
Bidimensional-Probe Multipath
Congestion Control

for Shared Bottleneck Fairness

Michio Honda

Graduate School of Media and Governance
Keio University

5322 Endo, Fujisawa Kanagawa 252-8520 JAPAN

Submitted in partial fulfillment of the requirements

for the degree of Master of Media and Governance

Advisors:

Hideyuki Tokuda
Professor of Environmental Information, and Media and Governance, Keio University

Osamu Nakamura
Professor of Environmental Information, Keio University

Yoshifumi Nishida
Associate Professor of Graduate School of Media and Governance, Keio University

Copyright c©2009 Michio Honda

Summary

Bidimensional-Probe Multipath Congestion Control

for Shared Bottleneck Fairness

Multi-homed hosts are becoming common and they have multiple paths between a source

and a destination host. If transport protocols transmit data to multiple paths, they can im-

prove available network capacity. Several such transport protocols have been proposed, how-

ever, they have a problem with fairness. When the transmissions along several paths share

the same bottleneck router, an end-to-end multipath connection receives higher throughput

than a competing regular TCP flow, because it executes congestion control per path with the

same algorithm as TCP. We propose a congestion control scheme that addresses this problem

based on the weighted Additive Increase Multiplicative Decrease (AIMD) algorithm. In our

scheme, an end-to-end connection that uses flows along multiple paths can fairly compete

with regular TCP-friendly flows at the shared bottleneck. In addition, in order to maximize

utilization of different path characteristics, such as bandwidth capacity and RTT, our scheme

probes the optimal proportion to apply the weight to flows on each path. Our simulation

results show that a bundle of multiple flows based on our algorithm fairly competes with

TCP flows at the same bottleneck.

Keywords: 1. Multipath, 2. congestion control, 3. fairness, 4. resource

utilization, 5. transport protocols

Michio Honda Graduate School of Media and Governance

Keio University

i

Table of Contents

1 Introduction 1

2 Problem Analysis 7

2.1 Increase and Decrease Behavior . 9

2.2 Throughput of Per-Subflow TCP Congestion Control 10

3 Designing Bidimensional-ProbeMultipath Congestion Control 12

3.1 Aggressiveness Manager . 14

3.2 Proportion Manager . 16

3.3 Requirements for Implementation . 21

4 Discussion 23

4.1 Resource Pooling . 24

4.2 Weighted Proportional Fairness . 25

5 Evaluation 27

5.1 A Comparison of the Weighted AIMD Flows and TCP Flows 28

5.2 A Comparison of Differently WeightedAIMD Flows and TCP Flows 32

6 Related Work 47

6.1 Multipath Transport Protocol . 48

6.2 Aggregate Congestion Control . 49

iii

7 Conclusion and Future Work 51

iv

List of Figures

1.1 Architecture overview . 3

1.2 Unfair share at the shared bottleneck . 4

2.1 Behavior of the AIMD algorithm . 9

3.1 Ineffective utilization of disjoint link and shared link 17

3.2 Effective utilization of disjoint link and shared link 17

3.3 Difference between Ddec
cur and Ddec

new . 20

4.1 Resource pooling . 24

5.1 Simulation setup . 29

5.2 AIMD(16/25, 1/2) competing with TCP . 30

5.3 AIMD(9/16, 1/2) competing with TCP . 31

5.4 AIMD(4/9, 1/2) competing with TCP . 32

5.5 AIMD(9/25, 1/2) competing with TCP . 33

5.6 AIMD(1/4, 1/2) competing with TCP . 34

5.7 AIMD(1/9, 1/2) competing with TCP . 35

5.8 AIMD(1/16, 1/2) competing with TCP . 36

5.9 AIMD(1/25, 1/2) competing with TCP . 37

5.10 Throughput ratio of the weighted AIMD flows to TCP flows 38

5.11 Loss-event rate of weighted AIMD flows in Fig. 5.2 - Fig. 5.9 39

v

5.12 AIMD(9/25, 1/2) and AIMD(4/25, 1/2) with TCP 40

5.13 AIMD(4/9, 1/2) and AIMD(1/9, 1/2) with TCP 41

5.14 AIMD(9/16, 1/2) and AIMD(1/16, 1/2) with TCP 42

5.15 AIMD(16/25, 1/2) and AIMD(1/25, 1/2) with TCP 43

5.16 AIMD(9/324, 1/2), (16/324, 1/2), (25/324, 1/2) and (36/324, 1/2) with TCP 44

5.17 AIMD(1/100, 1/2), (9/100, 1/2), (9/100, 1/2) and (9/100, 1/2) with TCP . 45

5.18 Throughput ratio of the weighted AIMD flows with different parameters . . 46

vi

Chapter 1

Introduction

This chapter describes background of this research and the brief

overview of the problem in existing proposals.

1

Efficient resource allocation is a key requirement for the future Internet. In 1999 [39],

text or image-based web transactions comprised the majority of Internet traffic. In 2006,

P2P traffic was 37%, and HTTP traffic containing video and audio (e.g., YouTube [40]) was

19% of the total Internet traffic [37]. These applications require high bandwidth allocations

for a long time compared to text or image-based web transactions. TCP [31] traffic still

comprises a major share of the total Internet traffic [16]. Based on this observation, we

assume that high-speed and long-lived TCP connections are becoming more frequent. Such

TCP connections remain in the congestion-avoidance phase [1], and hence compete against

each other at shared bottlenecks. This means that users or applications require more network

capacity.

Simultaneous multipath utilization is a promising way in which end hosts can increase

available network capacity. As the market for networking technology is evolving, it is be-

coming more common that end hosts are equipped with multiple network interfaces (e.g.,

WLAN, GPRS and 3G). They have multiple links that are connected to the Internet simul-

taneously, which results in availability of multiple paths between a source and a destination

end host. Such multi-homed hosts can use more available network capacity if they aggregate

the available bandwidth of multiple paths.

We assume that transport protocols will have capabilities to utilize multiple paths simul-

taneously between a source and a destination host. Fig. 1.1 illustrates such a multipath

communication. Because each host is equipped with two network interfaces, multiple paths

exist between the two transport layer endpoints (EPs) on the hosts. There are actually four

paths between these hosts, however Fig. 1.1 depicts only two paths, for simplicity. Two

applications are communicating over a transport layer connection between these hosts. The

most important concept of this architecture is the multipath connection that contains

multiple subflows. A multipath connection is the entity over which applications communi-

2

Figure 1.1: Architecture overview

cate. For example, a multipath connection looks like a TCP connection to the application

and provides a reliable and ordered byte stream. The endpoint stripes user data across

multiple distinct paths, using one subflow along each path. A different approach to achieve

multipath communication might be possible, such as implementing a shim layer [26] be-

tween the network and the transport layers. However, shim layers can conceal the existence

of multiple paths to the transport layer, and because the transport layer performs congestion

control, it is important that it manages multiple paths directly.

Current connection-oriented transport protocols (e.g., TCP, SCTP [36] and DCCP [20])

transmit data only over a single path between a source and a destination hosts at any given

time. Although SCTP supports multi-homing, standard SCTP does not transmit data over

multiple paths simultaneously. However, several proposals extend transport protocols to

simultaneously utilize multiple paths [14, 41, 6, 34, 15, 22]. These extensions can achieve

higher throughput than the base protocols, because they independently perform TCP con-

gestion control on each subflow for effective utilization of distinct paths.

Unfortunately, none of these extensions properly utilizes multiple paths because of the

utilized congestion control mechanism. They crowd out competing TCP flows at a shared

bottleneck, because each subflow independently performs congestion control with an algo-

3

Figure 1.2: Unfair share at the shared bottleneck

rithm similar to TCP. When N subflows in a multipath connection compete against TCP

flows at the same bottleneck, the multipath connection is approximately N times as ag-

gressive as each of the TCP flows. In Fig. 1.2, one multipath connection that contains N

subflows competes with M background TCP flows at a shared bottleneck between two inter-

mediate nodes I1 and I2. While each of background flows receives a 1/(N + M) share of the

bottleneck, a bundle of N subflows receives a N /(N + M) share.

In Internet congestion control, a congestion-controlled flow between two transport end-

points (e.g., a single TCP connection) uses a single flowshare [29]. N flowshares receive

throughput N times a single flowshare, which are called multiple flowshares [29]. Mul-

tiple flowshares are mainly utilized to achieve weighted proportional fairness [5] between

aggregation points that bundle multiple flows transmitted by multiple users. For example,

distributed-multimedia applications [28], Edge-to-Edge QoS [35] and wireless TCP proxies [4]

4

use aggregation points. Some applications leverage parallel TCP connections between the

same hosts to obtain more bandwidth or avoid head-of-line blocking. Such use of multiple

TCP connections is unfair to other traffic sharing the path. Congestion control of these

connections should reduce their bandwidth consumption to that of a single flowshare, e.g.,

as with E-TCP [7] and CM [2]. Even if an endpoint utilizes multiple paths for transmission,

the end-to-end connection is essentially a single connection in the communication primitive

to applications. For example, it is represented as a reliable and ordered stream to the ap-

plication. Consequently, the endpoint should use a combined single flowshare at the shared

bottleneck for all subflows.

Sharing links among multiple end-to-end paths exist in a wide range of contexts in multi-

homed environments. The most straightforward scenario is duplicate use of a source or a

destination address, for example, when two subflows transmit data from different source

addresses to the same destination address, or vice versa. This situation always occurs in

multipath connections between a multi-homed host and a single-homed host. When both

hosts are multi-homed, they can utilize multiple paths without duplicate use of same ad-

dresses. However, even if the endpoint uses only paths where both the source and destination

addresses are different, some intermediate nodes can be shared.

ISPs can restrict or rate-limit the user accounts that transmit data excessively, if their end-

to-end congestion control is insufficient due to a large number of parallel TCP connections

or because it is unresponsive to congestion [9]. However, different subflows in a multipath

connection can traverse different ISPs. It is difficult for one ISP to observe traffic inside

another ISP. Because the entire multipath connection is not visible to an ISP, determining

an appropriate restriction by an ISP is difficult. End-to-end congestion control is more

important for multipath communication than that for single-path communication.

End-to-end multipath congestion control requires two properties, which are:

5

• Fairness

TCP-friendliness is the most common fairness metric in the Internet. A multipath

connection has the same communication primitive as a single TCP connection or the

other end-to-end connection, as far as the application is concerned. Therefore, a mul-

tipath connection should be TCP-friendly at the shared bottleneck regardless of the

number of its subflows.

• Utilization

Distinct paths have different characteristics, such as RTT and spare bandwidth. In

order to maximize the performance of the whole multipath connection, effective uti-

lization of a shared bottleneck and spare bandwidth of distinct paths is desired.

In this paper, we investigate congestion control for multipath transport protocols. The main

contribution of this paper is a new end-to-end congestion control scheme for multi-homed

environment: Bidimensional-Probe Multipath Congestion Control (BMC). Using BMC, a

bundle of subflows in a multipath connection fairly competes with background TCP-friendly

flows at a shared bottleneck. In addition, BMC maximizes utilization of resources that along

multiple paths with different characteristics. The remainder of this paper is organized as

follows: Chapter 2 discusses the over-aggressiveness problem of per-subflow TCP congestion

control. In Chapter 3, we propose a congestion control algorithm for multipath-enabled

transport protocols. Chapter 4 discusses the challenges that arise when subflows traverse

completely disjoint paths. In addition, we discuss the adaptability to weighted proportional

fairness. Chapter 5 evaluates our algorithm through simulations. Chapter 6 describes related

work, and the paper concludes with Section 7.

6

Chapter 2

Problem Analysis

This chapter details the problem of existing proposals that inde-

pendently execute TCP congestion control per path, based on the
increase rate of the sending rate, loss-event behavior and the overall

throughput.

7

Independent congestion control per subflow is reasonable to maximize utilization of mul-

tiple distinct paths, because it can avoid subflows being affected by loss events on different

subflows. TCP’s congestion control algorithm is the most common congestion control algo-

rithm on the Internet, hence many prior multipath transport schemes use it for each subflow,

independently of one another. Since BMC is designed based on TCP’s congestion control,

we clarify the over-aggressiveness problem of these schemes by formulating the behavior.

The Additive Increase Multiplicative Decrease (AIMD) algorithm is based on TCP’s stan-

dard congestion control in the congestion-avoidance phase. The AIMD algorithm additively

increases the sending rate when packets are acknowledged without a packet loss within one

RTT, and otherwise multiplicatively decreases the sending rate, by adjusting the congestion

window. A general formulation of the AIMD algorithm refers to these as the “increase pa-

rameter” a and “decrease parameter” b. When the AIMD algorithm increases the sending

rate, it increases the current window size by a packets. When the AIMD algorithm decreases

the sending rate, it decreases the window size from W to (1−b)W . Hence, the sending rate or

the window size varies in a sawtooth shape. The period beginning with a congestion window

of (1− b)W is called a congestion epoch [10]. Fig. 2.1 illustrates the relationship between the

AIMD parameters, the window size, the congestion epoch and RTT. Since TCP increases

window size by one MTU and otherwise decreases window size in half in steady-state, it

uses 1 and 1/2 as a and b, respectively. In this paper, we denote the AIMD algorithm with

parameters a and b as AIMD(a, b).

There are two models for mathematically analyzing the behavior of the AIMD algorithm.

One is the stochastic model introduced in [25, 30], and the other is the deterministic model

introduced in [9, 8]. In this paper, we investigate the AIMD algorithm using the determin-

istic model. The stochastic model would give a more accurate model, however, the deter-

ministic model is more convenient to formulate AIMD-based multipath congestion control

8

Figure 2.1: Behavior of the AIMD algorithm

with various a and b.

2.1 Increase and Decrease Behavior

The first component that affects the aggressiveness of the AIMD algorithm is the increase

behavior of a bundle of subflows. We compare the increase behavior of a bundle of N subflows

that each follow AIMD(1, 1/2), and that of a single flow following AIMD(1, 1/2) based on

the situation in Fig. 1.2. In the prior proposals, since each subflow independently increases

the sending rate by one packet per RTT, the sum of increase parameters of N subflows is

N . TCP’s AIMD, AIMD(1, 1/2) increases the sending rate by one packet per RTT, thus

AIMD(1, 1/2) increases the sending rate 1/RTT packets per second. Hence, the increase

rate of N subflows, δN packets per second can be determined by:

δN =

N∑
n=1

1

Rn
(2.1)

where Rn is the RTT of subflown. Based on this equation, when the number of subflows

increases, aggregate sending rate of the multipath connection increases rapidly, unless the

9

RTT of the subflows is much smaller than that of the competing background flows.

The other component that affects the aggressiveness of the AIMD algorithm is response

to a packet loss. When the sending rate is T, AIMD(1, 1/2) decreases it to T/2 in response

to a single packet loss. However, a bundle of N subflows does not decrease the sending rate

by half, because each subflow adjusts its sending rate individually. Only the subflow that

experiences the loss event decreases the window size or the sending rate in response to a

single packet loss. In Fig. 1.2, we denote the sending rate of subflown as Tn, hence the sum

of sending rate of N subflows is
N∑

n=1

Tn. When a packet is lost on subflowi (1 ≤ i ≤ n), the

decreased sending rate of N subflows TN is:

TN =

N∑
n=1

Tn − Ti/2 (2.2)

When we assume uniformly distributed RTTs, each subflow behaves stochastically similar

at the bottleneck. Then, the sending rate of N subflows after a packet loss decreases from

T to (N − 1)T + (T/2).

Based on Equation (2.1) and (2.2), a multipath connection that obeys per-subflow TCP

congestion control increases its sending rate more rapidly, and decreases its sending rate

less conservatively than a single TCP connection does. This behavior is the reason for the

over-aggressiveness, and it is similar to AIMD variants that achieve weighted proportional

fairness, such as MulTCP [5, 21].

2.2 Throughput of Per-Subflow TCP Congestion Con-

trol

Under the deterministic model, the sending rate T , the number of packets transmitted in

one second in AIMD(a, b), is given by (2− b)W/2RTT [10], where W is the window size at

10

the end of a congestion epoch. Hence, the throughput of AIMD(1, 1/2), TW is given by:

TW =
3

4RTT
W (2.3)

Based on (2.3), when each subflow follows AIMD(1, 1/2), the total throughput of N sub-

flows, TWN is:

TWN =

N∑
n=0

3

4Rn
Wn (2.4)

where Rn is the RTT of subflown. Wn is the congestion window size of subflown at the

end of the congestion epoch. When each subflow has the same RTT, W in (2.3) and Wn

in (2.4) become approximately equal. Thus, the bundle of subflows receives throughput

in proportion to the number of subflows at the bottleneck without the RTT bias of the

AIMD algorithm [23]. Therefore, although per-subflow TCP congestion control meets the

utilization property due to the loss-event behavior, it does not satisfy the fairness property.

11

Chapter 3

Designing Bidimensional-Probe
Multipath Congestion Control

This chapter investigate the design space for multipath congestion

control. Then we propose a new congestion control scheme, which
is twofold; Aggressiveness Manager and Proportion Manager.

12

In order to satisfy the fairness and utilization properties for multipath connections, we

consider two possibilities. The first one is congestion window sharing between subflows

in the same multipath connection. This approach is implemented in E-TCP [7], CM [2]

and MPAT [35] for aggregate congestion control of multiple TCP connections along the

same path. The aggregated congestion window is increased by one packet when packets are

acknowledged without a packet loss of any connections sharing it in an RTT. It is reduced

in half by a packet loss on any connection sharing the aggregated congestion window. In

order to apply this approach to multipath connections, we could allocate the window space

to subflows in proportion to the spare bandwidth along each path. However, the congestion

window is the allowed amount of data to be transmitted in an RTT, which is adjusted with

the ACK-clocking interval. Hence, subflows with different RTTs cannot share the same

congestion window, because they experience events to increase or decrease the window size

with different interval. In addition, since packet loss on any subflow reduces the shared

congestion window, behavior of a subflow is affected by that of other subflows. This leads

to performance degradation of the whole multipath connection. Therefore, this approach is

insufficient not only in terms of fairness, but also in terms of utilization.

The second approach is to apply weight to individual congestion control of each subflow

so that a bundle of subflows can have the same aggressiveness as one TCP flow. In this ap-

proach, each subflow independently performs congestion control, adjusting its own congestion

window. Hence, each subflow is not affected by the loss events on the other subflows. In

addition, it can work if the RTTs of the subflows are different, because subflows do not need

to share one congestion window. For this reason, we design our congestion control scheme

based on this approach. In order to achieve fairness and utilization properties, two com-

ponents of BMC, the Aggressiveness Manager and the Proportion Manager are introduced.

The aggressiveness manager maintains fairness at the shared bottleneck. The proportion

13

manager effectively utilizes spare bandwidth of distinct paths, which maximizes the chances

of full utilization of the shared bottleneck.

3.1 Aggressiveness Manager

The aggressiveness management maintains a constant aggressiveness for the overall multipath

connection. It is critical for a bundle of subflows to compete fairly with background TCP-

friendly flows which share the same bottleneck. Each of the individual subflows must be

less aggressive than a TCP-friendly flow. In addition, the bundle of subflows must be as

aggressive as a single TCP-friendly flow. We achieve this by using the weighted AIMD

algorithm for each subflow, which receives throughput in proportion to the weight compared

to TCP. The aggressiveness manager applies a weight parameter to each subflow, at the

same time maintaining the sum of the weight parameters so that a bundle of subflows is as

aggressive as one TCP flow.

We define the weight of standard TCP connection as 1, and denote the weight of a subflown

as Dn (0 < Dn ≤ 1). A subflow with a weight parameter Dn receives Dn times as much

throughput as a competing TCP flow. Hence, when a bundle of N subflows receives the

same throughput as a TCP flow, the following equilibrium is satisfied:

N∑
n=1

Dn = 1 (3.1)

The aggressiveness manager maintains this equilibrium across the subflows in a multipath

connection.

The aggressiveness manager applies the AIMD parameters to each subflow so that an

individual subflow achieves proportional throughput with regard to the weight parameter.

We investigate the relationship between the AIMD parameters and the weight parameter that

achieves proportional throughput to the weight compared to a TCP flow. The throughput

14

of the AIMD algorithm is given as a function of the additive increase and multiplicative

decrease parameters: a and b, round-trip time R and packet loss rate p [10]:

T =

√
2 − b

√
a√

2bR
√

p
(3.2)

The throughput of AIMD(1, 1/2), Tt is given by applying a = 1 and b = 1/2 into Equa-

tion (3.2):

Tt =
1

R

√
3

2p
(3.3)

When we want D times (0 < D ≤ 1) of AIMD(1, 1/2) throughput for an individual subflow,

the desired throughput Td is:

Td =
D

R

√
3

2p
(3.4)

In order to acquire the AIMD parameters a and b that achieves throughput in Equation (3.4),

we investigate the equilibrium between Equation (3.4) and the response function in Equa-

tion (3.2):

D

R

√
3

2p
=

√
2 − b

√
a√

2bR
√

p
(3.5)

Hence, the relationship between a, b and D can be determined by the following equation.

a =
3b

2 − b
D2 (3.6)

This means that AIMD(1/2, 4/5) receives half the throughput compared to AIMD(1, 1/2).

AIMD(3/4, 8/13) receives 3/4 of the throughput of AIMD(1, 1/2). The aggressiveness man-

ager applies a parameter pair satisfying Equation (3.6) to each subflow based on the weight

parameter. The sum of the weight parameters of the subflows satisfies Equation (3.1). Then,

a bundle of these subflows fairly competes with AIMD(1, 1/2) flows that share the same

bottleneck link. When the weight parameter D is determined, there are infinite combinations

15

of a and b. On the other hand, since the congestion window size is decreased from W to

(1−b)W , we have to avoid b exceeding 1. Hence, the aggressiveness manager applies D2 to a.

Applying a = D2 into Equation (3.6), b is always 1/2. For example, suppose if an endpoint

has two subflows and their weight parameters are D1 = 2/3 and D2 = 1/3 with satisfying

Equation (3.1). In this case, these subflows follow AIMD(4/9, 1/2) and AIMD(1/9, 1/2),

respectively.

3.2 Proportion Manager

The proportion manager optimizes the combination of weight parameters for the subflows

to effectively utilize spare bandwidth of distinct paths, which maximizes the chances of full

utilization of the shared bottleneck. The aggressiveness manager maintains a bundle of

subflows in the multipath connection as aggressive as a TCP flow at the shared bottleneck.

However, it assumes every subflow is constrained at the shared bottleneck. If some subflows

are constrained by disjoint links due to the limitation of the spare bandwidth, the multipath

connection cannot achieve equal throughput with that of a TCP flow that competes at the

shared bottleneck. This means that utilization of the shared bottleneck is not maximized.

Therefore, we have to apply the weight to subflows so that the desired throughput of the

subflow does not exceed the spare bandwidth of disjoint links.

Fig. 3.1 illustrates the situation that a subflow is constrained by the spare bandwidth of

a disjoint link. Fig. 3.2 illustrates the optimized situation, which maximizes the utilization

of the shared bottleneck with the adjustment of the weight parameters. In Fig. 3.1 and 3.2,

the capacity of the shared link between I1 and I2 is 30 Mbps, and two subflows and one

standard TCP flow exist there. In Fig. 3.1, the weight parameter of both the subflow1 and

the subflow2 is 1/2. Hence, each of them should share 7.5 Mbps throughput at the shared

link so that a bundle of them receives the equal throughput with the competing TCP flow.

16

Figure 3.1: Ineffective utilization of disjoint link and shared link

Figure 3.2: Effective utilization of disjoint link and shared link

On the other hand, the spare bandwidth of the disjoint link that the subflow1 traverses is

4 Mbps. Since the maximum throughput of this subflow is limited to 4 Mbps, this subflow

cannot utilize the shared link ideally. The capacity of the disjoint link that the subflow2

traverses is 12 Mbps. The subflow2 receives 8.67 Mbps (((30 − 4)/3) × 1) throughput at

the shared link, because the weight is 1/2, which receives 1/2 times as much throughput

as the standard TCP flow. As the result, the bundle of these subflows receives 12.67 Mbps

throughput at the shared link, which is less than that of the TCP flow. In Fig. 3.2, the

weight parameters of the subflow1 and the subflow2 are 1/4 and 3/4, respectively. Hence,

the ideal throughput at the shared link is 3.75 Mbps ((30/8)× 1) on the subflow1 and 11.25

Mbps ((30/8) × 3) on the subflow2. In this case, the bundle of the subflows can receive as

17

much throughput as the competing TCP flow at the shared link, because capacity of their

disjoint link is larger than their ideal throughput. Therefore, we apply weight to subflows

so that their ideal throughput does not exceed the spare bandwidth of disjoint links.

The basic concept of the algorithm that probes optimal combination of weight parameters

is to analyze the cause of the throughput that is achieved by one combination of weight

parameters. For this purpose, the proportion manager performs the following two steps

repeatedly.

1. Measure throughput of each subflow during a certain period, J seconds

2. Change the combination of weight parameters for subflows

The rationale for this behavior is that each subflow should receive throughput in proportion

to the other subflows based on the weight and RTT, if subflows are constrained by a shared

bottleneck, according to Equation (3.4). When the received throughput is less than that, the

subflow can be constrained by the spare bandwidth of a disjoint link. This situation affects

the loss-event rate p in Equation (3.4). If we reduce the weight of that subflow and increase

the weight of another subflow, we can pass over the spare bandwidth limitation of the disjoint

link. Therefore, we can increase the total throughput of the multipath connection.

In order to realize this behavior, the proportion manager measures the throughput during

J seconds on each subflow. Subsequently, the proportion manager chooses two subflows,

which are a subflow of which the weight should be reduced, and another one of which the

weight should be increased. The proportion manager selects them based on a value which has

deducted the effect of the weight and RTT from the measured throughput. The proportion

manager reduces the weight of a subflow of which that value is the smallest. At the same

time, the proportion manager increases the weight of a subflow of which that value is the

largest. We denote the value which has deducted the effect of the weight and RTT as Twr.

18

Based on Equation (3.4), which is calculated by following:

Twr =
R

D
TJ (3.7)

where TJ is the throughput of a subflow during J second measurement. D and R are the

weight parameter and RTT of that subflow, respectively. The proportion manager decreases

the weight of a subflow that has achieved minimum Twr, at the same time increases the

weight of a subflow that has achieved maximum Twr.

The changing factor of the weight of subflows is important for the quick convergence to

the optimal proportion and the stability. If we drastically reduce the weight of a subflow

that achieves higher throughput, the throughput after the reduction is seriously reduced. In

addition, if we drastically increase the weight of a subflow that weighs very low, it leads to

performance degradation of the other subflows that has weighed higher. Thus, the proportion

manager maintains subflows with larger weight or smaller weight more conservatively about

increasing or decreasing the weight. This allows the subflows with larger weight parameters

to maintain aggressiveness, hence the higher throughput of them are maintained. In addition,

it allows the subflows with lower weight parameters to maintain conservativeness, hence it

can avoid effect to the higher-throughput subflows.

In order to implement such behavior, when the selected subflow to reduce the weight has

the more outstanding weight, we reduce the weight more conservatively. We denote the

weight parameters before and after the reduction as Ddec
cur and Ddec

new. Then, the Ddec
new is

calculated by the following equation:

Ddec
new = Ddec

cur − (Ddec
cur − (Ddec

cur)
2)K (3.8)

where K is a fixed parameter that affects the changing factor (0 < K < 4). For example,

when Ddec
cur = 1/2 and K = 1, the Ddec

new is 1/4. When Ddec
cur = 4/5 and K = 1, the Ddec

new

19

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.25

0.35

0.2

0.3

K = 0.6

K = 0.8

K = 1

K = 1.2

K = 1.4

Dcur
dec

D
cu
r

de
c

D
ne
w

de
c

Figure 3.3: Difference between Ddec
cur and Ddec

new

is 16/25. Fig. 3.3 shows the relationship between Ddec
cur and the amount of the weight to be

reduced. This means that the reduction of the weight is less when the original weight is more

outstanding. When the original weight is close to 1/2, the reduction is larger in proportion

to K.

Based on the reduction of the weight of a subflow, the proportion manager increases the

weight of another subflow. We denote the weight parameters before and after increasing as

Dinc
cur and Dinc

new. In order to maintain the multipath connection as aggressive as a single TCP

connection based on Equation (3.1), Dinc
new is calculated by the following:

Dinc
new = Dinc

cur + (Ddec
cur − Ddec

new) (3.9)

Subsequently, the proportion manager restarts throughput measurement of subflows for

20

J seconds. When each subflow receives proportional throughput based on the weight and

RTT in Equation (3.7), we consider that the shared bottleneck is ideally utilized, otherwise

every subflow is constrained by their disjoint links.

J and K are fixed parameters that can be tuned by the system administrator or applica-

tions. J has to be set to contain at least one congestion epoch of all subflows. One congestion

epoch consists of (bW/a) + 1, where W is the window size at the end of congestion epoch.

a and b are increase and decrease parameters of the AIMD algorithm, respectively. Hence,

when the endpoint detects loss event on a subflow, it can calculate the congestion epoch

of that subflow based on the maximum window size. The larger J is used, the more exact

average throughput is measured. However, the convergence speed to the optimal proportion

becomes slower in proportion to J . For example, when we double J , it doubles the conver-

gence speed. Larger K enables the convergence speed to the optimal proportion to become

rapidly, however, the stability during the convergence state goes down.

3.3 Requirements for Implementation

Transport protocols that obey BMC have to implement a weight parameter per subflow and

fixed parameters J and K, in addition to the general parameters required to implement

the standard AIMD algorithm. In addition, the throughput measurement feature has to be

implemented per subflow. Since J and K are fixed parameters, they will be implemented as

sysctl parameters in UNIX-based operating systems. They might also be tuned through the

socket interface, such as setsockopt(). In addition, the initial weight parameters can be set

as a policy by the system administrator or by applications. For example, an interface-type-

based policy is one possibility, which specifies a larger initial weight for subflows that use a

higher-speed network interface.

In order to implement BMC more easily, the transport protocol should implement se-

21

quence numbers and feedback per subflow. Per-subflow sequence numbers are useful to im-

plement per-subflow RTT measurements and loss-event detection. It also makes per-subflow

throughput measurement easy. In this case, TJ in Equation (3.7) can be acquired through

the acknowledged number at the beginning and the end of the measurement. Therefore,

reliable multipath transport protocols will implement both per-subflow sequence numbers

and per-connection sequence numbers. Per-connection sequence numbers are used so that

the receiver endpoint reassembles data from different subflows in the multipath connection.

Since pTCP [14] and AMS [34] implement per-subflow and per-connection sequence numbers,

they can be extended to implement BMC easily.

22

Chapter 4

Discussion

This chapter discusses our scheme at the view point of two sit-

uations. First, we discuss how our scheme works on the disjoint
bottlenecks. Second, we discuss how our scheme achieves weighted

proportional fairness on the shared bottleneck.

23

Figure 4.1: Resource pooling

4.1 Resource Pooling

BMC can achieve not only fairness at the shared bottleneck, but also resource pooling based

on proposed principles [17, 19] along disjoint bottlenecks. Fig. 4.1 illustrates the resource

allocation achieved by such principles. s1, s2 and s3 are communicating with d1, d2 and d3,

respectively. There are two paths between s2 and d2. The sum of the available throughput of

the two bottlenecks is 18 Mbps, hence each source should send at 6 Mbps to share it equally.

If each source utilizes only a single path, a fair resource allocation is not achieved. On the

other hand, if s2 performs per-subflow TCP’s congestion control, s1, s2 and s3 receive 4,

9 and 5 Mbps of throughput, respectively. Hence, per-subflow TCP’s congestion control is

inappropriate not only for the shared bottleneck, but also for the resource pooling.

Our BMC achieves fair resource sharing based on the principle in Fig. 4.1. Our propor-

tion manager converges to make subflows achieve throughput in proportion to the weight

parameter and RTT based on Equation (3.7). In Fig. 4.1, we denote the weight parameters

for subflows from s2 on 8 Mbps and 10 Mbps bottlenecks as D1 and D2, respectively. We

define RTT of each path as 1. In Fig. 4.1, since s2 receives 2 Mbps at 8 Mbps bottleneck,

24

and 4 Mbps at 10 Mbps bottleneck, both flows transmitted by s2 has Twr = 6. Hence, the

weight parameters for these flows are D1 = 1/3 and D2 = 2/3, respectively. If these weight

parameters are different, an equal resource allocation is not achieved. For example, if both

of these flows have weight parameter 1/2, Twr in Equation (3.7) for each flow is 3/4 and 3/5,

respectively. Hence, our proportion manager reduces D1 and increases D2, according to the

algorithm. If D1 = 1/4 and D2 = 3/4, Twr for D1 is 6.4 and Twr for D2 is 5.71. In this case,

throughput that is received by s2 is also less than that achieved by D1 = 1/3 and D2 = 2/3,

which is 5.89. Our proportion manager reduces D2 and increases D1.

4.2 Weighted Proportional Fairness

Weighted proportional fairness is achieved through congestion control that uses multiple

flowshares [5]. Multiple flowshares are utilized based on the number of flows in the aggregated

flow or based on the cost in the cost-fairness criterion [3]. Since BMC is based on the AIMD

algorithm, it can achieve multiple flowshares with small tuning. For example, we can achieve

P flowshares (P > 1) by changing right-hand side of Equation (3.1) to P . It will be also

optimized by the mechanism of PA-MulTCP [21] that improves fairness of MulTCP [5].

Multiple flowshares of BMC might be useful when multiple paths are available between

aggregation points that bundle up multiple flows transmitted by multiple users.

In another scenario, the use of multiple wireless interfaces might be considered as the user

pays a multiplicative cost because of battery consumption or subscription costs to multiple

ISPs. In this case, multiple flowshares based on the number of wireless interfaces might be

reasonable. Even in these cases, per-subflow TCP congestion control is insufficient. The

number of wireless interfaces or the number of ISPs which the user pays do not directly

correspond to the number of subflows. Multiple subflows can traverse the same access link

due to multiple destinations or selective intermediate routers that are introduced in [12, 13].

25

Therefore, even if cost fairness is promoted, the weight that is applied to the multipath

connection should not be determined by the number of subflows.

26

Chapter 5

Evaluation

This chapter evaluates our scheme with simulation results, which

show how our scheme competes with TCP flows at the same bot-
tleneck.

27

In this section, we evaluate fairness of BMC with the ns-2 network simulator [27]. We

substitute TCP connections with the weighted AIMD algorithm for subflows of the multipath

connection. This eliminates the effect of receiver-buffer blocking and handling packets that

are received out-of-order, which could influence the behavior of the multipath transport

protocols in the experiment. This is a deliberate decision, as the paper focuses on congestion

control for multipath transport protocols. Protocol performance caused by the receiver-buffer

blocking or out-of-ordered packet handling is separate area.

First, for the most fundamental experiment, we observe the throughput of the weighted

AIMD algorithm of which the weight parameter is less than one to emulate the behavior

of individual subflows. In this experiment, we make AIMD flows with the same weight

parameter compete with standard TCP flows at the same bottleneck. Second, we observe

the throughput of the bundle of the weighted AIMD flows with different weight parameters,

which the sum is 1. This experiment is conducted to confirm that a bundle of the weighted

AIMD flows receives equal throughput with a standard TCP flow, when the sum of the

weight parameters is 1.

5.1 A Comparison of the Weighted AIMD Flows and

TCP Flows

Fig. 5.1 illustrates the simulation setup. In this simulation, the weighted AIMD flows and

standard TCP flows compete at the 60 Mbps bottleneck link with RED [11] queue manage-

ment. The delay at the bottleneck link is set to 20 ms. Each sender is connected to a 100

Mbps link with 2 ms delay in front of the bottleneck. Each receiver is connected to a 100

Mbps link at the other side of the bottleneck link. The delay of the receiver link is set to

the value of the index of the flow divided by 3. This means that nth standard TCP flow and

weighted AIMD flow have n/3 ms delay at the receiver links. The TCP version is Reno in

28

Figure 5.1: Simulation setup

both weighted AIMD and standard TCP flows. In the simulation, the weighted AIMD flows

and the same number of standard TCP flows compete at the bottleneck.

Fig. 5.2 to Fig. 5.9 shows the simulation result that AIMD flows with the same weight

parameter and standard TCP flows compete at the bottleneck. They plot throughput of

each flow during 100 second simulation. The throughput is normalized so that value one

equals to the bottleneck bandwidth capacity divided by the number of flows. The horizontal

axis is the number of standard TCP flows and the weighted AIMD flows. The vertical axis

is the normalized throughput of these flows. The dashed and solid lines show the average

throughput of standard TCP flows and the weighted AIMD flows, respectively. We perform

this simulation for the weight parameter 4/5, 3/4, 2/3, 1/2, 1/3, 1/4 and 1/5. According to

the design of the aggressiveness manager, when the weight is D, D2 and 1/2 are applied to

the increase and the decrease parameters of the AIMD algorithm, respectively. For example,

the AIMD flows with the weight parameter 2/3 follow AIMD(4/9, 1/2). The number of the

29

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

TCP
AIMD(0.64,0.5)

Mean TCP
Mean AIMD(0.64,0.5)

Number of TCP flows, number of AIMD(0.64, 0.5) flows

Figure 5.2: AIMD(16/25, 1/2) competing with TCP

weighted AIMD flows and standard TCP flows is 1, 2, 4, 8, 16, 32, 48 and 64. Fig. 5.10

summarizes the simulation results of Fig. 5.2 to Fig.5.9. In Fig. 5.10, the horizontal axis is

the number of the weighted AIMD flows and standard TCP flows, and the vertical axis is

the ratio of the throughput of weighted AIMD flows to standard TCP flows.

In various weight parameters and the number of the weighted AIMD and standard TCP

flows, the weighted AIMD flows receive the throughput approximately in proportion to the

weight parameter. When the number of flows is larger, hence the loss-event rate is higher,

the weighted AIMD flows is a little more aggressive compared to the weight parameters.

The possible reason is retransmission timeouts (RTOs) on the weighted AIMD flows. When

the loss-event rate is higher, probability of RTO expiration becomes higher. Fig. 5.11 shows

30

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

TCP
AIMD(0.563,0.5)

Mean TCP
Mean AIMD(0.563,0.5)

Number of TCP flows, number of AIMD(0.563, 0.5) flows

Figure 5.3: AIMD(9/16, 1/2) competing with TCP

the loss-event rate of each weight parameter and the number of flows. We do not change the

behavior of the weighted AIMD flows on the retransmission timeout, such as timeout value

and the slow-start behavior, because we focus on steady state of standard TCP and the

weighted AIMD flows. Hence, duration for the timeout and the behavior in the slow-start

phase could lead to these results. In addition, when the number of the weighted AIMD flows

and standard TCP flows are 1, 2 and 4, the throughput is a little off the ideal throughput

proportion. We consider that the extremely low loss-event rate affects this behavior. When

the number of the weighted AIMD flows and standard TCP flows are 1, 2 and 4, the loss-

event rate is 0.126 - 0.133 %, 0.126 - 0.135 % and 0.143 - 0.170 %, respectively. The number

of loss events on each flow could affect this result, because when the loss-event rate is lower,

31

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

TCP
AIMD(0.444,0.5)

Mean TCP
Mean AIMD(0.444,0.5)

Number of TCP flows, number of AIMD(0.444, 0.5) flows

Figure 5.4: AIMD(4/9, 1/2) competing with TCP

the influence to the throughput caused by one loss event is larger.

5.2 A Comparison of Differently Weighted

AIMD Flows and TCP Flows

Fig. 5.12 to Fig. 5.17 plots the normalized throughput of the weighted AIMD flows and

standard TCP flows. In Fig. 5.12 to Fig. 5.15, when the half of the weighted AIMD flows

have the weight parameter D, the other weighed AIMD flows have the weight parameter

1 − D. The simulation setup is same as the Sec. 5.1. Hence, N TCP flows, N/2 AIMD(D2,

1/2) flows and N/2 AIMD((1 − D)2, 1/2) flows compete at the 60 Mbps bottleneck. In

Fig. 5.12 to Fig. 5.15, we use the combination of the weight parameters 3/5 and 2/5, 2/3

32

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

TCP
AIMD(0.36,0.5)

Mean TCP
Mean AIMD(0.36,0.5)

Number of TCP flows, number of AIMD(0.36, 0.5) flows

Figure 5.5: AIMD(9/25, 1/2) competing with TCP

and 1/3, 3/4 and 1/4, 4/5 and 1/5. The number of the weighted AIMD flows and standard

TCP flows is 2, 4, 8, 16, 32, 48 and 64.

In Fig. 5.16, N/4 weighted AIMD flows with the weight parameter 3/18, N/4 weighted

AIMD flows with the weight parameter 4/18, N/4 weighted AIMD flows with the weighted

parameter 5/18 and N/4 weighted AIMD flows with the weight parameter 5/18 compete

with N standard TCP flows in the simulation setup of Fig. 5.1. In Fig. 5.17, N/4 weighted

AIMD flows with the weight parameter 1/10, and 3N/4 weighted AIMD flows with the

weight parameter 3/10 compete with N standard TCP flows at the 60 Mbps bottleneck.

In Fig. 5.12 to 5.15, when the mean throughput of all weighted AIMD flows is half of

standard TCP flows, it means that the bundle of the two weighted AIMD flows achieves

33

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

TCP
AIMD(0.25,0.5)

Mean TCP
Mean AIMD(0.25,0.5)

Number of TCP flows, number of AIMD(0.25, 0.5) flows

Figure 5.6: AIMD(1/4, 1/2) competing with TCP

equal throughput with that of TCP. In Fig. 5.16 and 5.17, when the mean throughput of all

weighted AIMD flows is quarter of standard TCP flows, it means that the bundle of the four

weighted AIMD flows achieves equal throughput with that of TCP. Fig. 5.18 summarizes the

results of Fig. 5.12 to Fig. 5.17. This shows the throughput ratio of weighted AIMD flows to

the standard TCP flows, in each combination of the weight parameters and the number of

the weighted AIMD and standard TCP flows. The throughput ratio is per weighted AIMD

flow, hence 0.5 or 0.25 is the ideal ratio.

The average throughput of the weighted AIMD flows with different weight parameters is

approximately 1/2 or 1/4 times standard TCP throughput, regardless of the combination

of the weighted parameters. Hence, a bundle of the weighted AIMD flows with different

34

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

TCP
AIMD(0.111,0.5)

Mean TCP
Mean AIMD(0.111,0.5)

Number of TCP flows, number of AIMD(0.111, 0.5) flows

Figure 5.7: AIMD(1/9, 1/2) competing with TCP

weight parameters of which the sum is 1 receives approximately equal throughput with that

of standard TCP flows. Similarly to the former simulations, the average throughput of

the weighted AIMD flows becomes higher when there are more number of flows. It could

be due to the behavior on RTO expirations and the slow-start phase. When the number

of the weighted AIMD flows and standard TCP flows is 64, the difference of throughput

proportion between ideal one and actual one is approximately 20 %. In addition, when

the weight parameters are 2/3 and 1/3, and the number of flows is 4 in Fig. 5.18, average

throughput of the weighted AIMD flows is approximately 25 % higher than the ideal average

throughput. This could be affected by the extremely lower loss-event rate, similarly to the

previous experiments.

35

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

TCP
AIMD(0.0625,0.5)

Mean TCP
Mean AIMD(0.0625,0.5)

Number of TCP flows, number of AIMD(0.0625, 0.5) flows

Figure 5.8: AIMD(1/16, 1/2) competing with TCP

36

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

TCP
AIMD(0.04,0.5)

Mean TCP
Mean AIMD(0.04,0.5)

Number of TCP flows, number of AIMD(0.04, 0.5) flows

Figure 5.9: AIMD(1/25, 1/2) competing with TCP

37

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70

P
ro

po
rt

io
n

of
 T

hr
ou

gh
pu

t t
o

T
C

P

Number of TCP flows, number of weighted AIMD flows

AIMD(16/25, 1/2)
AIMD(9/16, 1/2)

AIMD(4/9, 1/2)
AIMD(9/25, 1/2)

AIMD(1/4, 1/2)
AIMD(1/9, 1/2)

AIMD(1/16, 1/2)
AIMD(1/25,1/2)

Figure 5.10: Throughput ratio of the weighted AIMD flows to TCP flows

38

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70

Lo
ss

-e
ve

nt
 r

at
e

(%
)

Number of TCP flows, number of weighted AIMD flows

AIMD(16/25, 1/2)
AIMD(9/16, 1/2)

AIMD(4/9, 1/2)
AIMD(9/25, 1/2)

AIMD(1/4, 1/2)
AIMD(1/9, 1/2)

AIMD(1/16, 1/2)
AIMD(1/25,1/2)

Figure 5.11: Loss-event rate of weighted AIMD flows in Fig. 5.2 - Fig. 5.9

39

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

TCP
AIMD(0.36,0.5), (0.16,0.5)

Mean TCP
Mean AIMD(0.36,0.5), (0.16,0.5)

Number of TCP flows,
number of AIMD(0.36, 0.5) and AIMD(0.16, 0.5) flows

Figure 5.12: AIMD(9/25, 1/2) and AIMD(4/25, 1/2) with TCP

40

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

TCP
AIMD(0.444,0.5), (0.111,0.5)

Mean TCP
Mean AIMD(0.444,0.5), (0.111,0.5)

Number of TCP flows,
number of AIMD(0.444, 0.5) and AIMD(0.111, 0.5) flows

Figure 5.13: AIMD(4/9, 1/2) and AIMD(1/9, 1/2) with TCP

41

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

TCP
AIMD(0.563,0.5), (0.0625,0.5)

Mean TCP
Mean AIMD(0.563,0.5), (0.0625,0.5)

Number of TCP flows,
number of AIMD(0.563, 0.5) and AIMD(0.0625, 0.5) flows

Figure 5.14: AIMD(9/16, 1/2) and AIMD(1/16, 1/2) with TCP

42

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

TCP
AIMD(0.64,0.5), (0.04,0.5)

Mean TCP
Mean AIMD(0.64,0.5), (0.04,0.5)

Number of TCP flows,
number of AIMD(0.64, 0.5) and AIMD(0.04, 0.5) flows

Figure 5.15: AIMD(16/25, 1/2) and AIMD(1/25, 1/2) with TCP

43

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

TCPAIMD(9/324, 1/2), (16/324, 1/2),
(25/324, 1/2) and (36/324, 1/2)
Mean TCP

Mean AIMD(9/324, 1/2), (16/324, 1/2),
(25/324, 1/2) and (36/324, 1/2)

Number of TCP flows,
number of the weighted AIMD flows

Figure 5.16: AIMD(9/324, 1/2), (16/324, 1/2), (25/324, 1/2) and (36/324, 1/2) with TCP

44

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of TCP flows,
number of the weighted AIMD flows

TCPAIMD(1/100, 1/2), (9/100, 1/2),
(9/100, 1/2) and (9/100, 1/2)
Mean TCP

Mean AIMD(1/100, 1/2), (9/100, 1/2),
(9/100, 1/2) and (9/100, 1/2)

Figure 5.17: AIMD(1/100, 1/2), (9/100, 1/2), (9/100, 1/2) and (9/100, 1/2) with TCP

45

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70P
ro

po
rt

io
n

of
 T

hr
ou

gh
pu

t t
o

T
C

P
 (

pe
r

flo
w

)

Number of TCP flows, number of weighted AIMD flows

AIMD(1/100, 1/2), (9/100, 1/2),
(9/100, 1/2) and (9/100, 1/2)

AIMD(9/324, 1/2), (16/324, 1/2),
(25/324, 1/2) and AIMD(36/324, 1/2)

AIMD(4/9, 1/2) and AIMD(1/9, 1/2)
AIMD(9/16, 1/2) and AIMD(1/16, 1/2)
AIMD(9/25, 1/2) and AIMD(4/25, 1/2)

AIMD(16/25, 1/2) and AIMD(1/25, 1/2)

Figure 5.18: Throughput ratio of the weighted AIMD flows with different parameters

46

Chapter 6

Related Work

This chapter describes prior and related work of this research. Trans-

port protocols for multipath utilization, integrated congestion con-
trol for multiple flows are discussed in this chapter.

47

6.1 Multipath Transport Protocol

pTCP [14], mTCP [41], AMS [34], ChTCP [6], CMT [15] and R-MTP [22] propose transport

protocols that simultaneously utilize multiple paths between end-to-end. pTCP, mTCP,

AMS and ChTCP extend TCP. CMT extends SCTP. R-MTP is a new transport protocol.

pTCP, CMT and ChTCP purely perform TCP congestion control per subflow. Hence,

whenever subflows traverse the same bottleneck, they take an unfair share. AMS uses paths

where both source and destination addresses are different, to avoid over-aggressiveness at

the shared bottleneck. However, the rationale that such paths are completely disjoint is

not discussed. mTCP performs TCP congestion control for each subflow, however, mTCP

implements a mechanism that detects shared bottlenecks [33] to avoid the use of multiple

subflows on the same bottleneck. When mTCP detects a shared bottleneck, it suppresses

subflows traversing the same bottleneck. However, when the spare bandwidth of one link

on the remaining path is less than the TCP-friendly sending rate, mTCP cannot utilize the

shared link effectively. In this case, equal bandwidth with each of background flows at the

shared link cannot be achieved by only one subflow, as described in Sec. 3.2. Hence, the

utilization property cannot be satisfied. In addition, according to mTCP, it takes maximum

15 seconds to detect the shared bottleneck. This response in the congestion collapse is later

compared to that of TCP. Thus, this approach is not efficient. R-MTP implements rate

control based on bandwidth estimation, which uses packet inter-arrival times and jitter to

detect congestion. However, R-MTP does not discuss how each subflow and the bundle of

subflows compete with TCP-friendly flows.

[17, 13] model a resource-allocation architecture enabling multipath routing based on the

fluid-flow model. They at the same time propose a TCP extension based on Scalable TCP [18]

for their network models. Unlike our approach, their models and TCP extensions assume

48

congestion feedback from routers. Hence, their congestion control is not achieved by end-

node functionalities only. In addition, they do not analyze how their schemes work with

existing TCP-friendly flows utilizing a single path.

6.2 Aggregate Congestion Control

[5, 21, 29, 35] introduce congestion control that receives multiple flowshares following

weighted proportional fairness. The main concept is to emulate the behavior of multiple

TCP connections between aggregate points that integrate flows transmitted by multiple

users. They achieve multiple flowshares by assigning weight to the TCP’s AIMD algorithm.

Although their goal is multiple flowshares at the bottleneck on a single path, the concept

that assigns weight to the AIMD algorithm is applied to the aggressiveness manager of

BMC. While they emulate more than one TCP flows, BMC emulates a proportionally less

aggressive TCP flow for each subflow.

E-TCP [7] aggregates congestion control of multiple TCP connections to avoid over-

aggressiveness of applications that utilize parallel TCP connections on the same path. In

this scheme, TCP connections between the same source-destination pair share one congestion

window, which is affected by transmission of any connections sharing it. Thus, it results in a

single flowshare regardless of the number of TCP connections between a source-destination

pair. CM [2] integrates congestion control of all TCP and UDP flows that traverse the same

path. Similarly to E-TCP, each integrated congestion control entity manages one congestion

window, which results in a single flowshare of the bundle of flows at the bottleneck. BMC

achieves a single flowshare at the shared bottleneck regardless of the number of subflows or

paths in the multipath connection. Therefore, the concept that integrates congestion control

of multiple flows for a single flowshare is similar to the fairness property of BMC. On the

other hand, while E-TCP achieves it with congestion window sharing, BMC achieves it with

49

weighted congestion control for different characteristic paths.

50

Chapter 7

Conclusion and Future Work

This chapter concludes this paper, and describes our future work.

51

In this paper, we presented a congestion control scheme for multipath transport protocols.

The key idea is bidimensional probe. It probes the available sending rate with the same

aggressiveness as TCP. This results in fair bandwidth share with competing TCP-friendly

flows at the shared bottleneck between multiple paths. Each of subflow is proportionally less

aggressive than a TCP-friendly flow based on the weighted AIMD algorithm. The bundle

of subflows is as aggressive as a TCP flow. BMC also probes the optimal combination of

weight between subflows. It maximizes utilization of the shared bottleneck link, because it

effectively utilizes spare bandwidth of distinct paths. Therefore, it maximizes the throughput

of the whole multipath connection. Our simulation results showed that the weighted AIMD

algorithm of which the weight is less than one can receive throughput approximately in

proportion to standard TCP flows. In addition, they showed that a bundle of the weighted

AIMD flows can receive approximately equal throughput with a standard TCP flow when

the sum of the weight parameters is one.

Our future work explores the slow-start behavior and RTT bias of BMC, in addition to

evaluation of the proportion manager. As shown in our simulation results, subflow behavior

on the RTO expiration affects the fairness of BMC, especially when the loss-event rate is

higher. In addition, the proportion manager currently determines the weight parameter of

each subflow based on the value which has deducted the effect of RTT and the weight from the

measured throughput. If the proportion manager allocates the larger weight for short-RTT

subflows so that the desired throughput does not exceed the spare bandwidth of the disjoint

links, BMC will achieve higher throughput reasonably. At the same time, investigating the

principle of TCP friendliness in multipath congestion control is interesting, for example,

how the multipath connection should receive RTT bias on multiple subflows. We are also

designing a multipath transport protocol, because existing proposals are not practical to the

current Internet. For example, none of these considers middlebox transparency such as NAT

52

boxes and firewalls.

According to [32], when the sending rates of flows are significantly different, they ex-

periences different loss-event rates. The higher sending rate is, the lower loss-event rate

becomes. Since each subflow in a multipath connection obeying BMC is less aggressive than

TCP, it might give higher loss-event rate on subflows. Hence, a multipath connection might

experience lower throughput than competing TCP flows at the shared bottleneck in some

cases. We explore the impact to throughput of BMC with further experiments and analy-

sis. In addition, in this paper, we investigated weighted AIMD-based design of BMC. On

the other hand, it is interesting to use other congestion control variants (e.g., CTCP [38],

Westwood [24]) for BMC. It will result in adaptation to more various scenarios, such as

high-speed and long-distance networks and lossy wireless networks. We will investigate to

weight these algorithms for TCP-friendly throughput management.

53

Acknowledgment

I gratefully acknowledge my adviser, Professor Hideyuki Tokuda, for his professional advice,

guidance and encouragement. I would like to thank professors, associate professors and as-

sistant professors in Keio University, Jun Murai, Osamu Nakamura, Hiroyuki Kusumoto,

Kazunori Takashio, Noriyuki Shigechika, Rodney D. Van Meter III, Keisuke Uehara, Jin

Mitsugi and Jin Nakazawa. I particularly thank Dr. Yoshifumi Nishida, who helped de-

sign the algorithm, carefully reviewed the thesis and discussed about the presentation for a

long period; Dr. Lars Eggert for discussions of the principle, his technical comments and

helping to improve the quality of this thesis; Dr. Pasi Sarolahti for valuable discussions, his

insightful comments and suggestions of future work. I am grateful to Dr. Hideaki Imaizumi

and Dr. Jin Nakazawa and Dr. Ryuji Wakikawa for their invaluable encouragement. I also

thank Vamsi Kambhampati, Elena Balandina, Stephen Strowes, Michiko Nitta, Jun-ichi

Yura, Yusuke Kawakita, Shoko Mikawa, Tomohiro Ishihara, Masato Saito, Hitomi Taka-

hashi, Hiroshi Sakakibara, Takuro Yonezawa, Noriatsu Kudo, Katsuhiro Horiba, Tsuyoshi

Hisamatsu, Satomi Fujimaki, Masahiro Kozuka, Takashi Tomine, Hikoichiro Nakai, Mizuki

Kawazoe, Masayoshi Mizutani, Yuki Oyabu, Takesi Matsuya, Yohei Kuga, Akira Kanai,

Yuichi Nakamura, Yusuke Okumura, Masato Mori, Takahiro Nozawa, Kenji Yonekawa,

Masashi Horiguchi and Kaori Kan for their daily support and encouragement. Finally, I

acknowledge the member of Hide Tokuda laboratory, WIDE project and Future Internet

Team at Nokia Research Center.

54

Bibliography

[1] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control. RFC 2581, Oct.

1999.

[2] H. Balakrishnan, H. Rahul, and S. Seshan. An integrated congestion management

architecture for internet hosts. In Proc. ACM SIGCOMM’99, pages 175–187, Sep.

1999.

[3] B. Briscoe. Flow rate fairness: dismantling a religion. ACM Computer Communication

Review, 37(2):63–74, 2007.

[4] R. Chakravorty, S. Katti, J. Crowcroft, and I. Pratt. Flow aggregation for enhanced tcp

over wide-area wireless. In Proc. IEEE INFOCOM 2003, pages 1754–1764, Mar. 2003.

[5] J. Crowcroft and P. Oechslin. Differentiated end-to-end Internet services using a

weighted proportional fair sharing TCP. ACM Computer Communication Review,

28(3):53–69, Jul 1998.

[6] Y. Dong, N. Pissinou, and J. Wang. Concurrency Handling in TCP. In Proc. CNSR

’07, pages 255–262, May 2007.

[7] L. Eggert, J. Heidemann, and J. Touch. Effects of ensemble-TCP. ACM Computer

Communication Review, 30(1):15–29, Jan. 2000.

[8] S. Floyd. Connections with multiple congested gateways in packet-switched networks

part 1: one-way traffic. ACM Computer Communication Review, 21(5):30–47, 1991.

55

[9] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control in the Internet.

IEEE/ACM Trans. on Networking, 7(4):458–472, 1999.

[10] S. Floyd, M. Handley, and J. Padhye. A Comparison of Equation-Based and AIMD

Congestion Control. URL http://www.icir.org/tfrc/, May 2000.

[11] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance.

IEEE/ACM Trans. on Networking, 1(4):397–413, 1993.

[12] K. Gummadi, H. Madhyastha, S. Gribble, H. Levy, and D. Wetherall. Improving the

reliability of internet paths with one-hop source routing. In Proc. USENIX OSDI 2004,

6, Dec. 2004.

[13] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and D. Towsley. Multi-path TCP: a

joint congestion control and routing scheme to exploit path diversity in the internet.

IEEE/ACM Trans. on Networking, 14(6):1260–1271, 2006.

[14] H.-Y. Hsieh and R. Sivakumar. A transport layer approach for achieving aggregate

bandwidths on multi-homed mobile hosts. In Proc. ACM MobiCom 2002, pages 83–94,

Sep. 2002.

[15] J. R. Iyengar, P. D. Amer, and R. Stewart. Concurrent multipath transfer using SCTP

multihoming over independent end-to-end paths. IEEE/ACM Trans. on Networking,

14(5):951–964, 2006.

[16] W. John and S. Tafvelin. Analysis of internet backbone traffic and header anomalies

observed. In Proc. ACM IMC ’07, pages 111–116, Oct. 2007.

[17] F. P. Kelly and T. Voice. Stability of end-to-end algorithms for joint routing and rate

control. ACM Computer Communication Review, 35(2):5–12, Apr. 2005.

[18] T. Kelly. Scalable TCP: improving performance in highspeed wide area networks. ACM

Computer Communication Review, 33(2):83–91, Apr. 2003.

56

[19] P. Key, L. Massoulie, and D. Towsley. Combining Multipath Routing and Congestion

Control for Robustness. In Proc. CISS 2006, pages 345–350, Mar. 2006.

[20] E. Kohler, M. Handley, and S. Floyd. Designing DCCP: congestion control without

reliability. In Proc. ACM SIGCOMM ’06, pages 27–38, 2006.

[21] F. Kuo and X. Fu. Probe-Aided MulTCP: an aggregate congestion control mechanism.

ACM Computer Communication Review, 38(1):17–28, Jan 2008.

[22] L. Magalhaes and R. Kravets. Transport Level Mechanisms for Bandwidth Aggregation

on Mobile Hosts. In Proc. ICNP 2001, page 0165, 2001.

[23] T. V. Lakshman and U. Madhow. The performance of tcp/ip for networks with

high bandwidth-delay products and random loss. IEEE/ACM Trans. on Networking,

5(3):336–350, 1997.

[24] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang. TCP westwood: Band-

width estimation for enhanced transport over wireless links. In Proc. ACM MobiCom

2001, pages 287–297, 2001.

[25] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The macroscopic behavior of the TCP

congestion avoidance algorithm. ACM Computer Communication Review, 27(3):67–82,

Jul 1997.

[26] E. Nordmark and M. Bagnulo. Shim6: Level 3 Multihoming Shim Protocol for IPv6.

Internet Draft, Dec. 2008.

[27] The network simulator - ns-2. URL http://www.isi.edu/nsnam/ns/.

[28] D. Ott and K. Mayer-Patel. An open architecture for transport-level protocol coordi-

nation in distributed multimedia applications. ACM Trans. Multimedia Comput. Com-

mun. Appl., 3(3):17, 2007.

57

[29] D. Ott, T. Sparks, and K. Mayer-Patel. Aggregate congestion control for distributed

multimedia applications. In Proc. IEEE INFOCOM 2004, pages 13–23, Mar. 2004.

[30] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP throughput: a simple

model and its empirical validation. In Proc. ACM SIGCOMM ’98, pages 303–314, Aug.

1998.

[31] J. Postel. Transmission Control Protocol. RFC 793, Sep. 1981.

[32] I. Rhee and L. Xu. Limitations of equation-based congestion control. IEEE/ACM

Trans. on Networking, 15(4):852–865, 2007.

[33] D. Rubenstein, J. Kurose, and D. Towsley. Detecting shared congestion of flows via

end-to-end measurement. IEEE/ACM Trans. on Networking, 10(3):381–395, 2002.

[34] S. Saito, Y. Tanaka, M. Kunishi, Y. Nishida, and F. Teraoka. AMS: An Adaptive TCP

Bandwidth Aggregation Mechanism for Multi-homed Mobile Hosts. IEICE Trans. on

Information and Systems, 89:2838–2847, 2006.

[35] M. Singh, P. Pradhan, and P. Francis. MPAT: aggregate TCP congestion management

as a building block for Internet QoS. In Proc. ICNP 2004, pages 129–138, Oct. 2004.

[36] R. Stewart. Stream Control Transmission Protocol. RFC 4960, Sep. 2007.

[37] M. Sullivan. Surveys: Internet Traffic Touched by YouTube. URL

http://www.lightreading.com/, Jan. 2007.

[38] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A compound tcp approach for high-speed

and long distance networks. In Proc. IEEE INFOCOM 2006, pages 1–12, Apr. 2006.

[39] K. Thompson, G. J. Miller, and R. Wilder. Wide-Area Internet Traffic Patterns and

Characteristics. IEEE Network, pages 10–23, Nov. 1997.

[40] YouTube. http://www.youtube.com.

58

[41] M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, and R. Wang. A transport layer

approach for improving end-to-end performance and robustness using redundant paths.

In Proc. USENIX 2004 Annual Technical Conference, pages 99–112, 2004.

59

60

	Introduction
	Problem Analysis
	Increase and Decrease Behavior
	Throughput of Per-Subflow TCP Congestion Control

	Designing Bidimensional-Probe Multipath Congestion Control
	Aggressiveness Manager
	Proportion Manager
	Requirements for Implementation

	Discussion
	Resource Pooling
	Weighted Proportional Fairness

	Evaluation
	A Comparison of the Weighted AIMD Flows and TCP Flows
	A Comparison of Differently Weighted AIMD Flows and TCP Flows

	Related Work
	Multipath Transport Protocol
	Aggregate Congestion Control

	Conclusion and Future Work

