
JUHA KORHONEN
HOST IDENTITY PROTOCOL (HIP) IMPLEMENTATION
IN THE SYMBIAN ENVIRONMENT
Master of Science Thesis

Examiner: Prof. Jarmo Harju

Prof. Hannu-Matti Järvinen

Advisors: Dr. Lars Eggert

Dr. Pasi Sarolahti

Examiner and topic approved in

Information Technology

Department Council

Meeting on 10th December 2007

II

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Master's Degree Programme in Information Technology

KORHONEN, JUHA : Host Identity Protocol (HIP) Implementation in the
Symbian Environment
Master of Science Thesis, 70 pages, 7 con�dental Appendix pages

May 2008

Major: Embedded Systems

Examiner: Professor Jarmo Harju, Professor Hannu-Matti Järvinen

Keywords: host multihoming, host mobility, Internet topology, Host Identity Protocol,

Host Identity namespace, Symbian, IPsec

Host multihoming and mobility are problems in the current Internet. To sup-

port host mobility and multihoming, dynamic readdressing is needed. Currently a

host cannot change its IP addresses without disconnecting the sockets, which are

bound to respective IP addresses. Because of that, applications have to be aware

of such mobility and multihoming events. To avoid this overhead complexity in the

applications this could be done in the network layer.

Additionally, the current IP namespace does not provide identi�cation of hosts,

because it is divided into the public and private IP addresses that limit the unique-

ness of IP addresses. Furthermore, an IP address is non-cryptographic and thus

does not provide any security between hosts. IP addresses do not guarantee data

origin con�dentiality.

The Host Identity Protocol (HIP) provides a solution for the introduced problems.

HIP is a key negotiation protocol, but additionally, HIP introduces a new namespace,

the host identity namespace. The namespace separates IP addresses and the host

identi�ers. A host identi�er is the public key of an asymmetric cryptographic key

pair. Thus, a host can be identi�ed and authenticated based on its host identi�er.

The scope of the thesis was the implementation of HIP. A prototype handling the

Bound End-to-End Tunnel (BEET) mode for the IPsec and the part of the HIP Base

Exchange (BEX) messaging is implemented. Most of the complex HIP parameters

were not implemented. Secondly, this thesis provides an extensive background for

future implementations. The topic is important, because HIP is useful for mobile

devices, which have multiple interfaces such as Symbian handsets.

III

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO

Tietotekniikan koulutusohjelma

JUHA KORHONEN: HIP-protokollan implementointi Symbian-ympäristössä
Diplomityö, 70 sivua, 7 luottamuksellista liitesivua

Toukokuu 2008

Pääaine: Sulautetut järjestelmät

Tarkastajat: Professori Jarmo Harju, Professori Hannu-Matti Järvinen

Avainsanat: käyttäjän liikkuvuus, Internet, HIP-protokolla, Host Identity -nimiavaruus,

Symbian, IPsec

Käyttäjän liikkuvuus ja rinnakkaisten verkkoyhteyksien yhtäaikainen käyttämi-

nen ovat ongelmia Internetissä. Näiden mahdollistaminen vaatii dynaamista IP-

osoitteiden hallintaa. Nykyään käyttäjä ei kykene vaihtamaan IP-osoitetta ilman

sokettien uudelleenyhdistämistä, koska soketit ovat sidottuja IP-osoitteisiin. Tämän

takia verkkoyhteyksiä ja liikkuvuutta hallitaan usein sovellustasolla, mikä monimut-

kaistaa turhaan sovelluksia, vaikka kyseiset ongelmat voitaisiin ratkaista verkkoker-

roksella.

Toisaalta nykyinen IP-nimiavaruus (ts. osoiteavaruus) ei mahdollista käyttäjän

tunnistamista, koska nimiavaruus on jaettu julkiseen ja yksityiseen osioon, minkä

seurauksena IP-osoiteet eivät ole välttämättä yksiselitteisiä. Sen lisäksi IP-osoite

ei ole kryptogra�sesti muodostettu eikä mahdollista minkäänlaista tietoturvaa käyt-

täjien välillä. IP-osoitteet eivat takaa luottamuksellisesti datan alkuperää.

HIP-protokolla ratkaisee edellä mainitut ongelmat. HIP on avaintenvaihtopro-

tokolla, mutta sen lisäksi se määrittelee uuden nimiavaruuden, joka perustuu käyt-

täjän identiteetteihin (Host Identity). Nimiavaruus erottaa käyttäjän identiteetin

IP-osoitteista. Host Identi�er on epäsymmetrisen avainparin julkinen avain, ja tästä

johtuen sitä voidaan käyttää käyttäjän tunnistamiseen ja autentikointiin.

Diplomityö käsittelee HIP-protokollaa ja sen implementointia. Työssä on to-

teutettu prototyyppi, joka pitää sisällään IPsecin BEET moodin, ja avaintenvaih-

don perusteet. Monimutkaisempia HIP-parametreja työssä ei ole toteutettu. Tämän

lisäksi tarkoituksena oli tarjoa informaatiota tulevaisuuden projekteja varten. Diplo-

mityö tarjoaa pohjan jatkokehitykselle. Aihetta voidaan pitää erittäin tärkenä, koska

HIP on hyödyllinen mobiilipäätelaitteille, jotka voivat kiinnittyä useaan eri verkoon

ja joilla on siksi useampia erilaisia verkkorajapintoja käytössään samanaikaisesti.

IV

PREFACE

This Master of Science thesis was written as a part of the Nokia Research Center

mobility and multihoming research done in the Future Internet team. The work was

started during summer 2007 and the project was �nished in spring 2008. The thesis

has also a practical part, an implementation.

First of all, I want to thank Dr. Pasi Sarolahti and Dr. Lars Eggert. They have

been giving me crucial guidance to get this thesis written. I would like to thank

Professor Jarmo Harju for his guidance, useful comments, and writing tips. I want

to thank Professor Hannu-Matti Järvinen for giving his contribution for this thesis.

Last but not least, I would like to thank my girlfriend Jutta, my family and

everyone at Nokia for making this possible.

Otaniemi, May 5, 2008

V

TABLE OF CONTENTS

1. Introduction . 1

1.1 Scope . 2

1.2 Organization of the thesis . 3

2. Background . 4

2.1 Internetworking . 4

2.1.1 Role and challenges of IP addresses 6

2.1.2 IPv4 addressing . 8

2.1.3 IPv6 addressing . 9

2.2 Host multihoming and host mobility 9

2.2.1 Host multihoming . 10

2.2.2 Host mobility . 11

2.3 Security architecture for the Internet Protocol 11

2.3.1 Introduction to cryptography . 12

2.3.2 Overview of the IPsec . 13

2.3.3 A Bound End-to-End Tunnel . 16

2.4 Host Identity Protocol . 17

2.4.1 A new namespace . 17

2.4.2 HIP Base Exchange . 20

2.4.3 Using ESP with HIP . 24

2.4.4 Host mobility and multihoming with HIP 25

2.4.5 Security considerations . 26

2.5 Summary . 27

3. Symbian operating system . 28

3.1 Symbian OS overview . 28

3.1.1 Symbian essentials . 30

3.1.2 Platform security . 32

3.2 Networking in Symbian . 33

3.2.1 ESock framework . 35

3.2.2 Socket API . 35

3.2.3 Socket Server Protocols . 37

3.2.4 TCP/IP . 37

3.2.5 Security . 38

3.3 Summary . 38

4. Design . 39

4.1 Protocol Design . 39

VI

4.1.1 HIP PDU format . 39

4.1.2 HIP state machine . 40

4.2 Software Design . 41

4.2.1 Structural description of the system 42

4.2.2 HIP daemon design . 43

4.2.3 HIP protocol module design . 43

4.3 Summary . 44

5. Implementation . 45

5.1 HIP daemon functionality . 45

5.2 IPsec functionality . 45

5.3 PFKEY-API . 46

5.3.1 Extended PFKEY-API . 48

5.3.2 Symbian implementation challenges 48

5.4 Summary . 48

6. Discussion and Analysis . 49

6.1 Testing . 49

6.2 Evaluation of the software architecture 51

6.2.1 Modi�ability . 51

6.2.2 Maintainability . 52

6.2.3 Portability . 52

6.2.4 Reusability . 53

6.2.5 Feasibility . 53

6.2.6 Interoperability . 53

6.2.7 Alternatives for the software architecture 53

6.3 Future work . 54

6.4 Related work . 54

6.5 Summary . 55

7. Conclusion . 56

VII

LIST OF FIGURES

2.1 Simpli�ed Internet infrastructure. 5

2.2 Logical entities connected to IP address. 7

2.3 IPv6 address scopes. 9

2.4 Symmetric and asymmetric cryptographical functions. 13

2.5 IPsec tra�c modes and new mode BEET. 17

2.6 Logical entities connected to IP address along new Host Identity. . . . 18

2.7 New stack architecture. 20

2.8 Di�e-Hellman key exchange. 20

2.9 Host Identity Protocol Base Exchange. 22

2.10 Setting up an ESP SA between HIP hosts during BEX 24

3.1 Symbian OS 9.2 is composed of several subsystems. [Sym06] 29

3.2 Connectionless socket send operation in Symbian and Linux. 33

4.1 HIP PDU format. 40

4.2 HIP state diagram . 41

4.3 Package diagram of the core components related to HIP. 43

5.1 An example PFKEY message sequence for installing an SA. 47

6.1 Testing environment. 49

VIII

ABBREVIATIONS AND NOTATIONS

ACL Access Control List

AH Authentication Header

API Application Programming Interface

ARPANET Advanced Research Projects Agency Network

BEET Bound End To End Tunnel

BEX Base Exchange

CBC Cipher Block Chaining

CIDR Classless Inter Domain Routing

CPM Comms Provider Module

CPU Central Processing Unit

DES Data Encryption Standard

DH Di�e-Hellman

DHCP Dynamic Host Con�guration Protocol

DNS Domain Name System

DNSSEC DNS Security Extensions

DoS Denial of Service

DSA Digital Signature Algorithm

ESP Encapsulation Security Payload

FQDN Fully Quali�ed Domain Name

IETF Internet Engineering Task Force

HI Host Identi�er

HIP Host Identity Protocol

HIT Host Identity Tag

HMAC Hash Message Authentication Code

HTTP Hypertext Transfer Protocol

ICV Integrity Check Value

ICMP Internet Control Message Protocol

ICMPv4 Internet Control Message Protocol version 4

ICMPv6 Internet Control Message Protocol version 6

IAP Internet Access Points

IKE Internet Key Exchange protocol

IP Internet Protocol

IPC Inter Process Communication

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

IX

IPsec Internet Protocol security

LAN Local Area Network

LSI Local Scope Identi�er

MAC Message Authentication Code

MD5 Message Digest algorithm 5

MITM Man In The Middle

NAI Network Access Identi�er

NAT Network Address Translation

OO Object Oriented

OS Operating System

OSI Open Systems Interconnection

PDA Personal Digital Assistant

PDU Protocol Data Unit

PKC Public Key Cryptography

POSIX Portable Operating System Interface

PPP Point to Point Protocol

QOS Quality of Service

ROM Read Only Memory

RSA Rivest Shamir Adleman algorithm

SA Security Association

SAD Security Association Database

SAP Service Access Point

SHA Secure Hash Algorithm

SID Secure Identi�er

SIP Session Initiation Protocol

SP Security Policy

SPI Security Parameter Index

SPD Security Policy Database

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

UI User Interface

UID Unique Identi�er

VID Vendor Identi�er

VPN Virtual Private Network

1

1. INTRODUCTION

In the current Internet architecture, a host cannot change its IP address, without

breaking the bindings of the upper layers. Sockets that bind the upper layers to the

IP address are disconnected if the respective IP address becomes useless or changes.

The upper layer bindings prevent dynamic readdressing in rapid manner because

sockets must be �rst disconnected and then reconnected with the new IP address.

The problem becomes signi�cant for hosts, which have multiple IP addresses, or

hosts moving in the Internet topology. In the future, the problem becomes especially

signi�cant because the amount of mobile hosts such as laptops, Personal Digital

Assistants (PDAs) and mobile phones is increasing. For example, when a person

moves with the mobile host geographically from work to home, more precisely from

network to another, the readdressing has to be done every time in order to stay

connected.

Host mobility and end-host multihoming supports seamless change of an IP ad-

dress used by a host. Currently the functionality that handles host mobility and

end-host multihoming must be done partly in the application layer. That is not

a good solution, because of the disconnection of a socket and delay caused by the

reconnection of the socket. It is not reasonable to have such complexity in every

application. In addition, the connectivity of a host, i.e. ability to use network to

send and receive information, may change over time. The connection may lose some

bandwidth or the link attached may be down or congested. In these cases, the host

may want to change the used link.

On the other hand, IP addresses and domain names are currently all that we have,

and we do too much with them. Semantic overloading and extended functionality are

increasingly complicating the IP namespace [Mos06, page 6] [Ste96, page 429]. IP

address has two roles: an identi�er of a host and a topological information string.

Extended functionality such as Network Address Translators (NATs), divides the

address namespace to the public and private namespaces that restricts identi�cation

and the validity of the topological information to the private address space.

In addition, the current namespaces, IP and Domain name, do not provide unique

authentication of hosts or datagrams [Mos06, page 6]. Besides that, the namespace

does not provide anonymity of hosts [Mos06, page 6]. A host cannot be authen-

1. Introduction 2

ticated based on the IP address, because an IP address may change over time.

Anonymity requires that a host cannot be identi�ed. Because the Domain Names

are associated with several other systems such as Email, Hypertext Transfer Proto-

col (HTTP), and Session Initiation Protocol (SIP) there is no anonymity in Domain

names. These matters have several consequences. Because authentication is lacking,

reliable communication must occur by other means. Anonymity, on the other hand,

improves both privacy and security. Privacy can be achieved if a host can keep its

identity secret from the unwanted parties. If privacy can be achieved security is

also improved. A malicious eavesdropper or an unwanted peer cannot determine the

identity without the help of the respective host.

The Host Identity Protocol (HIP) provides a solution for the introduced problems.

First, it supports host mobility and host multihoming. It de�nes a new namespace,

Host Identity namespace, and sockets can bind to that [Mos06, pages 8-9, 11]. In-

stead, the bindings of upper layers do not break if IP addresses change. When the

IP address of a network interface changes, a socket stays bound to a Host Identi�er

(HI), which is a concrete representation of a Host Identity. Second, the new HI

namespace provides identi�cation of hosts that decreases the semantic overloading

of the IP addresses in the upper layers. A host can be identi�ed based on the HI.

Third, Host Identi�ers are the public keys of an asymmetric key pair. The authenti-

cation of a host is based on the Host Identi�er. Finally, a Host Identity can provide

anonymity for a host, if the Host Identity is not published.

1.1 Scope

Symbian does not have native implementation for HIP. The fact that many mobile

devices use the Symbian platform makes it important to solve host mobility and

host multihoming issues on the platform, because mobile devices roam between

networks. Additionally, HIP may be globally deployed in the future and then it

should be supported by every host.

This thesis work implements parts of HIP and evaluates protocol suitability for

the Symbian environment. The implementation is a prototype. The thesis concen-

trates on HIP on the Symbian platform version 9.2. An implementation is designed

and the implemented parts are tested in the Symbian platform. The implementation

is built as a modular software entity to be able to extend it with HIP properties

introduced in other drafts by Internet Engineering Task Force (IETF). The design,

implementation, and testing covers relevant parts of IPsec BEET draft [Nik07b],

HIP architecture [Mos06], HIP Base Exchange [Mos07]. In other words, the imple-

mentation includes the part of the HIP Base Exchange, and implements a new form

1. Introduction 3

of IPsec Encapsulation Security Payload (ESP) encapsulation called Bound-End-to-

End-Tunnel (BEET). The Symbian implementation provides valuable information

about the HIP protocol and about Symbian as a networking environment. The work

also provides valuable information to Nokia about bringing HIP to mobile devices

in the future.

1.2 Organization of the thesis

The thesis is organized as follows. Chapter 2 describes the background of the Host

Identity Protocol. It �rst introduces several related concepts, such as IP addresses

and Internet Protocol Security and then moves on to describing the HIP protocol.

Chapter 3 reviews the Symbian Operating System, especially its networking features.

Essential software concepts such as Active Objects, Client-Server, Symbian Socket

Application Programming Interface (API) etc. are described. Chapter 4 concen-

trates on the design aspects of the implemented prototype. Host Identity Protocol

and software design are described. The structure of the system is represented in

Chapter 4. Chapter 5 describes the details of the implementation. The focus is

on the functional description of the system. Chapter 6 discusses and analyzes the

implementation. Finally, Chapter 7 summarizes the thesis. Some parts of the thesis

are con�dential and presented in the con�dential appendices.

4

2. BACKGROUND

This chapter introduces the current Internet architecture at the network layer and

describes the role of IP addresses as locators and identi�ers. Second, it focuses on

end-host multihoming and host mobility concepts. Next, this chapter concentrates

on the security architecture for the Internet Protocol (IPsec), especially how it

supports the design of the Host Identity Protocol. Then, it illustrates the Host

Identity Protocol at a high level. HIP has a solution for the introduced problems with

the current IP address space, hence referred as IP namespace. HIP introduces a new

namespace, which solves the problems with the many roles of the IP addresses and

semantic overloading of them. Finally, this chapter introduces the new cryptographic

namespace, which adds a new layer to the OSI reference model [Zim80]. Chapter 4

illustrates HIP in more detail.

2.1 Internetworking

When the architecture of the Internet and its predecessor was considered, the design

was made with prevailing needs in mind. The design did not take future demands,

address space exhaustion combined with exponentially growing number of hosts and

networks, into account. The need to solve arising problems such as congestion of the

network led to new protocol design. According to the TCP/IP model, TCP [Pos81b]

was introduced as a transport layer protocol and Internet Protocol (IP) [Pos81a] as

a network layer protocol. This original IP protocol is still a crucial part of the

internetworking scheme; although a new IP version 6 [Dee95], has been introduced.

The Internet architecture has evolved from the ARPANET [Rob67], which was

an experimental packet-switched network in the United States. In packet-switched

networks, the path i.e. the way a packet travels, is not reserved during the com-

munication [Kur07, page 22]. In a packet-switched network, each packet is routed

individually. Earlier in telecommunications, circuit-switched networks were in use.

Circuit-switching establishes a �xed bandwidth circuit on the path before using it.

The ARPANET connected individual networks, which were implemented with dif-

ferent technologies, and established a packet-switched internetwork. The Internet

Protocol (IP) [Pos81a] was introduced as a common protocol for the ARPANET.

2. Background 5

The Internet Protocol provides a best e�ort service for packet delivery, i.e. it did

not guarantee that the packets would reach the destination. However, the IP made

it possible to route packets from the source to the destination without setting up

a circuit. The concept of relaying packets from source network to the destination

network is known as internetworking, when both networks may use di�erent tech-

nologies. Routing is what routers do, relaying the packets to the right destination.

Figure 2.1: Simpli�ed Internet infrastructure.

From the point of view of the network layer, the Internet consists of networks,

routers, servers, and hosts. A network is a unit consisting of hosts, servers and

a router, which does the packet relaying to the destinations outside the network.

It is a special-purpose network element, which is used for relaying packets from

one network to another. Routers provide connection for many di�erent types of

underlying network technologies as shown in Figure 2.1 [Ste96, page 4]. For example,

Ethernet and IEEE 802.11 are di�erent types of network technologies connected via

routers. The physical medium connecting the underlying network technologies is

known as a link. Hosts are organized to the networks managed by routers. Hosts

are elements in the network that are capable of communicating using IP protocol. A

server provides services for the hosts, which connect the server to use the services.

Each individual host has an IP address or IP addresses so that it can be located in

the network topology. The topology describes the organization of the hosts in the

network. The routers relay the IP packets from the network to the other based on

2. Background 6

the knowledge of the network topologies. A router manages the relaying of the IP

packets for a certain designated address space.

IP addresses build a namespace for the Internet and every host has to have at least

an IP address in order to communicate using IP. Depending on the IP version, an IP

address is 32 (version 4) or 128 (version 6) bit long number sequence. Besides that,

the Domain Name System [Moc83] builds the other principal namespace related

to the current Internet. The domain names, structured of the Latin alphabet and

Arabic numbers, establish a human readable namespace that provides names for the

hosts. The Domain Name System is in fact a distributed database, which associates

the domain names and the IP addresses. It stores the information in Resource

Records (RRs), which are more precisely called A record and AAAA record in case

of IP. Domain names are mapped to IP version 4 (IPv4) addresses in A records and

to IP version 6 (IPv6) addresses in AAAA records. A host enquires an IP address

of the known domain name or vice versa with the Domain Name System. [Ste96,

page 9].

The Domain Name System is hierarchical. A domain consists of a set of network

addresses. Each domain name composes a tree, which has a label for every domain.

For example cs.tut.� belongs to domain Finland (�), beneath that Tampere Uni-

versity of Technology (tut) and then to the Computer Systems Department (cs).

The Domain Name System consists of a hierarchical set of DNS servers, which are

related to the corresponding domains. DNS servers publish information about the

domain and all the servers under it in the tree.

2.1.1 Role and challenges of IP addresses

IP address has two roles: a topological information string and an identi�er of a

host. The IP address de�nes a point of attachment in the Internet topology. A

host attaches the network via the point of attachment. The boundary between the

host and the point of attachment to the link is called a network interface [Kur07,

page 342]. This means that an IP address names the point of attachment instead of

naming the respective host because the host may change in the current Internet. It

describes the location of the point of attachment and after connection the location

of the host in the topology. At the same time, it also acts as an identi�er of the host

[Mos06, page 11]. The IP address is all that a host has beside the possible domain

name in the current Internet architecture. This means that the assigned IP address

identi�es the host. Figure 2.2 shows an example of these logical entities connected

to an IP address. The dotted lines illustrate the roles, a host identi�er and location

information, associated with an IP address.

2. Background 7

Figure 2.2: Logical entities connected to IP address.

Applications use IP addresses with the sockets. Sockets provide an interface for

the application to access the TCP/IP stack. This has the consequence that IP

addresses act in end-to-end manner binding the sockets to the location. This has

many severe consequences. An application bound to a socket by an IP address is

also bound to the topology. If a host changes the IP address, because of moving

to another network, an application must break the upper layer bindings and restart

the communication via the new IP address. This is very often the case with mobile

hosts. When a host moves in the Internet topology from a network to another it is

said to be mobile. The sockets associated to IP addresses, because a problem that

must be currently solved in the application layer unless a technique called Mobile IP

[C02] is not used Section 2.2.2. All the applications willing to work after roaming,

moving from a network to another, without causing too much delay or disconnection,

must implement a mechanism to handle the changing of the IP address associated

with the socket. The overhead in applications causes extra implementation.

The Domain Name System (DNS) namespace binds a set of hosts or applications

to a certain IP address so that applications can use DNS instead of using just IP

addresses. Though domain names are in use, IP addresses still have a dual role as

host identi�ers and locators in the Internet architecture.

Besides the dual role of IP addresses, there are other de�ciencies with current

namespaces. First, semantic overloading and extended functionality complicate the

IP namespace [Mos06, page 6] [Ste96, page 429]. Network Address Translators

(NATs) divide the address namespace to the public and private namespaces that

restricts identi�cation and the validity of the topological information to the private

address space. Second, the current IP namespace does not provide unique authen-

tication of hosts or datagrams [Mos06, page 6]. In other words, current namespace

is non-cryptographic; a host cannot be authenticated based on the IP address. Be-

cause authentication is lacking, reliable communication must occur by other means.

2. Background 8

Third, the current namespaces does not provide anonymity of hosts [Mos06, page

6]. Anonymity refers to a situation where a host cannot be identi�ed. There is no

anonymity in the domain names. The consequence is that an unwanted party may

be able to determine the communicating host.

2.1.2 IPv4 addressing

IP version 4 addressing is the base of the internetworking at the network layer. A

unicast IPv4 address is a 32-bit digit consisting of a host part and a network part.

Unicast address means an address that is used for one to one communication. This

section concentrates on the unicast addresses. The host part refers to the single host

in the network and the network part refers to the single network in Internet. The

network part, also referred to as a pre�x, de�nes the designated address space for a

router to manage.

Pre�xes are given based on the consideration of the authorities. The parent

organization is Internet Assigned Numbers Authority (IANA), which allocates des-

ignated address spaces to regional Internet registries, who in turn allocate smaller

designated address spaces to Internet Service Providers (ISP) and enterprises. In

subnetting addresses are being divided into smaller networks called subnets [Ste96,

page 42]. Subnetting is a technique to deal with arbitrary long pre�xes. An address

mask is used to de�ne the pre�x. The address mask consists of the signi�cant ones.

The number of signi�cant ones de�nes the length of the pre�x. The pre�x is ob-

tained by taking a bitwise AND operation of the IP address and the IP mask. A

non-continuous pre�x, which consists of non-continuous signi�cant ones, is illegal.

Internet Protocol version 4 has limited address space due to the fact that the

current address space is not fully utilized. First, an IP address is composed of a bit

pattern and thus the network pre�xes divide the address space according to binary

arithmetics. For example, when in a single network there are 17 hosts, it takes 20 IP

addresses, because in addition to the addresses of the hosts there must be at least

a router, a network address and a broadcast address. The lower pre�x allows 16 IP

address and the upper 32. A pre�x with 32 IP addresses must be chosen and that

leaves 13 IP addresses unused. This is also known as a scaling problem. Second,

the other fact is that Internet was designed for a smaller amount of hosts. An IP

address was meant to be an identi�cation for a single host but it is not possible to

have an IP address as an identi�er with the current IP namespace. The reason is the

scaling problem, which has resulted in various techniques to support the increasing

amount of hosts connected to the Internet. Techniques such as Network Address

Translation (NAT) have prolonged the translation to Internet Protocol version 6.

2. Background 9

2.1.3 IPv6 addressing

The Internet Protocol version 6 (IPv6) was introduced in the early 1990 by the

Internet Engineering Task Force (IETF) [Kur07, page 360]. IPv6 introduces scopes

that de�ne the validity of a unicast address in the di�erent zones. Link-local and

global are currently the two di�erent scopes de�ned for IPv6. The situation is

illustrated in Figure 2.3. A link-local address is valid on the link it is attached to.

A router delimits the link-local scope. In Figure 2.3 Router1 limits the link-local

addresses that are valid only in zone 1. A global address is globally unique. Scopes

add complexity to the routers, which have to deal with the validity of the source

addresses before passing packets to the next hop.

Figure 2.3: IPv6 address scopes.

A global IPv6 address is a 128 bits long address constructed of a pre�x, subnet

ID and interface identi�er. A pre�x refers to a global routing pre�x, used to de�ne

the site the host belongs to [Sol04, pages 51-61]. The subnet ID indicates the subnet

inside this site and the interface identi�er uniquely de�nes an interface on a link.

The subnet ID can be de�ned by a host itself on a link with a technique called

stateless address autocon�guration [Tho96] or it can be assigned. Stateless address

autocon�guration supports dynamic readdressing in a certain scope and makes it

possible to a host to move to another network without any support from the network

itself.

2.2 Host multihoming and host mobility

Multihoming as well as mobility exists in many contexts. Site multihoming refers to

a situation where a site has more than one transit provider, which is an Autonomous

System that o�ers transit of network tra�c to or from some other AS. Site multi-

homing is out of the scope of this thesis, but multihoming exists also at the hosts.

2. Background 10

Host mobility and host multihoming refers to the behavior of a host often using

several networks in the parallel or one after another.

2.2.1 Host multihoming

End-host multihoming means that a host has more than one IP address assigned to it.

There are two di�erent cases of the situation. First, a host can have several points of

attachment to the Internet. Second, a network interface can have several assigned

IP addresses. End-host multihoming allows a host to use multiple IP addresses

for sending and receiving IP packets. The situation where a host is multihomed

introduces several challenges for communication to host itself, for the peer and for

the network.

A host that has several points of attachment to the Internet can choose di�erent

paths to a peer. Often points of attachment are attached to the di�erent links.

Di�erent links o�er paths that can have di�erent bandwidths, transfer delays, fault

tolerances, or costs. Load balancing is one reason to utilize several paths at the

same time. Load balancing refers to a situation where tra�c is spread between

multiple network paths in order to achieve better throughput or response time. If

the changes in the path are not taken into account by the host, the upper layer

bindings are disconnected and the application cannot communicate through the

same socket anymore. This connectivity change is often referred to as a handover.

It may stop the communication between peers or it may delay the data transfer.

The other end of the communication has to be aware of the handover to be able to

send the data to the right destination. To seamlessly support these scenarios host

multihoming must be supported at the both ends of the communication.

On the other hand, the existing network architecture must support di�erent host

multihoming scenarios. A host must have multiple DNS AAAA or A records enabled

to be reachable in case of having multiple IP addresses. After an IP address be-

comes unusable, the communicating peer can connect the host via, a new IP address

received from a DNS query. This requires that the peer announces its IP addresses

for the DNS often enough. On the other hand, the used protocol could have the

mechanism inbuilt so that the communicating peer knows already beforehand what

the new address will be. The latter approach does not work if the connection is lost

accidentally without having the possibility to inform the peer. If the connection is

lost accidentally without having the possibility to inform the peer, it is known as a

hard handover.

2. Background 11

2.2.2 Host mobility

Host mobility is a phenomenon covering the mobile host movements from a network

to another. Host mobility and multihoming are closely related together because a

host changing its point of attachment needs to obtain a new IP address in many

cases. A mobile host may be single-homed, i.e. it has a single IP address assigned,

but it is capable of changing the IP address. The situation is similar to host mul-

tihoming when a host changes the path for communication with the peer. To fully

support mobility, the network has to provide a way for the communicating peer

to continue the communication with the relocated host. There are a couple of ap-

proaches to solve the issue.

IETF introduced a technique called Mobile IP [Per96] already a decade ago to

solve host mobility. A Mobile IP node, i.e. a host, is given a long-term IP address

on a home network. This IP address, which is referred to as a home address, is

used as a source address of all IP datagrams that it sends except certain mobility

management cases. When the Mobile IP node moves in the network topology, a

Care-of-Address is assigned for it in the foreign network. It re�ects the current

point of attachment of the mobile node. The Mobile IP system consists of a Home

Agent and a Foreign Agent that handle the data �ow between home address and

the Care-of-Address. The system provides for registering the Care-of-Address with

a Home Agent. The Home Agent sends datagrams destined for the mobile node

through a tunnel to the Care-of-Address. After arriving at the end of the tunnel,

the Foreign Agent detunnels and delivers the datagrams to the mobile node. That

is the basis of the Mobile IP architecture. [Per96]

The Mobile IP solves the host mobility in the macro scale. In the micro scale,

the Mobile IP does not provide the best solution. If the handover happens between

points of attachment in the same subnetwork, the Mobile IP mechanism has a lot of

overhead [Per96, page 4-5]. Besides that, HIP has been introduced as one solution

to support both host mobility and host multihoming.

2.3 Security architecture for the Internet Protocol

The security architecture for the Internet Protocol is known as IPsec, and it is based

on usage of cryptography. IPsec is closely bound to HIP and IP protocols. Two HIP

hosts are typically, but not necessarily, protected with IPsec [Mos06, page 2].

2. Background 12

2.3.1 Introduction to cryptography

Integrity and con�dentiality are essential concepts in the �eld of data security. In-

tegrity de�nes that data is not changed or destroyed over a time interval. Integrity

is often related to data transfer tested by the receiver of a message, the data. Con-

�dentiality is a higher-level concept and de�nes the rights to access the data. Au-

thentication, encryption, and decryption are methods to cover the con�dentiality.

Assurance of the identity of a party is called authentication and assurance of the

rights of a party to access data is called authorization. Encryption is a term for

making some data secret and decryption is a term for making the secret data clear

again. The secret data is often referred as ciphertext and the clear data as plaintext.

[Kos06]

Cryptographical functions have in most cases a secret and an algorithm. This

is a common trend for cryptographical functions [Kau95, page 40]. The secret is

often referred as a key. The output of the cryptographical function with chosen

algorithm has computational di�culty. This means that the output of the well-

known algorithm cannot be solved back to the input without reasonable amount of

e�ort. That is often enough and nothing more is even expected. Also Perfect secrecy

can be achieved. When the ciphertext is under attack and it does not reveal any

information about the plaintext, the system is perfectly secure.

Cryptographical functions can be divided in to three parts: hash functions, secret

key functions and public key functions [Kau95, page 45]. Hash function does a

transformation from an arbitrary long message to a �xed-length message. This is

a one-way transformation and the output cannot normally be transformed back to

the input. Special keyed hash-function is used to produce digest for authentication.

Message Authentication Code (MAC) is one type of keyed hash-function. A key is

added in the end of the input and the new input is hashed. Produced digest is added

to the message and reproducing it, the receiver must know the related key. It is a

method to authenticate the data origin. IPsec and HIP both uses special version of

MAC known as HMAC. It is keyed hash inside a keyed hash. In other words, the

hashing is done twice by adding the result of the �rst round to the second. HMAC

uses also some padding to produce the digest [Dor99, page 14-15].

When a message is encoded and decoded with the same key, the responsible cryp-

tographical function is symmetric also known as secret key function. On the other

hand, if one uses di�erent key for encryption and decryption the cryptographical

system is asymmetric. Public Key Cryptography (PKC) is asymmetric cryptograph-

ical system and was invented in 1975 [Kau95, page 48]. These asymmetric functions

in PKC are known as public key functions.

2. Background 13

Figure 2.4: Symmetric and asymmetric cryptographical functions.

In PKC, interacting party has a private key and a public key. The private key

is meant to be known only by the associated party. The public key is provided for

all parties interested in it. Private key that is needed for decryption and signing

of a message should be known only by the trusted parties. Digital signatures are

important application of PKC. Authentication of the messages can be based on

these by attaching the digital signature to the message before sending and then

verifying it on the receiver side. Digital signature can only be generated by someone

knowing the private key and it can be veri�ed by anyone knowing the public key.

Because private key should be known only by the sending party, it cannot be repeated

unless someone knows it too. With a secret key function, it is not clear which

one of the parties possessing the secret key created the signature. This has an

implication that the signature created with the secret key function is ambiguous. It

can be repudiated. Digital signatures generated with PKC ful�ll the non-repudiation

demand and because of that are very important inventions. Digital signatures are

more reliable than MACs because no one should be able to forge them. In the other

hand, the algorithm used to produce the signature is often costly and that is why

MACs are preferred. In PKC encryption and decryption works other way around

compared to signing. Encryption can be made by anyone possessing the public key

but for the decryption needs private key of the key pair. [Kau95, pages 48-53]

2.3.2 Overview of the IPsec

IPsec, Security Architecture for the Internet Protocol, is designed to provide security

at the Network layer. IPsec provides security with Authentication Header (AH) and

Encapsulating Security Payload (ESP) for data communications hidden from the

2. Background 14

layers above that was one of the main objectives for the design. Existing applications

do not need to be changed and security unaware users can bene�t from the security

features without paying attention to the encryption and authentication of the data

communication. These arguments were presented to support the approval of the

design. [Tan03, page 772].

IPsec implementation must have two crucial parts, the key negotiation protocol,

and the actual cryptographical services. Cryptographical services are based on the

existing network architecture and cryptographical functions. IPsec is by default used

with key negotiation protocol called Internet Key Exchange (IKE) protocol version

2 [Ken05b, page 47] to establish the shared secret keying material and Security

Associations (SAs). In order to secure tra�c with IPsec the security policies (SPs)

for system must be de�ned. Both SAs and SPs have their own databases to store

them. These are called Security Association Database (SAD) and Security Policy

Database (SPD). This work concentrates on the above-mentioned concepts, the

actual services, and a key negotiation solution known as HIP. IPsec is a central part

of HIP that uses IPsec to carry encrypted data tra�c and to support the logical

separation of end-points and IP addresses by using the new introduced IPsec mode

BEET. HIP consist of several features in addition to the key negotiation, which are

discussed in Section 2.4.

IPsec services AH and ESP

IPsec provides services for authentication and encryption of data tra�c. Authenti-

cation Header (AH), which is added right after IP header, provides integrity, data

origin authentication, and an anti-replay service [Ken05a, page 2]. The authentica-

tion and integrity checks are by the default done with keyed hash functions HMAC-

MD5-96 and HMAC-SHA-96 but other functions can be used too. Digital signatures

such as RSA and DSS are not used due to the cost of the operations. [Dor99, page

92]. RSA and DSS consume too much CPU resources and time. Anti-replay service

is implemented by sequence numbers, which are increased by the sender and ensured

by the receiver. This protects against certain kind of attacks where a third party

tries to replay a packet. Denial-of-Service (DoS) attack tries to degrade the avail-

ability of services available at network by causing resource exhausting computation

for the receiver. This anti-replay service protects against these by allowing receiver

to do a simple check for the received packet and discard it if the sequence number

is not correct. AH is mostly used for the upper layer protocols to support the data

origin reasoning. [Ken05b, page 76]

Encryption service is called Encapsulation Security Payload (ESP) and it is a

2. Background 15

header added right after the IP header like AH. ESP is used for con�dentiality,

and limited tra�c �ow con�dentiality. Con�dentiality is provided with encryp-

tion service. Tra�c �ow con�dentiality is implemented with IPsec tunnel mode by

encrypting also the original IP address of the sender. In addition to these, ESP pro-

vides connectionless integrity, data origin authentication, and an anti-replay service.

[Ken98, page 6-7]. In fact, ESP provides the same services as AH in limited form.

ESP implements authentication in the same way as AH with the chosen algorithm

but it does not include the IP header to the calculation of the digest. In that sense,

it is more limited and suitable mostly handling of upper layer Protocol Data Units

(PDUs) [Ken98, page 10]. It actually ensures the integrity of the PDU. The digest

is added to the end of the IP packet as a separate �eld, Integrity Check value (ICV).

There are several possible algorithms that can be used. It is noted that IPsec must

implement following algorithms: DES-CBC for encryption and HMAC-MD5-96 and

HMAC-SHA-96. The keying material for the services is derived from manual keying

or by the result of some key agreement method.

IPsec has two modes: a transport mode and a tunnel mode, as depicted in Fig-

ure 2.5). Both services AH and ESP supports these. Transport mode is meant for

end-to-end security. Transport mode means that the IP packet will have extra �elds

containing the information related to the AH or ESP. In tunnel mode, a new IP

header is constructed in the front of the packet and right after that is placed the

constructed IPsec speci�c header. Tunnel is constructed as IP-IP tunnel [Sim95] but

everything after the �rst IP header is applied to the wanted IPsec security services.

Tunnel mode is meant to be used with Security Gateways.

Security Policies and Associations

In order to communicate properly IPsec must establish correctly Security Associa-

tions. Security Association is logical channel between the network layers of source

and destination hosts [Kur07, page 729]. There are two types of SAs, unidirectional

and bidirectional. In IPsec, unidirectional SAs are used so we concentrate on those

[Dor99, page 44]. A pair of Security Associations is installed. An SA must be in-

stalled for both directions of the data transfer: one for the outgoing tra�c and one

for the incoming tra�c. Altogether two communicating parties using IPsec need

four SAs for that. SA has an identi�er related to it; Security Parameter Index (SPI)

that is carried also by the actual IPsec secured tra�c. The SPI is used by the re-

ceiver to identify the incoming tra�c. It is a unique identi�er and supports that

way multiple simultaneous SAs between the same hosts. SA includes information

of both ends: address and possible identity. SA relates the needed algorithms to

2. Background 16

the connection and has a lifetime. The lifecycle of an SA has four stages: Larval,

Mature, Dying, or Dead. This stage de�nes when the SA can or cannot be used

between two parties.

Security Policies de�nes how and what of the real tra�c of the respective host

should be secured. SP is a description consisting of information, de�ned by the

(selectors), which is wanted to be secured. Selectors are typically IP address, port,

or protocol-speci�c. SP has also other task. SPs relate the tra�c to certain IPsec

actions: application of AH, ESP or tunnel [Dor99, page 131-133]. Instead of having

some agreement method for policies management, interface and application must

be de�ned. Policy de�nition is human-computer action and thus along IPsec, a

manager using an interface for these must be de�ned to be able to de�ne wanted

IPsec transforms. Transforms is a term for the methods to enforce the wanted IPsec

actions.

2.3.3 A Bound End-to-End Tunnel

IPsec provides two modes for the services AH and ESP to carry the data traf-

�c, tunnel and transport mode. A new mode called a Bound End-to-End Tunnel

mode (BEET) has been de�ned in a recent IETF draft [Nik07b]. It provides tunnel

mode semantics without tunnel mode overhead. Packet format in the wire is like in

transport mode (Figure 2.5) but the semantics of the connection using BEET are

di�erent. Modes are similar in IP version 4 and 6.

Tunnel mode implements IP-IP tunneling used with the Security Gateways. When

ESP is in use, inner IP header is encrypted. This scheme implements encrypted tun-

nel between Security Gateways. Tunnel mode support IPsec tunnel use with Virtual

Private Network (VPN) but not in end-to-end use. BEET implements the concept of

Security Gateways at the end hosts themselves. This is done with a pair of addresses

de�ned in SAs called inner and outer address. On the outbound side, processing

before ESP uses the inner addresses and after that, a new header including the outer

IP addresses is constructed to replace the original IP header. When a piece of more

recent design, HIP, is used, this provides so-called channel binding [Hen07b, 3]. In

case of HIP, the inner addresses are HITs providing cryptographical channel binding

with public keys, HITs (Section 2.4.1).

There are several use cases for such a binding channel. In order to support such

features as NAT traversal and mobility and multi-homing, some extra features must

be implemented with BEET. The transformation of inner address to outer addresses

is done by the Security Association of IPsec, which holds the inner address as an

identity of the host. Applications bound to these identities could be capable of

2. Background 17

Figure 2.5: IPsec tra�c modes and new mode BEET.

changing the outer address and even the upper layer bindings stays connected. In

this case changing the IP address would allow maintaining the connection to the peer

host while communicating. As a part of HIP, BEET provides these facilities at some

level but also several other things must be taken into account in the implementation.

The implementation aspects of BEET are discussed in Chapter 5.

2.4 Host Identity Protocol

Host Identity Protocol (HIP) is a joint e�ort of IETF HIP Working Group members

(WG). Even though Host Identity Protocol (HIP) is an end-to-end authentication

and key establishment protocol used with IPsec ESP [Mos07, page 6], it is designed

to support host mobility and end-host multihoming. The details of HIP PDU format

and state machine are introduced in Chapter 4.

2.4.1 A new namespace

To �x the de�ciencies with the current namespaces, the IP address namespace and

the Domain Name namespace, HIP introduces a new Host Identity (HI) namespace.

2. Background 18

The Host Identities are the building blocks of the new namespace. The new names-

pace forms the upper layer bindings to the Host Identities. This splits the duality

of the IP addresses because the identity of a host is related to the HI instead of

the IP address. A Host Identity separates the identity of the host from the location

information that the IP address carries. Figure 2.6 introduces the situation [Mos06,

pages 2-11]. The new namespace �lls the gap between IP addresses and DNS names

by releasing IP addresses from the upper layer bindings. Besides that, by introduc-

ing the new namespace the semantic overloading and extended functionality of the

current namespaces could be avoided. For example, HIP has a proposal to solve

NAT traversal.

Hosts are still located with IP addresses but the identity of them is bound to

the Host Identity as shown in Figure 2.6. Sockets are bound to the Host Identities.

This provides solution for the roaming problem: a host can move from network to

another using same host ID and maintaining the sockets connected. A Host Identity

does not change if the location changes. The new namespace provides thus for a

host a possibility to be reachable via several IP addresses, because the IP address

can be changed seamlessly [Mos06, page 11].

Figure 2.6: Logical entities connected to IP address along new Host Identity.

A HI is a public key of an asymmetric key pair. Because it is cryptographic in

its nature, it tries to tackle the problem with the authentication challenges of the

current namespace: the IP address does not provide any means to authenticate the

peer. A host may have a published and an unpublished Host Identity. In both cases,

the peer authenticates the HIP PDUs with the Host Identity, it has received with

the DNS query or directly from the peer. However, there are minor vulnerabilities

with the new namespace (see Section 2.4.5).

Anonymity can be achieved via unpublished locally created HIs that are not

registered [Mos06, page 7]. In this manner, the unpublished Host Identity stays

anonymous and the privacy can be achieved. When privacy is achieved, security

2. Background 19

improves. An unwanted party cannot determine the identity without help of the

respective host.

HIs and HITs

In practice, a Host Identi�er is introduced for every Host Identity. It is a unique

bit sequence representing the public key but it is not used in the real communi-

cation. A truncated 128 bits long form called Host Identity Tag is formed for the

real communications. It is formed by taking a cryptographical hash over the Host

Identi�er. The length is chosen the IPv6 socket compatibility in mind and 32 bits

long local presentation called Local Scope Identi�er (LSI) is introduced to support

the deployment with IPv4 sockets in the beginning. [Mos06, pages 8-10]. HIT is also

self-certifying, i.e. it is computationally hard to �nd a HI that produces matching

HIT [Mos07, page 10] and that is why the probability of HIT collision is very low.

There are also other reasons to have �xed length HITs. Fixed length tag represents

Host Identity in consistent way. The used algorithm for public key infrastructure it

relays on does not make di�erence to the length in case of HITs. Another reason for

�xed length is easier protocol implementation compared to variable length identi�er.

[Mos06, page 10].

Host may have several Host Identi�ers to identify itself. Some of the identi�ers

are public and some of them are unpublished. A public identi�er could be stored

to DNS server and peer willing to communicate with a certain host can fetch the

HI by DNS query and try to authenticate itself for the communications. A Public

Host Identi�er and the related HIT is published in DNS record and unpublished

HI is known only by the host itself, and the peer for whom it was published. DNS

extension is one possibility to the basic architecture. In addition, other proposals

have been made.

Change to layer architecture in TCP/IP stack

Host Identity layer changes the Internet stack architecture introducing a new layer

between network and transport layers. In contrast to earlier architecture transport

layer handles Host Identi�ers instead of IP addresses. HIP layer manages these

bindings. HIP layer maps IP addresses to Host Identi�ers.

The new layer may be implemented using the IPsec. The new IPsec mode BEET

holds both IP address and Host Identi�er in a Security Association and changes the

used namespace between the ESP processing. This situation was illustrated with

the IPsec BEET mode in Section 2.3.3. The outer IP address presents the real IP

address of a host and the inner IP address is actually a Host Identi�er Tag in IPv6

2. Background 20

Figure 2.7: New stack architecture.

and Local Scope Identi�er in IPv4.

2.4.2 HIP Base Exchange

The HIP Base Exchange is based on the Di�e-Hellman key agreement method. It

provides a way to establish shared secret, which is used for encryption of the HIP

PDUs.

Di�e-Hellman key agreement

Di�e-Hellman (DH) key exchange [Dif76] is a public cryptographical system to

share a secret between parties. Using Di�e-Hellman key exchange, a public com-

munication channel can be shared by the parties in order to communicate securely.

Di�e-Hellman is only a public key distribution system and it does not o�er any-

thing else than that. Authentication of the messages must be handled separately.

HIP Base Exchange adds authentication in addition to other things to the DH key

agreement.

Figure 2.8: Di�e-Hellman key exchange.

Di�e-Hellman key exchange is illustrated in Figure 2.8. DH key exchange uses

two messages to establish the shared secret as shown in Figure 2.8. First, the two

2. Background 21

parties 1 and 2 agree on the group: prime p and generator g. The group is the base

of the algorithm. Then both parties have to choose a random number to calculate

a public number. Party 1 chooses a and party 2 chooses b. The calculation of the

public number is done as follows,

A = ga mod p

B = gb mod p

The generator is exponentiated by the random number (a or b) and module p is

taken from that, to calculate the public number [Dor99, page 16]. The �rst message

consists of the chosen group (g,p) and the public number (A) of party 1. After this

party 2 sends only its own public number (B), and shared secret can be established.

The following formula invented by Di�e and Hellman [Kau95, page 148] calculates

the shared secret K, which is also used as a shared cryptographic key,

K = Ba mod p

= (gb mod p)a mod p

= gab mod p

= (ga mod p)b mod p

= Ab mod p

When both parties know p,g, the individually chosen random number, and the

public of the other, the shared secret K is straightforward to calculate. By expo-

nentiating the public of the other with own random number and taking modulo p

of that, gives the shared secret K.

Base Exchange protocol

Initiation of HIP connection is based on HIP Base Exchange (BEX) and it is per-

formed before connection is established. When the HIP connection is established,

a HIP association to both directions between two peers is created. BEX is a one-

to-one four-packet exchange protocol based on Di�e-Hellman key exchange (Sec-

tion 2.4.2). It imbeds following parameters in addition to Di�e-Hellman variants to

the PDUs: HITs, a counter, HIP_transforms, HOST_ID -parameter, echo_request

/ echo_response and a signature as illustrated in Figure 2.9. Second and third

PDUs are used to establish the shared secret and third and fourth PDUs are used to

do the authentication. The HIP architecture document [Mos06] or Base Exchange

draft [Mos07] does not de�ne any transport format to use in HIP communications

but it is mentioned that IPsec ESP transport mode must be used at minimum for

2. Background 22

Encapsulating Security Payload. ESP BEET mode (Section 2.3.3) has many advan-

tages compared to ESP transport mode so that is preferable. Figure 2.9 shows the

Base Exchange PDU by PDU.

Figure 2.9: Host Identity Protocol Base Exchange.

Initiator sends the �rst rather simple message, I1, which triggers BEX. It consist

of the corresponding HIP header, the Host Identity Tag of the initiator and the

Host Identity Tag of Responder, if it is known [Mos07, page 12]. If Responder's

HIT is unknown, Initiator may �ll the �elds with zeros. This kind connection setup

is called opportunistic mode [Lin06]. In some cases it may be possible to replace

this trigger packet by some other form of a trigger but these cases are unde�ned

[Mos07, page 12]. In such a case, the protocol starts with Responder sending the

R1 packet. Connection state is at this point UNASSOCIATED (state diagram is

shown in Section 4.1).

Responder may refuse to continue BEX due to malformed message, local policy

decision or if HIP is not supported. It may decide to respond with appropriate

ICMPmessage 'Destination Protocol Unreachable' if it does not support the protocol

or if the local policy denies this HIP connection ICMP 'Destination Unreachable,

Administratively Prohibited' message may be sent. If I1 was successfully received,

it generates the R1 message.

The second message, R1, starts the actual key exchange. It consists of the multi-

ple Di�e-Hellman (D-H) parameters. A D-H parameter consists of group id, p and

2. Background 23

g that de�nes the used public Di�e-Hellman key. There can be at the maximum

two group ids. The idea behind having more than one group id is that the devices

with limited sources of power can choose weaker encryption but in the normal case,

Initiator selects stronger encryption [Mos07, page 44]. Second parameter is a puzzle,

which Initiator tries to solve. Puzzle is based on a hash algorithm over HITs, IP

addresses and a random number I. The di�culty of a puzzle is set by number K.

Initiator uses a hash algorithm for computation of the puzzle. Responder sets a

di�culty based on the level of trust, the current load, or other factors [Mos07, page

13]. Counter indicates the freshness of the message. Freshness indicates how re-

cently the message has been sent. HIP_transform consist of the authentication and

the encryption algorithms supported by Responder. It is a list of items where the

preferred algorithms are in the beginning of the list. HOST_ID parameter contains

a Fully Quali�ed Domain Name (FQND)/Network Access Identi�er (NAI) and a

Host Identi�er. Signature2 is a digital signature attached for the authentication of

the message. Number two indicates the version. The digital signature is calculated

with the private key corresponding to the Host Identity of the corresponding party

[Mos07, page 74]. R1 message is authenticated by verifying the signature of the

responder by using the HI as a key. To continue the negotiation Initiator needs to

solve the puzzle correctly. Counter is monotonically increased by a random 64-bit

number. The proposed D-H parameters may be refused. In order to successfully

continue BEX, one of the proposed group ids is selected. Initiator chooses an au-

thentication and an encryption algorithm from the HIP_transform list and replaces

the choices in the parameter. Echo_request is copied to I2 message and echoed back

in echo_respond parameter. This is optional feature.

The third message, I2, has a solution for the puzzle. If the solution is not correct,

the packet is dropped. Counter is used for the same purpose as in R2 message:

checking the validity and the freshness of the puzzle. D-H group choice is sent in

the message. Initiator chooses the most suitable cryptographical algorithms and

returns the information of the choices in HIP_transform parameter. Last are added

HOST_ID, echo_response, HMAC and Signature of Initiator. HOST_ID may be

encrypted with the keying material derived from the Di�e-Helman key exchange.

This is the point of ending the Di�e-Hellman key exchange and the state creation

at Responder side. State creation is delayed until veri�cation of I2 message (see

Section 2.4.5). Responder compares the counter to the expected one and �nds out

the freshness of the solution before ensuring the correctness of it. Correctness of

sender's HIT is also studied with the signature in the same manner as earlier. After

successful veri�cation of preceding parameters, D-H choice and HIP_tranforms, HIP

2. Background 24

association is installed at the side of Initiator.

Fourth and last message, R2, is simpler than messages R1 and I2. It is the

last message before the connection transfers to ESTABLISHED (state diagram is

shown in Section 4.1). It is a signed response that informs the Initiator of successful

negotiation. Both HMAC2 and a HI based signature are calculated over the entire

PDU. HMAC2 is the second version of HMAC.

2.4.3 Using ESP with HIP

In order to use IPsec Encapsulation Security Payload some minor changes are needed

to the protocol as shown in Figure 2.10. The changes are de�ned in a HIP extension

[Jok06]. These changes are written ESP transport mode in mind but everything

what is presented here, is applicable for the ESP BEET mode as well.

Figure 2.10: Setting up an ESP SA between HIP hosts during BEX

ESP_transfrom consist of authentication and encryption algorithms supported

by Responder in R1 -PDU. Initiator chooses the used suite and gives the response in

I2 -PDU. The transform suite IDs is carried by the parameter has following options

for authentication and encryption:

• ESP-AES-CBC with HMAC-SHA1 with suite ID 1

• ESP-3DES-CBC with HMAC-SHA1 with suite ID 2

• ESP-3DES-CBC with HMAC-MD5 with suite ID 3

• ESP-BLOWFISH-CBC with HMAC-SHA1 with suite ID 4

• ESP-NULL with HMAC-SHA1 with suite ID 5

• ESP-NULL with HMAC-MD5 with suite ID 6

2. Background 25

ESP_info consist of the SPI value that indicates the correct SA, which is used for

the ESP tra�c between two peers in question. In I2 -PDU Initiator returns the SPI

value it uses for the incoming ESP tra�c to indicate the correct SA. The Responder

will install an outgoing SA based on that same SPI it got from ESP_info. Finally,

the Responder installs the incoming SA and sends the corresponding SPI value along

R2 -PDU in ESP_info parameter to the Initiator. Initiator installs an SA based on

this SPI value for incoming ESP tra�c. This procedure makes it possible to choose

di�erent SPI values for each HIP peer. [Jok06, pages 7-8]

2.4.4 Host mobility and multihoming with HIP

First, HIP introduces a new address space, which is closely presented in Section 2.4.1.

This new addressing realm separates IP addresses from the above layers and forms a

new layer in between. This has important consequence to the end-host multihoming

and host mobility management in the HIP protocol. Because IP addresses are

not anymore used by the applications or by the transport layer, changing of IP

addresses becomes conceptually more consistent with the layered stack architecture.

Applications do not need to take care of IP addresses, because it is done with the

processing of IP packets in the HIP layer automatically. Then, host mobility can

be supported with DNS. A new DNS HIP record, which is another RR record, is

de�ned and used for solving the HIs to IP addresses and vice versa. HIP record

maps domain name to the Host Identity. The HIP RR records both HI and the

HIT. Hosts in di�erent domains can enquiry the HI and the related HIT of the peer

with DNS. Afterwards, the host could start the HIP Base Exchange. [Nik07a]

HIP mobility supports IP address changes at the both ends of the connection

even if the communication is already ongoing. When a hard handover happens,

it is possible to start the communication by using another path and establish the

connection again with HIP UPDATEs. A HIP host can choose to accept a HIP

packet from the unknown source address if it is integrity protected with the IPsec,

but may have some implications to security (Section 2.4.5). Thus, HIP host sends

a HIP READDRESS packet and the peer checks the reachability of the HIP host

based on the IP address it got within the HIP READDRESS packet. Another thing

is that, HIP uses ESP to receive packets from any address using HIP created SA

[Hen07a, page 9]. This has some implications to the implementations (presented in

Section 5.2). HIP is closely integrated with IPsec, which is thought to be advantage.

However, this approach has disadvantages. The deployment of IPsec is needed to

make HIP usable [Hen03, page 26]. In addition, IPsec adds high cost in terms of

performance because of the heavy handshake procedure it adds to the HIP protocol.

2. Background 26

An implementation for light-weight key establishment already exists [Hee06]. One

advantageous point in HIP is that it adds no overhead to the protocol packets other

than what IPsec does.

2.4.5 Security considerations

The new Host Identity namespace increases the security of the current Internet ar-

chitecture. Host Identity Protocol authenticates the packets, which peer sends with

Public Key Infrastructure based on the Host Identities, which is the basis of the

protocol authentication mechanims. That decreases the possibility to Man-In-The-

Middle (MITM) attacks. Denial-of-Service (Dos) attacks are based on the resource

exhausting computation. HIP defends these by delayed state transition. The �rst

response packet does not have computational e�ort. The computation, solving the

puzzle, is done at the initiator side within the Initiator 2 packet. Responder has

pre-computed Responder 1 packets and one of those is chosen based on the Initiators

1 packet. This prevents the computation e�ort and spoo�ng of R2 packets [Mos07,

page 14]. HIP has still known vulnerabilities. However, MITM attacks are di�cult

completely to defend against. That would need third party authentication such as

DNSSEC and denial of unpublished HI usage to make the Host Identity theft dif-

�cult. MITM can use public HI or unpublished HI to attack against a HIP party.

Another known possible MITM attack relates to responders ICMP 'Destination Un-

reachable, Administratively Prohibited' message. Initiator should react to these

after reasonable amount of time if appropriate HIP packet is not received. In other

case, the response is easy to spoof and DoS attack is possible. ICMPv6 'Param-

eter Problem, Unrecognized Next Header' and ICMPv4 'Destination Unreachable,

Protocol Unreachable' messages can be used to execute DoS attack against the Ini-

tiator. The protection against this is similar as in case of other ICMP message. The

Initiator should not take any action to the ICMP message before appropriate time

interval is spent. In case of multihoming and mobility, unknown source IP addresses

could be supported. The reachability of the unknown IP address must be checked

before sending any large amount of data to prevent possible DoS �ooding attack

against third party. An attacker could open many high-volume HIP connections

with number of hosts and inform them that it has moved to the target IP address.

If hosts blindly accepts this, a DoS �ooding attack is ready for the target IP address.

[Mos06, page 13]

2. Background 27

2.5 Summary

The current namespaces, IP and Domain Name, provide challenges for the current

Internet, which is not designed taking into account current demands. The cur-

rent Internet has many mobile hosts and the number of hosts increase all the time.

Because of that, host mobility and multihoming have to be solved. HIP protocol

provides one solution to improve the current Internet Architecture. It supports host

mobility and multihoming. That is important point of view when hosts are mobile

and roam between IP networks. Besides that, HIP introduces a key negotiation pro-

tocol, which relates closely to the IPsec. The IPsec provides possibility to establish

secure communication channel between peers. The architecture of the solution is

well-de�ned, and thus it is ready for the deployment.

28

3. SYMBIAN OPERATING SYSTEM

This chapter describes the Symbian OS version 9.2. Especially, the Symbian-speci�c

features related to the network software and the protocols are discussed and com-

pared with the same parts in Linux, which is another popular OS for mobile devices.

First, this Chapter introduces Symbian OS essentials related to the implementation.

Second, this chapter studies networking architecture of the Symbian OS. Finally, the

chapter summarizes covered topics. Symbian networking architecture is also studied

in Section 5.3.2 and in Chapter 6.

3.1 Symbian OS overview

The Symbian Operating System is a 32-bit multi-tasking OS. The Symbian kernel

handles only a minimum set of operations, hence it is a micro-kernel [Tas00, page

255]. Kernel is the core of the OS and it provides the lowest abstraction layer for

the resources. The Symbian OS provides most of the functionality via a set of li-

braries included into the platform itself. User-space is the memory area where all

unprivileged applications runs. On the contrary, kernel-space is strictly reserved for

running the kernel, the privileged software of the OS. The Symbian platform con-

sists of subsystems, which provides functionality for the user-space implementations.

Each subsystem has a set of libraries providing particular functionality and the Ap-

plication Programming Interface (API) to access it. API is well-de�ned software

interface, which makes the usage of the software a standard. All Symbian APIs are

not public, because the platform security restricts the access to the internal devel-

opers and the licensed partners (see Section 3.1.2). The Platform security controls

the access and the execution of the binaries. Figure 3.1 introduces the subsystems

of Symbian OS 9.2. The most relevant of them are underlined.

The subsystem Base contains the essentials of the Symbian environment: the

basic types, the memory and system resource management and the structures for

handling the concurrency. The emulator, which emulates the Symbian device, is

part of the Base. The most essentials of these are introduced in Section 3.1.1. Ba-

sically, the Base includes everything that is needed for basic programming without

User Interface (UI) or communications with other entities. For HIP implementation,

3. Symbian operating system 29

Figure 3.1: Symbian OS 9.2 is composed of several subsystems. [Sym06]

there are also other important subsystems: Comms Infrastructure, Networking, Se-

curity, and Application Framework. First, Comms Infrastructure contains the socket

server, ESock (Section 3.2.1), to support socket API usage. Socket API is used for

inter-process communications in the HIP protocol as well as a socket interface for

HIP control messages. The Networking Subsystem holds protocol implementations

and APIs related to them. HIP uses TCP/IP stack and IPsec in the Networking

subsystem. IPsec and HIP need cryptographical algorithms. Cryptographical algo-

rithms can be found from the Security subsystem. Applications framework includes

a software framework for implementing User Interface for applications. Framework

is a set of classes that embodies an abstract design for solutions to a family of related

problems. In other words, a framework is a partial design and implementation for

an application in a given problem domain [Bos97, page 3]. Application protocols

de�ne HTTP APIs. Messaging subsystem has support to build messaging clients

such as POP3 and SMTP Internet mail, SMS, and fax. For calling services, there is

telephony subsystem [Sym06]. Other subsystems are irrelevant for the thesis.

Symbian implementation is based on the existing modular software, the subsys-

tems, that are provided for the foundation of the programming. Applications, and

the components integrated to the platform have much interaction by other software

modules. Thus programming in Symbian needs understanding how such a founda-

tion and interaction are used. The native Symbian programming is based on C++

programming language. All the APIs, design patterns, and software frameworks

provided for programmer are implemented with C++ extended with special Sym-

3. Symbian operating system 30

bian coding conventions. Used Design patterns, design models that solve a speci�c

programming problem in a commonly accepted way [Kos05, page 102], are chosen

to support the special requirements of mobile devices [Mik04, page 127]. One pur-

pose of such design patterns is to help with the limited resources. Resources are

controlled by the programmer instead of automatization such as garbage collection

in Java programming language. Besides the memory, the battery of the device is

also limited resource [Mik04, 127]. Symbian software frameworks supports modu-

larization and code reuse. Coding conventions requires programmer to use special

naming of variables, classes etc. to make the code understandable. Good example of

such a naming convention is HBuf descriptor that tells to the user, that the memory

for it is reserved from the Heap. Capital H in the beginning of the decriptor name

signals that. Descriptors are introduced with other Symbian essentials in the next

subsection.

3.1.1 Symbian essentials

One of the most fundamental of Symbian platform design decision is the optimization

for e�cient event handling. Symbian is designed to support event-based program-

ming. Event-based design point of view derives from the Graphical User Interface

(GUI) programming where the implemented program is dependant on the input of

human [Tas00, page 96-97]. The same applies to socket programming as well. This

di�ers from the Linux point of view (see Section 3.2). Programs are dependant of

other systems, more precisely their input. Symbian has two main frameworks to

support handling of events, Active Objects, and Client-Server architecture [Tas00,

page 97].

Concurrent event handling can be done at many levels. Context change indi-

cates the change of process and scheduling refers to changing of thread in execution.

Symbian provides lighter way to handle concurrency with Active Objects framework

inside a thread. It is event-based manner to manage execution and designed mobile

devices in mind. Active Objects user space concept compared to the kernel-space

context changes and thread scheduling. Implementation using Active Objects com-

pared to threads, has been stated to end up to an order of smaller magnitude in time

consumption [Mik04]. The Active Object framework is based on Active Scheduler

that handles the event-based concurrency per thread. Active Scheduler is separate

scheduler unit speci�c to this framework. Each of the Active Objects are installed to

the Scheduler and when an event of an Active Object occurs, the RunL() -function

is called. After this Active Object executes wanted functionality and stops or starts

new asynchronous wait for another event. Several Active objects handles each of

3. Symbian operating system 31

them speci�c functionality of the implemented system in this manner. This ap-

proach does not allow new event for individual Active Object before the previous is

ready. [Sym06] [Mik04]

Another fundamental design principle that is relevant to Symbian networking and

event-based programming is called Client-Server design pattern [Kos05, page 136]

[Sym06]. Symbian provides as one basic component of Inter-Process Communica-

tion (IPC) this framework. In this design pattern, multiple clients try to access

resources that are controlled by a server. Motivation for such a design pattern is the

encapsulation of resource management. Mutual exclusion and synchronization can

be handled so that clients do not have to pay any attention on those [Mik04, page

56]. On Symbian, client and server run always in separated threads or processes.

The channel between client and server is known as a session. An API de�nes the

services for the client and by using di�erent API, another set of services can be of-

fered to the certain clients. In networking, this is natural way to implement software

because of the fact that many services are controlled by a centralized management,

such as servers.

Symbian has a careful point of view to the memory consumption because Symbian

devices are intended to run long times without reboot. Thus, the avoiding of the

memory leaks is crucial. It is also a problem with mobile devices that have limited

amount of memory. There are two fundamental parts to handle memory e�ciently,

Cleanupstack, and descriptors. Cleanupstack is a Symbian speci�c data structure

to prevent leaking of memory. Cleanupstack holds a pointer to an object that is

dynamically reserved from the heap. In the case of using standard C++, memory

leakings are possible if the pointers to the objects are lost. In case of cleanupstack,

these memory blocks are released automatically if programmer forgets to do that.

[Mik04, pages 145-147]

Descriptors are both fundamental to Symbian OS, and an excellent example of the

di�erence in approach between non-Object Oriented and Object Oriented designs.

Descriptors are a family of classes that are used in Symbian OS for string handling.

All descriptor classes are inherited from the Base Class TDesC. Descriptors have

some advantages compared to C-strings. They provide always inbuilt description

of the amount of their memory allocation and the data structure, where they are

allocated. Length is a data member of TDesC and name of a descriptor de�nes if it

is allocated from the stack, heap, or Read-Only Memory (ROM) [Mik04, page 135].

Descriptors are used in preference to NULL-terminated C-strings. The same classes

are used for general binary data. [Sym06] [Mik04]

3. Symbian operating system 32

3.1.2 Platform security

Symbian platform security provides background for a secure use of the system APIs.

It also provides rules for secure software development. Some of the APIs are con�-

dential and not seen by third parties.

The security model is designed for mobile devices. The idea is that a user has a

device/devices. No one but the owner is using the same device by regular basis. In

fact, there is no need to have several account or user rights. This is one cornerstone

of the Symbian platform security design. The security model is process-oriented

rather than user-oriented. In Symbian platform, rights and privileges are related

to installed software components rather than to users unlike in Linux operating

system. This is s a defense mechanism against malicious or badly implemented

code. However, it is also a possibility to implement software for the platform by

the authorized parties. The access of APIs or device resources by programs and

approval of them are carefully considered. Another point of view is that mobile

devices are used by variety of di�erent users. There are no expectations of the

level of knowledge of the users. A user may install software by accident or try to

install malicious software. Symbian security model does process identi�cation to

install only authorized software. Rights, more precisely capabilities and process

identi�cation are described below. [Div05, page 4] [Hea06, page 23]

Installed software components have capabilities that describe the right to access

sensitive resources of the device. Most important capabilities related to networking

are NetworkServices and NetworkControl. NetworkServices allows the access to the

services without any restriction on their physical location and NetworkControl gives

the right to access or modify protocol controls. There are several other capabilities

in the system, which does not relate to the networking [Sym06].

The identi�cation of the application in execution is crucial part of the Symbian

platform security. Capabilities reduce essentially the need for such an identi�cation

but there are circumstances, it is preferable to identify applications to be installed.

Access Control List (ACL) of the device is constructed based on process identi�-

cation. Every executable has unique Secure Identi�er (SID) and it can contain a

Vendor Identi�er (VID). All of the applications have unique UID assigned by Sym-

bian in addition to SID and VID. Those three identi�ers are the basis of identi�cation

of the applications. Application must be signed and approved before allowing them

to have individual identi�ers. [Div05, page 9]

The APIs have classi�cation system that divides them to the Published All, Pub-

lished Partner, and Internal. Published All can be access any Symbian developer.

Access to the Published Partner and Internal components is restricted. A license

3. Symbian operating system 33

is needed to access the published partner, and the internal components are internal

for Symbian developers. [Sym06].

3.2 Networking in Symbian

Symbian networking di�ers from the Linux networking scheme. In Symbian, the

socket API provides more extensive support for managing low-level functionality

than in Linux. For example, interfaces are managed by the applications unlike in

Linux where the user of the system needs to command the interfaces up and down

before starting any applications.

Figure 3.2: Connectionless socket send operation in Symbian and Linux.

3. Symbian operating system 34

Figure 3.1 illustrates the subsystems of Symbian version 9.2. Networking sub-

system has infrastructure related to TCP/IP stack, Quality of Service (QoS) and

IP over PPP protocol. It o�ers also secure sockets for Transaction Layer Security

(TLS) and Secure Sockets Layer (SSL). Symbian TCP/IP stack o�ers sockets for

IP, ICMP, TCP, and UDP protocols. It has also implementation of IPsec and DNS,

which o�ers the host resolver to make DNS queries. [Sym06] [Cam07] [Sym05]

Comms Infrastucture is composed of communication database (CommsDat), ES-

ock communication framework and network interface manager (NIFMAN). These

are the controlling components of the networking infrastructure in the Symbian

platform [Cam07, page 18]. CommsDat has the information of the Internet Access

Points (IAPs) in a particular device. Internet Access points de�ne the settings how

a connection to the Internet is made [Cam07, 162] and it can be also understood

as a single representative of a single network interface. NIFMAN, and ESock pro-

vide together the framework for managing the connections. NIFMAN is responsible

for starting up interfaces including start-up of the default interface when there is

no existing route to the next hop in the network. Interfaces can be controlled on

the application layer via ESock that is the principal component of the Symbian

networking. [Sym06] [Cam07] [Sym05]

The di�erence of Linux and Symbian socket API and the communication infras-

tucture are illustrated in the Figure 3.2. The di�erence from the application point

of view is shown in the upper part of Figure 3.2. Symbian application uses three

steps more to start communication with a connectionless socket. First, it has to

connect to the socketServer, ESock. After this, it sets up the interface management.

This is not necessarily needed if the interface management is not concerned by the

application. The Symbian application opens and starts an interface (step 2 and step

3). Before sending anything both Linux (step 1) and Symbian (step 4) creates the

socket instance.

The simpli�ed presentation of the internal control in both Operating Systems is

presented in the lower part of the Figure 3.2. Symbian communication infrastructure

has more components in it. First, the socket server decides where to pass the control.

In this particular case, it passes the control to the Service Access Point of the IP

protocol, which is actually part of the IP protocol module. Both Linux and Symbian

have hook mechanism, which is used to add certain type of protocol processing to

the packets. After hooking both passes the control to the respective device driver

in this simpli�ed scenario.

3. Symbian operating system 35

3.2.1 ESock framework

ESock is a system wide way to access the di�erent network resources. It provides

the interface between a programmer and the communication modules. The three

main services are:

• data protocols

• interface management

• name resolution

The data protocols are used for communications with a remote end. The imple-

mentation of HIP protocol module is based on the ESock protocol module framework

(See Section 3.2.3). The interface management is the principal functional di�erence

with the Linux environment. In Symbian, it is provided for the applications. Be-

cause of that, there is no information of the routes before a socket is opened. The

name resolution i.e. DNS library is the third service provided by ESock. One ad-

vantage of having such a socket server, ESock, is the possibility to adapt legacy

implementation to the new emerging technologies [Cam07, page 28].

ESock is implemented following the well-known Client-Server design pattern as

introduced earlier in Section 3.1.1. Each protocol is running in a separate thread in

Comms Process and ESock takes by the default care of forwarding the messages to

right protocol. ESock server module, RSocketServ, provides services for the clients,

RSocket and RConnection, connecting to it.

3.2.2 Socket API

Socket Application Programming Interface (API) is the client end point to a proto-

col. It is the Symbian variant of well-known Berkeley socket API. The socket API

is protocol independent in both environments. Symbian Socket API has �ve main

services:

• RSocketServ

• RSocket

• RConnection

• RHostResolver

• RNetDatabase

3. Symbian operating system 36

RSocketServ handle is needed to o�er a channel according to the Client-Server

architecture (Section 3.1) to communicate with socket server. Socket server co-

ordinates the service requests from the applications to the responsible protocol

module. Sockets must be always connected to a running socket server before they

can be used. RSocketServ establishes an IPC communication channel for RSocket,

RHostResolver, RNetDatabase and RConnection. RSocketServ introduces also meth-

ods for enumerating, �nding, and stopping of protocols.

RSocket o�ers several services for creating connection, sending data, and receiving

data. The usage, syntax, of such an RSocket is common for every protocol. On the

other hand, the semantics of the services are based on the speci�c protocol and

can be �ne-tuned with ioctls options. Instead of blocking, sending and receiving

operations are made asynchronously through RSocket. This allows application to

stay responsive and react to received events meanwhile socket operation is waiting to

be accomplished. Socket server monitors the amount of received data and when this

condition is ful�lled, it �lls bu�ers and signals the application. This is implemented

by following the active object framework. Event waiting loop and handler dispatcher

are provided and installed in the active scheduler. RSocket has four options how

data is sent and received. Stream sockets are used for reliable byte-oriented channels.

Reliable means that received bytes are in sending order without duplication or loss

if received at all. Sequenced packet socket provides a reliable packet-based interface.

It is guaranteed that packets blocks of data not bigger than the de�ned maximum

length, are received in order if received at all. In this case, there is a maximum

length for the packets, which must be respected on the sending side. Datagram

socket is a packet-based interface for sending and receiving data. It can be reliable

or unreliable depending on the underlying protocol. Unreliable means that the data

can be received out-of-order or not at all. The fourth type, raw socket, provides an

unreliable access to data transfer without restricting manipulation of the data.

Compared to Personal Computers mobile phones have much more variety on the

IP Bearer technologies. Bearer means the technology, which is used to carry IP

tra�c. The multitude connection options available are handled with Symbian con-

nection management. RConnection provides the API to take control over the con-

nectivity at application level. Starting, stopping, and monitoring of IP Bearers are

possible including the query mechanism that allows run-time choices to be made.

RConnection can be used from multiple applications and multiple RConnections

can be associated to a single Bearer technology. RConnection has also RSubCon-

nection API that is used for Quality-Of-Service (QoS) management. A client may

use RSubConnetions to set up a group of connection with di�erent characteristics

3. Symbian operating system 37

for bandwidth, cost, or latency.

RHostResolver is a class to name resolution services, such as DNS queries. It can

be used to obtain names by giving address, address by giving names and getting or

setting local host name. RHostResolver is a client handle to the DNS server running

separately.

RNetDatabase provides the possibility to add and query information from Comms-

Dat. CommsDat is a precon�gured database that is used to map the IAPs to the

Bearer technology. Connection preferences are set up at CommsDat and always a

default connection is de�ned. This is an initialization operation. This default con-

nection will be connected in a case where user does not de�ne any preferences via

RConnection.

3.2.3 Socket Server Protocols

ESock de�nes an interface for all socket type communications and de�nes a plug-in

architecture for implementing particular protocols. Plug-in architecture is based

on the fact that C++ allows abstract base classes and has virtual functions. The

abstract base class de�nes the interface, but the implementation, a plug-in, can be

added later on and changed over time. Protocol modules are by the socket server

at runtime either explicitly or on demand as dynamically linked libraries. When a

description �le (.esk) is introduced for the ESock at the start up, it will load explicitly

de�ned protocol modules. All such a protocol modules o�ering socket services must

have implementation derived from CServProviderBase -class. The inherited class

de�nes Service Access Point (SAP) through socket interface for the application

willing to use it. The protocol module itself is derived from CProtocolBase -class. If a

completely new protocol family is de�ned, CProtocolFamilyBase must be specialized

for those purposes. Here protocol family means a collection of protocols closely

related to each other. An ESock protocol module can also be a stack itself. [Sym06]

3.2.4 TCP/IP

TCP/IP stack is implemented in Symbian as a Socket Server protocol (Section 3.2.3)

module more precisely it is a protocol family. It provides socket services for IP, TCP,

ICMP, and UDP protocols. Other protocols are often bound to the TCP/IP stack

and implemented as TCP/IP extensions.

TSockAddr is provided as a general socket address class for all the protocols in

Symbian OS. It holds information of used port and the specialization adds more

information along the child class. In case of TCP/IP family TInetAddr is such a

child class that is derived from the TSockAddr. TInetAddr has an attribute for

3. Symbian operating system 38

IP address. Both versions of IP can be used with it by specifying the protocol

family that will be used. If KAfInet is used the data structure will store 32 bit long

address. In contrary, if KAfInet6 is used the data structure stores IPv6 address or

IPv6 mapped IPv4 address. IPv6 mapped IPv4 address is an IPv6 address with

special pre�x and otherwise it saves the IPv4 address to the least signi�cant bits.

This can be also left unde�ned with KAFUnspec. [Sym06]

3.2.5 Security

Symbian Security subsystem is the base of Symbian security system. It implements

cryptographical algorithms, hash functions, random number generator and support-

ing APIs. Cryptographical algorithms include encryption and decryption engines

for both symmetric and asymmetric cryptography (Section 2.3). Integrity check-

ing, signature veri�cation and message digest functionality can be found from the

Security subsystems as well (Section 2.3). Supporting APIs provides padding func-

tions, arbitrary long integers, and password based encryption. These services are

used by protocols and functions: Certi�cate Management, Software Installation, Se-

cure Communication Protocols (SSL, TLS, IPSEC, and WTLS). WTLS is wireless

version of Transport Layer Security. Some of these APIs are con�dential.

3.3 Summary

As a conclusion, Symbian provides several software design solutions, which takes

the nature of the mobile devices into account. Symbian design patterns help the

programmer to design scalable and modular software, which try to take the scarce

resources into account. Presently the amount of memory and etc. resources is in-

creasing. However, Symbian provides challenges as well. Socket programming with

Symbian di�ers from the well-known Berkeley sockets. The Symbian platform secu-

rity provides challenges for user-space implementations. The heavy object-oriented

architecture supporting variety of software design solutions may have some indica-

tions to the delay observed in the phone usage.

39

4. DESIGN

First, this chapter introduces the HIP protocol design. It describes the HIP PDU

format and the state machine of the protocol. Then, the software architecture is on

the focus. The structure of the relevant software components is introduced. Finally,

the chapter summarizes the covered topics.

4.1 Protocol Design

The HIP design is simplier than the IKE design [Har98]. HIP does not have all

the �ne-grained details in the protocol, but instead of only being a key negotiation

protocol, it supports host mobility and multihoming (see Section 2.4.4).

A HIP PDU consists of a HIP header and a combination of HIP parameters. The

contents of PDUs vary depending on the usage of the optional HIP parameters. HIP

has 19 di�erent HIP parameters.

4.1.1 HIP PDU format

The HIP header is 40 bytes long as shown in Figure 4.1. It is logically an IPv6

extension header [Mos07, page 33]. The next header �eld derives from the IPv6

extension header. There is never next header, and thus 59 is the only supported

value for the next header �eld to indicate that there is never next header. Packet

type indicates the HIP PDU type. VER is the version �eld, which is at the moment

one. RES is reserved for the future use. The checksum calculation uses a pseudo

header. A UDP pseudo header is included in the case of IPv4. In the case of IPv6,

the corresponding TCP/UDP pseudo-header is used. Controls are reserved for the

future use except the last bit, which indicates that the HI of the sender in this PDU

is unpublished. The parameter �eld is at the maximum 2008 bytes long. [Mos07,

page 33-36]

4. Design 40

Figure 4.1: HIP PDU format.

4.1.2 HIP state machine

The HIP protocol has seven states and an error state called E-FAILED, which indi-

cates that the HIP message exchange failed. There are 21 state transitions excluding

the E-FAILED state. Initially the protocol is in the state UNASSOCIATED. After a

successful Base Exchange (see Section 2.4.2), it establishes the connection and moves

to the ESTABLISHED state. The closing happens if a timeout trigger launches

for the connection. It sends the CLOSE-PDU and waits for a CLOSE_ACK-PDU.

When a CLOSE_ACK-PDU is received or timeout takes place, the connection moves

to UNASSOCIATED state (see [Mos07, page 30] for details).

4. Design 41

Figure 4.2: HIP state diagram

4.2 Software Design

The software design concentrates to the software architecture aspects of the imple-

mentation. The structure of the components, their interrelationships and principles

and guidelines governing their design are important. The development of the soft-

ware depends on those facts. Thus, the architecture of the software is studied closely.

The Symbian IKE has been used as a guideline for the software design. A manual

keying application, implemented for the testing purposes of the IPsec at Nokia,

provides the basis for the PFKEY and policy operations. The HIP software is

implemented using the Symbian APIs, software design patterns provided by the

Symbian subsystems.

4. Design 42

4.2.1 Structural description of the system

The HIP software is part of the Symbian networking as shown in Figure 4.3. All

grey modules are entirely implemented in the thesis. Partially grey modules are

modi�ed existing Symbian modules. The arrowhead describes the software module,

which is utilized by the other software module.

A test application, the HIP protocol module, the IPsec BEET mode, and the HIP

daemon are implemented in the thesis. The HIP daemon has also user interface for

testing purposes. Applications use the socket API to access the data protocols, man-

age interface and for the domain name resolution. ESock provides the socket API

and channels the socket actions to the correct protocol module. The HIP protocol

module provides the HIP Service Access Point and adds the HIP protocol id to the

IP packet header. The HIP protocol module passes the control to the TCP/IP stack,

which passes the control to the IPsec module based on the local policy decisions. Lo-

cal policy de�nes the �ltering, which is applied to the outbound and inbound tra�c.

IPsec module has a crucial role in the SA and key management. When an applica-

tion connects �rst time, there are no SAs for the IPsec that is used for the HIP data

tra�c. The HIP Daemon listens the PFKEY socket, which implements the Service

Access Point for PFKEY messages. To obtain SAs IPsec sends PFKEY messages,

which are processed by interested key management applications. The HIP daemon

is such key management application. The HIP Daemon implements software for

the HIP messaging. The Crypto module o�ers algorithms for the cryptographical

functions, and the PKI service provides an API to access Public Key Infrastructure

services.

4. Design 43

Figure 4.3: Package diagram of the core components related to HIP.

4.2.2 HIP daemon design

The HIP daemon is a standalone executable. It has integrated UI for the testing.

The daemon itself works without the UI so the UI could be removed as a part of

the future development. The daemon has four Active Objects, which handle the

concurrency inside the daemon. The PFKEY-API, the socket sender, the socket

receiver and the IPsec policy socket serve the engine asynchronously. A software

engine is the core of a program that has the control of the other modules. Whenever

a service completes, for example a message is received, it triggers the engine to pass

the control for the responsible component. The engine controls the execution of

the software based on the asynchronous events. The concurrency of the operations

is achieved with the Active Object framework. The details are presented in the

con�dential appendix A.

4.2.3 HIP protocol module design

The HIP protocol module consists of classes that are inherited from the Symbian

protocol module base classes (see Chapter 3.2.3). These base classes provide part

of the functionality. In this manner, the fundamental behavior of the Socket Server

Protocol modules is the same.

4. Design 44

The HIP protocol module processes the socket API calls. The HIP protocol is

used by utilizing a speci�c HIP protocol id (253) in the socket calls. The ESock

installs the HIP protocol module when the Symbian starts up. The protocol module

processes the calls and modi�es the IP header so that it has HIP protocol ID in the

protocol �eld.

The details are con�dential and presented in appendix B.

4.3 Summary

The design of the HIP does not have all the �ne-grained details that IKE has.

Instead of that, HIP Base Exchange provides lighter option for the negotiations

than IKE does. The software design has been made taking into account the quality

aspects of the software architecture. The modularization and abstraction have been

the main principles of the software design. Symbian provides natural environment

for such design because it is object-oriented OS. However, the heavy utilization of

the Symbian frameworks and the design patterns may cause overhead for e�ciency

to the implementation.

45

5. IMPLEMENTATION

This chapter introduces the functionality of the software. It describes the core parts

implemented in the thesis: the HIP daemon and the IPsec changes. It also discusses

of the experiences with the Symbian platform and the challenges of the environment

for HIP implementation.

5.1 HIP daemon functionality

A start call from the user interface starts the engine of the HIP daemon. The HIP

daemon engine sets up the PFKEY socket, and registers for the PFKEY messages.

On the same occasion, the engine sets the socket receiver ready for the incoming

HIP messages.

The Symbian IPsec and the HIP daemon are con�gured from the user interface.

The local policy is de�ned in a separate policy �le, which is loaded from the UI.

The user must de�ne the local policy in order to use the IPsec for the wanted data

tra�c. The UI triggers the engine to read the policy data from the IPsec policy �le

and to install the policy into the IPsec Security Policy Database. The HIP daemon

listens and receives the PFKEYmessages. The integration between HIP negotiations

and PFKEY messaging is not fully implemented (see Section 6.3). The HIP Base

Exchange negotiations do not implement HIP ESP extension [Jok06] for the SA

negotiations. Instead of that, it provides possibility to install manually de�ned

SAs to the IPsec. The UI provides the possibility to trigger the Base Exchange

manually. By starting it manually, the sender sends I1 message, and stays listening

incoming messages. The negotiations do not provide full processing of the HIP

parameters. It implements the data structures for them, and the sending side for

the HIP parameters. Full implementation would be future work (see Section 6.3).

The con�dential Appendix C shows the sequence diagram of a typical operation.

5.2 IPsec functionality

The IPsec works as a part of the TCP/IP stack. The IPsec is triggered based on

the local policy decisions. Local policy refers to the �ltering, which is applied to the

outbound and inbound tra�c. Application tries to connect and when the IPsec is

5. Implementation 46

needed, TCP/IP stack passes the control to the IPsec module, which triggers a key

management application to obtain proper SAs for the connection. After successful

negotiations, the application sends message, which triggers the IPsec again. This

time there are the SAs and the IPsec provides the wanted service for the payload:

encryption or authentication. The trigger could be for example a socket API call

connect(HIT), which connects to a remote Host Identity Tag. In this particular case,

the actual IP header has di�erent address than the socket call. The implemented

IPsec BEET mode provides the functionality to build a new IP header for the

routing.

The BEET implementation includes an engine for the processing inside the IPsec.

In addition, to support it many changes had to be done. The IPsec processing of the

matching tra�c had to be changed. In the normal transport or tunnel mode, the

tra�c is matched with the IP addresses not with the identities. When the BEET

mode is in use this is taken into account. The matching in the BEET mode has

to be done with the identities instead of the IP addresses. The SA lookup had to

be changed as well. The SA lookup is based on the the SPI and the IP addresses.

Instead of that, with the BEET mode the lookup must be based on the SPI and the

identities. Besides that, the PFKEY-API had to be extended to support the BEET

implementation. The PFKEY message processing has several steps in the IPsec,

and those are modi�ed.

The details of the IPsec implementation are con�dential. The sequence Diagram

of the BEET functionality is presented in the con�dential Appendix D.

5.3 PFKEY-API

The PFKEY is a socket protocol family used by trusted privileged key management

applications to communicate with the key management internals of an operating sys-

tem [McD98, page 3]. IPsec incorporates a Security Association Database (SADB),

which is the place of storage for Security Associations. The PFKEY-API de�nes a

well-known procedure to provide the information of SA changes between the IPsec

SADB, and the key management. The PFKEY-API de�nes a set of messages, which

are used for communication between the SA management and the key management

as shown in table 5.1.

The key management application such as IKE or HIP register as listeners for the

SA management with an SADB_REGISTER message as shown in Figure 5.1. If the

SA management �nds no SA for a new connection, it sends SADB_ACQUIRE mes-

sage, which has the details of the needed SA. Such information as SA type, process

id, associated addresses etc are passed to the key management application. Process

5. Implementation 47

PFKEY-messages
SADB_RESERVED Reserved for the future use
SADB_GETSPI Request/Response for obtaining SPI value
SADB_UPDATE Request/Response for updating existing SA
SADB_ADD Request/Response for adding SA
SADB_DELETE Request/Response for deleting SA
SADB_GET Request/Response for getting SA
SADB_ACQUIRE Request from the kernel to acquire SA
SADB_REGISTER Request/Response for key management application registration
SADB_EXPIRE Request from the kernel to negotiate new SA
SADB_FLUSH Request/Response to delete all the entries in the SADB
SADB_DUMP Request/Response to dumb all the entries

Table 5.1: PFKEY-messages

id is UID in case of Symbian (see Section 3.1.2). The sequence diagram in Figure 5.1

illustrates the typical installation of unidirectional SA for a new connection.

The key management process gets the SPI value with the SADB_GETSPI -

message and the SA management returns the SPI with the same message. After

the key negotiations, the key management updates the SA to the mature state with

SADB_UPDATE message.

The usage of PFKEY-API needs process identi�cation. In case of Symbian,

PFKEY messaging uses UID (see 3.1.2) instead of the process identi�er.

Figure 5.1: An example PFKEY message sequence for installing an SA.

5. Implementation 48

5.3.1 Extended PFKEY-API

The well-known PFKEY-API version 2 [McD98] has to be extended the for IPsec

BEET mode usage. These extensions were �rst introduced along the SHIM6-project

[shi08]. The extension is also de�ned in the BEET draft [Nik07b]. The extension

de�nes a new SA type, which stores the HITs or LSIs of both peers. The mode of

the new SA is BEET. The mode must be de�ned in the PFKEY acquire messages.

The implementation needed changes in the inner IPsec PFKEY message handling.

The new SA type is called SA2.

5.3.2 Symbian implementation challenges

The Symbian APIs have challenges for the Symbian developers. According to the

platform security, many of the APIs are classi�ed to be non-public. Some of the

internal APIs are limited and designed only for some speci�c purposes. For example

crypto API has only a subset of the known cryptographical algorithms to o�er.

Open C is a promising approach to implement Symbian software with the C-

language using the POSIX libraries. When the project was started, Open C did

not support IPv6, although the support has been recently added. Open C has the

same support than the Symbian platform and is limited in that sense. One cannot

extend the support without modifying Symbian. For example, POSIX standard

socket interface does not provide support for unde�ned protocol id used with the

HIP. Socket open call with the experimental HIP id (constant 253) is not supported

without a new socket server module implementing the needed SAP in the Symbian

stack.

5.4 Summary

The HIP daemon implements a modular software package, which is a good starting

point for the full implementation. To support HIP, the IPsec had to be changed

and the IPsec PFKEY processing had to be extended. The implementation is

not straightforward because Symbian provides challenges for such implementations.

Some of the APIs are limited in terms of the HIP usage. However, the platform

provides extensive support for the HIP implementation.

49

6. DISCUSSION AND ANALYSIS

First, this chapter introduces the testing of the implemented software. The testing

section concentrates on the functionality. Next, the quality aspects of the imple-

mentation are evaluated. The focus is on the evaluation of the software architecture.

Then, this chapter describes the improvements and future development of the im-

plementation. Finally, the chapter introduces related work.

6.1 Testing

Figure 6.1 describes the testing environment. There are two laptops connected to

the Nokia Network with the LAN connection. Both have an S60 emulator. The

S60 emulator emulates the Symbian environment, which includes the implemented

IPsec and HIP modi�cations. The HIP daemon is started from the UI. WinPCap,

a link-layer network access tool in the Windows environment, is used to establish

connection between the S60 emulator and the real network. After both emulators

have started the HIP daemon, daemons set up the virtual network interfaces with

a static IP addresses or with the DHCP. A virtual network interface is a software

abstraction, which does not necessarily associate with a physical network interface.

Finally, both machines are ready to send or receive HIP packets.

Figure 6.1: Testing environment.

6. Discussion and Analysis 50

Table 6.1: Test cases - group 1: IPsec BEET.

Case Description Outcome

Case 1.1 Install SA type 2 PFKEY operation succeeded. PASS
Case 1.2 Host sends to the peer's identity IP packet sent. PASS
Case 1.3 Communicating hosts, LSIs IPv4 net End-to-end messaging. Not tested.
Case 1.4 Communicating hosts, HITs IPv4 net End-to-end messaging. Not tested.
Case 1.5 Communicating hosts, LSIs IPv6 net End-to-end messaging. Not tested.
Case 1.6 Communicating hosts, HITs IPv6 net End-to-end messaging. Not tested.

Table 6.2: Test cases - group 2: HIP daemon, HIP header.

Case Description Outcome

Case 2.1 Send correctly formed I1 BEX takes place. PASS
Case 2.2 Send I1, malformed Next Header �eld: value 0 Packet dropped. PASS
Case 2.3 Send I1, malformed Header Length: value 20 Packet dropped. PASS
Case 2.4 Send I1, malformed Packet Type �eld: value 20 Packet dropped. PASS
Case 2.4 Send I1, malformed Version �eld: value 0 Packet dropped. PASS
Case 2.6 Send I1, malformed Reserved �eld: value 1 Packet dropped. PASS
Case 2.7 Send I1, malformed Checksum �eld: value 0 Not implemented. FAIL
Case 2.8 Send I1, malformed Controls: value 2 Packet dropped. PASS
Case 2.9 Malformed HITs: value both HITs Zeros Packet dropped. PASS

The testing of the implementation is done in the groups. The groups concentrate

on certain part of the implementation. Some of the tested groups are presented in

Table 6.1 and in Table 6.2. Both laptops have S60 emulators running and the HIP

daemon is started on the both machines.

The �rst group tests the IPsec BEET mode. Before sending any tra�c, the

policy, and the PFKEY data is loaded to the IPsec policy management. Policies are

managed separately from the SAs. After this, a HIP I1 packet is sent, and when

the IPsec policy matches, the stack passes the control to the IPsec and then to the

HIP daemon, which installs the manually de�ned SAs according to the identities for

the inbound and the outbound tra�c. The PFKEY processing modi�cations, the

new Security Association type 2, and the IPsec changes concerning the BEET mode

are tested this way. The test cases 3-6 test the BEET mode between two Symbian

hosts, but were not executed due to time limitations of the project.

The second test group tests the basic HIP messaging with malformed HIP header

values. The UI is used to initiate the Base Exchange in every case with di�erent

parameter values. The �rst case sends correctly formed HIP I1 packet and the Base

Exchange proceeds. The following cases have each di�erent malformatted �eld in

the HIP header, and the packets are dropped in these cases.

6. Discussion and Analysis 51

Table 6.3: Quality attributes for the implementation.

Quality attribute Description

Modi�ability How well the software supports large modi�cation.
Maintainability How well the software supports small modi�cation.
Portability How well it is possible to port the software.
Reusability How well the software or parts of it can be reused.
Feasibility How well the speci�cations can be followed in the implementation.
Interoperability How well the software works in conjunction with other implementations.

6.2 Evaluation of the software architecture

The software architecture evaluation tries to identify the quality attributes of the

software architecture [Kos05, page 222]. It does not directly try to evaluate how

well the functionality corresponds the requirements. Instead of that, it tries to �nd

the non-functional attributes that have an in�uence to the software quality.

The ATAM [Kaz00] method tries to evaluate the quality of the software architec-

ture. The method was developed to provide a principled way to evaluate the �tness

of the software architecture with the respect to the multiple competing quality at-

tributes. The quality attributes, which are considered in this work, are introduced

in Table 6.3 [Hai02, page 309].

The software architecture of the HIP Daemon is divided into the several pieces

to improve the modular design and the abstraction. The module separation is

based on the idea that the engine has the control of the software. In the Symbian,

modules are often composed of several classes. Engine controls the inputs from

the user, from the peer machine and from the IPsec and operates based on those.

Negotiations are implemented in a separate class to make it possible to instantiate

multiple of them. Every negotiation object manages its own state. Negotiation

object constitutes of the connection objects, which is another principal class of the

implementation. Every negotiation object may have multiple connections, which

makes multiple connectivity scenarios possible. Connection module manages the

sockets, which are implemented as separate modules: a sender and a receiver.

6.2.1 Modi�ability

The negotiation class does not have association with the socket interface at all.

This makes it possible to change the socket types. The UDP encapsulation for

the HIP packets could be easily implemented in a separate socket modules. It is

possible to implement another connection module, which has the UDP sockets for

6. Discussion and Analysis 52

the communications. This design choice gives negotiations possibility to choose the

wanted method for the communication.

The connection class provides possibility to implement di�erent connectivity sce-

narios. The connectivity is abstracted and thus negotiations do not know about the

connectivity management. Because of that, routes and interfaces can be modi�ed

and managed inside the connection module.

One principle decision was that the protocol is not implemented as a plugin. A

plugin is an application-speci�c extension module, which implements the APIs of

the core module [Kos05, page 198]. The core module is the engine in this particular

case. This principle decision restricts the usage of the engine as a core module for the

di�erent protocol implementations. The plugin architecture provides possibility to

link the di�erent implementation with the engine. The plugin architecture was given

up due to the large amount of the coding it needs. However, it is not necessarily

better solution to use plugins because of the overhead that plugins cause in terms

of the code and the code e�ciency. Because the plugins are loaded at the runtime,

they cause overhead cycles for the CPU. The plugin architecture requires dynamic

linking of the plugin to core module. The interactions between the core module and

plugins may be heavier than implementing such a software without plugins.

6.2.2 Maintainability

The software does not fully implement the HIP protocol. However, adding of the

new features is straightforward because the software architecture has well-de�ned

responsibilities for each module. If the HIP parameters need changes to the imple-

mentation, these are made to the negotiations module. There is no need to modify

other modules because they have di�erent responsibilities.

Another aspect is the PFKEY messaging. Because the message handling is sep-

arated in the own module, the handling can be modi�ed without modi�cations to

the other modules. The encapsulation of the functionality guarantees that.

The clear naming conventions for the classes, functions, and variables improve the

maintainability because the understanding of the software is achieved more easily.

6.2.3 Portability

Porting of the software between di�erent Symbian phone families is possible. Be-

cause the UI layer di�ers in the Symbian families, it has to be removed from the

Daemon, but the Daemon itself is a standalone executable. The UI in the software

is implemented for the testing purposes.

6. Discussion and Analysis 53

6.2.4 Reusability

The code may be reused. The sender module and/or the receiver module can be

easily moved to another software, if there is need to use Active Object -framework

for the socket communications. Because the activities of the sender and the receiver

are abstracted, another software component utilizing the components needs to only

instantiate them, and the functionality is handled by the Active Object -framework.

Thus only the Active Scheduler is needed to control the execution of the sender

and the receiver. The connection class could be moved as a whole for the route

and interface management, because it does not have association to the negotiations

class, which owns it.

6.2.5 Feasibility

The software was a research prototype and the feasibility of the HIP was estimated

during the implementation. The target was to produce information of the HIP in

Symbian.

The HIP is not straightforward to implement. The IPsec internals have to be

modi�ed, which is time-consuming task. The modi�cations have to be made care-

fully, and the changes should be fully tested, because errors may have e�ect to the

blocking of the unwanted tra�c. The Host Identities should not leak on the wire in

any form.

Besides the IPsec, Symbian provides a lot of work for the full HIP implementation.

Some of the Symbian cryptographical APIs may be limited.

6.2.6 Interoperability

At the moment, interoperability with the other implementations is not tested. How-

ever, testing against own implementation seems to work with the implemented parts.

The HIP parameters, which are not implemented, must be disabled.

6.2.7 Alternatives for the software architecture

It was chosen not to provide plugin implementation for the negotiations. That would

have improved the modi�ability, for example the HIP negotiation version would have

been easy to choose at the runtime. However, because of the massive overhead the

plugin causes in terms of code lines and code e�ciency, it was abandoned.

The HIP was thought to be implemented as an ESock protocol module, but

that seemed to be very disorganized design solution. The control would have gone

6. Discussion and Analysis 54

through the ESock protocol module to the IPsec and then back to the ESock pro-

tocol module from the IPsec. The ESock protocol module framework is designed

mainly for the transport layer protocols. However, the implementation as a Esock

protocol module may work by implementing the negotiations and the IPsec handling

separately from the actual ESock protocol module classes.

6.3 Future work

The implementation is designed to be extended. Here are some points for the future

development:

• The Daemon could be started by some other application instead of the UI.

A related component could start the standalone executable at the start-up.

The positive consequence is that the HIP negotiations would be triggered by

a connecting application. However, this needs full integration of the PFKEY

socket listener and the negotiations.

• The Daemon is limited in terms of HIP processing. Most of the BEX pa-

rameters are created but the processing of them is not fully implemented.

The following HIP parameters should be implemented in the future: SIGNA-

TURE, SIGNATURE2, SOLUTION, HMAC, HMAC2. The parameter data

structures are implemented but the actual processing not. ([Mos07, pages

59-63])

• Checksum calculation should be included into the HIP header. This may be

problematic because in the case of IPv6 the upper layer packet length must

be known. In case of IPv4, the UDP pseudo header should be known and the

problem may be the UDP length �eld.

• The protocol could be extended to support ESP [Jok06] and DNS [Nik07a]

extensions. The ESP extension makes the exchange of SA information such

as SPIs possible. The DNS extension de�nes an RR record for HIP. The DNS

resolver would then perform a name to HIT lookup. In this approach, an

application knows only a name of the other end.

6.4 Related work

At the moment, there are �ve di�erent well-known HIP implementation. Ericsson

Research Nomadiclab (FreeBSD), Helsinki University of Technology and HIIT (In-

fraHIP for Linux), Boeing PhantomWorks (Linux), Andrew McGregor (Python user

6. Discussion and Analysis 55

level), Sun Labs Grenoble (Solaris). Besides these, HIIT has a Symbian implemen-

tation done in the user space.

6.5 Summary

The evaluation of the functional and non-functional requirements provides infor-

mation for the future development. The functional requirements are evaluated by

testing the software. The non-functional requirements are evaluated with the qual-

ity attributes. The architecture of the implemented protocol provides the starting

point for implementing new subsets of HIP features. According to the observations

of the implementation process, HIP may be easier to develop �rst apart from the

IPsec, because the integration needs deep understanding of the Symbian internals

and how the relevant parts have to be modi�ed.

56

7. CONCLUSION

The focus of the thesis was the Host Identity Protocol and its suitability for the

Symbian platform. The scope was to implement relevant parts of the HIP Base

Exchange and to produce information for further development in the Symbian plat-

form. The thesis covers the fundamental issues when a new protocol such as HIP is

added to the platform. HIP is closely bound to the internals of the platform, and

thus needs careful studying.

The author implemented a prototype, a daemon, which handles part of the pro-

tocol activities. It does not provide the whole solution, but instead of that, it imple-

ments a modular software package, which can be extended in the future. The respec-

tive software architecture of the implementation was designed during the project.

The IPsec and the PFKEY processing were modi�ed and a socket module was

implemented to support HIP. Besides that, the relevant parts were tested with a

simple testing setup, where two Symbian emulators communicated through Nokia

network. A user interface component was implemented for the testing purposes.

The non-functional requirements, such as software architecture were evaluated with

the relevant quality attributes.

HIP provides a new namespace, which changes the semantics of the socket com-

munications. Instead of the IPv6 addresses, applications bind to HITs, which are

hashed public keys. Because of that, host multihoming and host mobility become

easier. The new IPsec Bound-End-to-End Tunnel mode supports this by providing

the mappings of identities and the IP addresses in the new de�ned SA type. The

PFKEY de�nes the standard API for the SA management in the IPsec.

The Symbian platform provides extensive support for the modular software design

and code reuse. However, the operating system provides challenges, because the

internals of the OS are closely bound together and thus need careful studying before

any modi�cations. In this case, several parts of the IPsec were modi�ed. A new

socket module had to be implemented as well because the platform did not support

this recently de�ned protocol, HIP.

The observations made during the implementation process were that the complete

HIP implementation is a very extensive area. HIP tries to solve several problems

in the current Internet. It covers host mobility and multihoming, Internet security

7. Conclusion 57

and the problems with the current IP namespace. Besides the topics covered in this

thesis, DNS, the HIP Rendezvous mechanism, NAT traversal, interface and route

management need studying for a complete solution. Currently the implementation

is limited in terms of such software scalability. However, it is a good starting point

for a future implementation for the real mobile terminals.

58

BIBLIOGRAPHY

[Bos97] Bosch, J., Molin, P., Mattsson, M. & Bengtsson, P. Object-Oriented

Frameworks Problems & Experiences. Research report ISSN 11031581,

University of Karlskrona/Ronneby, Department of Computer Science and

Business Administration, September 1997. 18 p.

[C02] Perkins C. IP Mobility Support for IPv4. RFC 3344, Internet Engineering

Task Force, August 2002. 99 p.

[Cam07] Campbell, I. Symbian OS Communications Programming. John Wiley &

Sons, Southern Gate, second edition, 2007. 444 p.

[Dee95] Deering, S. & Hinden, R. Internet Protocol, Version 6 (IPv6) Speci�cation.

RFC 1883, Internet Engineering Task Force, December 1995. 37 p.

[Dif76] Di�e, W. & Hellman, M.E. New directions in cryptography. IEEE Trans-

actions on Information Theory, 22(6):644�654, November 1976.

[Div05] Dive-Reclus, C. Symbian OS v9 Security Architecture. Technical report,

Symbian, February 2005.

[Dor99] Doraswamy, N. & Harkins, D. IPSec: The New Security Standard for the

Internet. Prentice Hall, Upper Saddle River, 1999. 216 p.

[Hai02] Haikala, I. & Marijarvi, J. Ohjelmistotuotanto. Talentum, Helsinki, 2002.

430 p.

[Har98] Harkins, D. & Carrel, D. The Internet Key Exchange (IKE). RFC 2409,

Internet Engineering Task Force, November 1998. 41 p.

[Hea06] Heath, G. Symbian OS: Platform Security. John Wiley & Sons, Southern

Gate, 2006. 249 p.

[Hee06] T.M. Heer. LHIP: Lightweight Authentication for the Host Identity Pro-

tocol (HIP). Master's thesis, University of Tubingen, August 2006.

[Hen03] Henderson, T. Host Mobility for IP Networks: A Comparison. IEEE

Network Magazine, 17(6):18�26, November 2003.

[Hen07a] Henderson, T. End-Host Mobility and Multihoming with the Host Iden-

tity Protocol. Internet draft "draft-ietf-hip-mm-05", Internet Engineering

Task Force, March 2007. Expired draft. 48 p.

BIBLIOGRAPHY 59

[Hen07b] Henderson, T., Nikander, P. & Komu, M. Using the Host Identity Protocol

with Legacy Applications. Internet draft "draft-ietf-hip-applications-02",

Internet Engineering Task Force, November 2007. Work in progress. 18 p.

[Jok06] Jokela, P., Moskowitz, R. & Nikander, P. Using ESP transport format

with HIP. Internet draft "draft-ietf-hip-esp-06", Internet Engineering

Task Force, June 2006. Expired draft. 37 p.

[Kau95] Kaufman, C., Perlman, R. & Speciner, M. Network Security: PRIVATE

Communication in a PUBLIC World. Prentice Hall, Englewood Cli�s,

1995. 504 p.

[Kaz00] Kazman, R., Klein, M. & Clements, P. ATAM: Method for Architec-

ture Evaluation. Technical report CMU/SEI-2000-TR-004 2367, Carnegie

Mellon University, Software Engineering Institute, August 2000. 70 p.

[Ken98] Kent, S. & Atkinson, R. Security Architecture for the Internet Protocol.

RFC 2401, Internet Engineering Task Force, November 1998. 66 p.

[Ken05a] Kent, S. IP Authentication Header. RFC 4302, Internet Engineering Task

Force, December 2005. 34 p.

[Ken05b] Kent, S. & Seo, K. Security Architecture for the Internet Protocol. RFC

4301, Internet Engineering Task Force, December 2005. 101 p.

[Kos05] Koskimies, K. & Mikkonen, T. Ohjelmistoarkkitehtuurit. Talentum,

Helsinki, 2005. 250 p.

[Kos06] Koskinen, J. Course Information Security material [WWW], August 2006.

[referred 08.10.2007]. Available at: http://sec.cs.tut.�/maso/.

[Kur07] Kurose, J.F. & Ross, K.W. Computer Networking. Pearson Education,

Boston, fourth edition, 2007. 852 p.

[Lin06] Lindqvist, J. Establishing Host Identity Protocol Opportunistic Mode

with TCP Option. Ietf internet draft "draft-lindqvist-hip-opportunistic-

01", Internet Engineering Task Force, September 2006. Expired draft. 13

p.

[McD98] McDonald, D., Metz, C. & Phan, B. PF_KEY Key Management API,

Version 2. RFC 2367, Internet Engineering Task Force, July 1998. 68 p.

[Mik04] Mikkonen, T. Mobiiliohjelmointi. Talentum, Helsinki, 2004. 248 p.

BIBLIOGRAPHY 60

[Moc83] Mockapetris, P. V. Domain names: Concepts and facilities. RFC 0882,

Internet Engineering Task Force, November 1983. 31 p.

[Mos06] Moskowitz, R. & Nikander, P. Host Identity Protocol (HIP) Architecture.

RFC 4423, Internet Engineering Task Force, May 2006. 24 p.

[Mos07] Moskowitz, R., Nikander, P., Jokela, P. & Henderson, T. Host Identity

Protocol Base Exchange. Internet draft "draft-ietf-hip-base-08, Internet

Engineering Task Force, June 2007. Expired draft. 106 p.

[Nik07a] Nikander, P. & Laganier, J. Host Identity Protocol (HIP) Domain Name

System (DNS) Extensions. Internet draft "draft-ietf-hip-dns-09", Internet

Engineering Task Force, April 2007. Expired draft. 21 p.

[Nik07b] Nikander, P. & Melan, J. A Bound End-to-End Tunnel (BEET) mode

for ESP. Internet draft "draft-nikander-esp-beet-mode-07", Internet En-

gineering Task Force, February 2007. Expired draft. 32 p.

[Per96] Perkins, C. IP Mobility Support. RFC 2002, Internet Engineering Task

Force, October 1996. 79 p.

[Pos81a] Postel, J. Internet Protocol. RFC 0791, Internet Engineering Task Force,

September 1981. 45 p.

[Pos81b] Postel, J. Transmission Control Protocol. RFC 0793, Internet Engineering

Task Force, September 1981. 85 p.

[Rob67] Roberts, L.G. Multiple Computer Networks and Intercomputer Commu-

nication. Technical report, 1967. Proc. First Symp. on Operating Systems

Prin., ACM.

[shi08] Site Multihoming by IPv6 Intermediation Working Group (WG), April

2008. Available at: http://tools.ietf.org/wg/shim6/.

[Sim95] Simpson, W. IP in IP Tunneling. RFC 1853, Internet Engineering Task

Force, October 1995. 8 p.

[Sol04] Soliman, H. Mobile IPv6: Mobility in a Wireless Internet. Pearson Edu-

cation, Boston, 2004. 338 p.

[Ste96] Stevens, W. R. TCP/IP illustrated, Volume 1. Addison-Wesley, Reading,

Massachusetts, 1996. 576 p.

BIBLIOGRAPHY 61

[Sym05] Symbian. Symbian OS Version 9.2 Technical speci�cations

[WWW]. White paper, 2005. [referred 8.1.2008]. Available at:

http://www.symbian.com.

[Sym06] Symbian. S60 3rd Edition SDK for Symbian OS v9.2, Supporting Feature

Pack 1 [WWW]. SDK documentation, 2006. [referred 2.10.2007]. Available

at: http://developer.uiq.com.

[Tan03] Tanenbaum, A.S. Computer Networks. Prentice-Hall International, Upper

Saddle River, fourth edition, 2003. 891 p.

[Tas00] Tasker, M., Allin, J., Forrest, J., Heath, M., Richardson, T. & Shackman,

M. Professional Symbian Programming: Mobile Solutions on the EPOC

Platform. Wrox Press, Birmingham, 2000. 1031 p.

[Tho96] Thomson, S. & Narten T. IPv6 Stateless Address Autocon�guration. RFC

1971, Internet Engineering Task Force, August 1996. 23 p.

[Zim80] Zimmermann, H. OS1 Reference Model-The IS0 Model of Architecture for

Open Systems Interconnection. IEEE Transactions on Communications,

28(4):425�432, April 1980.

