary data structure
with timestamp option in Linux is showed in the figure 6.1. The recvmsg system call
returns two ancillary data along with each socket error queue message. Each ancillary
message has control message level (cmsg_level) to indicate the originating protocol and
control message type (cmsg_type) to indicate the protocol specific type.

The first ancillary control message level consists of SOL_SOCKET and control mes-
sage type SCM_TIMESTAMPING and consist of control message data with the
struct scm_timestamping, this structure returns the timestamp value. The second
ancillary control messsage level consist of SOL_IP or SOL_IPV6 and control mes-
sage type IP_RECVERR or IPV6_RECVERR, and consist of control message data
with struct sock_extended_err, this structure returns the Linux timestamp addi-
tional features like data block ID and timestamp type. As discussed in the sec-
tion 6.1.6, where the SCM_TSTAMP_* (the * could be SCHED, SND, ACK) is
used to identify the timestamp type. This information is stored in the struct
sock_extended_err data member. The data block ID, which is returned by Linux
via enabling the timestamp option SOF_TIMESTAMPING_OPT_ID is stored in the
struct sock_extended_err data member. In addition to it, for more control message
identification, the Linux kernel defines the timestamp socket message error queue with
struct sock_extended_err data member ee_errno as ENOMSG and the data member
ee_origin as SO_EE_ORIGIN_TIMESTAMPING.

Receiving the message error queue

The receiving process for the socket message error queue data from Linux kernel is done
by using the recv() / recvfrom() /recvmsg() system call. The flowgrind uses the recvmsg(),
because all other receive message system call doesn’t have the capability to manipulate
the ancillary data capability. So the recvmsg() is the natural component for receiving the
ancillary data through the message error queue.

Listing 6.3: recvmsg function prototype
i n t recvmsg (i n t s , s t r u c t msghdr *msg , unsigned i n t f l a g s) ;

56

6.2 Latency measurement in Flowgrind

From the listing 6.3, the msg is pointed to the message header structure, which includes the
socket address members, I/O vectors references,and also ancillary data buffer members
as show in the listing 6.4

Listing 6.4: Message header to hold control message
s t r u c t msghdr {

void *msg_name ;
soc k len_ t msg_namelen ;
s t r u c t iovec * msg_iov ;
s i z e _ t msg_iovlen ;
void * msg_control ;
s i z e _ t msg_control len ;
i n t msg_flags ;

} ;

Where member msg_control points to the ancillary data buffer and msg_controller refers
to the buffer size. Flowgrind timestamp module adjusts the ancillary data buffer, to hold
sufficiently, the struct timestamp value and also the socket extended error information
for getting the timestamp information regarding the timestamp type with unique ID
information with each timestamp value.

But the recvmsg() processes only one socket error queue message at a time and it also
slows down the overall transaction rate in the in the flowgrind. So flowgrind uses
recvmmsg () instead of recvmsg() for receiving multiple messages, this benefits the
performance in the flowgrind. In addition, it reduces the message overheads caused by
the multiple call of the recvmsg().

Listing 6.5: recvmmsg function prototype
i n t recvmmsg (i n t sockfd , s t r u c t mmsghdr * msgvec , unsigned i n t vlen ,

unsigned i n t f l a g s , s t r u c t t imespec * timeout) ;

From the listing 6.5, the msgvec is the pointer to the array of struct mmsghdr and size
of the array is defined in the vlen. The size of the array limits the number of message
processed by the recvmmsg. In flowgrind, for 40GBit/s NIC, the maximum of 12 error
queue messages are received by recvmmsg(), So the maximum limit to process the
message error queue is set to 20. In additon to it, recvmmsg() has timeout parameter,
but flowgrind follows non- blocking socket, so recvmmsg() reads as many as messages
available at a single shot and returns immediately.

Pitfall in the pselect system call

In the initial development of flowgrind, the tool get hangs in write system call function
in the flowgrind source daemon for the bulk transfer test and also get hang in recvmsg
system call in the flowgrind source daemon for the request-response test. The reason for

57

6 Implementation

this behavior is the pending message error queue in the socket. Though the pselect() says
there is a file descriptor for the read operation, it turns out to be the message error queue.
So calling recvmsg() to read the normal response data block cause recvmsg() to get hang.
This the same for the write operation in the socket, which eventually fails because of the
pending message error queue. This make flowgrind very difficult to debug. It appears
that the select () couldn’t distinguish both the read and write file descriptor on the same
socket with the message error queue data from the socket.

This problem is also faced by the developer in the openswan -2.6.43 [19], released on
13th March 2015, it is an IPsec implementation and VPN software for Linux. In the
openswan source code [19] in order to check the error message queue embedded in
the ancillary data structure as control message for the message level SOL_IP and for
type IP_RECVERR, the openswan application uses poll() in order to check the pending
message queue error in the socket [19]. The poll() has the ability to distinguish read,
write and error using the [event] field. The flowgrind uses poll() return event field
to distinguish the events between the read, write and error. Flowgrind checks for the
pending error message queue in the socket before the read and write operation. This
feature give the flowgrind to process the message error queue messages efficiently.

6.2.5 Processing timestamp values

From the section 6.1.6, it was mentioned that flowgrind receives two ancillary data, with
one having the timestamp records and another one having the timestamp type for each
error message queue from the Linux kernel. The flowgrind processes the value if only
both the ancillary data are present in the control message. The flowgrind uses the generic
doubly linked list implementation to store the ancillary data according to the timestamp
type.

For instance, the flow grind stores the timestamp value of data block transmitted
from the NIC to the wire along with their unique ID in a separate linked list and the
acknowledgement timestamp for the data block also with unique ID in a separate linked
list. Since both the transmission and acknowledgement timestamp arrival from the
Linux kernel to the user space is asynchronous, that is for example, the data block with
unique ID 8192 is transmitted at the time TS1 and then NIC transmit the data block value
with ID 16384 at TS2. But the acknowledgement for the unique ID 16384 would reaches
the NIC before the unique ID 8192. So flow grind maintains separate data structure to
store them.

6.2.6 Round trip time calculation

The above section 6.2.5 explains how the flowgrind handles and segregate the timestamp
value for each type. This sub section discuss regarding the flowgrind calculation
mechanism for the round trip time or two way delay.

58

6.3 Conclusion

From the RFC 2681,From the section 2.6, the two way delay is defined as the “The two
way delay dT between Src to Dst at time T, where dT is the time delay between Src sent to the
first bit of packet, Dst at time T and Dst immediately sent, back to the packet to Src, and Src
receive the last bit of the same packet at T+dT”

The flowgrind adapts the same concept and methodology to measure the RTT based
on the RFC 2681 definition. Flowgrind correlates with the “time T” as the timestamp
values are taken, when the packet leave the Network interface card into the wire, and
the “time T+dT” is taken with timestamp value, when the corresponding data block
acknowledgement received in the NIC from the wire.

When the flowgrind gets the timestamp value from the Linux kernel, it will store the
value in its data structure and calculate the RTT based on their unique ID, which is
stored as the key and value pair in the linked list. For instance, if flowgrind receives
the acknowledgement for the unique ID 24576, then it iterates through the transmit
timestamp data structure to find the corresponding unique ID transmit timestamp value.
The difference between the acknowledgement and transmitted timestamp value for the
unique 24576 would give the RTT taken by the data block.

Depending upon the RTT value, both the minimum and maximum values are assigned
and then the RTT is aggregated for the each transaction in the source flowgrind daemon.
The number of transaction is calculated based on the number of acknowledgement
received in the flowgrind daemon. So the average RTT is calculated by dividing the
aggregated RTT by number of transactions done. The flowgrind stores the minimum,
average and maximum RTT in the two data structure each for the interval report and
final report. The interval report is reset after the each time the flowgrind daemon shared
the interval report with the flowgrind controller.

Depending upon the timestamp option enabled, the flowgrind controller will shrink and
expand, and display the results in the flowgrind controller. In the flowgrind controller,
hardware enabled timestamp values are called as kernel level RTT, since the RTT is
calculated based on the timestamp data from the Linux kernel.

6.3 Conclusion

According to the RFC 2681 [5], the flowgrind kernel level RTT value from the section 6.2.6
is similar to the definition for the “wire time” discussed in this RFC. The flowgrind
Application RTT, which is discussed in the section 5.11.3, is similar to the definition of
“Host time”. This is illustrated in the figure 6.2.The output of application level RTT and
Kernel level RTT is shown in the figure 6.3. So this enables the environment to measure
the difference between the Application level RTT and the kernel level RTT. The results
are evaluated in the nextc chapter 7.

59

6 Implementation

Request Response Respond to Request

Traffic flow

Throughput

Network
Delay

S
ta

c
k
 D

e
la

y
 S

ta
c
k
 D

e
la

y

Sockets

Protocols

Device Driver

NIC

Traffic App

TCP

Sockets

Protocols

Device Driver

NIC

Traffic App

TCP

Figure 6.2: Flowgrind latency measurement

60

6.3 Conclusion

#
D
a
t
e
:

2
0
1
5
-
0
4
-
1
9
-
2
2
:
5
0
:
0
4
,

c
o
n
t
r
o
l
l
i
n
g

h
o
s
t

=
p
h
o
b
o
s
2
.
m
g
m
t
.
m
u
c
l
a
b
,

n
u
m
b
e
r

o
f

f
l
o
w
s

=
1
,

r
e
p
o
r
t
i
n
g

i
n
t
e
r
v
a
l

=
1
.
0
0
s
,

[
t
h
r
o
u
g
h
]

=
1
0
*
*
6

b
i
t
/
s
e
c
o
n
d

(
f
l
o
w
g
r
i
n
d

-
0
.
7
.
5
-
1
4
1
-
g
d
a
2
f
f
9
)

#
I
D

b
e
g
i
n

e
n
d

t
h
r
o
u
g
h

t
r
a
n
s
a
c

m
i
n

k
R
T
T

a
v
g

k
R
T
T

m
a
x

k
R
T
T

m
i
n

a
R
T
T

a
v
g

a
R
T
T

m
a
x

a
R
T
T

u
a
c
k

s
a
c
k

l
o
s
t

r
e
t
r

t
r
e
t

f
a
c
k

r
e
o
r

b
k
o
f

c
a

s
t
a
t
e

p
m
t
u

#
[
s
]

[
s
]

[
M
b
i
t
/
s
]

[
#
/
s
]

[
m
s
]

[
m
s
]

[
m
s
]

[
m
s
]

[
m
s
]

[
m
s
]

[
#
]

[
#
]

[
#
]

[
#
]

[
#
]

[
#
]

[
#
]

[
#
]

[
B
]

S
0

0
.
0
0
0

1
.
0
0
0

2
9
2
.
5
2
5
5
3
1

5
6
5
.
9
8

0
.
0
4
0

0
.
1
3
6

0
.
2
2
4

0
.
4
0
0

2
.
2
5
9

2
.
7
7
4

0
0

0
0

0
0

3
0

o
p
e
n

1
5
0
0

S
0

1
.
0
0
0

2
.
0
0
0

2
8
2
.
5
6
9
2
4
7

5
4
3
.
0
0

0
.
0
2
5

0
.
1
2
9

0
.
2
1
1

1
.
9
0
4

2
.
3
3
5

2
.
9
0
6

0
0

0
0

0
0

3
0

o
p
e
n

1
5
0
0

#
I
D

b
e
g
i
n

e
n
d

t
h
r
o
u
g
h

t
r
a
n
s
a
c

m
i
n

k
R
T
T

a
v
g

k
R
T
T

m
a
x

k
R
T
T

m
i
n

a
R
T
T

a
v
g

a
R
T
T

m
a
x

a
R
T
T

m
i
n

I
A
T

a
v
g

I
A
T

m
a
x

I
A
T

u
a
c
k

s
a
c
k

l
o
s
t

r
e
t
r

t
r
e
t

f
a
c
k

r
e
o
r

b
k
o
f

c
a

s
t
a
t
e

p
m
t
u

#
[
s
]

[
s
]

[
M
b
i
t
/
s
]

[
#
/
s
]

[
m
s
]

[
m
s
]

[
m
s
]

[
m
s
]

[
m
s
]

[
m
s
]

[
m
s
]

[
m
s
]

[
m
s
]

[
#
]

[
#
]

[
#
]

[
#
]

[
#
]

[
#
]

[
#
]

[
#
]

[
B
]

D
0

0
.
0
0
0

1
.
0
0
0

1
1
.
4
0
4
5
8
1

0
.
0
0

i
n
f

i
n
f

i
n
f

i
n
f

i
n
f

i
n
f

0
.
0
0
2

0
.
0
2
8

0
.
3
1
9

1
0

0
0

0
0

3
0

o
p
e
n

1
5
0
0

D
0

1
.
0
0
0

2
.
0
0
0

1
1
.
0
4
1
1
2
6

0
.
0
0

i
n
f

i
n
f

i
n
f

i
n
f

i
n
f

i
n
f

0
.
0
0
2

0
.
0
2
9

0
.
3
1
3

1
0

0
0

0
0

3
0

o
p
e
n

1
5
0
0

S
0

2
.
0
0
0

3
.
0
0
0

3
0
1
.
0
6
3
7
1
0

5
6
6
.
0
1

0
.
0
4
1

0
.
1
3
2

0
.
4
9
2

1
.
1
6
7

2
.
5
4
7

4
.
3
9
5

i
n
f

i
n
f

i
n
f

4
0

0
0

0
0

3
0

o
p
e
n

1
5
0
0

D
0

2
.
0
0
0

3
.
0
0
0

1
1
.
7
4
0
2
1
6

0
.
0
0

i
n
f

i
n
f

i
n
f

i
n
f

i
n
f

i
n
f

0
.
0
0
2

0
.
0
2
7

0
.
4
7
5

1
0

0
0

0
0

3
0

o
p
e
n

1
5
0
0

S
0

3
.
0
0
0

4
.
0
0
0

2
8
5
.
7
1
2
1
7
5

5
4
8
.
0
0

0
.
0
5
8

0
.
1
2
4

0
.
3
2
5

1
.
4
8
5

4
.
0
7
2

4
.
7
1
3

i
n
f

i
n
f

i
n
f

4
0

0
0

0
0

3
0

o
p
e
n

1
5
0
0

D
0

3
.
0
0
0

4
.
0
0
0

1
1
.
1
5
7
8
9
2

0
.
0
0

i
n
f

i
n
f

i
n
f

i
n
f

i
n
f

i
n
f

0
.
0
0
2

0
.
0
2
9

0
.
3
2
6

1
0

0
0

0
0

3
0

o
p
e
n

1
5
0
0

S
0

4
.
0
0
0

5
.
0
0
0

2
8
1
.
9
2
2
5
4
3

5
4
0
.
9
6

0
.
0
5
9

0
.
1
2
2

0
.
2
3
2

3
.
5
6
5

4
.
1
5
8

4
.
6
9
8

i
n
f

i
n
f

i
n
f

0
0

0
0

0
0

3
0

o
p
e
n

1
5
0
0

D
0

4
.
0
0
0

5
.
0
0
0

1
1
.
0
1
5
0
8
3

0
.
0
0

i
n
f

i
n
f

i
n
f

i
n
f

i
n
f

i
n
f

0
.
0
0
2

0
.
0
2
9

0
.
3
2
3

0
0

0
0

0
0

3
0

o
p
e
n

1
5
0
0

S
0

5
.
0
0
0

6
.
0
0
0

2
8
4
.
3
6
8
4
6
1

5
4
5
.
0
3

0
.
0
5
8

0
.
1
2
3

0
.
2
5
4

2
.
2
5
5

4
.
1
2
2

4
.
7
9
3

i
n
f

i
n
f

i
n
f

4
0

0
0

0
0

3
0

o
p
e
n

1
5
0
0

D
0

5
.
0
0
0

6
.
0
0
0

1
1
.
1
0
5
9
2
7

0
.
0
0

i
n
f

i
n
f

i
n
f

i
n
f

i
n
f

i
n
f

0
.
0
0
2

0
.
0
2
9

0
.
3
0
7

0
0

0
0

0
0

3
0

o
p
e
n

1
5
0
0

S
0

6
.
0
0
0

7
.
0
0
0

2
8
3
.
0
0
3
3
2
1

5
4
2
.
9
9

0
.
0
6
1

0
.
1
2
5

0
.
2
6
7

2
.
8
9
1

4
.
1
4
0

4
.
7
9
2

i
n
f

i
n
f

i
n
f

4
0

0
0

0
0

3
0

o
p
e
n

1
5
0
0

D
0

6
.
0
0
0

7
.
0
0
0

1
1
.
0
5
5
0
1
7

0
.
0
0

i
n
f

i
n
f

i
n
f

i
n
f

i
n
f

i
n
f

0
.
0
0
2

0
.
0
2
9

0
.
3
2
0

0
0

0
0

0
0

3
0

o
p
e
n

1
5
0
0

S
0

7
.
0
0
0

8
.
0
0
0

2
8
3
.
1
6
7
9
0
2

5
4
3
.
0
2

0
.
0
5
9

0
.
1
2
3

0
.
2
3
0

3
.
6
5
5

4
.
1
3
7

4
.
8
4
2

i
n
f

i
n
f

i
n
f

0
0

0
0

0
0

3
0

o
p
e
n

1
5
0
0

D
0

7
.
0
0
0

8
.
0
0
0

1
1
.
0
5
9
5
2
0

0
.
0
0

i
n
f

i
n
f

i
n
f

i
n
f

i
n
f

i
n
f

0
.
0
0
2

0
.
0
2
9

0
.
3
1
4

1
0

0
0

0
0

3
0

o
p
e
n

1
5
0
0

S
0

8
.
0
0
0

9
.
0
0
0

2
8
3
.
0
4
3
3
4
1

5
4
2
.
9
6

0
.
0
5
8

0
.
1
2
4

0
.
2
4
3

3
.
6
2
6

4
.
1
4
0

4
.
7
9
1

i
n
f

i
n
f

i
n
f

4
0

0
0

0
0

3
0

o
p
e
n

1
5
0
0

D
0

8
.
0
0
0

9
.
0
0
0

1
1
.
0
5
8
6
6
2

0
.
0
0

i
n
f

i
n
f

i
n
f

i
n
f

i
n
f

i
n
f

0
.
0
0
2

0
.
0
2
9

0
.
3
2
1

0
0

0
0

0
0

3
0

o
p
e
n

1
5
0
0

S
0

9
.
0
0
0

1
0
.
0
0
0

2
8
4
.
4
4
5
3
6
8

5
4
6
.
0
5

0
.
0
5
7

0
.
1
2
6

0
.
2
2
2

2
.
3
6
3

4
.
1
1
9

4
.
7
7
0

i
n
f

i
n
f

i
n
f

4
0

0
0

0
0

3
0

o
p
e
n

1
5
0
0

D
0

9
.
0
0
0

1
0
.
0
0
0

1
1
.
1
0
9
7
2
0

0
.
0
0

i
n
f

i
n
f

i
n
f

i
n
f

i
n
f

i
n
f

0
.
0
0
2

0
.
0
2
9

0
.
3
1
3

0
0

0
0

0
0

3
0

o
p
e
n

1
5
0
0

#
I
D

0
S
:

1
7
2
.
1
8
.
1
2
0
.
2
1

(
L
i
n
u
x

3
.
1
9
.
0
.
m
u
c
l
a
b
+
)
,

r
a
n
d
o
m

s
e
e
d
:

2
4
0
8
8
0
4
6
1
0
,

s
b
u
f

=
1
6
3
8
4
/
0

[
B
]

(
r
e
a
l
/
r
e
q
)
,

r
b
u
f

=
8
7
3
8
0
/
0

[
B
]

(
r
e
a
l
/
r
e
q
)
,

S
M
S
S

=
1
4
4
8

[
B
]
,

P
M
T
U

=
1
5
0
0

[
B
]
,

I
n
t
e
r
f
a
c
e

M
T
U

=
1
5
0
0

(
E
t
h
e
r
n
e
t
/
P
P
P
)

[
B
]
,

d
u
r
a
t
i
o
n

=
1
0
.
0
0
0
/
1
0
.
0
0
0

[
s
]

(
r
e
a
l
/
r
e
q
)
,

t
h
r
o
u
g
h

=
2
8
6
.
1
8
2
0
8
9
/
1
1
.
1
7
4
4
4
4

[
M
b
i
t
/
s
]

(
o
u
t
/
i
n
)
,

t
r
a
n
s
a
c
t
i
o
n
s
/
s

=
3
4
9
2
0
.
1
4

[
#
]
,

r
e
q
u
e
s
t

b
l
o
c
k
s

=
3
4
9
3
4
3
/
0

[
#
]

(
o
u
t
/
i
n
)
,

r
e
s
p
o
n
s
e

b
l
o
c
k
s

=
0
/
3
4
9
2
0
1

[
#
]

(
o
u
t
/
i
n
)
,

A
p
p
l
i
c
a
t
i
o
n

l
e
v
e
l

R
T
T

=
0
.
4
0
0
/
3
.
5
9
3
/
4
.
8
4
2

[
m
s
]

(
m
i
n
/
a
v
g
/
m
a
x
)
,

k
e
r
n
e
l

l
e
v
e
l

R
T
T

=
0
.
0
2
5
/
0
.
1
2
6
/
0
.
4
9
2

[
m
s
]

(
m
i
n
/
a
v
g
/
m
a
x
)
,

T
C
P
_
N
O
D
E
L
A
Y

#
I
D

0
D
:

1
7
2
.
1
8
.
1
2
0
.
2
2

(
L
i
n
u
x

3
.
1
9
.
0
.
m
u
c
l
a
b
+
)
,

r
a
n
d
o
m

s
e
e
d
:

2
4
0
8
8
0
4
6
1
0
,

s
b
u
f

=
1
6
3
8
4
/
0

[
B
]

(
r
e
a
l
/
r
e
q
)
,

r
b
u
f

=
8
7
3
8
0
/
0

[
B
]

(
r
e
a
l
/
r
e
q
)
,

S
M
S
S

=
1
4
4
8

[
B
]
,

P
M
T
U

=
1
5
0
0

[
B
]
,

I
n
t
e
r
f
a
c
e

M
T
U

=
1
5
0
0

(
E
t
h
e
r
n
e
t
/
P
P
P
)

[
B
]
,

t
h
r
o
u
g
h

=
1
1
.
1
7
4
7
8
2
/
2
8
6
.
0
7
5
2
2
7

[
M
b
i
t
/
s
]

(
o
u
t
/
i
n
)
,

r
e
q
u
e
s
t

b
l
o
c
k
s

=
0
/
3
4
9
2
0
5

[
#
]

(
o
u
t
/
i
n
)
,

r
e
s
p
o
n
s
e

b
l
o
c
k
s

=
3
4
9
2
0
4
/
0

[
#
]

(
o
u
t
/
i
n
)
,

I
A
T

=
0
.
0
0
2
/
0
.
0
2
9
/
0
.
4
7
5

[
m
s
]

(
m
i
n
/
a
v
g
/
m
a
x
)
,

d
e
l
a
y

=
0
.
0
0
0
/
1
.
5
5
8
/
2
.
6
8
2

[
m
s
]

(
m
i
n
/
a
v
g
/
m
a
x
)
,

T
C
P
_
N
O
D
E
L
A
Y

Fi
gu

re
6.

3:
Fl

ow
gr

in
d

m
ea

su
re

m
en

to
ut

pu
t:

W
it

h
K

er
ne

ll
ev

el
R

TT
an

d
A

pp
lic

at
io

n
le

ve
lR

TT

61

7 Flowgrind Measurement Results

7.1 Methodology

The methodology for the implementation of the latency measurement and evaluating
the network performance under heavy workload condition is based on the Request for
Comment (RFC) 2681 from the section 2.6.1 and RFC 3148 from the section 2.4. The
latency measurements in the flowgrind are discussed in detail in the section 6.2.6 and in
the section 5.11.3. The measurements are done on real hardware device as described
in the section 7.2, where tests are designed for different network conditions, with a
set of realistic application based work load scenarios as listed in the section 4.4. The
quantifiable and qualitative measurements are done using the flowgrind.

7.2 Testbest

The Thesis project tested is implemented by using the servers in the NetApp Munich
High-Performance networking lab belongs to the Advanced Technology Group [40]. It
uses to emulate the data center traffic, consist of six node cluster system of FAS3200 [57]
and two-node FlashRay [56] prototype system. This infrastructure is used to emulate
the data center traffic with the help of the traffic generation tool. The architecture for the
the test bed is based on emulating the client-server and server-server architecture.

Testbed setup

This subsection discusses regarding the NetApp Munich lab, the Laurel is the network
administrative server. It is a Fujitsu primergy RX100 S8 [28] with 1x4 cores with 32
GB RAM and 1.2TB local disk space over the FreeBSD-STABLE. It acts as the router
and net boot server for the FAS 3270 [57] and Flash Rays. In our experiment, we used
two-node Flash Ray prototype system, each consists of two SuperMicro servers [54] with
4x8 cores, and 128 GB RAM and network interfaces of 1 GB, 10GB and 40 GB which
are used for our experiment. These nodes are named as Phobos 1 and Phobos 2. It also
has the extension as Mora 1 and Mora 2. In our experiments, we used the Phobos and
Mora to carried out with experiments. The cisco catalyst 2690S [12] with 48x 1G ports.
This switch runs the commands and also used to control the network. It is placed in
between the Laurel and other nodes in the lab. The nodes are connected to the 2690S
for net booting and access over Secure Shell (SSH). The Flash Ray in the lab runs the

63

7 Flowgrind Measurement Results

Debian GNU/Linux version 8(jessie). The OS is booted over the network through the
laurel, which maintains Domain Name System (DNS) and Dynamic Host Configuration
Protocol (DHCP). The normal storage box is called Cuba, where the home directory,
backups and Debian images are maintained. The FlashRay nodes have a separate service
processor (SP) that is used in the case of node failure through a serial console or through
the SSH, for the instant to remotely cycle the power. The testing node FlashRay, Phobos
and Mora is a purpose-built in all-flash storage architecture to explore and evaluate
the high-performance, and the consistent in latency in a heavy workload condition.
These nodes are supported with multiple Network Interface Controller (NIC) for the
evaluating the network performance by varying the network traffic and load.

Measurement setup

The clock synchronization plays a vital role in the latency measurement between the
nodes [15]. The Precision Time Protocol (PTP) protocol for clock synchronization is used
in the measurement setup. To implement the PTP, the network stack has to support the
hardware timestamp or software timestamp capabilities. In addition to it, NIC should
also support hardware timestamp functionality in its physical hardware. The PTP can
be implemented by the the Linux PTP [18] and PTP daemon (PTPd) [20], linuxptp is
supported for the linux, but the PTPd supports both linux, FreeBSD and NetBSD. Since
the Laurel is the network administrative server, where DHCP and DNS is maintained,
PTPd was installed in the Laurel, which act as the master clock and rest of the PTP
support equipments in the network, act as the PTP slaves and synchronizes to the master
clock. All the Cisco switch and the Mellanox switch in the network supports the PTP
hardware and Network interface nodes in Phobos and Mora, supports the PTP hardware
clock and hardware timestamp, expect the management interface for the SSH. The PTP
daemon was installed and started up automatically, in all the nodes and synchronized to
the PTP master clock in the Laurel.

Phobos and Mora nodes are provided with the NIC from the vendors Intel, Mellanox.
For the measurement setup of the project, the Intel card with 1Gbit/s and 10 Gbit/s
capacity and Mellanox card is 40 Gbits capacity are used. The details of these interfaces
are shown in the table 7.1.

The path of the measurement is between phobos1←→ phobos2 and mora1←→mora2.
This measurement setup is trying to emulate the server-client traffic and server-server
traffic using the flowgrind application scenario as discussed in the section 4.4 and 5.8.
The data center handles both the server-client traffic and sever-server traffic. So this
measurement setup emulate the traffic to evaluate the performance of a data center with
the help of a high performance FlashRay nodes.

64

7.3 Testing Scenarios

Table 7.1: Ethernet Interface Overview.

Details/Data rate 1 Gbits/s 10 Gbits/s 40 Gbits/s

Product I350 Gigabit Net-
work Connection

82599ES 10-Gigabit
SFI/SFP+ Network
Connection

MT27500 Family
[ConnectX-3]

Vendor Intel Corporation Intel Corporation Mellanox Technolo-
gies

Capacity 1Gbit/s 10Gbits/s 40Gbit/s
Driver igb ixgbe mlx4

7.3 Testing Scenarios

To evaluate the difference between the Application level Round Trip Time (RTT) and
Kernel level RTT four different scenarios are created using the flowgrind traffic generation.
The characteristics of the different applications are drew into a set of values for the traffic
generation parameters. With the help of the traffic generation feature, as discussed in the
section 4.4, the flowgrind generates a network workload, which emulate the application
scenarios as referred in the section 5.8

Minimum Request-response test

The minimum request-response test is used to evaluate the application level RTT and
kernel level RTT with the message size varying from 1KB to 1 MB. In this model,
stochastic traffic generation distribution, where the request size is a constant distribution
with message size varying from 1KB to 1MB and the response size with minimum block
size of 40 bytes from destination to the source is shown in the table 7.2. The minimum
block size consist of only the application header as discussed in the subsection 5.11.3, to
calculate the application level RTT.

Table 7.2: Distributions and parameter values for minimum response scenario.

Parameter Distribution (Values) [Maximum]
Request Size Constant (1KB - 1MB)
Response Size Constant (40B)
Interdeparture Time Constant (0)
Socket Options TCP_NODELAY

65

7 Flowgrind Measurement Results

Request – Response: HTTP

As mentioned in the section 4.3, Hypertext Transfer Protocol (HTTP) is the widely used
and the most prominent application layer protocol in the Internet [26]. Selecting the
parameter for the traffic generation is based on the recommendation provided, for the
HTTP traffic [1] and this represents the actual analysis of HTTP traffic experienced by the
different ISPs. This model is already discussed in the section 4.4. The testing parameter
are acculturated to match the flowgrind traffic generation model. From the table 7.3,
the request size represent the HTTP GET request size and the response size distribution
represents the size of the overall data delivered from the website server [1].

Table 7.3: Distributions and parameter values for the HTTP Scenario.

Parameter Distribution (Values) [Maximum]
Request Size Constant (350)
Response Size Lognormal (µ = 9055, σ = 155) [100000]
Interdeparture Time Constant (0)
Socket Options TCP_NODELAY

Request – Response: SMTP

As mentioned in the RFC 2821 [37], Simple Mail Transfer Protocol (SMTP) is Simple
Mail Transfer Protocol, which establishes the connection between Sender-SMTP and
Receiver-SMTP and similar connection, established between the mail user agent and mail
transfer agent. The typical scenario is that home user sends an email to the standard email
server, and then email server response back, with the constant size. From the technical
document [1], the parameter and distribution of the request size for the emulating SMTP
represents the size of the email sent, approximately 100 email. The flowgrind SMTP
scenario is shown in the table 7.4.

Table 7.4: Distributions and parameter values for the SMTP Scenario.

Parameter Distribution (Values) [Maximum]
Request Size Normal (µ = 8000, σ2 = 1000) [60000]
Response Size Constant (200)
Interdeparture Time Constant (0)
Socket Options TCP_NODELAY

66

7.3 Testing Scenarios

Request – Response: Telnet

The flowgrind traffic emulates the telnet scenario as shown in the table 7.5, where the
data is transferred from a shell session. For instance, typical data transfer in the Linux
through the SSH and telnet. The parameter for the traffic generation is obtained by
calculable analysis on the set of 20 telnet session. The value of the request and the
response size within the distribution represents the size of data sent in the telnet session.
The socket options with flowgrind option TCP_NODELAY disable the Nagle algorithm on
test connection in this model. So all the data are sent out immediately, this is done to
improve the response in the SMTP request-response model.

Table 7.5: Distributions and parameter values for the Telnet Scenario.

Parameter Distribution (Values) [Maximum]
Request Size Normal (µ = 2000, σ2 = 500) [20000]
Response Size Normal (µ = 2000, σ2 = 500) [20000]
Interdeparture Time Constant (0)
Socket Options TCP_NODELAY

Request – Response : Rate – Limited: Streaming Media

The traffic generation modules in the flowgrind emulate the live streaming behavior.
Based on the live dynamic streaming with Flash media server 3.5 [36], live streaming
scenario are generated using total bit rate in Kbps for videos type D1 and HD, with
480p and 720p. For the live video streaming steady throughput and low RTT values are
required for the smooth audio/live steaming. The parameter chosen are based on bit
rate provided in the source, which usually occurs in Faster DSL and Cable modems [36].
A Normal distribution with emulate jitters in the data rate with constant request size,
which introduce variable bitrate. The flowgrind live streaming scenario is shown in the
table 7.6

Table 7.6: Distributions and parameter values for the Streaming Media Scenario.

Parameter Distribution (Values) [Maximum]
Request Size Constant (800)
Response Size Constant (0)
Interdeparture Time Normal (µ = 0.008, σ2 = 0.001)
Socket Options TCP_NODELAY

67

7 Flowgrind Measurement Results

7.4 Test schedule

Each application scenario is conducted for the 1 GBit/s, 10 GBit/s , and 40 GBit/s Network
interface cards. For the minimum request-response test, a total of 18 test case scenarios
generated for the 540 tests, request -response test for HTTP, SMTP, Telnet, and Streaming
Media generates 180 test case in total 720 test cases are generated. The test runs for
20 iteration and test duration is for 30 secs. Each test is used to measure, both the
application level RTT and the Kernel level RTT value. A test iteration run will be left out
from the results evaluation, in case if any one of test fails. A test is considered failed if
the required performance metrics is not found in the log.

All the test cases generate the log file. Test script is developed to run all the test case
scenarios as discussed in the section 7.3, and another test script is developed to parse
the log file for the performance parameter values and produces the results.

7.5 Results

7.5.1 Two way delay

The RTT, the time spent by a packets to travel forth and back in a network connection. For
more information regarding the two way delay refer to the section 5.11.3 and section 6.2.6
for the implementation of RTT in application and in the kernel level. The difference
between the minimum request-response test is the request message size is changed
from 1KB to 1MB in the flowgrind is shown in the figures Nr 7.1, 7.2, 7.3 for the 1Gbit/s,
10Gbit/s and 40 Gbit/s NIC. The application oriented request-response tests - HTTP,
TELNET, SMTP and Media streaming are based on the changes in the request and
response size, and in the distribution. So the message data block size is varied to see
the variation in the application level RTT and Kernel level RTT. Refer to the section 4.4
for more information regarding the traffic generation and from the tables 7.3 and 7.4,
the HTTP makes large computed request-response size, when compared to the SMTP.
The interquartile range of application RTT also increases along the dynamic request and
response size(refer the figure Nr 7.4 and 7.7), because the Application level RTT includes
the latency, which involves network stack and user space system call latency. The stack
modules execution time also cause the overall latency in the measurement.

Application level latency includes the following contributors [21]

• Device drivers over the network adaptors

• Firmware in the network adaptor

• Operating system

• Network stack through which data reaches the application

68

7.5 Results

• Test tool application through which data is calculated and converted into the
performance metrics

Because of which the application level RTT measurement set, results is more deviated,
and it’s RTT value per iteration are skew or asymmetric distribution. The application
level RTT skew distribution results in the tail away and ragged in one particular direction.
The application level RTT values result in the potential and drastic change due to the
skew distribution, where one set of values have a huge impact in the mean and the
standard deviation. So all the results are shown in the median and interquartile range.

1K 2K 4K 8K 16
K

24
K

32
K

40
K

48
K

56
K

64
K

72
K

80
K
10

0K
12

8K
51

2K
76

8K 1M

0.01

0.1

1

10

100

Message Size [Byte]

R
T

T
[m

s
]

App rttKernel rtt

Figure 7.1: Minimum request response test with 1Gbits/s NIC

7.5.2 Performance result

Goodput is the most important performance metric for a network application. The
linux timestamp enabling option in the flowgrind value affect prominently the number
of transaction in the flowgrind and also the throughput value in the flowgrind. As
discussed in the section 6.2.4, which explains the problem that the pselect function
couldn’t distinguish the message error queue, and normal read and write operation.
Because of which poll function is introduced in addition to the pselect function to
distinguish message queue error using the POLLERR. But the price to this solution came
in the form of the performance issue in the flowgrind. For 1Gbit/s NIC, we getting only

69

7 Flowgrind Measurement Results

1K 2K 4K 8K 16
K

24
K

32
K

40
K

48
K

56
K

64
K

72
K

80
K
10

0K
12

8K
51

2K
76

8K 1M

0.01

0.1

1

10

100

Message Size [Byte]

R
T

T
[m

s
]

App rttKernel rtt

Figure 7.2: Minimum request response test with 10 Gbits/s NIC

an average of 180 Mbit/s, when comparing the same setup with the timestamp disabled
option results in 900 Mbit/s for the message size of 16384 byte. This seriously raises the
concern of the development of flowgrind timestamp feature for the RTT measurement.

The strace [22] system calls the trace tool for the flowgrind with and without timestamp
enabled and the result shows that the pselect() has high system call latency of around
549 usec/call in the timestamp enabled flowgrind. In the second scenario, the pselect()
has very lower system call latency of around 35 usec/call without timestamp feature
enabled in the flowgrind. This obviously shows that the flowgrind spends most of the
time in polling inside the pselect(). In order to further debug the issue, all pselect() and
the associated Macro are replaced with the poll function. But the performance issue
remains the same. The changing of the pselect function to poll function doesn’t change
the system call latency.

The flowgrind provides the traffic dumping feature as discussed in the section 5.6 using
the option -M s, through which the users can analyze the dumped file. While using
tcptrace [23] tool to analyze the dumped file shows that the interface spent an idle time
of around 39 Milliseconds, which means that the time difference between the consecutive
packets seen in the direction is relatively higher. This shows that flowgrind spends
maximum system call latency time in poll or pselect function. This reduces the number
of transaction and the throughput in the flowgrind.

70

7.5 Results

1K 2K 4K 8K 16
K

24
K

32
K

40
K

48
K

56
K

64
K

72
K

80
K
10

0K
12

8K
51

2K
76

8K 1M

0.01

0.1

1

10

Message Size [Byte]

R
T

T
[m

s
]

App rttKernel rtt

Figure 7.3: Minimum request response test with 40 Gbits/s NIC

Later the same set up is checked with the 100Mbit/s interface by limiting the speed of
the 1GBbit/s Intel card and turning off the auto-negotiation using the ethtool [16] tool.
The tcptrace analysis in this cause shows that the idle time is 1.3 ms and throughput is
nearly 94 Mbit/s. This analysis shows that getting the timestamp from the NIC causes
the throughput limitation in the flowgrind and this performance issue is discussed in the
analysis section 7.5.3 and further discussion is carried out in the future work section 8.2

7.5.3 Analysis

The figure 7.3 for the minimum request response test shows that the application level
RTT increases from 1KB to 1MB message size. This is because the application level RTT
calculates the overall latency as mentioned in the section 5.11.3, which involves network
stack, operating system and device driver, where the packets spends a significant amount
of time on them. The TCP stack accepts the arbitrary messages that does segmentation
and reassembly, and also might undergo fragmentation of segments at the router, to fit
into the Maximum Transmission Unit (MTU).

In the case of long messages, the RTT undergoes segmentation and fragmentation, in
addition to it, retransmission is also taken into the account. Hence application level RTT
and kernel level RTT increase for the 1MB message size compared to the 1KB message

71

7 Flowgrind Measurement Results

1GB 10GB 40GB
0.01

0.1

1

10

100

Network Interface Controller [Gbits/s]

R
T

T
[m

s
]

App rttKernel rtt

Figure 7.4: HTTP request response test

size. Also this evaluation is used to calculate the round trip at the NIC level, by using
the PTP Hardware clock timestamp option. From the plot 7.2 for the Intel 10 Gbit/s NIC,
the RTT from 1KB to 128KB message block exhibits less variation, but the RTT for the
Mellanox Network Interface card, exhibits high variation than the Intel card. So this
methodology is also used to evaluate the different NIC RTT.

The HTTP and Telnet plots 7.4and 7.6 show that the RTT values of both Application and
Kernel level is get decreased from 1Gbit/s, 10 Gbit/s to 40 Gbit/s, where as the Media
streaming plot 7.5 shows constant RTT, because request size is constant(800 byte) and
interdepature time is a normal distribution.

One of the greatest challenges in this thesis was to find the root cause of the throughput
limitation due to the activation of the timestamp in the Linux kernel. The behavior of
the NIC with 1Gbit/s, 10Gbit/s and 40 Gbit/s are same, where the throughput is limited
as shown in the plot 7.8. But in the 100Mbits NIC, the throughput is not limited. This is
discussed in the previous subsection 7.5.2

Let us discuss the timestamping inside the Linux kernel and in the device driver, for
instance in the Intel driver i40e, after cleaning the rx buffer, the device driver takes the
timestamp value from the PTP hardware clock register values. In the Intel device driver,
the i40e_ptp_tx_hwtstamp() is called to transmit the hardware timestamp value from
the register and later this is converted into the kernel time from the raw PTP hardware

72

7.5 Results

1GB 10GB 40GB
0

1

2

3

4

5

760

780

800

820

840

860

880
T

h
ro

u
g

h
p

u
t

[k
b

p
s

]

Network Interface Controller [Gbits/s]

R
T

T
[m

s
]

ThroughputKernel rtt

Figure 7.5: Streaming Media Rate-Limited test

timestamp, because the timestamp value is simply a 64 bit value which represents the
nanosecond.

Later this value is filled in the struct skb_shared_hwtstamps. This structure is part of the
struct skb_shared_info. The tcp_tx_timestamp() gets this information and share it in
the user space by copying timestamp into the ancillary data. The process in getting the
timestamp value from the PTP hardware clock is added as the overhead and cause the
through put limitation in the flowgrind.

From the section 7.5.2, where the tcptrace output shows that the NIC spends around 39
ms as the idle time and also the pselect and poll system call latency also increased to
543 microsecs per call, when the timestamp is enabled in the flowgrind. Both the poll
and the select system call handle the file descriptor in a linear manner. So the increase
in the file descriptor causes them to go slower. In the timestamp enabled flowgrind,
these system calls are waiting for the timestamping events that takes a definite time and
causes a bottleneck

73

7 Flowgrind Measurement Results

1GB 10GB 40GB
0.01

0.1

1

10

Network Interface Controller [Gbits/s]

R
T

T
[m

s
]

App rttKernel rtt

Figure 7.6: TELNET request response test

7.6 Conclusion

In this chapter a comprehensive evaluation of application level RTT and kernel level RTT
is done using the flowgrind. It is explained in details with the minimum request-response
and also by using the stochastic traffic generation to emulate the application scenarios
for the HTTP, Telnet, SMTP and streaming media. The difference between the wire time
and host time are discussed in the section 2.5.3 and here it is examined using the kernel
level RTT and application level RTT. In addition to it, this chapter also discusses the
performance issue due to the timestamp option enabled in the flowgrind.

74

7.6 Conclusion

1GB 10GB 40GB
0.1

1

10

100

Network Interface Controller [Gbits/s]

R
T

T
[m

s
]

App rttKernel rtt

Figure 7.7: SMTP request response test

100MB 1GB 10GB 40GB
1

10

100

1000

10000

100000

Network Interface Controller [Gbits/s]

T
h

ro
u

g
h

p
u

t
[M

b
p

s
]

Without timestampWith timestamp

Figure 7.8: Goodput Measurement test

75

8 Conclusion

This chapter completes the thesis work in two parts: a summary of the objective of the
thesis work and the achieved results, and some outstanding question to answer in the
possible future work.

8.1 Summary

The initial objective of the Master thesis work is to find the latency measurement in
the network, based on the standardization mentioned in the Internet Engineering Task
Force (IETF) and to evaluate the latency on the basis of realistic and diverse internet
traffic. The existing tools for the Round Trip Time (RTT) measurement are not quite
standardized and didn’t meet the requirements as mentioned in the standard working
groups in the IETF. But flowgrind, the TCP/IP performance measurement tool extends the
framework for the latency measurement and also provides the distributed architecture,
unlike the other measurement tools, which provides only the client-server architecture.
In addition flowgrind provides the benefit of using the stochastic traffic generation. The
stochastic traffic generation is used to emulate the internet traffic, which other tools
couldn’t provide. So the latency measurement module was decided to be developed in
the flowgrind.

The developed latency module in the flowgrind uses the timestamp feature in the Linux
kernel to get the hardware timestamp values from the Network Interface Controller (NIC)
and also to get the acknowledgement for the data sent from the NIC. The flowgrind
utilizes the Precision Time Protocol (PTP) hardware clock present in the hardware
timestamp enabled NIC, and to get the timestamp values through the device drivers.
The developed latency measurement gives the RTT from the wire, which is similar to
the term “Wire Time” as mentioned in the RFC 2679 and also discussed in details in the
section 2.5.3. This extension in flowgrind gives the ability to evaluate the RTT measured
in the application level by using the request-response framework, which is discussed in
the section 5.11.3. The Application level RTT which is show in the flowgrind is similar
to the term “Host time”, which is also discussed in the section 2.5.3. So evaluating both
the application level RTT and kernel level RTT, gives the details regarding the latency
handling in the firmware in network adapters, device drivers, OS, Network stack and
Application in the user space.

In this thesis, we have achieved the measurement of the RTT from the Linux kernel
and evaluate it along the with the application level RTT measurement in the different

77

8 Conclusion

scenarios, using the stochastic traffic generation feature in the flowgrind. The traffic
generation emulated the Hypertext Transfer Protocol (HTTP), Telnet, Simple Mail
Transfer Protocol (SMTP) and streaming media. In all these application scenarios, the
RTT measurement is important for interactive application like remote shell sessions
(discussed in the section 7.3), media streaming like cable modems (discussed in the
section 7.3). The flowgrind demonstrates new technique to measure the latency, by
following the procedures provided in the IETFs IP Performance Metrics (IPPM) working
group and achieved the precise hardware level RTT measurement than the Application
level RTT measurement.

8.2 Future work

There are concerns regarding the performance of flowgrind because of the timestamp
feature enabled by it in the Linux kernel, which affect the throughput and number of
transaction performance metrics measurement for the High speed NIC by increasing
the system call latency in the polling function like poll() and select(). The timestamp
feature enabled in the flowgrind cause the overhead, because of the reading hardware
timestamp value from the PTP hardware clock register and copying the data into the
sk_buff and then later to the ancillary data. This is the factor of concern for the high
speed Network Interface card for example 1Gbit/s, 10Gbit/s and 40 Gbit/s. The flowgrind
with the timestamp feature in the 100 Mbit/s as discussed in the section 7.5.2 shows that
timestamp value causes the overhead only for the high speed NIC.

So there should be a light weight approach for the reading the PTP hardware clock
timestamp values from the PTP registers, so that the timestamp records doesn’t increases
the idle time in the interface, that is the time gap between the two consecutive packets
in the interface which is discussed in the section 7.5.2. By achieving this in future, it is
possible to evaluate the goodput vs RTT, which is the most interesting evaluation to
do. So far, there are no tools developed to measure the latency in the heavy work load
condition. Tool like netperf also sends only 1 byte of data as the request-response model
to get the RTT by using the number of transaction as discussed in the section 5.11.2. In
addition to it, exploring the methods to access the file descriptor events through polling,
which currently becomes a bottleneck in the high speed Network Interface Cards.

78

List of Abbreviations

BMWG Benchmarking Methodology Working Group

BTC Bulk Transport Capacity

CPU Central Processing Unit

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DSL Digital Subscriber Line

ECN Explicit Congestion Notification

FTP File Transfer Protocol

GB Giga Byte

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

IEEE Institute of Electrical and Electronic Engineers

IETF Internet Engineering Task Force

IPPM IP Performance Metrics

MSS Maximum Segment Size

MTU Maximum Transmission Unit

NIC Network Interface Controller

NTP Network Time Protocol

OS Operating System

OSI Open System Interconnection

OWAMP One-way Active Measurement Protocol

PTP Precision Time Protocol

RAM Random Access Memory

RFC Request for Comment

79

List of Abbreviations

RPC Remote Procedure Call

RTO Retransmission Timeout

RTT Round Trip Time

SCTP Stream Control Transmission Protocol

SMTP Simple Mail Transfer Protocol

SSH Secure Shell

TCP Transmission Control Protocol

TELNET Teletype Network

TWAMP Two-way Active Measurement Protocol

UDP User Datagram Protocol

VoIP Voice over Internet Protocol

WMN Wireless Mesh Network

XML Extensive Markup Language

XML-RPC Extensible Markup Language Remote Procedure Call

80

Bibliography

[1] 3rd Generation Partnership Project 2 "3GPP2". cdma 2000 Evaluation Methodology,
Revision 0. 2004. url: http://www.3gpp2.org/Public_html/specs/C.R1002-
0_v1.0_041221.pdf (visited on 12/10/2004).

[2] S. Van den Berghe A. Morton. Framework for IP Performance Metrics. RFC 5835. RFC
Editor, Apr. 2010. url: https://tools.ietf.org/html/rfc5835.

[3] Mohammad Alizadeh et al. ‘Less is More: Trading a Little Bandwidth for Ultra-low
Latency in the Data Center’. In: Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation. NSDI’12. San Jose, CA: USENIX Association,
2012, pp. 19–19. url: http://dl.acm.org/citation.cfm?id=2228298.2228324.

[4] G. Almes, S. Kalidindi and M. Zekauskas. A One-way Delay Metric for IPPM. RFC
2679. RFC Editor, Sept. 1999. url: https://tools.ietf.org/rfc/rfc2679.txt.

[5] G. Almes, S. Kalidindi and M. Zekauskas. A Round-trip Delay Metric for IPPM. RFC
2681. RFC Editor, Sept. 1999. url: https://tools.ietf.org/html/rfc2681.

[6] H. Alvestrand. A Mission Statement for the IETF. RFC 3935. RFC Editor, Oct. 2004.
url: https://tools.ietf.org/html/rfc3935.

[7] IEEE 802.3 100 Gb/s Backplane and Copper Cable Study Group. 100 Gb/s Backplane
and Copper Cable Task Force Documents. url: http://www.ieee802.org/3/bj/.

[8] S. Bradner. Benchmarking Terminology for Network Interconnection Devices. RFC 1242.
RFC Editor, July 1991. url: https://www.ietf.org/rfc/rfc1242.txt.

[9] D. Pinkas C. Adams P. Cain. Internet X.509 Public Key Infrastructure Time-Stamp
Protocol (TSP). RFC 3161. RFC Editor, Aug. 2001. url: https://www.ietf.org/
rfc/rfc3161.txt.

[10] J. Snell C. Grinstead. Introduction to Probability. url: https://www.dartmouth.
edu/~chance/teaching_aids/books_articles/probability_book/amsbook.
mac.pdf.

[11] S. Cheshire. White paper: Latency and the quest for interactivity. Tech. rep. Volpe Welty
Asset Management, L.L.C., Nov. 1996.

[12] Cisco. Cisco Catalyst 2960 Series Switches. url: http://www.cisco.com/c/en/us/
products/switches/catalyst-2960-series-switches/index.html.

[13] Cisco. Using Test TCP (TTCP) to Test Throughput. url: http://www.cisco.com/
c/en/us/support/docs/dial-access/asynchronous-connections/10340-
ttcp.html.

81

http://www.3gpp2.org/Public_html/specs/C.R1002-0_v1.0_041221.pdf
http://www.3gpp2.org/Public_html/specs/C.R1002-0_v1.0_041221.pdf
https://tools.ietf.org/html/rfc5835
http://dl.acm.org/citation.cfm?id=2228298.2228324
https://tools.ietf.org/rfc/rfc2679.txt
https://tools.ietf.org/html/rfc2681
https://tools.ietf.org/html/rfc3935
http://www.ieee802.org/3/bj/
https://www.ietf.org/rfc/rfc1242.txt
https://www.ietf.org/rfc/rfc3161.txt
https://www.ietf.org/rfc/rfc3161.txt
https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf
https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf
https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf
http://www.cisco.com/c/en/us/products/switches/catalyst-2960-series-switches/index.html
http://www.cisco.com/c/en/us/products/switches/catalyst-2960-series-switches/index.html
http://www.cisco.com/c/en/us/support/docs/dial-access/asynchronous-connections/10340-ttcp.html
http://www.cisco.com/c/en/us/support/docs/dial-access/asynchronous-connections/10340-ttcp.html
http://www.cisco.com/c/en/us/support/docs/dial-access/asynchronous-connections/10340-ttcp.html

Bibliography

[14] R. Cochran, C. Marinescu and C. Riesch. ‘Synchronizing the Linux system time to a
PTP hardware clock’. In: Precision Clock Synchronization for Measurement Control and
Communication (ISPCS), 2011 International IEEE Symposium on. Sept. 2011, pp. 87–92.
doi: 10.1109/ISPCS.2011.6070158.

[15] Richard Cochran, Cristian Marinescu and Christian Riesch. ‘Synchronizing the
Linux system time to a PTP hardware clock’. In: Precision Clock Synchronization for
Measurement Control and Communication (ISPCS), 2011 International IEEE Symposium
on. IEEE. 2011, pp. 87–92.

[16] ethtool developers. ethtool - utility for controlling network drivers and hardware. url:
https://www.kernel.org/pub/software/network/ethtool/.

[17] libpcap developers. lipcap. url: http://www.tcpdump.org/.

[18] Linux PTP developers. The Linux PTP Project. url: http://linuxptp.sourceforge.
net/.

[19] openswan developers. openswan,IPsec implementation for Linux. url: https://www.
openswan.org/.

[20] PTP daemon developers. PTP daemon. url: http://ptpd.sourceforge.net/.

[21] Qlogic developers. Introduction to Ethernet Latency, white paper. 2014. url: http://
www.qlogic.com/Resources/Documents/TechnologyBriefs/Adapters/Tech_
Brief_Introduction_to_Ethernet_Latency.pdf.

[22] strace developers. strace system call tracer - debugging tool. url: http://sourceforge.
net/projects/strace/.

[23] tcptrace developers. tcptrace - tcp dump analysis tool. url: http://www.tcptrace.
org/.

[24] D.Winer. XML-RPC Specification. 1999. url: http://xmlrpc.scripting.com/spec.

[25] A. Morton E. Stephan L. Liang. IP Performance Metrics (IPPM): Spatial and Multicast.
RFC 5644. RFC Editor, Oct. 2009. url: https://tools.ietf.org/html/rfc5644.

[26] Rodger Edwards. ‘Intelligent Buildings and Building Automation’. In: Construction
Management and Economics 29.2 (2011), pp. 216–217. doi: 10.1080/01446193.2010.
542470. eprint: http://www.tandfonline.com/doi/pdf/10.1080/01446193.
2010.542470. url: http://www.tandfonline.com/doi/abs/10.1080/01446193.
2010.542470.

[27] Free Software Foundation. GSL - GNU Scientific Library. url: http://www.gnu.
org/software/gsl/gsl.html.

[28] FUJITSU. FUJITSU Server PRIMERGY RX100 S8 Mono socket 1U rack server. 2014.
url: http://www.fujitsu.com/tw/Images/ds-py-rx100-s8.pdf.

[29] W. Gay. Linux Socket Programming by Example. By Example Series. Que, 2000. isbn:
9780789722416. url: http://books.google.de/books?id=xrhGOP91ZWkC.

[30] W3C Working Group. Extensible Markup Language (XML). url: http://www.w3.
org/XML/.

82

http://dx.doi.org/10.1109/ISPCS.2011.6070158
https://www.kernel.org/pub/software/network/ethtool/
http://www.tcpdump.org/
http://linuxptp.sourceforge.net/
http://linuxptp.sourceforge.net/
https://www.openswan.org/
https://www.openswan.org/
http://ptpd.sourceforge.net/
http://www.qlogic.com/Resources/Documents/TechnologyBriefs/Adapters/Tech_Brief_Introduction_to_Ethernet_Latency.pdf
http://www.qlogic.com/Resources/Documents/TechnologyBriefs/Adapters/Tech_Brief_Introduction_to_Ethernet_Latency.pdf
http://www.qlogic.com/Resources/Documents/TechnologyBriefs/Adapters/Tech_Brief_Introduction_to_Ethernet_Latency.pdf
http://sourceforge.net/projects/strace/
http://sourceforge.net/projects/strace/
http://www.tcptrace.org/
http://www.tcptrace.org/
http://xmlrpc.scripting.com/spec
https://tools.ietf.org/html/rfc5644
http://dx.doi.org/10.1080/01446193.2010.542470
http://dx.doi.org/10.1080/01446193.2010.542470
http://www.tandfonline.com/doi/pdf/10.1080/01446193.2010.542470
http://www.tandfonline.com/doi/pdf/10.1080/01446193.2010.542470
http://www.tandfonline.com/doi/abs/10.1080/01446193.2010.542470
http://www.tandfonline.com/doi/abs/10.1080/01446193.2010.542470
http://www.gnu.org/software/gsl/gsl.html
http://www.gnu.org/software/gsl/gsl.html
http://www.fujitsu.com/tw/Images/ds-py-rx100-s8.pdf
http://books.google.de/books?id=xrhGOP91ZWkC
http://www.w3.org/XML/
http://www.w3.org/XML/

Bibliography

[31] Seung-Sun Hong and S. Felix Wu. ‘On Interactive Internet Traffic Replay’. In:
Proceedings of the 8th International Conference on Recent Advances in Intrusion Detection.
RAID’05. Seattle, WA: Springer-Verlag, 2006, pp. 247–264. isbn: 3-540-31778-3, 978-
3-540-31778-4. doi: 10.1007/11663812_13. url: http://dx.doi.org/10.1007/
11663812_13.

[32] G. Huston. Measuring IP Network Performance at The Internet Protocol Journal, Cisco
Systems. 2003. url: http://www.cisco.com/web/about/ac123/ac147/archived_
issues/ipj_6-1/ipj_6-1.pdf.

[33] Iperf. Iperf performance performance tool. url: https://iperf.fr/.

[34] ixia. IxNetwork™ IxCloudPerf QuickTest. DATA SHEET 915190601. ixia, Oct. 2013.
url: http://www.ixiacom.com/sites/default/files/resources/datasheet/
ixnetwork-ixcloudperf-quicktest.pdf.

[35] K. Yum K. Hedayat R. Krzanowski. A Two-Way Active Measurement Protocol
(TWAMP). RFC 5357. RFC Editor, Oct. 2008. url: https://tools.ietf.org/rfc/
rfc5357.txt.

[36] A. Kapoor. Live dynamic streaming with Flash Media Server 3.5. 2009. url: http:
//www.adobe.com/devnet/adobe-media-server/articles/dynstream_live.
html (visited on 09/12/2009).

[37] J. Klensin. Simple Mail Transfer Protocol. RFC 2821. RFC Editor, Apr. 2001. url:
https://tools.ietf.org/html/rfc2821.

[38] Zhi Li et al. ‘A Hardware Time Stamping Method for PTP Messages Based on
Linux system’. In: TELKOMNIKA Indonesian Journal of Electrical Engineering 11.9
(2013), pp. 5105–5111.

[39] M. Allman M. Mathis. A Framework for Defining Empirical Bulk Transfer Capacity
Metrics. RFC 3148. RFC Editor, July 2001. url: https://tools.ietf.org/rfc/
rfc3148.txt.

[40] NetApp ATG Members. Advanced Technology Group. url: https://atg.netapp.
com/.

[41] Netperf. Netperf performance performance tool. url: http://www.netperf.org/
netperf/.

[42] NUTTCP. NUTTCP performance measurement tool. url: http://nuttcp.net/
nuttcp/beta/.

[43] P. Ohly. Linux Document for timestamping (version 3.19). url: https://www.kernel.
org/doc/Documentation/networking/timestamping.txt.

[44] Diego Ongaro et al. ‘Fast Crash Recovery in RAMCloud’. In: Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles. SOSP ’11. Cascais,
Portugal: ACM, 2011, pp. 29–41. isbn: 978-1-4503-0977-6. doi: 10.1145/2043556.
2043560. url: http://doi.acm.org/10.1145/2043556.2043560.

83

http://dx.doi.org/10.1007/11663812_13
http://dx.doi.org/10.1007/11663812_13
http://dx.doi.org/10.1007/11663812_13
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_6-1/ipj_6-1.pdf
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_6-1/ipj_6-1.pdf
https://iperf.fr/
http://www.ixiacom.com/sites/default/files/resources/datasheet/ixnetwork-ixcloudperf-quicktest.pdf
http://www.ixiacom.com/sites/default/files/resources/datasheet/ixnetwork-ixcloudperf-quicktest.pdf
https://tools.ietf.org/rfc/rfc5357.txt
https://tools.ietf.org/rfc/rfc5357.txt
http://www.adobe.com/devnet/adobe-media-server/articles/dynstream_live.html
http://www.adobe.com/devnet/adobe-media-server/articles/dynstream_live.html
http://www.adobe.com/devnet/adobe-media-server/articles/dynstream_live.html
https://tools.ietf.org/html/rfc2821
https://tools.ietf.org/rfc/rfc3148.txt
https://tools.ietf.org/rfc/rfc3148.txt
https://atg.netapp.com/
https://atg.netapp.com/
http://www.netperf.org/netperf/
http://www.netperf.org/netperf/
http://nuttcp.net/nuttcp/beta/
http://nuttcp.net/nuttcp/beta/
https://www.kernel.org/doc/Documentation/networking/timestamping.txt
https://www.kernel.org/doc/Documentation/networking/timestamping.txt
http://dx.doi.org/10.1145/2043556.2043560
http://dx.doi.org/10.1145/2043556.2043560
http://doi.acm.org/10.1145/2043556.2043560

Bibliography

[45] Peter Orosz, Tamas Skopko and Jozsef Imrek. ‘Performance Evaluation of the Nano-
second Resolution Timestamping Feature of the Enhanced Libpcap’. In: ICSNC
2011, The Sixth International Conference on Systems and Networks Communications.
2011, pp. 220–225.

[46] John Ousterhout et al. ‘The Case for RAMClouds: Scalable High-performance
Storage Entirely in DRAM’. In: SIGOPS Oper. Syst. Rev. 43.4 (Jan. 2010), pp. 92–105.
issn: 0163-5980. doi: 10.1145/1713254.1713276. url: http://doi.acm.org/10.
1145/1713254.1713276.

[47] Zhao Rongcai and Zhang Shuo. ‘Network traffic generation: A combination of
stochastic and self-similar’. In: Advanced Computer Control (ICACC), 2010 2nd
International Conference on. Vol. 2. Mar. 2010, pp. 171–175. doi: 10.1109/ICACC.
2010.5487204.

[48] J. McQuaid S. Bradner. Benchmarking Terminology for Network Interconnection Devices.
RFC 2544. RFC Editor, Mar. 1999. url: https://www.ietf.org/rfc/rfc2544.txt.

[49] A. Karp S. Shalunov B. Teitelbaum. A One-way Active Measurement Protocol
(OWAMP). RFC 4656. RFC Editor, Sept. 2006. url: https://tools.ietf.org/rfc/
rfc4656.txt.

[50] S. Shalunov. thrulay-hd. url: http://thrulay-hd.sourceforge.net/.

[51] Stanislav Shalunov. thrulay: Network Capacity and Delay Tester. url: http://www.
internet2.edu/presentations/fall04/20040927-E2E-Shalunov.pdf.

[52] Stanislav Shalunov. thrulay: Network Tester. url: http://www.internet2.edu/
presentations/jt2006feb/20060207-thrulay-shalunov.pdf.

[53] M. Stiemerling. IP Performance Metrics (ippm) charter-ietf-ippm-05. url: https:
//datatracker.ietf.org/wg/ippm/charter/.

[54] SuperMicro. SuperServer. url: http://www.supermicro.com/products/system/.

[55] H. Frystyk T. Berners-Lee R. Fielding. Hypertext Transfer Protocol – HTTP/1.0. United
States, 1996.

[56] NetApp Product team. NetApp EF540 Flash Array. url: http://www.netapp.com/
us/products/storage-systems/flash-ef540/.

[57] NetApp Product team. NetApp FAS3200 Series. url: http://www.netapp.com/us/
products/storage-systems/fas3200/index.aspx.

[58] Thrulay. Thrulay performance performance tool. url: http://sourceforge.net/
projects/thrulay/.

[59] C. Leres V. Jacobson and S. McCanne. tcpdump. url: http://www.tcpdump.org/.

[60] J. Mahdavi V. Paxson G. Almes. Framework for IP Performance Metrics. RFC 2330.
RFC Editor, May 1998. url: https://tools.ietf.org/html/rfc2330.

[61] P.J. Winzer et al. ‘100-Gb/s DQPSK Transmission: From Laboratory Experiments to
Field Trials’. In: Lightwave Technology, Journal of 26.20 (Oct. 2008), pp. 3388–3402.
issn: 0733-8724. doi: 10.1109/JLT.2008.925710.

84

http://dx.doi.org/10.1145/1713254.1713276
http://doi.acm.org/10.1145/1713254.1713276
http://doi.acm.org/10.1145/1713254.1713276
http://dx.doi.org/10.1109/ICACC.2010.5487204
http://dx.doi.org/10.1109/ICACC.2010.5487204
https://www.ietf.org/rfc/rfc2544.txt
https://tools.ietf.org/rfc/rfc4656.txt
https://tools.ietf.org/rfc/rfc4656.txt
http://thrulay-hd.sourceforge.net/
http://www.internet2.edu/presentations/fall04/20040927-E2E-Shalunov.pdf
http://www.internet2.edu/presentations/fall04/20040927-E2E-Shalunov.pdf
http://www.internet2.edu/presentations/jt2006feb/20060207-thrulay-shalunov.pdf
http://www.internet2.edu/presentations/jt2006feb/20060207-thrulay-shalunov.pdf
https://datatracker.ietf.org/wg/ippm/charter/
https://datatracker.ietf.org/wg/ippm/charter/
http://www.supermicro.com/products/system/
http://www.netapp.com/us/products/storage-systems/flash-ef540/
http://www.netapp.com/us/products/storage-systems/flash-ef540/
http://www.netapp.com/us/products/storage-systems/fas3200/index.aspx
http://www.netapp.com/us/products/storage-systems/fas3200/index.aspx
http://sourceforge.net/projects/thrulay/
http://sourceforge.net/projects/thrulay/
http://www.tcpdump.org/
https://tools.ietf.org/html/rfc2330
http://dx.doi.org/10.1109/JLT.2008.925710

Bibliography

[62] A. Zimmermann, A. Hannemann and T. Kosse. ‘Flowgrind - A New Performance
Measurement Tool’. In: Global Telecommunications Conference (GLOBECOM 2010),
2010 IEEE. Dec. 2010, pp. 1–6. doi: 10.1109/GLOCOM.2010.5684167.

85

http://dx.doi.org/10.1109/GLOCOM.2010.5684167

List of Figures

2.1 One-way active measurement protocol architecture 12
2.2 One-way active measurement protocol client and server architecture . . 13
2.3 Two-way active measurement protocol client and server architecture . . 14

3.1 Thrulay example output: TCP bulk transfer test 17
3.2 NUTTCP example output: TCP bulk transfer test 18
3.3 Iperf example output: TCP bulk transfer test 19
3.4 Netperf example output: TCP bulk transfer test 19

5.1 Flowgrind example output: Measurement without kernel output 28
5.2 Flowgrind example output: Measurement with kernel output 28
5.3 Flowgrind architecture . 29
5.4 Flowgrind application header . 36
5.5 Flowgrind general options . 42
5.6 Flowgrind flow options . 43
5.7 Flowgrind socket options . 44
5.8 Flowgrind traffic options . 45

6.1 Ancillary data object in Linux timestamping 53
6.2 Flowgrind latency measurement . 60
6.3 Flowgrind measurement output: With Kernel level RTT and Application

level RTT . 61

7.1 Minimum request response test with 1Gbits/s NIC 69
7.2 Minimum request response test with 10 Gbits/s NIC 70
7.3 Minimum request response test with 40 Gbits/s NIC 71
7.4 HTTP request response test . 72
7.5 Streaming Media Rate-Limited test . 73
7.6 TELNET request response test . 74
7.7 SMTP request response test . 75
7.8 Goodput Measurement test . 75

87

List of Tables

3.1 Performance measurement tools feature matrix 20

5.1 Probability distribution available in flowgrind. 35
5.2 Performance measurement tools feature matrix with flowgrind added . 41

7.1 Ethernet Interface Overview. 65
7.2 Distributions and parameter values for minimum response scenario. . . 65
7.3 Distributions and parameter values for the HTTP Scenario. 66
7.4 Distributions and parameter values for the SMTP Scenario. 66
7.5 Distributions and parameter values for the Telnet Scenario. 67
7.6 Distributions and parameter values for the Streaming Media Scenario. . 67

89

	Introduction
	Motivation
	Objective
	Approach
	Overview

	Standardization of performance
	IETF
	BMWG
	IPPM
	Bulk Transport Capacity (BTC) – RFC 3148
	One way delay
	One way delay methodology
	Errors and uncertainty
	Wire time vs Host timestamp

	Two way delay
	Two way delay measurement methodology
	Errors and uncertainty

	Measurement protocol
	One-Way Active Measurement Protocol (OWAMP) – RFC 4656
	Two-Way Active Measurement Protocol (TWAMP) -RFC 5357

	Conclusion

	Performance tools
	ICMP Ping
	Thrulay
	TTCP and NUTTCP
	Iperf
	Netperf
	Drawback of existing performance tools
	Conclusion

	Traffic Generation model
	Introduction to Traffic Generation model
	Mathematical Background
	Traffic model
	Traffic generation use cases
	Conclusion

	Flowgrind
	Introduction to flowgrind
	History
	Flowgrind architecture
	Flowgrind interprocess communication
	Command line arguments
	Traffic dumping
	Flow scheduling
	Traffic Generation
	Rate - limited flows
	Work flow in the flowgrind
	Controller and Data connection
	Test flow operation
	Read and write operation
	Controller reporting procedure

	Performance metrics measurement
	Throughput
	Round-trip time
	RTT measurement in the flowgrind

	Conclusion

	Implementation
	Time stamping in Linux
	Linux Kernel Timestamping control Interface
	Time stamping generation inside the kernel
	Reporting the timestamp value
	Additional options in the timestamping
	Bytestream (TCP) timestamp in Linux
	Data Interpretation
	Hardware Timestamp

	Latency measurement in Flowgrind
	Enabling the Hardware timestamping
	Enabling the time stamping feature in Linux
	Timestamping procedure in the flowgrind
	Processing the timestamp data
	Processing timestamp values
	Round trip time calculation

	Conclusion

	Flowgrind Measurement Results
	Methodology
	Testbest
	Testing Scenarios
	Test schedule
	Results
	Two way delay
	Performance result
	Analysis

	Conclusion

	Conclusion
	Summary
	Future work

