
Graduation Thesis Academic Year 2016

Prism: A Proxy Architecture for
Datacenter Networks

Advisors:

Professor Hideyuki Tokuda
Professor Jun Murai

Professor Osamu Nakamura
Professor Hiroyuki Kusumoto

Associate Professor Kazunori Takashio
Associate Professor Rodney D. Van Meter III

Associate Professor Keisuke Uehara
Professor Jin Mitsugi

Associate Professor Jin Nakazawa
Professor Keiji Takeda

Keio University
Faculty of Policy Management

Yutaro Hayakawa
river@ht.sfc.keio.ac.jp

Keio University Academic Year 2016

Prism: A Proxy Architecture for Datacenter
Networks

Keio University Faculty of Policy Management

Yutaro Hayakawa

Abstract

Prism: A Proxy Architecture for Datacenter

Networks

Summary

In datacenters, workload throughput is often constrained by the attachment

bandwidth of proxy servers, despite the much higher aggregate bandwidth of back-

end servers. We introduce a novel architecture that addresses this problem by

combining programmable network switches with a controller that together act as

a network “Prism” that can transparently redirect individual client transactions to

different backend servers. Unlike traditional proxy approaches, with Prism, trans-

action payload data is exchanged directly between clients and backend servers,

which eliminates the proxy bottleneck. Because the controller only handles trans-

actional metadata, it should scale to much higher transaction rates than traditional

proxies. An experimental evaluation with a prototype implementation demon-

strates correctness of operation, improved bandwidth utilization and low packet

transformation overheads even in software.

Keywords:

1 Proxy 2 Software Defined Network 3 Software Switch

4 High Performance Networking 5 TCP

Keio University Faculty of Policy Management

Yutaro Hayakawa

卒業論文要旨 2016年度 (平成28年度)

Prism: A Proxy Architecture for Datacenter

Networks

論文要旨

近年のデータセンターにおいて,プロキシサーバのような複数のサーバのトラフィック

をすべて中継するようなサーバがデータセンター自体のキャパシティにかかわらずネット

ワークのボトルネックとなることがある. 本研究ではこの問題をプログラマブルな SDNス

イッチとそのコントローラ及びカスタマイズされたバックエンドによって解決できるシステ

ム,Prismを設計・実装した.既存のプロキシアーキテクチャと同じくクライアントのリクエ

ストは透過的に複数のバックエンドにリダイレクトされるが,プロトコルのペイロード転送

部分はプロキシサーバを介さずバックエンド-クライアント間で直接行われる.これによって

既存のプロキシアーキテクチャにおけるボトルネックを解消し,スループットの向上を図る

ことができる. 本研究において実装したプロトタイプは既存のプロキシアーキテクチャにお

いて使用不可能であったネットワークの帯域幅を使用可能にし,Prismが行うパケット処理

はソフトウェアによる実装においても少ないオーバーヘッドで実現できることを明らかにす

ることができた.

キーワード：

1 Proxy 2 Software Defined Network 3 Software Switch 4 High Performance Networking

5 TCP

慶應義塾大学総合政策学部

早川 侑太朗

Contents

1 Introduction 1

1.1 Introduction . 2

2 Design 5

2.1 Design . 6

2.1.1 Connection Establishment 6

2.1.2 Request Parsing . 7

2.1.3 Request Hand-Off . 7

2.1.4 Backend Request Handling 8

2.1.5 Preparing for Next Request 9

2.1.6 Design Discussion . 9

3 Implementation 13

3.1 Prism Controller . 14

3.2 Prism Switch . 15

3.3 Prism Backend . 15

4 Evaluation 18

4.1 Evaluation . 19

4.1.1 Packet Transformation Overhead 19

4.1.2 End-to-End Throughput 20

5 Related Works 24

5.1 Load Balancer . 25

i

5.1.1 L4 Load Balancer . 25

5.1.2 L7 Load Balancer . 25

5.2 TCP Related Techniques . 25

5.2.1 TCP Migration . 26

5.2.2 TCP Splicing . 26

6 Conclusion and Future Work 27

6.1 Conclusion . 28

6.2 Future Work . 28

ii

List of Figures

1.1 All incoming and outgoing traffics will be limited bandwidth

to 10Gbps in this case . 4

2.1 Prism operation. 12

3.1 Structure of Prism Controller 16

3.2 Structure of Prism Switch . 17

4.1 Topologies for the evaluation experiments. 21

4.2 Throughput over Prism packet transformation 21

4.3 End-to-end throughput. 23

iii

List of Tables

4.1 Latencies of additional request procedures. 20

iv

Chapter 1

Introduction

This chapter discusses the background and the motivation of this research.

First, overview our research area. Second, bring up problem that we have

attacked, and at last we introduce our proposal system named Prism briefly.

1

1.1 Introduction

A datacenter fabric interconnects network switches, to provide capacity for

many servers to communicate at the same time. The trend has been towards

topologies that isolate communications between one server pair from those

between others, often providing full bisection bandwidth [1, 2], to provide a

more predictable service.

However, applications may still experience limited throughput even on

topologies with full bisection bandwidth. When one server proxies traffic to

and from multiple other servers, its attachment bandwidth to the core lim-

its the aggregate throughput of the workload Figure 1.1. Such proxy-based

communication is common and includes distributed storage [2, 3], MapRe-

duce [4] and web workloads, all of which require stateful application-level

logic to operate on application transactions at the proxy. Naive approaches

to alleviate this problem simply increase the fabric attachment bandwidth

of proxy servers, by installing additional and/or faster NICs. This com-

plicates hardware configuration, increases cabling costs, and reduces provi-

sioning flexibility—all for limited returns and leaving backend bandwidth

under-utilized.

This paper presents the Prism architecture, which provides a superior so-

lution. It recognizes that one role of a proxy—relaying transaction payload

data over TCP connections—can be separated from its application-level pro-

cessing, when such processing only involves the metadata (e.g., request and

response headers) of a transaction. Prism offloads the relaying of transac-

tion payload data to the network fabric, by utilizing programmable network

switches to transform payload packets at line rate. It was originally designed

for forthcoming P4 [5] hardware switches, but achieves good performance

even when implemented inside a software switch [6].

Prism remains a true proxy architecture with transaction-granularity op-

eration, even when applications reuse TCP connections to issue long streams

of transactions. This is not just challenging but essential to support legacy

and modern application protocols such as HTTP, memcached, iSCSI and

2

NFS. Many related proposals in this space—Maglev [7], Ananta [8], Duet [9],

Rubik [10]—merely load-balance a connection to a backend server once upon

establishment, but are unable to execute subsequent transactions against dif-

ferent backend servers. This causes significant load imbalance over time [11].

We show that Prism can improve throughput for data transfers larger

than 2MB and demonstrate that its packet transformations are cheap enough

to forward traffic at tens of Gb/s even when implemented in a software

switch. This allows datacenter operators to initially deploy Prism via a soft-

ware switch upstream of the leaf switches, instead of requiring programmable

hardware switches.

3

40G	

Proxy

10G	

Backend Backend

Switch	

Backend

Figure 1.1: All incoming and outgoing traffics will be limited bandwidth to
10Gbps in this case

4

Chapter 2

Design

This chapter describes Prism’s design. Prism system is consists of several

components which act together over network. First, we show Prism’s behav-

ior using sequence diagram and at the end of this chapter, we show some

design limitation, other possible features and so on.

5

2.1 Design

This section discusses the components involved in the Prism architecture

using the packet sequence diagram in Figure 2.1; it also discusses some design

alternatives.

Prism uses a controller application that uses software-defined networking

(SDN) interfaces to dynamically program a set of SDN network switches to

transparently redirect the transactions a client issues towards a logical server

IP address to different physical backend servers. Prism can migrate a TCP

connection between the controller and a different backend server for each

client transaction, by instructing the programmable switches to rewrite TCP

headers. Backend servers communicate over these already-established, mi-

grated connections. At any point in time, the end point that is handling the

client connection (controller or backend server) is responsible for maintain-

ing TCP semantics by ACK’ing, retransmitting, etc. A connection is only

migrated when it is guaranteed that there is no un-ACK’ed data in flight.

Although this paper always talks about a single controller and a sin-

gle switch, an actual deployment will use multiple controller instances and

switches together with a suitable consistency protocol to increase scalability

and fault-tolerance.

2.1.1 Connection Establishment

The use of Prism is transparent to the clients, which are unmodified and

execute their normal protocol implementation. Clients connect to a “logical”

server IP address that is initially forwarded to the Prism controller. The

Prism controller handles TCP connection establishment and teardown with

the clients and maintains sufficient metadata to determine which backend

server should handle a given client request. It also parses request headers and

programs the Prism switch to rewrite the packet headers of TCP segments

carrying request and response payload data.

A client begins a transaction sequence in its usual way, that is, by open-

6

ing a TCP connection with a server. Step 1 in Figure 2.1 illustrates that

the client performs the required TCP three-way handshake with the Prism

controller, negotiating any desired TCP options. Solid arrows in Figure 2.1

indicate TCP packets sent on the client connection, dashed lines indicate

Prism control messages between the controller, switch and backend servers.

2.1.2 Request Parsing

In step 2 of Figure 2.1, the client begins a transaction by sending a request,

which the controller receives and parses. When the controller determines

that it has received the entire request header, it consults the metadata it

maintains about the backend servers to select one to handle the request. It

sends PUSH/ACK in step 3, setting the TCP receive window to zero if the

request is a read. This prevents the client from issuing additional requests

while the controller has handed off the request to the backend. If the client

already included some request payload data after its request header, the

controller ACK’s the reception of the request header only, forcing the client

to retransmit any request payload data, so it will reach the backend.

2.1.3 Request Hand-Off

In step 4, the controller instructs the Prism switch to rewrite the destination

IP address of packets sent from the client to that of the chosen backend server,

and to rewrite the source IP address of packets sent from that backend server

to the client to that of the logical IP address. The consequence is that any

following (payload) packets will be exchanged directly between the client

and the backend, with the switch fabric performing the required rewriting

(in hardware, once P4 switches are available.)

After the switch is configured, the controller contacts the chosen backend

server in step 5 and passes it sufficient information about the TCP connection

state and the client request so that the server can take over the connection

and serve the request. This includes application-level information about the

7

client request as well as TCP port, sequence and ACK numbers and TCP

options negotiated for both directions of the connection.

2.1.4 Backend Request Handling

After receiving the hand-off control message from the controller, the backend

server handles the client request. Figure 2.1 illustrates a client read, where

the backend server first sends a response header in step 6, followed by the

payload data in step 7. (For a client write, the order would be opposite; first

payload data would be read and then a response header would be sent.)

The backend server needs to send and receive TCP packets that, af-

ter header rewriting by the switch, are accepted by the client as belonging

to the already-established connection between the controller and the client.

Because the backend server is aware of the header rewriting the switch per-

forms, it must only make sure that TCP source and destination ports as

well as sequence and ACK numbers and any TCP options that the controller

negotiated with the client are correct in transmitted segments.

When the client request is a write, the backend must only ACK the

payload data of that request (step 8), and not any additional data the client

have sent, such as a next request. For client reads, the backend sets the TCP

receive window to zero to prevent the client from sending any further data,

but this is not possible for writes. Additionally, the backend must ignore (i.e.,

not ACK) any TCP FIN the client sends, to prevent the client from closing

the connection before it can be handed back to the controller. Handing a

connection back to the controller is required for proper connection tracking

and metadata maintenance.

After the main data exchange has completed, the server notifies the con-

troller in step 9 and includes sufficient information about the progression

of the connection (i.e., new TCP sequence and ACK numbers, timestamp

options, etc.) so that the controller can take over the connection. For the

backend server, this concludes serving the request.

If an unforeseen event prevents the backend server from serving the client

8

request, it needs to notify the controller about this (step 9). The controller

can then reset the TCP connection to the client, in order to signal a failure.

In addition, the controller may want to set time-outs for handed-off requests

to handle crashing backend servers.

2.1.5 Preparing for Next Request

After the controller receives the request completion notification from the

backend in step 9, it removes the header rewrite rules from the switch

(step 10). Then, it synthesizes an ACK to the client in step 11 that re-

opens the receive window (if it was closed for a prior read request). This

allows the client to issue its next request.

If the client sends a new request, operation resumes at step 2. If the

client closes the connection by sending a FIN, the controller continues the

FIN handshake to close the connection in step 12. The controller may also

itself initiate the connection teardown by sending a FIN.

2.1.6 Design Discussion

This section discusses aspects of the Prism design, including variants and

future extensions.

Supporting TLS: If the application protocol is secured with TLS [12],

the client will begin a TLS handshake over the connection after step 1. To

support TLS, the controller needs to be extended to complete this handshake.

It must also pass sufficient information about the state of the TLS session to

the backend server in step 5, the TLS implementation at the backend servers

must be augmented to support bringing up a TLS session directly into the

“handshake finished” state, and the backend must pass sufficient information

about the progression of the TLS session to the controller in step 9.

Eliminating controller notifications: If the controller knows the size

of the payload data for a given client request, e.g., based on the request head-

ers or the metadata it maintains, some of the notification delay in step 9 may

9

be reduced. The controller could configure the switch to monitor progres-

sion of the respective TCP connection, e.g., by using counters to track the

TCP sequence and ACK numbers. Once the configured amount of data has

been exchanged, the switch would notify the controller, or the switch itself

could revert the connection back to the controller by removing the respective

rewrite rules. Either of those two approaches may be faster than explicit

notifications by the backend.

Speculative caching of rewrite rules: After step 9, the controller

may want to direct the next client request to the same backend server, it

could speculatively postpone the removal of the switch rules until after it

has parsed the next request. In such a case, the controller could skip step 5

on the next request, reducing latency.

Packet transformations: Prism uses a programmable switch to trans-

form packets as they are forwarded through the fabric. It needs to modify

TCP and IP headers, so P4 [5] switches appear to offer a simple way to imple-

ment the needed functionality, due to their ability to perform operations on

arbitrary, application-defined headers. More readily available OpenFlow [13]

switches do not support modification of all the required TCP header fields.

The Prism design does not require that all packet transformations occur

atomically or even at a single location along the path. Instead of in a net-

work switch, packet transformations could also be implemented directly on

the backend servers, e.g., in a software switch or host firewall inside the hy-

pervisor or the guest OS of the backend servers, or a programmable NIC that

provides fabric attachment—or any combination thereof. The key takeaway

here is that the general Prism design can be instantiated in different ways

with different trade-offs.

Design limitations: For a small-message transactional workload, i.e.,

where requests and responses fit into few TCP packets, Prism may not be a

suitable solution. In such cases, the overheads associated with Prism—receive

window management, rule addition and removal, controller notifications—

cannot be sufficiently amortized. This may include protocols such as

10

HTTP/2 that allow aggressive interleaved pipelining of chunked data, which

Prism currently needs to treat as individual requests. Supporting such work-

loads will require further modifications to the backend and Prism design, so

that the controller can let a connection remain at a single backend server

while several concurrent transactions are being executed.

11

������ ������������ ���������������� �������

��������������������

��� �������������������

�������������������������

������������������������������

��� �������

��� ���������� ��������������������������

���������������������������

��� �����������������
�����������������

���
��������

����������������
��������������

�����������������������

��� ���

��� ���� �������

��� ��� ��� �������������

���
����

�����������������
����������

������������������������

���� ��������������������
�����������������

���� ��� ��������������������

��

��������������������

���� �������������

Figure 2.1: Prism operation.
12

Chapter 3

Implementation

This chapter discusses the current implementation for our prototype imple-

mentation that can split HTTP/1.1 GET request sequences over IPv4 and

Ethernet.

13

3.1 Prism Controller

Figure 3.1 shows the structure of Prism controller. Prism controller has

two important roles in Prism system. First role is managing control part

of protocol transaction like TCP connection establishment, HTTP request

parsing, and controlling TCP receive window size. For implementing these

features, standard OS’s socket API is not suitable, because some of operation

like controlling window size is not supported in general OSs like Linux or

FreeBSD. Instead of using standard socket API, we use netmap [14] and

implemented simple TCP and HTTP on top of it.

Prism TCP implements only part of TCP functionality. It can perform

three-way handshake, connection teardown and acking to clients segments

and never do retransmit, flow control or congestion control. It have connec-

tion hash table which takes source/destination IP address, source/destination

TCP port as a key, for storing TCP state information.

Prism HTTP doesn’t have full HTTP header parsing functionality. It

emulates HTTP header parsing by looking at first GET strings of client’s

request.

Second role is handing off TCP connections to backend servers. Con-

nection handoff is triggered when client sends request to controller. When

controller receives request from client, controller sends PUSH/ACK to client

with receive window size zero and start hand off operation.

Backend server migrates TCP connection using TCP REPAIR [15] function-

ality of Linux which requires sequence number, acknowledge number, peer

IP address, peer TCP port number, self IP address, self TCP port number

and optionally TCP options information.

All these information are already collected while controller communicate

with client, so, controller only needs to configure switch, establishes TCP

connection via standard socket and sends required information with client’s

HTTP request data.

Switch configuring is done by sending special packet to switch. Connec-

tion hand off threads synthesize it and send it to switch via netmap API.

14

While hand off operations contain expensive IO, and our simple TCP uses

non-blocking IO multiplexing with single thread for raw packet IO, they are

separated to other threads.

3.2 Prism Switch

Figure 3.2 shows structure of Prism Switch. Prism switch can be imple-

mented on programmable hardware switch like P4 [5], however, while P4

hardware switch is not available, we implemented Prism switch on top of the

mSwitch [6] as a module.

Prism Switch defines two tables. One is for Prism functionality and an-

other is just for default routing table based on static IPv4 address look up.

First table looks at TCP connection four-tuple; source and destination IP

address as well as source and destination port numbers, if table entry found,

it rewrites source or destination IP address and MAC address. If not, just

fall back to IP routing.

Due to the TCP REPAIR limitation that can’t control receive window size or

manipulate TCP flags, the switch also zeroes the receive window for packets

from the backend and clears the FIN flag for packets from the client.

3.3 Prism Backend

As described in section 3.1, Prism backend migrates TCP connection between

clients and Prism controller using TCP REPAIR. It requires sequence number,

acknowledge number, client’s IP address, client’s TCP port number, Prism

virtual IP address, Prism virtual TCP ports and optionally TCP options

information.

After migrating TCP connection, Prism backend sends HTTP response

header and payload data to client. While Prism backend needs to guarantee

there are no unacked bytes on the fly before send response to controller,

Prism backend check acked bytes using TCP INFO socket option.

15

…	 Prism TCP	

Connection State Table	

Hash(SRC IP,PORT
 DST IP,PORT)	

State
Seq
Ack

…
	

Return State Object	 Packet Parser	

HTTP	

Main Thread	

Connection Handoff Threads	

…	

Switch Config
Packet	Packet to

Client	

Kernel	

User	
Socket API	

Protocol
Stack	

RX	 TX	 RX	 TX	

Update state	

Update state	

Netmap API	
Linux Kernel	

Prism Switch	

Packet From
Client	

Create	

Prism Controller	

Figure 3.1: Structure of Prism Controller

16

…	

IPv4
Static

Routing
Table	

Lookup logic	

…	

SRC IP
SRC PORT
DST IP
DST PORT	

Matched	

Rewrite IP
Rewrite MAC
Set window to 0
Clear FIN bit
Recalcurate Checksum 	

Didn’t match	
Hash	

Prism
Table	

Prism
Switch	

Linux Kernel	

To Protocol Stack	To Prism Controller	

To Client or Backend	
Switch Ports	

Figure 3.2: Structure of Prism Switch

17

Chapter 4

Evaluation

This chapter describes our experiment and evaluation for Prism. We eval-

uate end-to-end throughput of Prism against legacy proxy architecture and

overhead of Prism switch.

18

4.1 Evaluation

Figure 4.1 illustrates the topologies used during the evaluation. The client

machine connects into the fabric (emulated by a switch) via two 10G Eth-

ernet links, emulating a well-connected datacenter. In the Prism case (Fig-

ure 4.1a), the mSwitch [6] server also runs the controller. The switch connects

to two backend machines via two disjoint 10G Ethernet links. Note that the

controller ideally would run on a separate server, but collocating it with the

switch has a negligible performance impact, because the controller only han-

dles a very small amount of traffic and the switch configuration latency is

masked by connection hand-off procedures.

To compare Prism against a traditional proxy (Figure 4.1b), we add an

additional server that runs the nginx proxy [16] and connects to the switch

machine via a 10G Ethernet link; the backend servers run the H2O HTTP

server [17]. The switch and controller machine are equipped with Intel Core

i7-4790K CPUs clocked at 3.5GHz, the others with Intel Xeon E5630 CPUs

clocked at 2.53GHz. All machines have at least 16GB RAM; Intel x540 NICs

provide all links. The client always runs two wrk [18] instances to generate

HTTP/1.1 traffic over persistent TCP connections.

First of all, we confirmed our server equipment never be a bottleneck

in our experiment. We used pkt-gen a packet generator application which

implemented on top of the netmap [14] and easily achieves line rate of 10Gbps

ethernet links even for smallest 60B packets. Our initial experiment for all of

links in experiment environment shows that our equipment achieves around

13.3Mpps for size of 64bytes packet and around 814Kpps for 1514bytes packet

which are enough rate for our experiment workloads.

4.1.1 Packet Transformation Overhead

We benchmark the overhead of the Prism packet transformation to gain in-

sight into the forwarding capacity obtainable with in software. We measure

across two virtual ports of an mSwitch instance, since even single-core per-

19

formance far exceeds the capacity of a 10G NIC.

Figure 4.2 illustrates forwarding throughput for three different packet

processing modules: the Prism packet transformations, an L2 learning bridge

and a “no logic” module that statically forwards packets without modifying

them. The results show that the Prism module can forward packets on a

single CPU core at 7.98Gb/s for 60B packets (a rate of 16.63Mpps) and

66.33Gb/s for 1514B packets (a rate of 5.48Mpps). These numbers trans-

late into 60 ns and 183 ns of per-packet processing cost, respectively, most

of which is spent on recomputing the TCP checksum. Once mSwitch sup-

ports checksum offloading (to physical NICs), we expect Prism overheads to

be similar to the L2 learning module. Forwarding performance can easily

be increased by using additional CPU cores. We measure 16.03Gb/s and

127.1Gb/s for the two packet sizes when a second CPU is used.

We conclude that the packet transformation overhead of Prism is very

low, even when implemented in software, allowing immediate deployment of

Prism even before P4 hardware switches are available.

Startup [µs] Teardown [µs] Total [µs]

Direct 446 σ = 65 52 σ = 36 3883 σ = 786
Proxy 1015 σ = 171 50 σ = 35 5142 σ = 839
Prism 754 σ = 74 185 σ = 62 3990 σ = 837

Table 4.1: Latencies of additional request procedures.

4.1.2 End-to-End Throughput

Figure 4.3 illustrates the client-observed end-to-end HTTP/1.1 throughput

for different HTTP “OK” response sizes. The experiments use two concur-

rent TCP connections, each assigned to one path between the client and

switch. Throughput of Prism starts exceeding the 10Gb/s maximum perfor-

mance achievable with a traditional proxy with object sizes of 2MB. Due

to TCP REPAIR deficiencies, Prism performance is currently limited by start-

ing each response transmission with a default initial TCP window size of

20

Prism Controller
Client

wrk 2
10.0.0.11/24

wrk 1
10.0.0.10/24

iface1
10.0.2.1/24

iface2
10.0.3.1/24

viface1
No IP

Switch

Backend 1
Prism Server 1

10.0.2.10/24

Prism Switch
Backend 2

Prism Server 2
10.0.3.10/24

(a) Prism topology.

mSwitch
Learning Bridge Mode

Switch

Client
wrk 1

10.0.0.10/24
wrk 2

10.0.0.11/24

Proxy
Nginx Proxy
10.0.0.12/24

Backend 1
H2O 1

10.0.0.13/24

Backend 2
H2O 2

10.0.0.14/24

(b) Proxy topology.

Figure 4.1: Topologies for the evaluation experiments.

0

50

100

150

60 (1 core) 60 (2 cores) 1514 (1 core) 1514 (2 cores)
Packet Size [B]

T
hr

ou
gh

pu
t [

G
b/

s]

No Logic
L2 Learning
Prism

Figure 4.2: Throughput over Prism packet transformation

21

ten packets, and should further increase (esp. for smaller sizes) once that

limitation is removed.

The plot also shows that Prism already beats proxy’s throughput from

10KB data transfer. However, this result currently should be just a reference,

because Prism controller and Nginx proxy don’t have same processing cost.

For example they don’t implement same HTTP parser and Prism controller

uses netmap which improves packet IO. Prism backend and H2O also don’t

have exact same functionality, so it is not a fare comparison.

Nevertheless, we suppose it is because proxy’s payload data forwarding

which receives data from backend and sends them via socket API is expensive

and Prism’s payload forwarding using switch per packet processing is cheap.

Detail analysis for this hypothesis would be a future work for this research.

Both a traditional proxy and Prism incur some additional management

overhead before and after serving a client request (compared to direct back-

end communication). Table 4.1 quantifies these overheads. “Startup” over-

heads incur before the transmission of the first response byte to the client.

“Teardown” overheads incur after the last byte of a response has been

ACK’ed. To illustrate the relative impact, the “Total” column shows the

sum of these times together with the transmission time of a 2MB response.

At this point, we report these numbers for reference and leave a detailed

analysis for future work. We expect higher latencies for Prism (on the order

of tens of µs) due to the additional network round trip and OS overheads [19].

22

0

5

10

15

20

1 10 100 1000 2000 5000 10000 50000 75000 100000
Object Size [KB]

A
gg

. T
hr

ou
gh

pu
t [

G
b/

s]

Prism
Proxy

Figure 4.3: End-to-end throughput.

23

Chapter 5

Related Works

This chapter introduce related works for this research attacking to similar

problem and similar approach that introduced in past.

24

5.1 Load Balancer

Load balancers are historically hardware appliances [7, 8]. However, recent

years because of its costs or lack of fault tolerance, software load balancers

implemented on top of commodity hardware arises. While they are deployed

on servers, they would have same problem as we claimed at beginning of

this paper. In this section, we introduce recent works for several layer load

balancing method.

5.1.1 L4 Load Balancer

Maglev [7] and Ananta [8] are L4 load balancer which implemented on com-

modity hardware. Both of them use technique called Direct Server Return

(DSR) that after TCP connection spread to particular server, server spoofs

their IP address to that of load balancer’s virtual address and communi-

cate directly with client. Unlike legacy Network Address Translation (NAT)

like approach, load balancer wouldn’t be a bottleneck. However, recent re-

search [11] shows L4 load balance i.e., balance TCP connection cause sig-

nificant load imbalance in datacenter environment. Prism or legacy proxy

supports per request load balancing which can spread load more precisely.

5.1.2 L7 Load Balancer

Yoda [20] is an application level load balancer, it means it takes a form of

legacy proxy. They don’t solve bandwidth limitation problem, but they uses

IP tunneling inside load balancer for efficient payload forwarding. However,

it is not a essential solution for the problem.

5.2 TCP Related Techniques

Some of the similar TCP related techniques are already introduced in old

research. In this section describes those works.

25

5.2.1 TCP Migration

Prism is similar in design to how TCP Migrate [21] was used to provide

fail-over functionality for long-running TCP connections to a set of replica

servers [22], but does not require client TCP modifications and is therefore

more deployable.

5.2.2 TCP Splicing

The way in which Prism splits TCP connections is similar to TCP Splice [23]

and related approaches [24, 25] that were developed for the first large-scale

web server farms. Some of these approaches have also been implemented

in hardware [26, 27]. Unlike these monolithic approaches, Prism combines

a programmable switch for efficient in-network data transformations with a

general purpose controller to implement arbitrary request forward logic. In

addition, Prism can hand off individual requests arriving over a single TCP

connection to different backend servers, whereas many earlier approaches

are limited to handing off a connection once. One earlier proposal offered

”unsplicing” functionality [28], but is considerably more complex than Prism

and requires continuous monitoring of the connection by the forwarder.

26

Chapter 6

Conclusion and Future Work

In this chapter, we will conclude this paper and discuss about future work

of this research.

27

6.1 Conclusion

This paper described Prism, an architecture that addresses the bandwidth

utilization problem with proxy-based systems in datacenter. Prism converts

much of the traditional proxy processing functionality into packet-level trans-

formations that can be offloaded to programmable hardware switches or ef-

ficiently implemented software switches, lowering processing overheads and

increasing bandwidth utilization. We confirmed that Prism improves band-

width utilization without breaking TCP semantics, by utilizing an unmodi-

fied TCP/IP client stack and application.

6.2 Future Work

In this research, we only evaluate very limited functionality of Prism. We

need to make fare performance comparison of payload forwarding against

proxy. Also, we need to test Prism with more clients or with more uplink

capacity. In addition to these, we plan to add some feature to Prism like

following,

Implement Prism switch on hardware switch: Once P4 hardware

switches become available, we plan on comparing the achievable performance

and overheads to our software-switch implementation.

Fault tolerance: Usually, proxy servers has mechanism for fault toler-

ance. Recent work Yoda [20] proposes fault tolerant L7 load balancer. As

described in chapter 5, their idea can be combined to Prism system. This

would make our proposal system more solid.

Supporting encryption: For deploying Prism to real world environ-

ment, especially web use cases, it is important to support encryption. One

particular area of interest is protocols secured with TLS [12], to investigate

if additional benefits can be achieved by offloading TLS processing to the

backends.

28

Acknowledgments

Japanese

本研究は慶應義塾大学徳田研究室,及び私のインターンシップ先であるNetApp

Deutschland GmbHにおいて行われました.そのため,本論文は英語で執筆い

たしましたが,私の最大限の謝意を表現するために謝辞は日英併記とさせて

頂きます.

はじめに本論文を執筆するまでに至る 4年間,私の研究活動をご支援いた

だいた徳田英幸教授に深く感謝いたします.4年間の学部生生活においてコン

ピュータ・サイエンス,こと困難なシステムの研究に関して全くの初学者で

あった私がその分野に粘り強く取り組めたことは偏に徳田先生のご理解があっ

てのことと存じます.また,4年間の徳田研学部生生活の随所にて私の活動を

支援してくださった高汐一紀准教授, 中澤仁准教授,米沢拓郎特任助教,大越

匡特任講師に感謝致します.

私の徳田研究室生活は研究グループ LINKから始まりました.非常に生意

気であった新人の私を時に励まし, 時に窘めて下さった寺山淳基先輩,豊田智

也先輩に感謝いたします.LINKから研究グループMEMSYSが発足した際に

私を快くMEMSYSに迎え入れて下さった当時のKGリーダー,伊藤瑛先輩に

はシステムの研究をするにあたって多くの知識を分けていただきました.ま

た,MEMSYSの宇佐美真之介先輩にはよく自宅前まで車で送っていただき,そ

の車中で沢山の実のあるお話をしていただきました.

HTrootとして徳田研のインフラ管理に携わるにあたり,高木慎介先輩に

は手厚いご指導をいただきました. サーバオペレーション,ネットワーク管理

の経験は私の研究においても非常に役立ちました.

現MEMSYSのKGLである小町芳樹先輩には幾度となく笑いをいただき

ました.また,どんな逆境にあっても諦めない粘り強さは小町先輩より私にも

受け継がれています.

徳田研に同時期に入った仲間の中で唯一 4年間を共にした池田貴匡君は 1

学年上であるのにも関わらずタメ口で接するなど,失礼な態度を取り続ける

私に寛容に接してくれました.

3年次よりのMEMSYSの数少ないメンバーのうちの一人であり,私にド

イツに行くきっかけを下さった本多奈々子氏には研究室にいてはわからない

外の世界のことを沢山教えていただきました.

また,卒論の時期を共に乗り切った同期の大戸君,森重君,山田君,小出君,

佐藤君,稲見君,s103号室の人々,博士の坂村美奈先輩,西山勇毅先輩,その他,

徳田研すべての方々に感謝いたします.

アルバイト先であった株式会社 Studio Ousiaにおいては世界最高水準の

自然言語処理技術にいち早く触れ,デモアプリケーションを書かせていただ

くなど,貴重な機会をたくさんいただきました.CEO渡邉安弘氏,CTO山田育

矢氏, 徳田研究室の先輩としてもお世話になった伊藤友隆氏並びに関係者の

方々に感謝いたします.

今回この論文を執筆するにあたり,多大なる技術的,研究的なご助言を頂

き,インターンシップ先のミュンヘンにおいてはプライベート,仕事共に大変

なご支援を頂いた本多倫夫博士に最大の感謝の意をお伝えいたします. 本田

博士のご協力なしにはこの研究は決してあらず,私がドイツでの大変な成長

の機会をいただくことはなかったでしょう.

また,サークルでの出会いから私をこの道に誘い,研究活動においても大き

な影響を私に与えて下さった安形憲一先輩に特別の感謝の意を申し上げます.

English

At last, I would like to express my sincere appreciation to Dr. Lars Eggert

and Dr. Douglas Santry of NetApp Deutschland GmbH. They gave me a lot

of precious experience which would be a lifetime assets for me.

Yutaro Hayakawa February 10, 2017

2

Bibliography

[1] Peter X. Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia

Ratnasamy, and Scott Shenker. pHost: Distributed near-optimal dat-

acenter transport over commodity network fabric. In Proceedings of

the 11th ACM Conference on Emerging Networking Experiments and

Technologies, CoNEXT ’15, pages 1:1–1:12, New York, NY, USA, 2015.

ACM.

[2] Edmund B. Nightingale, Jeremy Elson, Jinliang Fan, Owen Hofmann,

Jon Howell, and Yutaka Suzue. Flat datacenter storage. In Presented as

part of the 10th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 12), pages 1–15, Hollywood, CA, USA, 2012.

USENIX.

[3] Michael Vrable, Stefan Savage, and Geoffrey M. Voelker. BlueSky: A

cloud-backed file system for the enterprise. In Proceedings of the 10th

USENIX Conference on File and Storage Technologies, FAST’12, Berke-

ley, CA, USA, 2012. USENIX Association.

[4] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data pro-

cessing on large clusters. In Proceedings of the 6th Conference on Sym-

posium on Opearting Systems Design & Implementation - Volume 6,

OSDI’04, pages 137–149, Berkeley, CA, USA, 2004. USENIX Associa-

tion.

[5] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,

Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George

1

Varghese, and David Walker. P4: Programming protocol-independent

packet processors. SIGCOMM Comput. Commun. Rev., 44(3):87–95,

July 2014.

[6] Michio Honda, Felipe Huici, Giuseppe Lettieri, and Luigi Rizzo.

mSwitch: A highly-scalable, modular software switch. In Proceedings

of the 1st ACM SIGCOMM Symposium on Software Defined Network-

ing Research, SOSR ’15, pages 1:1–1:13, New York, NY, USA, 2015.

ACM.

[7] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman

Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wen-

tao Shang, and Jinnah Dylan Hosein. Maglev: A fast and reliable soft-

ware network load balancer. In 13th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 16), pages 523–535, Santa

Clara, CA, USA, 2016. USENIX Association.

[8] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert

Greenberg, David A. Maltz, Randy Kern, Hemant Kumar, Marios Zikos,

Hongyu Wu, Changhoon Kim, and Naveen Karri. Ananta: Cloud scale

load balancing. In Proceedings of the ACM SIGCOMM 2013 Conference

on SIGCOMM, SIGCOMM ’13, pages 207–218, New York, NY, USA,

2013. ACM.

[9] Rohan Gandhi, Hongqiang Harry Liu, Y. Charlie Hu, Guohan Lu, Ji-

tendra Padhye, Lihua Yuan, and Ming Zhang. Duet: Cloud scale load

balancing with hardware and software. In Proceedings of the 2014 ACM

Conference on SIGCOMM, SIGCOMM ’14, pages 27–38, New York,

NY, USA, 2014. ACM.

[10] Rohan Gandhi, Y. Charlie Hu, Cheng-kok Koh, Hongqiang Liu, and

Ming Zhang. Rubik: Unlocking the power of locality and end-point

flexibility in cloud scale load balancing. In 2015 USENIX Annual Tech-

2

nical Conference (USENIX ATC 15), pages 473–485, Santa Clara, CA,

USA, July 2015. USENIX Association.

[11] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis

Matus, Rong Pan, Navindra Yadav, and George Varghese. CONGA:

Distributed congestion-aware load balancing for datacenters. In Pro-

ceedings of the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14,

pages 503–514, New York, NY, USA, 2014. ACM.

[12] T. Dierks and E. Rescorla. The transport layer security (TLS) protocol

version 1.2. RFC 5246, RFC Editor, August 2008.

[13] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,

Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.

OpenFlow: Enabling innovation in campus networks. SIGCOMM Com-

put. Commun. Rev., 38(2):69–74, March 2008.

[14] Luigi Rizzo. netmap: A novel framework for fast packet I/O. In 2012

USENIX Annual Technical Conference (USENIX ATC 12), pages 101–

112, Boston, MA, USA, 2012. USENIX Association.

[15] Jonathan Corbet. TCP connection repair. May 2012.

[16] NGINX Inc. NGINX: High performance load balancer, web server, &

reverse proxy. https://www.nginx.com/.

[17] DeNA Co., Ltd. H2O - the optimized HTTP/1, HTTP/2 server.

https://github.com/h2o/h2o.

[18] Will Glozer. Modern HTTP benchmarking tool.

https://github.com/wg/wrk.

[19] Kenichi Yasukata, Michio Honda, Douglas Santry, and Lars Eggert.

StackMap: Low-latency networking with the OS stack and dedicated

3

NICs. In 2016 USENIX Annual Technical Conference (USENIX ATC

16), pages 43–56, Denver, CO, USA, 2016. USENIX Association.

[20] Rohan Gandhi, Y. Charlie Hu, and Ming Zhang. Yoda: A highly avail-

able layer-7 load balancer. In Proceedings of the Eleventh European

Conference on Computer Systems, EuroSys ’16, pages 21:1–21:16, New

York, NY, USA, 2016. ACM.

[21] Alex C. Snoeren and Hari Balakrishnan. An end-to-end approach to host

mobility. In Proceedings of the 6th Annual International Conference on

Mobile Computing and Networking, MobiCom ’00, pages 155–166, New

York, NY, USA, 2000. ACM.

[22] Alex C. Snoeren, David G. Andersen, and Hari Balakrishnan. Fine-

grained failover using connection migration. In Proceedings of the 3rd

Conference on USENIX Symposium on Internet Technologies and Sys-

tems - Volume 3, USITS’01, pages 221—232, Berkeley, CA, USA, 2001.

USENIX Association.

[23] David A. Maltz and Pravin Bhagwat. TCP splicing for application layer

proxy performance. J. High Speed Netw., 8(3):225–240, January 2000.

[24] Chu-Sing Yang and Mon-Yen Luo. Efficient support for content-based

routing in web server clusters. In Proceedings of the 2nd Conference

on USENIX Symposium on Internet Technologies and Systems - Vol-

ume 2, USITS’99, pages 221—232, Berkeley, CA, USA, 1999. USENIX

Association.

[25] Marcel-Catalin Rosu and Daniela Rosu. Kernel support for faster web

proxies. In 2003 USENIX Annual Technical Conference (USENIX ATC

03), pages 225–238, San Antonio, TX, USA, June 2003.

[26] Li Zhao, Yan Luo, Laxmi Bhuyan, and Ravi Iyer. SpliceNP: A TCP

splicer using a network processor. In Proceedings of the 2005 ACM Sym-

4

posium on Architecture for Networking and Communications Systems,

ANCS ’05, pages 135–143, New York, NY, USA, 2005. ACM.

[27] Ariel Cohen, Sampath Rangarajan, and Hamilton Slye. On the perfor-

mance of TCP splicing for URL-aware redirection. In Proceedings of

the 2nd Conference on USENIX Symposium on Internet Technologies

and Systems - Volume 2, USITS’99, Berkeley, CA, USA, 1999. USENIX

Association.

[28] Oliver Spatscheck, Jørgen S. Hansen, John H. Hartman, and Larry L.

Peterson. Optimizing TCP forwarder performance. IEEE/ACM Trans.

Netw., 8(2):146–157, April 2000.

5

	1 Introduction
	1.1 Introduction

	2 Design
	2.1 Design
	2.1.1 Connection Establishment
	2.1.2 Request Parsing
	2.1.3 Request Hand-Off
	2.1.4 Backend Request Handling
	2.1.5 Preparing for Next Request
	2.1.6 Design Discussion

	3 Implementation
	3.1 Prism Controller
	3.2 Prism Switch
	3.3 Prism Backend

	4 Evaluation
	4.1 Evaluation
	4.1.1 Packet Transformation Overhead
	4.1.2 End-to-End Throughput

	5 Related Works
	5.1 Load Balancer
	5.1.1 L4 Load Balancer
	5.1.2 L7 Load Balancer

	5.2 TCP Related Techniques
	5.2.1 TCP Migration
	5.2.2 TCP Splicing

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

