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Abstract

The current trend in mobile networking is towards mobile hosts that have
multiple network interfaces, e.g., WLAN and UMTS. However, when the cur-
rent Internet architecture was originally designed, neither mobility nor multi-
homing were considered. In the current architecture an IP address represents
both the host’s identity and the host’s topological location. This overloading
has led to several security problems, including the so called address own-
ership 1 problem, making IP mobility and multi-homing unnecessarily hard
from the security point of view.

The Host Identity Protocol (HIP), being currently discussed at the In-
ternet Engineering Task Force (IETF), can be used to simultaneously solve
the security problems, and many of the practical problems, related to end-
host multi-homing and end-host mobility. Basically, HIP introduces a new
cryptographic name space and protocol layer between network and transport
layers (Host Identity Layer), breaking the fixed binding between identities
and locations. The approach is especially suitable for large open networks,
where no pre-existing trust relationships can be assumed.

In this thesis we focus on HIP mobility, one of the most important issues
within the Ambient Networks project (carried out by NEC and many other
partners). Our main target is to study which resolution mechanism (mapping
Host Identities and IP addresses) performs better: the Domain Name Sys-
tem (DNS), the Distributed Hash Tables (DHTs) or the Rendezvous Server
(RVS). Our contributions include: i)implementation of two IETF drafts [4]
[5] (developing a Rendezvous Server (RVS) and its Registration mechanism),
detailing our early experiences in this issue and ii)a performance evaluation
of the RVS comparing it to the other main resolution mechanism, DHT. All
our work has been done within the Openhip project, an actively maintained
HIP implementation developed in userspace.

1Within the current architecture, there is no way of checking that a node claiming to
be a given address is actually the node that is indeed located at that address. It leads to
several security problems we will address later.



Chapter 1

Introduction: Problem
Description and Thesis Goals

1.1 Motivation

When the TCP/IP protocol was originally designed in the late 1970s and
early 1980s, it was hardly imaginable that most of the world’s computers
would eventually be mobile and have several distinct network connections
at the same time. Thus, the protocol suite was designed with singly-homed
statically located hosts in mind. In that world, the location bound IP ad-
dresses served beautifully as identifiers for the hosts, since hosts rarely ever
moved between locations.

Years ago, with the introduction of dynamic address assignment in PPP
and DHCP, the assumption that an IP address would uniquely identify a host
was broken, and the situation was further worsened by the introduction of
private IP address spaces and Network Address Translator (NAT). Nowadays
it looks like that the emergence of ubiquitous services and ad-hoc networks
will soon lead to a situation where the majority of computing hosts are multi-
homed1 and mobile, and have no static addresses.

In addition to the nature of hosts, also the nature of users have changed
during the years. For many years, the Internet was basically used by a fairly
homogenous user community where everybody more or less trusted every one
else. Not so any more. Trustworthiness must now be proved through explicit
cryptographic mechanisms.

In a word, the environment has changed. Looking from the 1980s point

1A multi-homed end-point is simultaneously reachable at more than one location. Usu-
ally this is the result of having multiple interfaces, each separately connected to different
location in the network.

1



1.1. Motivation 2

of view, the requirements for mobility and multi-homing, together with the
host-to-host signalling security, are new. Addressing these within the limita-
tions of the current architecture has turned out to be hard. A wellknown so-
lution for the mobility issue is MobileIP (MIP) but other are also being stud-
ied such as the Stream Control Transmission Protocol (SCTP). Regarding
the security problem other solutions like IPSEC (IP security) and DNSSEC
(Domain Name System security) have been proposed. About multi-homing
there are some proposals such as Multi-homed TCP. Combining some of
these mechanisms mobile nodes could maintain multiple data sessions, while
moving from one IP realm to another, in a secure way.

To include all the requirements of the new Internet architecture in one
only solution, it is necessary to do a radical re-engineering which differs
from the previously introduced solutions. This is the objective the Host
Identity Protocol (HIP), which is currently being developed by the Internet
Engineering Task Force (IETF). HIP addresses the issues of mobility, security
and multi-homing from a complete different perspective [2], it separates the
end-point identifier and locator roles of the IP addresses creating the Host
Identities (HI). In this way the IP address will be used as a locator with
routing purposes and the HI will be used as a permanent end-point identifier.
However, the transition between the current Internet architecture and the
proposed by HIP may take a long time, therefore, the compatibility between
HIP and the existing protocols is a critical point on the success of HIP.

HIP is still a solution under research, and so there are still several issues
pending to be solved. Among the current open issues in HIP there are:

• NAT and Firewall traversal. It is not yet defined the procedure to use
HIP between nodes with middleboxes. Some of the current solutions
include a registration mechanism that will be explained in detail in
Chapter 3.

• Resolution and Rendezvous2 mechanisms. There is no consensus yet
either about what type of mechanism use to map Host Identities and
IP addresses nor about the procedure to discover another HIP aware
node and stablish a communication with it.

• Registration mechanism requesting for a service (e.g. Rendezvous Server,
middleboxes). With this mechanism a node will be able to ask for a
service to a provider host. These services include, for instance, helping

2Rendezvous mechanism is introduced to help a HIP node to contact a frequently
moving HIP node. This mechanism involves a third party, the Rendezvous Server (RVS),
which serves as an initial contact point (”rendezvous point”) for its clients.
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discovering a HIP node and make possible to establish a HIP commu-
nication even if there is a firewall or NAT in between.

This thesis has been developed within the framework of the Ambient
Networks project, carried out by NEC Network Laboratories in collaboration
with other 40 partners. In this work we have focused on the mobility aspect
of HIP. We have contributed by:

i Implementing and improving, based on our practical experiences, two
different Internet drafts: draft-ietf-hip-registration ([4]) and draft-ietf-
hip-rvs ([5]).

ii Developing a prototype, within the OpenHIP project, able to run a
Rendezvous Server (RVS), make a HIP node register its Host Identity
and IP address and establish a communication between two different
nodes through the RVS [27].

iii Providing an insight on the implementation issues of a RVS.

iv Benchmarking the performance of a RVS (from a mobility point of
view) comparing it to other possible resolution mechanisms, i.e. Dis-
tributed Hash Tables (DHTs).

1.2 Related Work

As mentioned before, some proposals to add mobility, security and multi-
homing to the current Internet architecture are being discussed. Unlike HIP,
most of them try to solve these problems reusing the existing architecture.

Regarding mobility, in Mobile IPv6 [21] a static address is assigned to
each node. Mobile IP does not currently address end-host multi-homing,
but there are informal proposals floating around how a single mobile node
could use multiple home addresses and multiple care-of-addresses at the same
time [19]. Until recently, the largest unsolved problem in Mobile IPv6 was
achieving a scalable security solution. The currently proposed solution is
based on the ideas of relying on the routing infrastructure to check that a
mobile node is reachable both at its claimed home address and its claimed
current address (care-of-address): Return Routability (RR). This approach
is not very secure, even though it is claimed to be (almost) as secure as the
current IPv4 internet. Thus, there are discussions going on about better
proposals, e.g. hashing a public key and other information to the low order
bits of an IPv6 address.
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The mobility issue can also be treated at the Transport Layer like in
SCTP [22]. Stream Control Transport Protocol is an IETF proposed stan-
dard transport protocol, which may eventually replace TCP and perhaps
also UDP. In it, each communication process is associated with several IP
addresses. While the SCTP approach is sound as such, the proposed mobil-
ity extensions [23] are bound to be plagued with the same security problems
that Mobile IPv6 was recently hit. Since SCTP does not include explicit
end-point identifiers, solving the security issues in a scalable way may be
even harder than with Mobile IPv6.

Regarding multi-homing, the MULTI6 Working Group [24]from the IETF
has proposed several approaches to multi-homing for IPv6 in its published
RFCs. Apart from this, another group MONAMI6 [25] also investigates
multi-homing from the end-point point of view, and not from a site point of
view as the term ”multihoming” is commonly understood so far.

Within the framework of HIP and this thesis, [1] argues that HIP will
benefit from removing its current dependencies on the presence of a deployed
DNS infrastructure, resulting in a simpler, more modular system. It also
introduces a new resolution and rendezvous service which is further defined
in [5]. Moreover, our work follows [4] guidelines, which defines the mechanism
to register with a rendezvous service. Apart from this proposal, OpenDHT
[15] provides another way to map identities and locations.

1.3 Structure of this thesis

This thesis is structured as follows:
Chapter 2 details the state of the art of the Host Identity Protocol and

the several IETF drafts related to HIP. The different resolution problems
when using this new protocol are also pointed out as well as some resolution
mechanisms are explained here.

Chapter 3 presents our implementation of the Registration process with
a Rendezvous Server (RVS) and the implementation of the RVS itself. Some
contributions to drafts [4] [5] related to the Registration and Rendezvous
mechanisms are also pointed out in this Chapter.

Chapter 4 studies the performance of different resolution mechanisms by
testing some specific mobility scenarios in our own HIP network. These sce-
narios include the two resolution mechanisms identified as the most relevant
ones (Distributed Hash Table and Rendezvous Server), which we refer to in
Chapter 2.

To conclude, Chapter 5 summarizes the work done in this thesis and
discusses possible future work.



Chapter 2

State of the Art

The aim of this chapter is to describe the state of the art of the Host Identity
Protocol (HIP). All the technical background provided here is based on sev-
eral Internet Engineering Task Force (IETF) drafts [6] [8] available during
the preparation of this document.

The chapter is organized as follows: Section 2.1 gives a basic view of
how HIP works studying the intrinsics of the protocol from three different
perspectives: security, multi-homing and mobility. Afterwards Section 2.2
describes the resolution mechanisms designed to work with the current HIP
implementations. This Section focuses on three specific resolution mecha-
nisms: Domain Name System (DNS), Distributed Hash Tables (DHTs) and
Rendezvous Server (RVS).

2.1 Host Identity Protocol (HIP)

The Host Identity Protocol comes from the need to communicate every-
where anytime securily. For this reason, it was necessary to distinguish be-
tween topological locators and identifiers (today both roles played by IP
addresses). Thanks to this new approach, IP addresses act only as locators
while host identities are the identifiers themselves. This solution, though, re-
quires adding a new layer in the TCP/IP stack, the Identifiers layer, between
the Transport layer and the IP layer (Figure 2.1).

One of the issues completely defined in HIP is that the Host Identity (HI)
is the public key from a public/private key pair. This key can be represented
by the Host Identity Tag (HIT), a 128-bit1 hash of the HI, and has to be
globally unique in the whole Internet universe. Another representation of

1Note that 128 bits are the same size as IPv6 addressese so the same number of hosts
using this protocol could be allocated.

5
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Transport
Layer

Link Layer

IP Layer

Transport
Layer

Identities
Layer

IP Layer

Link Layer

Process

<IP address, Port> <Host Identity, Port>

IP address IP address

Host Identity

Process

Figure 2.1: Host Identity Protocol architecture

the HI is the Local Scope Identity (LSI) which is 32-bits2 size and can only
be used for local purposes.

We are going to describe the protocol under three main principles: secu-
rity, multi-homing and mobility, which are introduced in SubSections 2.1.1,
2.1.2 and 2.1.3.

As it may be a long time until HIP-aware applications are widely deployed
(even with HIP-enabled3 systems already upgraded), it is also interesting
to know what will happen during this transition. This is the main aim of
SubSection 2.1.4.

2.1.1 Security

In the original TCP/IP architecture, the host’s identity is implicitly authen-
ticated by the routing infrastructure. That is, since the hosts are identified
with IP addresses, and since IP addresses are the fundamental piece of data
used in routing, the very definition of the internetwork assures that the IP
packets are indeed sent to the intended hosts. In the new architecture, there
is no implicit binding between the host identifiers and the routing infras-
tructure. Thus, the implicit authentication does not exist any more, and
must be replaced with an explicit one. Additionally, we must address the

2Note that 32 bits is the same size as IPv4 addresses so the same number of hosts using
this protocol could be allocated.

3HIP-enabled systems support, for instance, a new address family AF HIP used for
creating a socket with a Host Identifier.
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problems of address stealing and address flooding. The first attack is per-
formed when a malicious node claims to own an address that some other
node is currently using, with the intention of launching a man-in-the-middle
or denial-of-service against the actual owner of the given address, while the
second attack is referred to a malicious node which makes a large number
of innocent peers nodes to believe that the attacker has become available
at a target address, causing the peer nodes to flood the target address with
unwanted traffic.

The address stealing and address flooding problems are not introduced
with the end-point concept or the new host identifiers. Instead, they are orig-
inated from the Dynamic binding between the hosts themselves and their IP
addresses. Thus, they also exist in environments that use Dynamic IP ad-
dress assignment: the address stealing and flooding problems are present even
in plain vanilla Mobile IP. Fortunately, introducing public key cryptography
based on host identifiers that are public keys makes it easier to address these
problems. In this section we look at the situation in more detail, starting
from the nature of the new identifiers, and continuing with the properties of
the new signalling protocols and functions.

Host Identifiers

The cryptographic nature of the Host Identifiers is the security cornerstone of
the new architecture. Each end-point generates exactly one public key pair.
The public key of the key pair acts as the Host Identifier. The end-point is
supposed to keep the corresponding private key secret and not disclose it to
anybody.

The use of the public key as the name allows a node to directly check,
via an end-to-end authentication procedure, that a party is actually entitled
to use its name. Compared to solutions where names and cryptographic
keys are separate, the key-oriented naming does not require any external
infrastructure to authenticate identity. In other words, no explicit Public Key
Infrastructure (PKI) is needed. Since the identity is represented by the public
key itself, and since any proper public key authentication protocol can be
used to check that a party indeed possesses the private key corresponding to
a public key, a proper authentication protocol suffices to verify that the peer
indeed is entitled to the name. But how can we trust that the authenticated
identity we are communicating with is the one we wanted to? If the mapping
between a known domain name and an identity (performed in the Domain
Name System - DNS) was hacked, then we could be actually contacting with
an unknown site, although securily, after the authentication protocol. For
this reason, when it is claimed that no explicit PKI is needed, it is as long as
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a secure protocol is used for the requests to the DNS (e.g., DNSSEC [26]).
However, this will be explained in more detail in Section 2.2.

This property of being able to verify the identity of any party without any
explicit external infrastructure is the very cornerstone of our new architec-
ture. It allows HIP to scale naturally, without requiring extra administrative
overhead and it is accomplished by performing an initial four-way handshake
known as HIP Base Exchange (HBE).

HIP Base Exchange (HBE)

The HIP Base Exchange (HBE) can be consider as a cryptographic key-
exchange protocol performed at the beginning of the communication. The
HIP Base Exchange is built around a classic authenticated Diffie-Hellman
key exchange, described in Appendix C.2, used to create a session key and
to establish a pair of IPSEC (also defined in Appendix C.1) Encapsulated
Security Payload (ESP) Security Associations (SAs) between the nodes. It
has to be mentioned that no certificates are required for the authentication
because the HITs are self-certifying4.

Thus, after exchanging the initial HIP Base Exchange (HBE) messages
as shown in Figure 2.2, both communicating hosts will know that at the
other end-point there indeed is an entity that possesses the private key that
corresponds to its Host Identifier. Additionally, the exchange will create a
pair of IPSEC Encapsulated Security Payload (ESP) Security Associations
(SAs), one in each direction. The hosts are supposed to use the ESP SAs to
protect the integrity of the packets flowing between them as well as secure
the signalling messages exchanged between the end-points.

By definition, the system initiating a HIP Base Exchange is the Initiator,
and the peer is the Responder. This distinction is forgotten once the Base
Exchange completes, and either party can become the Initiator in other future
communications.

In this section, we focus on the different messages exchanged during the
HBE as they are shown in Figure 2.2 and detailed in Figure 2.3 (not all the
possible parameters sent in the HBE are represented there).

All HIP packets contain the Initiator and Responder HIT in the header
(HITI , HITR) except from the first one which can be sent in opportunistic
mode. That is, if a host receives a start of transport without a HIP nego-

4A Host Identity self-certifies as a regular public-private key pair. If someone claims to
have a given public key, nobody can pretend to have the same public key unless he knows
the corresponding private key; so by keeping your private key, you make your public key
self-certifying. Furthermore, it is not computationally feasible to produce a matching HI
given the HIT.
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I1

R1

I2

R2

Initiator  Responder

Figure 2.2: HIP Base Exchange messages

tiation, it can attempt to force a HIP Base Exchange before accepting the
connection by sending an I1 but with NULL instead of HITR, cause it is not
known a priori. Note that the full benefits of HIP in security are only gained
in case of a known HITR, if not, it is almost impossible to defend the HIP
exchange against some attacks, because the public keys exchanged cannot
be authenticated. The only approach would be to require an R1, answering
an opportunistic I1, to come from the same IP address that originally sent
the I1. This procedure retains a level of security which is equivalent to what
exists in the Internet today.

Coming back to the HIP Base Exchange, the first packet, I1, initiates the
exchange, and the last three packets, R1, I2, and R2, constitute a standard
authenticated Diffie-Hellman key exchange for session key generation. During
the Diffie-Hellman key exchange, a piece of keying material is generated. The
HIP association keys (e.g, ESP and HMAC5 keys) are drawn from this keying
material. If other cryptographic keys are needed, they are expected to be
drawn from the same keying material.

The HBE is triggered by the Initiator by sending an empty I1 message to
the Responder. Before the Responder receives the I1 packet, it has already
computed a partial R1 message common for all possible communications with
other hosts. This pre-computed R1 includes the HITR, the Responder’s

5Described in Appendix C.4.
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Figure 2.3: Structure of HIP Base Exchange messages

Diffie-Hellman key DHR and the Responder’s Host Identifier HIR among
other possible parameters not mentioned here. The Responder signs this
pre-message with its private key. Once the I1 message is received, the Re-
sponder completes the R1 with the HITI received in the I1 and a PUZZLE

field whose level of difficulty will be adjusted based on level of trust on the
Initiator.

The PUZZLE parameter in R1 contains a cryptographic challenge which
the Initiator has to solve before sending the following I2 message. With this
puzzle, the Initiator is forced to perform some moderately brute-force com-
putation before the Responder creates any protocol state. Thus, resource
exhausting denial-of-service attacks6 are prevented by allowing the Respon-
der to increase the cost of the state start on the Initiator and reducing the
cost to the Responder. This PUZZLE parameter has three different com-
ponents: the puzzle nonce I, the difficulty level K and the solution J . The
Initiator has to solve the following equation7:

Ltrunc(SHA1(I|HITI |HITR|J), K) = 0 (2.1)

The Initiator must do a brute-force search for the value of J , which takes
O(2K) trials, and this challenge has to be solved in a certain amount of
time defined by the Responder also in the PUZZLE field. Increasing K

means increasing difficulty and computational cost on the Initiator. On the
other hand, the Responder can verify the solution J sent by the Initiator by

6DoS attacks that take advantage of the cost of setting up a state for a protocol on
the Responder (that is, storing some information) compared to the ’cheapness’ on the
Initiator.

7Find J such that the K lower bits of the hash of puzzle nonce I concatenated with
HITI , HITR and J itself are zero.
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computing a single hash.
When receiving R1, the Initiator checks first that it has already sent the

corresponding I1 and verifies the signature using the public key HIR (also
included in the R1 or stored in a new Resource Record (RR) in the DNS as it
will be explained in SubSection 2.2.1). If the signature is OK, then it solves
the puzzle and creates the I2. This message includes the PUZZLE param-
eter with its solution J , the Initiator Diffie-Hellman’s key DHI , a Security
Parameter Index (SPI)8 for the Responder-to-Initiator IPSEC Security Asso-
ciation (SA) and the Initiator public key HII , encrypted using a new session
key. This encryption is made with the secret key exchanged during the Diffie-
Hellman algorithm and it is done to make sure that the key exchange has
been succesful. The message also includes a signature as well as an HMAC
parameter which will be checked for the integrity of the message. Key ma-
terial for the session key (as well as HMAC integrity keys) is computed as
a SHA1 hash (defined in Appendix C.3) of the Diffie-Hellman shared secret
KIR:

KEY MAT = K1|K2|K3|...

where 9

K1 = SHA1( KIR|sort(HITI |HITR)|I|J |0x01)
K2 = SHA1( KIR|K1|0x02)
K3 = SHA1( KIR|K2|0x03)
. . .
K255 = SHA1( KIR|K254|0xff)
K256 = SHA1( KIR|K255|0x00)
. . . (2.2)

On receiving I2, the Responder verifies the puzzle solution J. If it is cor-
rect, it computes the session keys thanks to the Diffie-Hellman key exchange
already performed, decrypts HII and verifies the signature on I2. The Re-
sponder sends the R2 containing the Security Parameter Index (SPI) for the
Initiator-to-Responder IPSEC Security Association (SA), and HMAC (de-
fined in Appendix C.4) computed using the key material, and a signature.

8An SPI is an arbitrary value that uniquely identifies which Security Association (SA)
to use at the receiving host. The sending host uses the SPI to identify and select which
SA to use to secure every packet while the receiving one uses it to identify and select the
encryption algorithm and key used to decrypt packets.

9Note that sort(HITI |HITR) is defined as the network byte order concatenation of
the two HITs, with the smaller HIT preceding the larger HIT, resulting from the numeric
comparison of the two HITs interpreted as positive (unsigned) 128-bit integers in network
byte order.
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When the Initiator receives the R2, verifies the HMAC and the signature,
the HBE is concluded. The HMAC confirms the establishment of a session
key. For the Responder, the key confirmation is provided by the first inbound
IPSEC packet that is protected by the new security association since it cannot
be proved that the Initiator received R2 properly until the Responder receives
some data.

2.1.2 Multi-homing

Multi-homing refers to a situation where an end-point has several concurrent
communication paths that it can use. Usually multi-homing is the result of
either the host having several network interfaces (end-host multi-homing) or
the network between the host and the rest of the Internet having redundant
paths (site multi-homing). From our theoretical point of view, a multi-homed
end-host is a node that has two or more points-of-attachment with the rest
of the network. This is illustrated in Figure 2.4.

Topologically
slowly changing

internetwork

Possible points of
attachment

Multi-homed host

Singly-homed host

Singly-homed host
Singly-homed host

Figure 2.4: The multi-homing model

This situation can be characterized as the node being reachable through
several topological paths. The node is simultaneously present at several
topological locations. As a consequence, it also has several network layer
addresses, each of which reflects one of the topological locations. In the
general case, the addresses are completely independent of each other.
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With Host Identity Protocol, the host may notify the peer host of the
additional interface(s) by using the LOCATOR parameter. To avoid prob-
lems with the ESP anti-replay window10, a host will use a different Security
Association (SA) for each interface used to receive packets from the peer
host.

When more than one locator is provided to the peer host, the host will
indicate which locator is preferred. By default, the addresses used in the
Base Exchange are preferred until indicated otherwise.

Although the protocol may allow for configurations in which there is
an asymmetric number of SAs between the hosts (e.g., one host has two
interfaces and two inbound SAs, while the peer has one interface and one
inbound SA), it is recommended that inbound and outbound SAs be created
pairwise between hosts.

To add both an additional interface and SA, the host sends a LOCATOR
parameter with an ESP INFO. The host uses the same (or new) Security
Parameter Index (SPI) value provided in the LOCATOR and if both, the
“Old SPI” and “New SPI” values in the ESP INFO, are equal, this indicates
to the peer that the SPI is not replacing an existing SPI. The multi-homed
host waits then for a ESP INFO from the peer and an ACK of its own
UPDATE. Figure 2.5 illustrates the basic packet exchange.

UPDATE: ESP_INFO, LOC, SEQ, DH

UPDATE: ESP_INFO, SEQ, ACK, DH, ECHO_REQUEST

UPDATE: ACK, ECHO_RESPONSE

Peer hostMulti-homed
host

Figure 2.5: Multi-homed host announcing its locations

2.1.3 Mobility

As we said in Chapter 1, in this thesis we will mainly focus on the mobility
aspect of HIP. We define mobility as the phenomenon where an entity moves
while keeping its communication context active (see Figure 2.6). To move
means that an end-host changes its topological point-of-attachment. At the
same time, however, we want to make sure that all active communication

10IP Security (IPSEC) authentication provides anti-replay protection against an at-
tacker by duplicating encrypted packets and assigning a unique sequence number to each
encrypted packet. The decryptor keeps track of which packets it has seen on the basis of
these numbers. Because the decryptor has limited memory, it can presently track only the
last x packets: the window size.
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contexts remain active, and the processes do not see mobility other than,
possibly, in changes to the actually experienced quality of service. This is
possible because a new address family (AF HIP) is defined ,then applications
can perform system calls to an specific HIT and sockets to this HIT can be
created, independently from the IP address where the host is located. Notice
that in order to continue to communicate, the host must still signal the
changes in its addresses to its active peers. The signalling involved in this
process is called Readdressing mechanism.

Topologically
slowly changing

internetwork

Possible points of
attachment

Host in
transit

Mobile host

Mobile host

Mobile host

Mobile host

Figure 2.6: The mobility model

Readdressing mechanism

The Readdressing mechanism is triggered when a change of IP address bound
to an interface is performed. This might be needed due to a change in the
advertised IPv6 prefixes on the link, a reconnected PPP link, a new DHCP
lease, or an actual movement to another subnet (changing its topological
point-of-attachment in the network).

Currently, there are four different types of readdressing mechanisms and
every HIP implementation can perform one, some or all of them taking into
account its consequences. These readdressing mechanisms are all triggered
the same way which we will follow to explain. Later on, we summarize the
complete procedures.
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The mobile host is disconnected from the peerhost for a brief period of
time while it switches from one IP address to another. Upon obtaining a new
IP address, the mobile host sends a LOCATOR parameter to the peer host
in an UPDATE message. The LOCATOR indicates the new IP address and
the Security Parameter Index (SPI) associated with the new IP address, the
locator lifetime, and whether the new locator is a preferred locator.

The mobile host may optionally send an ESP INFO parameter into the
UPDATE packet to create a new inbound Security Association (SA). In this
case, the LOCATOR contains the new SPI to use. Otherwise, the existing
SPI is identified in the LOCATOR parameter, and the host waits for its
UPDATE to be acknowledged. In the first case, also a Diffie-Hellman key
exchange is performed, so then, new key material is created in both Initiator
and Responder. That process is called rekeying.

Depending on whether the mobile host initiated a rekey (by sending an
ESP INFO parameter with the new SPI and its Diffie-Hellman key), and
on whether the peer host itself wants to rekey, a number of responses are
possible. Figure 2.7 illustrates an exchange for which neither side initiates
a rekeying but for which the peer host does perform an address check by
requering an aknowlegment. If the mobile host is rekeying, the peer will also
rekey, as shown in Figure 2.8. If the mobile host did not decide to rekey but
the peer desires to do so, then it initiates a rekey as illustrated in Figure 2.9
and both rekey again. The UPDATE messages sent from the peer back to
the mobile are sent to the newly advertised address.

While the peer host is verifying the new address, the address is marked
as unverified. Once it has received a correct reply to its UPDATE challenge,
or optionally, data on the new SA, it marks the new address as active and
removes the old address.

UPDATE: ESP_INFO, LOC, SEQ

UPDATE: ESP_INFO, SEQ, ACK, ECHO_REQUEST

UPDATE: ACK, ECHO_RESPONSE

Peer host
Mobile host

Figure 2.7: Readdress without rekeying, with address check

2.1.4 Compatibility with the current architecture

Fully deployed, the HIP architecture will permit applications to explicitly re-
quest the system to connect to another named host by expressing a location-
independent name of the host when the system call to connect is performed.
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UPDATE: ESP_INFO, LOC, SEQ, DH

UPDATE: ESP_INFO, SEQ, ACK, DH, ECHO_REQUEST

UPDATE: ACK, ECHO_RESPONSE

Peer hostMobile host

Figure 2.8: Readdress with mobile-initiated rekey

UPDATE: LOC, SEQ

UPDATE: ESP_INFO, SEQ, ACK, DH, ECHO_REQUEST

UPDATE: ESP_INFO, SEQ, ACK, DH, ECHO_RESPONSE

UPDATE: ACK

Peer hostMobile host

Figure 2.9: Readdress with peer-initiated rekey

However, there will be a transition period during which systems become
HIP-enabled but applications are not.

When applications and systems are both HIP-aware [12], the coordination
between the application and the system can be straightforward. For example,
using the terminology of the widely used sockets API, the application can
issue a system call to connect to another host by naming it explicitly, and
the system can perform the necessary name-to-address mapping to assign
appropriate routable addresses to the packets. To enable this, as it was
previously mentioned, a new address family (AF HIP) is defined as well as
additional API extensions could also be defined (such as allowing IP addresses
to be passed in the system call, along with the host name, as hints of where
to initially try to reach the host).

To use HIP in the situation where the application is not HIP-aware and
a traditional IP-address-based API is used instead, a legacy API is defined
in [11].

The legacy API is based on the possibility of modifying the system call
that returns an IP address to the application, given a domain name, in order
to return a HIT instead. The “trick” is that the HIT is 128 bits long, the
same length as an IPv6 address, therefore the application will not notice that
is receiving a HIT and not an IP address from the resolver. The modified
system call would also return the actual IP address to the HIP stack. In case
of using IPv4, it is also possible to use a Local Scope Identifier (LSI) that is
32 bits long, the same than an IPv4 address

Thus, supporting the use of HITs and LSIs in place of IPv6 and IPv4
addresses, respectively, will lead to a transparent situation where Transport



2.2. Resolution Mechanisms 17

Protocols can handle one or the other with no more issues.

2.2 Resolution Mechanisms

Due to the introduction of a new global namespace (the host identities space),
HIP also affects the Internet’s current resolution services. Thus, the ren-
dezvous procedure and resolution mechanisms are becoming more complex.
The various alternatives for performing name and identity resolutions lead
to rendezvous procedures that offer significantly different characteristics. In
this section, we focus on three different types of resolution procedures: Do-
main Name System (DNS), Distributed Hash Tables (DHTs) and Rendezvous
Servers (RVS).

2.2.1 Domain Name System - DNS

The Domain Name System (DNS) is currently the Internet’s single global
resolution service. The DNS provides a two-way lookup service between
domain names (Fully Qualified Domain Names - FQDN) and their set of
corresponding IP addresses. However, HIP needs an additional resolution
step: domain names (FQDNs) now map into sets of hosts identities (HIs and
HITs) which in turn map into sets of IP addresses (Figure 2.10).

The additional HIP resolution step complicates the rendezvous procedure
by which two nodes establish a communication channel. In the current In-
ternet, the DNS maps the domain name (FQDN) of a remote node into its
set of IP addresses, which the local node may then use to address packets.
The address of each node’s DNS server is preconfigured. In the absence of
a preconfigured DNS server, nodes can still communicate HIP by using IP
address directly in opportunistic mode (sending the I1 with a NULL Respon-
der’s HIT).

One of the solutions with HIP was creating a new Resource Record (RR)
in the DNS [9]: HIPHI RR which stores the HI and the HIT of the registered
host (as well as possible Rendezvous Server’s domain name as it will be
explained in SubSection 2.2.3). But with this new RR you would only get the
identity bound to that domain name, that is, the Responder’s Host Identifier
(HIR) and Host Identity Tag (HITR). The location of the identity (IPR)
is still unknown. Thus a second lookup is needed that resolves the identity
to an IP address. This could be done by creating a new mapping in the
DNS (HIT to IP address) as shown in Figure 2.11 but this may also mean
overloading DNS functions.

Mobility is one of the main principles of Host Identity Protocol therefore
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Domain Name

IP address

DNS
lookup

(a) Domain Name resolution without
HIP

Domain Name

Host Identity

IP address

DNS

lookup

HIP

lookup

(b) Domain Name resolution with
HIP

Figure 2.10: Domain Name resolution

R1
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R2

1. HIr, HITr

Initiator

DNS

Responder

FQDNr HIr, HITr

HITr IPr

I1

2. HITr ?
1. FQDNr ?

HIPHI RR

2. IPr

Figure 2.11: HIP Base Exchange using DNS as double resolver.
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HIP should support mobile nodes that move rather frequently. This need to
support mobility makes the DNS, even including the second mapping (HIT
to IP address), a bad candidate to be a resolution mechanism. Although it
was allowed Dynamic DNS where clients could update their location, a note-
worthy consequence of the distributed and caching architecture of the DNS
is that changes are not always immediately globally effective. This draw-
back essentially leads to an important logistical consideration when making
changes to the DNS: not everyone is necessarily seeing the same thing you’re
seeing. This is because DNS uses cache servers to avoid overloading the
primary servers, but the consequence is that when the primary servers are
updated, the caches might still be serving the old IP addresses. Actually,
when a modification in a store record of a DNS server is performed, there is
no control over the amount of time the record is cached so the propagation
delay could be too high for frequent mobile nodes.

As conclusion, we can say that DNS is a good choice for the domain name
to identity resolution (FQDNR to HIR and HITR), but not for mapping HIT
to IP addresses. The importance of mobility lead us to study new technolo-
gies like Distributed Hash Tables (DHT) (which definitely are a better choice
for the second mapping rather than DNS), although other new mechanism
like the Rendezvous Server (RVS) will also be studied.

2.2.2 Distributed Hash Table - DHT

A better option to use with Host Identity Protocol as a HIP lookup service
would be the use of Distributed Hash Tables (DHTs). The Host Identity
namespace is flat, consisting of public keys, in contrast to the hierarchical
Domain Name System. These keys are hashed to form Host Identity Tags
(HITs) which appear as large random numbers.

DHTs are a class of decentralized distributed systems that partition own-
ership of a set of keys among participating nodes, and can efficiently route
messages to the unique owner of any given key. Each node is analogous to
a bucket in a hash table. Unlike existing master/slave database replication
architectures, DHTs are typically designed to scale to large numbers of nodes
and to handle continual node arrivals and failures11. This infrastructure can
be used to build more complex services, such as distributed file systems, peer-
to-peer file sharing systems, cooperative web caching, multicast, anycast, and
domain name services.

Each node in a DHT maintains a set of links to other nodes (its neighbours
or routing table). Together these form the overlay network, and are picked

11When one node leaves, it copies all of its stored information to its predecessor.
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in a structured way, called the network’s topology. All DHT topologies share
some variant of the most essential property: for any key k, the node either
owns k or has a link to a node that is closer to k in terms of the keyspace
distance defined above. It is then easy to route a message to the owner of
any key k using the following greedy algorithm: at each step, forward the
message to the neighbour whose ID is closest to k. When there is no such
neighbour, then this is the closest node, which must be the owner of k as
defined above. This style of routing is sometimes called key based routing.

For instance in OpenDHT [15], an opensource DHT implementation that
we have used in this thesis, when a mobile node wants to store a HIT with
the corresponing itdata (IP address and a value for the lifetime we want to
store the mapping in the DHT), the SHA-1 hash of the Host Identifier (HI) is
found, producing a 128-bit key k (the Host Identity Tag (HIT)). Thereafter,
a message put(k,data) is sent to any node participating in the DHT. The
message is forwarded from node to node through the overlay network until
it reaches the single node responsible for key k as specified by the keyspace
partitioning, where the pair (k,data) is stored. One of the problems with the
current available OpenDHT is that no HIP signatures are used to validate
the put() requests, so then, the OpenDHT service does not currently prevent
an attacker from polluting the DHT records for a known HIT.

When a client (Initiator) wants to contact with a node which HIT and
IP address is stored in a DHT, it can then retrieve the contents of the Re-
sponder’s HIT by asking any DHT node to find the data associated with the
key k (Responder’s HIT) with a message get(k). The message will again be
routed through the overlay to the node responsible for k, which will reply
with the stored data.

To handle mobility, when a host which had already registered its HIT and
IP address changes its location, it just have to send another put(HIT, data)
to any node of the DHT. Thus, the updating process in the DHT is really
straightforward, without the problems we found with DNS, where updating
the caches may be quite slow.

Another issue when using DHTs is detected when two hosts which are
communicating via HIP modify their location at the same time. While this
change happened, some packets would be lost and the communication may
finish.

The complete picture for the resolution would include a DNS lookup to
find out the mapping between domain name and identity (FQDNR to HIR

and HITR mapping) and a DHT lookup to find the IPR from the HITR, but
then the Initiator must be preconfigured with the IP:port of one member of
the DHTs to perform the HIP lookup (Figure 2.12).

The lack of security when no HIP signatures are used to validate the put()
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Figure 2.12: HIP Base Exchange using DHT and DNS.

requests and the packet losses due to a double-jump12 are two problems when
using DHTs. Both issues could be solved by Rendezvous Servers acting as
resolvers and packet forwarders. But, how does really function a Rendezvous
Server?

2.2.3 Rendezvous Server - RVS

In order to start the HIP Base Exchange, the Initiator node has to know how
to reach the mobile node. A new possibility is using a piece of new static
infrastructure to facilitate rendezvous (”contact point”) between HIP nodes:
the Rendezvous Server.

The mobile node keeps the rendezvous infrastructure continuously up-
dated with its current IP address(es). The rendezvous mechanism is also
needed if both of the nodes happen to change their address at the same time.
In such a case, the HIP readdress packets will cross each other in the network
and never reach the peer node.

Thus, Rendezvous server (RVS) is designed to support double-jump sce-
narios - simultaneous host-mobility. Both the initial HIP Base Exchange
and the location updates during a HIP session work only, if one of the com-
municating hosts is stationary and has an unchanging IP address. A RVS
functions as a fix point in a network and it keeps track of host mobile nodes.

12Two mobile nodes change their location at the same time.
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For this to work, the host mobile nodes have to register with their HIs as
Rendezvous Clients (RVClient) on a RVS for a Rendezvous Service (RVServ).
This means that if an Initiator does not know the IP address of a Responder
(mobile node) and the Responder has registered RVServ on a RVS, the Ini-
tiator can send the I1 message containing the Responder’s HI to a RVS with
known IP address. The RVS then relays the I1 message to the Responder as
shown in Figure 3.5.

R1

I2

R2

I1 I1

ResponderInitiator

RVS

Figure 2.13: HIP Base Exchange with RVS

But how do we know the IP of the RVS where the peer is registered? For
this reason it is necessary the addition of a new Resource Record (RR) in
the DNS called IPRVS13. Thus, the complete procedure includes: i) the reg-
istration of the mobile peer’s IP address in the RVS (HITR to IPR mapping)
and ii) another registration of the mobile peer’s domain name and its RVS
IP address in the DNS (FQDNR to HIR, HITR and FQDNRV S mapping).
Then, the host requests whatever information from the DNS sending the
peer’s domain name (FQDNR) and receives the peer’s RVS domain name
(FQDNRV S) and the HI/HIT of the peer itself (HIR, HITR). With this in-
formation, it performs another lookup requesting the IP address of the RVS
(IPRV S), given the RVS domain name (FQDNRV S) provided in the first
lookup. Done this, a complete HIP Base Exchange between the Initiator and
the Responder can be performed as seen in Figure 2.14, but we will give the
detailed information in Chapter 3.

Note, moreover, that the Rendezvous Server is considered a static third
party so then the IP address stored in the DNS doesn’t have to be modified.

13Remember that with DHTs, the IP:port of one member must be preconfigured. There
is no extension in the DNS about DHTs.
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Figure 2.14: HIP Base Exchange with RVS and DNS

However, may be possible that, in the future, new uses for the RVS could be
deployed and it would become a not frequent mobile party. In this case, the
use of Dynamic DNS should be useful for these infrequent modifications of
the RVS’s location.

At this point, we claim that the use of Rendezvous Servers is a complete
solution for the HIP resolution procedure. However, some performance is
needed to assess its suitability, which will be seen in Chapter 4.



Chapter 3

RVS and Registration
Implementations

In this chapter we present our implementation of a Rendezvous Server (RVS)
and its Registration mechanism following the instructions of the following
IETF drafts: draft-ietf-hip-registration ([4]) and draft-ietf-hip-rvs ([5]).

The Chapter is organized in the following manner: Section 3.1 defines
the main concepts which will be used throughout this chapter. Section 3.2
describes in a detailed way how the Registration mechanism works, following
the guidelines of draft [4]. In the same manner, Section 3.3 details the mecha-
nism used with a Rendezvous Server following draft [5]. To conclude, Section
3.4 specifies different functionality problems detected when implementing the
mechanisms mentioned above, following the guidelines indicated in the for-
mer drafts.

3.1 Terminology

In this section we describe some terminology that will be used in this chapter.

• Registrar. A HIP node offering registration for one or more services.

• Requester. A HIP node registering with a HIP registrar to request
registration for a service.

• Service. A facility that provides requesters with new capabilities or
functionalities operating at the HIP layer. In our implementation we
refer to a HIP Rendezvous server, but a service includes firewalls and
other middleboxes that support HIP traversal.

24
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• Registration. Shared state stored by a requester and a registrar, allow-
ing the requester to benefit from one or more HIP services offered by
the registrar. Each registration has an associated finite lifetime. Re-
questers can extend established registrations through re-registration1.

• Registration Type. An identifier for a given service in the registra-
tion protocol. For example, the rendezvous service is identified by the
specific registration type 1.

• Rendezvous Service(S). A HIP service provided by a Rendezvous Server
to its rendezvous clients. The Rendezvous Server offers to relay some
of the arriving base exchange packets between the Initiator and Re-
sponder.

• Rendezvous Server (RVS). A HIP registrar providing rendezvous ser-
vice.

• Rendezvous Client (RVClient). A HIP requester that has registered for
rendezvous service at a Rendezvous Server.

• Rendezvous Registration. A HIP registration for rendezvous service,
established between a Rendezvous Server and a rendezvous client.

3.2 Registration Mechanism

The registration mechanism for the Host Identity Protocol (HIP) allows hosts
to register with services, such as HIP rendezvous servers or middleboxes. In
our case, it was necessary to implement this mechanism due to the fact that
a mobile node willing to be reachable for any other node has to perform a
specific procedure with a registrar offering rendezvous service(s) (Rendezvous
server).

In this thesis we don’t specify the means by which a requester discovers
the availability of a service, or how a requester locates a registrar. Once a
requester has discovered a registrar, it either initiates HIP base exchange or
uses an existing HIP association with the registrar. In both cases, registrars
use additional parameters which announce their quality and grant or refuse
registration. In the same way, requesters use corresponding parameters to
register with the service.

The following subsections will describe the differences between this reg-
istration handshake and the standard HIP base exchange [6]. In short, the

1We will refer re-registration as an update procedure.
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registration process will vary depending on wether a previous HIP association
with the RVS exists or not. Figures 3.1 and 3.2 illustrate this situation.

I1

R1:  REG_INFO(S1, S2, S3)

I2: REG_REQUEST(S3)

R2:  REG_RESPONSE(S3)

Services

provided by

the Registrar:
S1, S2, S3

RegistrarRequester

Figure 3.1: Registration with no previous HIP association created.

UPDATE:  REG_REQUEST(S3)

UPDATE:  REG_RESPONSE(S3)

Services
provided by

the Registrar:
S1, S2, S3

Requester Registrar

Figure 3.2: Registration with previous HIP association created. Also called re-
registration or update process.

The first hipothesis (not previous HIP association created) will be used
for subsections: i)Registrar announcing its ability, ii)Requester requesting
registration and iii)Registrar granting or refusing service(s) registration. For
the last subsection (Establishing and maintaining registrations), we will take
for granted that a HIP association is already created (second hipothesis).

Note that messages I1, R1, I2 and R2 shown in Figures 3.1 and 3.3 in-
clude the same parameters than in the HIP Base Exchange(HITI , HITR,
the puzzle ...) and some other only necessary for the registration process
(REG INFO, REG REQUEST ...) which are explicitly defined here.

3.2.1 Registrar announcing its ability

A host that is capable and willing to act as a registrar (R) includes a
REG INFO parameter in the R1 packets it sends during all HIP base ex-
changes in order to announce its registration capabilities. The registrar can
also include the parameter in UPDATE packets when its service offering has
changed.

The REG INFO parameter includes the minimum and maximum lifetime
permitted by the registrar to provide the different services it has, apart from
the services themselves (S1, S2, S3 ...).
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3.2.2 Requester requesting registration

To request registration with a service, a requester (RQ) constructs and in-
cludes a corresponding REG REQUEST parameter in the I2 it sends to the
registrar. This minimizes the number of packets that need to be exchanged
with the registrar.

A registrar can finish a HIP Base Exchange that does not carry a REG RE
QUEST by including a NOTIFY parameter with the type REG REQUIRED
in the R2. In this case, no HIP association is created between the hosts
(Figure 3.3).

I1

R1:  REG_INFO(S1, S2, S3)

I2

R2:  NOTIFY (REG_REQUIRED)

Services

provided by
the Registrar:

S1, S2, S3

RegistrarRequester

Figure 3.3: Error case during the registration process with no successful HIP
association (NOTIFY).

The requester must not include more than one REG REQUEST param-
eter in its I2 since this parameter specifies the different services a requester
wants to join and the lifetime registration it needs for all of them.

When the registrar is requested a registration which lifetime is either
smaller or greater than the minimum or maximum lifetime offered by the
registrar (and shown in REG INFO), respectively, then it will grant the
registration for the minimum or maximum lifetime, respectively. Further
explanation on lifetimes and maintaining registered services are in Subsection
3.2.4.

3.2.3 Registrar granting or refusing service(s) registra-
tion

Once registration has been requested, the registrar is able to authenticate
the requester based on the host identity included in I2. It then verifies the
host identity is authorized to register with the requested service(s), based
on local policies. The details of this authorization procedure depend on the
type of requested service(s) and on the local policies of the registrar, and are
therefore out of the scope of this thesis.
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After authorization, the registrar includes in its R2 a REG RESPONSE
parameter containing the service(s) type(s) for which it has authorized regis-
tration, and zero or more REG FAILED parameter containing the service(s)
type(s) for which it has not authorized registration or registration has failed
for other reasons. In particular, REG FAILED with a failure type of zero
indicates the service(s) type(s) that require further credentials for registra-
tion. Type 1 means that the requester asked for a registration type which is
not offered by the registrar.

If the registrar requires further authorization and the requester has ad-
ditional credentials available, the requester should try again to register with
the service after the HIP association has been established. Note that if HBE
has already been performed, this four handshake will not be used to per-
form another try as in Figure 3.1 since there is already established a HIP
association. This is performed under the second hipothesis (HIP association
already created) made in subsection Establishing and maintaining registra-
tions as shown in Figure 3.2. Furthermore, this will happen not only in case
additional credentials have to be shown to the registrar but in other failure
cases and the willingness of the requester of a second attempt.

Successful processing of a REG RESPONSE parameter creates registra-
tion state at the requester. In a similar manner, successful processing of a
REG REQUEST parameter creates registration state at the registrar and
possibly at the service. Both the requester and registrar can cancel a reg-
istration before it expires, if the services afforded by a registration are no
longer needed by the requester, or cannot be provided any longer by the
registrar (for instance, because its configuration has changed).

3.2.4 Establishing and maintaining registrations

Establishing a registration after a failure case (not the NOTIFY one) or
maintaining it after the registration lifetime has ended will not perform a
HIP Base Exchange again, since there is already an existing HIP association
created between the requester and the registrar (Figure 3.2).

Under this hipothesis, the requester will send an UPDATE packet with
a REG REQUEST parameter (and the possible correct values for the ser-
vice) in order to success in the registration of the wanted service. On the
other hand, once the lifetime ends, the registrar will inmediately cancel all
the services corresponding to that requester unless this last triggers a re-
registration, before the services finish, by sending the UPDATE packet with
the REG REQUEST parameter as we previously mentioned.

Thus, when the REG REQUEST parameter is inside an UPDATE packet,
the registrar must not modify the registrations of registration types which
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are not listed in this parameter. Moreover, the requester must not include
the parameter unless the registrar’s R1 or UPDATE packets have contained
a REG INFO parameter with the requested registration types. Thus, a
REG REQUEST parameter will only be included in an UPDATE packet
if i)the registrar already showed the services it is providing in a REG INFO
parameter in the R1 during the HIP Base Exchange (as a second attempt due
to a failure or the first update of the service registration) or ii)the registrar
already showed the services it is providing in a REG INFO parameter in an
UPDATE because some changes happened in its configured offered services.

The requester must not include more than one REG REQUEST param-
eter in its UPDATE packets and the registrar should include a REG RESP
ONSE parameter in its UPDATE packet only if a registration has success-
fully completed.

The minimum lifetime both registrars and requesters must support is 10
seconds, while they should support a maximum lifetime of, at least, 120 sec-
onds. These values define a baseline for the specification of services based
on the registration system. They were chosen to be neither to short nor too
long, and to accommodate for existing timeouts of state established in mid-
dleboxes (e.g. NATs and firewalls). Specifically, in our RVS implementation,
we used one week as a default lifetime.

A zero lifetime is reserved for cancelling purposes. Requesting a zero life-
time for a registration type equals to cancelling the registration of that type.
Furthermore, a registrar (and an attached service) may cancel a registration
before it expires, at its own discretion by sending a REG RESPONSE with
a zero lifetime to all registered requesters.

3.3 Rendezvous Server

This section defines a rendezvous extension for the Host Identity Proto-
col (HIP) which is used to initiate a communication between HIP nodes.
Rendezvous servers improve reachability and operation when HIP nodes are
multi-homed or mobile as explained in Chapter 2.

The Host Identity Protocol architecture defined in [7] introduces the ren-
dezvous mechanism to help a HIP node to contact a frequently moving HIP
node. The rendezvous mechanism involves a third party, the Rendezvous
Server (RVS), which serves as an initial contact point (“rendezvous point”)
for its clients. The clients of an RVS are HIP nodes that use the HIP Reg-
istration Protocol [4] to register their HIT to IP address mappings with the
RVS. After this registration, other HIP nodes can initiate a base exchange
using the IP address of the RVS instead of the current IP address of the
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node they attempt to contact as it was mentioned in Chapter 2. Essentially,
the clients of an RVS become reachable at the RVS’ IP addresses. Peers can
initiate a HIP base exchange with the IP address of the RVS, which will re-
lay this initial communication such that the base exchange may successfully
complete.

Figure 3.4 shows a simple HIP base exchange without a Rendezvous
Server, in which the Initiator initiates the exchange directly with the Re-
sponder by sending an I1 packet to the Responder’s IP address, as defined
in the HIP base specification [6].

I1

R1

I2

R2

Initiator Responder

Figure 3.4: HIP base exchange without Rendezvous Server.

Proposed extensions for mobility and multi-homing [8] allow a HIP node
to notify its peers about changes in its set of IP addresses. These extensions
presumes initial reachability of the two nodes with respect to each other.

However, such a HIP node may also want to be reachable to other future
correspondent peers that are unaware of its location change. The HIP ar-
chitecture [7] introduces rendezvous servers with whom a HIP node registers
its host identity tags (HITs) and current IP addresses. An RVS relays HIP
packets arriving for these HITs to the node’s registered IP addresses. When
a HIP node has registered with an RVS, it records the IP address of its RVS
in its DNS record, using the HIPRVS DNS record type as we commented in
Chapter 2.

Figure 3.5 shows a HIP base exchange involving a Rendezvous Server.
It is assumed that HIP node R previously registered its HITs and current
IP addresses with the RVS, using the HIP registration protocol [4]. When
the Initiator I tries to establish contact with the Responder R, it must send
the I1 of the base exchange either to one of R’s IP addresses (if known via
DNS or other means) or to one of R’s rendezvous servers instead. Here, I
obtains the IP address of R’s Rendezvous Server from R’s DNS record and
then sends the I1 packet of the HIP base exchange to RVS. RVS, noticing
that the HIT contained in the arriving I1 packet is not one of its own, checks
its current registrations to determine if it needs to relay the packets. In
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case the HIT sent in I1 is not registered in the RVS, it will silently drop the
packet. However, if it determines that the HIT belongs to R, it will relay the
I1 packet to the registered IP address. R then completes the base exchange
without further assistance from RVS by sending an R1 directly to the I’s IP
address, as obtained from the I1 packet. In this specification the client of the
RVS is always the Responder. However, there might be reasons to allow a
client to initiate a base exchange through its own RVS, like NAT and firewall
traversal but this thesis does not address such scenarios.

R1

I2

R2

I1 I1

ResponderInitiator

RVS

Figure 3.5: HIP base exchange with a Rendezvous Server.

The functions of a Rendezvous Server can be further divided in three
main parts: i)Rendezvous client registration, ii)Relaying the Base Exchange
and iii)Updating a rendezvous service.

3.3.1 Rendezvous client registration

Before a Rendezvous Server starts to relay HIP packets to a rendezvous
client, the rendezvous client needs to register with it to receive the rendezvous
service by using the HIP registration extension [4] explained in section 3.2
and illustrated in Figure 3.6. The registration type used in the REG INFO
and REG REQUEST is defined as 1 when related to rendezvous service.

3.3.2 Relaying the Base Exchange

If a HIP node and one of its rendezvous servers have a rendezvous registra-
tion, the rendezvous servers relay inbound I1 packets that contain one of the
client’s HITs by rewriting the IP header. They replace the destination IP
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I1

R1: REG_INFO(1)

R2: REG_RESPONSE(1)

I2: REG_REQUEST(1)

RVClient
 RVS

Figure 3.6: Registration mechanism with a Rendezvous server.

address of the I1 packet with one of the IP addresses of the owner of the
HIT, i.e., the rendezvous client. They must also recompute the IP checksum
accordingly. Because this replacement conceals the Initiator’s IP address,
the RVS must append a FROM parameter containing the original source IP
address of the packet.

R1: R, I, HIT-R, HIT-I, VIA_RVS(RVS)

I2: I, R, HIT-I, HIT-R

R2: R, I, HIT-R, HIT-I

I1: I, RVS, HIT-I, HIT-R I1: RVS, R, HIT-I, HIT-R, FROM(I)

ResponderInitiator

RVS

I: IP Initiator

R: IP Responder

RVS: IP RVS

Figure 3.7: Relaying the Base Exchange via a Rendezvous server.

The RVS will verify the checksum field of an I1 packet before doing any
modifications. After modification, it recomputes the checksum field using the
updated HIP header, which included new FROM parameter, and a pseudo-
header containing the updated source and destination IP addresses. This
enables the Responder to validate the checksum of the I1 packet ”as is”.

Because the I1 does not include any SIGNATURE parameter, these two
end-to-end integrity checks are unaffected by the operation of rendezvous
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servers.
The following subsections describe the differences of processing of I1 and

R1 while a Rendezvous Server is involved in the base exchange.

Processing outgoing I1 packets

An Initiator should not send an opportunistic I1 with a NULL destination
HIT to an IP address which is known to be a Rendezvous Server address,
unless it wants to establish a HIP association with the Rendezvous Server
itself and does not know its HIT.

When an RVS rewrites the source IP address of an I1 packet due to
egress filtering2, it must add a FROM parameter to the I1 that contains the
Initiator’s source IP address.

Processing incoming I1 packets

When a Rendezvous Server receives an I1 whose destination HIT is not its
own, it consults its registration database to find a registration for the ren-
dezvous service established by the HIT owner. If it finds an appropriate
registration, it relays the packet to the registered IP address. If it does not
find an appropriate registration, it drops the packet.

A Rendezvous Server interprets any incoming opportunistic I1 (i.e., an
I1 with a NULL destination HIT) as an I1 addressed to itself and will not
attempt to relay it to one of its clients.

Processing outgoing R1 packets

When a Responder replies to an I1 relayed via an RVS, it will append to the
regular R1 header a VIA RVS parameter containing the IP addresses of the
traversed RVS’s.

Processing Incoming R1 packets

The HIP base specification [6] mandates that a system receiving an R1 must
first check to see if it has sent an I1 to the originator of the R1. When the

2Egress filtering allows you to control the traffic that is headed out from your network
and restrict activity to legitimate purposes. The addition of a simple rule to your border
router and/or firewall allows you to provide a good deal of protection against many cate-
gories of malicious activity: “No outbound traffic bears a source IP address not assigned
to your network”. Adding this rule could mean the prevention of a major headache in
the event a malicious individual attempts to use your site as a launching point for a DoS
attack.
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R1 is replying to a relayed I1, this check will be based on HITs only and in
case the IP addresses are also checked, then the source IP address must be
checked against the IP address included in the VIA RVS parameter. The
main goal of using the VIA RVS parameter is to allow operators to diagnose
possible issues encountered while establishing a HIP association via an RVS.

After this happens both the Initiator and the Responder can finish the
HIP Base Exchange without further assistance from an RVS as well as com-
municating sending other HIP packets between them.

3.3.3 Updating and maintaining a rendezvous service

A mobile node which changes its point-of-attachment in the network (IP ad-
dress) and has several HIP associations with other nodes (including a Ren-
dezvous Server) must make these nodes aware of the modification. This is
performed by the readdressing process we already explained in Chapter 2.

Updating the change to a non-RVS node means changing the mapping
between HIT and IP in the HIP association between them. Apart from this,
updating a RVS node will also modify the IP address in the mapping HIT to
IP in the HIP registration service so then the mobile node will be reachable
to possible new HIP associations with other nodes via its RVS. This is shown
in Figure3.8.

UPDATE: ESP_INFO, LOC, SEQ, DH, REG_REQUEST(1)

UPDATE: ESP_INFO, SEQ, ACK, ECHO_REQUEST, REG_RESPONSE(1)

UPDATE: ACK, ECHO_RESPONSE

Mobile host
 RVS

Figure 3.8: Updating a change of point-of-attachment to a Rendezvous server.

To maintain registration after the lifetime assigned by the RVS has ended,
it will not be performed a HIP Base Exchange again, since there is already
an existing HIP association created between the RVClient and the RVS. As
explained in Section3.2, the RVClient will send an UPDATE packet with
a REG REQUEST parameter with an appropiate lifetime and registration
type 1 to the RVS (before the lifetime of the registration has completely
expired). The RVS will respond with another UPDATE packet including a
REG RESPONSE parameter if the registration completed successfully or a
REG FAILED if there was any error. This is shown in Figure 3.9.
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UPDATE:  REG_REQUEST(1)

UPDATE:  REG_RESPONSE(1)RVClient
RVS

Figure 3.9: Maintaining a registration in a Rendezvous server.

3.4 Contributions

While implementing the code related to the registration mechanism and the
Rendezvous Server, several issues had to be solved. Some of them only
implied modifications of the HIP implementation we were using for our ex-
periments (Openhip), but some other also became modifications in some
definitions of the drafts [5], [4] and [6]. These changes didn´t modify the
HIP essence; actually, they referred to details found while implementing an
extension of the HIP protocol never implemented before.

The first problem we found was related to the HIP state machine detailed
in the Appendix B. Imagine that a registration process between a host and a
Rendezvous Server ends with an error: the RVClient receives an R2 message
with a REG FAILED parameter. As it was explained in Section 3.2, the
RVClient may want to do a second attempt to register with the RVS. In this
case, since the HIP association is already established (although not the HIP
registration), no HIP Base Exchange will be used again. Instead, a two-way
handshake UPDATE process will be performed in which the RVClient sends
first an UPDATE with a REG REQUEST parameter and the appropiate
values to be able to register this time.

Following the definition of the HIP state machine, a node can only receive
an UPDATE message in case it is in the ESTABLISHED state. As anyone
could suppose wrongly, once the HIP Base Exchange has successfully com-
pleted, only the Initiator (in our experiment the RVClient) has transitioned
to this state, while the Responder (RVS) is still in the R2-SENT state. This
is due to the fact that the Responder at this moment has no way to know
that the Initiator has received correctly its R2 packet. Because of this, the
Responder will only transit to state ESTABLISHED in case it receives data
from the Initiator (via the Security Association (SA) created between them)
or a timeout preconfigured has passed by.

Under the hipothesis of our experiment, the Initiator (RVClient) will send
an UPDATE packet to the Responder (RVS) while this one is still in the R2-
SENT state. For this reason, and upon agreement with the IETF Working
Group, it was decided to create a new transition between R2-SENT and
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ESTABLISHED states whenever an UPDATE packet is received. Doing it
this way, it was not necessary hardcoding our implementation with values
only acceptable for it. The complete process is shown in Figure 3.10.

I1

R1: REG_INFO(1)

R2: REG_FAILED(1)

I2: REG_REQUEST(14)
RVS

UPDATE: REG_RESPONSE(1)

UPDATE: REG_REQUEST(1)

HIP association completed

RVClient

HIP registration failed

Figure 3.10: Establishing a registration with a Rendezvous Server after a failure
in the first attempt.

Some other issues, less significant than the above mentioned, were defining
new error cases while our implementation was being tested.

It was quite clear that if the Requester asks for a service which is not
provided by the Registrar, this last one will answer with an error included
in the parameter REG FAILED. In the current draft, there was only one
error defined which was the one generated when requiring further credentials
for registration (error type 0). Thus, it was added another error type (now,
error type 1) to include all the processes which include the situation explained
before.

Upon agreement with the IETF Working Group, it was decided not to
create a new error type in case the Registrar is requested a registration which
lifetime is out of the range provided by it. Instead, it was agreed that if the
requested lifetime is smaller than the minimum one offered by the registrar,
it will grant the registration for the minimum lifetime. Respectively, if re-
quested lifetime is greater than the maximum one offered by the registrar, it
will grant the registration for the maximum lifetime.



Chapter 4

Performance Evaluation

The aim of this chapter is to evaluate the efficiency and signalling costs
introduced by the Host Identity Protocol (HIP) and the different rendezvous
mechanisms studied so far. We will mainly focus on mobility scenarios: which
resolution mechanism is able to perform a readdressing in less time? That
is a critical parameter in the performance of handovers, and therefore has a
direct impact on the quality of the communications, e.g. VoIP, that will run
over HIP.

This chapter will show the pros and cons, and the performance mainly in
terms of delays introduced, when we have two hosts communicating without
HIP, when these two hosts communicate directly via HIP, or when these two
hosts communicate via HIP and use a resolution mechanism. Only the map-
ping HIT to IP will be considered as a part of the resolution mechanisms and
the study presented here will focus on DHTs and RVSs as possible candidates
for HIP resolution mechanisms. The solution based on DNS is discarded be-
cause it clearly fails as HIP resolution mechanism as it was explained in
Chapter 2.

In the previous chapters we have been seeing the different benefits that
HIP introduces but, of course, there is a price to pay in terms of signalling.
For instance, HIP introduces a new handshake at the beginning of the com-
munication, the HIP Base Exchange, or new procedures to register with a
regitrar or to perform a readdressing. This Chapter will evaluate the delay
introduced by these new handshakes. In order to do so, we define four basic
scenarios and we test the performance of the handshakes allowed in each of
them, see Figure 4.1:

1 Scenario A: No Host Identity Protocol (HIP) used. Experiments per-
formed: RTT measurement.

2 Scenario B: HIP with no resolution mechanism for the mapping HIT to
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IP address. Experiments performed: HIP Base Exchange, Readdress-
ing and RTT measurement.

3 Scenario C: HIP with Distributed Hash Table (DHT). Experiments
performed: HIP Base Exchange, Readdressing, Registration and RTT
measurement.

4 Scenario D: HIP with Rendezvous Server (RVS). Experiments per-
formed: HIP Base Exchange, Readdressing, Registration and RTT
measurement.

Scenario A

Scenario B

Scenario C Scenario D

No HIP HIP

HIP with no Resolution
mechanism

HIP with Resolution
mechanism

HIP + DHT HIP + RVS

RTT

RTT

Readdressing

HIP Base Exchange

RTT

Readdressing

HIP Base Exchange

Registration

Figure 4.1: Experiments performed in each Scenario evaluated.

This Chapter is organized as follows: first we mention the software used
in this performance evaluation1. Then, the general setup and the description
of the different experiments are introduced. Finally, the performance of each
one of the experiments is described and we discuss the results by looking first
at every escenario and later discussing later all of them, from a global point
of view.

1Notice that even though the concrete values shown in this chapter are completely
dependent on the software we have used, the general tendences that we show are valid
because they depend on the structure of the protocol and not on our implementation.
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4.1 Software

This section shortly introduces the software that has been used to perform
the tests described in this chapter. This includes the HIP implementation
itself and some other tools.

OpenHIP

All tests are based on the OpenHIP project [14], which was the chosen im-
plementation to develop the Rendezvous Server and Registration extensions.
This thesis used the 0.3 release for its experimental evaluation since it was
the one used in the development process. It was used the kernel patched
mode of OpenHIP, which is based on a modified Linux 2.6.11 kernel with
the HIP-layer implemented and a HIP daemon running over it. The exten-
sions developed as part of this thesis can be found in the release 0.3.1 of the
OpenHIP software.

OpenDHT

OpenDHT [15] is a publicly accessible Distributed Hash Table (DHT) service.
However, we used it as a private DHT in our own HIP network. This was
possible thanks to an extension in the OpenHIP project done in the 0.3.1
release. OpenDHT’s simple put-get interface is accessible with HIP over
XML RPC2.

Click-router

This is part of the Click Modular Software Project [16]. Click routers are flex-
ible and configurable routers. Actually, a Click-router is an interconnected
collection of modules which control every aspect of the router’s behaviour,
from communicating with devices to packet modification to queueing, drop-
ping policies and packet scheduling. We used this tool by patching a Linux
2.4 kernel and, basically, to simulate the delays in the links between the
different hosts used in the experiments.

Ethereal

To examine the traffic generated by the OpenHIP implementation, a modified
version of Ethereal [17] has been build. Ethereal is a protocol analyser and

2XML-RPC is a remote procedure call protocol which uses XML to encode its calls
and HTTP as a transport mechanism. It is designed to be as simple as possible, while
allowing complex data structures to be transmitted, processed and returned.
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traffic recorder. It can be used to record traffic which can be analysed later
on. The OpenHIP implementation developers have published a patch for
Ethereal 0.10.10, so it is possible to identify the different HIP packets and
parameters included.

MatLab

MatLab [18] is a numerical computing environment and programming lan-
guage. Created by The MathWorks, MATLAB allows easy matrix manipula-
tion, plotting of functions and data, implementation of algorithms, creation
of user interfaces, and interfacing with programs in other languages. It was
used to parse and analyse all the data from the tests results.

4.2 General Configuration and Setup

This section introduces specific configuration details of the different scenarios
and experiments. These general characteristics are common for all the tests.
If any experiment has a specific setup, it will be detailed in the section
referred to that experiment. This section is further divided into: network,
machines, HIP configuration and resolvers.

Network

The HIP network that we designed was also connected to our lab network,
so we could access from anywhere via ssh, for instance. All the computers
in our HIP network had static IPv4 addresses and all the interfaces used
were 100 Mbit/s ethernet cards. The node acting as mobile node, which had
two different interfaces (eth1 and eth2), had also static IPv4 addresses in
each interface. To simulate mobility, we switched the connection from one
interface to the other.

Machines

Depending on the scenario performed, we used a different number of com-
puters. Thus, three of them always acted as HIP nodes while another one
was the click-router. Below there is a brief description of the characteristics
of each machine depending on the function they performed (also illustrated
in Figure 4.2).

• HIP nodes:
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Lisbon
192.168.2.1

Luxembourg
192.168.1.1

Vienna
192.168.3.1 or 192.168.3.2

Andorra100 Mbit/s
100 Mbit/s

100 Mbit/s

(a) Physical tests setup

Responder (Mobile host)

192.168.3.1 or
192.168.3.2

Click-router

Initiator (Fixed host)
192.168.1.1

100 Mbit/s

100 Mbit/s

100 Mbit/s

RVS / DHT

192.168.2.1

(b) Machine functions

Figure 4.2: Correspondance between machines and functions.
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These three machines were clones (in hardware). They all had a Suse
Linux 2.6.11 kernel modified with the Openhip 0.3.1 patch, and Ethe-
real 0.10.10 also patched. Each machine played a fixed role in all the
scenarios as explained below:

– Initiator (Fixed node): Luxembourg.

– Responder (Mobile node): Vienna.

– RVS/DHT (depending on the scenario): Lisbon. This machine
also included the OpenDHT implementation for the DHT role in
Scenario C.

• Click-router:

Performed by Andorra. It had a vanilla Linux 2.4 kernel installed in a
Suse Linux 2.4 kernel. The Click-router implementation was installed
as a module. Basically, we used the click-router to modify the delays
between the different hosts to simulate different situations as it will be
explained in the next Section.

HIP configuration

Prior to the tests, computers acting as HIP nodes computed their own HI and
HIT that were used throughout the tests. This is done by executing the hit-
gen script. First hitgen generates a HI and its respective HIT and stores them
in /etc/hosts/my hosts identities(.xml) file. Then, hitgen -publish copies
these HIs and HITs in the file /etc/hosts/known hosts identities(.xml), which
will be exchanged with other HIP nodes so that each node is aware of every
node’s identity. Also hitgen -conf creates a default configuration file for the
HIP communication.

After this, we had to configure IPSEC policies between hosts. For in-
stance, we configured IPSEC ESP between all the HIP nodes (that is, all
except from the one acting as click-router) in scenarios A, B and D. In Sce-
nario C, taking into account that the DHT configured does not communicate
via HIP with the rest of nodes, no IPSEC policies have to cover its commu-
nications with the rest.

Resolvers

Regarding to the machine whose function is Rendezvous Server (RVS) or Dis-
tributed Hash Table (DHT), we must mention that both had a preconfigured
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load in all the experiments of 1000 entries3. In order to fill the registration
table in both type of resolvers we used different methods which are explained
below.

• In order to fill the registration table in the RVS, we used the file
/etc/hosts/registered hosts(.xml), which contained random HITs and
IPs with their corresponding random lifetime. This file was configured
in the server before starting the experiments and read at the beginning
of the RVS run. Note that the RVS comes from a HIP node with special
funcionalities and requirements.

• About the DHT, we programmed a bash script to automatically send
put requests with HITs, IPs and lifetimes associated before the tests
started.

4.3 Experiments

In this evaluation we focus on basic HIP properties. We investigate the
establishment of a HIP connection (looking at the HIP Base Exchange), the
registration of a service in a Rendezvous Server (looking at the Registration
mechanism), the maintenance of a HIP connection when there is a change of
location of one host (Readdressing mechanism) and the overhead introduced
by HIP by looking at the RTT4.

These tests will be used to give a basic idea of the delays that HIP (Sce-
nario B) adds to the current architecture (Scenario A). Also, these measure-
ments will be the basis on which we will focus to discern, later on, which
resolution mechanism performs better (Scenario C and D), in terms of added
delays.

Some bash scripts had to be programed to run the different experiments
and also to automate the configuration of all the scenarios. It was agreed
to perform 100 repetitions of each experiment to reduce the 95% confident
intervals.

The variables we used to perform these experiments were the delays con-
figured in each link of our HIP network. Thus, depending on the value of the

3Note that we didn’t use the loaded entries in the RVS and DHT as a variable in the
tests because the processing time when searching, inserting and removing was processor
time, insignificant in relation to the global times measured.

4Round Trip Time refers to the elapsed time for a message to get to a remote place
and go back again. Note that all the delays considered in this thesis will be treated as
RTT throughout the experiments.
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configured delay between the hosts5, we divided every test in seven differ-
ent cases (case0, case1, ... case6). This means that every experiment (HIP
Base Exchange, Readdressing, Registration and RTT measurement) in every
scenario (A, B, C or D) will be repeated seven times depending on the case
tested. Figure 4.3 and Table 4.1 illustrate this.

Initiator

Delay A

Delay B
Responder

Delay C

DHT/RVS

Figure 4.3: Delays configured in the scenarios A to D.

Case0 Case1 Case2 Case3 Case4 Case5 Case6
Delay A 100 ms 220 ms 220 ms 220 ms 220 ms 220 ms 220 ms
Delay B 100 ms 20 ms 60 ms 100 ms 140 ms 180 ms 220 ms
Delay C 100 ms 220 ms 180 ms 140 ms 100 ms 60 ms 20 ms

Table 4.1: Delays configured in each link in scenarios A to D.

In case0, a static delay of 100 ms RTT was configured between all hosts to
simulate a real communication through the Internet (cause few milliseconds
don’t seem to be a good approach in nowadays Internet connections). In this
situation, Initiator, Responder and RVS/DHT are always equidistant (Delay
A = Delay B = Delay C) to be able to easily compare the measured delays
in the different experiments.

The other six cases try to simulate the transition of the RVS/DHT moving
from the Initiator to the Responder. That is, we modify the delays such that,
in case1, the RVS/DHT is closer to the Initiator than to the Responder (Delay
B < Delay C) and then it moves until in case6 RVS/DHT is closer to the
Responder than to the Initiator (Delay B > Delay C). Note that, the delay
between Initiator and Responder (Delay A) will always be constant (220
ms RTT) through the different cases. These six cases are only significant in
Scenario C and Scenario D, where a DHT or a RVS are used (that means that

5Delay A between Initiator and Responder, Delay B between Initiator and RVS/DHT
and Delay C between RVS/DHT and Responder.
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Delay B and Delay C are actually used). The purpose of these last six cases
is to know the contributions of the packets exchanged in the different links in
mechanisms such as HIP Base Exchange, Readdressing or Registration when
DHT and RVS are used. Note that, moreover, the values chosen for the delay
in these cases represent a range which covers from a local communication to
an international one [28].

Coming back to the tests performed, four experiments are taken into
account in our scenarios: HIP Base Exchange, Readdressing, Registration
and RTT measurement. These tests are listed below with a short accounting
for why they have been selected.

4.3.1 HIP base exchange

To establish a HIP connection the initial HIP Base Exchange (HBE) has to be
performed. As described in the HIP Base Exchange section (see SubSection
2.1.1), the HIP base exchange comprises a 4-way handshake. This mandatory
handshake introduces a delay every time a HIP connection is established.
This test is included to determine how long the delay at the beginning of a
HIP connection is.

In order to measure the HBE time, we made some modifications in the
code to add some timers. Thus, we measured the values in the HIP layer,
counting not only the transition of the packets between Initiator and Respon-
der, but also the processing time at both hosts. Specifically, the measurement
comprises from the moment when the Initiator sends the I1 packet until the
Initiator again receives the R2 packet.

4.3.2 Readdressing

While a HIP connection is active it may have to rekey due to a change of IP
address as seen in SubSection 2.1.3. Other reasons can cause this rekeying
such as the ESP sequence numbers, but we will focus only on the mobility
case. Readdressing means that a HIP UPDATE packet is sent by the mobile
node and has to be, at least, acknowledged by the fixed peer. While this is
done, no data packets can be transmitted. This test is included to see how
the rekeying affects the performance of a HIP connection.

Like in the HBE timing, here we also took the measurements in the HIP
layer. The times given comprise since the Mobile node detects a location
change until it receives the last UPDATE packet from the Fixed node. It
must be mentioned that the readdressing type performed by the OpenHIP
implemention is the one with the rekeying initiated by the Mobile node (see
Subsection 2.1.3).
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In this experiment, it has to be kept in mind that under HIP, when a node
changes its IP address, a readdressing has to be performed with all the HIP
nodes with whom the moving node has currently an association, including of
course the RVS (also an update of the mapping HIT to IP is included in the
readdressing mechanism in this case). Figure 4.4 illustrates this experiment.

Mobile node RVSFixed node

Detection change of

IP address:

measurement start!

Detection rekeying

performed:

measurement stop!

UPDATE

UPDATE

UPDATE

UPDATE

UPDATE

UPDATE

Figure 4.4: Readdressing time measured in Scenarios D.

In case of the DHT, no readdressing, with the DHT itself, is performed
(defined as a readdressing mechanism in HIP) but an update of the HIT to
IP is done instead, by sending a put request as shown in Figure 4.5.

4.3.3 Registration

To register a HIT and an IP address in a Rendezvous Server an initial HIP
base exchange with new parameters related to registration is performed. As
described in the Registration section (see Sections 3.2 and 3.3), the HIP regis-
tration mechanism comprises a 4-way handshake. This mandatory handshake
introduces a delay every time a HIP connection is established. Nevertheless,
with Distributed Hash Tables (DHTs) a different mechanism is used to reg-
ister HITs and IP addresses which we would also like to study here. This
test is included to determine how long the delay at the beginning of a HIP
connection is, due to the RVS or the DHT.

To carry out the measurement of the Registration time with a RVS, we
used similar timers than in the HIP Base Exchange. Thus, the timing com-
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Mobile node DHTFixed node
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measurement start!
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FIN, ACK

ACK

ACK

FIN, ACK

UPDATE

UPDATE

UPDATE

Figure 4.5: Readdressing time measured in Scenarios C.
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prises from the moment in which the Initiator (here the Requester Mobile
node) sends the I1 packet until the Initiator again receives the R2 packet
from the RVS with a REG RESPONSE parameter.

Regarding to the DHT, the Registration consists of a put request with
the necessary parameters, sent in a TCP6 connection. Thus, the Registration
time includes a three-way handshake which opens the TCP connection but
not the termination because since the Mobile node receives a PSK ACK
from the DHT, the Initiator can consider that the new mapping HIT to IP
mapping is operative. Figure 4.6 illustrates the Registration mechanism with
a DHT.

Mobile node DHT

SYN

SYN, ACK

ACK

PSH, ACK

ACK

PSK, ACK

FIN, ACK

ACK

ACK

FIN, ACK

Stablishment

Termination

Put / Get
Requests

Detection TCP

connection starts:
measurement start!

Detection put / get

performed correctly:
measurement stop!

Figure 4.6: Registration with a DHT.

4.3.4 Round Trip Time (RTT)

When two hosts are communicating through a network connection a very
important measurement is the Round Trip Time (RTT). The RTT shows
how long it takes for a piece of data to travel from one host to the other and
back. It is an indicator of the delay introduced by the network connection and
the layers below the one being conseidered. It should be noted that the RTT

6More detail about Transmission Control Protocol in Appendix D.
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can be measured at different layers. Measured at layer two it will encompass
only the data link connection whereas a measurement at the application
layer encompasses both the network connection and the IP-stack operations
at both hosts. This test is included to see which effects HIP has on the RTT
of a connection in the current architecture, considering that all data packets
are protected with IPSEC ESP in HIP and the RTT must increase (since the
data packet size also increases).

To perform this test, a ping is triggered from the Initiator to the Respon-
der once the HIP connection is established.

4.4 Scenarios

As we mentioned before, four are the scenarios tested in our experiments.
These scenarios are listed below with a short accounting for why they have
been selected, also including the experiments performed in every one. This
section describes each scenario without pointing out any result. This will
be done in Section 4.5, where we will have all the measurements we need
to compare and contrast the performance between all scenarios, cases and
experiments.

4.4.1 Scenario A: No HIP

The first scenario will be used as the simple basis where the rest of the
experiments have to focus to perform a comparison between them. It will
include tests and measurements of the RTT between two hosts without any
extra protocol (non HIP-aware nodes).

Thus, for this scenario it was only necessary the use of two hosts (Luxem-
bourg and Vienna) and the click-router (Andorra) to configure Delay A with
100 ms RTT (case0) or 220 ms RTT (case1...case6), as shown in Figure 4.7.
To trigger the communication, the ping command was used and the desired
packets were captured in Ethereal. Hundred repetitions were taken from this
experiment and the mean value and standard deviation for the delay RTT
were calculated.

4.4.2 Scenario B: HIP with no resolution mechanism

The second scenario will perform tests and measurements of the HIP con-
nection establishment (HIP Base Exchange), re-establishments of HIP con-
nections due to a change of location (Readdressing mechanism) and RTT.
These results will be used, aside from gaining base of knowledge about HIP,
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Click-router

Host 2Host 1

100 Mbit/s 100 Mbit/s

Delay A

Figure 4.7: Scenario A.

to compare this scenario where no HIP resolution is used to the following
ones, where the RVS and the DHT are introduced.

Click-router

Initiator

100 Mbit/s 100 Mbit/s

Delay A

Responder

Figure 4.8: Scenario B.

For this scenario it was only necessary the use of two hosts (Luxembourg
and Vienna) and the click-router (Andorra) to configure Delay A with 100
ms RTT (case0) or 220 ms RTT (case1...case6), as illustrated in Figure 4.8.
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4.4.3 Scenario C: HIP with DHT

The third scenario will perform tests and measurements for the same exper-
iments as in the second scenario but it will also include some measurements
for the Registration mechanism performed at the beginning of the communi-
cation with a DHT. The results from these test scenarios will, like the results
from the other one, be compared to Scenario B and Scenario D to figure out
which mechanism performs better under whichever situations.

Click-router

Initiator

100 Mbit/s 100 Mbit/s

Delay A

100 Mbit/s

Delay B ResponderDelay C

DHT

Figure 4.9: Scenario C.

For this scenario, it was necessary the use of three machines: Initiator
(Luxembourg), Responder (Vienna) and DHT (Lisbon) as indicated in Figure
4.9. Note that the DHT configured in our network is not a real Distributed
Hash Table, strictly speaking. The reason is that we only configured one
node of the DHT (it could be known as HT in our scenario), so it becomes
the simpliest, easiest and fastest way to request a DHT: the first node we are
asking for some info is the one which has it. In a real DHT, we should have
various nodes, store the info in the node which has the key inserted (through
a routing algorithm used by the DHT nodes) and, when requesting the info
to any node, be routed until the node which has the key [29].

4.4.4 Scenario D: HIP with RVS

The fourth scenario, similar to the one previously described, will perform
tests and measurements for the same experiments defined in Scenario B, but
it will also include some measurements for the Registration mechanism per-
formed at the beginning of the communication with a RVS (not a DHT). The
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results from these test scenarios will, like the results from the previous one,
be compared to Scenario B and Scenario C to figure out which mechanism
performs better under whichever situations.

Click-router

Initiator

100 Mbit/s 100 Mbit/s

Delay A

100 Mbit/s

Delay B ResponderDelay C

RVS

Figure 4.10: Scenario D.

For this scenario, it was necessary the use of three machines: Initiator
(Luxembourg), Responder (Vienna) and RVS (Lisbon) as seen in Figure 4.10.

4.5 Tests Results Overview

In this section, we will give an overview of the results obtained during the
experiments done in the different scenarios. This section is divided in two
parts: Case 0 and rest of cases. This division aims to identify two different
situations: the first one is related to the case of having a static delay, equal
for each link, while the second one shows the effect of moving the RVS/DHT
from the Initiator to the Responder.

Figure 4.11 shows the different experiments performed each scenario. It
roughly illustrates the handshakes and packets exchanged during these ex-
periments and will be useful to discern the reasons why we obtained the
results we did.

4.5.1 Case 0

The purpose of this case is to study the delays introduced in the several
handshakes that have been explained throughout this thesis, using the dif-
ferent alternatives proposed. In order to compare the different mechanisms
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Figure 4.11: Scenarios and experiments overview.

in the same conditions, the network delays that we consider are fixed and are
the same in all the experiments.

As we mentioned previously, this case uses a static delay in each link of
100 ms RTT. The results obtained (mean and standard deviation) are shown
in Table 4.2. A more visual overview is given in Figure 4.12.

RTT

In the first experiment, measuring the RTT, we can see that there is only a
0.3% increase in the RTT when using HIP. This increase is due to the IPSEC
ESP encapsulation, which adds some overhead to the packets transmited.
Looking at the result obtained, we conclude that the overhead introduced by
the data packets exchanged between two HIP nodes is not important, given
the capacity of the current Internet transmission lines. Of course a bigger
increase would be observed in case of considering a slower access like a modem
line, but the current trends seem to indicate that the broadband access will
become a reality by when HIP should start to be deployed, therefore we
consider these results as representative enough.

Notice, moreover, that no differences will exist between a ping triggered
in a plain HIP scenario (Scenario B) and HIP with any rendezvous/resolution
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Scenario A Scenario B Scenario C Scenario D
NO HIP HIP HIP + DHT HIP + RVS

RTT 100,34 ms 100,65 ms 100,65 ms 100,65 ms
± 0,08 ms ± 0,07 ms ± 0,07 ms ± 0,07 ms

HBE lack 362,58 ms 595,23 ms 413,43 ms
lack ± 10,19 ms ± 13,87 ms ± 7,55 ms

Readdr. lack 1283,57 ms 1500,14 ms 2359,81 ms
lack ± 38,80 ms ± 50,48 ms ± 39,54 ms

Registr. lack lack 211,97 ms 362,29 ms
lack lack ± 3,25 ms ± 15,89 ms

Table 4.2: Results from experiments tested in case 0.

RTT
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Figure 4.12: Graphic comparison between the results in Table 4.2.



4.5. Tests Results Overview 55

mechanism (Scenarios C and D). Therefore we ran this experiment only once
for all the HIP scenarios.

HBE

Regarding the HIP Base Exchange, in Scenario B we can see the delay added
to the current architecture by this initial handshake. A big part of the mean
value obtained is not due to the RTT but because of the processing time
spent in solving the puzzle and creating a state in the Responder.

The values obtained in Scenario C and D seem correct with respect to the
ones obtained in Scenario B, since the scenarios with resolution mechanisms
include more packets exchanges. Furthermore, comparing both Scenarios C
and D, a HBE with a DHT is longer than one with a RVS (with the DHT
the HBE is increased by a 64.2% while in the case of RVS only by a 14.0%).
The reason is that with the RVS, the Initiator does not perform a lookup
for the Responder’s IP address, but sends directly the I1 to the RVS which
will relay it to the Responder (see Figure 4.11). With the DHT, instead, a
TCP connection is opened between the Initiator and the DHT to send a get
request in order to know the Responder’s IP address, and once it is known, a
normal HBE is performed between the Initiator and the Responder, without
further help from the DHT.

Readdressing

In the Readdressing tests, we observe that with the DHT, the time measured
increases by a 16.8%, while with the RVS it increases by 83.8%. This is
because with the RVS, the mobility case also includes a Readdressing with
the RVS itself as explained in SubSection 4.3.2. This is the reason why
the Readdressing time in Scenario D (HIP + RVS) is nearly twice the one
in Scenario B (plain HIP), two nodes are updated (Fixed node and RVS)
instead of one. Moreover, with the RVS an update in the registration table
is also needed (performed also in the Readdressing handshake).

Regarding Scenario C, the Readdressing is performed between the Mobile
node and its HIP peer, and a put request is performed between the Mobile
node and the DHT in order to update the IP address stored there, which
takes shorter than a HIP Readdressing.

Being this delay critical for highly mobile HIP nodes, an specific study
was done to know the different individual contributions on the overall delay
time, which are illustrated in Figure 4.15. The different processes involved in
the Readdressing mechanism are represented in Figure 4.13 and Figure 4.14.
Thus, our global measurement was further divided in:
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• Readdress. Here, the readdress time is considered from the moment
when the Mobile node detects a mofication in its location (its IP address
has changed) until the moment before it sends the first UPDATE packet
to the Fixed node. During this time, changes in the IPSEC Security
Associations (SAs) are done to enable the new address under the ESP
encapsulation.

• RTT. This measurement includes the time since the first UPDATE
packet is sent by the Mobile node until this is acknowledged with an-
other UPDATE.

• UPDATE process. This measurement comprises the time of processing
the acknowledged UPDATE packet from the Fixed node.

• Rekeying. Here, a recomputation of the session keys are performed so
that a new Security Parameter Index (SPI) is included in the IPSEC
SAs already created.

• Update DHT. This time is only measured in Scenario C, where a DHT
is used. It comprises from the first packet sent to open the TCP session
between the Mobile node and the DHT until the answer of the DHT
acknowledging it, before the end on the TCP session.

Mobile node RVSFixed node

Detection change of

IP address:

measurement start!

Detection rekeying
performed:

measurement stop!

UPDATE

UPDATE

UPDATE

UPDATE

UPDATE

UPDATE

readdress

readdress

RTT

update packet process

rekeying

rekeying

Measurement points

Figure 4.13: Processes involved in the Readdressing time measured in Scenario
D.
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Figure 4.14: Processes involved in the Readdressing time measured in Scenario
C.



4.5. Tests Results Overview 58

After the measurements, we realised that the rekeying time was about
one second. This surprised us because this mechanism is supposed to be fast
enough to support mobile nodes without noticing any changes, apart from
the possible change to the actually experienced quality of service. Focusing
on this process, we discovered a preconfigured timeout of one second which
could be the one added to the HIP ESP specification [10] to prevent being
stuck in the rekeying state in case there is an error7. After revising all the
packets exchanged and the parameters included, we concluded that no error
was happening. Nevertheless, our short time left did not let us find out the
actual reason for such timeout.

At the time of writing this thesis, we consider this timeout as a mechanism
belonging to the IPSEC implementation, not to the HIP one, even though
we are not completely sure about that. Therefore we decide to isolate the
contribution of this timeout, as it is shown in the following graphics:

On the upper graphic of Figure 4.15, the processes involved in the Read-
dressing include the timeout of the rekeying. Thus, we observe, as previ-
ously explained, that Scenario C (DHT) performs much better than Scenario
D (RVS) in terms of delays introduced (a 33.8% delay less with the DHT).
However, as illustrated in Figure 4.15, in the lower graph, if the timeout
was corrected, the RVS scenario would present a much better performance
(46.0% less delay) than the one with the DHT. Is for this reason that it is
important to find out what causes this increased rekeying (it might also be
a bug in the current OpenHIP implementation).

Registration

Regarding the Registration experiments, we observe that, as it was expected,
in Scenario D the mean value is close to the one of the HBE performed in
Scenario B (plain HIP). This is because the Registration mechanism is a
normal HBE (but with new parameters included) performed between a Reg-
istrar ofering a Rendezvous Service and a Requester asking for it. Instead,
in Scenario C, the mean value obtained is quite smaller (41.5% of the RVS
Registration time), since with the DHT a complete different mechanism is
performed. Notice that the time measured in this Scenario does not in-
clude the TCP session termination since once the Mobile node receives the

7In case a protocol error occurs and the peer system acknowledges the UPDATE but
does not itself send an ESP INFO, the system may not finalize the outstanding ESP SA
update request. To guard against this, a system may re-initiate the ESP SA update
procedure after some time waiting for the peer to respond, or it may decide to abort the
ESP SA after waiting for an implementation-dependent time. The system must not keep
an oustanding ESP SA update request for an indefinite time.
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(a) Timeout configured

(b) No timeout configured

Figure 4.15: Processes involved in the Readdressing with/out the timeout config-
ured.
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acknowlegment of the put request, the DHT is storing the new HIT→IP sent.
Thus, the main reason why the registration with the RVS is bigger than

the one with the DHT is that, as mentioned before, the first one is a complete
HBE, where the Initiator (here the Requester asking for Rendezvous Service)
has to solve the puzzle mentioned in Chapter 2. These extra operations mean
an increase in the delay with respect to the DHT, but of course the benefit
is a gain in security. Remember that the lack of security is one of the main
drawbacks of using DHTs as a resolution mechanism, and that we are also
considering the most optimistic case for the DHT.

4.5.2 Cases 1 to 6

The purpose of these cases is to study how the changes on the network
topology affect the resuls that we obtained in case 0. Only scenarios C and
D (DHT and RVS) are considered.

In this set of cases, we try to simulate the movement of the RVS and DHT
from the Initiator to the Responder. The reason for this is that we consider
a situation where the resolver (DHT or RVS) might be placed anywhere
between the Initiator and the Responder with a uniform probability. Thus,
in case 1 we suppose a delay between the Initiator and the DHT/RVS much
smaller than the one between the DHT/RVS and the Responder. As long
as the case number increases, the DHT/RVS approaches the Responder’s
vecinity by decreasing the delay between them and increasing the one between
the Initiator and the DHT/RVS.

Note that the delay between the Initiator and the Responder is in all
cases constant (220 ms RTT), so Scenario A and B (the ones where no RVS
or DHT is included) will not see any difference in the measurements through
the different cases. The values obtained will only be helpful to compare to
the other Scenarios, with no mention about the distances between RVS/DHT
and the rest of hosts.

All the results (mean and standard deviation) are included in Table 4.3,
but some other graphics give a more visual overview of those values (Figures
4.16, 4.17 and 4.18).

RTT

This value, as expected, is the same for all the HIP scenarios, since in this
experiment there are only two hosts involved and the data is routed directly
from the Initiator to the Responder (there is no relay of the I1 packet).
This is the reason why we run the experiment only once for all the cases.
Thus, there is no difference between the value obtained in Scenarios C and
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Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Scenario A RTT 220,36 ms
NO HIP ± 0,08 ms
Scenario RTT 220,82 ms
B,C,D ± 0,09 ms

Scenario B HBE 602,50 ms
HIP ± 6,38 ms

Readdr. 1410,97 ms
± 30,10 ms

Scenario C HBE 736,94 ms 771,42 ms 847,94 ms 932,91 ms 973,06 ms 1053,7 ms
HIP + DHT ± 8,79 ms ± 7,49 ms ± 6,79 ms ± 6,66 ms ± 6,70 ms ± 7,28 ms

Readdr. 2015,78 ms 1904,68 ms 1784,77 ms 1681,77 ms 1560,38 ms 1464,89 ms
± 100,29 ms ± 83,25 ms ± 69,85 ms ± 81,47 ms ± 44,14 ms ± 78,85 ms

Registr. 450,80 ms 370,95 ms 290,96 ms 210,11 ms 130,14 ms 55,64
± 5,68 ms ± 6,03 ms ± 5,98 ms ± 2,98 ms ± 3,05 ms ± 3,96 ms

Scenario D HBE 614,94 ms 614,00 ms 612,72 ms 613,93 ms 614,67 ms 612,79 ms
HIP + RVS ± 18,40 ms ± 7,29 ms ± 5,99 ms ± 5,99 ms ± 7,11 ms ± 6,20 ms

Readdr. 2499,95 ms 2500,16 ms 2497,38 ms 2498,41 ms 2498,80 ms 2497,84 ms
± 47,30 ms ± 47,29 ms ± 46,50 ms ± 47,15 ms ± 46,45 ms ± 46,76 ms

Registr. 601,49 ms 522,94 ms 442,44 ms 362,97 ms 282,18 ms 203,12 ms
± 5,46 ms ± 7,06 ms ± 6,55 ms ± 5,86 ms ± 6,88 ms ± 8,15 ms

Table 4.3: Results from experiments tested in cases 1 to 6.
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D througout the different cases since the RTT is fixed like the delay between
them.

HBE

Regarding Scenario C, where a DHT is used, we observe how the HBE time
increases as the DHT moves from the Initiator to the Responder. The reason
for this is that the Initiator has to request for a lookup in the DHT, therefore
the further it is, the longer it takes. The mean value for the measurements
seem to be fair since the whole HBE includes roughly the time of the plain
HBE plus a lookup in the DHT.

Concerning Scenario D, with a RVS as a resolver, as it is logical, the mean
value for the HBE time is bigger than in Scenario B (plain HIP) because it
includes one more packet exchanged (the I1 relayed from the RVS to the
Responder). Note that this mean value is constant not depending on the
distance between the Initiator and Responder to the RVS because in our
experiments the total delay time between them is assumed to be constant
(Delay B + Delay C = constant, Delay A = constant).

We can also get to these conclusions by simply watching Figure 4.16. In
this hypothesis, we can see that HIP + RVS performs better than HIP +
DHT since this last Scenario has a high dependency on the distance of the
resolver, which does not affect Scenario D with a RVS.

Figure 4.16: Graphic comparison of HBE time obtained through the different
cases in each scenario.
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Readdressing

In Scenario C, we can see how the Readdressing time decreases when the
DHT is closer to the Mobile node (Responder) which is updating its HIT to
IP address mapping. This is due to the fact that this Readdressing includes
not only the rekeying with the HIP peer node but the update with the DHT.
Note that even the delay is getting bigger when the DHT is far from the
Responder, it is still always below the RVS case.

In Scenario D, it is observed how the Readdressing time is again constant
regardless of the distance of the RVS. This can be explained as this time
includes two different rekeyings (Initiator and RVS), which are performed
concurrently so then the global time will always be the one of the further
node.

In Figure 4.17, these variations are clearly illustrated. From the added
delay point of view, in these experiments HIP + DHT performs better than
HIP + RVS. However, note that even this tries to be a real simulation of
the Internet architecture, it is not since having only one DHT node means
testing always the best case (which it is not realistic). Resource limitations
refrain us from having a whole DHT network.

Figure 4.17: Graphic comparison of Readdressing time obtained through the
different cases in each scenario.

Registration

Regarding the Registration, in Scenarios C and D the time for the Registra-
tion is shorter as the DHT/RVS is closer to the Mobile node (the one which
actually registers its HIT and IP address). However, we can observe how the
time measured is always bigger in Scenario D (HIP + RVS) due to the initial
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HBE with specific parameters performed to register, so then from the delays
added point of view the performance of the DHT would be better than with
RVS. Again, we have to emphasize the fact that only one node of DHT is
configured in our experiments (so then we are counting only the best case).
Furthermore, as in the other experiments we have to choose between a fast
performance or a not as fast but secure one.

In Figure 4.18 we can clearly see the variations explained above.

Figure 4.18: Graphic comparison of Registration time obtained through the dif-
ferent cases in each scenario.

4.6 Conclusions

This Section is included to summarize the conclusions arisen during the tests
results overview.

Case 0

• The data overhead introduced by HIP is not significant as observed in
the ping test (RTT).

• The HBE is time consuming because in our experiments was between
3.5 and 6 times a RTT depending on the resolution mechanism used.
Note that it is an exchange only needed at the beginning of the com-
munication between twho HIP nodes, though.

• Comparing DHTs and RVSs, our experiments show a better perfor-
mance for the DHT in both Registration and Readdressing measure-
ments. From the RVS point of view, having a bigger time for Reg-
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istration is not critical since, as HBE, this mechanism is only needed
at the beginning of the communication between a RVS and a Mobile
node. Regarding Readdressing, a big time here will be critical for hihgly
moving nodes.

Nevertheless, it has to be noticed that about DHT, on one hand, we are
showing the most optimistic result for the DHT case (as only one DHT
node is considered) and, on the other hand, the DHT, unlike RVS, is a
resolution mechanism which does not provide security.

Cases 1 to 6

• Assuming the resolver node placed between the Initiator and the Re-
sponder, the RVS shows a constant performance that does not depend
on its specific position, as seen in the HBE and Readdressing exper-
iments. Instead, the DHT performance depends on its position with
respect to the node that has to access the DHT.

Another important issure related to our performance evaluation is the fact
that we discovered a timeout of about one second that substantially increases
the Readdressing time in all HIP scenarios (in HIP+RVS two seconds as two
HIP nodes are rekeyed). It has to be noticed that if this timeout could be
somehow solved, the results above mentioned would change inmediately since
HIP + RVS would work much better in this critical experiment and hihgly
mobile nodes could be even better supported than in the HIP + DHT case.



Chapter 5

Summary and Conclusions

New needs arising in the current Internet architecture have lead to some
issues still pending to be solved. Unsecured, fixed and single-homed nodes
now search for a global solution. Several proposals have been defined in the
last decade but they do not cover all the problems mentioned above. Thus,
the Host Identity Protocol, created focusing in security, mobility and multi-
homing, seems to be a good approach for the Next Generation Internet.

In this thesis we have started from the three main principles that define
HIP and followed with the problems that such a new architecture has to deal
with, specially when being introduced in the current main name resolution
infrastructure: Domain Name System (DNS). After some discussion, it was
agreed that a new rendezvous mechanism is needed to map identities and
locators and connect HIP nodes since DNS is not designed to support high
mobile nodes due to its caching architecture. Among several proposals, Dis-
tributed Hash Tables (DHTs) and Rendezvous Servers (RVSs) seem to be
the most suitable ones.

After studying the main characteristics of DHTs, some problems were
found such as the lack of security when accessing them (put requests can be
performed by any node just knowing the key stored, the HIT) and the im-
possibility to support double-jump moving nodes (two nodes changing their
location at the same time) with the important drawback of having packet
losses. At this point, RVSs, HIP nodes with special functionalities, solve
these two problems. Being the RVS also a HIP node, all the communications
with other HIP nodes will be secure, and regarding double-jumps, it will act
as a packet forwarder to solve the previously mentioned problem.

In addition to the theoretical part, some studies of the performance of
HIP, and HIP with DHT or RVS as resolution mechanisms, have been carried
out. These tests include measuring the delays added by this new architecture
to the current one. Thus, measurements on the initial HIP Base Exchange,
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the Readdressing in case of mobile nodes and the Registration, in case a RVS
or a DHT are needed, have been performed. The extra overhead introduced
in data packets exchanged has been also measured. The results from these
experiments conclude in the following:

• The data overhead introduced by HIP is not significant as observed in
the RTT measured.

• The HBE increases between 4 and 6 times the initial connection time
depending on the resolution mechanism used (4 for the RVS and and
6 for the DHT). Note, however, that it is an exchange only needed at
the beginning of the communication between two HIP nodes.

• Comparing DHTs and RVSs, our experiments show a better perfor-
mance for the DHT in both Registration and Readdressing measure-
ments. Having a bigger time for the Registration is not critical since,
as the HBE, this mechanism is only needed at the beginning of the
communication between a RVS/DHT and a Mobile node. Neverthe-
less, regarding the Readdressing, a big time here will be critical for
hihgly moving nodes. However, the following has to be noticed within
the DHT experiments: i)we are showing the most optimistic result for
the DHT case (as only one DHT node is considered) and ii)the DHT,
unlike RVS, is a resolution mechanism which does not provide security,
nor support for the double-jump problem.

• Assuming the resolver node placed between the Initiator and the Re-
sponder, the RVS shows a constant performance that does not depend
on its specific position, as seen in the HBE and Readdressing exper-
iments. Instead, the DHT performance depends on its position with
respect to the node that has to access the DHT.

Note that if the Readdressing timeout problem found in Chapter 4 could
be solved somehow, the HIP + RVS case would perform much better than the
most optimistic DHT case (only one node is considered), also in the critical
case of mobility, making then the RVS an even better solution.

5.1 Future Work

Concerning the NAT traversal issue mentioned in Chapter 1, some extensions
are currently being done in the OpenHIP code in order to enable the Initiator
start a HIP communication when it is behind a NAT [13]. Though, the
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responder behind a NAT case (how a node initiates a HIP Base Exchange
with another node behind a NAT) has not been faced yet. Focusing in this
last case, basically, there will be an extension of the RVS to solve it. The
easiest way to enable NAT traversal in every possible case (the different
types of NATs, all mobility cases, moving from behind a NAT to the public
network, behind another NAT, etc...) would be to make all the HIP and ESP
packets go through a RVS. Thus, the hosts should register on the RVS and
keep some connections opened between them and the RVS (some keepalive
packets would be required to keep the “hole” in the NAT opened). Then,
when they want to communicate with other hosts, all their requests and user
data exchanges will be relayed by the RVS (not only the I1 packet). This
solution would work in any case although it is not the most efficient one since
the RVS becomes a clear bottle neck. A lot of activity is being carried out
by the IETF regarding this issue.

This thesis has introduced a new element in the HIP architecture, the
RVS. This node has been used as a resolver, able to support mobility, to
discover the mapping HIT to IP when a HIP node wants to initiate a com-
munication with another node. But the uses and capabilities of the RVS are
not by any means limited to only act as a resolver. Through the registration
handshake, also introduced in this thesis, the RVS will be able to advertise
new services and then the HIP nodes to subscribe to them. The role that
the RVS will play in the NAT traversal problem is only an example, but for
sure the more HIP is studied and deployed, the more functions will be added
to the Rendezvous Server.
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Appendix A

New HIP Parameters

A.1 Registration parameters

In this section, there are described the different HIP parameters created to
be able to perform a registration process.

Note that the HIP registration uses an exponential encoding of registra-
tion lifetimes. This allows compact encoding of 255 different lifetime values
ranging from 4 ms to 178 days into an 8-bit integer field. The lifetime expo-
nent field used throughout this document must be interpreted as representing
the lifetime value 2((lifetime−64)/8) seconds.

REG INFO

Type Length

Min Lifetime Max Lifetime Reg Type #1 Reg Type #2

... ... Reg Type #n

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Padding

Type: 930
Length: Length in octets, excluding Type, Length, and Padding.
Min Lifetime: Minimum registration lifetime.
Max Lifetime: Maximum registration lifetime (e.g. Rendezvous type 1).
Registrars include the parameter in R1 packets in order to announce their

registration capabilities.
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REG REQUEST

Type Length

Lifetime Reg Type #1 Reg Type #2 Reg Type #3

... ... Reg Type #n

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Padding

Type: 932
Length: Length in octets, excluding Type, Length, and Padding.
Lifetime: Requested registration lifetime.
Reg Type: The preferred registration types in order of preference.
A requester includes the REG REQUEST parameter in I2 or UPDATE

packets to register with a registrar’s service(s).

REG RESPONSE

Type Length

Lifetime Reg Type #1 Reg Type #2 Reg Type #3

... ... Reg Type #n

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Padding

Type: 934
Length: Length in octets, excluding Type, Length, and Padding.
Lifetime: Granted registration lifetime.
Reg Type: The granted registration types in order of preference.
The registrar includes a REG RESPONSE parameter in its R2 or UP-

DATE packet only if a registration has successfully completed.

REG FAILED

Type: 936
Length: Length in octets, excluding Type, Length, and Padding.
Failure Type: Reason for failure.
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Type Length

Failure Type Reg Type #1 Reg Type #2 Reg Type #3

... ... Reg Type #n

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Padding

Reg Type: The registration types that failed with the specified reason
(e.g. 0 for ”‘Registration requires additional credentials”’ and 1 for ”‘Regis-
tration type unavailable”’.

The registrar should include the REG FAILED parameter in its R2 or
UPDATE packet, if registration with the registration types listed has not
completed successfully and a requester is asked to try again with additional
credentials for instance.

A.2 Rendezvous mechanism parameters

FROM Parameter

Type Length

Address

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Type: 65498 = 216 − 25 − 2
Length: 16
Address: An IPv6 address or an IPv4-in-IPv6 format IPv4 address.
A rendezvous server MUST add a FROM parameter containing the orig-

inal source IP address of a HIP packet whenever the source IP address in the
IP header is rewritten.

VIA RVS Parameter

Type: 65502 = 216 − 25 + 2
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Type Length

Address

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Address

Length: Variable.
Address: An IPv6 address or an IPv4-in-IPv6 format IPv4 address.
After the Responder receives a relayed I1 packet, it can begin to send HIP

packets addressed to the Initiator’s IP address, without further assistance
from an RVS. For debugging purposes, it may include a subset of the IP
addresses of its RVSs in some of these packets. When a Responder does so,
it must append a newly created VIA RVS parameter at the end of the HIP
packet. The main goal of using the VIA RVS parameter is to allow operators
to diagnose possible issues encountered while establishing a HIP association
via an RVS.



Appendix B

HIP State

The HIP protocol itself has little state. In the HIP base exchange, there is an
Initiator and a Responder. Once the Security Associations (SAs) are estab-
lished, this distinction is lost. If the HIP state needs to be re-established, the
controlling parameters are which peer still has state and which has a data-
gram to send to its peer. The following state machine attempts to capture
these processes.

The state machine is presented in a single system view, representing either
an Initiator or a Responder. There is not a complete overlap of processing
logic here and in the packet definitions. Both are needed to completely
implement HIP.

Section B.1 shows the different HIP states while Section B.3 describes
the packet processing rules. This state machine focuses on the HIP I1, R1,
I2, and R2 packets only. Other states may be introduced by mechanisms in
other specifications (such as mobility and multihoming).

B.1 HIP states

State Explanation
UNASSOCIATED State machine start
I1-SENT Initiating base exchange
I2-SENT Waiting to complete base exchange
R2-SENT Waiting to complete base exchange
ESTABLISHED HIP association established
CLOSING HIP association closing, no data can be sent
CLOSED HIP association closed, no data can be sent
E-FAILED HIP exchange failed
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B.2 Simplified HIP state diagram

The following diagram shows the major state transitions. Transitions based
on received packets implicitly assume that the packets are successfully au-
thenticated or processed.

UNASSOCIATED

I1-SENT

I2-SENT R2-SENT

ESTABLISHED

CLOSING

CLOSED

Datagram to send

I1 received,
send R1

I2 received,
send R2

I1 received, send R1

R2 received

data,
received UPDATE or

EC timeout

timeout  (UAL+MSL),
retransmit CLOSE

timeout (UAL+2MSL),
move to UNASSOCIATED

receive I2,
send R2

receive CLOSE,
send CLOSE_ACK

receive CLOSE,
send CLOSE_ACK

no packet sent/received for
UAL min, send CLOSE

I2 received, send R2

R1 received,
send I2

CLOSE
received,

send
CLOSE_ACK

Datagram to send

receive R1,
send I2

CLOSE_ACK
received or timeout

(UAL+2MSL)

Figure B.1:
HIP state machine.
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B.3 HIP state processes

The following tables show the behaviour of the system in every state.

Trigger Action
User data to send, Send I1 and go to I1-SENT
requiring a new HIP
association

Receive I1 Send R1 and stay at UNASSOCIATED

Receive I2, process If successful, send R2 and go to R2-SENT
If fail, stay at UNASSOCIATED

Receive user data Optionally send ICMP
for unknown HIP and stay at UNASSOCIATED
association

Receive CLOSE Optionally send ICMP Parameter Problem and
stay at UNASSOCIATED

Receive ANYOTHER Drop and stay at UNASSOCIATED

Table B.1:
System behaviour in state UNASSOCIATED
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Trigger Action
Receive I1 If the local HIT is smaller than the peer

HIT, drop I1 and stay at I1-SENT
If the local HIT is greater than the peer
HIT, send R1 and stay at I1SENT

Receive I2, process If successful, send R2 and go to R2-SENT
If fail, stay at I1-SENT

Receive R1, process If successful, send I2 and go to I2-SENT
If fail, go to E-FAILED

Receive ANYOTHER Drop and stay at I1-SENT

Timeout, increment If counter is less than I1 RETRIES MAX,
timeout counter send I1 and stay at I1-SENT

If counter is greater than I1 RETRIES MAX,
go to E-FAILED

Table B.2:
System behaviour in state I1-SENT
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Trigger Action
Receive I1 Send R1 and stay at I2-SENT

Receive R1, process If successful, send I2 and cycle at I2-SENT
If fail, stay at I2-SENT

Receive I2, process If successful and local HIT is smaller than
the peer HIT, drop I2 and stay at I2-SENT
If succesful and local HIT is greater than
the peer HIT, send R2 and go to R2-SENT
If fail, stay at I2-SENT

Receive R2, process If successful, go to ESTABLISHED
If fail, go to E-FAILED

Receive ANYOTHER Drop and stay at I2-SENT

Timeout, increment If counter is less than I2 RETRIES MAX,
timeout counter send I2 and stay at I2-SENT

If counter is greater than I2 RETRIES MAX,
go to E-FAILED

Table B.3:
System behaviour in state I2-SENT
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Trigger Action
Receive I1 Send R1 and stay at R2-SENT

Receive I2, process If successful, send R2 and cycle at R2-SENT
If fail, stay at R2-SENT

Receive R1 Drop and stay at R2-SENT

Receive R2 Drop and stay at R2-SENT

Receive data or Move to ESTABLISHED
UPDATE

Exchange Complete Move to ESTABLISHED
Timeout

Table B.4:
System behaviour in state R2-SENT
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Trigger Action
Receive I1 Send R1 and stay at ESTABLISHED

Receive I2, process If successful, send R2, drop old HIP
with puzzle and association, establish a new HIP
possible Opaque association, go to R2-SENT
data verification

If fail, stay at ESTABLISHED

Receive R1 Drop and stay at ESTABLISHED

Receive R2 Drop and stay at ESTABLISHED

Receive user data Process and stay at ESTABLISHED
for HIP association

No packet Send CLOSE and go to CLOSING
sent/received
during UAL minutes

Receive CLOSE, If successful, send CLOSE ACK and go to
process CLOSED

If fail, stay at ESTABLISHED

Table B.5:
System behaviour in state ESTABLISHED
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Trigger Action
User data to send, Send I1 and stay at CLOSING
requires the
creation of another
incarnation of the
HIP association

Receive I1 Send R1 and stay at CLOSING

Receive I2, process If successful, send R2 and go to R2-SENT
If fail, stay at CLOSING

Receive R1, process If successful, send I2 and go to I2-SENT
If fail, stay at CLOSING

Receive CLOSE, If successful, send CLOSE ACK, discard
process state and go to CLOSED

If fail, stay at CLOSING

Receive CLOSE ACK, If successful, discard state and go to
process UNASSOCIATED

If fail, stay at CLOSING

Receive ANYOTHER Drop and stay at CLOSING

Timeout, increment If timeout sum is less than UAL+MSL
timeout sum, reset minutes, retransmit CLOSE and stay at
timer CLOSING

If timeout sum is greater than UAL+MSL
minutes, go to UNASSOCIATED

Table B.6:
System behaviour in state CLOSING
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Trigger Action
Datagram to send, Send I1, and stay at CLOSED
requires the
creation of another
incarnation of the
HIP association

Receive I1 Send R1 and stay at CLOSED

Receive I2, process If successful, send R2 and go to R2-SENT
If fail, stay at CLOSED

Receive R1, process If successful, send I2 and go to I2-SENT
If fail, stay at CLOSED

Receive CLOSE, If successful, send CLOSE ACK, stay at
process CLOSED

If fail, stay at CLOSED

Receive CLOSE ACK, If successful, discard state and go to
process UNASSOCIATED

If fail, stay at CLOSED

Receive ANYOTHER Drop and stay at CLOSED

Timeout (UAL+2MSL) Discard state and go to UNASSOCIATED

Table B.7:
System behaviour in state CLOSED

Trigger Action
Wait for Go to UNASSOCIATED. Re-negotiation is
implementation possible after moving to UNASSOCIATED
specific time state

Table B.8:
System behaviour in state E-FAILED



Appendix C

Security, Cryptography and
more

C.1 IPSEC and HIP

IPSEC (IP security) is a standard for securing Internet Protocol (IP) com-
munications by encrypting and/or authenticating all IP packets. IPSEC
provides security at the network layer.

IPSEC is a set of cryptographic protocols for (1) securing packet flows
and (2) key exchange. Of the former, there are two: Encapsulating Security
Payload (ESP) provides authentication, data confidentiality and message in-
tegrity; Authentication Header (AH) provides authentication and message
integrity, but does not offer confidentiality. Originally AH was only used for
integrity and ESP was used only for encryption; authentication functionality
was added subsequently to ESP.

In HIP, ESP Security Associations are setup between the HIP nodes dur-
ing the base exchange. Existing ESP SAs can be also updated later using
UPDATE messages. The reason for updating the ESP SA later can be e.g.
need for rekeying the SA because of sequence number rollover.

Upon setting up a HIP association, each association is linked to two ESP
SAs, one for incoming packets and one for outgoing packets. The Initiator’s
incoming SA corresponds with the Responder’s outgoing one, and viceversa.
The Initiator defines the SPI for the former association. This SA is called SA-
RI, and the corresponding SPI is called SPI-RI. Respectively, the Responder’s
incoming SA corresponds with the Initiator’s outgoing SA and is called SA-
IR, with the SPI being called SPI-IR.

The Initiator creates SA-RI as a part of R1 processing, before sending
out the I2. The keys are derived from the key material created after the

88



C.2. Diffie-Hellman key exchange description 89

Diffie-Hellman key exchange. The Responder creates SA-RI as a part of I2
processing.

The Responder creates SA-IR as a part of I2 processing, before sending
out R2. The Initiator creates SA-IR when processing R2.

When the HIP association is removed, the related ESP SAs must also be
removed.

C.1.1 Security Parameter Index (SPI)

An SPI is an arbitrary value that uniquely identifies which SA to use at the
receiving host. The sending host uses the SPI to identify and select which
SA to use to secure every packet while the receiving one uses it to identify
and select the encryption algorithm and key used to decrypt packets.

Thus, representations of host identity are not carried explicitly in the
headers of user data packets. Instead, the ESP Security Parameter Index
(SPI) is used to indicate the right host context. The ESP SPIs have added
significance when used with HIP; they are a compressed representation of a
pair of HITs.

The SPI selection should be random and a different SPI should be used
for each HIP exchange with a particular host; this is to avoid a replay attack.
Additionally, when a host rekeys, the SPI must be changed as well as when
a host changes over to use a different IP address.

One method for SPI creation could be to concatenate the HIT with a
32-bit random or sequential number, hash this (using SHA1), and then use
the high order 32 bits as the SPI.

The selected SPI is communicated to the peer in the third (I2) and fourth
(R2) packets of the base HIP exchange. Changes in SPI are signaled with
ESP INFO parameters.

C.2 Diffie-Hellman key exchange description

The simplest, and original, implementation of the protocol uses the multi-
plicative group of integers modulo p, where p is prime and g is primitive
mod p. Modulo (or mod) simply means that the integers between 1 and p -
1 are used with normal multiplication, exponentiation and division, except
that after each operation the result keeps only the remainder after dividing
by p. Here is an example of the protocol:

1. Alice and Bob agree to use a prime number p=23 and base g=5.
2. Alice chooses a secret integer a=6, then sends Bob (ga mod p)
56 mod 23 = 8.
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3. Bob chooses a secret integer b=15, then sends Alice (gb mod p)
515 mod 23 = 19.
4. Alice computes (gb mod p)a mod p
196 mod 23 = 2.
5. Bob computes (ga mod p)b mod p
815 mod 23 = 2.
Both Alice and Bob have arrived at the same value, because gab and

gba are equal. Note that only a, b and gab = gba are kept secret. All the
other values are sent in the clear. Once Alice and Bob compute the shared
secret they can use it as an encryption key, known only to them, for sending
messages across the same open communications channel. Of course, much
larger values of a, b, and p would be needed to make this example secure,
since it is easy to try all the possible values of gab mod 23 (there will be, at
most, 22 such values, even if a and b are large). If p was a prime of more
than 300 digits, and a and b were at least 100 digits long, then even the
best known algorithms for finding a given only g, p, and ga mod p (known
as the discrete logarithm problem) would take longer than the lifetime of the
universe to run. g need not be large at all, and in practice is usually either
2 or 5.

Here’s a more general description of the protocol:
1. Alice and Bob agree on a finite cyclic group G and a generating element

g in G. (This is usually done long before the rest of the protocol; g is assumed
to be known by all attackers.) We will write the group G multiplicatively.

2. Alice picks a random natural number a and sends ga to Bob.
3. Bob picks a random natural number b and sends gb to Alice.
4. Alice computes (gb)a.
5. Bob computes (ga)b.
Both Alice and Bob are now in possession of the group element gab which

can serve as the shared secret key. The values of (ga)b and (gb)a are the same
because groups are power associative.

C.3 SHA1

Secure Hash Algorithm 1 is a popular one-way hash algorithm used to create
digital signatures. SHA was developed by the NIST, and SHA1 is a revision
to the standard released in 1994. SHA1 is similar to the MD4 and MD5
algorithms developed by Rivest, but it is slightly slower and more secure.

The Secure Hash Algorithm (SHA1 or SHA-1) is required for use with
the Digital Signature Algorithm (DSA) as specified in the Digital Signature
Standard (DSS) and whenever a secure hash algorithm is required for federal
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applications. For a message of length < 264 bits, the SHA-1 produces a 160-
bit condensed representation of the message called a message digest. The
message digest is used during generation of a signature for the message. The
SHA-1 is also used to compute a message digest for the received version of
the message during the process of verifying the signature. Any change to
the message in transit will, with very high probability, result in a different
message digest, and the signature will fail to verify.

The SHA-1 is designed to have the following properties: it is computa-
tionally infeasible to find a message which corresponds to a given message
digest, or to find two different messages which produce the same message
digest.

C.4 HMAC

A keyed-hash message authentication code, or HMAC, is a type of message
authentication code (MAC) calculated using a cryptographic hash function
in combination with a secret key. As with any MAC, it may be used to simul-
taneously verify both the data integrity and the authenticity of a message.
Any iterative cryptographic hash function, such as MD5 or SHA-1, may be
used in the calculation of an HMAC; the resulting MAC algorithm is termed
HMAC-MD5 or HMAC-SHA-1 accordingly. The cryptographic strength of
the HMAC depends upon the cryptographic strength of the underlying hash
function and on the size and quality of the key.

An iterative hash function breaks up a message into blocks of a fixed size
and iterates over them with a compression function. For example, MD5 and
SHA-1 operate on 512-bit blocks. The size of the output of HMAC is the
same as that of the underlying hash function (128 or 160 bits in the case of
MD5 and SHA-1), although it can be truncated if desired.

HMAC is defined as

HMACK(m) = h

(

(K ⊕ opad) | h
(

(K ⊕ ipad) | m
)

)

,

where
h: is an iterated hash function
K : is a secret key padded with extra zeros to the block size of the hash

function
m: is the message to be authenticated.
|: denotes concatenation
⊕: denotes exclusive or.
The two constants ipad and opad each one block long are defined as
ipad = 0x363636...3636
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opad = 0x5c5c5c...5c5c
That is, if block size of the hash function is 512 ipad and opad are 64

repetitions of the (hexadecimal) bytes 0x36 and 0x5c respectively.
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Transmission Control Protocol

The Transmission Control Protocol (TCP) is one of the core protocols of the
Internet protocol suite. Using TCP, applications on networked hosts can cre-
ate connections to one another, over which they can exchange data or packets.
The protocol guarantees reliable and in-order delivery of sender to receiver
data. TCP also distinguishes data for multiple, concurrent applications (e.g.
Web server and email server) running on the same host.

TCP supports many of the Internet’s most popular application protocols
and resulting applications, including the World Wide Web, email and Secure
Shell.

In the Internet protocol suite, TCP is the intermediate layer between
the Internet Protocol below it, and an application above it. Applications
often need reliable pipe-like connections to each other, whereas the Internet
Protocol does not provide such streams, but rather only unreliable packets.
TCP does the task of the transport layer in the simplified OSI model of
computer networks.

Applications send streams of octets (8-bit bytes) to TCP for delivery
through the network, and TCP divides the byte stream into appropriately
sized segments (usually delineated by the maximum transmission unit (MTU)
size of the data link layer of the network the computer is attached to).
TCP then passes the resulting packets to the Internet Protocol, for deliv-
ery through the internet to the TCP module of the entity at the other end.
TCP checks to make sure that no packets are lost by giving each packet a
sequence number, which is also used to make sure that the data are deliv-
ered to the entity at the other end in the correct order. The TCP module
at the far end sends back an acknowledgement for packets which have been
successfully received; a timer at the sending TCP will cause a timeout if
an acknowledgement is not received within a reasonable round-trip time (or
RTT), and the (presumably lost) data will then be re-transmitted. The TCP
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checks that no bytes are damaged by using a checksum; one is computed at
the sender for each block of data before it is sent, and checked at the receiver.

Unlike TCP’s traditional counterpart User Datagram Protocol that can
immediately start sending packets, TCP requires a connection establishment
before sending data and a connection termination on completion of sending
data. More succinctly, TCP connections have three phases:

1. connection establishment
2. data transfer
3. connection termination
Before describing these three phases, a note about the various states of a

socket:
1. LISTEN
2. SYN-SENT
3. SYN-RECEIVED
4. ESTABLISHED
5. FIN-WAIT-1
6. FIN-WAIT-2
7. CLOSE-WAIT
8. CLOSING
9. LAST-ACK
10. TIME-WAIT
11. CLOSED
LISTEN: represents waiting for a connection request from any remote

TCP and port. (usually set by TCP servers)
SYN-SENT: represents waiting for the remote TCP to send back a TCP

packet with the SYN and ACK flags set. (usually set by TCP clients)
SYN-RECEIVED: represents waiting for the remote TCP to send back

an acknowledgment after have sent back a connection acknowledgment to the
remote TCP. (usually set by TCP servers)

ESTABLISHED: represents that the port is ready to receive/send data
from/to the remote TCP. (set by TCP clients and servers)

TIME-WAIT: represents waiting for enough time to pass to be sure the
remote TCP received the acknowledgment of its connection termination re-
quest. According to RFC 793 a connection can stay in TIME-WAIT for a
maximum of four minutes.

D.1 Connection establishment

To establish a connection, TCP uses a 3-way handshake. Before a client
attempts to connect with a server, the server must first bind to a port to
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open it up for connections: this is called a passive open. Once the passive
open is established then a client may initiate an active open. To establish a
connection, the 3-way (or 3-step) handshake occurs:

1. The active open is performed by sending a SYN to the server.
2. In response, the server replies with a SYN-ACK.
3. Finally the client sends an ACK back to the server.
At this point, both the client and server have received an acknowledge-

ment of the connection.
Example:
1. The initiating host (client) sends a synchronization (SYN flag set)

packet to initiate a connection. Any SYN packet holds Sequence Number.
The Sequence Number is a 32 bit field TCP segment header. For example
let the Sequence Number value for this session be x.

2. The other host receives the packet, records the Sequence Number of x
from the client, and replies with an acknowledgment (ACK). The Acknowl-
edgment Number is a 32 bit field in TCP segment header. It contains the
next sequence number that this host is expecting to receive (x + 1).The host
also initiates a return session. This includes a TCP segment with its own
initial Sequence Number value of y.

3. The initiating host responds with a next Sequence Number (x+1) and
a simple Acknowledgment Number value of y + 1, which is the Sequence
Number value of the other host + 1.

D.2 Data transfer

There are a few key features that set TCP apart from UDP:
* Error-free data transfer
* Ordered-data transfer
* Retransmission of lost packets
* Discarding duplicate packets
* Congestion throttling
In the first two steps of the 3-way handshaking, both computers exchange

an initial sequence number (ISN). This number can be arbitrary. This se-
quence number identifies the order of the bytes sent from each computer so
that the data transferred is order regardless of any fragmentation or mis-
ordering that occurs during transmission. For every byte transmitted the
sequence number must be incremented.

Conceptually, each byte sent is assigned a sequence number and the re-
ceiver then sends an acknowledgement back to the sender that effectively
states that they received it. What is done in practice is only the first data
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byte is assigned a sequence number which is inserted in the sequence number
field and the receiver sends an acknowledgement value of the next byte they
expect to receive.

For example, if computer A sends 4 bytes with a sequence number of
100 (conceptually, the four bytes would have a sequence number of 100, 101,
102, 103 assigned) then the receiver would send back an acknowledgement
of 104 since that is the next byte it expects to receive in the next packet. By
sending an acknowledgement of 104, the receiver is signaling that it received
bytes 100, 101, 102, 103 correctly. If, by some chance, the last two bytes
were corrupted then an acknowledgement value of 102 would be sent since
100 101 were received successfully.

This would not happen for a packet of 4 bytes but it can happen if, for
example, 10,000 bytes are sent in 10 different TCP packets and a packet is
lost during transmission. If the first packet is lost then the sender would
have to resend all 10,000 bytes since the acknowledgement cannot say that
it received bytes 1,000 to 10,000 but only that it expects byte 0 because 0
through 9,999 were lost. (This issue is address in SCTP by adding a selective
acknowledgement.)

Sequence numbers and acknowledgments cover discarding duplicate pack-
ets, retransmission of lost packets, and ordered-data transfer. To assure cor-
rectness a checksum field is included.

The TCP checksum is a quite weak check by modern standards. Data
Link Layers with a high probability of bit error rates may require additional
link error correction/detection capabilities. If TCP were to be redesigned
today, it would most probably have a 32-bit cyclic redundancy check specified
as an error check instead of the current checksum. The weak checksum is
partially compensated for by the common use of a CRC or better integrity
check at layer 2, below both TCP and IP, such as is used in PPP or the
Ethernet frame. However, this does not mean that the 16-bit TCP checksum
is redundant: remarkably, surveys of Internet traffic have shown that software
and hardware errors that introduce errors in packets between CRC-protected
hops are common, and that the end-to-end 16-bit TCP checksum catches
most of these simple errors. This is the end-to-end principle at work.

The final part to TCP is congestion throttling.
Acknowledgements for data sent, or lack of acknowledgements, are used

by senders to implicitly interpret network conditions between the TCP sender
and receiver. Coupled with timers, TCP senders and receivers can alter the
behavior of the flow of data. This is more generally referred to as flow
control, congestion control and/or network congestion avoidance. TCP uses
a number of mechanisms to achieve high performance and avoid congesting
the network (i.e., send data faster than either the network, or the host on
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the other end, can utilize it). These mechanisms include the use of a sliding
window, the slow-start algorithm, the congestion avoidance algorithm, the
fast retransmit and fast recovery algorithms, and more. Enhancing TCP
to reliably handle loss, minimize errors, manage congestion and go fast in
very high-speed environments are ongoing areas of research and standards
development.

D.2.1 TCP window size

TCP sequence numbers and windows behave very much like a clock. The
window, whose width (in bytes) is defined by the receiving host, shifts each
time it receives and acks a segment of data. Once it runs out of sequence
numbers, it loops back to 0.

TCP sequence numbers and windows behave very much like a clock. The
window, whose width (in bytes) is defined by the receiving host, shifts each
time it receives and acks a segment of data. Once it runs out of sequence
numbers, it loops back to 0.

The TCP receive window size is the amount of received data (in bytes)
that can be buffered during a connection. The sending host can send only
that amount of data before it must wait for an acknowledgment and window
update from the receiving host.

D.2.2 Window scaling

For more efficient use of high bandwidth networks, a larger TCP window size
may be used. The TCP window size field controls the flow of data and is
limited to 2 bytes, or a window size of 65,535 bytes.

Since the size field cannot be expanded, a scaling factor is used. TCP
window scale, as defined in RFC 1323, is an option used to increase the
maximum window size from 65,535 bytes to 1 Gigabyte. Scaling up to larger
window sizes is a part of what is necessary for TCP Tuning.

The window scale option is used only during the TCP 3-way handshake.
The window scale value represents the number of bits to left-shift the 16-bit
window size field. The window scale value can be set from 0 (no shift) to 14.

D.3 Connection termination

The connection termination phase uses, at most, a four-way handshake, with
each side of the connection terminating independently. When an endpoint
wishes to stop its half of the connection, it transmits a FIN packet, which the
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other end acknowledges with an ACK. Therefore, a typical teardown requires
a pair of FIN and ACK segments from each TCP endpoint.

A connection can be ”half-open”, in which case one side has terminated
its end, but the other has not. The side which has terminated can no longer
send any data into the connection, but the other side can.

It is also possible for a 3-way handshake when host A sends a FIN and
host B replies with a FIN and ACK (merely combines 2 steps into one) and
host A replies with an ACK. This is perhaps the most common method.

Finally, it is possible for both hosts to send FINs simultaneously then both
just have to ACK. This could possibly be considered a 2-way handshake since
the FIN/ACK sequence is done in parallel for both directions.



Appendix E

Submitted patches

Added in the CD version.

E.1 Registration and Rendezvous Server im-

plementations

Submitted in release 0.3.2

E.2 Performance improvement

Submitted in release 0.3.2

E.3 New transition between R2-SENT and

ESTABLISHED HIP-states

Submitted in release 0.3.1
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