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Abstract — Processing and transmission of idle-time network 
traffic ideally only occurs when resources would have been idle in 
its absence. Proposed extensions to the Internet service model are 
similar to idle-time networking, but focus on network support. 
This paper investigates end-system extensions needed under such 
a service model. It introduces a simple model with two 
preempting prioritized traffic classes (regular and idle-time). 
Experimental results show that current OS mechanisms cannot 
provide effective idle-time service. Analysis of OS network 
processing identifies its event-driven nature as the key issue. 
Experiments with a proof-of-concept implementation of minimal 
extensions for idle-time networking show them more than 97% 
effective in isolating higher-priority traffic from the presence of 
concurrent low-priority traffic. 
 

Index Terms — idle-time, preemption, quality of service, 
precedence, differentiated services  

I. INTRODUCTION 

Ideally, in a network with support for idle-time use, lower-
priority packet processing will only occur when resources 
would have been idle in the absence of such traffic. 
Consequently, the presence of lower-priority traffic would be 
undetectable when observing higher-priority traffic 
transmissions. In such a network, lower-priority classes can 
only use resources not already consumed by higher priorities. 
Starvation may occur: If higher-priority traffic saturates a link, 
lower-priority traffic will not receive service. 

With idle-time networking (ITN), packets of different 
priority classes experience different per-hop forwarding 
behaviors. Packets queued at a router are transmitted in order 
of decreasing priority, and lower-priority packets are dropped 
from a full queue when higher-priority packets arrive. 
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Some proposals to extend the Internet for differentiated 
services are similar to this architecture. However, most 
research in that area has focused on network support for these 
mechanisms. This paper instead focuses on end-system 
extensions required to provide end-to-end network service 
with support for idle-time use. 

Experimental results presented in the next section show that 
current operating systems are not effective in establishing such 
different service levels for network traffic. The event-driven, 
asynchronous nature of network stack processing interferes 
with attempts to use CPU-scheduler-based mechanisms as 
offered by current systems to control network send behavior. 

Observations gained during an analysis of network stack 
operation form the basis of a design to support idle-time 
networking (ITN), comprising of a minimal set of extensions 
to the current BSD network stack. These modifications 
concentrate on the sender’s network layer; transport protocols 
and socket API remain unchanged. 

Experimental results obtained from a prototype 
implementation of the new mechanisms in the BSD network 
stack suggest that they are effective in establishing idle-time 
network service: Using the new mechanisms, higher-priority 
senders can achieve 97-99% of the throughput in the basic 
case, effectively isolating them from the presence of  
concurrent lower-priority traffic. 

II. FAILURE OF EXISTING SCHEDULERS 

One of the main tasks of an operating system (OS) is to 
control and schedule application access to host resources. To 
support a wide variety of applications, a general-purpose OS 
employs simple and predictable schedulers, trying to provide 
fair service to all users of a resource. 

Since the CPU has traditionally been the bottleneck 
resource in a system, its scheduler is more evolved than those 
for other resources are. UNIX systems use a multilevel 
feedback queue [3], which favors interactive, bursty processes 
(which do not fully utilize their allocated CPU quantum) over 
compute-bound batch jobs (which do). It rewards bursty 
processes by increasing their priority, and punishes compute-
bound ones by lowering it. Most I/O-bound processes are 
bursty – they block during device operations – and thus 
achieve high CPU priorities. 

Commonly, the CPU scheduler offers the user processes 

End-System Support for Idle-Time Networking 
Lars Eggert and Joe Touch 

 
USC Information Sciences Institute 

4676 Admiralty Way, Suite 1001 
Marina del Rey, CA 90292-6695, USA  

{larse, touch}@isi.edu 
 

May 14, 2001 



 2 

some degree of control over their priorities through the nice 
utility. Non-privileged processes may thus lower their priority 
from the default (increasing the priority is restricted to 
privileged processes). 

Some POSIX-compliant systems [2] offer three distinct 
priority classes for processes (real-time, regular and idle-time), 
each managed by its own multilevel-feedback queue. 
Processes in higher classes preempt any lower-class ones; 
starvation of lower-class processes occurs when high-class 
load increases to saturation. 

Simple first-in-first-out (FIFO) schedulers organize access 
to most other resources. While FIFOs by themselves do not 
assure fairness, they can do so in combination with a fairness-
enforcing CPU scheduler (since a process cannot issue any 
resource requests without a CPU to run on). These other 
resource schedulers typically do not allow processes to 
influence their scheduling decisions. Thus, current systems 
offer only two candidate mechanisms (nice and POSIX 
scheduling) to implement ITN. 

After defining the ITN model in more detail in the next 
section, experiments with the existing two CPU-scheduler-
based mechanisms show that neither is sufficient to prioritize 
network traffic into two service classes for effective idle-time 
use. 

A. Idle-Time Network Model 

The ITN model used throughout this paper is a simple 
extension of the current Internet service model, where routers 
(and hosts) treat packets equally according to a best-effort 
discipline [4]. Note that ITN does not change this fundamental 
model: The network may still reorder, drop or duplicate 
packets. Idle-time networking is strictly a per-hop function of 
giving higher processing preference to certain packets. 

In the idle-time network model, packets belong to either of 
two classes: foreground (FG) or background (BG). Ideally, BG 
packet processing will only occur when resources would have 
been idle in the absence of BG traffic. Thus, the presence of 
BG traffic would be undetectable when observing FG traffic 
transmissions. Under real conditions (non-interruptible packet 
transmissions, non-zero-cost queue operations), complete 
isolation of FG traffic is difficult to achieve. 
Router support for ITN is simple: A Router will always 
forward all FG packets in its queue before any BG packet, and 
it will drop BG packets from a full queue to make room for 
arriving FG ones. In other words, ITN replaces a router’s 
FIFO queue with a two-layer priority queue. FG packets 
continue to experience best-effort service, while BG packets 
see sub-best-effort (i.e. least-effort) service. This is not a new 
idea: The original IP specification [8] contains support for a 
precedence field in the datagram header to indicate dropping 
and forwarding priorities. 

More recently, some of the proposed extensions to extend 
the Internet to support differentiated services [11] are similar 
to the idea of ITN: Expedited forwarding (EF) [1] redefines a 
value in the IP type-of-service field to mark some packets with 
a higher forwarding priority. It also suggests configuring a rate 
limit for expedited packets, in order to prevent starvation of 

lower-priority traffic. While EF focuses on providing virtual 
leased lines with a fraction of the capacity of the physical link, 
in the absence of a configured rate limit for expedited traffic it 
becomes one possible implementation of ITN: Expedited 
packets belong to the FG class, and regular packets belong to 
the BG class. 

Idle-time networking can also be seen as a combination of 
two other proposals from the differentiated services 
community: One is marking packets as in or out at routers [9], 
indicating whether they are in compliance with their assigned 
traffic class. During congestion, packets marked as out are 
give drop preference (similar to ATM’s cell-loss-priority bit 
[12] or frame relay’s discard-eligible bit [13]). The other 
proposal is a scheme where routers forward packets in strict 
order of priority [10]. Together, these proposals can implement 
ITN by giving drop preference and lower forwarding priority 
to BG packets. 

In a previous paper, we have investigated the idea of idle-
time network service at the application layer, by distinguishing 
between FG and BG web transactions [20]. The LSAM project 
[24] built on this idea and used BG multicasting of web 
transactions to pre-load self-organizing, distributed caches 
with popular content. 

B. End-System Support 

The network stack of an end- system sending or receiving 
prioritized traffic must implement the same outbound and 
inbound processing mechanisms as routers in the same service 
model. However, while routers only need to concern 
themselves with prioritizing packets during forwarding, the 
situation on end-systems is more complex: Routers operate at 
the network layer, while packet processing on end-systems 
covers the whole range of the protocol stack. Thus, end-
systems need to satisfy additional requirements to support 
end-to-end ITN. 

To generate packets, processes need CPU time and possibly 
other resources (likewise for receiving packets.) Thus, simply 
replacing the FIFO of a network interface with a priority 
queue – which enables ITN on routers – is not enough. Other 
backgrounding mechanisms are required to guarantee that BG 
traffic does not cause drops or delays for FG packets. 

Two simple backgrounding mechanisms available on 
current systems include running the BG sending process at 
nice or POSIX CPU priorities. The following section presents 
experimental results showing that both these mechanisms are 
ineffective in establishing idle-time network service for the 
BG class; Section III analyzes the reasons in more detail. 

C. Experimental Setup 

In these experiments, two copies of the same benchmark 
process run in parallel on a single host. The process is 
network-bound; it simply tries to send as much pre-generated 
random data to a second machine as possible. At the end of the 
experiment, the process reports the amount of data 
successfully sent. One of the two benchmark processes is the 
FG sender, the other one the BG sender.  

Each benchmark process uses a fixed number (here: 3) of 
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either TCP or UDP connections to send its traffic, since a 
single TCP connection cannot easily overload an isolated 
network link due to TCP’s congestion control algorithm. 
When sending with TCP, the benchmark blocks until one or 
more connections become writeable, writes on those 
descriptors and starts over. When using UDP, it sends one 
message over each descriptor until the send call fails with an 
indication that the outbound device queue is full. It then sleeps 
for 10ms, and starts over2. 

Another variable is the intensity of the FG sender3, which 
controls how large a fraction of its time quantum a benchmark 
process spends in the previously described sending loops. For 
a fraction of 0.1, for example, the process will only try to send 
traffic for 10% of its allocated time quantum. On BSD 
systems, the default quantum is 100ms, meaning the 
benchmark will generate send bursts of 10ms before sleeping 
for 90ms. 

For each combination of transport protocol (TCP and UDP) 
and send intensity (full: intensity = 1 and light: intensity = 
0.1), the experiment is run for 1 minute. Throughput numbers 
are normalized against the maximum throughput a lone FG 
sender achieves with no BG traffic present. The graphs in the 
remainder of this paper show mean normalized throughputs 

                                                 
2 This emulates the sending behavior of the ping utility in “flood” mode, 

and generates enough traffic to satiate the 100Mbps link: 50 packets (length of 
device queue) * 1500 bytes (Ethernet MTU) / 10ms = 600Mbps send rate. 

3 The BG sender always sends at full intensity to simulate the worst-case 
situation for FG senders. 

with 95% confidence intervals over a series of 10 iterations. 
The sending host (running the two load-generators) and 

receiving host are two identical FreeBSD 4.2-RELEASE 
machines with 300Mhz Pentium II processors. They are 
located on an isolated, switched, full-duplex 100Mbps 
Ethernet. This setup is network-bound; one machine can 
satiate the link with a CPU load of 55%. 

As a metric for the effectiveness of ITN support, we 
compare the throughput of the FG sender in the presence of a 
BG sender using one of the investigated backgrounding 
schemes against the basic case (no BG sender present). Better 
ITN mechanisms will yield higher FG throughputs. With 
optimal ITN support, the FG sender should reach 100% of the 
throughput it achieves with no BG traffic present. 

D. Evaluation 

1) Unlimited FG Load 
In the first experiment, the FG sender sends TCP traffic at 

full intensity to the receiver. The left diagram in Figure II.1 
shows the measured and normalized throughput rates together 
with 95% confidence intervals (narrow white bars overlaying 
the wider gray bars). 

With a BG TCP or UDP sender, neither the POSIX nor the 
nice backgrounding mechanism can establish idle-time 
network service that significantly improves on the basic case 
(the differences in throughput lie within the confidence 
intervals of the measured series). Furthermore, for a UDP BG 
sender, this experiment demonstrates the worst-case scenario: 
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Figure II.1 Normalized mean throughput of a FG sender under unlimited load in the basic case (“No”) and with two backgrounding mechanisms (“Nice” and 
“POSIX”), using TCP (left graph) and UDP (right graph) with 95% confidence intervals. 
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Figure II.2 Normalized mean throughput of a bursty FG sender in the basic case (“No”) and with two backgrounding mechanisms (“Nice” and “POSIX”), using 
TCP (left graph) and UDP (right graph) with 95% confidence intervals. 
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a BG sender without rate-control can virtually shut down FG 
service. An effective ITN mechanism must adapt to this 
scenario. Both examined schedulers fail to do so; the FG 
sender only achieves around 5% of the possible throughput. 

The right diagram in Figure II.1 shows the case of a FG 
UDP sender under BG traffic created by TCP or UDP sources. 
With a TCP BG sender, this case is the inverse of the worst-
case scenario presented above: Here, the FG UDP sender 
monopolizes the link: FG throughput is over 99% for all three 
cases, even the basic one. 

If the BG sender also uses UDP, the POSIX scheduler 
noticeably outperforms the nice one (90% throughput versus 
50%). Variations in throughput are also higher, as indicated by 
larger confidence intervals. 

2) Bursty FG Load 
In the second experiment, the FG sender is only active for 

10% of its time quantum (= 10ms). Figure II.2 shows the 
results for this case. When the FG sender uses TCP to transmit 
its traffic bursts, the POSIX backgrounder offers small FG 
performance improvements (5-10%) over the basic case for 
both TCP and UDP BG senders. Throughput does not increase 
with the nice backgrounding mechanism. With a UDP BG 
sender, the POSIX backgrounder increases performance 90% 
over the basic case and nice mechanism. The latter are 
extremely ineffective in giving higher priority to bursty FG 
traffic; it only achieves 1-3% throughput. 

E. Discussion 

The experimental results presented in this section 
demonstrate that current OS mechanisms are not sufficient to 
implement ITN service. While scheduling BG senders at 
POSIX idle-time priority improves FG performance in some 
scenarios (mainly for UDP senders), even then total FG 
throughput only reaches 90% of the maximum. For other cases 
(FG TCP senders), the POSIX backgrounder only offers small 
performance improvement of 5-10%, increasing total 
throughput to 5-70%. 

An effective mechanism to support ITN would achieve FG 
send performances close to 100% in all of the above scenarios. 
The next section will examine the details of the BSD network 
stack and discuss why current mechanisms fail to provide 
functional support for ITN. 

III. CURRENT NETWORK PROCESSING 

The experiments in the previous section have shown that 
current OS mechanisms (nice and POSIX scheduling) are not 
sufficient to realize ITN. This section will analyze the reasons 
of this failure by tracing the path of outgoing and incoming 
data through the BSD network stack, and pinpoint issues that 
inhibit ITN. Figures III.1 and III.2 give a (simplified) view of 
the flow of execution inside the network stack during 
outbound and inbound processing, while Figure III.3 shows 
the data flow through its various buffers. This analysis forms 
the basis of the OS modifications discussed in the next section. 

A. Outbound Network Processing 

All user-level socket output flows through the sosend() 

function in the kernel down into the kernel (see Figure III.1). 
Depending socket’s protocol and domain, it then calls the 
appropriate transport-layer output function through a dispatch 
table. For the Internet protocols, those are udp_output() and 
tcp_output().  

TCP sockets must maintain a copy of the user data so TCP’s 
recovery algorithm can retransmit the contents of lost packets. 
Every socket contains a send buffer (so_snd) for that 
purpose. If the send buffer is full, sosend() will block the 
sending process until the buffer drains. When the send buffer 
has enough space available, sosend() appends a copy of the 
user data to it, and then calls the transport-layer output 
function tcp_output(). Inside tcp_output(), the protocol 
checks if it may send a segment for the respective connection, 
according to its congestion control algorithm and timeout 
rules. If so, tcp_output() calls the network-layer output 
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Figure III.1 Network stack outbound data processing. 
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function ip_output(); if not, the system call is complete and 
process execution continues after the write system call. 

When a process writes on a UDP socket descriptor, 
sosend() does not buffer any data. UDP as a simple, 
unreliable datagram protocol does not offer protection from 
packet losses. Instead, sosend() immediately calls the 
transport-layer function udp_output(), which in turn simply 
calls the network-layer output function, ip_output().  

Network layer processing for both UDP and TCP is 
identical. At first, ip_output() performs a route lookup, and 
then tries to enqueue the data in the device queue of the 
outgoing interface for that route4. If the device queue is full, 
ip_output() drops the packet and the write system call is 
complete5. 

If ip_output() was successful in enqueueing the packet, 
it calls the output function of the outgoing network interface 
(*if_output). This function, in turn, checks if the hardware 
is ready to transmit data, and if so, dequeues a packet from the 
device queue and starts transmission (*if_start). If not, it 
will simply return.  

After transmission starts, the driver will repeatedly dequeue 
and transmit packets until the device queue is empty (or the 
hardware’s send buffer is full). It is important to note that the 
driver code runs at one of the highest interrupt priority levels 
(most interrupts are blocked), and so usually cannot be 
interrupted until the device queue is drained completely. 

B. Inbound Network Processing 

Inbound network stack processing starts with the physical 
reception of a packet by the network device (see Figure III.2). 
The device will signal the availability of data to the kernel by 
issuing a device interrupt, which is handled by the device 
driver’s interrupt routine. It copies the data from the device 
memory into main memory. The input routine of the driver 
then enqueues the data into the correct protocol receive queue. 
All IP data demultiplexes into the incoming IP queue 
(ipintrq) and a software interrupt signals data arrival to the 
upper half of the kernel. If ipintrq is full, the driver drops 
the data. 

At this point, processing loops back to the driver’s interrupt 
handler. While more packets are ready to be transferred from 
the device memory, the driver will continue to demultiplex 
and enqueue them for reception by higher-level protocols. 
Again, since the driver runs at one of the device interrupt 
priority level (IPL), it will not exit this loop until the device 
receive buffer is empty6. 

When a software interrupt signaling IP packet reception 
occurs, the ipintr() handler loops over all packets in the IP 

                                                 
4 Part of this processing happens outside the actual driver by helper 

functions that implement the hardware-independent processing for a family of 
similar interfaces (e.g. ether_output() for all Ethernet devices). 

5 This is how UDP packets are lost at the sending host without ever 
entering the network. 

6 Under high enough loads, this can lead to receive livelock [5], when the 
OS spends all processing capacity on receiving and dropping packets (since 
the higher-level incoming queues eventually fill up and no processes can be 
scheduled to drain them). 

incoming queue and calls ip_input() for each one. That 
function discards corrupted packets, dispatches packet 
forwarding (if needed) and manages fragment reassembly. For 
a packet destined for the local host, it calls the transport-layer 
input routine, based on the packet’s protocol field. 

If dequeueing a UDP packet, ip_input() dispatches the 
packet to udp_input(), which appends the data to the 
receive buffer of the corresponding socket, and unblocks 
processes blocked to read data (sorwakeup). 

When ip_input() dequeues a TCP packet from ipintrq, 
it passes it to tcp_input(). As part of TCP protocol 
processing, tcp_input() may trigger sending new TCP 
packets (data and/or ACK) by calling tcp_output(), and 
wake up processes waiting to enqueue more data into the send 
buffer (sowwakeup). Data flows out of tcp_input() along 
the same path it does for UDP: the routine copies it into the 
receiving socket buffer, and waiting processes are unblocked 
(sorwakeup). 

Whenever a process reads from a socket, soreceive() 
checks if enough data is present in the socket receive buffer to 
satisfy the read request. If so, it copies it to the process buffer 
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and returns. If not, it blocks execution until the transport layer 
signals the arrival of more data through sorwakeup. 

C. Discussion 

Processing in the BSD network stack (and similar UNIX-
like operating systems) is an intricate combination of 
queueing, timeouts, interrupts, and blocking and resuming 
processes. Synchronous events (CPU scheduler) as well as 
asynchronous ones (timeouts and device interrupts) cause data 
to flow between the various buffers in the system. 

1) UDP Processing 
As described in the previous section, UDP data written by a 

process will usually go directly into the outbound device 
queue. It may seem that if the CPU scheduler enforced strict 
priorities, UDP data send by a lower-priority process could 
never interfere with that of a higher-priority one, because the 
priority CPU scheduler would never allow the lower-priority 
sender to execute. However, the POSIX scheduler results in 
Section II.D demonstrate that this is not the case. 

The reason lies in the way typical UDP senders are 
implemented: In essence, UDP senders limit their send rate by 
blocking for a period of time when the send system call 
indicates a full device queue. (If this never happens, the 
outgoing link speed is higher than the data rate of the sender.) 
If the device queue fills up before the time quantum of a 
process runs out, it will sleep, causing the CPU to context-

switch to another process. Even under the POSIX scheduler, if 
a higher-priority process voluntarily sleeps, lower-priority 
ones may run. 

As noted above, the lower half of the kernel runs at IPL 
asynchronously from scheduled events in its upper half. This 
means that when the new process starts its time quantum, the 
driver has usually drained some packets from the device send 
queue and more data can be enqueued. So a BG sender 
scheduled after a FG sender sleeps because of a full device 
queue can usually send at least some packets before the queue 
fills up again, and it in turn sleeps. 

2) TCP Processing 
For a TCP sender, the kernel buffers data in the socket send 

buffer, which the transport layer drains according to TCP’s 
congestion control and timeout rules. The write call succeeds 
after the data enters the socket buffer, and the process 
continues execution. 

Either timeouts (in-kernel timer firing) or ACK receptions 
(device interrupt) trigger TCP packet sends. Both of these 
events happen independently from CPU scheduling. The 
handlers for both events run at higher IPLs than user-level 
processes, and will thus interrupt process execution. This 
means that a process may not even be running when the kernel 
sends packets on its behalf. 

An ITN mechanism based on a modified CPU scheduler 
(like nice and POSIX) cannot hope to regulate network 
transmissions in this feedback system. It only controls which 
candidate process can access the socket queues to enqueue or 
dequeue data, not the timing of the transmission of that data. 

IV. OS EXTENSIONS FOR IDLE-TIME NETWORKING 

The key issue with the two CPU-scheduler-based candidate 
mechanisms to implement ITN is the event-driven nature of 
kernel network processing. Nearly all network routines – with 
the notable exception of UDP sends – happen asynchronously 
with user mode execution: device interrupts trigger packet 
transmissions and receptions. Packet receptions trigger 
incoming transport protocol processing, which in turn may 
unblock processes waiting for data reception on a socket. For 
TCP, packet receptions (and to a lesser degree, kernel 
timeouts) trigger packet sends. 

In a sense, the network stack is an event-based system, 
where event priorities are equivalents to the IPL of the 
corresponding handlers. As demonstrated by the experimental 
results in Section II.D, the previously examined CPU-
scheduler backgrounding mechanisms have only very limited 
impact in such a system. 

A second issue is the use of FIFOs for all kernel queues. 
The processing order of a FIFO queue is identical to the 
enqueue order, which may cause a queue's consumers to 
process earlier arriving BG data before FG (e.g. a FIFO device 
queue may send BG data before FG data, because it was 
enqueued earlier). This must not occur in a system supporting 
ITN. 

A. Design Goals 

The network stack is a complicated system, and many 

wire 

NIC
TX

queue
 

NIC
RX

buffer
 

IP
receive
queue

device
send

queue

socket
send

buffer

socket
receive
buffer

so
ck

et
 la

ye
r

 

ne
tw

or
k 

la
ye

r

 

ha
rd

w
ar

e

 

tra
ns

po
rt 

pr
ot

oc
ol

de
vi

ce
 in

te
rr

up
ts

lin
k 

ac
ce

ss
 p

ro
to

co
l

send
buffer

receive
buffer

 

pr
oc

es
s

 

C
PU

 sc
he

du
le

r

 

wire 

  

 

NIC
TX

queue

device
send

queue

send
buffer

NIC
RX

buffer

IP
receive
queue

socket
receive
buffer

receive
buffer

 
 
Figure III.3 Queueing at different layers for TCP (left) and UDP (right) 
processing. 



 7 

applications rely on its API (socket interface) and service 
semantics. Therefore, it is critical to avoid fundamental 
changes to the network stack. Additionally, much effort went 
into designing and fine-tuning the Internet’s transport 
protocols. OS extensions for ITN must not modify these 
transport protocols, to avoid incompatibilities with current 
standards. 

It is also impractical to change all network drivers to 
support ITN, so hardware-dependent driver code must not 
change for ITN extensions. Note that part of the driver code is 
common to all devices of the same family; these routines 
could be safe to modify. 

In addition, for end-to-end ITN, routers in the network must 
distinguish between FG and BG packets, as described in 
Section II.A. The focus of this paper is in host extensions, so it 
assumes network support for ITN is available and the network 
handles packets according to their service marks. 

In summary, a design for OS extensions for ITN must be a 
simple extension of the current socket layer, must not modify 
the transport layer, and must not require changes to the 
hardware-dependent parts of device drivers – consequently, 
they must mainly extend the network layer. 

B. Design 

1) Queueing Support 
One issue identified earlier in this section was the use of 

FIFOs for all queues in the network stack. To support ITN, 
two-level priority queues must replace most FIFOs in the 
network stack (see Section II.A). 

Part of the KAME IPv6/IPsec package [7] for BSD is the 
ALTQ framework [6] of alternate queueing disciplines. ALTQ 
replaces the outgoing standard FIFO queues of device drivers 
with configurable queueing disciplines, including priority 
queues. We have extended ALTQ to the inbound protocol 
queues (mostly ipintrq) and to drop lower-priority packets 
for higher-priority ones when the queue is full. ALTQ filters 
put marked packets into a lower-priority traffic class, for both 
outgoing device and incoming protocol queues. 

2) Socket Layer Support 
The service level of the network stack must not decrease for 

ITN-unaware applications – the kernel must not send their 
packets as BG by default. Only ITN-aware applications may 
use the new service class, by explicitly indicating this to the 
kernel. The socket layer offers socket options to set user-
configurable options on a per-descriptor basis. Thus, the only 
socket-layer change needed is a new socket option 
(SO_BACKGROUND) that indicates that the network stack 
should treat all traffic from or to a socket as low-priority BG 
traffic. 

Note that this scheme is the inverse of other proposals for 
packet marking that use marks to increase the service level 
(e.g., expedited forwarding). Without proper policing 
mechanisms, these schemes become problematic – nothing 
keeps processes from marking all their packets as high-
priority, and thus receive better than best-effort service. The 
proposed marking scheme for ITN avoids these complications 

by only allowing applications to lower their service level7 (to 
least-effort BG service. 

3) Network Layer Support 
Because of the event-based nature of the lower half of the 

kernel, drivers will transmit packets as soon as they enter their 
device queue (a transmitter activation follows each enqueue 
operation). Since the driver code executes at a higher IPL than 
the network layer, it typically sends the packet before another 
one can be enqueued8. Consequently, the network layer must 
verify if BG packets may be send at a particular time (see 
below) before it enqueues them into the device queue. 

The key idea is that the host should never send BG packets 
to any destinations when a FG sender is using the same 
outgoing interface. Instead, the network layer should drop 
these BG packets, signaling an out of buffers (ENOBUFS) 
error condition. UDP senders must already be prepared to 
handle this error condition (it occurs when the device queue 
fills up), and TCP will take the packet drop as an indication of 
congestion and lower the rate of the BG sender. 

There are several possible methods to determine if an 
interface is in use by a FG process before enqueueing a BG 
packet into a device queue. The simplest one is to check if a 
FG protocol control block (PCB) exists that uses the same 
outgoing interface9. While this simple approach is effective, it 
is also too restrictive: A single FG TCP connection prohibits 
any BG traffic from being sent – even when it is idle. 

A more effective identifier of active senders would not only 
check for the presence of a PCB for an outgoing interface, but 
also use additional means to determine if the PCB is an active 
user of the interface. For example, it could check if the 
corresponding socket had any queued data in its send buffer, 
which would indicate an active sender. The prototype 
implementation evaluated in the next section uses this 
technique. 

Active UDP senders are more difficult to identify. Unlike 
TCP, UDP does not buffer any data at the socket layer (all 
UDP socket send buffers are always empty), so the check 
described for TCP in the previous paragraph is not effective. 
Furthermore, UDP writes are non-blocking; they either 
succeed in enqueueing data into the device queue or fail and 
return to the user process with an error code. No kernel state 
exists that allows determining precisely if a UDP sender is 
active or not at any given time. 

The current design for ITN thus uses the following heuristic 
to check for active UDP senders: For each UDP PCB, the 
network layer will check if the corresponding process is 
sleeping or not. A sleeping process indicates (paradoxically) 
an active UDP sender. This heuristic depends on the common 
structure of implementing UDP clients, which send until they 
fill the device queue or run out of data, then sleep to enforce a 
send rate limit. (See the next section.) 

                                                 
7 Similarly to the UNIX nice mechanism for changing CPU priorities, that 

allows a user process to only lower its processing priority. 
8 The queue only builds up when the link is busy (i.e. the transmitter cannot 

start) or the device send buffers are full. 
9 Its corresponding socket not having the SO_BACKGROUND socket 

option set identifies a FG PCB. 
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C. Discussion 

The design for ITN in this section is clearly a proof-of-
concept, and practical reasons argued for minimal 
modifications to the current network stack. A completely 
redesigned network stack with support for ITN from the 
ground up would be an equally possible solution, but the 
extent of such an effort is outside the scope of this project. 

Several performance issues exist with the current design. 
One is that the decision to enforce ITN at the network level 
causes BG packets to go through socket and transport layer 
processing, only to be dropped when FG senders use the same 
outgoing interface. Enforcing ITN at a higher layer would not 
incur this performance hit. For more compute-intensive future 
transport protocols (e.g. encrypted or tunneled flows), this 
may prove problematic. 

A second performance issue is the per-BG-packet overhead 
of looking up the PCB for a packet and determining if FG 
senders (PCBs) exist for the same interface. The current 
implementation adds list of users (pointers to PCBs) to each 
interface to limit the impact of this search. Schemes that are 
more complex may further mitigate this overhead, but are 
outside the scope of the initial implementation. 

Detecting active UDP senders (to protect FG UDP traffic 
from BG interference) at the network layer is difficult, due to 
lack of information. The kernel can gain information about 
TCP connections and their corresponding processes from 
internal state. For UDP senders, no such state exists at the 

kernel level; UDP senders manage it inside the application. 
One future possibility could be to extend UDP to utilize to 
queue data at socket send buffer, and to drain it as the interface 
queue empties. This would allow the TCP technique to check 
for active senders to extend to UDP senders.  

V. EXPERIMENTAL EVALUATION 

To evaluate the effectiveness of the ITN mechanism 
designed in the previous section, we repeat earlier experiments 
(see Section II.C) with the new ITN backgrounding technique. 
The experimental setup is unchanged, except that the BG 
senders are now using the new network ITN backgrounding 
method. 

A. Unlimited FG Load 

The left graph in Figure V.1 shows how a fully loaded TCP 
FG sender behaves under BG load generated by TCP or UDP 
senders that use the ITN backgrounder. In both cases, FG 
throughput is over 99% of the maximum – a 50% 
improvement from the basic case. 

The right graph of the same figure displays the result for a 
UDP FG sender. Again, FG throughput under full load reaches 
97-99% for both UDP and TCP BG traffic. With TCP BG 
traffic, this is no improvement over the basic case, which is 
the worst-case scenario for TCP (see Section II.D). (In fact, 
throughput is 1-2% lower, maybe due to processing overhead 
of the ITN mechanism.) With a UDP BG sender, performance 
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Figure V.1 Normalized mean throughput of a FG sender under unlimited load in the basic case (No) and with ITN backgrounding mechanism (ITN), using TCP 
(left graph) and UDP (right graph) with 95% confidence intervals. 
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Figure V.2 Normalized mean throughput of a bursty FG sender in the basic case (No) and with the ITN backgrounding mechanism (ITN), using TCP (left graph) 
and UDP (right graph) with 95% confidence intervals. 
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increases by about 55% to 99%. 
The idle-time network backgrounder is effective in isolating 

the FG traffic from the presence of any BG traffic in these four 
full-load scenarios. 

B. Bursty FG Load 

The next experiments look at the performance of a bursty 
FG sender using the ITN backgrounder. For a TCP FG sender 
(left graph in Figure V.2), the new mechanism improves FG 
throughput between 35-80% to 99% total for both TCP and 
UDP BG traffic. 

For a UDP FG sender (right graph in Figure V.2), the ITN 
backgrounding method also increases throughput to 99% for 
both TCP and UDB BG traffic. With a TCP BG sender, this is 
a minor improvement of 5% over the basic case (again, this is 
the worst-case scenario for TCP). For a BG UDP sender, the 
performance increase is around 90% – bursty FG UDP traffic 
was almost denied service in the basic case, now its 
performance is close to optimal. 

C. Discussion 

The experimental results presented in this section show that 
the proposed ITN extensions are effective in isolating FG 
traffic from the presence of BG traffic. In all the investigated 
scenarios, FG performance reaches 97-99% of the basic case 
(where no BG traffic is present), effectively isolating FG 
packets from the presence of BG traffic. 

While the benchmark framework used for these experiments 
is flexible, the current load-generating processes are very 
simple. This was a deliberate choice, to factor out secondary 
system interactions from the results. Future experiments 
should investigate the behavior of the ITN backgrounder 
under real workloads, such as supporting a web server with 
FG and BG service classes. 

VI. RELATED WORK 

A. Application Layer Mechanisms 

Migrating sockets [16] and Real-Time Mach push most 
protocol processing out of the kernel and into user-level 
process. A rate-controlling network scheduler then controls 
send operations from multiple sources to meet pre-defined 
quality-of-services parameters. In a sense, this design is the 
inverse of ours: The design for the ITN extensions minimizes 
changes to the network stack, and targets hidden scheduling 
(processing due to asynchronous events) at the lowest possible 
layer. Migrating sockets, on the other hand, completely re-
design the network stack, and minimize hidden scheduling by 
doing protocol processing at the user level, where CPU 
scheduling controls it. 

Building support for different service levels into the 
application through rate or resource limits is another effective 
approach to establish network service at multiple levels 
[20][21], especially for dedicated systems (e.g., web servers). 
However, these mechanisms can only hope to control traffic at 
a relatively coarse granularity – once data enters the kernel, it 
will be sent, and can possibly interfere with higher-priority 
data. 

B. Middleware Mechanisms 

Middleware approaches [18] for quality-of-service support, 
interposed between the application and the kernel, promise 
effective support for different service profiles without kernel 
changes, and only minor changes to the applications. 
However, by layering them above the kernel, scheduling 
traffic on a per-packet scale – like ITN does – become 
unattainable. Instead, middleware approaches try to control 
traffic at a coarser granularity (e.g., flow-based), similarly to 
application-layer approaches. 

C. Kernel-Based Mechanisms 

Many proposals exist to augment current kernels for 
networking at different service levels. Soft-real-time kernel 
extensions propose allowing processes to control scheduling 
and resource allocation. AQUA [17] is a kernel-level 
framework that allows cooperating processes to dynamically 
negotiate their CPU and network I/O requirements with the 
kernel. If a resource becomes congested, AQUA notifies 
processes so they can adapt to the new service environment. 
OMEGA [15] is an end-system kernel framework supporting 
soft-real-time scheduling of CPU, memory and network 
resources. Its focus is on providing end-to-end quality-of-
service for multimedia applications. OMEGA is similar to 
AQUA; applications dynamically negotiate their resource 
requirements with a quality-of-service-broker. This is a key 
difference to ITN, which does not require extensive 
application changes. In addition, processes need not inform 
the ITN mechanism of their resource requirements.  

Waldspurger and Weihl present a proportional-share 
scheduler, and have applied it to control network 
transmissions in the Linux kernel [14]. Experiments show that 
they are successful in allocating different shares of the 
managed resource to different applications. Eclipse [22] 
augments a BSD-based OS with proportional-share schedulers 
for CPU, disk and network schedulers. The key difference 
between proportional-share schedulers and ITN is that the 
schedulers prevent starvation, which is essentially prohibits 
ITN. Proportional-share schedulers also depend on a policy 
that governs assignment of priorities to resource requests, 
which ITN does not require. 

As mentioned above, some of the proposed Internet 
extensions for differentiated services [11] are similar to the 
idea of ITN, and could provide its required network support 
[1]. Few of the differentiated services proposals discuss end-
system requirements for an effective end-to-end 
implementation of the new service model. ITN is one possible 
implementation to support for some of these proposals in an 
end-system. 

VII. FUTURE WORK 

As mentioned above, the benchmark processes used during 
the experiments throughout this paper are deliberately simple. 
The next set of experiments should investigate the behavior of 
the current ITN design under a realistic workload, such as 
supporting a web server with FG and BG service classes.  

An ideal ITN system would only send BG traffic during 
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times when the network interface would otherwise have been 
idle. Comparing the packet-scale send behavior of an ITN-
enabled host with BG traffic against a basic one without 
(under the same workload) would illustrate how close the 
current design approaches the ideal. 

Another set of experiments should evaluate the 
effectiveness of the proposed ITN design for CPU- or disk-
bound applications. The scheduling discipline of the 
bottleneck resource likely governs overall system behavior. 
For example, in a disk-bound process mix, the disk I/O 
scheduler will essentially control process scheduling – 
servicing one processes requests over that of another allow the 
former to progress, while the latter stalls. Generalizing the 
idea of ITN to idle-time use of other resources may improve 
performance in those situations. 

Lazy receiver processing [23] demultiplexes the incoming 
packet stream at the link layer into channels according to their 
destination socket, and does receiver protocol processing at 
application priority. The main goal of this proposal is to 
increase system fairness and stability under increasing traffic 
load by shortening the time spent in response to device 
interrupts. However, shorter processing at high IPL may also 
increase performance of for ITN.  

VIII. CONCLUSION 

This paper presented a design for a network scheduler to 
support idle-time networking (where lower-priority traffic is 
only sent using otherwise idle resources), after experimental 
results showed that current OS mechanisms are unable to 
effectively support such a service model. 

An analysis of the current BSD networking stack identified 
the asynchronous, event-driven nature of processing in the 
kernel to counteract most effects the current CPU-scheduler-
based mechanisms. The resulting design of extensions to 
support idle-time network use comprises of a minimal set of 
changes to the current BSD network stack. The new 
mechanism leaves socket API and transport protocols 
unchanged – most changes concentrate on outbound 
processing at the network layer. At the core of the ITN 
extensions lies a mechanism to identify active users of a 
network interface, and only pass BG data down to the driver 
level when no FG senders are active for an outbound interface. 

Experimental results with the new ITN method show it to 
achieve 97-99% of the maximum throughput of the basic case 
in all investigated scenarios, effectively isolating FG packets 
from the presence of concurrent BG traffic. 
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