
Technische Universität Berlin

Institut für Telekommunikationssysteme

Internet Network Architectures

Fakultät IV
FG INET/MAR 4-4

Marchstr, 23
10587 Berlin

http://www.inet.tu-berlin.de

Master Thesis

Investigating a reordering robust TCP

for storage cluster and data center use.

Puneeth Nanjundaswamy

Matriculation Number: 0359759
01.06.2015

Supervised by:
Prof. Dr. Anja Feldmann, Ph.D

Dr. Lars Eggert, Ph.D
Dr. Alexander Zimmermann, Ph.D

http://www.inet.tu-berlin.de

NetApp Germany GmbH
Sonnenallee 1

85551 Kirchheim bei München

This dissertation originated in cooperation with the NetApp Germany GmbH.

I would like to take this opportunity to thank my supervisor at NetApp, Dr. Lars Eggert
for providing me with the wonderful opportunity to work on my master thesis at NetApp,
Munich and for all the great support. It was a wonderful experience working with you
and I thoroughly enjoyed it. I would also like to thank Dr. Alexander Zimmermann for
providing me with all the support and motivation while working on my master thesis.
Furthermore, I would also like to thank Dr. Douglas Santry for all the support and
helpful advices during my stint at NetApp.

Acknowledgement

I would like to thank Prof. Anja Feldmann for providing me with the opportunity to
work on my master thesis at INET, TU Berlin. I would also like to thank Dr. Prométhé
Spathis at UPMC Paris, Nina Reinecke at TU Berlin and all the members of EIT ICT
Labs for their continuous support during my Masters program.

I would like to dedicate this work to my family for their continuous unwavering support,
my best friends Sunil C Ramanarayanan, Nakul Ganesh for being there and helping me
and the entire Erasmus group from Paris.

Hiermit versichere ich, dass ich diese Arbeit selbstständig verfasst und keine an-

deren als die angegebenen Quellen und Hilfsmittel benutzt habe.

I hereby declare that I have created this work completely on my own and used no

other sources or tools than the ones listed.

Berlin, 01.06.2015

. .

(Signature Puneeth Nanjundaswamy)

Abstract

Transmission control protocol (TCP) is a highly reliable host-to-host protocol which en-
sures reliable transfer of data over unreliable internet. TCP must recover from damaged,
lost, duplicated and out-of-order data. TCP sender retransmits a data segment upon
receiving three duplicate acknowledgements(ACK) from the receiver. Since TCP does
not know whether a duplicate ACK is caused by a lost segment or just a reordering of
segments, it waits for 3 duplicate ACKs to be received. It is assumed that if there is
just a reordering of the segments, there will be only one or two duplicate ACKs before
the reordered segment is processed, which will then generate a new ACK.

However, the above assumption is not valid any more as numerous studies in the wild
internet have found that packet reordering is not rare and that waiting for three dupli-
cate ACKs might not be sufficient to disambiguate packet reordering and packet loss.
Retransmission of data segments also results in the decrease of the sender’s through-
put. Thus an efficient reordering detection and reaction mechanism is needed to avoid
spurious retransmissions. Avoiding spurious retransmissions reduces the unnecessary
decrease in the sender’s throughput, there by improving the performance of TCP.

This thesis describes packet reordering and its metrics in detail. Furthermore, it studies
the performance impacts of packet reordering on TCP. It then investigates the various
approaches by which TCP can be made robust against packet reordering with focus on
the Linux’s implementation, Non congestion to robustness (NCR) and adaptive NCR al-
gorithm (aNCR) of detecting and handling packet reordering. The algorithms are imple-
mented in the Linux kernel and evaluated under various conditions of packet reordering
and under multiple traffic conditions to determine the best performing algorithm under
all scenarios.

Zusammenfassung

TCP (Transmission control protocol) ist ein Datentransportprotokoll, das Daten zu-
verlässlich durch das unzuverlässliche Internet übermittelt. TCP musst sich erholen
können von beschädigten, verlorenen, duplizierten Daten und von Daten, die in falscher
Reihenfolge auftreten. Der TCP-Sender schickt einen Datensegment zum zweiten Mal,
wenn vom Empfänger 3 Duplikat-Meldungen (duplicate acknowledgement, kurz ACK)
gekommen sind. DA TCP nicht erkennen kann, ob ein ACK durch ein verlorenes Seg-
ment oder durch einer falschen Reihenfolge von Segmenten verursacht wird, wartet es
auf drei ACKs. Angenommen wird, dass es im Falle einer Umordnung von Segmenten
nur zu ein oder zwei Duplikat-ACKs kommt bevor das verschobene Segment verarbeitet
wird, was wiederum ein neues ACK generiert.

Die obige Annahme ist jedoch nicht mehr gültig, widerlegt durch mehrere Studien, die
rausgefunden haben, dass Paketumordnung keine seltene Erscheinung ist, und daher das
Warten auf nur drei Duplikat-ACKs nicht ausreicht um zwischen Paketverlust und Pake-
tumordnung zu unterscheiden. Neuübermittlung von Datensegmenten resultiert auch in
der Verringerung des Senders Durchsatzes. Ergo wird eine effiziente Methode zur Erken-
nung Verarbeitung von Neuordnung benötigt, um obsolete Wiederversenden von Daten
zu vermeiden. Gelingt dies, wird der Durchsatz, und damit die Leistung des TCP erhe-
blich verbessert.

Diese Arbeit beschreibt detailliert Paketumordnung und deren Metrik. Darüberhin-
aus werden Auswirkungen auf die Leistung durch Paketumordnungen studiert. Ver-
schiedene Lösungsansätze werden dann auf ihre Fähigkeit untersucht, TCP robuster
gegen Paketumordnung zu machen, mit Fokus auf die Linuximplementation, NCR- und
aNCR-Algorithmen für die Erkennung und Verarbeitung von Paketumordnung. Die für
den Linux kernel Implementierten Algorithmen werden unter verschiedene Bedingungen
auf Paketumordnung und Datenverkehr ausgewertet, um den am besten arbeitenden
Algorithmus zu bestimmen.

Contents

List of Figures xv

Listings xvii

List of Tables xix

Definitions xxi

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Thesis outline . 3

2 Background and related work 5
2.1 Packet reordering . 5

2.1.1 Reordering extent . 6
2.2 Packet reordering in the internet . 6
2.3 TCP extensions . 8

2.3.1 TCP selective acknowledgement (SACK) option 8
2.3.2 TCP duplicate selective acknowledgement (DSACK) option 8
2.3.3 TCP timestamp option . 9
2.3.4 Deployment trends of TCP options 9

2.4 Impact of packet reordering on TCP . 9
2.4.1 Forward path reordering . 10
2.4.2 Reverse path reordering . 11
2.4.3 Forward and reverse path reordering 12

2.5 Impact on future technologies . 12
2.6 Approaches to make TCP robust to packet reordering 12

3 TCP-NCR and TCP-aNCR 15
3.1 Extended limited transmit (ELT) . 15

3.1.1 Careful limited transmit (CF ELT) 15
3.1.2 Aggresive limited transmit (AG ELT) 16
3.1.3 Hybrid limited transmit (HY ELT) 17

3.2 TCP-NCR . 18
3.2.1 Algorithm . 18
3.2.2 Drawbacks of TCP-NCR . 21

3.3 TCP-adaptive NCR . 22
3.3.1 Reordering detection . 22
3.3.2 Reordering reaction . 26

4 Measurement Setup 33
4.1 Testbed . 33
4.2 Traffic shaping and policing . 35
4.3 Packet reordering in Linux kernel . 36
4.4 Pluggable framework for reordering algorithms 37
4.5 Flowgrind: Network performance tool . 38

5 Evaluation and Discussion 41
5.1 Lower data rates . 41

5.1.1 Scenario 1: Performance without packet reordering under different
bottleneck bandwidths . 41

5.1.2 Scenario 2: Performance with packet reordering under different
bottlenecks . 44

5.1.3 Scenario 3: Performance with packet reordering under varying RTTs 48
5.1.4 Scenario 4: Performance with varying reordering rate 48
5.1.5 Scenario 5: Performance with varying reordering delay 52
5.1.6 Scenario 6: Performance with reverse path loss 56

5.2 Data center environment . 58
5.2.1 Scenario 1: Performance without packet reordering. 59
5.2.2 Scenario 2: Performance under mild packet reordering. 59
5.2.3 Scenario 3: Performance under varying reordering rates. 60

6 Conclusion and future work 63
6.1 Summary . 63
6.2 Future work . 63

Bibliography 65

List of Figures

1.1 TCP: Fast retransmit . 2
1.2 Packet reordering and Reordering extent 3

2.1 Packet reordering and Reordering extent 7
2.2 TCP congestion control and loss recovery 13

3.1 Careful limited transmit . 16
3.2 Aggresive limited transmit . 17

4.1 Testbed for evaluating under low data rates 34
4.2 Testbed for evaluating under higher data rates 35
4.3 A sample flowgrind logfile output . 39

5.1 Lower data rate - Scenario 1: Average throughput vs BNBW 43
5.2 Lower data rate - Scenario 2: Average throughput vs BNBW 47
5.3 Lower Data rate - Scenario 3: Average throughput vs delay 49
5.4 Lower data rate - Scenario 3: Average application-perceived latency vs

delay . 50
5.5 Lower data rate - Scenario 3: Spurious retransmits at various RTT values 51
5.6 Lower data rate - Scenario 4: Average throughput vs Reordering rate . . 53
5.7 Lower data rate - Scenario 4: Spurious retransmits at various RTT values 54
5.8 Lower data rate - Scenario 5: Average throughput vs Reordering delay . . 55
5.9 Lower data rate - Scenario 5: Spurious retransmits at various reordering

delays . 56
5.10 Lower data rate - Scenario 6: Average throughput vs Reordering delay . . 57
5.11 High data rate: Performance of algorithms under no packet reordering . . 59
5.12 High data rate: Performance of algorithms under mild packet reordering . 60
5.13 High data rate - scenario 3: Average throughput at various reordering rates 61

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

xvi Master Thesis, FG INET, TU Berlin, 2015

Listings

4.1 Testbed sysctl settings . 34
4.2 Configuring Linux kernel for NetEm . 35
4.3 Setting up basic HTB bucket on a node 36
4.4 Setting up a filter for the HTB bucket . 36
4.5 Setting up a delay for the HTB bucket . 36
4.6 Packet reordering with gap . 37
4.7 Packet reordering with correlation . 37

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

xviii Master Thesis, FG INET, TU Berlin, 2015

List of Tables

5.1 Scenario 1: Average application-perceived latency (seconds) vs BNBW
(mbps) - Reno . 44

5.2 Scenario 1: Average transactions/s vs bottleneck bandwidth (mbps) -
CUBIC . 45

5.3 Scenario 2: Average transactions/s vs bottleneck bandwidth (mbps) -
CUBIC . 46

5.4 Scenario 4: Average transactions/s vs reordering rate - CUBIC 52
5.5 Scenario 5: Average transactions/s vs reordering delay - CUBIC 56

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

xx Master Thesis, FG INET, TU Berlin, 2015

Definitions

Segment: A segment is any TCP/IP data or acknowledgment packet (or both).

Sender maximum segment size (SMSS): The SMSS is the size of the largest segment
that the sender can transmit. This value can be based on the maximum transmission
unit of the network, the path MTU discovery [RFC1191, RFC4821] algorithm, RMSS
(see next item), or other factors. The size does not include the TCP/IP headers and
options.

Receiver maximum segment size (RMSS): The RMSS is the size of the largest segment
the receiver is willing to accept. This is the value specified in the MSS option sent by
the receiver during connection startup. Or, if the MSS option is not used, it is 536 bytes
[RFC1122]. The size does not include the TCP/IP headers and options.

Full sized-segment: A segment that contains the maximum number of data bytes per-
mitted (i.e., a segment containing SMSS bytes of data).

Receiver window (rwnd): The most recently advertised receiver window.

Congestion window (cwnd): A TCP state variable that limits the amount of data a
TCP can send. At any given time, a TCP MUST NOT send data with a sequence num-
ber higher than the sum of the highest acknowledged sequence number and the minimum
of cwnd and rwnd.

Initial window (IW): The initial window is the size of the sender’s congestion window
after the three-way handshake is completed.

Loss window (LW): The loss window is the size of the congestion window after a TCP
sender detects loss using its retransmission timer.

Restart window (RW): The restart window is the size of the congestion window af-
ter a TCP restarts transmission after an idle period (if the slow start algorithm is used;
see section 4.1 for more discussion).

Flight size: The amount of data that has been sent but not yet cumulatively acknowl-
edged.

Duplicate acknowledgement: An acknowledgement is considered a ”duplicate” in the

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

following algorithms when (a) the receiver of the ACK has outstanding data, (b) the
incoming acknowledgment carries no data, (c) the SYN and FIN bits are both off, (d) the
acknowledgement number is equal to the greatest acknowledgement received on the given
connection (TCP.UNA from [RFC793]) and (e) the advertised window in the incoming
acknowledgement equals the advertised window in the last incoming acknowledgement.

Alternatively, a TCP that utilizes selective acknowledgements (SACKs) [RFC2018, RFC2883]
can leverage the SACK information to determine when an incoming ACK is a ”dupli-
cate” (e.g., if the ACK contains previously unknown SACK information).

HighACK: It is the sequence number of the highest byte of data that has been cu-
mulatively ACKed at a given point.

HighData: is the highest sequence number transmitted at a given point.

HighRxt: is the highest sequence number which has been retransmitted during the
current loss recovery phase.

Pipe: is a sender’s estimate of the number of bytes outstanding in the network. This
is used during recovery for limiting the sender’s sending rate. The pipe variable allows
TCP to use a fundamentally different congestion control than specified in [RFC2581].
The algorithm is often referred to as the ”pipe algorithm”.

xxii Master Thesis, FG INET, TU Berlin, 2015

1 Introduction

1.1 Motivation

Transmission Control Protocol (TCP)[1] is a highly reliable host-to-host protocol in a
packet switched computer network. one of the main responsibilities of TCP is to provide
reliability and should be able to recover from damaged, lost, duplicated or out-of-order
packets.

TCP has two mechanisms to determine if a packet lost. The first mechanism is main-
taining a retransmission timer which is used if the receiver does not acknowledge the
packet before a timeout. The second mechanism is the ACK clocking by the receiver.
For each packet received by the receiver, it sends an acknowledgement to the sender. If
an expected packet (to ensure in-order delivery to the application) is not received by the
receiver, it sends an acknowledgement with the sequence number which was cumulatively
acknowledged. Upon the receipt of three such duplicate acknowledgements (DUPACKs),
the sender retransmits the data which is assumed lost. The duplicate threshold duplicate
threshold (DUPTHRESH) provides a means of robustness against small occurrences of
packet reordering.

However today, DUPTHRESH of three is not enough and does not make TCP robust
against packet reordering. In fig 1.1 we see that the sender upon receiving three DU-
PACKs, retransmits data as it assumes it to be lost. However it is spurious retransmission
as the original packet was not lost but in fact reordered by an extent of more than three
packets as in fig 1.2. In this figure, the packet was reordered by an extent of 9 packets
also commonly referred to as the ”Absolute Reordering extent” or ”Reordering extent”.
The immediate effect of this spurious retransmission is the reduction in transmission
speed by the sender assuming that the network is congested. This makes TCP suscepti-
ble to packet reordering and impacts its performance. There are various other effects of
packet reordering described in detail in section 2.4. Packet reordering in the internet
today is not rare any more. Numerous studies have shown that packet reordering is not
pathological as studied in detail in section 2.2. Furthermore, it brings about a constraint
in the design of future technologies. Thus there is a dire need of making TCP robust
against packet reordering.

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

Figure 1.1: TCP: Fast retransmit

1.2 Contributions

The scope of this thesis is to investigate the possible opportunities if TCP is robust
against packet reordering and study the performance impact on TCP if it is not robust
against packet reordering. Furthermore, the behaviour of Linux, TCP-non congestion
to robustness (NCR)[2] and TCP-adaptive non congestion to robustness (aNCR) [3] [4]
against packet reordering are studied.

The above algorithms have been implemented in the Linux kernel v3.16 and the per-
formance studied under lower and higher data rates with focus on throughput and ap-
plication perceived latency for bulk traffic and maximum transaction rate with request-
response traffic.

As part of this thesis, a pluggable reordering algorithm framework has been created
to test various reordering algorithms under a single kernel. NCR [2] and aNCR [3, 4]
algorithms have been implemented as pluggable algorithms in this framework in the
Linux kernel version v3.16 and checked for correctness. It has been described in detail
in section 4.4.

A new Extended limited transmit ”Hybrid limited transmit” (section 3.1.3) has been
implemented in the Linux kernel making the extended limited transmit compatible with
various congestion control algorithms.

Furthermore, Linux’s NetEm [5, 6] has been modified to perform advanced packet re-
ordering in our testbed. It has been explained in detail in section 4.3

2 Master Thesis, FG INET, TU Berlin, 2015

Puneeth Nanjundaswamy Investigating a Reordering Robust TCP.

Figure 1.2: Packet reordering and Reordering extent

Finally, Flowgrind [7] has been modified to display more TCP level statistics pertain-
ing to packet reordering such as previously seen ”reordering extent”, ”total number of
spurious retransmissions”, ”total number of fast retransmits” and ”total number of re-
transmission timeout (RTO) retransmits”.

1.3 Thesis outline

This Master thesis is separated into 7 chapters and has been structured as follows.

Chapter 2: Background and related work In this chapter, we discuss in detail
about packet reordering, its occurance in the wild internet. The TCP extensions that
help us determine if a packet is lost or reordered, the deployment trends of these TCP
options, the different types of packet reordering in the network and the Linux congestion
control state diagram to have an overall view of where the reordering algorithms come
into place.

Chapter 3: TCP-NCR and TCP-aNCR This chapter discusses the TCP-NCR
and TCP-aNCR algorithm in greater depths. In this section we discuss the advantages
and pitfalls of TCP-NCR. Furthermore we discuss how TCP-aNCR overcomes the vari-
ous pitfalls found in NCR. In this chapter, we also introduce the topic ”Extended limited
transmit”

Chapter 4: Measurement setup This chapter describes all aspects of the testbed

Master Thesis, FG INET, TU Berlin, 2015 3

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

used for the measurements. We discuss the hardware specifications of the testbed, traf-
fic shaping/policing used, Linux kernel features enabled/disabled, a note on generating
packet reordering in the network, description of our Linux kernel with the reordering
algorithms and the network performance measurement tool Flowgrind.

Chapter 5: Evaluation and discussion This chapter describes the various test sce-
narios under which we evaluate the algorithms. The algorithms are tested under various
network parameters and under bulk and request-response traffic.

Chapter 6: Conclusion and future work This chapter summarizes the master the-
sis, describes the problems that occurred during the implementation and an outlook
about future work.

4 Master Thesis, FG INET, TU Berlin, 2015

2 Background and related work

This chapter talks about the various background information and related work to make
TCP more robust to packet reordering. It is assumed that the readers are aware of TCP
and thus only discusses packet reordering related work. Firstly section 2.1 describes
what is packet reordering, the common metric used to describe packet reordering and
the immediate ill effects. The section 2.2 is a brief literature survey about the nature and
occurrence of packet reordering in the wild internet. Here we refer to previous studies
on packet reordering in the wild internet. In section 2.3, we discuss the various TCP
extensions that can be used to detect and react to packet reordering. Furthermore, we
also investigate the extent of TCP extensions actually deployed in the wild internet. This
exercise gives us a fair idea on the effectiveness of deploying new reordering algorithms
which make use of the TCP options. In section 2.4 we discuss the impact of packet
reordering on TCP in detail and a note on the possibilities of a reordering robust TCP
on future technologies are teased upon in section 2.5. Finally, in section 2.6 we discuss
the state machine of TCP congestion control and loss recovery and the approaches to
making TCP robust against packet reordering.

2.1 Packet reordering

As cited by RFC 793[1], one of the main purposes of TCP is to provide reliability in
computer communication. Reliability against data being damaged, lost, duplicated or
delivered out-of-order by the internet communication system. This is achieved by as-
signing a sequence number to each octet transmitted, and requiring an acknowledgement
to each octet received. At the receiver, the sequence number on these octets are used
to correctly order the packets and deliver the data to the application layer. If the ACK
is not received within a timeout interval, the data is retransmitted. Thus, TCP ensures
an in-order-delivery to the application layer.

TCP receiver sends a duplicate ACK for every data received which is not the expected
sequence number. TCP does not wait for a retransmit time-out to occur to retrans-
mit the data. Rather, as RFC 2001[8] describes, If three or more duplicate ACKs are
received in a row, it is a strong indication that a segment has been lost. TCP then per-
forms a retransmission of what appears to be the missing segment, without waiting for
a retransmission timer to expire. It is often referred to as Fast Retransmit. During Fast
Retransmit, the slow start threshold (ssthresh) is set to half of the current congestion
window and the congestion window is set to this new value of ssthresh plus three times
the segment size to account for the 3 new data segments sent during the three duplicate

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

acknowledgements. TCP sender effectively reduces the sending rate to half each time a
segment is retransmitted.

The main assumption here is, It is assumed that if there is just a reordering of the
segments, there will be only one or two duplicate ACKs before the reordered segment is
processed, which will then generate a new ACK. However, in today’s world, this heuris-
tic is not always right. A packet displaced by 4 or more segment numbers is considered
lost and not as reordered. This has many negative implications on the performance. In
this study[9] the negative implications of false retransmissions on TCP due to packet
reordering in the network. It concludes that the throughput is indirectly proportional
to packet reordering. At a certain point in time when reordering is high, they find that
reordering almost always causes a spurious fast retransmit and halving of the congestion
window.[10] further stresses the ill-effects of packet reordering and the TCP behaviour.

The Packet Reordering Metrics RFC 4737[11] describes the various packet reordering
metrics to evaluate whether a network has maintained packet order on a packet-by-
packet basis. One important metric amongst the many is called Reordering Extent .

2.1.1 Reordering extent

Reordering extent is the extent to which packets are reordered and associates a specific
sequence discontinuity with each reordered packets. It can be defined as the maximum
distance, in packets, from a reordered packet to the earliest packet received that has a
larger sequence number. If a packet is in-order, its reordering extent is undefined. The
first packet to arrive is in-order by definition and has undefined reordering extent.

The fig 2.1 illustrates the packet reordering phenomenon and reordering extent. The
packet number 2 is reordered. The reordering extent of this packet as defined by RFC
4737[11] is 2.

2.2 Packet reordering in the internet

There have been many studies done to understand the phenomenon of packet reordering
and the occurrence of packet reordering in the wild internet. One of the earliest papers to
counter the popular belief that packet reordering in the internet is pathological[12] con-
cludes that, though route fluttering, router pauses and broken TCP/IP implementations
are cause for packet reordering, a much bigger cause can be attributed to parallelism
in links and internet components. In their research, they find that a multiport FDDI
switch’s feature which allows a collection of ports to operate as a single virtual link to
be one of the main the reasons for packet reordering. This research suggests means
of countering packet reordering, Firstly, a work around design implementation of this
feature in the switch. Secondly, an IP which is aware of the existence of parallel flows
and directs traffic between a particular source destination pair always on the same link;

6 Master Thesis, FG INET, TU Berlin, 2015

Puneeth Nanjundaswamy Investigating a Reordering Robust TCP.

Figure 2.1: Packet reordering and Reordering extent

a TCP with a variable duplicate threshold value. Finally packet numbering on parallel
paths. Furthermore, this study also lists the ill-effects of forward path and reverse path
packet reordering on the performance of TCP.

This study on packet dynamics of bulk transfers[13] describes the characteristics of un-
usual behaviours such as packet reordering and packet replication. They find that packet
reordering is prevalent and in their 1st run of experiments, 36% of the connections saw
reordering events(data and ACK). They also find that 2% of all the data packets and
0.6% of all all the ACKs from all the connections were reordered. This study as well
proposes a TCP scheme where the duplicate threshold can be increased as one of the
ways of tackling the ill-effects of packet reordering.

While the previous study focussed on bulk traffic, this research[14] describes the ex-
tent of out-of-order packets in HTTP traffic in the wild. Their research is carried out
over a three week period on 10,647 Internet web sites in China. They find that in 208
thousand connections with a total of 3.3 million data packets, 3.2% of all the packets
were reordered.

Master Thesis, FG INET, TU Berlin, 2015 7

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

This research[15] aims at measuring and classifying packet reordering in backbone net-
works into retransmissions, network duplication and reordering due to parallelism. The
measurements are spread across multiple networks such as content delivery networks
(CDN) where traffic originates from clients who are usually closer to the servers, Tier-1
and Tier-2 ISP links which carry multitude of diverse data. They find approximately
1.6% and 5% of out-of-order data in CDN networks and ISP networks respectively. They
find approximately 20% of this out-of-order data to be because of spurious retransmis-
sions and another 20% due to network reordering due to parallelism in the network. This
study thus emphasizes the need for a reordering robust TCP.

From the previous work, we see the need of a reordering robust TCP;[16] further demon-
strates the prevalent packet reordering due to increased parallelism in modern networks,
and emphasizes that new application and protocol designs should treat packet reordering
on an equal footing to packet loss, and must be robust and resilient to both in order to
achieve high performance.

2.3 TCP extensions

There are a number of TCP options available today to make TCP more robust all kinds
of network abnormalities.[17][18]. This sections highlights some TCP options that are
used in this thesis work to make TCP more robust to packet reordering and efficiently
differentiate packet loss and packet reordering.

2.3.1 TCP selective acknowledgement (SACK) option

To make TCP more robust to multiple losses per congestion window, RFC 2018[19]
introduces the TCP Selective Acknowledgement (SACK) option. Upon negotiated by
both the sender and the receiver at the start of the TCP connection, a receiver can
”selectively acknowledge” individual data segments in a congestion window that have
been well received. Thus, the sender can selectively retransmit missing data segments.
This option requires the sender to maintain a ”scoreboard” where in each data segment
selectively acknowledged by the receiver is ”marked” as selectively acknowledged. This
creates ”holes” when some data segments have not been received by the receiver. These
holes are an indication of either a packet loss or packet reordering. The receiver acknowl-
edges all the data segments in the window with a cumulative acknowledgement once all
the individual segments are received.

2.3.2 TCP duplicate selective acknowledgement (DSACK) option

RFC 2883[20] TCP Duplicate Selective Acknowledgement (DSACK) extends the SACK
option[19] to enable the receiver to notify the sender about spurious retransmits. While
RFC 2018[19] specified the use of the SACK option for acknowledging out-of-sequence
data not covered by TCP’s cumulative acknowledgement field, RFC 2883[20] suggests the
use of SACK[19] to report segment numbers spuriously transmitted by the sender. The

8 Master Thesis, FG INET, TU Berlin, 2015

Puneeth Nanjundaswamy Investigating a Reordering Robust TCP.

reason for spurious retransmissions can be a result of reordered packets, ACK loss, packet
replication and/or early retransmit timeouts. The sender can detect these DSACKs to
adapt accordingly with the use of appropriate reaction algorithms.

The use of DSACK does not require separate negotiation between a TCP sender and
receiver that have already negotiated SACK capability. The absence of separate nego-
tiation for D-SACK means that the TCP receiver could send DSACK blocks when the
TCP sender does not understand this extension to SACK. In this case, the TCP sender
will simply discard any D-SACK blocks, and process the other SACK blocks in the
SACK option field as it normally would.[20] Furthermore, the DSACKS for a particular
segment are only reported once by the receiver. Therefore, if there are heavy reverse
path losses, these DSACKS can get lost leaving behind an uninformed sender.

2.3.3 TCP timestamp option

RFC 1323[18] defines the timestamp option in TCP. The Timestamps option carries two
four-byte timestamp fields. The Timestamp Value field (TSval) contains the current
value of the timestamp clock of the TCP sending the option. The Timestamp Echo
Reply field (TSecr) is only valid if the ACK bit is set in the TCP header; if it is valid,
it echos a timestamp value that was sent by the remote TCP in the TSval field of a
Timestamps option.

2.3.4 Deployment trends of TCP options

It is important to know the extent of deployment of the above mentioned TCP exten-
sions that will be used in this thesis work to gauge the effectiveness of the algorithm.
In this research work[21], the deployment trends of various TCP extensions are studied.
Here, we focus on SACK and Timestamp options deployment trends.

The hosts for the test were chosen from Alexa’s[22] top 100000 webservers list. The
TCP handshake of distinct hosts were captured and analyzed. Out of the 77854 hosts
analyzed, they find that 69334 (89.06%) hosts supported SACK and 64220 (83.77%)
hosts supported timestamp option.

2.4 Impact of packet reordering on TCP

TCP is designed to handle all sorts of network behaviours and guarantee an in-order
delivery to the application layer[1]. With the rise of packet reordering and especially with
large-scale reordering, it has multiple destructive implications on TCP. On one hand
TCP is unable to grow the congestion window and make use of the available bandwidth
and on the other hand is makes TCP lose its self-clocking property and become bursty.
Packet reordering can be classified in to forward path reordering or data reordering and
reverse path reordering or ACK reordering. This classification is necessary because of

Master Thesis, FG INET, TU Berlin, 2015 9

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

the very asymmetric nature of Internet routing and the different nature of impact it has
on TCP in different directions.

2.4.1 Forward path reordering

In forward path reordering, TCP data segments arrive out-of-order at the receiver. This
has many implications which are briefly discussed in the following sections.

Spurious retransmits

Most TCP implementations use an algorithm called Fast Retransmit[8] to try to recover
as quickly as possible from losses. This is usually triggered by a series of duplicate
acknowledgements from the receiver. Usually, after a TCP sender receives three such
duplicate acknowledgements, the data after the byte being acked is considered lost and
thus retransmitted. This retransmission is spurious in case of packet reordering and
when it arrives at the receiver after more than three data segments.

At this point of retransmission at the sender, the sender also reduces the sending rate
to half the previous value. In case of persistent reordering or multiple reordering in a
single window, the TCP sender reduces the sending rate multiple times and thus unable
to make use of the available resources. Furthermore, with every spurious retransmission,
the bandwidth is wasted by sending the same data twice. [23] [12]

Obscured packet loss

When packet reordering and packet loss occur in the same window,it can happen that
TCP is unable to see the packet loss until a RTO time-out occurs. Let us consider a
sender transmits packets 1 through 6. Let us assume that packet 2 is reordered and
arrives after 6; packet 3 is lost. The sender receives 3 duplicate acknowledgements for
packet 2 and therefore retransmits packet 2. The sender acknowledgement of packet
2(triggered by the reordered packet 2) soon after retransmission. Since there are no
more packets in flight, no duplicate acknowledgements are generated by the receiver for
packet 3 which is actually lost. This results in a time-out and triggers a loss recovery.

Poor round-trip time calculation

Most TCP implementations calculate round trip time (RTT) either through TCP times-
tamps or through recording the time taken for a particular sequence number in a window
of data to be acknowledged. In case timestamps are enabled in the system and if they
are used, the RTT is calculated by the difference in the timestamps echoed in the acks
to the current time to get an accurate RTT. In case timestamps are not used, a timer
based approach is used. A timer is started for a sequence number when it is transmit-
ted and the time is stopped when an ACK is received for that particular segment number.

However, RTT calculations in these implementations are only valid iff the segment is not

10 Master Thesis, FG INET, TU Berlin, 2015

Puneeth Nanjundaswamy Investigating a Reordering Robust TCP.

retransmitted. in case of retransmissions including spurious retransmissions, the timer
samples are discarded. Since packet reordering causes spurious retransmissions, most of
the potential samples are discarded leading to a poor RTT estimation.

TCP receiver efficiency

Packet reordering impacts the operation of the receiver and the receiver application.
The TCP receiver has to first buffer all the out of order data so that it can deliver it
in-order to the receiving application. At some point in time, the receiver has to spend
CPU cycles to order its out-of-order receiver queue. Secondly, the receiving application
receives bursty data which results in the decrease of overall efficiency of the system.

Furthermore, TCP implementations use header prediction to reduce the costs on TCP
processing. However, it works only on in-order data. So, if segments are reordered, far
more processing is required at the receiver side.

2.4.2 Reverse path reordering

In reverse-path reordering, the acks travelling back to the sender are reordered. In
reverse-path reordering, the receiver is sending cumulative acks (because data is arriv-
ing in order), but the acks are being reordered on their way back to the sender.[12]

The acks are a rough sign of the data rate in the network and how fast the receiver
is able to consume the sent data.[24] The major effect of reverse path reordering is the
loss of self clocking property of TCP.

Loss of self clocking

The TCP sender receives a stream of acks acknowledging one or two data segments no-
tifying the sender to send more data per acknowledgement. However, with reverse path
reordering, the TCP sender sees an ACK acknowledging a large amount of data followed
by a stream of acks acknowledging already acknowledged data. This has a direct ef-
fect on how the TCP sender opens the congestion window based on whether it is in the
slow start phase or congestion avoidance phase.[8] With a reordered ACK acknowledging
more data, the following stream of acks are simply discarded by the sender thus reducing
the actual number of acks to the number of reordered acks. Since the working of slow
start and congestion avoidance heavily depend on acks acknowledging new data, TCP
is affected.

The other important effect of reordering in the reverse path is making the TCP sender
bursty. with a reordered ACK acknowledging more data segments, more ”free” slots
are opened. This makes the TCP sender bursty irrespective of if it is in slow start or
congestion avoidance. This increases the resource utilization at the receiver and receiver

Master Thesis, FG INET, TU Berlin, 2015 11

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

application. This effect is reinforcing; with every burst, more acks are generated result-
ing in more ACK reordering due to reverse path reordering. This effect aggravates if
ACK compression techniques are used.[25]

2.4.3 Forward and reverse path reordering

It is hard to expect that a network has only forward path or only reverse path reordering.
In the presence of reordering in both directions, we can expect the TCP sender to exhibit
a stronger forward path or stronger reverse path reordering behaviors or an oscillation
between both the behaviors.

2.5 Impact on future technologies

Some of the main areas where a reordering robust TCP would bring in changes to the
way devices are deigned and operate are high speed switches [26], multi-path routing,
high-delay satellite links. The other areas include Novel routing algorithms, network
components, link-layer retransmission mechanisms. A reordering robust TCP can make
way for many numerous design possibilities of next gen network components.

2.6 Approaches to make TCP robust to packet reordering

In fig 2.2, the state diagram of a TCP socket handling congestion control and packet
loss has been illustrated as specified in [27]. As long as a TCP receiver is sending data
segments in-order, the TCP sender remains in OPEN state. Upon the receipt of the
first data segment that is out of order at the receiver, the receiver sends an immediate
duplicate ACK. The purpose of this ACK is to inform the sender that the segment re-
ceived was out of order. At the sender-side, the sender is unclear if the data was lost in
the network due to network congestion or packet reordering or packet duplication in the
network. The sender enters a DISORDER state upon the receipt of the first duplicate
ACK. The receiver sends an immediate ACK when the incoming data segment from the
sender fills the hole in the receiver sequence space. In such an event, the sender returns
to OPEN state.

In the event of a packet loss, TCP sender reduces the CWND, SSTHRESH and uses Fast
Retransmit to retransmit the lost packet. At the moment, the trigger from DISORDER
to RECOVERY is set at 3 duplicate ACKs. After this retransmission, the Fast Recovery
algorithm kicks in. New data segments are transmitted until the sender receives a non
duplicate ACK. At this moment, the TCP state changes from RECOVERY to OPEN.

Each time a sender transmit new data segment, each data segment is put in the re-
transmission queue and a timer is set to each data segment. If an ACK is not received
by the sender before the timeout, the TCP sender transits to LOSS state which serves

12 Master Thesis, FG INET, TU Berlin, 2015

Puneeth Nanjundaswamy Investigating a Reordering Robust TCP.

as a means to restart ACK clock. A possible case of RTO time out can be heavy reverse
path losses.

Figure 2.2: TCP congestion control and loss recovery

There are various approaches proposed to precisely differentiate packet loss and packet
reordering. The can be classified based on their approach as Proactive, Reactive and
tolerant algorithms. Proactive algorithms focus on preventing spurious transitions from
DISORDER to RECOVERY state. Reactive algorithms, focus on undoing false transi-
tions when in RECOVERY. Tolerant algorithms, prevent future false transition of state
from occurring.

Practices for TCP Senders in the Face of Segment Reordering [28] suggests various proac-
tive ways of preventing spurious transition to RECOVERY. [29] focusses on problems
challenges and solutions while tackling packet reordering. [30, 31] are few proactive algo-
rithms that aim at reducing spurious transitions to RECOVERY state. [32, 33] are few
other proactive based algorithms using timers. [20, 34, 35, 9] suggest reactive approaches

Master Thesis, FG INET, TU Berlin, 2015 13

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

to undo false transitions to RECOVERY.

This master thesis concentrates on TCP-adaptive Non-Congestion to Robustness(TCP-
aNCR)[3, 4], TCP-Non Congestion to Robustness(TCP-NCR)[2] and Linux’s implemen-
tation of reordering detection and reaction. Linux follows a proactive and tolerant
approach to resolving spurious transitions. When Linux detects packet reordering, it
sets the DUPTHRESH to maximum reordering extent or 127 (which ever is smaller)
thereby delaying the transition to RECOVERY. At the beginning of the connection, the
DUPTHRESH is set to 3. Therefore, it falls under proactive and tolerant category. Fur-
thermore, Linux uses timestamps (when enabled) to detect and react to false transitions
which is possible if the reordering extent is greater than 127. TCP-NCR falls under
proactive category where DUPTHRESH is set to CWND irrespective of the presence
or absence of packet reordering. On the other hand, TCP-aNCR follows a proactive,
reactive and tolerant approach where at the start of the connection, the DUPTHRESH
is set to 3 and upon detecting packet reordering, it avoid future possible incidents of
packet reordering by calculating DUPTHRESH based on the reordering extent. It also
makes use of timestamps (when available) to react to false transitions which his very
useful in slow start phase of the TCP connection when DUPTHRESH is still at 3.

This thesis focusses on the performance of Linux, TCP-NCR and TCP-aNCR under
various reordering conditions. TCP-NCR and TCP-aNCR are discussed in detail in the
next chapter.

14 Master Thesis, FG INET, TU Berlin, 2015

3 TCP-NCR and TCP-aNCR

In this section we discuss in detail TCP Non Congestion to Robustness (NCR) [2] and
TCP-adaptive NCR (aNCR) as these algorithms are the primary focus of the thesis.

It is to be noted that both these algorithms are used only when Nagle algorithm [36] is
deployed as in its absence, there is no way to accurately calculate the number of out-
standing segments in the network (and, therefore, no good way to derive an appropriate
duplicate ACK threshold) without adding state to the TCP sender.[2][36] Furthermore
TCP SACK[19] must be enabled to indicate the sender the data segments that have
been received well by the receiver so that the sender maintains an accurate scoreboard.

3.1 Extended limited transmit (ELT)

Both TCP-NCR and TCP-aNCR increase the duplicate threshold value in the event of
packet reordering from the default value of three to say an arbitrary value ”X”. With a
duplicate threshold value of ”X”, the sender waits for ”X” duplicate acknowledgements
before it retransmits. During this waiting process, we may run into multiple scenarios.

• The wait for ”X” duplicate acks cause the medium to be idle and renders it un-
derutilized

• In the presence of reverse path losses, a couple of acks might be lost thus we will
never be able to get ”X” duplicate acks. This leaves us in a dangling situation and
eventually a RTO timeout.

To prevent this, we extend the limited transmit mechanism[37] to send additional data
while the TCP sender is in the process of disambiguating loss vs packet reordering. In
[2] the authors suggest two variants of extended limited transmit namely Careful limited
transmit (CF) and Aggressive limited transmit (AG).

3.1.1 Careful limited transmit (CF ELT)

In Careful extended limited transmit, a new previously unsent data segment is trans-
mitted for every other duplicate ACK that selectively acknowledges new data. This
essentially reduces the sending rate (halves in the case of NCR as we demonstrate later)
during the disorder phase when disambiguating packet reordering versus packet loss. If
a packet was found to be reordered , TCP returns to the OPEN state. If a packet is
lost, the sender proceeds to fast retransmit the lost packet and enter loss RECOVERY
state.

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

Figure 3.1: Careful limited transmit

If the duplicate threshold is increased from three to congestion window worth of data
segments (the case of NCR), then, when this duplicate threshold value is reached, num-
ber of out standing data cumulatively acknowledged is exactly 3/2 times the congestion
window value. Furthermore, at this point, the sending rate will have reduced to half
as we would be sending out new data for every second acknowledgement. In figure 3.1
we can see that when the packet is determined to be in fact, lost; the sending rate has
already been reduced in half. The decrease in the width between the new segment trans-
mitted and the highest data segment selectively acknowledged decreases is an indicator
of the decreasing sending rate.

3.1.2 Aggresive limited transmit (AG ELT)

In Aggressive extended limited transmit, a new previously unsent data segment is trans-
mitted for every duplicate ACK that acknowledges new data. This essentially maintains
the sending rate during the disorder phase when disambiguating packet reordering versus
packet loss. If a packet was reordered, TCP returns to the previous state. If a packet is
lost, the sender proceeds to fast retransmit and loss RECOVERY state.

16 Master Thesis, FG INET, TU Berlin, 2015

Puneeth Nanjundaswamy Investigating a Reordering Robust TCP.

Figure 3.2: Aggresive limited transmit

If the duplicate threshold is increased from three to congestion window worth of data
segments, then, when this duplicate threshold value is reached, number of out standing
data cumulatively acknowledged is exactly twice the congestion window. In figure 3.2
we can see that when the packet is determined to be in fact, lost; the sending rate has
not yet been reduced in half. The constant width between the new segment transmitted
and the highest data segment selectively acknowledged is an indicator of the constant
sending rate. At this point, when fast retransmit and recovery happens, algorithms such
as rate halving or PRR[38] to reduce the sending rate.

3.1.3 Hybrid limited transmit (HY ELT)

While careful limited transmit reduces the sending rate to almost half of its original
value at the end of 1 RTT in DISORDER phase, Aggressive limited transmit, main-

Master Thesis, FG INET, TU Berlin, 2015 17

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

tains the same sending rate in DISORDER for almost 1 RTT, if a packet is indeed lost,
the congestion control algorithms have to take care of reduction or pacing of sending
rate. many congestion control algorithms employ various algorithms to determine the
sending rate in RECOVERY. This thesis proposes ”Hybrid limited transmit” a sup-
plement to ”careful limited transmit” where, the target sending rate in RECOVERY
is pre-emptively calculated for the corresponding congestion control algorithm. Many
congestion algorithms such as [39, 40] do not exactly reduce the sending rate to half
in RECOVERY. Hybrid ELT is compatible with these algorithms as it switches from
careful limited transmit to aggresive limited transmit in ELT when the target sending
rate is reached.

3.2 TCP-NCR

TCP-NCR changes the trigger for retransmitting a segment is changed from three du-
plicate ACKs[41] [42] to indications that a congestion window’s worth of data has left
the network.

Furthermore, TCP-NCR decouples initial congestion control decisions from retransmis-
sion decisions, in some cases delaying congestion control changes relative to TCP’s cur-
rent behavior as defined in [41]. The algorithm also suggests the use of either CF ELT
or AG ELT. Depending on which type of ELT is used, a constant LTF is defined as the
inverse of the maximum flight size at the end of the duplicate threshold value. Therefore,

• Careful limited transmit: LTF = 2/3

• Aggresive limited transmit: LTF = 1/2

This constant is defined to ensure that enough number of packets are SACKed and that,
the packet is truly lost.

The algorithm has been described below as defined in rfc 4653[2] for the convenience of
explaining the highlights and pitfalls of the algorithm.

3.2.1 Algorithm

Initialization

For every first sack block received at the sender,

(I.1) The TCP MUST save the current FlightSize.

FlightSizePrev = FlightSize

(I.2) The TCP MUST set a variable for tracking the number of

18 Master Thesis, FG INET, TU Berlin, 2015

Puneeth Nanjundaswamy Investigating a Reordering Robust TCP.

segments for which an ACK does not trigger a transmission

during Careful Limited Transmit.

Skipped = 0

(Note: Skipped is not used during Aggressive Limited

Transmit.)

(I.3) The TCP MUST set DupThresh (from [RFC3517]) based on the

current FlightSize.

DupThresh = max (LT_F * (FlightSize / SMSS),3)

Note: The lower bound of DupThresh = 3 from [RFC2581, RFC3517][41, 42] is kept.

In addition to the above steps, the incoming ACK MUST be processed with the steps
in section 3.2.1.

ELT termination

The arrival of an ACK that advances the cumulative ACK point while in Extended
Limited Transmit, but before loss recovery is triggered, signals that a series of duplicate
ACKs was caused by reordering and not congestion. Therefore, the receipt of an ACK
that extends the cumulative ACK point MUST terminate Extended Limited Transmit.
As described below (in (T.4)), an ACK that extends the cumulative ACK point and
also contains SACK information will also trigger the beginning of a new Extended
Limited Transmit phase.

Upon the termination of Extended Limited Transmit, and especially when using the
Careful variant, TCP-NCR may be in a situation where the entire cwnd is not being
utilized, and therefore TCP-NCR will be prone to transmitting a burst of segments into
the network. Therefore, to mitigate this bursting when a TCP-NCR in the Extended
Limited Transmit phase receives an ACK that updates the cumulative ACK point (re-
gardless of whether the ACK contains SACK information), the following steps MUST
be taken:

(T.1) A TCP MUST reset cwnd to:

cwnd = min (FlightSize + SMSS,FlightSizePrev)

This step ensures that cwnd is not grossly larger than the

amount of data outstanding, a situation that would cause a

line rate burst.

(T.2) A TCP MUST set ssthresh to:

Master Thesis, FG INET, TU Berlin, 2015 19

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

ssthresh = FlightSizePrev

This step provides TCP-NCR with a sense of "history". If step

(T.1) reduces cwnd below FlightSizePrev, this step ensures that

TCP-NCR will slow start back to the operating point in effect

before Extended Limited Transmit.

(T.3) A TCP is now permitted to transmit previously unsent data as

allowed by cwnd, FlightSize, application data availability, and

the receiver’s advertised window.

(T.4) When an incoming ACK extends the cumulative ACK point and also

contains SACK information, the initializations in steps (I.2)

and (I.3) MUST be taken (but step (I.1) MUST

NOT be executed) to re-start Extended Limited Transmit. In

addition, the "E" series of steps MUST be taken.

During extended limited transmit

Once NCR has already entered the extended limit transmit phase, the following steps
are taken to have the ACK clock ticking as described in section 3.1

(E.1) The SetPipe () procedure from [RFC3517] MUST be used to set

the "pipe" variable (which represents the number of bytes

still considered "in the network"). Note: the current value

of DupThresh MUST be used by SetPipe () to produce an accurate

assessment of the amount of data still considered in the

network.

(E.2) If the comparison in equation (1), below, holds and there are

SMSS bytes of previously unsent data available for

transmission, then the sender MUST transmit one segment of SMSS

bytes.

(pipe + Skipped) <= (FlightSizePrev - SMSS) (1)

If the comparison in equation (1) does not hold or no new data

can be transmitted (due to lack of data from the application

or the advertised window limit), skip to step (E.6).

(E.3) Pipe MUST be incremented by SMSS bytes.

20 Master Thesis, FG INET, TU Berlin, 2015

Puneeth Nanjundaswamy Investigating a Reordering Robust TCP.

(E.4) If using Careful Limited Transmit, Skipped MUST be incremented

by SMSS bytes to ensure that the next SMSS bytes of SACKed data

processed does not trigger a Limited Transmit transmission

(since the goal of Careful Limited Transmit is to send upon

receipt of every second duplicate ACK).

(E.5) A TCP MUST return to step (E.2) to ensure that as many bytes

as are appropriate are transmitted. This provides robustness

to ACK loss that can be (largely) compensated for using SACK

information.

(E.6) DupThresh MUST be reset via:

DupThresh = max (LT_F * (FlightSize / SMSS),3)

where FlightSize is the total number of bytes that have not

been cumulatively acknowledged (which is different from

"pipe").

Entering loss recovery

Once the ”DUPTHRESH” number of DUPACKs have been received while in ELT phase,
we should enter loss recovery. The ssthresh and DUPTHRESH values are to be set based
on the value of FlightSizePrev to reflect the state prior to entering loss recovery.

ssthresh = cwnd = (FlightSizePrev / 2)

3.2.2 Drawbacks of TCP-NCR

There are some critical flaws in the NCR algorithm which limits the performance of
TCP in the presence of packet reordering. Firstly, in the step T.2 3.2.1 the slow start
threshold value is reset to the flight size value prior to entering ELT (FlightSizePrev).
If ELT is entered for the first time, the ssthresh is infinity. Thus, this prevents the
connection to resume slow start in case of packet reordering during slow start. This has
serious implications on the performance of a TCP connection.

Secondly, each time a packet is really lost and not reordered, it takes a RTT to re-
alize and enter recovery state. This increases the application perceived latency in the
network which would lead to a huge impact in applications such as high frequency trad-
ing, real time bidding, caching databases, autonomous decision systems.

Thirdly, in the presence of continuous packet reordering, the TCP socket is always
in extended limit transmit phase (see step T.4) which leads to decreased(in case of CF
ELT) / constant(in case of AG ELT) transmission rate as the congestion window never
grows.

Master Thesis, FG INET, TU Berlin, 2015 21

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

3.3 TCP-adaptive NCR

TCP adaptive NCR addresses the main pitfalls of NCR and furthermore, decouples the
logic for packet reordering detection and packet reordering reaction. In the following
subsections, the steps for packet reordering detection and packet reordering reaction are
discussed in detail.

3.3.1 Reordering detection

TCP adaptive NCR reordering detection algorithm makes use of TCP timestamps, and
SACK and DSACK to accurately detect packet reordering in the network. The algorithm
provides a set of metric that can be used by any reordering reaction algorithm to handle
packet reordering. There are a few pre requisites to be taken care when implement-
ing the aNCR reordering detection algorithm. Care should be taken to ensure that no
other loss recovery algorithm modifies the TCP control block and the SACK scoreboard.

The algorithm has been detailed below as in the internet draft [3]

Initialization

Upon the establishment of a TCP connection, the following variables must be initialized
in the TCP control block.

(C.1) The variable Dsack, which indicates whether a DSACK has been

received so far, and the data structure Samples, which stores

the computed reordering extents, MUST be initialized as:

Dsack = false

Samples = []

(C.2) If the TCP Timestamps option [RFC1122] has been negotiated,

then the variable Timestamps MUST be activated and the data

structure Retrans_TS, which stores the value of the TSval

field of the retransmissions sent during Fast Recovery, MUST

be initialized. Additionally, the data structure

Retrans_Dsack MAY be used in order to detect reordering longer

than RTT with Timestamps and DSACK:

Timestamps = true

Retrans_TS = []

Retrans_Dsack = []

Otherwise, the Timestamps-based detection SHOULD be

deactivated:

22 Master Thesis, FG INET, TU Berlin, 2015

Puneeth Nanjundaswamy Investigating a Reordering Robust TCP.

Timestamps = false

Receiving acknowledgments

For each received ACK that either a) carries SACK information, *or*

b) is a full ACK that terminates the current Fast Recovery procedure,

or c) is an acceptable ACK that is received immediately after a

duplicate ACK, execute steps (A.1) to (A.4), otherwise skip to step

(A.4).

(A.1) If a) the ACK carries new SACK information, *and* b) the SACK

scoreboard is empty

FlightSizePrev = FlightSize

(A.2) If the received ACK either a) cumulatively acknowledges at

most SMSS bytes, *or* b) selectively acknowledges at most SMSS

bytes in the sequence number space in the SACK scoreboard,

then:

The TCP sender MUST execute steps (S.1) to (S.4)

(A.3) If a) Timestamps == false *and* b) the received ACK carries a

DSACK option [RFC2883] and the segment identified by the DSACK

option can be marked according to step (A.1) to (A.4) of

[RFC3708] as a valid duplicate, then:

The TCP sender MUST execute steps (D.1) to (D.3)

(A.4) The TCP sender MUST terminate the processing of the ACK by

this algorithm and MUST continue with the default processing

of the ACK.

Receiving acknowledgments closing hole

(S.1) If (a) the newly cumulatively or selectively acknowledged

segment SEG is a retransmission *and* b) both equations Dsack

== false and Timestamps == false hold, then the TCP sender

MUST skip to step (A.4).

(S.2) Compute the relative and absolute reordering extent ReorExtR,

ReorExtA:

Master Thesis, FG INET, TU Berlin, 2015 23

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

The TCP sender MUST execute steps (E.1) to (E.4)

(S.3) If a) the newly acknowledged segment SEG was not retransmitted

before *or* b) both equations Timestamps == true and

Retrans_TS[SEG.SEQ] > ACK.TSecr hold, i.e., the ACK

acknowledges the original transmission and not a

retransmission, then hand over the reordering extents to an

additional reaction algorithm.

(S.4) If a) the previous step (S.3) was not executed *and* b) both

equations Dsack == true and Timestamps == false hold, save the

reordering extents for the newly acknowledged segment SEG for

at least two RTTs:

Samples[SEG.SEQ].ReorExtR = ReorExtR

Samples[SEG.SEQ].ReorExtA = ReorExtA

(S.5) If a) the newly acknowledged segment SEG was retransmitted

before exactly once *and* b) both equations Dsack == true and

Timestamps == true hold *and* c) Retrans_TS[SEG.SEQ] ==

ACK.TSecr, then save FlightSizePrev for this segment in order

to be calculate the metrics in case a DSACK arrives, i.e.

reordering delay is greater than RTT:

Retrans_Dsack[SEG.SEQ] = FlightSizePrev

Receiving duplicate selective acknowledgement

(D.1) If no DSACK has been received so far, the sender MUST set:

Dsack = true

(D.2) If a) the previous step (D.1) was not executed *and* a

reordering extent was calculated for the segment SEG

identified by the DSACK option, then the TCP sender MUST

restore the values of the variables ReorExtR and ReorExtA and

delete the corresponding entries in the data structure:

ReorExtR = Samples[SEG.SEQ].ReorExtR

ReorExtA = SAMPLES[SEG.SEQ].ReorExtA

(D.3) If a) step (D.1) was not executed *and* b) FlightSizePrev was

24 Master Thesis, FG INET, TU Berlin, 2015

Puneeth Nanjundaswamy Investigating a Reordering Robust TCP.

saved in step (S.4) for the segment, then the TCP sender MUST

calculate the reordering extent for the segment with the E

series of steps by using the FlightSizePrev saved for this

segment and afterwards delete the corresponding entries:

FlightSizePrev_saved = Retrans_Dsack[SEG.SEQ]

(D.4) Hand the new reordering extents over to an additional reaction

algorithm.

Computing reordering extent

(E.1) SEG.SEQ is the sequence number of the newly cumulatively or

selectively acknowledged segment SEG.

(E.2) SND.FACK is the highest either cumulatively or selectively

acknowledged sequence number so far plus one.

(E.3) The TCP sender MUST compute the absolute reordering extent

ReorExtA as

ReorExtA = (SND.FACK - SEG.SEQ) / SMSS

(E.4) The TCP sender MUST compute the relative reordering extent

ReorExtR as

ReorExtR= ReorExtA * (SMSS / FlightSizePrev)

Retransmitting segment

If the TCP Timestamps option [RFC1323] is used to detect packet

reordering, the TCP sender must save the TCP Timestamps option of all

retransmitted segments during Fast Recovery.

(RET) If a) a segment SEG is retransmitted during Fast Recovery,

and b) the equation Timestamps = true holds, the TCP sender

MUST save the value of the TSval field of the retransmitted

segment:

Retrans_TS[SEG.SEQ] = SEG.TSval

Master Thesis, FG INET, TU Berlin, 2015 25

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

Retransmission timeout

In the event of a RTO timeout, it is an indication that the values of reordering extents
are outdated due to change in path characteristics and therefore, the data structures
need to be reset.

Samples = []

Retrans_TS = []

FlightSizePrev = 0

3.3.2 Reordering reaction

TCP aNCR reordering reaction algorithm makes use of the reordering metrics provided
by aNCR reordering detection algorithm and handles events of packet reordering and
packet loss. It is capable of dynamically changing the DUPTHRESH value based on the
value of relative reordering extent ReorExtR provided by aNCR reordering detection
algorithm or have a constant DUPTHRESH as in TCP NCR. The benefits of having
a dynamic DUPTHRESH is latency benefits. However, the amount of latency benefits
needs to be analysed.

The following sections describe the aNCR reordering reaction algorithm as specified
in the internet draft [4].

Initialization

Depending on the type of extended limit transmit used, we have to set the

"LT_F" constant as:

if CF ELT:

LT_F = 2/3

elif AG ELT:

LT_F = 1/2

Depending on the type of DUPTHRESH preferred, dynamic or constant value:

if dynamic:

ReorExtR = 0

else:

ReorExtR = -1

Upon receiving a DUPACK, if the SACK scoreboard is found to be empty, it is a sign of the start

phase to determine if the packet is lost or reordered. ELT needs to be initialized upon the

DUPACK with a SACK block selectively acknowledging new data.

26 Master Thesis, FG INET, TU Berlin, 2015

Puneeth Nanjundaswamy Investigating a Reordering Robust TCP.

The following steps should be performed.

(I.1) The TCP sender MUST save the current outstanding data:

FlightSizePrev = FlightSize

(I.2) The TCP sender MUST save the highest sequence number

transmitted so far:

recover = SND.NXT - 1

(I.3) The TCP sender MUST initialize the variable ’skipped’ that

tracks the number of segments for which an ACK does not

trigger a transmission during Careful Limited Transmit:

skipped = 0

During Aggressive Limited Transmit, ’skipped’ is not used.

(I.4) The TCP sender MUST set DupThresh based on the current

FlightSize:

DupThresh = max (LT_F * (FlightSize / SMSS), 3)

The lower bound of DupThresh = 3 is kept from [RFC5681]

[RFC6675].

(I.5) If (ReorExtR != -1) holds, then the TCP sender MUST set

DupThresh based on the relative reordering extent ’ReorExtR’:

DupThresh =

max (min (DupThresh,

ReorExtR * (FlightSizePrev / SMSS)), 3)

As described in step I.5, if dynamic DUPTHRESH is chosen for the connection, the
DUPTHRESH is calculated based on the relative reordering extent (ReorExtR) provided
by the aNCR packet reordering detection algorithm. In the absence of packet reordering,
the DUPTHRESH value is 3 and in the worst case scenario, the DUPTHRESH value is
the same as NCR.

If a path exhibits constant moderate rate of packet reordering, with aNCR reaction
algorithm, one should see lesser application perceived latency compared to NCR. How-

Master Thesis, FG INET, TU Berlin, 2015 27

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

ever, the characteristics of packet reordering in the wild is something to be researched
upon.

ELT termination

Upon the arrival of a DUPACK after entering the ELT phase and iff the DUPACK
advances the cumulative ACK point, it is a sign of packet reordering. The following
steps need to be performed.

(T.1) If the received ACK extends not only the cumulative ACK point,

but *also* carries new SACK information , the TCP sender MUST

restart Extended Limited Transmit and MUST go to step (T.2).

Otherwise, the TCP sender MUST terminate it and MUST skip to

step (T.3).

(T.2) If the Cumulative Acknowledgment field of the received ACK

covers more than ’recover’ (i.e., SEG.ACK > recover), Extended

Limited Transmit has transmitted one cwnd worth of data

without any losses and the TCP sender MUST update the

following state variables by

FlightSizePrev = pipe_max

pipe_max = 0

and MUST go to step (I.2) to re-start Extended Limited

Transmit. Otherwise if (SEG.ACK <= recover) holds, the TCP

sender MUST go to step (I.3). This ensures that in the event

of a loss the cwnd reduction is based on a current value of

FlightSizePrev.

The following steps are executed only if the received ACK does *not*

carry SACK information. Extended Limited Transmit will be

terminated.

(T.3) A TCP sender MUST set ssthresh to:

ssthresh = max (cwnd, ssthresh)

This step provides TCP-aNCR with a sense of "history". If the

next step (T.4) reduces the congestion window, this step

ensures that TCP-aNCR will slow-start back to the operating

point that was in effect before Extended Limited Transmit.

28 Master Thesis, FG INET, TU Berlin, 2015

Puneeth Nanjundaswamy Investigating a Reordering Robust TCP.

(T.4) A TCP sender MUST reset cwnd to:

cwnd = FlightSize + SMSS

This step ensures that cwnd is not significantly larger than

the amount of data outstanding, a situation that would cause a

line rate burst.

(T.5) A TCP is now permitted to transmit previously unsent data as

allowed by cwnd, FlightSize, application data availability,

and the receiver’s advertised window.

As we can see from the above ELT termination algorithm of aNCR, it addresses the
primary disadvantages of NCR. In T.4, the slow start bug of NCR is resolved. If packet
reordering occurs during slow start upon returning to OPEN state, ssthresh value is still
infinity and therefore, the connection resumes with slow start.

The second major pitfall of NCR is addressed in step T.2, In case of continuous dis-
order phases, flightsizeprev is updated with the maximum amount of data sent in the
last RTT. This ensures that congestion window increases every RTT if it could send all
data in the previous RTT without losses.

During extended limited transmit

Once the TCP connection has entered the ELT as described in initialization, if the
incoming DUPACK contains a new SACK block and doesn not advance the cumulative
ACK point, the following steps are performed.

(E.1) The TCP sender MUST update the SACK scoreboard and uses the

SetPipe() procedure from [RFC6675] to set the ’pipe’ variable.

Note: the current value of DupThresh MUST be used

by SetPipe() to produce an accurate assessment of the amount

of data still considered in the network.

(E.2) The TCP sender MUST initialize the variable ’burst’ that

tracks the number of segments that can at most be sent per ACK

to the size of the Initial Window (IW) [RFC5681]:

burst = IW

(E.3) If a) (cwnd - pipe - skipped >= 1 * SMSS) holds, *and* b) the

receive window (rwnd) allows to send SMSS bytes of previously

unsent data, *and* c) there are SMSS bytes of previously

Master Thesis, FG INET, TU Berlin, 2015 29

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

unsent data available for transmission, then the TCP sender

MUST transmit one segment of SMSS bytes. Otherwise, the TCP

sender MUST skip to step (E.7).

(E.4) The TCP sender MUST increment ’pipe’ by SMSS bytes and MUST

decrement ’burst’ by SMSS bytes to reflect the newly

transmitted segment:

pipe = pipe + SMSS

burst = burst - SMSS

(E.5) If Careful Limited Transmit is used, ’skipped’ MUST be

incremented by SMSS bytes to ensure that the next SMSS bytes

of SACKed data processed do not trigger a Limited Transmit

transmission.

skipped = skipped + SMSS

(E.6) If (burst > 0) holds, the TCP sender MUST return to step (E.3)

to ensure that as many bytes as appropriate are transmitted.

Otherwise, if more than IW bytes were SACKed by a single ACK,

the TCP sender MUST skip to step (E.7). The additional amount

of data becomes available again by the next received duplicate

ACK and the re-execution of SetPipe().

(E.7) The TCP sender MUST save the maximum amount of data that is

considered to have been in the network during the last RTT:

pipe_max = max (pipe, pipe_max)

(E.8) The TCP sender MUST set DupThresh based on the current

FlightSize as described in step I.4.

(E.9) If (ReorExtR != -1) holds, then the TCP sender MUST set

DupThresh based on the relative reordering extent ’ReorExtR’ as

described in step I.5.

Entering loss recovery

If Proportional rate reduction (PRR) [43] is used, the RecoverFS should be set to Flight-
SizePrev.

RecoverFS = FlightSizePrev

30 Master Thesis, FG INET, TU Berlin, 2015

Puneeth Nanjundaswamy Investigating a Reordering Robust TCP.

If Fast recovery algorithm is used, the ssthresh and DUPTHRESH should be set as
described by NCR.

ssthresh = cwnd = (FlightSizePrev / 2)

Furthermore, each time aNCR reordering detection algorithm providdes new metrics of
ReorExtR, the maximum value of is considered.

ReorExtR = min (max (ReorExtR, ReorExtR_New), 1)

Master Thesis, FG INET, TU Berlin, 2015 31

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

32 Master Thesis, FG INET, TU Berlin, 2015

4 Measurement Setup

This chapter describes each and every aspect of our measurement set up used for eval-
uating the various reordering algorithms. Firstly, the hardware and topology of the
network are discussed. From then on, the process of emulating various network con-
ditions is described. In the experiments, the network performance measurement tool
Flowgrind is used to perform the experiments. This chapter also explains in detail the
implementation of the reordering algorithms in the Linux kernel and reproduction of
packet reordering in the testbed.

4.1 Testbed

This thesis focusses the implementation and evaluation of TCP-NCR and TCP-aNCR
under two different network topologies. In the first topology (fig: 4.1), there are two
senders and two receivers and a number of nodes in between. Each node is responsi-
ble for emulating a single unique network characteristics in the network. The network
characteristics in question are, forward path delay, forward path reordering, reverse path
delay, reverse path reordering, bottleneck and reverse path loss. The purpose of having
such a set up is to have a finer control on each of the network characteristics. The
network characteristics for the experiments have been adopted as described in Common
TCP Evaluation Suite[44]. All the nodes and the nodes are connected by 10GbE.

The purpose of having multiple senders and multiple receivers is to generate cross traffic
in the network. One pair of sender-receiver act as a generator and sink sending traffic
through the bottleneck node.

All the nodes run vanilla Linux kernel version 3.16 except a pair of sender-receiver
which use our modified kernel which is based off vanilla Linux kernel version 3.16 and
has TCP-NCR and TCP-aNCR implemented. Furthermore, the reordering nodes run a
modified version of the kernel to perform advanced reordering of packets. In the second
topology (fig: 4.2), there are no artificial network characteristics introduced except for
the forward path reordering. Also in this set up, the nodes act as aggregation switches.
The set up still contains two sources and two receivers with a pair acting as a cross
traffic generator and sink. Furthermore, at the senders and receivers, a number of sysctl
parameters are set. The listing 4.1 specifies all the sysctl changes made prior to the ex-
periments. The buffer autotuning at the receiver is disabled and the buffer size manually
set to 30Mb. This has been done because, in our earlier experiments, we came across
scenarios where buffer auto tuning did not work in the presence of packet reordering

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

Bottleneck

node

TCP-(a)NCR

linux v3.16 linux v3.16

Forward path

reordering

Reverse path

reordering

Forward path

delay
Reverse path

delay

TCP-(a)NCR

Figure 4.1: Testbed for evaluating under low data rates

thus limiting the sending rate to size of the window set by the faulty auto tuning logic
at the receiver.

net . ipv4 . t cp no me t r i c s s av e=1
net . ipv4 . t c p c ong e s t i o n c on t r o l=reno
net . ipv4 . t cp sack=1
net . ipv4 . tcp dsack=1
net . ipv4 . tcp t imestamps=0
net . ipv4 . t cp f a ck=0
net . ipv4 . t cp ecn=0
net . ipv4 . tcp mtu probing=0
net . ipv4 . t c p f r t o=0
net . ipv4 . t c p e a r l y r e t r a n s=0
net . ipv4 . tcp moderate rcvbuf=0
net . ipv4 . t cp window sca l ing=1
net . ipv4 . t cp f a s t open=0
net . core . rmem max=67108864
net . core .wmem max=67108864
net . core . rmem default=33554432
net . core . wmem default=33554432
net . ipv4 . tcp rmem=”33554432 33554432 67108864”
net . ipv4 . tcp wmem=”33554432 33554432 67108864”

Listing 4.1: Testbed sysctl settings

The Linux kernel’s feature of saving various metrics of previous connections are disabled
so that each connection under evaluation is considered as a new connection. SACK and
DSACK are enabled. Timestamps are disabled to find the worst case performance of
Linux’s native algorithm, NCR and aNCR under packet reordering. Various other TCP
related kernel parameters are disabled.

34 Master Thesis, FG INET, TU Berlin, 2015

Puneeth Nanjundaswamy Investigating a Reordering Robust TCP.

TCP-(a)NCRlinux v3.16 TCP-(a)NCRlinux v3.16

Switch Switch

Switch

Figure 4.2: Testbed for evaluating under higher data rates

4.2 Traffic shaping and policing

For traffic shaping and policing, Linux’s built-in utility Netem[5] is used. The Linux man
page[6] is another great resource for detailed list of features regarding traffic policing and
shaping using netem. However, since these two references are not maintained well, some
of the new features and modified features are not part of the documentation. For a
thorough understanding of netem, one needs to analyse the source code of netem in the
Linux kernel and also the source code of the userland utility iproute2[45] Firstly, the
Linux kernel needs to be configured and netem enabled as explained in listing 4.2

Networking −−>

Networking Options −−>

QoS and/or f a i r queuing −−>

Network emulator

Listing 4.2: Configuring Linux kernel for NetEm

For an effective traffic shaping and policing, three critical elements are required. They
are a queueing discipline(qdisc), class and a filter[46].

A qdisc is in its primitive form, a packet scheduler. It determines the way we send
data out in the network. There are two types of qdiscs; classful based and classless. A
classful qdisc can have multiple classes, all of which are internal to the qdisc, and provides

Master Thesis, FG INET, TU Berlin, 2015 35

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

a handle that can be used to attach filters. In classless queueing, a qdisc has no children.

In our set up, we use classful traffic shaping and policing[47]. This is because, this
gives us more control on the traffic shaping and policing. For example, in our use case,
with classful qdiscs, it is possible to emulate network characteristics such as only for-
ward path delay or only forward path reordering on traffic originating or destined to a
particular ip address using filters. We use two child classes in our setup; one for forward
path and one for reverse path. The qdiscs used in our experiments is hierarchical token
bucket[48] Furthermore, there is no network emulation being set at the senders and the
receivers. All network emulation is done on the intermediate routers.

t c qd i s c add dev eth0 root handle 1 : htb d e f au l t 100

tc c l a s s add dev eth0 parent 1 : c l a s s i d 1 :1 htb ra t e 100mbit

Listing 4.3: Setting up basic HTB bucket on a node

In the listing 4.3, we are attaching a root class to the ethernet device ”eth0” and create a
child class with the handle 1:1 which implements a hierarchical token bucket(htb). Now,
a filter has to be added to route all the traffic to a particular destination into this qdisc.
All the other traffic that do not match the filter are routed through the default bucket
100.

tc f i l t e r add dev eth0 parent 1 : p ro t o co l ip p r i o 1 u32 \
f l ow id 1 :1 match ip dst 192 . 168 . 2 . 2 19

Listing 4.4: Setting up a filter for the HTB bucket

From the listing 4.4, we set a filter at root class to route all traffic destined to the ip
address to the bucket 1:1. Now, we have set up a class based queueing where in all
packets destined to a particular ip address are routed to our child class at 1:1. However,
for example, if we want to treat these packets differently by delaying each packet by 25ms
and a jitter of 5ms, we have to set up a network emulation on this particular bucket.

t c qd i s c add dev eth0 parent 1 :1 handle 10 : \
r a t e 1000 mbit netem delay 25ms 5ms

Listing 4.5: Setting up a delay for the HTB bucket

With the above command 4.5 we set up our desired delay. However, since jitter causes
packet reordering in itself and this is undesired in this specific node, we need to set
a high rate on this child bucket. This feature has been hugely debated on the netem
mailing list[49].

4.3 Packet reordering in Linux kernel

The Netem implementation in the Linux kernel provides the users with two primary
ways of generating packet reordering. The first method allows the users to have packet

36 Master Thesis, FG INET, TU Berlin, 2015

Puneeth Nanjundaswamy Investigating a Reordering Robust TCP.

reordering every nth packet. As described in the listing 4.6 this example command
reorders every 5th packet. The implementation of this feature is so that, the 5th packet
is sent immediately and the first 4 packets are sent with a delay of 10ms. There are
two drawbacks of using this feature; packet reordering is deterministic and instead of
the packet eligible for reordering being reordered, the packets prior to this packet is
reordered.

tc qd i s c change dev eth0 root netem gap 5 de lay 10ms

Listing 4.6: Packet reordering with gap

The second method of implementing packet reordering using netem is as shown in listing
4.7. In this example, 25% of packets (with a correlation of 50%) will get sent immediately,
others will be delayed by 10ms. However, even this method is unacceptable because
instead of reordering a single packet, packets prior to this packet are reordered. Thus
the Linux kernel’s behaviour was changed to reflect our desired behaviour.

t c qd i s c change dev eth0 root netem delay 10ms r eo rde r 25% 50%

Listing 4.7: Packet reordering with correlation

In the modified version of the Linux kernel, when packet reordering is set using the
command in listing 4.7 the packet which is determined to be reordered based on the
reordering rate (25%) and correlation (50%) is reordered by 10ms.

4.4 Pluggable framework for reordering algorithms

The vanilla version of the Linux kernel is modified to introduce a pluggable reordering
algorithm framework. This enables us to use any reordering algorithms while opening a
socket. The algorithms can be chosen via the socket option. Thus, a specific reordering
algorithm can be specified via flowgrind itself and the experiments are performed with
the chosen algorithm.

This immensely fastens the experiment process and avoids the need of maintaining mul-
tiple Linux kernels with multiple reordering algorithms. The pluggable framework was
implemented in Linux kernel version 3.16. In the absence of mentioning any reorder-
ing algorithm, the kernel falls back to the Linux native behaviour of handling packet
reordering.

The other important advantage of having a pluggable framework in the Linux kernel
is that, it enables us to try new variants of the reordering algorithms and enables us to
test them using our automated scripts against native Linux behaviour, NCR and aNCR
to see if these new changes bring any new improvements to the performance.

Master Thesis, FG INET, TU Berlin, 2015 37

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

4.5 Flowgrind: Network performance tool

Flowgrind[7] is a TCP traffic generator tool used for benchmarking TCP/IP stacks. It
is compatible with OSX, Linux and FreeBSD. It employs a distributed architecture with
daemons running on all the machines whose performance is under test. The controller
is responsible for accepting user inputs and passing it on to the daemons to start the
experiment. The controller can be anywhere in the network and not necessarily on the
machines under test.

The reason for choosing flowgrind over other network performance measurement tools
is, the experimental logs are very verbose and in addition to throughput also measures
the application layer interarrival time (IAT) and round-trip time (RTT), blockcount and
network transactions/s. Unlike most cross-platform testing tools, flowgrind can output
some transport layer information, which are usually internal to the TCP/IP stack. For
example, on Linux 4.3 this includes among others the kernel’s estimation of the end-
to-end RTT, the size of the TCP congestion window (CWND), slow start threshold
(SSTHRESH)[7], the number of SACKS, DSACKS, retransmissions, spurious retrans-
missions. These values can be used to get an overview of the TCP connection without
actually getting generating xplots from the TCP dumps every single time.

Furthermore, flowgrind also has the option of capturing TCP traces and also specifying
the socket options such as congestion control algorithm to be used for that particular
connection. Flowgrind was extended to make use of the pluggable reordering kernel
where we implemented the option of choosing reordering algorithms via a socket option.

Through out our experiments, we measure and evaluate the performance of TCP NCR
and TCP aNCR under bulk traffic as well as request-response traffic. By default, in
Flowgrind, bulk transfer tests are performed. However, we can also describe the traffic
characteristics which enables us to have our own traffic matrix. We make use of this fea-
ture from Flowgrind to describe our request-response traffic as mentioned in cdma2000
Evaluation Methodology. [50]

38 Master Thesis, FG INET, TU Berlin, 2015

Puneeth Nanjundaswamy Investigating a Reordering Robust TCP.

F
ig
u
re

4.
3:

A
sa
m
p
le

fl
ow

gr
in
d
lo
gfi

le
ou

tp
u
t

Master Thesis, FG INET, TU Berlin, 2015 39

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

40 Master Thesis, FG INET, TU Berlin, 2015

5 Evaluation and Discussion

This chapter describes the various scenarios under which Linux’s reordering detection
and reaction mechanism, TCP-NCR and TCP-aNCR are evaluated. In the first section
of this chapter, the algorithms are evaluated under lower data rates to understand the
behaviour and the pros and cons of the algorithms. In the latter section, the algorithms
are evaluated at higher data rates commonly found in data center scenarios.

The algorithms are evaluated for throughput, application perceived delay, number of
spurious retransmits under varying parameters of bottleneck bandwidth, round trip
time, reordering delay and reordering rate. The experiments are run for 120 seconds
(lower data rates) or 11 seconds (higher data rates) and an iteration factor of 10. The
timestamps option is disabled for NCR and aNCR to observe the worst case scenario
performance. Furthermore, the slow start bug in NCR has been fixed in the experi-
ments to have a fair comparison between NCR and aNCR. There are in-total 6 possible
combinations of algorithms which are evaluated in this thesis. They are, Linux with
timestamps disabled and SACK enabled (Native Linux DS), Linux with timestamps and
SACK enabled (Linux TS), NCR with careful limited transmit (TCP-NCR CF), NCR
with aggressive limited transmit (TCP-NCR AG), aNCR with careful limited transmit
(TCP-aNCR CF), aNCR with aggressive limited transmit (TCP-aNCR AG).

5.1 Lower data rates

In this section, the algorithms are evaluated under different scenarios present in the wild
internet. The low data rate environment is emulated with reference to the Common
TCP Evaluation Suite.[44] The topology used for the measurements is as described in
fig 4.1.

5.1.1 Scenario 1: Performance without packet reordering under different
bottleneck bandwidths

In this section we study the performance of Linux, TCP-NCR and TCP-aNCR with no
Packet reordering in the network. Without packet reordering in the network, the only
reason for triggering ELT is due to network congestion because of our bottleneck node.
The experiment is conducted at various values of bottleneck.

With no reordering, TCP-aNCR maintains a duplicate threshold of three packets unlike
TCP-NCR which waits for a congestion window worth of packets to decide that the

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

packet has been lost and not reordered. Thus, TCP-aNCR should be more responsive
to network congestion and should immediately retransmit the lost packet. This should
be evident by comparing application perceived RTT.

Testbed settings:

RTT: 40ms
BNBW: 1Mbps - 100Mbps
Reordering rate: 0%

This scenario is studied under:

1. Bulk traffic

a) No cross traffic

i. With Reno congestion control algorithm [51]

ii. With CUBIC congestion control algorithm [52]

b) With Reno and static aNCR dupthresh

c) with cross traffic

2. Request response traffic and CUBIC

The graphs in fig 5.1a and fig 5.1b are plots of maximum attained throughput over
bottleneck bandwidth. The experiments are performed with Reno[51] (fig: 5.1a) and
CUBIC[52] (fig 5.1b)because, in most Linux systems, CUBIC is the default congestion
control algorithm. we notice that Linux’s default algorithm, NCR and aNCR perform
equally well in the absence of packet reordering in the network. The dupthresh in this
scenario is three for Linux and aNCR. However, for NCR, the dupthresh is approximately
equal to the value of congestion window. The experiment is also conducted with dynamic
dupthresh turned off for aNCR and with Reno congestion control algorithm[51]. The val-
ues of average throughput achieved (fig 5.1c) are similar to those in fig 5.1a and fig 5.1b.
There were no spurious retransmissions as there was no packet reordering in the network.

The main purpose of this measurement is to analyse the benefits of latency improve-
ments with aNCR in comparison to NCR because of the variable dupthresh of aNCR.
For this purpose, we measure the average application-perceived latency with Reno[51]
congestion control algorithm. The average RTT values are tabulated in table 5.1. As
we can observe from the table 5.1, at lower data rates, the average application-perceived
latency is lesser for Linux and aNCR and slightly higher for NCR. This is because of the
lower dupthresh in case of Linux and aNCR in comparison with NCR. This difference in
latency is visible at lower data rates and lesser at higher data rates because the experi-
ments were conducted for 120 seconds and with higher bottleneck bandwidths, there are
fewer loss-recovery cycles in the 120 second test duration thus, the values are in similar
range.

42 Master Thesis, FG INET, TU Berlin, 2015

Puneeth Nanjundaswamy Investigating a Reordering Robust TCP.

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

T
h
ro

u
g
h
p
u
t

[M
b /

s]

Bottleneck Bandwidth [Mb/s]

Native Linux DS
Native Linux TS

TCP-NCR CF
TCP-NCR AG

TCP-aNCR CF
TCP-aNCR AG

(a) Reno congestion control

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

T
h
ro

u
g
h
p
u
t

[M
b /

s]

Bottleneck Bandwidth [Mb/s]

Native Linux DS CUB
Native Linux TS CUB

TCP-NCR CF CUB
TCP-NCR AG CUB

TCP-aNCR CF CUB
TCP-aNCR H-CF CUB

TCP-aNCR AG CUB

(b) CUBIC congestion control

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

T
h
ro

u
g
h
p
u
t

[M
b /

s]

Bottleneck Bandwidth [Mb/s]

Native Linux DS
Native Linux TS

TCP-NCR CF
TCP-NCR AG

TCP-aNCR CF
TCP-aNCR AG

(c) aNCR static dupthresh with Reno congestion control

Figure 5.1: Lower data rate - Scenario 1: Average throughput vs BNBW

Master Thesis, FG INET, TU Berlin, 2015 43

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

BNBW Linux DS Linux TS NCR CF NCR AG aNCR CF aNCR AG
aNCR CF

static dupthresh
aNCR AG

static dupthresh

1 30.030387 30.027638 30.100013 30.191528 30.027695 30.029036 30.09609 30.04671
2 30.000046 30.017357 30.017225 29.969165 30.006216 30.011953 30.015353 29.961395
5 18.968994 18.971599 19.037482 18.981349 18.968374 18.976077 19.0388 18.966765
10 10.668574 10.671492 10.718232 10.677515 10.666853 10.670589 10.725689 10.673792
20 5.646246 5.644762 5.671485 5.650121 5.648805 5.647219 5.680073 5.646948
30 3.844705 3.841509 3.859232 3.842671 3.840104 3.840494 3.86055 3.840203
40 2.911151 2.909424 2.923892 2.911188 2.90943 2.90847 2.925749 2.910272
50 2.341407 2.339534 2.350968 2.341196 2.339963 2.339129 2.352693 2.338962
60 1.958057 1.956865 1.966179 1.958889 1.957811 1.957055 1.967908 1.957342
70 1.681853 1.682081 1.689619 1.683049 1.68103 1.681325 1.692674 1.681968
80 1.474749 1.474945 1.481854 1.475548 1.47464 1.474166 1.482659 1.47383
90 1.313329 1.312778 1.319057 1.313571 1.311865 1.313 1.320012 1.312407
100 1.184563 1.183705 1.189476 1.18395 1.183794 1.183983 1.190812 1.183753

Table 5.1: Scenario 1: Average application-perceived latency (seconds) vs BNBW
(mbps) - Reno

Furthermore, there is a similarity in the latency values of NCR and aNCR with static
dupthresh because, when dynamic dupthresh is disabled in aNCR, the aNCR’s dupthresh
is equal to NCR dupthresh.

The algorithms were also evaluated with cross-traffic passing through the bottleneck
node. The cross traffic generator and sink were used as shown in fig 4.1. The behaviour
of reordering algorithms does not depend based on the presence of cross traffic or con-
current flows. This is because, a packet reordering component in the network affects all
the flows and the occurrence of packet reordering in one flow does not affect the other
flow in any way. The presence of cross traffic just decreased the average throughput of
our experimental flow. The cross traffic generator generated a standard TCP flow with
Reno congestion control algorithm with SACK option enabled.

The algorithms are also evaluated under request-response traffic. The average num-
ber of transactions per second at various bottleneck bandwidths are tabulated as in
table 5.2. We notice that all the reordering algorithms perform equally well under no
packet reordering in the network.

5.1.2 Scenario 2: Performance with packet reordering under different
bottlenecks

In this scenario, we compare the performance of Linux, TCP-NCR and TCP-aNCR un-
der different bottlenecks varying from 1Mbps upto 100Mbps. We introduce a reordering
percentage of 2% in the network with and a reordering delay of 20ms. A good reordering
algorithm should be robust in the presence of packet reordering in the network.

Testbed settings:

44 Master Thesis, FG INET, TU Berlin, 2015

Puneeth Nanjundaswamy Investigating a Reordering Robust TCP.

BNBW Linux DS Linux TS NCR CF NCR AG aNCR CF aNCR H-CF aNCR AG

1 341 341 342 340 342 342 341
2 688 687 688 688 688 688 688
5 1718 1718 1718 1716 1717 1717 1718
10 3433 3436 3434 3436 3437 3436 3435
20 6860 6862 6864 6865 6865 6869 6865
30 10231 10266 10290 10267 10275 10241 10259
40 13717 13730 13726 13726 13660 13726 13623
50 17062 17094 17126 17099 17145 17123 17128
60 20561 20533 20572 20562 20556 20562 20555
70 24001 24003 23953 24015 23977 23898 23899
80 27427 27442 27433 27428 27299 27222 27343
90 30816 30857 30767 30698 30871 30839 30871
100 34250 34278 34081 34289 34224 34193 34115

Table 5.2: Scenario 1: Average transactions/s vs bottleneck bandwidth (mbps) - CUBIC

RTT: 40ms
BNBW: 1Mbps - 100Mbps
Reordering rate: 2%
Reordering delay: 20ms

This scenario is studied under:

1. Bulk traffic with no cross traffic

a) With Reno congestion control algorithm [51]

b) With CUBIC congestion control algorithm [52]

c) With Reno and static aNCR dupthresh

2. Request response traffic and CUBIC

The plots in fig 5.2a and fig 5.2b are those of average throughput versus bottleneck
bandwidth with Reno and CUBIC respectively. The experiment is also conducted with
dynamic dupthresh turned off for aNCR and with Reno congestion control algorithm[51].
The values of average throughput achieved (fig 5.1c) are similar to those in fig 5.1a and
fig 5.1b.

We can see that Linux’s performance is poorest among the reordering algorithms. This
can be explained by the implementation of Linux’s reordering detection and reordering
reaction algorithm. Each time a hole is filled in the scoreboard, Linux calculates the
reordering extent and sets the maximum reordering extent seen as the dupthresh value.
However, the amount of reordering extent Linux can detect and calculate is limited to
127 packets (at the time of implementation). However, in our experiments, with our
reordering emulation with NetEm, we found that, even with a constant 2% reordering

Master Thesis, FG INET, TU Berlin, 2015 45

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

rate, reordering extent often exceeded the value of 127. This is more evident at higher
data rates. Furthermore, Linux tries to undo recovery (If in Recovery phase) each time
there is a DSACK block that acknowledges already acknowledged data (below the cumu-
lative ACK line). However, in most cases, the TCP connection is already in OPEN state
or another DISORDER state. Furthermore, Linux kernel does not take into account
the reordering extent when a DSACK arrives. With the timestamps option enabled in
the Linux kernel, we see an improvement in the performance with Linux’s reordering
detection and reaction and reno congestion control algorithm. However, as earlier men-
tioned, at higher data rates, the connection is in persistent reordering phase and does
not increase its CWND. Thus, the data rate remains approximately constant after 70
mb/s. With timestamp option enabled and CUBIC congestion control algorithm (fig
5.2b), the performance is as bad as that of timestamps disabled. The reason for the
poor performance should be analysed.

NCR with careful ELT also suffers under packet reordering, especially at higher data
rates because, NCR fails to update the congestion window in ELT 3.2.1 and at higher
data rates, the number of reordered packets are more and the connection is in persistent
reordering state. In this state, NCR fails (STEP T.4) to update its congestion win-
dow and therefore performs poorly compared to aNCR. This explains the deviation at
60mb/s and beyond. NCR and aNCR had the least number of spurious retransmissions
at approximately 10 data segments. The application perceived latency was the least
with NCR and aNCR and the highest with Linux without timestamps.

The algorithms are also evaluated under request-response traffic with CUBIC. The aver-
age number of transactions per second at various bottleneck bandwidths are tabulated
as in table 5.3. As expected, with NCR and aNCR the transaction rate is higher com-
pared to Linux as explained in the earlier plots. The performance of the algorithms with
request-response traffic are in accordance with those of bulk traffic scenarios.

BNBW Linux DS Linux TS NCR CF NCR AG aNCR CF aNCR H-CF aNCR AG

1 334 341 343 341 341 343 340
2 684 684 686 687 687 687 687
5 1622 1605 1708 1714 1707 1710 1716
10 2143 2761 3373 3418 3348 3384 3415
20 2364 3996 6455 6837 6535 6392 6767
30 2331 2264 9257 10218 9332 9313 10166
40 2265 2153 11800 13602 12307 12014 13084
50 2238 2272 14244 17035 15255 15387 16809
60 2073 2462 16619 20381 17633 18139 19233
70 2444 2698 19334 23694 20709 19636 23430
80 2084 2333 21954 26670 24541 22199 25430
90 2501 2127 23489 29693 25490 24287 27793
100 2168 2336 25327 32979 31311 27149 30907

Table 5.3: Scenario 2: Average transactions/s vs bottleneck bandwidth (mbps) - CUBIC

46 Master Thesis, FG INET, TU Berlin, 2015

Puneeth Nanjundaswamy Investigating a Reordering Robust TCP.

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

T
h
ro

u
g
h
p
u
t

[M
b /

s]

Bottleneck Bandwidth [Mb/s]

Native Linux DS
Native Linux TS

TCP-NCR CF
TCP-NCR AG

TCP-aNCR CF
TCP-aNCR AG

(a) Reno congestion control

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

T
h
ro

u
g
h
p
u
t

[M
b /

s]

Bottleneck Bandwidth [Mb/s]

Native Linux DS CUB
Native Linux TS CUB

TCP-NCR CF CUB
TCP-NCR AG CUB

TCP-aNCR CF CUB
TCP-aNCR H-CF CUB

TCP-aNCR AG CUB

(b) CUBIC congestion control

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

T
h
ro

u
g
h
p
u
t

[M
b /

s]

Bottleneck Bandwidth [Mb/s]

Native Linux DS
Native Linux TS

TCP-NCR CF
TCP-NCR AG

TCP-aNCR CF
TCP-aNCR AG

(c) aNCR static dupthresh with Reno

Figure 5.2: Lower data rate - Scenario 2: Average throughput vs BNBW

Master Thesis, FG INET, TU Berlin, 2015 47

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

5.1.3 Scenario 3: Performance with packet reordering under varying RTTs

In this scenario, we compare the performance of Linux, TCP-NCR and TCP-aNCR un-
der varying values of RTT from 5ms to 150ms. We introduce a reordering percentage of
2% in the network with and a reordering delay of 5ms.

The purpose of this experiment is to study the effect of RTT on the performance re-
ordering algorithms. This scenario can be considered as a specific case of scenario 2 with
varying RTT. An arbitrary bottleneck of 20 mbps was chosen for this scenario since all
the reordering algorithms (except Linux with timestamps disabled) performed better
with Reno in the previous scenario.

Testbed settings:

BNBW: 20mb/s
Reordering rate: 2%
Reordering delay: 5ms

This scenario is studied under:

1. Bulk traffic with no cross traffic

a) With Reno congestion control algorithm [51]

b) With Reno and static aNCR dupthresh

2. Request response traffic and CUBIC

The plots of average transmission rate over RTT in fig 5.3a and fig 5.3b illustrate that
the reordering algorithms except for Linux with timestamsp disabled, exhibit robustness
against mild packet reordering of 2% and a reordering delay of 5ms. The Linux with
timestamp option disabled continues to deteriorate at higher values of RTT. This is
because the connection is more often in recovery phase and as explained in scenario
2. The plot in fig 5.12 of spurious retransmits versus RTT values further illustrates
the constant transit to recovery phase when timestamp option is disabled in the Linux
kernel. Furthermore, with higher RTTs, the congestion window does not increase fast
and therefore the transmission rate further deteriorates. The transmission rate directly
impacts the application perceived latency of the network. This is illustrated by the plots
of application perceived latency versus RTT in fig 5.4a and fig 5.4b. The experiments
with request response traffic exhibit the expected behaviour of having similar values as
in table 5.3. The spurious retransmits were found to be none with NCR , approximately
4 with aNCR and Linux with timestamps and more than 200 for Linux with timestamps
disabled.

5.1.4 Scenario 4: Performance with varying reordering rate

In this section we study the performance of Linux, TCP-NCR and TCP-aNCR under
varying reordering rate from 0% upto 40% and a constant reordering delay of 20ms. The

48 Master Thesis, FG INET, TU Berlin, 2015

Puneeth Nanjundaswamy Investigating a Reordering Robust TCP.

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160

T
h
ro

u
g
h
p
u
t

[M
b /

s]

Round-Trip Time [ms]

Native Linux DS
Native Linux TS

TCP-NCR CF
TCP-NCR AG

TCP-aNCR CF
TCP-aNCR AG

(a) Reno congestion control

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160

T
h
ro

u
g
h
p
u
t

[M
b /

s]

Round-Trip Time [ms]

Native Linux DS
Native Linux TS

TCP-NCR CF
TCP-NCR AG

TCP-aNCR CF
TCP-aNCR AG

(b) aNCR static dupthresh with Reno

Figure 5.3: Lower Data rate - Scenario 3: Average throughput vs delay

Master Thesis, FG INET, TU Berlin, 2015 49

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160

A
p
p
li
ca

ti
o
n

L
ay

er
R

T
T

[s
]

Round-Trip Time [ms]

Native Linux DS
Native Linux TS

TCP-NCR CF
TCP-NCR AG

TCP-aNCR CF
TCP-aNCR AG

(a) Reno congestion control

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160

A
p
p
li
ca

ti
o
n

L
ay

er
R

T
T

[s
]

Round-Trip Time [ms]

Native Linux DS
Native Linux TS

TCP-NCR CF
TCP-NCR AG

TCP-aNCR CF
TCP-aNCR AG

(b) aNCR static dupthresh with Reno

Figure 5.4: Lower data rate - Scenario 3: Average application-perceived latency vs delay

50 Master Thesis, FG INET, TU Berlin, 2015

Puneeth Nanjundaswamy Investigating a Reordering Robust TCP.

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140 160

S
p
u
ri

o
u
s

R
et

ra
n
sm

is
si

o
n
s

[#
]

Round-Trip Time [ms]

Native Linux DS
Native Linux TS

TCP-NCR CF
TCP-NCR AG

TCP-aNCR CF
TCP-aNCR AG

Figure 5.5: Lower data rate - Scenario 3: Spurious retransmits at various RTT values

goal of this scenario is to study the impact of reordering rate on throughput, latency
and spurious retransmissions at different reordering rates.

Testbed settings:

RTT: 40ms
Reordering rate: 0% - 40%
Reordering delay: 20ms

This scenario is studied under:

1. Bulk traffic with no cross traffic

a) With Reno congestion control algorithm [51]

b) With Reno and static aNCR dupthresh

2. Request response traffic and CUBIC

The plots in fig 5.6a, fig 5.6b and fig 5.6c illustrate the average throughput achieved by
the reordering algorithms at various reordering rates. TCP-aNCR performs well at all
reordering rates. TCP-NCR with careful limited transmit begins to lose performance
when the packet reordering rate is about 3% and from then on, it further begins to
lose performance at higher reordering rates. TCP-NCR with aggressive limited trans-
mit begins to lose performance at about 30% reordering rate. Linux on the other hand
loses performance sharply when the reordering rate is about 3% and from then on, the
throughput begins to improve and reaches the full bottleneck bandwidth when the re-
ordering rate is about 40%. On the other hand, Linux with timestamps enabled behaves
similar to that of without timestamps. However, the descend in the throughput is less
drastic as that of Linux with timestamps disabled.

Master Thesis, FG INET, TU Berlin, 2015 51

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

The application perceived latency increases with Linux’s native algorithm with times-
tamps disabled. It is at its highest between 2% and 5% and gradually improves as the
reordering rate increases. This is the same for NCR and aNCR but is not as drastic as
that of Linux without timestamps.

The plot in fig 5.7 highlights the extent of spurious retransmissions across various
algorithms. During the reordering rates of 2% to 5% the Linux kernel exhibits high
amount of spurious retransmissions because of falsely detecting a reordered packet as
lost. Therefore the CWND never grows to utilise the full available bandwidth and are
the reasons for its poor throughput and high amount of spurious retransmits. For the
other algorithms, the spurious retransmissions were low at about 10 - 20 packets.

The performance also reflects in the results of the request response test (table 5.4)
with Linux performing badly at reordering rates between 2% to 5%. NCR and aNCR
performs well and have higher transactions/s with NCR’s performance going down at
higher reordering rates.

Reordering
rate (%)

Linux DS Linux TS NCR CF NCR AG aNCR CF aNCR H-CF aNCR AG

0 6865 6860 6867 6870 6866 6865 6868
1 3008 3065 6682 6837 6683 6600 6833
2 2296 2492 6411 6825 6430 6466 6786
3 2050 2363 6112 6811 6395 6282 6765
5 4424 4308 5905 6807 6409 6273 6728
7 5176 4539 5730 6799 6465 6479 6781
10 5276 5404 5326 6799 6644 6629 6719
15 5998 6187 4946 6711 6723 6623 6752
20 6376 6418 4658 6560 6797 6733 6733
30 6230 6473 4393 6258 6709 6749 6840
35 6375 6339 4135 5889 6656 6819 6691
25 6699 6453 3059 5479 6811 6717 6679
40 6538 6420 2935 5227 6758 6713 6837

Table 5.4: Scenario 4: Average transactions/s vs reordering rate - CUBIC

5.1.5 Scenario 5: Performance with varying reordering delay

In this section we study the performance of TCP-NCR and TCP-aNCR under varying
reordering delay from 5ms upto 100ms and a constant RTT of 40ms. The goal of this
scenario is to study the throughput, latency and spurious retransmissions at different
reordering rates.

With a varying reordering delay, we are also varying the relative reordering extent.
At higher reordering delays, aNCR’s reordering extent reaches its maximum factor of 1,

52 Master Thesis, FG INET, TU Berlin, 2015

Puneeth Nanjundaswamy Investigating a Reordering Robust TCP.

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40

T
h
ro

u
g
h
p
u
t

[M
b /

s]

Reordering Rate [%]

Native Linux DS
Native Linux TS

TCP-NCR CF
TCP-NCR AG

TCP-aNCR CF
TCP-aNCR AG

(a) Reno congestion control

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40

T
h
ro

u
g
h
p
u
t

[M
b /

s]

Reordering Rate [%]

Native Linux DS CUB
Native Linux TS CUB

TCP-NCR CF CUB
TCP-NCR AG CUB

TCP-aNCR CF CUB
TCP-aNCR H-CF CUB

TCP-aNCR AG CUB

(b) CUBIC congestion control

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40

T
h
ro

u
g
h
p
u
t

[M
b /

s]

Reordering Rate [%]

Native Linux DS
Native Linux TS

TCP-NCR CF
TCP-NCR AG

TCP-aNCR CF
TCP-aNCR AG

(c) aNCR static dupthresh with Reno

Figure 5.6: Lower data rate - Scenario 4: Average throughput vs Reordering rate
Master Thesis, FG INET, TU Berlin, 2015 53

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35 40

S
p
u
ri

o
u
s

R
et

ra
n
sm

is
si

o
n
s

[#
]

Reordering Rate [%]

Native Linux DS
Native Linux TS

TCP-NCR CF
TCP-NCR AG

TCP-aNCR CF
TCP-aNCR AG

Figure 5.7: Lower data rate - Scenario 4: Spurious retransmits at various RTT values

i.e., equals the duplicate threshold value of NCR.

Testbed settings:

RTT: 40ms
Reordering rate: 2%
Reordering delay: 5ms - 100ms

This scenario is studied under:

1. Bulk traffic with no cross traffic

a) With Reno congestion control algorithm [51]

b) With Reno and static aNCR dupthresh

2. Request response traffic and CUBIC

The plots in fig 5.8a, fig 5.8b and fig fig:s5bdrbnbw of average throughput over reordering
delay demonstrates the performance of various algorithms. The algorithms are measured
with Reno, CUBIC and with aNCR static dupthresh. Linux without timestamps per-
forms the poorest. From 0ms to 35 ms of reordering delay, The (a)NCR versions with
aggressive limited transmit have a higher average throughput. Beyond 35 ms, the re-
ordered packets are no more under the 1 CWND limit that NCR and aNCR have and
therefore, cannot detect reordered packets beyond this value. Thus, the throughput
drops drastically at about 35ms. The behaviour is similar with Reno and CUBIC con-
gestion control. The application perceived latency increases beyond 35ms for NCR and
aNCR.

The plot of average spurious transmits versus reordering delay in fig 5.9 clearly illus-
trates this inability of the algorithms by the sharp increase in the spurious retransmits
at about 35ms.

54 Master Thesis, FG INET, TU Berlin, 2015

Puneeth Nanjundaswamy Investigating a Reordering Robust TCP.

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80

T
h
ro

u
g
h
p
u
t

[M
b /

s]

Reordering Delay [ms]

Native Linux DS
Native Linux TS

TCP-NCR CF
TCP-NCR AG

TCP-aNCR CF
TCP-aNCR AG

(a) Reno congestion control

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80

T
h
ro

u
g
h
p
u
t

[M
b /

s]

Reordering Delay [ms]

Native Linux DS CUB
Native Linux TS CUB

TCP-NCR CF CUB
TCP-NCR AG CUB

TCP-aNCR CF CUB
TCP-aNCR H-CF CUB

TCP-aNCR AG CUB

(b) CUBIC congestion control

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80

T
h
ro

u
g
h
p
u
t

[M
b /

s]

Reordering Delay [ms]

Native Linux DS
Native Linux TS

TCP-NCR CF
TCP-NCR AG

TCP-aNCR CF
TCP-aNCR AG

(c) aNCR static dupthresh with Reno

Figure 5.8: Lower data rate - Scenario 5: Average throughput vs Reordering delay
Master Thesis, FG INET, TU Berlin, 2015 55

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80

S
p
u
ri

o
u
s

R
et

ra
n
sm

is
si

o
n
s

[#
]

Reordering Delay [ms]

Native Linux DS
Native Linux TS

TCP-NCR CF
TCP-NCR AG

TCP-aNCR CF
TCP-aNCR AG

Figure 5.9: Lower data rate - Scenario 5: Spurious retransmits at various reordering
delays

The request response tests as tabulated in 5.5 also agree with the bulk transfer tests with
average number of transaction slightly decreasing between 0ms and 40ms of reordering
delay and drastically decreasing beyond 40ms of reordering delay.

Reordering delay Linux DS Linux TS NCR CF NCR AG aNCR CF aNCR H-CF aNCR AG

5 4497 4773 6853 6854 6860 6827 6849
10 3094 3624 6844 6859 6804 6827 6822
15 2788 2421 6777 6850 6778 6713 6851
20 2026 2109 6413 6808 6522 6400 6784
25 2158 2011 5246 6748 5318 5291 6718
30 2045 2022 4570 6630 4470 4608 6547
35 2007 1856 3930 6341 3943 4196 6343
40 1826 1670 3644 4275 3681 3818 4278
45 1495 1552 3426 3836 3416 3614 3816
50 1577 1566 3189 3661 3352 3489 3639
60 1673 1447 3112 3314 3117 3267 3384
70 2031 2035 2891 3092 2860 3001 3108
80 1994 1966 2618 2853 2666 2825 2846

Table 5.5: Scenario 5: Average transactions/s vs reordering delay - CUBIC

5.1.6 Scenario 6: Performance with reverse path loss

In this section we study the performance of Linux, TCP-NCR and TCP-aNCR under
reverse path losses and packet reordering. aNCR depends on DSACKs to detect spu-
rious retransmissions. In the event of finding a DSACK, aNCR restores the previous
relative reordering extent. However, DSACKs are reported in only 1 acknowledgement.
Therefore, aNCR may be vulnerable to high reverse path losses.

56 Master Thesis, FG INET, TU Berlin, 2015

Puneeth Nanjundaswamy Investigating a Reordering Robust TCP.

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40

T
h
ro

u
g
h
p
u
t

[M
b /

s]

ACK Loss Rate [%]

Native Linux DS
Native Linux TS

TCP-NCR CF
TCP-NCR AG

TCP-aNCR CF
TCP-aNCR AG

(a) Reno congestion control

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40

T
h
ro

u
g
h
p
u
t

[M
b /

s]

ACK Loss Rate [%]

Native Linux DS CUB
Native Linux TS CUB

TCP-NCR CF CUB
TCP-NCR AG CUB

TCP-aNCR CF CUB
TCP-aNCR H-CF CUB

TCP-aNCR AG CUB

(b) CUBIC congestion control

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40

T
h
ro

u
g
h
p
u
t

[M
b /

s]

ACK Loss Rate [%]

Native Linux DS
Native Linux TS

TCP-NCR CF
TCP-NCR AG

TCP-aNCR CF
TCP-aNCR AG

(c) aNCR static dupthresh with Reno

Figure 5.10: Lower data rate - Scenario 6: Average throughput vs Reordering delay
Master Thesis, FG INET, TU Berlin, 2015 57

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

On the contrary, aNCR implements burst protection during extended limited transmit.
In the event of a duplicate ACK with a SACK block acknowledging more than one seg-
ment, aNCR ensures that only IW worth of packets are transmitted. Therefore, with
high reverse path losses and when in extended limited transmit, we can observe the
reduction in the throughput with aNCR in reaction to the congested network.

Testbed settings:

RTT: 40ms
Reordering rate: 2%
Reordering delay: 20ms
Reverse path loss: 0% - 30%

This scenario is studied under:

1. Bulk traffic with no cross traffic

a) With Reno congestion control algorithm [51]

b) With Reno and static aNCR dupthresh

2. Request response traffic and CUBIC

The plots in fig 5.10a, fig 5.10b and fig 5.10c show the average throughput of the al-
gorithms at various different ACK loss rates. NCR is not dependent on DSACKs and
therefore exhibits a better performance. aNCR is dependent on DSACKs and therefore
with ACK losses and the loss of crucial DSACKs, aNCR is unable to restore the values
of relative and absolute reordering extents when operating with timestamps option dis-
abled and with dynamic dupthresh. As we see in fig 5.10c, aNCR performs on par with
NCR with static dupthresh and is more robust to ACK loss.

The request-response tests indicate that NCR and aNCR have the best transaction
rate and reflects the results of bulk traffic with NCR slightly performing better than
aNCR. The spurious retransmissions are less than 10 for Linux with timestamps, NCR
and aNCR. With timestamps disabled, the spurious retransmissions is about 500 data
segment for Linux.

5.2 Data center environment

In this section, we study the performance of Linux, TCP-NCR and TCP-aNCR at high
data rates. The data rate environment is setup with reference to Common TCP Eval-
uation Suite.[44], Understanding Data Center Traffic Characteristics[53] and Network
traffic characteristics of data centers in the wild.[54] In our test bed, the following ex-
periments are conducted over 1GbeE and 10GbE links as described in fig 4.2. There

58 Master Thesis, FG INET, TU Berlin, 2015

Puneeth Nanjundaswamy Investigating a Reordering Robust TCP.

are no traffic shaping or traffic policing in the following experiments. The scenarios are
studied under the presence and absence of cross traffic. During our tests, it was found
that the existence of cross traffic was not affecting the performance of the reordering
algorithms. The throughput of the flows were found lesser with cross traffic.

5.2.1 Scenario 1: Performance without packet reordering.

In this scenario, we study the performance of the algorithms under no packet reordering.
This is similar to scenario 1 at lower data rates. The experiment was conducted with
Reno congestion control [51].

Testbed settings:

RTT: 0.3ms (measured)
bottleneck link capacity: 10Gbps
Reordering rate: 0%
Reordering delay: 0ms

All the algorithms performed equally well with reaching atleast 9.3 Gbps. Linux with
timestamps disabled attained an average throughput of 9.36 Gbps and with timestamps
enabled 9.33 Gbps as illustrated in fig 5.11. TCP-NCR with careful limited transmit
had an average throughput of 9.39 Gbps and aggressive limited transmit 9.57 Gbps.
TCP-aNCR with careful and aggressive limited transmit had an average throughput
of 9.33 Gbps. There were no significant differences found in the latency values among
algorithms.

9.15

9.2

9.25

9.3

9.35

9.4

9.45

9.5

9.55

9.6

Linux-D
S

Linux-TS

N
C
R-C

F

N
C
R-AG

aN
C
R-C

F

aN
C
R-AG

T
h
ro

u
g
h
p
u
t

(G
b
p
s
)

Average Throughput of various Reordering algorithms

Figure 5.11: High data rate: Performance of algorithms under no packet reordering

5.2.2 Scenario 2: Performance under mild packet reordering.

In this section, we study Linux, TCP-NCR and TCP-aNCR with mild Packet reordering
in the network. We introduce a mild packet reordering of 2% and a reordering delay of

Master Thesis, FG INET, TU Berlin, 2015 59

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

0.2ms. The scenario is similar to scenario 2 at lower data rates.

Testbed settings:

RTT: 0.3ms (measured)
bottleneck link capacity: 10Gbps
Reordering rate: 2%
Reordering delay: 0.2ms

7.8

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

Linux-D
S

Linux-TS

N
C
R-C

F

N
C
R-AG

aN
C
R-C

F

aN
C
R-AG

T
h
ro

u
g
h
p
u
t

(G
b
p
s
)

Average Throughput of various Reordering algorithms

Figure 5.12: High data rate: Performance of algorithms under mild packet reordering

It can be seen that both NCR and aNCR perform well under packet reordering. It is
to be noted that the slow start bug in NCR has been fixed to have a fair comparison
amongst algorithms. With the fixes, NCR performs the best.

5.2.3 Scenario 3: Performance under varying reordering rates.

In this section, we study Linux, TCP-NCR and TCP-aNCR with varying Packet reorder-
ing rate in the network. We vary the reordering rate from 0% to 10% with a reordering
delay of 0.2ms. The scenario is similar to scenario 4 at lower data rates. As we can see
from fig 5.13 NCR and aNCR perform better under various reordering rates.

Testbed settings:

RTT: 0.3ms
bottleneck link capacity: 1Gbps
Reordering rate: 0% - 10%
Reordering delay: 0.2ms

60 Master Thesis, FG INET, TU Berlin, 2015

Puneeth Nanjundaswamy Investigating a Reordering Robust TCP.

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35 40

T
h
ro

u
g
h
p
u
t

[M
b /

s]

Reordering Rate [%]

Native Linux DS
Native Linux TS

TCP-NCR CF
TCP-NCR AG

TCP-aNCR CF
TCP-aNCR AG

Figure 5.13: High data rate - scenario 3: Average throughput at various reordering rates

Master Thesis, FG INET, TU Berlin, 2015 61

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

62 Master Thesis, FG INET, TU Berlin, 2015

6 Conclusion and future work

6.1 Summary

This thesis, demonstrates the inherent problem with TCP in handling packet reordering,
the various disadvantages of packet reordering are highlighted. Various approaches to
make TCP robust against packet reordering are studied. Furthermore, this work evalu-
ates Linux v3.16 , TCP-NCR and TCP-aNCR’s performance against packet reordering
under higher and lower data rates; under bulk traffic and request-response traffic.

The experiments prove that TCP-aNCR algorithm is robust against packet reordering as
it performs well under all scenarios of packet reordering without latency trade-offs. As
earlier described in 5, the slow start bug in NCR was fixed during the evaluation to have
a fair comparison among all the algorithms. TCP-aNCR’s adaptable DUPTHRESH is a
very important aspect of the algorithm as it is able to maintain a value of 3 in case of no
packet reordering in the connection and is able to dynamically adapt the DUPTHRESH
in the face of reordering. Additionally, with the calculation of relative reordering extent,
TCP-aNCR is able to accurately calculate the value of DUPTHRESH in case of varying
data rate in the connection as absolute reordering extent is prone to sender’s data rate.

Furthermore, TCP-aNCR can be easily integrated in the Linux kernel as most of the
functionality is already present in the kernel. There have been many recent modifica-
tions being done to the Linux kernel to make it robust against packet reordering [55].
However, Linux’s approach is still based on absolute reordering extent which makes it
still vulnerable to packet reordering because of its aforementioned disadvantages. More-
over, the maximum absolute reordering extent value is capped at 300 which limits the
increase of DUPTHRESH in the presence of reordering to 300. Though it has been
exposed as a sysctl [56] parameter making it tunable, it is a system wide setting and
may not make sense in case of multipath TCP or the user may not at all make use of
this feature. However, with TCP-aNCR no such user tunable parameter is needed as it
is able to adapt its DUPTHRESH pro-actively.

6.2 Future work

TCP-aNCR has performed well under various scenarios which emulated in the testbed
set up. However, It needs to be emulated in wide range of other network environments
such as satellite links, cellular networks and real data center networks. During the the-
sis work, for higher data rate evaluation, It needed to be switched back to 1GbE from

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

10GbE as it was found that NetEm was not able to process reordering of packets at very
high data rates. Thus, for high data rate scenarios, it should be evaluated under a set
up which already has some other forms of packet reordering.

Furthermore, the option of having a dynamic DUPTHRESH in aNCR is a good fea-
ture, further research needs to be done as to under which network scenarios, it is most
beneficial. Extended limit transmit needs allocation of more buffer to accommodate
new data sent during DISORDER which is another area that needs further research.
Furthermore, the optimal limited transmit among careful limited transmit, aggressive
limited transmit and hybrid limited transmit needs to be done as it was left for dis-
cussion by the original authors [2]. One of the interesting observations which came
across during the evaluation was Linux with timestamps enabled performed poorly un-
der packet reordering with CUBIC congestion control. Hence it would be interesting
to evaluate the performance impact of packet reordering with various other congestion
control algorithms as well to strengthen the need for a reordering robust TCP.

64 Master Thesis, FG INET, TU Berlin, 2015

Bibliography

[1] J. Postel, “Transmission Control Protocol.” RFC 793 (INTERNET STANDARD),
Sept. 1981. Updated by RFCs 1122, 3168, 6093, 6528.

[2] S. Bhandarkar, A. L. N. Reddy, M. Allman, and E. Blanton, “Improving the Ro-
bustness of TCP to Non-Congestion Events.” RFC 4653 (Experimental), Aug. 2006.

[3] A. Hannemann, A. Zimmermann, C. Wolff, and L. Schulte, “Detection and Quan-
tification of Packet Reordering with TCP,”

[4] A. Hannemann, A. Zimmermann, C. Wolff, and L. Schulte, “Making TCP Adap-
tively Robust to Non-Congestion Events,”

[5] T. linux foundation, “Netem.” http://www.linuxfoundation.org/collaborate/

workgroups/networking/netem, 2009. [Online; accessed Dec-2014].

[6] H. P. P. Fabio Ludovici, “Net-em.” http://man7.org/linux/man-pages/man8/

tc-netem.8.html, 2011. [Online; accessed Dec-2014].

[7] A. Zimmermann, A. Hannemann, and T. Kosse, “Flowgrind - a new perfor-
mance measurement tool,” in Global Telecommunications Conference (GLOBE-
COM 2010), 2010 IEEE, pp. 1–6, Dec 2010.

[8] W. Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast
Recovery Algorithms.” RFC 2001 (Proposed Standard), Jan. 1997. Obsoleted by
RFC 2581.

[9] E. Blanton and M. Allman, “On making tcp more robust to packet reordering,”
SIGCOMM Comput. Commun. Rev., vol. 32, pp. 20–30, Jan. 2002.

[10] M. Zhang and B. Karp, “Rr-tcp: A reordering-robust tcp with dsack,” pp. 95–106,
2003.

[11] A. Morton, L. Ciavattone, G. Ramachandran, S. Shalunov, and J. Perser, “Packet
Reordering Metrics.” RFC 4737 (Proposed Standard), Nov. 2006. Updated by RFC
6248.

[12] J. Bennett, C. Partridge, and N. Shectman, “Packet reordering is not pathological
network behavior,” Networking, IEEE/ACM Transactions on, vol. 7, pp. 789–798,
Dec 1999.

http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://man7.org/linux/man-pages/man8/tc-netem.8.html
http://man7.org/linux/man-pages/man8/tc-netem.8.html

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

[13] V. Paxson, “End-to-end internet packet dynamics,” Networking, IEEE/ACM
Transactions on, vol. 7, pp. 277–292, Jun 1999.

[14] Y. Wang, G. Lu, and X. Li, “A study of internet packet reordering,” in Information
Networking. Networking Technologies for Broadband and Mobile Networks (H.-K.
Kahng and S. Goto, eds.), vol. 3090 of Lecture Notes in Computer Science, pp. 350–
359, Springer Berlin Heidelberg, 2004.

[15] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley, “Measurement
and classification of out-of-sequence packets in a tier-1 ip backbone,” Networking,
IEEE/ACM Transactions on, vol. 15, pp. 54–66, Feb 2007.

[16] L. Gharai, C. Perkins, and T. Lehman, “Packet reordering, high speed networks
and transport protocol performance,” in Computer Communications and Networks,
2004. ICCCN 2004. Proceedings. 13th International Conference on, pp. 73–78, Oct
2004.

[17] Transmission Control Protocol (TCP) Parameters. Available at http:

//www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml#

tcp-parameters-1, updated on: 2014-10-12.

[18] V. Jacobson, R. Braden, and D. Borman, “TCP Extensions for High Performance.”
RFC 1323 (Proposed Standard), May 1992. Obsoleted by RFC 7323.

[19] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective Acknowledg-
ment Options.” RFC 2018 (Proposed Standard), Oct. 1996.

[20] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, “An Extension to the Selective
Acknowledgement (SACK) Option for TCP.” RFC 2883 (Proposed Standard), July
2000.

[21] M. Kühlewind, S. Neuner, and B. Trammell, “On the state of ecn and tcp options
on the internet,” in Proceedings of the 14th International Conference on Passive and
Active Measurement, PAM’13, (Berlin, Heidelberg), pp. 135–144, Springer-Verlag,
2013.

[22] Alexa: An Amazon.com company. Available at http://www.alexa.com, http:

//aws.amazon.com/awis/.

[23] M. Laor and L. Gendel, “The effect of packet reordering in a backbone link on
application throughput,” Network, IEEE, vol. 16, pp. 28–36, Sep 2002.

[24] V. Jacobson, “Congestion avoidance and control,” in Symposium Proceedings on
Communications Architectures and Protocols, SIGCOMM ’88, (New York, NY,
USA), pp. 314–329, ACM, 1988.

[25] A. Dixit, P. Prakash, Y. Hu, and R. Kompella, “On the impact of packet spraying
in data center networks,” in INFOCOM, 2013 Proceedings IEEE, pp. 2130–2138,
April 2013.

66 Master Thesis, FG INET, TU Berlin, 2015

http://www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml#tcp-parameters-1
http://www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml#tcp-parameters-1
http://www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml#tcp-parameters-1
http://www.alexa.com
http://aws.amazon.com/awis/
http://aws.amazon.com/awis/

Puneeth Nanjundaswamy Investigating a Reordering Robust TCP.

[26] I. Keslassy and N. McKeown, “Maintaining packet order in two-stage switches,” in
INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, vol. 2, pp. 1032–1041 vol.2, 2002.

[27] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion Control.” RFC 5681
(Draft Standard), Sept. 2009.

[28] R. Dimond, E. Blanton, and M. Allman, “Practices for TCP Senders in the Face of
Segment Reordering,”

[29] K.-C. Leung, V. Li, and D. Yang, “An overview of packet reordering in trans-
mission control protocol (tcp): Problems, solutions, and challenges,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 18, pp. 522–535, April 2007.

[30] M. Zhang, B. Karp, S. Floyd, and L. Peterson, “Rr-tcp: a reordering-robust tcp with
dsack,” in Network Protocols, 2003. Proceedings. 11th IEEE International Confer-
ence on, pp. 95–106, Nov 2003.

[31] K.-C. Leung and C. Ma, “Enhancing tcp performance to persistent packet reorder-
ing,” Communications and Networks, Journal of, vol. 7, pp. 385–393, Sept 2005.

[32] S. Bohacek, J. P. Hespanha, J. Lee, C. Lim, and K. Obraczka, “A new tcp for
persistent packet reordering,” IEEE/ACM Trans. Netw., vol. 14, pp. 369–382, Apr.
2006.

[33] S. Bhandarkar, N. Sadry, A. Reddy, and N. Vaidya, “Tcp-dcr: a novel protocol
for tolerating wireless channel errors,” Mobile Computing, IEEE Transactions on,
vol. 4, pp. 517–529, Sept 2005.

[34] R. Ludwig and A. Gurtov, “The Eifel Response Algorithm for TCP.” RFC 4015
(Proposed Standard), Feb. 2005.

[35] R. Ludwig and M. Meyer, “The Eifel Detection Algorithm for TCP.” RFC 3522
(Experimental), Apr. 2003.

[36] J. Nagle, “Congestion Control in IP/TCP Internetworks.” RFC 896, Jan. 1984.

[37] M. Allman, H. Balakrishnan, and S. Floyd, “Enhancing TCP’s Loss Recovery Using
Limited Transmit.” RFC 3042 (Proposed Standard), Jan. 2001.

[38] A. Cooper, H. Tschofenig, B. Aboba, J. Peterson, J. Morris, M. Hansen, and
R. Smith, “Privacy Considerations for Internet Protocols.” RFC 6973 (Informa-
tional), July 2013.

[39] S. Ha, I. Rhee, and L. Xu, “Cubic: A new tcp-friendly high-speed tcp variant,”
SIGOPS Oper. Syst. Rev., vol. 42, pp. 64–74, July 2008.

Master Thesis, FG INET, TU Berlin, 2015 67

Investigating a Reordering Robust TCP. Puneeth Nanjundaswamy

[40] S. Liu, T. Basar, and R. Srikant, “Tcp-illinois: A loss- and delay-based congestion
control algorithm for high-speed networks,” Performance Evaluation, vol. 65, no. 6-
7, pp. 417 – 440, 2008. Innovative Performance Evaluation Methodologies and Tools:
Selected Papers from ValueTools 2006.

[41] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control.” RFC 2581
(Proposed Standard), Apr. 1999. Obsoleted by RFC 5681, updated by RFC 3390.

[42] E. Blanton, M. Allman, K. Fall, and L. Wang, “A Conservative Selective Acknowl-
edgment (SACK)-based Loss Recovery Algorithm for TCP.” RFC 3517 (Proposed
Standard), Apr. 2003. Obsoleted by RFC 6675.

[43] M. Mathis, N. Dukkipati, and Y. Cheng, “Proportional Rate Reduction for TCP.”
RFC 6937 (Experimental), May 2013.

[44] L. A. D. Hayes, D. Ros and S. Floyd, “Common TCP Evaluation Suite,” July 2014.

[45] S. Hemminger, “iproute2.” http://git.kernel.org/cgit/linux/kernel/git/

shemminger/iproute2.git, 2014. [Online; accessed Dec-2014].

[46] M. A. Brown, “Traffic Control HOWTO.” http://www.tldp.org/HOWTO/

Traffic-Control-HOWTO/overview.html, 2006. [Online; accessed Dec-2014].

[47] B. Hubert, “Linux Advanced Routing and Traffic Control HOWTO.” http://tldp.
org/HOWTO/Adv-Routing-HOWTO/index.html, 2002. [Online; accessed Dec-2014].

[48] D. C. Martin Devera, “HTB Linux queuing discipline manual - user guide.” http://
luxik.cdi.cz/~devik/qos/htb/manual/userg.htm, 2002. [Online; accessed Dec-
2014].

[49] T. Boot, “[Netem] Jitter without packet reordering.” https://lists.

linux-foundation.org/pipermail/netem/2013-August/001582.html, 2013.
[Online; accessed Dec-2014].

[50] reqres, “cdma2000 Evaluation Methodology Revision 0,” tech. rep., 3GPP2, 2004.

[51] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida, “The NewReno Modification
to TCP’s Fast Recovery Algorithm.” RFC 6582 (Proposed Standard), Apr. 2012.

[52] S. Ha, I. Rhee, and L. Xu, “Cubic: A new tcp-friendly high-speed tcp variant,”
SIGOPS Oper. Syst. Rev., vol. 42, pp. 64–74, July 2008.

[53] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding data center traffic
characteristics,” SIGCOMM Comput. Commun. Rev., vol. 40, pp. 92–99, Jan. 2010.

[54] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics of data
centers in the wild,” in Proceedings of the 10th ACM SIGCOMM Conference on
Internet Measurement, IMC ’10’, (New York, NY, USA), pp. 267–280, ACM, 2010.

68 Master Thesis, FG INET, TU Berlin, 2015

http://git.kernel.org/cgit/linux/kernel/git/shemminger/iproute2.git
http://git.kernel.org/cgit/linux/kernel/git/shemminger/iproute2.git
http://www.tldp.org/HOWTO/Traffic-Control-HOWTO/overview.html
http://www.tldp.org/HOWTO/Traffic-Control-HOWTO/overview.html
http://tldp.org/HOWTO/Adv-Routing-HOWTO/index.html
http://tldp.org/HOWTO/Adv-Routing-HOWTO/index.html
http://luxik.cdi.cz/~devik/qos/htb/manual/userg.htm
http://luxik.cdi.cz/~devik/qos/htb/manual/userg.htm
https://lists.linux-foundation.org/pipermail/netem/2013-August/001582.html
https://lists.linux-foundation.org/pipermail/netem/2013-August/001582.html

Puneeth Nanjundaswamy Investigating a Reordering Robust TCP.

[55] E. Dumazet, “kernel/git/torvalds/linux.git - Linux kernel source tree.”

[56] “sysctl(8) - Linux man page.”

Master Thesis, FG INET, TU Berlin, 2015 69

	List of Figures
	Listings
	List of Tables
	Definitions
	Introduction
	Motivation
	Contributions
	Thesis outline

	Background and related work
	Packet reordering
	Reordering extent

	Packet reordering in the internet
	TCP extensions
	TCP selective acknowledgement (SACK) option
	TCP duplicate selective acknowledgement (DSACK) option
	TCP timestamp option
	Deployment trends of TCP options

	Impact of packet reordering on TCP
	Forward path reordering
	Reverse path reordering
	Forward and reverse path reordering

	Impact on future technologies
	Approaches to make TCP robust to packet reordering

	TCP-NCR and TCP-aNCR
	Extended limited transmit (ELT)
	Careful limited transmit (CF ELT)
	Aggresive limited transmit (AG ELT)
	Hybrid limited transmit (HY ELT)

	TCP-NCR
	Algorithm
	Drawbacks of TCP-NCR

	TCP-adaptive NCR
	Reordering detection
	Reordering reaction

	Measurement Setup
	Testbed
	Traffic shaping and policing
	Packet reordering in Linux kernel
	Pluggable framework for reordering algorithms
	Flowgrind: Network performance tool

	Evaluation and Discussion
	Lower data rates
	Scenario 1: Performance without packet reordering under different bottleneck bandwidths
	Scenario 2: Performance with packet reordering under different bottlenecks
	Scenario 3: Performance with packet reordering under varying RTTs
	Scenario 4: Performance with varying reordering rate
	Scenario 5: Performance with varying reordering delay
	Scenario 6: Performance with reverse path loss

	Data center environment
	Scenario 1: Performance without packet reordering.
	Scenario 2: Performance under mild packet reordering.
	Scenario 3: Performance under varying reordering rates.

	Conclusion and future work
	Summary
	Future work

	Bibliography

