
Technische Universität München
Lehrstuhl für Kommunikationsnetze

Prof. Dr.-Ing. Wolfgang Kellerer

Master’s Thesis

Implementation and Performance Evaluation of TCP

Extensions in FreeBSD

Author: Aris Angelogiannopoulos
Matriculation Number: 03626880
Email Address: aris.angelog@hotmail.com
Supervisor: Dr. Lars Eggert
Begin: 15. April 2013
End: 15. October 2013

Abstract

TCP is the most widely used transport layer protocol and is used in a big range of ap-
plications. Understanding its behavior, is critical in order to properly engineer, operate,
and evaluate the performance of the Internet, as well as to properly design and implement
future networks. It aims into providing fast and reliable communication over an unreli-
able network such as the modern Internet. In order to achieve that, it is equipped with a
number of mechanisms that allow it to recover from losses etc.

How fast a transmission is done, meaning how fast all bytes available for transmission from
a sender to a receiver are sent is very important. This thesis explores two extensions of
standard TCP that aim into decreasing the time needed for data transmission. The first
one is the Proportional Rate Reduction (PRR) [DMCG11], an algorithm proposed as an
alternative to the standard Fast Recovery algorithm of TCP, used for loss recovery. PRR
addresses all the weaknesses that the standard algorithm has. The second extension that
is explored is New Congestion Window Validation [FSS13], a method that improves TCP
performance for rate-limited traffic. This traffic is produced by applications, which do not
use the entire bandwidth available to them by TCP.

An implementation for each extension was done in the TCP/IP stack of the FreeBSD
kernel. Their performance was evaluated. The results show that the transmission time is
lowered for all the scenarios that have been evaluated. The results for each extension are
presented at the respective section of each chapter.

2

Acknowledgements

This thesis has been done at the NetApp GmbH Research Lab in Munich, as the final part
of the M.Sc. in Communications Engineering of the Technical University of Munich.

I would like to express my sincere acknowledgement to my NetApp supervisor, Dr. Lars
Eggert for his invaluable support and guidance through the study. He did not only give
me the opportunity to work on such advanced technologies such as the TCP/IP stack of a
real operating system, but also he provided me with very useful advice, technical guidance
and recommendations for my work. I would also like to thank my colleague at NetApp,
Dr. Alexander Zimmermann who provided me with his support and guidance during the
evaluation, experimentation and writing part of my thesis.

Furthermore, I would like to thank Prof. Dr. Wolfgang Kellerer, the chairman of the
Institute for Communication Networks at TU Munich, and Dipl.-Inf. Andreas Blenk, my
TUM supervisor, for giving me this opportunity and providing very informative feedback
and assistance.

3

Contents

Contents 4

1 Introduction 6
1.1 Motivation . 6
1.2 Structure of the Thesis . 7

2 Transmission Control Protocol 8
2.1 Fundamental functions of TCP . 9
2.2 Flow Control . 12
2.3 Congestion Control . 13

2.3.1 Slow Start and Congestion Avoidance 13
2.3.2 Fast Retransmit and Fast Recovery 14
2.3.3 Conclusion . 15

3 TCP Performance Evaluation 16
3.1 Topology . 16
3.2 Tools . 18

3.2.1 Dummynet . 18
3.2.2 Flowgrind . 19
3.2.3 Tcpdump . 20
3.2.4 Tcptrace and xplot . 20

3.3 TCP time-sequence graphs . 20

4 Proportional Rate Reduction 22
4.1 Related Work . 23
4.2 Fast Recovery Proposals . 24

4.2.1 Fast Recovery in RFC standards 24
4.2.2 Fast Recovery in FreeBSD . 25

4.3 Proportional Rate Reduction . 27
4.3.1 PRR Algorithm Behavior . 29
4.3.2 PRR Algorithm Properties . 30
4.3.3 Implementation Choices . 32

4.4 Measurements . 33

4

CONTENTS 5

4.5 Conclusion . 41

5 New CWV 42
5.1 Related Work . 43
5.2 Congestion Control In Modern Operating Systems 43
5.3 New-CWV . 45

5.3.1 Calculation of pipeACK . 46
5.3.2 Method description . 47
5.3.3 New-CWV behavior . 49
5.3.4 Implementation Choices . 50

5.4 Measurements . 52
5.5 Conclusion . 55

6 Conclusion 56
6.1 Future Work . 57

List of Figures 59

List of Tables 60

Bibliography 61

Chapter 1

Introduction

The Transmission Control Protocol (TCP), allows computers and systems of all sizes,
from many different vendors, running totally different operating systems, to communicate
with each other. TCP started in the late 1960s as a US government research project into
packet switching networks. The Internet Engineering Task Force (IETF) has published the
first RFC, which standardized TCP in 1981 [Pos81]. The main focus of the latter was to
present TCP which, back then, was intended as a protocol aiming to assist communications
between military system. A lot of time has passed since then and TCP is now, by far, the
most used communication protocol between computer systems. Recent studies show that
TCP accounts for 85% to 90% of the traffic in the internet both in the Backbone [JT07]
and the Access Networks [PCUKEN09]. It is a truly open system since the definition and
many of the implementations are publicly available at little or no charge.

TCP aims to provide reliable, end-to-end communication between two hosts. It includes a
number of mechanisms that guarantees that data is delivered in order to the application
by the protocol even if losses are present. TCP is used by a large number of applications
including, smartphone apps, browsers, video streaming services etc. There has been very
extensive research that aims into improving the mechanisms of the protocol and improve
its performance with all types of traffic. There exists a great number of proposal and
extensions, this is the reason that IETF has created a document that provides a roadmap
to the various extensions that IETF has accepted and standardized since the first RFC
discussed earlier [DBEB06].

1.1 Motivation

As discussed before, TCP provides a number of mechanisms that enable reliable commu-
nication, Loss Recovery and Congestion Control to name a few. Extensive research has
been and is still being done aiming to improve performance of these mechanisms.

6

CHAPTER 1. INTRODUCTION 7

The term performance is somewhat vague, it is better seen as what the user understands
as better performance. For example, better performance in a file transfer, or in that
context any bulk data transfer, means a lower transmission time. Better performance in a
streaming video service such as Youtube means faster transfer time of the data blocks that
consist the video, such that the user experiences no delay or idle times (less jitter) while
watching the video. In other words, how fast a transmission is done, meaning how fast all
bytes available for transmission from a sender to a receiver are sent is very important.

This thesis investigates two TCP extensions that aim into improving the performance seen
by the user as described before. The first one is Proportional Rate Reduction [DMCG11]
and aims into improving the Fast Recovery mechanism of TCP. Fast Recovery is the mech-
anism that enables TCP to recover from losses fast and accurate. The second extension is
called New Congestion Window Validation [FSS13] and aims into providing a method that
improves the standard use of congestion control algorithm methods in order to support
rate-limited applications, e.g., applications that do not consume the whole of the band-
width that TCP assigns to them. It will be shown that these extensions are able to improve
performance when compared to standard TCP.

1.2 Structure of the Thesis

The work done in this thesis that is implementation of the extensions in the FreeBSD
TCP/IP stack and the evaluation of their performance are presented in this thesis. In
order to give a clear view, the thesis is divided into six chapters.

Following an overview given in Chapter 1, TCP is explained and presented in Chapter 2. A
brief overview of the protocol is given by examining the most important mechanisms that
consist it. Chapter 3 describes the environment used for performance evaluation of the im-
plemented TCP extensions. Chapter 4 describes the Proportional Rate Reduction (PRR).
Along with the description of the algorithm, the results of the performance evaluation are
presented. The same is true for New Congestion Window Validation that is discussed in
Chapter 5. Finally, Chapter 6 contains a brief summary of the study and some suggestions
for possible future work.

Chapter 2

Transmission Control Protocol

TCP is the element of the original Internet protocol suite that provides reliable data
transmission between two peers across an unreliable IP-based communication channel.
There exists a large number of documents that update its behavior since the original
specification which can be found in [Pos81]. A roadmap of these documents can be found
in [DBEB06]. TCP and the mechanisms that it includes constitute now the foundation of
Internet congestion control.

TCP, like UDP, is a transport layer protocol. Even though both of these protocols use the
same network layer (IP), TCP provides a totally different service to the application layer
than UDP does. It provides a connection-oriented, reliable, byte stream service.

The term connection-oriented means that the two parties participating in a connection
must first establish a connection through a mechanism called three-way handshake before
they can exchange data.

The term reliable means that TCP guarantees that the data the application sends will be
transmitted to the receiver. Due to network congestion, traffic load balancing or other
unpredictable network behavior, packets can be lost, duplicated or delivered out of order.
TCP detects these problems and requests retransmissions, discards duplicates, rearranges
out-of-order data and helps also minimize network congestion through its congestion control
algorithm.

The term byte stream service means that there is a stream of bytes exchanged across a
TCP connection. TCP does not interpret the contents of the bytes at all meaning that
sending does not depend on whether the data are binary, ASCII etc. This task is left to
the application participating in the communication stream.

This chapter presents the main functions and mechanisms that TCP consists of.

8

CHAPTER 2. TRANSMISSION CONTROL PROTOCOL 9

2.1 Fundamental functions of TCP

As discussed, the main difference of TCP against UDP is the reliable communication that
it provides. It uses sequence numbers and acknowledgements in order to identify that sent
segments have arrived to the receiver. If a segment is lost, TCP has to resend it before
sending any new data.

TCP has mechanisms that help it identify that a sent segment is lost and thus retransmit
it. The main such mechanism, is called Fast Recovery and it allows fast identification of
a lost packet and retransmission. The second way acts as a fallback in the case that Fast
Recovery does not work. TCP maintains a timer that defines the maximum amount of
time that a sender can wait for a segment to be acknwoledged. If the acknowledgement is
not received by the time that the timer expires, TCP retransmits then the segment, which
is assumed lost. Note that a lost packet is not the only reason that an acknowledgement
is not received. TCP maintains a checksum on its header and data in order to detect any
modifications on the data transmitted. A packet may have arrived at the receiver with an
invalid checksum causing the receiver to discard and not acknowledge it. Another reason
would be for the ACK packet to be lost as well.

TCP also provides flow control, meaning that it controls the amount of data that are
present in the network at any given time through a window based mechanism that will be
discussed in the next section.

Another function that TCP offers is the correct reassembly of segments arriving out of
order. TCP transmits segments as IP datagrams, and since IP datagrams can arrive out
of order, the receiver side of the connections has to re-sequence the data and pass them in
the correct order to the application.

A TCP segment consists from the header and the data part. The header maintains all
the information that are needed in order for TCP to be able to provide all the functions
discussed before. Its normal size is 20 bytes except if options are present. In that case, the
length is determined by the data offset, options can have a variable length of 0-320 bits
(should be divisible by 32, padding is used otherwise). The value of the data field depends
on the maximum segment size (MSS) of the path and the length of the header.

Figure 2.1 shows the structure of a TCP segment. As seen, it consists of a number of fields:

• 16-bit source port: This field identifies the port that the segment was sent from

• 16-bit destination port : This field identifies the port that this segment is sent to

• 32-bit sequence number: This field has a dual role. If the SYN flag is set, this is
the initial sequence number. The sequence number of the actual first data byte and
the acknowledged number in the corresponding ACK are then this sequence number
plus 1. If the SYN flag is not set, then this is the cumulative sequence number of
the first data byte of this segment for this connection

CHAPTER 2. TRANSMISSION CONTROL PROTOCOL 10

)6zbitTsourceTport)6zbitTdestinationTport

50zbitTsequenceTnumber

50zbitTacknowledgmentTnumber

F
I
N

S
Y
N

R
S
T

P
S
H

A
C
K

E
C
E

U
R
G

C
W
R

N
S

Reserved
TTT5zbitsT

TTTTTTTT4zbitT
headerTlength

)6zbitTwindowTsize

)6zbitTTCPTchecksum)6zbitTurgentTpointer

optionsTGifTanyW

dataTGifTanyW

y)5)6 5)

0yTbytes

Figure 2.1: TCP header

• 32-bit acknowledgment number: If the ACK flag is set, then this is the next
sequence number that the receiver is expecting. This field acknowledges the sequence
number up to this value.

• 4-bit header length: This field specifies the size of the TCP header in 32-bit words.
The minimum size of the header is 5 words and the maximum is 15 words thus giving
the minimum size of 20 bytes and maximum of 60 bytes, allowing for up to 40 bytes
of options in the header.

• Reserved bits: This field is reserved for future use and should be set to 0.

• Flags: There are nine control flags used in a TCP segment. SYN, ACK and URG,
when set, indicate that the value in the corresponding field is valid. NS, CWR and
ECE are used for Explicit Congestion Notification (ECN) [RFB01]. FIN is used to
indicate the end of a connection. PSH is used to perform a push action. It requests to
push the buffered data to the application. Lastly, RST is used to reset a connection

• 16-bit window size: The size of the receive window in bytes that the sender of this
segment is currently willing to receive. In most cases, it is the current size of the
buffer of the receiving application

• 16-bit TCP checksum: The checksum field that is used for error checking

CHAPTER 2. TRANSMISSION CONTROL PROTOCOL 11

• 16-bit urgent pointer: If the URG flag is set, this field indicates the offset from
the sequence number indicating the last urgent data byte

• Options: This field is optional and carries TCP options such as the MSS, the amount
and sequence numbers of Selective Acknowledgment (SACK) blocks etc. MSS is used
to indicate the maximum segment size allowed in the path and SACK is used by a
receiver to notify a sender for delivered off-sequence segments

• Data: This optional field carries the actual data that an application wants to trans-
mit.

SYN

SYN, ACK

ACK

Node 1 Node 2

Figure 2.2: TCP initial handshake

As already mentioned, TCP is a connection oriented protocol. This means that in order
to reliably transfer a data stream from one end of a network to another, it first needs to
establish a logical connection using a three-way handshake. Figure 2.2 shows this proce-
dure. Node 1 sends to Node 2 a segment with the SYN flag set, in order to initiate a
connection. Node 2 replies with a SYN-ACK, meaning that both of these flags are set.
Node 1 acknowledges then that a connection is now active with an ACK. The connection
is now set up and the two nodes can exchange data. Note that these first segments can
also carry information useful for the initialization of the connection such as the MSS, the
initial sequence number etc. A recent extension, proposes that a connection can carry data
while performing the three-way handshake, this is achieved by the use of a cryptographic
cookie [RCC+11]. This approach can significantly speed up connections that require only
a few round trips, something that is common in todays internet.

CHAPTER 2. TRANSMISSION CONTROL PROTOCOL 12

ACK

Node 1 Node 2

ACK

FIN

FIN

Figure 2.3: Termination of a TCP connection

While it takes three segments to establish a connection, it takes four to terminate one.
This is caused by TCP ‘s half-close. Since each TCP connection is full duplex, meaning
that data can flow to each direction independently, each part of the connection has to close
independently. The rule is that both ends can send a FIN when it is done sending data.
The receipt of the FIN, only means that there will not be any other data flowing in that
direction. Figure 2.3 shows the termination of a TCP connection. Node 1 finishes sending
data and thus sends a FIN. Node 2 acknowledges the FIN and sends its own FIN to Node
1. Lastly, Node 1 acknowledges the FIN from No2. The connection is now closed.

Note that for both the initiation and termination of a connection, the simplest scenarios
are presented. There can be many issues, e.g., a FIN or ACK might get lost. Since these
are normal segments the usual procedure described in the next section will be followed in
order to recover the losses.

2.2 Flow Control

TCP uses window-based Flow Control. This means that the receiver carries out flow control
by granting the sender a window, called receive window, of a certain amount of data that
is willing to receive. The sender must not send more than what this receive window allows
at any point, without receiving an acknowledgment for already sent packets.

CHAPTER 2. TRANSMISSION CONTROL PROTOCOL 13

0 1 2 3 4 5 6 7 8 9

Sent and
acknowledged

Sent and not
acknowledged Can be sent Must wait

to send

Window

Figure 2.4: TCP sliding window

Figure 2.4 depicts the way that Flow Control works in TCP. In this example, the advertised
window consists of 5 segments. Since segments 0 and 1 have already been acknowledged,
the receive window covers segments 2 to 6. Segments 2 to 4 have been sent but not
acknowledged. Segments 5 and 6 can be sent but are not, this can be a result of congestion
control taking place. If an acknowledgement for segment 2 comes and the receive window
remains the same the sender is then allowed to advance (slide) the window one position to
the right. In the case that the received ACK indicates that the receive window has grown
(opened), the sender is then allowed to transmit more packets. Similarly, if it closes less
packets must be transmitted.

2.3 Congestion Control

Congestion Control mechanisms, control the amount of data entering the network and keep
the rate below a value that could trigger collapse. Acknowledgements of data sent, or lack
of them are used as an indication for TCP to understand network conditions. Modern
implementations of TCP include four algorithms: Slow Start, Congestion Avoidance, Fast
Retransmit and Fast Recovery [APB09].

2.3.1 Slow Start and Congestion Avoidance

In addition to the receive window discussed in the previous section, Congestion Control
adds another window to the sender’s TCP. This window is the congestion window. The
sender can transmit up to the minimum between the congestion window and the receive
window advertised by the receiver. When a new connection is established, the congestion
window is initialized to three segments. Each time the sender receives an ACK, it increases

CHAPTER 2. TRANSMISSION CONTROL PROTOCOL 14

the congestion window by one segment. The congestion window can be seen, as flow control
imposed by the sender while the receive window as flow control imposed by the receiver.

At the beginning of the connection, the sender sends a segment and waits for its ACK.
When it is received the congestion window is incremented by one and the sender sends now
two segments. After the next ACK the sender can send 3 segments and so on. This is an
exponential increase to the congestion window. After a while the limit of the intermediate
network is reached and an intermediate router may start to discard packets. This is an
unwanted behavior since lost packets mean a decrease in performance.

The assumption of the algorithm is that packet loss signals congestion somewhere in the
network between the source and the destination. Congestion Avoidance defines the limit
up to which a TCP sender may perform Slow Start. It defines a variable called slow start
threshold (ssthresh). After the congestion window reaches ssthresh the sender then stops
exponentially increasing it and rather performs an additive increase as follows:

cwnd = cwnd + MSS * MSS / cwnd

This means that the window will be increased by at most one segment per RTT. ssthresh
is initialized to a rather small value depending on the implementation (but not less than
3*MSS). When a loss event occurs, half of the value of the congestion window is saved as
the value of ssthresh.

2.3.2 Fast Retransmit and Fast Recovery

Fast Recovery is the main algorithm that allows TCP to recover from a loss. Before it is
described, it should be noted that TCP is required to send an immediate acknowledgment
(duplicated ACK), when an out of order segment is received. The purpose of this duplicate
ACK is to let the sender know that a segment was received out of order and thus indicating
that a packet might be lost.

Fast Recovery algorithm states that after the receipt of three consecutive duplicate ACKs,
the TCP sender must enter Fast Recovery and retransmit the next unacknowledged segment
(Fast Retransmit). The value three is chosen because it is not possible to know if the
duplicate ACK was generated because of a lost segment or it was the result of reordering.
In the case of the latter, more ACKs are needed in order to assure that the packet was
lost. It is assumed that if the duplicate ACK was the result of reordering, there will only
be one or two duplicate ACKs before the reordered segment is processed.

After the Fast Retransmit, Fast Recovery is performed. Fast Recovery consists of a set
of rules that dictate the way that the congestion window should increase during recovery.
Note that there exist various congestion control algorithms that dictate the way that
the congestion window should be increased during e.g. Congestion Avoidance, such as
Vegas [BP95], CUBIC [HRX08] etc. Modern Fast Recovery algorithms use, in addition to
normal ACKs, selective acknowledgments (SACK) [MMFR96]. SACK is implemented as a

CHAPTER 2. TRANSMISSION CONTROL PROTOCOL 15

TCP option, which is negotiated between the two parties participating in the connection. It
allows the receiver to notify the sender in regards with the received out of order segments,
i.e., the exact number of bytes that are successfully received. The use of SACK can
significantly increase the performance of a TCP connection. Fast Recovery will be studied
in detail in Chapter 4.

2.3.3 Conclusion

This chapter has provided a quick overview of TCPs main characteristics and mechanisms.
TCP is a quite complicated protocol and there exist many books about it. For a detailed
study, the reader can refer to [Ste93]. All the essential TCP details described in this chapter
are specified in standards track RFCs, which essentially means that the IETF recommends
their implementation. [DBEB06] provides a roadmap to the various TCP extensions that
have been proposed and adopted over the years since the original specification.

Chapter 3

TCP Performance Evaluation

TCP, as presented in the previous chapter, leaves a lot of room for various improvements
that were made over the years. For the needs of this thesis, two extensions were im-
plemented. The first one is the Proportional Rate Reduction algorithm, a modern Fast
Recovery scheme that aims to update the standard algorithm and overcome its weaknesses.
The second one is the New Congestion Window Validation, a method aiming to provide
better support to applications experiencing rate-limited and/or idle periods. For both
extensions, a performance evaluation was also done.

This chapter will present the evaluation topology, as well as the tools that were used in
order to evaluate the performance of the implemented extensions.

3.1 Topology

One of the topologies, most frequently used, in order to evaluate end-to-end protocols,
is the one introduced in the Internet Draft “Common TCP Evaluation Suite” [AMF+08]
from the Transport Modeling Research Group (TMRG) of the Internet Research Task Force
(IRTF). This topology is known as the Dumbbell Topology and is depicted in Figure 3.1.
As it can be seen from the Figure, this topology consists of 3 different group of nodes. Two
of the three groups have almost the same function, meaning that they serve as end points
for the protocol. One of these two groups is the group of the senders and the other one
is the group of the receivers. The third group that lies in the intermediate link between
the senders and the receivers, is the group of the routers that introduces various functions,
such as loss, delay etc.

A characteristic of the Dumbbell topology is that there is only one link that lies between
the group of the senders and the group of the receivers so that there is only one way for
the two parties to communicate. This means that they all have to share the bandwidth

16

CHAPTER 3. TCP PERFORMANCE EVALUATION 17

1

2

N

1

2

N

IN ININININININ
loss lossdelay delayreorder reorderlimit

Figure 3.1: Dumbbell topology

and the queues of this link (router) so that a number of scenarios can be created such as
an access link to an Internet Service Provider (ISP), a trans-oceanic link [AMF+08] etc.

For the needs of this thesis, two TCP extensions were implemented in the FreeBSD ker-
nel. For evaluating their performance, a Dumbbell topology was setup, that enabled the
required experiments to be performed.

Sender ReceiverDummynet node

em2 em2 em3 em3

Figure 3.2: Experiment lab setup

Figure 3.2 shows the lab setup that was used for the evaluation. There are three nodes
present in this setup. The sender node, initiates the TCP flows to the receiver. The TCP
packets (both data and ACK packets) go through the intermediate node, which is marked
as the dummynet node. Dummynet [CR09] is a live network emulation tool, originally
designed for testing networking protocols, and since then used for a variety of applications
including bandwidth management. In this setup, dummynet is used as a traffic shaper,
able to perform all the functions that the Dumbbell topology that is presented before
introduces (e.g. delay, loss).

CHAPTER 3. TCP PERFORMANCE EVALUATION 18

Various evaluation scenarios were used, where different variables such as the bandwidth of
the path and the round trip time were varied. A key note should be made here regarding
the size of the queue of the intermediate node (defined also by dummynet like all the other
parameters). Depending on the bandwidth and the delay of the path, the queue length
should be calculated, such that, it is neither too small, nor too big. If the queue length is
too small, it can happen that after a short amount of time the queue becomes full. If this
happens, the extra packets that arrive after the queue is filled, will be dropped, causing the
TCP sender to limit its sending rate and thus introduce greater unnecessary latency. If the
queue length is too big, it is possible to fully utilize the link with a small amount of dropped
packets. This will cause a big increase in the End-to-End Delay and the Round-Trip Time
and thus create a very long path, which is undesirable. In order to avoid the queue length
to be either too small or too big, it is configured as the Bandwidth-Delay product. This
means that if B is the bandwidth of the path and R is the configured round-trip time, the
length of the queue should be equal to their product B*R. For instance if B=2Mbit/s and
R=40ms, the queue length is then equal to 7 packets with a packet size of 1500 bytes.

Multiple senders (flows) and receivers were simulated by flowgrind [ZHK10]. Flowgrind
is a software application able to generate network traffic in order to measure throughput,
transmission time and other TCP metrics in order to evaluate a TCP extension.

3.2 Tools

In order to evaluate the extensions that were implemented, a number of tools were used,
that allow a closer inspection of a TCP connection. These tools include dummynet used for
traffic shaping, flowgrind, used for generating traffic in the network, tcpdump for capturing
packets of a TCP connection and examine their fields and tcptrace as well as xplot to
visualize a TCP connection.

3.2.1 Dummynet

Dummynet is a widely used link emulator, developed to run experiments in user-
configurable network environments. Since its original design, it is extended in various
ways and has become very popular in the research community since it can emulate even
moderately complex network setups on unmodified operating systems [CR09]. The origi-
nal version was developed for FreeBSD and OSX. There currently also exist versions for
Windows and Linux.

As discussed in the previous section, dummynet was used in the intermediate node in order
to control the bandwidth of the path, the length of the queues and the round trip time
between the sender and the receiver. Dummynet works by intercepting selected packets on
their way through the protocol stack. It then passes the packets to objects called pipes,

CHAPTER 3. TCP PERFORMANCE EVALUATION 19

which implement a set of queues, a scheduler and a link, all with configurable parameters,
that is bandwidth, delay, loss rate, queue size etc.

Traffic selection is done using the ipfw firewall, which is the main user interface for dum-
mynet. ipfw lets the user select precisely the traffic and its direction that he wants to
shape. It is very powerful and allows the specification of various scenarios, e.g. create
multiple pipes, pipelines, specify different behavior depending on the protocol etc. The
following scenario illustrates an example usage of dummynet. These commands limit the
incoming TCP packets at the rate of 2 Mbit/s.

ipfw add pipe 2 in proto tcp

ipfw pipe 2 config bw 2Mbit/s

The first line creates a pipe with the id number 2. The keywords in and tcp specify that
this rule applies to the incoming tcp packets only. After creating the pipe, the second line
configures the bandwidth such that it is 2Mbit/s.

As discussed, dummynet was used for the evaluation of the TCP extensions, implemented
in FreeBSD for the needs of this Thesis. For this reason, dummynet ran in the intermediate
node of Figure 3.2 in order to shape the traffic and give it the characteristics that each
measurement scenario required. As an example, the following commands are given:

ipfw add pipe 111 tcp from 240.0.3.2 to 240.0.4.3 out via em3

ipfw pipe 111 config queue 7 bw 2Mbit/s delay 20ms plr 0.01

The above commands, create a pipe for TCP packets sent from the sender (240.0.3.2) to
the receiver (240.0.4.3) via the em3 interface. This pipe is then configured with a delay of
20ms, a queue with a size of 7 packets, a bandwidth of 2Mbit/s and a random loss of 1%.
Note that the actual round trip time of the path will be 40ms and not 20ms since another
pipe has to be configured for the opposite direction for ACK packets.

3.2.2 Flowgrind

Flowgrind [ZHK10] is a testing and benchmarking tool, used to measure throughput and
other metrics in TCP connections. In contrast to other performance tools like iperf [hHK98]
or netperf [Jon], it features a distributed architecture, meaning that it is split into two
components: the daemon and the controller. Using the controller, flows between any two
systems that run the daemon can be established. At regular intervals during the test, the
controller collects and displays the measured results from the daemons. It can run multiple
flows at once using the same or different interfaces. These flows can have the same or
individualized options, like the traffic type (e.g. bulk, rate-limited, request-response etc).
The following line states an example of its usage:

flowgrind -H s=host1,d=host2 -T s=0,d=10 -G s=q,C,800 -G s=g,N,0.008,0.01

CHAPTER 3. TCP PERFORMANCE EVALUATION 20

The above command, will start a flow from host1 (source) to host2 (destination) for 10
seconds. The traffic type is set to be rate-limited by using normal distributed interpacket
gap with mean 0.008 and a small variance (0.001). In addition with using request size of
800 bytes, a average bitrate of approximately 800 kbit/s is achieved.

Flowgrind can generate a varied type of traffics and provide a number of options that make
it a better choice than other network performance tools. The reader can refer to [Sam11]
for a comparison between network performance tools.

3.2.3 Tcpdump

Tcpdump [Tcp] is an open source packet analyzer that runs from the command line. It
allows the user to capture TCP/IP or other packets being transmitted over a network. It is
a powerful tool in analyzing network behavior and performance. It is possible to generate
capture files that are used by tools such as tcptrace, described in the next section, in order
to visualize a connection by using time-sequence graphs.

3.2.4 Tcptrace and xplot

The last two tools that were used for the evaluation of the TCP extensions that were
implemented, are tcptrace [Ost] and xplot [She]. Tcptrace uses as input a packet capture
file, generated by tcpdump and then creates output that are used by xplot in order to
create time-sequence graphs. These graphs are an easy way of depicting a TCP connection
and understand the way it works. Xplot provides an easy interface to handle those graphs
and is thus a powerful and important tool.

3.3 TCP time-sequence graphs

TCP time-sequence graphs are an easy way to depict a TCP connection and understand the
behavior of the system. Figure 3.3 shows an example time-sequence graph that depicts the
way the Fast Recovery algorithm works. The advancing green line represents the forward
movement of the advancing sequence numbers as they are acknowledged by the receiver.
SACK blocks are depicted by using purple and black is the actually transmitted block of
data.

As it can be seen in Figure 3.3, duplicate acknowledgements carrying SACK blocks are
received, indicating a lost packet. After the duplicate packet threshold is reached, typically
three, TCP enters Fast Recovery and transmits the lost packet. It then waits for multiple
duplicate and partial ACKs up to the point where the lost packet is acknowledged. Partial

CHAPTER 3. TCP PERFORMANCE EVALUATION 21

940000

960000

980000

1000000

1020000

1040000

1060000

1080000

5.30 5.35 5.40 5.45 5.50

Se
qu

en
ce

O
ffs
et

[B
]

Time [s]

R

Cumulative ACK
Advertised Window

Sent Segments
SACK

Retransmitted Segment

Figure 3.3: Time-Sequence Graph of a Fast Recovery event

ACKs advance but not cover the recovery point. TCP sender exits then Fast Recovery and
continues to transmit data to the receiver.

Chapter 4

Proportional Rate Reduction

The first algorithm that this thesis addresses is Proportional Rate Reduction [DMCG11].
TCP, as already discussed, typically operates in lossy networks, e.g., networks that are
unreliable, such as wireless or low bandwidth environments. This means that the sender
can not trust the network to deliver a packet to the destination. A packet can be lost
and this is the reason that TCP was designed with mechanisms that try to recover the
losses as fast as possible. Packet losses, typically introduce high latency to the user space
application and are therefore unwanted.

TCP recovers from a lost packet through two primary ways. The first is the Fast Re-
transmit/Recovery algorithm that retransmits a lost packet, after receiving a number of
duplicate ACKs (typically three, called dupthresh). As a fall back in the cases where the
Fast Recovery algorithm does not apply, e.g, not enough duplicate ACKs are received,
TCP uses a second, slower but more robust mechanism to identify lost packets. It waits
for an amount of time called the Retransmission Timeout (RTO) before assuming that a
packet is lost and retransmitting it.

The SACK based Fast Recovery algorithm, which is described in [BAFW03], is the main
mechanism, that is used in order to recover from losses. This thesis will explore some
of the weaknesses that the standard algorithm has and describe the Proportional Rate
Reduction [MDC13], a new experimental algorithm designed for (fast) loss recovery as an
alternative to the currently widely deployed scheme. It will then evaluate the performance
of PRR through an implementation in FreeBSD against the standard algorithm that is
deployed there.

The evaluation will show, that the standard algorithm deviates from its intended behavior
in the real world, due to the combined effect of short flows, application stalls (limited
available amount of data to send), ACK loss etc. It will be shown that the Proportional
Rate Reduction algorithm, performs better, meaning reduced latency, due to the fact that
it recovers from losses smoothly, quickly and accurately by pacing out retransmissions or
new data transmissions across received ACKs.

22

CHAPTER 4. PROPORTIONAL RATE REDUCTION 23

The Proportional Rate Reduction is inspired by the Rate Halving Algorithm [MSM99,
DMCG11], which will also be presented. PRR has been approved to become the default
Linux fast recovery algorithm for Linux 3.X [DMCG11].

4.1 Related Work

The Proportional Rate Reduction algorithm is based on the Rate Halving algo-
rithm [DMCG11] and as such, a quick overview of the latter [MSM99] is needed.

As discussed, most TCP Reno implementations use the Fast Recovery algorithm, which,
when a packet is lost, waits for a number of duplicate ACKs (typically three) before it
assumes a packet is lost and retransmits it. After the retransmission, TCP has to wait
for enough additional duplicate ACKs to arrive which indicate that half of the data that
were in flight when the loss happened has left the network, i.e. they were delivered to the
receiver. Only when this has happened will TCP inject new data into the network.

This behavior is known as Half RTT silence and wastes precious opportunities to send
new data. It sometimes results in no new data being sent during recovery, which in turn
increases the chances of a timeout and thus greater latency. Another consequence of this
design is that, the entire new window of data is transmitted on one half of one Round
Trip Time (RTT). This causes a bursty behavior which can lead to additional bursts in
the successive RTTs following recovery and thus increases the likelihood of a new loss
occurring.

The Rate Halving algorithm is using an idea initially by Hoe [Hoe95], who suggests that
during TCP Fast Recovery, the data sender should space out transmissions (both retrans-
missions and new data) on alternate returning ACKs across the entire recovery RTT. Rate
Halving mainly reduces the congestion window following the detection of congestion in the
network. Rate-Halving reduces the congestion window over one RTT by transmitting one
new packet for every exactly two packets acknowledged by the receiver.

During the adjustment interval, the window is reduced by sending one packet for each two
segments, which are acknowledged. The choice of which data to send (new or retransmis-
sions) is completely independent from the Rate Halving algorithm and is done by the TCP
stack.

The Proportional Rate Reduction algorithm is also inspired by Hoe’s suggestions that there
should be no half RTT silence during the recovery period but the responses to incoming
ACKs are calculated in dependence on the amount of data that the SACK information
indicates that were delivered by the network. This is in contrast with the Rate Halving
algorithm that sends one data segment every second incoming ACK.

CHAPTER 4. PROPORTIONAL RATE REDUCTION 24

4.2 Fast Recovery Proposals

The following subsections will discuss the SACK based Fast Recovery described by the
RFC standards as well as the one implemented in FreeBSD. The main drawbacks of the
algorithms will be presented.

4.2.1 Fast Recovery in RFC standards

The standard TCP congestion control algorithms are described in [APB09]. The four
algorithms that are described there are slow start, congestion avoidance, fast retransmit and
fast recovery. Their use with TCP were standardized in [Bra89]. [BAFW03] describes a
SACK-based loss recovery algorithm that is the current standard in most modern operating
systems. The Fast Recovery algorithm used in FreeBSD, which is the one that this thesis
examines and uses as a comparison to the Proportional Rate Reduction, is also based on
RFC 3517.

RFC 3517 Fast Recovery algorithm
On entering recovery:
// cwnd used during and after recovery
cwnd = ssthresh = Flightsize/2

// Retransmit first missing segment
fast retransmit()
// Transmit more if cwnd allows

For every ACK during recovery:
update scoreboard() pipe=(RFC 3517 specification)
transmit (MAX(0,cwnd-pipe))

Table 4.1: RFC 3517 FR

Table 4.1 briefly presents the SACK-based Fast Recovery algorithm, described in the stan-
dard. A TCP sender enters fast recovery upon receiving a dupthresh amount of duplicate
ACKs that indicate that a packet is lost. The typical value of dupthresh is three. The
reason for it being three and not, e.g., one or two is because there might have been some
reordering in the sequence of the packets and thus it is considered to be a better practice
than immediately retransmitting a possibly not lost packet into the network.

After the dupthresh value is reached, the sender is entering in Fast Recovery and thus is
required to reduce its slow start threshold (ssthresh) and its congestion window to half the
amount of outstanding data in the network. The sender has afterwards to retransmit the
first missing segment. In case the value of the congestion window allows to transmit more
data, the sender transmits more data (either more missing data or a retransmission).

CHAPTER 4. PROPORTIONAL RATE REDUCTION 25

For every incoming ACK the sender should update the scoreboard, used for keeping track of
the SACK information, compute pipe and transmit data in case the pipe variable allows it,
i.e., if pipe falls behind the congestion window variable. Pipe holds the senders estimate of
the number of packets currently in the network. The calculation is based on the information
that the scoreboard holds and RFC 3517 describes the way to compute its value. Fast
Recovery ends when all data that was outstanding in the network before entering recovery
is acknowledged.

There are two main problems that can be seen with the standard algorithm.

Half RTT silence: As pointed out during the discussion of the Rate Halving algorithm,
standard Fast Recovery waits for half of the received ACKs to pass before trans-
mitting anything after the first fast retransmit. This happens, because initially, just
after the loss has occurred, pipe is typically much higher that the congestion win-
dow, since a lot of data was in flight due to a possibly large congestion window. Each
returning ACK, reduces the value of pipe. A certain number of ACKs is needed in
order for pipe to fall behind the congestion window and make it possible to transmit
data again. This design wastes precious opportunities for data to be sent and may
sometimes lead to nothing being sent during recovery. The latter can increase the
chances of a timeout occurring.

Aggressive and bursty retransmissions: In case of large variations in pipe, the current
standard can lead to aggressive and bursty retransmissions. This can happen when
burst losses take place, i.e., many segments get lost together. This will lead to a
sudden decrease of pipe, which will lead to the sender sending a large burst. The
more losses there are, the bigger the bursts will be. This means that the sender keeps
injecting traffic to a congested network and thus further contributes to its congestion.

Having described the standard Fast Recovery algorithm and its drawbacks, the next section
will present the way that this algorithm is implemented in FreeBSD.

4.2.2 Fast Recovery in FreeBSD

The FreeBSD TCP stack implements a version of the standard SACK-based Fast Recovery
as described in [BAFW03]. There is one key issue that makes the implementation different
than what is described in the standard. There is no implementation of pipe. In contrast to
that, pipe is implemented in the Linux TCP stack. Instead of pipe the following workaround
is used:

pipeBSD = (snd nxt - snd fack) + sack bytes rexmited

where snd fack holds the sequence number of the highest SACKed block and
sack bytes rexmited holds the amount of bytes retransmitted during recovery. This cal-
culation might be good enough but can be inaccurate by underestimating pipe in the pres-

CHAPTER 4. PROPORTIONAL RATE REDUCTION 26

ence of reordering and thus allowing to inject more data in an already congested network.
Table 4.2 describes the Fast Recovery algorithm that is implemented in FreeBSD.

FreeBSD Fast Recovery Algorithm (SACK)

On entering recovery:
// ssthresh used during and after recovery
ssthresh = CongContrAlgo()
cwnd = max seg
// Retransmit first missing segment
fast retransmit()

For every duplicate ACK during recovery:
update scoreboard()
cwnd += max seg
if (cwnd > ssthresh)

cwnd = ssthresh
transmit (MAX(0,cwnd-pipeBSD))

For every partial ACK during recovery:
update scoreboard()
if(more than 2 max seg size bytes were acked)

cwnd += 2*max seg
else

cwnd += max seg
if(cwnd > ssthresh)

cwnd = ssthresh
transmit (MAX(0,cwnd-pipeBSD))

Table 4.2: FreeBSD FR

As can be seen from Table 4.2, the FreeBSD implementation does not halve the congestion
window when entering recovery but rather resets it to the size of one segment. It then
builds it up to the value of ssthresh. This approach is similar to the standard and keeps its
drawbacks, meaning we still have a half RTT silence and even for a slightly bigger amount
of time since it might take some time for the congestion window to grow to the ssthresh
and meet the downgrading pipe variable.

The advantage of this design is that it may avoid bursty retransmissions during the early
stages of the recovery process and in the presence of excessive loss events. This problem
remains after a certain point when the congestion window grows and converges to the slow
start threshold, ssthresh.

CHAPTER 4. PROPORTIONAL RATE REDUCTION 27

4.3 Proportional Rate Reduction

The Proportional Rate Reduction algorithm is designed to overcome both of the problems
mentioned in the previous section. Table 4.3 shows a pseudocode version of PRR.

PRR Fast Recovery Algorithm

On entering recovery:
ssthresh = CongContrAlgo() // Target cwnd after recovery
prr delivered = 0 // Total bytes delivered during recovery
prr out = 0 // Total bytes sent during recovery
RecoverFS = snd nxt - snd una // Flightsize at the start of recovery
// Retransmit first missing segment
fast retransmit()

For every duplicate or partial ACK during recovery:
update scoreboard()
DeliveredData = change in(snd una) + changed in(SACKd)
prr delivered += DeliveredData
pipe = (RFC 6675 pipe algorithm)
if (pipe > ssthresh) { // Proportional Rate Reduction

sndcnt = dprr delivered ∗ ssthresh/RecoverFSe - prr out
} else { // Two versions of the Reduction Bound

if (conservative) // PRR-CRB
limit = prr delivered - prr out

else // PRR-SSRB
limit = MAX(prr delivered - prr out, DeliveredData) + MSS

// Attempt to catch up, as permitted by limit
sndcnt = MIN(ssthresh - pipe, limit)

}

On every data transmission or retransmission:
prr out += (data sent) // strictly less than or equal to sndcnt

Table 4.3: PRR FR

The PRR algorithm determines the number of segments to be sent during recovery to
achieve two goals. First, a speedy and smooth recovery from losses and second ending
recovery at a congestion window near the slow start threshold.

PRR avoids excess window adjustments and is thus able to avoid bursts that can cause large
fluctuation of the congestion window. The foundation of the algorithm is the Van Jacobsons
packet conservation principle, which states that the number of packets (bytes) that are
delivered to the receiver, are used as a clock to inject new data into the network [Jac88].

CHAPTER 4. PROPORTIONAL RATE REDUCTION 28

The principle also included the assumption that the lost packets have indeed left the
network.

The Proportional Rate Reduction Algorithm has two main parts. The first part, which is
called the proportional part, is active when pipe is greater than ssthresh, which is typically
true in the early stages of recovery and under light losses. When this part of the algorithm
is active, it gradually reduces the congestion window clocked by the incoming packets,
i.e., the congestion window is reduced with every incoming ACK. The second part, named
Reduction Bound, of the algorithm is active when pipe becomes smaller than ssthresh.
In that case, the Reduction Bound part attempts to inhibit any further reduction of the
congestion window. Instead, it performs slow start and tries to build pipe up to the value
of ssthresh.

PRR is independent of the congestion control algorithm, which is used to determine the
new value of ssthresh. It takes into account possible modern congestion control algorithms
that the stack might be using by allowing them to specify the new value of the congestion
window such as Cubic and Vegas [HRX08, BP95].

As can be seen from Table 4.3, PRR introduces several new variables.

• prr delivered: TCP control block variable, that indicates the number of bytes
delivered to the receiver during recovery

• prr out: TCP control block variable, that indicates the number of bytes sent to
the receiver during recovery, counting both retransmissions and transmissions of new
data

• RecoverFS: TCP control block variable that indicates the Flightsize at the begin-
ning of recovery, defined as snd nxt-snd una in RFC 3517 [BAFW03]

• DeliveredData: Local variable that holds the number of bytes that the current
acknowledgment indicates that were delivered to the other side. It is computed
as the change in snd.una in case of a partial ACK plus the signed change in the
scoreboard information that concerns the bytes that were SACKed by the receiver.

• sndcnt: Local variable that indicates how many bytes to send in response to the
current acknowledgment

Sndcnt is the variable that holds the outcome of all the calculations performed by the
algorithm. It holds the amount of bytes that should be sent in response to each incoming
ACK, after having taken into account all the other data. The output function of the TCP
stack performs all the necessary checks in order to send sndcnt bytes into the network.

Table 4.3 shows how PRR updates sndcnt after every ACK received during recovery. When
pipe is larger than ssthresh, PRR spreads the reduction of the congestion window over a
full RTT, such that at the end of recovery, RecoverFS approaches prr delivered, prr out
approaches ssthresh and thus attempting to minimize the time spent in recovery. If there
exist multiple losses that cause pipe to fall below ssthresh, the second part of the algorithm

CHAPTER 4. PROPORTIONAL RATE REDUCTION 29

is activated, which tries to build pipe back to the value of ssthresh. This part of the
algorithm is based on the prr delivered -prr out difference. It performs just like TCP is
behaving during slow start, by additively increasing the congestion window based on the
aforementioned difference, which will usually be one segment. The increase to the number
of packets in flight during recovery is done more smoothly than RFC 3517, which as
discussed earlier would send out ssthresh-pipe segments in one burst.

A key difference of PRR in comparison to the standard algorithm is its reliance on the
DeliveredData variable that holds the value of the number of bytes that are actually de-
livered to the other side. Standard algorithms rely on incoming ACKs in order to adjust
the value of the congestion window rather than the amount of data that was actually de-
livered. The approach that PRR is using is making the algorithm actually more precise to
its calculations of how many data to inject into the network. This can be explained with
the following example. If there is an ACK loss, the standard algorithm will not know that
this ACK ever existed and thus, when the next ACK comes in, will adjust the congestion
window using only the latter one, leading to a conservative behavior that is not justified.
In contrast to that, PRR will know exactly how many bytes were delivered and will inject
back to the network the appropriate amount of bytes through sndcnt.

The Proportional Rate Reduction algorithm overcomes the two main drawbacks of the
standard algorithm. It addresses the Half RTT silence by sending data every other in-
coming ACK during that period (and not exactly every second ACK like the rate halving
algorithm is doing), thanks to the Proportional part of the algorithm and the way sndcnt
is calculated during that period. PRR also addresses the second issue by avoiding excess
window adjustments and behaving like TCP does when in slow start mode and thus avoid-
ing bursts of multiple segments like RFC 3517 can send (up to ssthresh-pipe in case of
multiple loss events.

4.3.1 PRR Algorithm Behavior

In order to better understand the behavior of the algorithm the following time sequence
graphs are provided. The example illustrates that PRR avoids the Half RTT silence by
injecting packets into the network even when the data on flight are more than the ssthresh,
using the proportional part of the algorithm.

Figure 4.1 shows the behavior of the standard SACK based Fast Recovery algorithm of
FreeBSD. Purple lines indicate the SACK blocks, whereas black lines indicate new data
sent. The green line indicates the sequence number line, which is advanced over time,
indicating that more data is delivered to the receiver and acknowledged.

A retransmission (red line) is done after receiving the third duplicate ACK, which leads
to the Fast Recovery code as described in Section 4.2 being executed. Note that the first
ACK carrying a SACK block is not a duplicate and as such is not considered as so by the
implementation.

CHAPTER 4. PROPORTIONAL RATE REDUCTION 30

940000

960000

980000

1000000

1020000

1040000

1060000

1080000

5.30 5.35 5.40 5.45 5.50

Se
qu

en
ce

O
ffs
et

[B
]

Time [s]

R

Cumulative ACK
Advertised Window

Sent Segments
SACK

Retransmitted Segment

Figure 4.1: FreeBSD Fast Recovery algorithm behavior

It can be observed that the half RTT silence is seen, that is the time that the algorithm is
waiting for enough data to be delivered to the other side in order for it to be able to clock
more data into the network. As discussed previously, the returning ACKs act as a clock
indicating how many packets (data) are delivered.

In contrast to Figure 4.1, Figure 4.2 shows the behavior of the Proportional Rate Reduction
algorithm in the same situation. As described in the previous section, PRR does not wait
for half an RTT to clock data into the network but rather, when in the Proportional part,
injects data on every other ACK.

This means that no opportunities to send data are wasted and thus PRR is able to recover
smoother and faster from a loss. During the Reduction Bound part, the algorithm keeps
injecting data into the network with the goal to bring pipe up to the value of ssthresh.
This is one of the properties of PRR that will be discussed in the next section.

4.3.2 PRR Algorithm Properties

This section focuses on discussing some key properties that the Proportional Rate Reduc-
tion algorithm exhibits.

CHAPTER 4. PROPORTIONAL RATE REDUCTION 31

320000

340000

360000

380000

400000

420000

440000

460000

1.45 1.50 1.55 1.60 1.65

S
eq
ue
nc
e
O
se
t
[B
]

T ime [s]

R

Cumulat ive ACK
Advert ised Window

Sent Segments
SACK

Retransmit ted Segment

Figure 4.2: PRR Fast Recovery algorithm behavior

• Maintains ACK clocking: RFC 3517, as well as the FreeBSD standard implemen-
tation can send, under heavy losses, a large burst of data back into the network. This
can happen since in the case of a large amount of data being lost, pipe will go well
below ssthresh causing their difference to grow and as a result inject (ssthresh-pipe)
data into the network. This behavior does not occur in PRR primarily due to the
slow start part of the algorithm. If a large amount of data is lost, the reduction of
pipe will cause the slow start part to execute and thus causing less data to be injected
to an already congested network. Normally, PRR will spread window reductions out
evenly across a full RTT. This has the effect of potentially reducing the burstiness of
the internet if PRR is widely used and can be considered to be a type of soft pacing.
Hypothetically, any pacing increases the probability that different flows are inter-
leaved, reducing the opportunity for ACK compression and other phenomena that
increase traffic burstiness. However, these effects have not been quantified [MDC13].

• Convergence to ssthresh : If there are minimal losses, PRR will cause pipe to
converge to exactly the target window chosen by the congestion control algorithm.
In such a case, the algorithm will typically operate in the proportional mode, where
the congestion window will gradually decrement up to the point that pipe reaches the
value of ssthresh at which point the second part of the algorithm maintains the pipe

CHAPTER 4. PROPORTIONAL RATE REDUCTION 32

at ssthresh value. Note that as TCP approaches the end of recovery, prr delivered
will typically approach RecoverFS and sndcnt will be computed such that prr out
approaches ssthresh. In the case of burst losses, this property may not always hold
true since there may not be enough ACKs to raise pipe up to ssthresh. Note that
earlier voluntary window reductions can be undone by sending extra segments in
response to ACKs arriving later during recovery.

• Banks sending opportunities during application stalls: If an application stalls
during recovery, i.e., the sending application is not able to write data fast enough
to the socket. PRR stores this missed sending opportunities and sends them at
a later point. During application stalls, no or little data is sent, causing prr out
to fall behind prr delivered and thus results to their difference prr delivered -prr out
becoming larger leading to sending more data at a latter point. This burst is bounded
by prr delivered -prr out+max seg. RFC 3517 and the FreeBSD implementation also
bank sending opportunities through the difference ssthresh-pipe. However, these
banked opportunities are subject to the inaccuracies of pipe. Pipe is only an estimate
of the data in the network and can therefore be inaccurate, e.g., in the presence of
reordering. FreeBSDs workaround on pipe is also subject to inaccuracies as discussed
above.

• Robustness of DeliveredData: One of the most important parts of the PRR
algorithm is its reliance on the newly introduced DeliveredData variable that holds
the amount of data that have been acknowledged from the receiver at each incoming
ACK. Use of the SACK information allows the sender to compute the exact amount
of data that was delivered to the receiver at each duplicate or partial ACK and thus
allowing to send the appropriate amount of data depending on the actual congestion
seen at the network. In contrast to that, RFC 3517 and the FreeBSD implementation,
rely on the incoming ACKs and pipe in order to adjust the congestion window during
recovery. This can lead to false estimates of the network congestion due to lost ACKs,
reordering in the ACK sequence etc.

4.3.3 Implementation Choices

For the needs of this Thesis, the Proportional Rate Reduction Algorithm was implemented
in the TCP stack of a real operating system, which was FreeBSD.

In order to implement the algorithm as part of the TCP/IP stack of the FreeBSD operating
system, a number of implementation choices were made.

Firstly, FreeBSD does not implement pipe, which is a key part of the PRR algorithm.
Instead of pipe, a workaround is used in order to calculate the amount of data that is on
flight. As already discussed, the following line of code shows the workaround that it is
used:

CHAPTER 4. PROPORTIONAL RATE REDUCTION 33

pipeBSD = (snd nxt - snd fack) + sack bytes rexmited

where snd fack holds the highest (rightmost) byte that has been SACKed and
sack bytes rexmited, holds the number of bytes that were retransmitted during this re-
covery episode. This calculation is not near the RFC 3517 standard calculation of pipe.
The main problem with it is that it can underestimate pipe in the presence of reordering
and thus introduce more traffic than it should to the network. Nevertheless, since there is
no alternative to that in FreeBSD, and the scope of the thesis did not included implement-
ing pipe, the above calculation was used in order to compute it and find out which part of
the PRR algorithm should be used each time.

The second choice that was made refers to the sndcnt variable. RFC 6937 specifies that
sndcnt is exactly the number of bytes that should be sent in response to each incoming
ACK. The fact that FreeBSD is a byte based TCP stack, unlike Linux that is packet based,
leads to a small confusion. Sending packets that contain less bytes than the maximum
segment, does in fact increase the latency against standard TCP since the same processing
time is needed for extra packets that carry less bytes and thus leading to a smaller Goodput.
PRR was implemented, keeping in mind, that it is a better practice to send full size than
smaller packets. The implementation, only injects data into the network when sndcnt holds
a larger value than the maximum segment size that was discovered for the path that TCP
operates on.

4.4 Measurements

Various experiments were performed in order to evaluate the behavior of PRR against the
standard SACK-based Fast Recovery algorithm of FreeBSD. For this reason, an imple-
mentation of PRR was done in the FreeBSD kernel. In order to correctly implement the
algorithm in FreeBSD, some implementation choices have been made, that have already
been discussed in Section 4.4. The experiment environment and setup are presented in
Chapter 3. During the experiments, the IW (Initial Window) of TCP was set to ten (10)
segments as proposed by [CDCM13].

There are two metrics that were evaluated during the experiments. The first and most
important one, since it reflects what the user experiences, is the application level latency
during the transfers meaning the time that is needed for a transmission to finish. In order
to quantify the improvement, transmission time was used as a metric. PRR was found to
perform better (0%-9%) in all the cases where loss was present. This comes as a result of
the fact that PRR reduces (2%) the second metric that was used, the average time that a
flow spends in recovery.

Figure 4.3 shows a comparison of the CDFs of the transmission time needed for a 1MB file
to be transmitted from the sender to the receiver in the environment described in Chapter
3. A CDF shows the probability that a value x (x-axis) will be found at a value less than

CHAPTER 4. PROPORTIONAL RATE REDUCTION 34

4300 4400 4500 4600 4700 4800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Comparing the cdf of the transmission times of a 1Mb file

Transmission time [ms]

F
n(

x)

●●
●

●
●
●
●

●●
●●
●●
●●

●

●

●

●

●

●

●●
●
●
●

●●
●●
●●
●●●

●●
●●●

●●●
●

●●
●●

●●
●
●

●
●●
●●
●●
●
●

●

●

●

●

●

●
●
●●
●●
●●
●●
●●
●●
●●
●●

●●
●●
●●
● ●●

●
●●

●●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●●
●●
●●
●●
●●
●●
● ●●

●●
●●
●●●

●●

SACK FR
PRR
PRR conservative

Figure 4.3: Comparing the CDF of the transmission times of a 1MB file

or equal to y (y-axis). We can see that PRR performs always better (4.6%-7.2%) than the
standard SACK-based Fast Recovery algorithm of the FreeBSD TCP/IP stack.

Table 4.4 summarizes the scenarios that were used in order to evaluate the PRR algorithm.

The metric evaluated during all of the above scenarios was the transmission time, that was

CHAPTER 4. PROPORTIONAL RATE REDUCTION 35

Scenario Bottleneck [Mbit/s] RTT [ms] Loss Rate [%] Transmission size [Bytes]
1 2 40 0 1 kB - 2 MB
2 2 40 0 - 10 1 MB
3 2 10 - 120 0 3 MB
4 1 - 35 40 0 3 MB

Table 4.4: Summary of the evaluation scenarios PRR

experienced by the application during the transmissions.

Scenario 1 varies the size of the transmission while keeping constant the RTT, the bottle-
neck at the intermediate node and introduces no random loss. Figure 4.4 shows the result
of scenario 1. The standard deviation of the results is drawn as well. For each measurement
point, 20 iterations were run.

As Figure 4.4 shows, both algorithms behave the same as long as the transfer sizes remain
small (less than 50kB), because the transfer sizes are not yet big enough in order for the
network to introduce many (or any) loss events. As the transfer sizes become bigger, more
loss events are present, causing the Fast Recovery algorithms to triger. Both versions of the
Reduction Bound of the PRR algorithm perform better than the standard SACK-based
Fast Recovery algorithm (0%-3%). It is also observed that there is a very small (0.1%)
difference in the performance of the two different reduction bounds of PRR.

The spike observed at the lower end (x-axis value of 15kB) of Figure 4.4 (15kB transfer
size) can be explained using Figure 4.5.

As discussed in Chapter 3, when having a 2 Mbit/s bottleneck bandwidth and an RTT of
40ms, the queue size should be equal to 7 segments. A 15 kB transmission amount, will
roughly be more than 10 segments (with a 1448 byte MSS). Since we are using an IW of
10 segments, we can see from figure 4.5, that only the first seven packets fit in the queue
during the initial burst. The last three are dropped. Since there are no other packets after
them, it is not possible for the sender to trigger Fast Recovery by receiving duplicate ACKs
and thus a timeout has to occur. The timeout will cause a greater latency introduced and
thus the spike is observed. A possible solution to this is the Tail Loss Probe algorithm,
proposed by Google, which aims to a faster recovery from tail losses [DCCM13].

Scenario 2 tries to simulate a lossy environment (i.e. a wireless link) where the probability
of a random, non-congestion packet loss is high. It varies the loss rate introduced by the
intermediate node (1%-10%), while keeping the bandwidth, RTT and transmission size
constant. A transmission size of 1 MB was chosen in order to increase the number of
possible loss events and thus the number of times that the Fast Recovery algorithms are
triggered.

Figure 4.6 shows the results, including the standard deviation. PRR behaves on average
better (2% - 9%) than the standard algorithm, although a high deviation is observed in
the results. This is expected, since the loss is random and thus the results will vary. 40

CHAPTER 4. PROPORTIONAL RATE REDUCTION 36

●●●●●

●

●
●

●

●

●

●

●

●

●

●

0 500 1000 1500 2000

0
20

00
40

00
60

00
80

00

Average Transmission time

Transfer size (kB)

Tr
an

sm
is

si
on

 ti
m

e
(m

s)

●●●●●

●

●
●

●

●

●

●

●

●

●

●

●●●●●

●

●
●

●

●

●

●

●

●

●

●

SACK FR
PRR
PRR conservative

Figure 4.4: Scenario 1 - Average transmission time for varied file sizes

repetitions were run for each measurement point.

Scenario 3 varies the value of the RTT, while keeping the bandwidth and the transmission
size constant. A transmission size of 3 MB was used in order to increase the likelihood of loss
events occurring and thus the number of times that the Fast Recovery was triggered. This
scenario simulates the varied RTT values that a server may encounter in a real scenario.

CHAPTER 4. PROPORTIONAL RATE REDUCTION 37

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0.00 0.20 0.40 0.60 0.80 1.00

Se
qu

en
ce

O
ffs
et

[B
]

Time [s]

R
R
R FINR FIN

Sent Segments
Cumulative ACK

Advertised Window
Retransmitted Segment

Figure 4.5: Timeout occuring

Figure 4.7 shows the average of 20 runs for each RTT value together with the standard
deviation. It is clearly seen that the standard deviation is very small, meaning that the
algorithm is always stable, with no large variations in its performance. It can also be seen
that both variants of PRR behave better (0.1% - 2.8%) than the standard SACK-based
Fast Recovery algorithm of FreeBSD.

Transmission time, for a very small RTT value, here 10ms, is higher than the one that is
observed for the rest of the values. This is because the bandwidth-delay product for this
case results in a 2 segment queue. This is a quite small value causing many packets to get
dropped and thus increasing the transmission time.

The conservative variant of PRR exhibits the same performance as the non-conservative
one. It can perform better in certain cases, when not sending an additional packet during
the reduction bound part of the algorithm can inhibit another loss event and thus avoiding
additional latency. This experiment shows us that the RTT value plays no significant value
in evaluating the algorithm.

Scenario 4 varies the bandwidth of the path, while keeping the RTT and the transmission
size constant. Twenty runs were performed for each point.

Figure 4.8 shows the results of Scenario 4 along with the standard deviation. As expected,

CHAPTER 4. PROPORTIONAL RATE REDUCTION 38

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

60
00

80
00

10
00

0
12

00
0

14
00

0
16

00
0

18
00

0

Average Transmission time−Varied Loss Prob

Loss Probability (%)

Tr
an

sm
is

si
on

 ti
m

e
(m

s)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

SACK FR

PRR
PRR
conservative

Figure 4.6: Scenario 2 - Varied Probability Loss

PRR lowers the application level latency (0.1%-1.9%) for the low bandwidth topologies,
where more loss events occur. It is observed that in the case of 16Mbit/s, the conservative
reduction bound of PRR, performs 1% worse than the standard algorithm. This happens
because of the conservative nature of this reduction bound. The latter means that choosing
not to transmit an extra packet causes a small performance degradation in this particular
scenario due to the particular traffic pattern, e.g., less packets transmitted during recovery

CHAPTER 4. PROPORTIONAL RATE REDUCTION 39

●

●
● ●

●
●

●

20 40 60 80 100 120

0
50

00
10

00
0

15
00

0

Average Transmission time−Varied Path Latency

Path latency [ms]

Tr
an

sm
is

si
on

 ti
m

e
[m

s]

●

●
● ● ●

●
●

●

● ●
●

●
● ●

SACK FR
PRR
PRR conservative

Figure 4.7: Scenario 3 - Varied RTT - Constant Transmission Size

can lengthen the transmission time. The difference in performance for high bandwidths is
low due to the fact that higher bandwidth-delay products imply larger queues and thus
less lost packets that would trigger the Fast Recovery algorithms.

Having reviewed all 4 scenarios the second metric can now be discussed. The time spent
in Recovery metric explains the results observed in this section. This is a kernel observed
metric that helps in understanding why the application level latency is on average reduced,

CHAPTER 4. PROPORTIONAL RATE REDUCTION 40

1 2 4 8 16 25 32

Average Transmission time−Varied Bandwidth

Bandwidth [Mbit/s]

Tr
an

sm
is

si
on

 ti
m

e
[m

s]

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

SACK FR
PRR
PRR conservative

Figure 4.8: Scenario 4 - Varied BW - Constant Transmission Size

when using PRR. The statistics gathered during various experiments, show us that the
average time spent in recovery for various runs (data was collected during most of the
experiments presented in this section), is reduced by 3% on average. This means that for
longer runs, where more loss events are present, having on average a faster recovery, implies
a lower transmission time due to the additive effect of PRR on multiple loss recovery events.

CHAPTER 4. PROPORTIONAL RATE REDUCTION 41

4.5 Conclusion

Proportional rate reduction improves fast recovery under practical network conditions.
PRR operates smoothly even when losses are heavy, is quick in recovery, and accurate
even when acknowledgments are stretched, lost or reordered. In live experiments, PRR
was able to reduce the transmission time in various scenarios by 0% to 9% as compared to
the FreeBSD standard SACK based Fast Recovery.

Chapter 5

New CWV

New Congestion Window Validation is the second extension that this thesis presents. This
method tries to address the issue of enhancing TCP in order to support Rate-Limited
Applications efficiently.

Many current Internet applications, such as video streaming, can be characterized as Rate
Limited. This means that the sender does not transmit at a rate controlled by the transport
layer protocol (such as TCP), but rather at a rate dictated by the application. In bulk
transfers, the application will always have data available to transmit and thus the rate
at which it transmits to the network, is controlled by the transport layer protocol. In
contrast, a rate-limited application might not have always data available to send and thus
the writes to the socket may be characterized by short or long pauses. Also even when
there are data available to send, the amount might be less than the congestion window,
which means that the sending rate will be dictated by the application.

In other words, a rate-limited application may send at a Constant Bit Rate (CBR), less
than limited by the transport protocol, or may send with periods of higher (but limited)
rate or periods where no data is sent (idle periods). TCP [DBEB06] has been designed and
is able to support a range of application behaviors, but TCPs congestion control [APB09]
has been mainly optimized with various variants such as Cubic [HRX08], Vegas [BP95] etc.
for bulk traffic.

The recent growth of TCP based multimedia applications has reopened the debate on TCP
usage for rate-limited applications [BBM+06]. Other rate-limited TCP behaviors include
HTTP Adaptive Streaming (HAS), Google SPDY (which uses persistent connections to
retrieve multiple objects) and HTTP 1.1 persistent connections.

The New Congestion Window Validation method [FSS13] focuses on such traffic where
standard TCP is generally not well adapted. It proposes a set of modifications to the stan-
dard algorithm which will enable more effective use of standards-based methods. Standard
TCP does not limit the growth of the congestion window during a rate-limited period,

42

CHAPTER 5. NEW CWV 43

which potentially leads to it having a big value that does not reflect the current state
of the network path. This can lead to congestion in case data is suddenly available to
the application buffer. Standard TCP does also reset the congestion window to a value
called restart window, after an idle period, which can lead to decreased performance. New-
CWV proposes a freezing of the congestion window during rate limited or idle periods that
will stop the additional unrestricted growth of the congestion window and can improve
performance.

5.1 Related Work

A similar approach of freezing the congestion window was also proposed by Freeze
TCP [GMPG00], however, it was specifically proposed in order to mitigate mobility related
disconnections and is not a suitable solution for variable rate congestion control.

TCP-Congestion Window Validation [HPF00] was proposed by the IETF as an experimen-
tal standard in RFC 2861. It takes the approach of exponentially decreasing the congestion
window during an idle period. To be more specific, according to TCP-cwv, the congestion
window is reduced by half each time the connection has been idle for an RTO period.
During an application limited period, the recommended proposal is to reduce the conges-
tion window by (cwnd + win used)/2 for each transmission that does not utilize the full
congestion window, where win used is the estimated proportion of the congestion window
that was used. This avoids the value of the congestion window becoming larger than what
was previously used.

The problem of TCP-cwv is that in the presence of a long idle period (i.e. several RTO
timeouts), this method will reduce the congestion window to the restart window (RW). The
application would have to slow start again like in standard TCP. During an application
limited period, the performance of TCP-cwv can be lower than that of standard TCP since
the latter one is able to send data more aggressively in the case that they might become
available at some point during the transfer. TCP-cwv can be therefore viewed as having a
conservative behavior.

The New-CWV proposal tries to address the aforementioned issues and propose a design
that will truly benefit applications with rate-limited behavior.

5.2 Congestion Control In Modern Operating Sys-

tems

Standard TCP uses the congestion window (cwnd) variable, in order to limit the number
of bytes or packets that a TCP flow may have in the network at any time. The cwnd

CHAPTER 5. NEW CWV 44

starts at a value known as the Initial Window (IW) and is updated by the congestion
control algorithm as TCP continuously probes for additional capacity. TCP should also
maintain a variable called pipe and described in [BAFW03], that holds an estimate from
the senders side, regarding the amount of data that are outstanding in the network. The
TCP/IP stack of Linux implements and uses pipe whereas FreeBSD does not and uses a
workaround instead. The last important variable that is used is the slow start threshold
(ssthresh) which reflects the available path capacity at the time that the last congestion
event occurred.

The way that the congestion window is increased or decreased after received ACKs or
Loss Events, is dictated by the congestion control algorithm. There are various congestion
control algorithms addressed over the years such as NewReno [FHG04], Cubic [HRX08],
Vegas [BP95] etc. Each one of them, tries to address a different issue i.e. Cubic is optimized
for high bandwidth and high latency networks whereas Vegas uses the increase of the RTT
measurements as a sign that a network is becoming more congested. It then tries to avoid
loss events from happening by reducing the congestion window appropriately.

FreeBSD as well as Linux have various congestion control algorithms implemented, which
can be used depending on the situation (i.e. topology, latency, bandwidth etc) to maximize
throughput and minimize the latency experienced by the user.

All of these algorithms are mostly targeted to bulk applications, such as FTP, where
continuous data is available at the sender. Experience shows that they perform well by
limiting transmission to an order that reflects the fair share of the capacity of the path
that is used. However, they fail to address applications that don’t use the entire congestion
window and may cause problems. Such an application may not have data available to send
and can also experience periods of idle times, meaning that there is no data available to
send.

Standard TCP does not impose any limitation to the growth of the congestion window
when an application is rate limited. A rate limited application may then as a result, grow
a congestion window far beyond the corresponding transmit rate, resulting into a value
that does not reflect current information about the state of the network path that the flow
is using. This is because the cwnd will be increased due to the received ACKs resulting into
an arbitrarily large value. However, when the packets are sent along the path with a rate
lower than what the cwnd allows, the reception of an ACK does not provide evidence that
the network path was able to sustain the transmission rate reflected by cwnd. This leads
to the cwnd becoming a poor estimate of the available path capacity. Severe congestion
would occur if a rate limited application was to increase its transmit rate while having
such an invalid cwnd. The latter may result in reduced application performance and could
significantly contribute to network congestion.

The problem is highlighted with the following example. If an application transmits with
a certain rate, less than the congestion window, the latter can then grow significantly due
to the received ACKs, as discussed before, and thus reach a large value, not reflecting the

CHAPTER 5. NEW CWV 45

current state of the path. In the case that data becomes available (i.e. transmit rate is
suddenly increased) such that they can fill the whole of the congestion window, a big burst
will be sent possibly leading to a congestion of the network and/or additional losses.

Another issue that can be observed in the currently implemented congestion control algo-
rithms, is their behavior after an idle period, i.e. a period that there is no data available
to send. Standard TCP dictates that when an application is idle for a period greater than
the current Retransmission Timeout (RTO), the congestion window is reset to no more
than the Restart Window (RW) [APB09]. While this behavior may be desired for bulk
applications, it is not suitable for multimedia rate limited traffic, such as youtube, which
has a bursty behavior followed by pauses.

The New-CWV method tries to address the aforementioned issues with a way that is
described in the next section.

5.3 New-CWV

This section presents the New Congestion Window Validation (New-CWV) [FSS13], a
set of proposed modifications that aim into overcoming the limitations that the Standard
Algorithm and the TCP-CWV exhibit. The new method allows the connection to pre-
serve the congestion window every time that a rate limited or idle period is experienced.
The connection preserves the congestion window for a limited amount of time called the
Non-validated period (NVP). The period where actual usage is less than allowed by the
congestion window, is called Non-validated phase. In contrast, the period that usage re-
flects the estimate of the path, is called Validated phase. The technique of freezing the
window, allows a sender to resume transmission at a preserved rate, without incurring the
delay of slow start. If the sender experiences congestion, it is immediately required to
reduce the congestion window to a value specified by the method. In case that the sender
does not make use of the available window for a period more than the NVP, the sender is
required to reduce the congestion window to an appropriate value, specified by the method.
The value of the NVP is set to be 5 minutes.

The method introduces the following new terminology:

• pipeACK sample: A measure of the volume of data that were acknowledged by
the network per RTT.

• pipeACK: A variable that records the volume of data that were acknowledged by
the network within an RTT using the pipeACK samples.

• pipeACK sampling period: The maximum period that a pipeACK sample can
influence the measurement of pipeACK.

• Non-validated phase: A phase that the sender enters when the usage reflects a

CHAPTER 5. NEW CWV 46

previous measurement of the available path capacity. A connection is in the Validated
phase when pipeACK is less than half the congestion window, e.g., less than half of
the amount of data that the congestion window permits is not used.

• Validated phase: A phase that the sender enters when the congestion window,
reflects a current estimate of the actual path capacity. In other words a sender is in
the Validated phase when pipeACK becomes more than half the current congestion
window.

• Non validated period: The maximum amount of time that the sender is allowed
to stay in the Non validated phase.

• Rate limited: In the context of New-CWV, a rate-limited flow is one that does
not consume more than half of the congestion window and thus operates in the Non-
validated phase.

New-CWV does not differentiate between periods where the application is rate limited and
periods that it is idle, meaning that both behaviors are treated as being rate limited in the
context that was defined previously.

New-CWV fulfills the requirements of rate-limited applications in contrast to CWV whose
drawbacks are discussed in the previous section. It can also keep applications from sending
data simply for preserving the congestion control state, e.g., not resuming with a restart
window (RW). This behavior is known as padding.

5.3.1 Calculation of pipeACK

Pipe and FlighSize are two variables defined by the standards [APB09, BAFW03], that are
used to indicate the amount of data present in the network. If there is no loss present, Pipe
and FlighSize are assumed to be equal. In modern Fast Recovery algorithms, like PRR,
described in the previous section as well as the standard SACK-based algorithm, Pipe is
used during loss events leading to a faster recovery.

In New-CWV, pipeACK is used in order to measure the number of bytes acknowledged
by the network per RTT. It is important to note that New-CWV does not use pipeACK
during loss events but rather the default algorithms are used. The new variable is used in
order to determine if the sender makes appropriate use of the congestion window, e.g., to
determine if the application is rate limited or not.

A sender determines a pipeACK sample by measuring the volume of data acknowledged by
the network per RTT. A possible way of doing that is caching the highest sequence number
of a packet sent and assign the difference between the cached value and the current one to
pipeACK when the cached value is acknowledged by the receiver. A sender should perform
a pipeACK measurement at least once per RTT.

CHAPTER 5. NEW CWV 47

When no measurements are available, pipeACK is set to the maximum value, e.g., a value
that will inhibit the connection from entering the Non-validated phase and thus restraining
the growth of the congestion window.

5.3.2 Method description

A connection is initialized as being in the Validated phase. That means that pipeACK is
set to the maximum, depending on the implementation, value in order not to inhibit any
congestion window increase during the initial part.

When using New-CWV, a TCP connection may be in one of the two phases discussed in
the previous section. This is introduced in order to be able to determine if a sender is
using the whole of the congestion window, e.g., if it reflects the application rate or if the
congestion window is growing to a value that does not reflect the current rate, leading to
potential bursts that may cause congestion. The Validated and Non-validated phases are
described as follows:

• Validated phase: A sender is in the Validated phase when pipeACK is greater
or equal than 1/2 × cwnd. This is the normal phase for a connection, meaning
that most of the congestion window is used in order to transmit data and thus the
congestion window reflects the rate that the application is injecting data into the
network. During this phase, the standard congestion control algorithm is used for
increasing the congestion window.

• Non-validated phase: A sender is in the Non-validated phase when pipeACK is
less than 1/2×cwnd. This is the phase where the congestion window has a value that
is not being used by the sender, e.g., the amount of data that the application has
available for sending in the socket is far less than what is permitted by the congestion
window. During this phase, the congestion window is not allowed to increase, e.g,
it freezes. This is done in order to inhibit further increase to its value, leading
potentially to congestion.

As discussed, when in the Validated phase, a connection operates normally, meaning that
the behavior is the same with a connection that does not use New-CWV. The behavior
during the Non-validated phase is describes as follows:

• The congestion window is not increased when ACK packets are received.

• When the sender receives an indication of congestion while in the Non-validated
phase, such as detects loss or an ECN mark, it then must exit the Non-validated
phase reducing the congestion window to a value discussed in the next section.

• In case of the Retransmission Time Out (RTO) expiring, the sender must then exit
the Non-validated phase and resume by using the standard mechanism described
in [APB09]. In the case of an RTO expiring, the reducing of the congestion window

CHAPTER 5. NEW CWV 48

that will occur by the standard method is considered appropriate since any path
history that may have accumulated is considered unreliable.

• When a sender is in the Non-validated phase and measures a pipeACK value greater
than half of the current value of the congestion window, it should then enter the
Validated phase. Note that a rate-limited sender will typically not be affected by
whether the sender is in the Validated or Non-validated phase since it will not use
the whole of the congestion window. The transition will however release the sender
from restricting the growth of the congestion window and restore the use of standard
congestion control methods.

Reception of congestion indication (i.e. Loss, ECN) while in the Non-validated phase means
that it was inappropriate to use the preserved value of the congestion window after a rate-
limited or idle period. The sender should therefore select a new value for the congestion
window based on the utilized value. In order to do that, the sender must record the current
FlightSize [APB09] in the variable LossFlightSize and use it as follows:

cwnd = Min(cwnd/2,Max(pipeACK,LossFlightSize)

The method chooses this value because the nonvalidated congestion window may be much
larger than the actual FlightSize or the one recently used, reflected by the value of pipeACK.
The updated congestion window therefore prevents overshoot by a sender significantly
increasing its transmission rate during the recovery period. Note that New-CWV does
not specify a method to be used during Fast Recovery, therefore the standard algorithm is
used.

After the recovery finishes, New-CWV dictates that the TCP sender must reset the con-
gestion window to the following value:

cwnd = ((LossFlightSize - R)/2)

R holds the amount of data that were retransmitted during recovery. The inclusion of the
term R, makes the adjustment more conservative than standard TCP [APB09]. This is
needed since the sender may have sent more segments than what Standard TCP would have
sent. If ECN is used, the congestion window should further be reduced by the number of
ECN marked packets that have been received. The sender should also reinitialize pipeACK
to the maximum value since any accumulated path history reflected in the value of pipeACK
is considered as unreliable, after a loss event.

An application that remains in the Non-validated phase for a time period greater than the
NVP, is required to adjust its congestion control state, by adjusting the value of ssthresh
as follows:

ssthresh = max(ssthresh, 3*cwnd/4)

This adjustment ensures that the sender has safely sustained the present rate for an NVP
period. Resetting ssthresh at the conclusion of NVP, allows a more rapid (exponential)
growth towards the previous congestion window should the application start sending at a

CHAPTER 5. NEW CWV 49

higher rate again. When exiting the Non-validated phase, the sender should also adjust
the congestion window to:

cwnd = max(1/2*cwnd, IW)

This adjustment ensures that the sender appropriately reduces the congestion window value
to better reflect the rate that was used most recently used.

Limiting the amount of time that an application is allowed to be in the Non-validated
phase avoids undesirable side effects that could occur in case of having the congestion
window unnecessarily high for a big amount of time, such as sudden bursts due to data
becoming available. The value of the NVP is five minutes. This value was chosen because
it is larger than the idle intervals of most common applications, but not sufficiently larger
than the period for which the capacity of an Internet path may commonly be regarded
as stable [FSS13]. Another reason for using a five-minute value for the NVP is that, also
other TCP sender mechanisms have used such an interval, e.g., the default user timeout
of 5 minutes [Pos81] which controls the amount of time that transmitted data can remain
unacknowledged in the network before a connection is forcefully closed.

5.3.3 New-CWV behavior

As described, New-CWV freezes the congestion window of a sender that does not use the
whole of the rate that is implied by the congestion window. It also defines two phases that
the sender might be into. This allows a connection to faster restart after an idle time while
the sending of big bursts is controlled. This section shows, through time-sequence graphs,
the way that New-CWV functions.

Figure 5.1 depicts a typical bursty youtube flow [GCJM12], which is sent by using the
standard TCP congestion control methods. Since there is not always data available to
send, transmission is bursty with idle times. Standard TCP congestion control restarts at
a RW after an idle period that is typically less than the one before the idle period. This
can cause great latency for applications like youtube that have a bursty behavior with idle
times. The connection has to get through slow start every time that there is new data
available to send even if the path conditions have not changed at all, e.g., no congestion is
introduced.

This problem is not present when using the new method. As seen in Figure 5.2, New-CWV
preserves, as described, the congestion window during the flows.

The first burst has the same behavior as the standard TCP. This is to be expected since
initially there is typicially no difference between the two methods since pipeACK is ini-
tialized to the maximum possible value in an effort for the sender to begin transmitting
in the Validated phase. The burst following the first burst will continue transmitting with
a preserved congestion window that is definitely greater than the RW that the flow with
standard TCP uses. The effect can more clearly be seen in the third burst where data is

CHAPTER 5. NEW CWV 50

0

20000

40000

60000

80000

100000

120000

140000

160000

0.00 0.50 1.00 1.50 2.00 2.50 3.00

Se
qu

en
ce

O
ffs
et

[B
]

Time [s]

Sent Segments
Cumulative ACK

Advertised Window

Figure 5.1: Bursty youtube application flow with Standard TCP

being transmitted with an even larger congestion window than the second burst since it is
still preserved.

The technique of preserving the congestion window for idle/rate-limited periods much
longer than allowed by the Standard TCP is clearly effective for uncongested scenarios. In
the measurement section, it is shown that the choices made in regards to the post recovery
value of the congestion window, do also have a significant effect in a congested network.

5.3.4 Implementation Choices

For the needs of this Thesis, the New-CWV method was implemented in the TCP stack
of a real operating system, which was FreeBSD.

In order to implement the method as part of the TCP/IP stack of FreeBSD, a number of
implementation choices were made.

The first implementation choice is that the method was not implemented as a congestion
control algorithm. This choice allows the user to use the method in conjuction with various
different congestion control algorithms (e.g. CUBIC, Vegas) in order to control the growth

CHAPTER 5. NEW CWV 51

0

20000

40000

60000

80000

100000

120000

140000

160000

0.00 0.50 1.00 1.50 2.00 2.50 3.00

Se
qu

en
ce

O
ffs
et

[B
]

Time [s]

Sent Segments
Cumulative ACK

Advertised Window

Figure 5.2: Bursty youtube application flow with New-CWV

of the congestion window and thus not being limited by the default algorithm which is
NewReno.

The second implementation choice, is in regards with the measurement of pipeACK. This
is the most important variable introduced by the method and is used to compute the phase
that the sender currently lies in. In order to compute pipeACK the approach suggested
by the Internet Draft (ID) is followed [FSS13]. During initialization, pipeACK is set
to the maximum possible value. A helper variable prevHighACK is introduced that is
initialized to the initial sequence number (ISN). prevHighACK holds the value of the
highest acknowledged byte so far. pipeACK is measured once per RTT meaning that when
an ACK covering prevHighACK is received, pipeACK becomes the difference between the
current ACK and prevHighACK. This is called a pipeACK sample. A newer version of the
draft suggests that multiple pipeACK samples can be used during the pipeACK sampling
period [FSS13] in order to achieve a more robust calculation.

CHAPTER 5. NEW CWV 52

5.4 Measurements

Two experiments were performed in order to evaluate the performance boost that New-
CWV offers for rate-limited applications against Standard TCP congestion control. The
implementation of New-CWV in FreeBSD, discussed in the previous chapter, was used in
order to evaluate the method. In order to evaluate the performace of both extensions that
this thesis addresses when used together, both experiments were also run with PRR instead
of the standard SACK based Fast Recovery of FreeBSD. The experiment environment and
setup were presented in chapter 3.

The traffic that was used for the measurements, is similar to the traffic that a video
streaming application like Youtube exhibits. Youtube shows a bursty behavior meaning
that the data to send are available in bursts that are nominally around 64kB. Between
those bursts long or short idle times are present [GCJM12] meaning that Standard TCP
uses the Restart Window every time that a new burst is available to send. This type of
traffic is suitable in order to depict the advantage that New-CWV offers to such rate-limited
applications.

Scenario Bottleneck [Mbit/s] RTT [ms] Application Rate [kBytes/s] No of flows
1 20 40 10 - 1200 1
2 15 40 64 1 - 10

Table 5.1: Summary of the evaluation scenarios New-CWV

During the experiments, the transmission time needed for each block of data (burst) was
measured.

Two experiments were done in order to evaluate the method behavior in the case of a
congested and a non-congested environment. Table 5.1 summarizes the scenarios that
were used.

Figure 5.3 shows the results for the first scenario. This scenario focuses on an environment
where only one flow is running. The method is able to fully operate as designed with little
or no congestion. The bottleneck of the channel is 20 Mbit/s and the application rate
varies from 10kB/s to 1200kB/s.

Note that application rate means that a certain number of bytes is available at the socket
at the beginning of every second for TCP to transmit. For example, an application rate of
64kB/s in this context means that at the beginning of every second, 64kBytes are available
at the socket buffer for TCP to transmit. After the transmission of the burst (64kBytes
here) is completed, the time needed to successfully do it is measured and reported. Each
measurement point in scenario 1 represents a flow of 60 seconds meaning that the average
time needed for 60 64kB bursts is reported. There were 50 such one minutes flows performed
for each point. Figure 5.3 depicts the result.

CHAPTER 5. NEW CWV 53

●
●

●

●

●

●

●

●

●

●

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0

Average Transmission Time for various Burst Sizes

Application Rate [kB/s]

Tr
an

sm
is

si
on

 T
im

e
[m

s]

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

NewReno with SACK
NewReno with PRR
New−CWV with SACK
New−CWV with PRR

Figure 5.3: Average burst transmission time for varied Application Rate

Depending on the burst size a gain compared to Standard TCP (NewReno) is observed.
This gain lies between 0% and 59.86% for this particular scenario and setup. The 0% is
observed in cases where the link is actually saturated typically for high burst sizes. This
means that the technique of preserving the congestion window has no effect since the high
number of packets that a big burst implies, causes the queue to overflow and thus no benefit
is observed. The maximum benefit is observed with a rate of 400kB/s which means that

CHAPTER 5. NEW CWV 54

this rate, for this particular setup shows the biggest gain. It is also noticed that the use of
PRR improves the performance in the range of 0% and 1.7% for each respective flow. The
improvement can mostly be noticed in flows with a higher application rate where a loss is
more likely to happen.

●

●

●

●

●

●

2 4 6 8 10

0
20

0
40

0
60

0
80

0
10

00

Average Completion time for a 64kB/s flow with Std Deviation

Number of flows

C
om

pl
et

io
n

tim
e

[m
s]

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

NewReno with SACK
NewReno with PRR
New−CWV with SACK
New−CWV with PRR

Figure 5.4: Average burst transmission time for a varied flow number

Figure 5.4 depicts the results of the second scenario, which measures the transmission time
of each block of 64kB and varies the number of flows that run simultaneously at the same

CHAPTER 5. NEW CWV 55

path. There were 30 iterations for each point. The number of flows present simultaneously
in the channel, guarantee that there will be congestion. The result is that New-CWV
shows a 0.1%-38.7% improvement. It can be seen from Figure 5.4 that having more than 8
flows causes the link to saturate and TCP to show a similar behavior for both New-CWV
and NewReno. This happens because of the TCP fairness property, meaning that since
there is no available bandwidth for accommodating all flows, an equal share of the path
is obtained. It can also be noticed that the use of PRR improves the performance in the
range of 0% and 2% for each point.

5.5 Conclusion

Past experience has shown that TCP and TCP-CWV were not suited for rate-limited
applications that do not consume the whole of the congestion window. Hence there is
a need to update the current standards in order to more efficiently support rate-limited
traffic.

In this chapter an experimental method called New-CWV was presented that addresses
this issue by proposing a number of changes to the standard congestion control algorithm,
so that rate-limited applications are more suitably addressed. New-CWV introduces the
concept of a TCP sender being in the Non-validated or Validated phase. When a sender
is in the Non-Validated phase, the congestion window freezes, whereas in the Validated
phase, standard congestion control applies.

In the measurements section, it is shown that an example rate-limited application (Youtube
video streaming) experiences significant performance boost (up to 59.86%) by using New-
CWV when compared against Standard TCP congestion control.

Chapter 6

Conclusion

TCP is the most widely used transport layer protocol. It provides a connection-oriented,
reliable, byte stream way for transporting data over any kind of network. The term
connection-oriented means that a TCP connection has to first be established between the
communicating parties. TCP achieves reliability through various mechanisms such as con-
gestion control, loss recovery etc. There have been many proposals that aim into extending
the functionality of TCP. The main focus of these extensions is to provide the application
level with an ever increasing performance, aiming mostly into decreasing the latency ex-
perienced in a connection. [DBEB06] provides a roadmap on the various extensions and
standards that have been proposed after [Pos81] where TCP was first introduced.

For the purposes of this thesis, two recently proposed extensions for TCP were implemented
in FreeBSD and their performance was evaluated. These extensions aim into increasing
the application performance for various traffic types such as bulk and rate-limited traffic.
Application performance is measured as the total time needed for a block of data to be
transmitted to the receiver by a sender. The comparisons were done between the standard
algorithms of FreeBSD and the respective extension.

The first extension that was investigated is the Proportional Rate Reduction algorithm
(PRR). Packet losses are the main reason that the completion of data transfer is delayed
i.e. the application experiences latency. TCP has two means for recovering from a loss, a
scheme called Fast Recovery and a timeout that, when expired indicates that a packet is
lost. PRR aims into improving the Fast Recovery scheme of TCP under practical network
conditions. It is robust against many issues (e.g. ACK reordering, ACK loss, burst losses,
application stalls etc.) present in a real world network, such as the internet. It achieves
better performance by taking into account several information that is available in the TCP
stack, such as the number of bytes that are SACKed by the receiver and the total number
of bytes transmitted during recovery. The measurements, showed that PRR was able to
reduce the transmission time of various data blocks between 0% and 9% when compared
against the standard SACK based Fast Recovery of FreeBSD.

56

CHAPTER 6. CONCLUSION 57

The second extension that was implemented and evaluated is New-CWV. This method
aims to address the issue that standard congestion control algorithms are not suitable
for rate-limited applications, that is applications that do not consume the whole of the
congestion window that is available to them and may also experience idle periods during
the connection. The current behavior is not suited for rate-limited applications since it can
potentially lead to congesting the network in the case that the congestion window grows
unnecessarily large. This may happen if the application suddenly changes its rate and thus
injects more packets into the network by using an inappropriate congestion window. New-
CWV proposes that the congestion window freezes during idle and rate-limited periods and
describes a method to identify them. The measurements have shown that for a Youtube-like
traffic pattern, connections operating with New-CWV experience a significant performance
boost (up to 62.4%) when compared against Standard FreeBSD TCP congestion control
(NewReno).

6.1 Future Work

Proportional Rate Reduction improves Fast Recovery under practical network conditions.
As discussed in Chapter 4, PRR proposes two reduction bounds, as the second part of
the algorithm, a conservative one, named PRR-CRB and a more aggressive one named
PRR-SSRB. Both reduction bounds inject back into the network the number of bytes that
the currently received ACK indicates that were delivered to the receiver, with PRR-SSRB
sending one extra packet. PRR-CRB keeps the queues in the intermediate nodes at a
stable size meaning that exactly the number of packets that were served at the head of the
queue, will be replaced at the end of the queue. If the queue is full then it will stay exactly
full, meaning that we can achieve a great utilization of the resources. An interesting future
work, would be to study exactly the behavior of PRR-SSRB on queue length and utilization
and determine scenarios that PRR-SSRB is more beneficial in real network conditions. An
example would be a way to identify that the queue has reached its limit size and thus
switching to PRR-CRB from PRR-SSRB should be done.

New-CWV addresses applications that are rate-limited meaning that they don’t use the
whole of the available congestion window. Consideration has to be taken regarding the
chosen value of the congestion window after recovery concludes. As discussed in Chapter 5
the congestion window after a loss recovery event is reset to:

cwnd = ((LossFlightSize - R)/2)

where R is the number of retransmitted bytes during recovery. This is a more conservative
approach than standard TCP that resets the congestion window to the half of the flightsize
that was present when the loss occurred. The problem with this approach is that due to
excess losses and possible multiple retransmissions of the same data, R might actually
grow bigger than LossFlightSize resulting in a negative value for the congestion window.

CHAPTER 6. CONCLUSION 58

Implementation has to take care of this problem. A possible future work is to measure the
difference in performance seen in real networks for the two approaches and decide what is
better to use for a possible future RFC.

List of Figures

2.1 TCP header . 10
2.2 TCP initial handshake . 11
2.3 Termination of a TCP connection . 12
2.4 TCP sliding window . 13

3.1 Dumbbell topology . 17
3.2 Experiment lab setup . 17
3.3 Time-Sequence Graph of a Fast Recovery event 21

4.1 FreeBSD Fast Recovery algorithm behavior 30
4.2 PRR Fast Recovery algorithm behavior . 31
4.3 Comparing the CDF of the transmission times of a 1MB file 34
4.4 Average transmission time for varied transmission sizes 36
4.5 Timeout occuring . 37
4.6 Varied Probability Loss . 38
4.7 Varied RTT - Constant Transmission Size 39
4.8 Varied BW - Constant Transmission Size 40

5.1 Bursty youtube application flow with Standard TCP 50
5.2 Bursty youtube application flow with New-CWV 51
5.3 Average burst transmission time for varied Application Rate 53
5.4 Average burst transmission time for a varied flow number 54

59

List of Tables

4.1 RFC 3517 FR . 24
4.2 FreeBSD FR . 26
4.3 PRR FR . 27
4.4 Summary of the evaluation scenarios PRR 35

5.1 Summary of the evaluation scenarios New-CWV 52

60

Bibliography

[AMF+08] Lachlan L. H. Andrew, Cesar Marcondes, Sally Floyd, Lawrence Dunn, Ro-
maric Guillier, Wang Gang, Lars Eggert, Sangtae Ha, and Injong Rhee.
Towards a common TCP evaluation suite. In Protocols for Fast, Long Dis-
tance Networks (PFLDnet), 5-7 Mar 2008.

[APB09] M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control. RFC
5681 (Draft Standard), September 2009.

[BAFW03] E. Blanton, M. Allman, K. Fall, and L. Wang. A Conservative Selective
Acknowledgment (SACK)-based Loss Recovery Algorithm for TCP. RFC
3517 (Proposed Standard), April 2003. Obsoleted by RFC 6675.

[BBM+06] Salman A. Baset, Eli Brosh, Vishal Misra, Dan Rubenstein, and Henning
Schulzrinne. Understanding the behavior of tcp for real-time cbr workloads.
In Proceedings of the 2006 ACM CoNEXT conference, CoNEXT ’06, pages
57:1–57:2, New York, NY, USA, 2006. ACM.

[BP95] L.S. Brakmo and L.L. Peterson. Tcp vegas: end to end congestion avoidance
on a global internet. Selected Areas in Communications, IEEE Journal on,
13(8):1465–1480, 1995.

[Bra89] R. Braden. Requirements for Internet Hosts - Communication Layers. RFC
1122 (INTERNET STANDARD), October 1989. Updated by RFCs 1349,
4379, 5884, 6093, 6298, 6633, 6864.

[CDCM13] J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis. Increasing TCP’s Initial
Window. RFC 6928 (Experimental), April 2013.

[CR09] Marta Carbone and Luigi Rizzo. Dummynet revisited, 2009.

[DBEB06] M. Duke, R. Braden, W. Eddy, and E. Blanton. A Roadmap for Transmis-
sion Control Protocol (TCP) Specification Documents. RFC 4614 (Infor-
mational), September 2006. Updated by RFC 6247.

[DCCM13] N. Dukkipati, N. Cardwell, Y. Cheng, and M. Mathis. Tail loss probe (tlp):
An algorithm for fast recovery of tail losses. Internet Draft, 2 2013.

61

BIBLIOGRAPHY 62

[DMCG11] Nandita Dukkipati, Matt Mathis, Yuchung Cheng, and Monia Ghobadi.
Proportional rate reduction for tcp. In Proceedings of the 2011 ACM SIG-
COMM conference on Internet measurement conference, IMC ’11, pages
155–170, New York, NY, USA, 2011. ACM.

[FHG04] S. Floyd, T. Henderson, and A. Gurtov. The NewReno Modification to
TCP’s Fast Recovery Algorithm. RFC 3782 (Proposed Standard), April
2004. Obsoleted by RFC 6582.

[FSS13] G. Fairhurst, A. Sathiaseelan, and R. Secchi. Updating tcp to support rate-
limited traffic. Internet Draft, 7 2013.

[GCJM12] Monia Ghobadi, Yuchung Cheng, Ankur Jain, and Matt Mathis. Trickle:
rate limiting youtube video streaming. In Proceedings of the 2012 USENIX
conference on Annual Technical Conference, USENIX ATC’12, pages 17–17,
Berkeley, CA, USA, 2012. USENIX Association.

[GMPG00] Tom Goff, James Moronski, D. S. Phatak, and Vipul Gupta. Freeze-tcp: A
true end-to-end tcp enhancement mechanism for mobile environments. In
In Proceedings of IEEE INFOCOM’2000, Tel Aviv, pages 1537–1545, 2000.

[hHK98] Chung hsing Hsu and Ulrich Kremer. Iperf: A framework for automatic
construction of performance prediction models. In IN WORKSHOP ON
PROFILE AND FEEDBACK-DIRECTED COMPILATION (PFDC, 1998.

[Hoe95] Janey C. Hoe. Startup dynamics of tcp’s congestion control and avoidance
schemes, 1995.

[HPF00] M. Handley, J. Padhye, and S. Floyd. TCP Congestion Window Validation.
RFC 2861 (Experimental), June 2000.

[HRX08] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: A new tcp-friendly high-
speed tcp variant. ACM SIGOPS Operating Systems Review, 42(5):64–74,
7 2008.

[Jac88] Van Jacobson. Congestion avoidance and control. In Proceedings of the
ACM Symposium on Communications Architectures and Protocols (SIG-
COMM’88), pages 314–329. ACM Press, 1988.

[Jon] Rick Jones. Netperf.

[JT07] Wolfgang John and Sven Tafvelin. Analysis of internet backbone traffic
and header anomalies observed. In Proceedings of the 7th ACM SIGCOMM
Conference on Internet Measurement (IMC’07), pages 111–116. ACM Press,
2007.

[MDC13] M. Mathis, N. Dukkipati, and Y. Cheng. Proportional Rate Reduction for
TCP. RFC 6937 (Experimental), May 2013.

BIBLIOGRAPHY 63

[MMFR96] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Ac-
knowledgment Options. RFC 2018 (Proposed Standard), October 1996.

[MSM99] M. Mathis, J. Semke, and J. Mahdavi. The rate-halving algorithm for tcp
congestion control. Internet Draft, 2 1999.

[Ost] Shawn Ostermann. tcptrace.

[PCUKEN09] Marcin Pietrzyk, Jean-Laurent Costeux, Guillaume Urvoy-Keller, and
Taoufik En-Najjary. Challenging statistical classification for operational
usage: the adsl case. In Proceedings of the 9th ACM SIGCOMM Conference
on Internet Measurement (IMC’09), pages 122–135. ACM Press, 2009.

[Pos81] J. Postel. Transmission Control Protocol. RFC 793 (INTERNET STAN-
DARD), September 1981. Updated by RFCs 1122, 3168, 6093, 6528.

[RCC+11] Sivasankar Radhakrishnan, Yuchung Cheng, Jerry Chu, Arvind Jain, and
Barath Raghavan. Tcp fast open. In Proceedings of the Seventh COnfer-
ence on emerging Networking EXperiments and Technologies, CoNEXT ’11,
pages 21:1–21:12, New York, NY, USA, 2011. ACM.

[RFB01] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Conges-
tion Notification (ECN) to IP. RFC 3168 (Proposed Standard), September
2001. Updated by RFCs 4301, 6040.

[Sam11] Christian Samsel. Generating diverse internet traffic for the analysis of tcp
behavior, 2011.

[She] Tim Shepard. xplot.

[Ste93] W. Richard Stevens. TCP/IP illustrated (vol. 1): the protocols. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1993.

[Tcp] Tcpdump Developers. tcpdump/libpcap.

[ZHK10] A. Zimmermann, A. Hannemann, and T. Kosse. Flowgrind - a new per-
formance measurement tool. In Global Telecommunications Conference
(GLOBECOM 2010), 2010 IEEE, pages 1–6, 2010.

	Contents
	Contents
	Introduction
	Motivation
	Structure of the Thesis

	Transmission Control Protocol
	Fundamental functions of TCP
	Flow Control
	Congestion Control
	Slow Start and Congestion Avoidance
	Fast Retransmit and Fast Recovery
	Conclusion

	TCP Performance Evaluation
	Topology
	Tools
	Dummynet
	Flowgrind
	Tcpdump
	Tcptrace and xplot

	TCP time-sequence graphs

	Proportional Rate Reduction
	Related Work
	Fast Recovery Proposals
	Fast Recovery in RFC standards
	Fast Recovery in FreeBSD

	Proportional Rate Reduction
	PRR Algorithm Behavior
	PRR Algorithm Properties
	Implementation Choices

	Measurements
	Conclusion

	New CWV
	Related Work
	Congestion Control In Modern Operating Systems
	New-CWV
	Calculation of pipeACK
	Method description
	New-CWV behavior
	Implementation Choices

	Measurements
	Conclusion

	Conclusion
	Future Work

	List of Figures
	List of Tables
	Bibliography

