
 1

1

Abstract — Processing and transmission of idle-time network
traffic ideally only occurs when resources would have been idle in
its absence. Proposed extensions to the Internet service model are
similar to idle-time networking, but focus on network support.
This paper investigates end-system extensions needed under such
a service model. It introduces a simple model with two
preempting prioritized traffic classes (regular and idle-time).
Experimental results show that current OS mechanisms cannot
provide effective idle-time service. Analysis of OS network
processing identifies its event-driven nature as the key issue.
Experiments with a proof-of-concept implementation of minimal
extensions for idle-time networking show them more than 97%
effective in isolating higher-priority traffic from the presence of
concurrent low-priority traffic.

Index Terms — idle-time, preemption, quality of service,
precedence, differentiated services

I. INTRODUCTION

Ideally, in a network with support for idle-time use, lower-
priority packet processing will only occur when resources
would have been idle in the absence of such traffic.
Consequently, the presence of lower-priority traffic would be
undetectable when observing higher-priority traffic
transmissions. In such a network, lower-priority classes can
only use resources not already consumed by higher priorities.
Starvation may occur: If higher-priority traffic saturates a link,
lower-priority traffic will not receive service.

With idle-time networking (ITN), packets of different
priority classes experience different per-hop forwarding
behaviors. Packets queued at a router are transmitted in order
of decreasing priority, and lower-priority packets are dropped
from a full queue when higher-priority packets arrive.

Manuscript received May 14, 2001. This work is partly supported by the

Defense Advanced Research Projects Agency (DARPA) through FBI contract
#J-FBI-95-185 entitled “Large-Scale Active Middleware” and Air Force
Research Laboratory, Air Force Materiel Command, USAF, under agreement
number F30602-98-1-0200. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding any
copyright annotation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of the
Defense Advanced Research Projects Agency (DARPA), the Air Force
Research Laboratory, or the U.S. Government.

Lars Eggert (email: larse@isi.edu) and Joe Touch (email: touch@isi.edu)
are with the University of Southern California’s Information Sciences
Institute, Marina del Rey, CA 90292-6695, USA.

Some proposals to extend the Internet for differentiated
services are similar to this architecture. However, most
research in that area has focused on network support for these
mechanisms. This paper instead focuses on end-system
extensions required to provide end-to-end network service
with support for idle-time use.

Experimental results presented in the next section show that
current operating systems are not effective in establishing such
different service levels for network traffic. The event-driven,
asynchronous nature of network stack processing interferes
with attempts to use CPU-scheduler-based mechanisms as
offered by current systems to control network send behavior.

Observations gained during an analysis of network stack
operation form the basis of a design to support idle-time
networking (ITN), comprising of a minimal set of extensions
to the current BSD network stack. These modifications
concentrate on the sender’s network layer; transport protocols
and socket API remain unchanged.

Experimental results obtained from a prototype
implementation of the new mechanisms in the BSD network
stack suggest that they are effective in establishing idle-time
network service: Using the new mechanisms, higher-priority
senders can achieve 97-99% of the throughput in the basic
case, effectively isolating them from the presence of
concurrent lower-priority traffic.

II. FAILURE OF EXISTING SCHEDULERS

One of the main tasks of an operating system (OS) is to
control and schedule application access to host resources. To
support a wide variety of applications, a general-purpose OS
employs simple and predictable schedulers, trying to provide
fair service to all users of a resource.

Since the CPU has traditionally been the bottleneck
resource in a system, its scheduler is more evolved than those
for other resources are. UNIX systems use a multilevel
feedback queue [3], which favors interactive, bursty processes
(which do not fully utilize their allocated CPU quantum) over
compute-bound batch jobs (which do). It rewards bursty
processes by increasing their priority, and punishes compute-
bound ones by lowering it. Most I/O-bound processes are
bursty – they block during device operations – and thus
achieve high CPU priorities.

Commonly, the CPU scheduler offers the user processes

End-System Support for Idle-Time Networking
Lars Eggert and Joe Touch

USC Information Sciences Institute

4676 Admiralty Way, Suite 1001
Marina del Rey, CA 90292-6695, USA

{larse, touch}@isi.edu

May 14, 2001

 2

some degree of control over their priorities through the nice
utility. Non-privileged processes may thus lower their priority
from the default (increasing the priority is restricted to
privileged processes).

Some POSIX-compliant systems [2] offer three distinct
priority classes for processes (real-time, regular and idle-time),
each managed by its own multilevel-feedback queue.
Processes in higher classes preempt any lower-class ones;
starvation of lower-class processes occurs when high-class
load increases to saturation.

Simple first-in-first-out (FIFO) schedulers organize access
to most other resources. While FIFOs by themselves do not
assure fairness, they can do so in combination with a fairness-
enforcing CPU scheduler (since a process cannot issue any
resource requests without a CPU to run on). These other
resource schedulers typically do not allow processes to
influence their scheduling decisions. Thus, current systems
offer only two candidate mechanisms (nice and POSIX
scheduling) to implement ITN.

After defining the ITN model in more detail in the next
section, experiments with the existing two CPU-scheduler-
based mechanisms show that neither is sufficient to prioritize
network traffic into two service classes for effective idle-time
use.

A. Idle-Time Network Model

The ITN model used throughout this paper is a simple
extension of the current Internet service model, where routers
(and hosts) treat packets equally according to a best-effort
discipline [4]. Note that ITN does not change this fundamental
model: The network may still reorder, drop or duplicate
packets. Idle-time networking is strictly a per-hop function of
giving higher processing preference to certain packets.

In the idle-time network model, packets belong to either of
two classes: foreground (FG) or background (BG). Ideally, BG
packet processing will only occur when resources would have
been idle in the absence of BG traffic. Thus, the presence of
BG traffic would be undetectable when observing FG traffic
transmissions. Under real conditions (non-interruptible packet
transmissions, non-zero-cost queue operations), complete
isolation of FG traffic is difficult to achieve.
Router support for ITN is simple: A Router will always
forward all FG packets in its queue before any BG packet, and
it will drop BG packets from a full queue to make room for
arriving FG ones. In other words, ITN replaces a router’s
FIFO queue with a two-layer priority queue. FG packets
continue to experience best-effort service, while BG packets
see sub-best-effort (i.e. least-effort) service. This is not a new
idea: The original IP specification [8] contains support for a
precedence field in the datagram header to indicate dropping
and forwarding priorities.

More recently, some of the proposed extensions to extend
the Internet to support differentiated services [11] are similar
to the idea of ITN: Expedited forwarding (EF) [1] redefines a
value in the IP type-of-service field to mark some packets with
a higher forwarding priority. It also suggests configuring a rate
limit for expedited packets, in order to prevent starvation of

lower-priority traffic. While EF focuses on providing virtual
leased lines with a fraction of the capacity of the physical link,
in the absence of a configured rate limit for expedited traffic it
becomes one possible implementation of ITN: Expedited
packets belong to the FG class, and regular packets belong to
the BG class.

Idle-time networking can also be seen as a combination of
two other proposals from the differentiated services
community: One is marking packets as in or out at routers [9],
indicating whether they are in compliance with their assigned
traffic class. During congestion, packets marked as out are
give drop preference (similar to ATM’s cell-loss-priority bit
[12] or frame relay’s discard-eligible bit [13]). The other
proposal is a scheme where routers forward packets in strict
order of priority [10]. Together, these proposals can implement
ITN by giving drop preference and lower forwarding priority
to BG packets.

In a previous paper, we have investigated the idea of idle-
time network service at the application layer, by distinguishing
between FG and BG web transactions [20]. The LSAM project
[24] built on this idea and used BG multicasting of web
transactions to pre-load self-organizing, distributed caches
with popular content.

B. End-System Support

The network stack of an end- system sending or receiving
prioritized traffic must implement the same outbound and
inbound processing mechanisms as routers in the same service
model. However, while routers only need to concern
themselves with prioritizing packets during forwarding, the
situation on end-systems is more complex: Routers operate at
the network layer, while packet processing on end-systems
covers the whole range of the protocol stack. Thus, end-
systems need to satisfy additional requirements to support
end-to-end ITN.

To generate packets, processes need CPU time and possibly
other resources (likewise for receiving packets.) Thus, simply
replacing the FIFO of a network interface with a priority
queue – which enables ITN on routers – is not enough. Other
backgrounding mechanisms are required to guarantee that BG
traffic does not cause drops or delays for FG packets.

Two simple backgrounding mechanisms available on
current systems include running the BG sending process at
nice or POSIX CPU priorities. The following section presents
experimental results showing that both these mechanisms are
ineffective in establishing idle-time network service for the
BG class; Section III analyzes the reasons in more detail.

C. Experimental Setup

In these experiments, two copies of the same benchmark
process run in parallel on a single host. The process is
network-bound; it simply tries to send as much pre-generated
random data to a second machine as possible. At the end of the
experiment, the process reports the amount of data
successfully sent. One of the two benchmark processes is the
FG sender, the other one the BG sender.

Each benchmark process uses a fixed number (here: 3) of

 3

either TCP or UDP connections to send its traffic, since a
single TCP connection cannot easily overload an isolated
network link due to TCP’s congestion control algorithm.
When sending with TCP, the benchmark blocks until one or
more connections become writeable, writes on those
descriptors and starts over. When using UDP, it sends one
message over each descriptor until the send call fails with an
indication that the outbound device queue is full. It then sleeps
for 10ms, and starts over2.

Another variable is the intensity of the FG sender3, which
controls how large a fraction of its time quantum a benchmark
process spends in the previously described sending loops. For
a fraction of 0.1, for example, the process will only try to send
traffic for 10% of its allocated time quantum. On BSD
systems, the default quantum is 100ms, meaning the
benchmark will generate send bursts of 10ms before sleeping
for 90ms.

For each combination of transport protocol (TCP and UDP)
and send intensity (full: intensity = 1 and light: intensity =
0.1), the experiment is run for 1 minute. Throughput numbers
are normalized against the maximum throughput a lone FG
sender achieves with no BG traffic present. The graphs in the
remainder of this paper show mean normalized throughputs

2 This emulates the sending behavior of the ping utility in “flood” mode,

and generates enough traffic to satiate the 100Mbps link: 50 packets (length of
device queue) * 1500 bytes (Ethernet MTU) / 10ms = 600Mbps send rate.

3 The BG sender always sends at full intensity to simulate the worst-case
situation for FG senders.

with 95% confidence intervals over a series of 10 iterations.
The sending host (running the two load-generators) and

receiving host are two identical FreeBSD 4.2-RELEASE
machines with 300Mhz Pentium II processors. They are
located on an isolated, switched, full-duplex 100Mbps
Ethernet. This setup is network-bound; one machine can
satiate the link with a CPU load of 55%.

As a metric for the effectiveness of ITN support, we
compare the throughput of the FG sender in the presence of a
BG sender using one of the investigated backgrounding
schemes against the basic case (no BG sender present). Better
ITN mechanisms will yield higher FG throughputs. With
optimal ITN support, the FG sender should reach 100% of the
throughput it achieves with no BG traffic present.

D. Evaluation

1) Unlimited FG Load
In the first experiment, the FG sender sends TCP traffic at

full intensity to the receiver. The left diagram in Figure II.1
shows the measured and normalized throughput rates together
with 95% confidence intervals (narrow white bars overlaying
the wider gray bars).

With a BG TCP or UDP sender, neither the POSIX nor the
nice backgrounding mechanism can establish idle-time
network service that significantly improves on the basic case
(the differences in throughput lie within the confidence
intervals of the measured series). Furthermore, for a UDP BG
sender, this experiment demonstrates the worst-case scenario:

TCP BG Sender UDP BG Sender
0

50

100
FG

 T
C

P
T

hr
ou

gh
pu

t [
%

]

POSIX
Nice No

POSIX
Nice No

TCP BG Sender UDP BG Sender
0

50

100

FG
 U

D
P

T
hr

ou
gh

pu
t [

%
]

POSIX
Nice No

POSIX
Nice No

Figure II.1 Normalized mean throughput of a FG sender under unlimited load in the basic case (“No”) and with two backgrounding mechanisms (“Nice” and
“POSIX”), using TCP (left graph) and UDP (right graph) with 95% confidence intervals.

TCP BG Sender UDP BG Sender
0

50

100

FG
 T

C
P

T
hr

ou
gh

pu
t [

%
]

POSIX
Nice No

POSIX
Nice No

TCP BG Sender UDP BG Sender
0

50

100

FG
 U

D
P

T
hr

ou
gh

pu
t [

%
]

POSIX
Nice No

POSIX
Nice No

Figure II.2 Normalized mean throughput of a bursty FG sender in the basic case (“No”) and with two backgrounding mechanisms (“Nice” and “POSIX”), using
TCP (left graph) and UDP (right graph) with 95% confidence intervals.

 4

a BG sender without rate-control can virtually shut down FG
service. An effective ITN mechanism must adapt to this
scenario. Both examined schedulers fail to do so; the FG
sender only achieves around 5% of the possible throughput.

The right diagram in Figure II.1 shows the case of a FG
UDP sender under BG traffic created by TCP or UDP sources.
With a TCP BG sender, this case is the inverse of the worst-
case scenario presented above: Here, the FG UDP sender
monopolizes the link: FG throughput is over 99% for all three
cases, even the basic one.

If the BG sender also uses UDP, the POSIX scheduler
noticeably outperforms the nice one (90% throughput versus
50%). Variations in throughput are also higher, as indicated by
larger confidence intervals.

2) Bursty FG Load
In the second experiment, the FG sender is only active for

10% of its time quantum (= 10ms). Figure II.2 shows the
results for this case. When the FG sender uses TCP to transmit
its traffic bursts, the POSIX backgrounder offers small FG
performance improvements (5-10%) over the basic case for
both TCP and UDP BG senders. Throughput does not increase
with the nice backgrounding mechanism. With a UDP BG
sender, the POSIX backgrounder increases performance 90%
over the basic case and nice mechanism. The latter are
extremely ineffective in giving higher priority to bursty FG
traffic; it only achieves 1-3% throughput.

E. Discussion

The experimental results presented in this section
demonstrate that current OS mechanisms are not sufficient to
implement ITN service. While scheduling BG senders at
POSIX idle-time priority improves FG performance in some
scenarios (mainly for UDP senders), even then total FG
throughput only reaches 90% of the maximum. For other cases
(FG TCP senders), the POSIX backgrounder only offers small
performance improvement of 5-10%, increasing total
throughput to 5-70%.

An effective mechanism to support ITN would achieve FG
send performances close to 100% in all of the above scenarios.
The next section will examine the details of the BSD network
stack and discuss why current mechanisms fail to provide
functional support for ITN.

III. CURRENT NETWORK PROCESSING

The experiments in the previous section have shown that
current OS mechanisms (nice and POSIX scheduling) are not
sufficient to realize ITN. This section will analyze the reasons
of this failure by tracing the path of outgoing and incoming
data through the BSD network stack, and pinpoint issues that
inhibit ITN. Figures III.1 and III.2 give a (simplified) view of
the flow of execution inside the network stack during
outbound and inbound processing, while Figure III.3 shows
the data flow through its various buffers. This analysis forms
the basis of the OS modifications discussed in the next section.

A. Outbound Network Processing

All user-level socket output flows through the sosend()

function in the kernel down into the kernel (see Figure III.1).
Depending socket’s protocol and domain, it then calls the
appropriate transport-layer output function through a dispatch
table. For the Internet protocols, those are udp_output() and
tcp_output().

TCP sockets must maintain a copy of the user data so TCP’s
recovery algorithm can retransmit the contents of lost packets.
Every socket contains a send buffer (so_snd) for that
purpose. If the send buffer is full, sosend() will block the
sending process until the buffer drains. When the send buffer
has enough space available, sosend() appends a copy of the
user data to it, and then calls the transport-layer output
function tcp_output(). Inside tcp_output(), the protocol
checks if it may send a segment for the respective connection,
according to its congestion control algorithm and timeout
rules. If so, tcp_output() calls the network-layer output

(*pru_send)

sosend

sbwait

tcp_output

ip_output

(*if_output)

ifq_enqueue

(*if_start)

ifq_dequeue

NIC DMA

...

so_snd
not fullso_snd full

after
sowwakeup

may send
segment

may not
send segment

ifq not
full

ifq empty
NIC IRQ

process socket layer transport network device driver

write

(*pru_send)

sosend

udp_output

ifq not full

ifq full

UDP

TCP

Figure III.1 Network stack outbound data processing.

 5

function ip_output(); if not, the system call is complete and
process execution continues after the write system call.

When a process writes on a UDP socket descriptor,
sosend() does not buffer any data. UDP as a simple,
unreliable datagram protocol does not offer protection from
packet losses. Instead, sosend() immediately calls the
transport-layer function udp_output(), which in turn simply
calls the network-layer output function, ip_output().

Network layer processing for both UDP and TCP is
identical. At first, ip_output() performs a route lookup, and
then tries to enqueue the data in the device queue of the
outgoing interface for that route4. If the device queue is full,
ip_output() drops the packet and the write system call is
complete5.

If ip_output() was successful in enqueueing the packet,
it calls the output function of the outgoing network interface
(*if_output). This function, in turn, checks if the hardware
is ready to transmit data, and if so, dequeues a packet from the
device queue and starts transmission (*if_start). If not, it
will simply return.

After transmission starts, the driver will repeatedly dequeue
and transmit packets until the device queue is empty (or the
hardware’s send buffer is full). It is important to note that the
driver code runs at one of the highest interrupt priority levels
(most interrupts are blocked), and so usually cannot be
interrupted until the device queue is drained completely.

B. Inbound Network Processing

Inbound network stack processing starts with the physical
reception of a packet by the network device (see Figure III.2).
The device will signal the availability of data to the kernel by
issuing a device interrupt, which is handled by the device
driver’s interrupt routine. It copies the data from the device
memory into main memory. The input routine of the driver
then enqueues the data into the correct protocol receive queue.
All IP data demultiplexes into the incoming IP queue
(ipintrq) and a software interrupt signals data arrival to the
upper half of the kernel. If ipintrq is full, the driver drops
the data.

At this point, processing loops back to the driver’s interrupt
handler. While more packets are ready to be transferred from
the device memory, the driver will continue to demultiplex
and enqueue them for reception by higher-level protocols.
Again, since the driver runs at one of the device interrupt
priority level (IPL), it will not exit this loop until the device
receive buffer is empty6.

When a software interrupt signaling IP packet reception
occurs, the ipintr() handler loops over all packets in the IP

4 Part of this processing happens outside the actual driver by helper

functions that implement the hardware-independent processing for a family of
similar interfaces (e.g. ether_output() for all Ethernet devices).

5 This is how UDP packets are lost at the sending host without ever
entering the network.

6 Under high enough loads, this can lead to receive livelock [5], when the
OS spends all processing capacity on receiving and dropping packets (since
the higher-level incoming queues eventually fill up and no processes can be
scheduled to drain them).

incoming queue and calls ip_input() for each one. That
function discards corrupted packets, dispatches packet
forwarding (if needed) and manages fragment reassembly. For
a packet destined for the local host, it calls the transport-layer
input routine, based on the packet’s protocol field.

If dequeueing a UDP packet, ip_input() dispatches the
packet to udp_input(), which appends the data to the
receive buffer of the corresponding socket, and unblocks
processes blocked to read data (sorwakeup).

When ip_input() dequeues a TCP packet from ipintrq,
it passes it to tcp_input(). As part of TCP protocol
processing, tcp_input() may trigger sending new TCP
packets (data and/or ACK) by calling tcp_output(), and
wake up processes waiting to enqueue more data into the send
buffer (sowwakeup). Data flows out of tcp_input() along
the same path it does for UDP: the routine copies it into the
receiving socket buffer, and waiting processes are unblocked
(sorwakeup).

Whenever a process reads from a socket, soreceive()
checks if enough data is present in the socket receive buffer to
satisfy the read request. If so, it copies it to the process buffer

device driver network
protocol

transport
protocol

socket layer process

NIC IRQ

NIC DMA

(*if_input)

ifq_enqueue

ipintrq

NETISR_IP

ifq_dequeue

udp_input

sorwakeup

tcp_input

sowwakeup

...

NIC buffer not
empty

NIC buffer empty

UDP

TCP

read

soreceive

...

sbwait

data not
present

data present

after
sorwakeup

sorwakeup

tcp_output

can send
ACK or
data

so_snd drained

so_rcv not empty

Figure III.2 Network stack inbound data processing.

 6

and returns. If not, it blocks execution until the transport layer
signals the arrival of more data through sorwakeup.

C. Discussion

Processing in the BSD network stack (and similar UNIX-
like operating systems) is an intricate combination of
queueing, timeouts, interrupts, and blocking and resuming
processes. Synchronous events (CPU scheduler) as well as
asynchronous ones (timeouts and device interrupts) cause data
to flow between the various buffers in the system.

1) UDP Processing
As described in the previous section, UDP data written by a

process will usually go directly into the outbound device
queue. It may seem that if the CPU scheduler enforced strict
priorities, UDP data send by a lower-priority process could
never interfere with that of a higher-priority one, because the
priority CPU scheduler would never allow the lower-priority
sender to execute. However, the POSIX scheduler results in
Section II.D demonstrate that this is not the case.

The reason lies in the way typical UDP senders are
implemented: In essence, UDP senders limit their send rate by
blocking for a period of time when the send system call
indicates a full device queue. (If this never happens, the
outgoing link speed is higher than the data rate of the sender.)
If the device queue fills up before the time quantum of a
process runs out, it will sleep, causing the CPU to context-

switch to another process. Even under the POSIX scheduler, if
a higher-priority process voluntarily sleeps, lower-priority
ones may run.

As noted above, the lower half of the kernel runs at IPL
asynchronously from scheduled events in its upper half. This
means that when the new process starts its time quantum, the
driver has usually drained some packets from the device send
queue and more data can be enqueued. So a BG sender
scheduled after a FG sender sleeps because of a full device
queue can usually send at least some packets before the queue
fills up again, and it in turn sleeps.

2) TCP Processing
For a TCP sender, the kernel buffers data in the socket send

buffer, which the transport layer drains according to TCP’s
congestion control and timeout rules. The write call succeeds
after the data enters the socket buffer, and the process
continues execution.

Either timeouts (in-kernel timer firing) or ACK receptions
(device interrupt) trigger TCP packet sends. Both of these
events happen independently from CPU scheduling. The
handlers for both events run at higher IPLs than user-level
processes, and will thus interrupt process execution. This
means that a process may not even be running when the kernel
sends packets on its behalf.

An ITN mechanism based on a modified CPU scheduler
(like nice and POSIX) cannot hope to regulate network
transmissions in this feedback system. It only controls which
candidate process can access the socket queues to enqueue or
dequeue data, not the timing of the transmission of that data.

IV. OS EXTENSIONS FOR IDLE-TIME NETWORKING

The key issue with the two CPU-scheduler-based candidate
mechanisms to implement ITN is the event-driven nature of
kernel network processing. Nearly all network routines – with
the notable exception of UDP sends – happen asynchronously
with user mode execution: device interrupts trigger packet
transmissions and receptions. Packet receptions trigger
incoming transport protocol processing, which in turn may
unblock processes waiting for data reception on a socket. For
TCP, packet receptions (and to a lesser degree, kernel
timeouts) trigger packet sends.

In a sense, the network stack is an event-based system,
where event priorities are equivalents to the IPL of the
corresponding handlers. As demonstrated by the experimental
results in Section II.D, the previously examined CPU-
scheduler backgrounding mechanisms have only very limited
impact in such a system.

A second issue is the use of FIFOs for all kernel queues.
The processing order of a FIFO queue is identical to the
enqueue order, which may cause a queue's consumers to
process earlier arriving BG data before FG (e.g. a FIFO device
queue may send BG data before FG data, because it was
enqueued earlier). This must not occur in a system supporting
ITN.

A. Design Goals

The network stack is a complicated system, and many

wire

NIC
TX

queue

NIC
RX

buffer

IP
receive
queue

device
send

queue

socket
send

buffer

socket
receive
buffer

so
ck

et
 la

ye
r

ne
tw

or
k

la
ye

r

ha
rd

w
ar

e

tra
ns

po
rt

pr
ot

oc
ol

de
vi

ce
 in

te
rr

up
ts

lin
k

ac
ce

ss
 p

ro
to

co
l

send
buffer

receive
buffer

pr
oc

es
s

C
PU

 sc
he

du
le

r

wire

NIC
TX

queue

device
send

queue

send
buffer

NIC
RX

buffer

IP
receive
queue

socket
receive
buffer

receive
buffer

Figure III.3 Queueing at different layers for TCP (left) and UDP (right)
processing.

 7

applications rely on its API (socket interface) and service
semantics. Therefore, it is critical to avoid fundamental
changes to the network stack. Additionally, much effort went
into designing and fine-tuning the Internet’s transport
protocols. OS extensions for ITN must not modify these
transport protocols, to avoid incompatibilities with current
standards.

It is also impractical to change all network drivers to
support ITN, so hardware-dependent driver code must not
change for ITN extensions. Note that part of the driver code is
common to all devices of the same family; these routines
could be safe to modify.

In addition, for end-to-end ITN, routers in the network must
distinguish between FG and BG packets, as described in
Section II.A. The focus of this paper is in host extensions, so it
assumes network support for ITN is available and the network
handles packets according to their service marks.

In summary, a design for OS extensions for ITN must be a
simple extension of the current socket layer, must not modify
the transport layer, and must not require changes to the
hardware-dependent parts of device drivers – consequently,
they must mainly extend the network layer.

B. Design

1) Queueing Support
One issue identified earlier in this section was the use of

FIFOs for all queues in the network stack. To support ITN,
two-level priority queues must replace most FIFOs in the
network stack (see Section II.A).

Part of the KAME IPv6/IPsec package [7] for BSD is the
ALTQ framework [6] of alternate queueing disciplines. ALTQ
replaces the outgoing standard FIFO queues of device drivers
with configurable queueing disciplines, including priority
queues. We have extended ALTQ to the inbound protocol
queues (mostly ipintrq) and to drop lower-priority packets
for higher-priority ones when the queue is full. ALTQ filters
put marked packets into a lower-priority traffic class, for both
outgoing device and incoming protocol queues.

2) Socket Layer Support
The service level of the network stack must not decrease for

ITN-unaware applications – the kernel must not send their
packets as BG by default. Only ITN-aware applications may
use the new service class, by explicitly indicating this to the
kernel. The socket layer offers socket options to set user-
configurable options on a per-descriptor basis. Thus, the only
socket-layer change needed is a new socket option
(SO_BACKGROUND) that indicates that the network stack
should treat all traffic from or to a socket as low-priority BG
traffic.

Note that this scheme is the inverse of other proposals for
packet marking that use marks to increase the service level
(e.g., expedited forwarding). Without proper policing
mechanisms, these schemes become problematic – nothing
keeps processes from marking all their packets as high-
priority, and thus receive better than best-effort service. The
proposed marking scheme for ITN avoids these complications

by only allowing applications to lower their service level7 (to
least-effort BG service.

3) Network Layer Support
Because of the event-based nature of the lower half of the

kernel, drivers will transmit packets as soon as they enter their
device queue (a transmitter activation follows each enqueue
operation). Since the driver code executes at a higher IPL than
the network layer, it typically sends the packet before another
one can be enqueued8. Consequently, the network layer must
verify if BG packets may be send at a particular time (see
below) before it enqueues them into the device queue.

The key idea is that the host should never send BG packets
to any destinations when a FG sender is using the same
outgoing interface. Instead, the network layer should drop
these BG packets, signaling an out of buffers (ENOBUFS)
error condition. UDP senders must already be prepared to
handle this error condition (it occurs when the device queue
fills up), and TCP will take the packet drop as an indication of
congestion and lower the rate of the BG sender.

There are several possible methods to determine if an
interface is in use by a FG process before enqueueing a BG
packet into a device queue. The simplest one is to check if a
FG protocol control block (PCB) exists that uses the same
outgoing interface9. While this simple approach is effective, it
is also too restrictive: A single FG TCP connection prohibits
any BG traffic from being sent – even when it is idle.

A more effective identifier of active senders would not only
check for the presence of a PCB for an outgoing interface, but
also use additional means to determine if the PCB is an active
user of the interface. For example, it could check if the
corresponding socket had any queued data in its send buffer,
which would indicate an active sender. The prototype
implementation evaluated in the next section uses this
technique.

Active UDP senders are more difficult to identify. Unlike
TCP, UDP does not buffer any data at the socket layer (all
UDP socket send buffers are always empty), so the check
described for TCP in the previous paragraph is not effective.
Furthermore, UDP writes are non-blocking; they either
succeed in enqueueing data into the device queue or fail and
return to the user process with an error code. No kernel state
exists that allows determining precisely if a UDP sender is
active or not at any given time.

The current design for ITN thus uses the following heuristic
to check for active UDP senders: For each UDP PCB, the
network layer will check if the corresponding process is
sleeping or not. A sleeping process indicates (paradoxically)
an active UDP sender. This heuristic depends on the common
structure of implementing UDP clients, which send until they
fill the device queue or run out of data, then sleep to enforce a
send rate limit. (See the next section.)

7 Similarly to the UNIX nice mechanism for changing CPU priorities, that

allows a user process to only lower its processing priority.
8 The queue only builds up when the link is busy (i.e. the transmitter cannot

start) or the device send buffers are full.
9 Its corresponding socket not having the SO_BACKGROUND socket

option set identifies a FG PCB.

 8

C. Discussion

The design for ITN in this section is clearly a proof-of-
concept, and practical reasons argued for minimal
modifications to the current network stack. A completely
redesigned network stack with support for ITN from the
ground up would be an equally possible solution, but the
extent of such an effort is outside the scope of this project.

Several performance issues exist with the current design.
One is that the decision to enforce ITN at the network level
causes BG packets to go through socket and transport layer
processing, only to be dropped when FG senders use the same
outgoing interface. Enforcing ITN at a higher layer would not
incur this performance hit. For more compute-intensive future
transport protocols (e.g. encrypted or tunneled flows), this
may prove problematic.

A second performance issue is the per-BG-packet overhead
of looking up the PCB for a packet and determining if FG
senders (PCBs) exist for the same interface. The current
implementation adds list of users (pointers to PCBs) to each
interface to limit the impact of this search. Schemes that are
more complex may further mitigate this overhead, but are
outside the scope of the initial implementation.

Detecting active UDP senders (to protect FG UDP traffic
from BG interference) at the network layer is difficult, due to
lack of information. The kernel can gain information about
TCP connections and their corresponding processes from
internal state. For UDP senders, no such state exists at the

kernel level; UDP senders manage it inside the application.
One future possibility could be to extend UDP to utilize to
queue data at socket send buffer, and to drain it as the interface
queue empties. This would allow the TCP technique to check
for active senders to extend to UDP senders.

V. EXPERIMENTAL EVALUATION

To evaluate the effectiveness of the ITN mechanism
designed in the previous section, we repeat earlier experiments
(see Section II.C) with the new ITN backgrounding technique.
The experimental setup is unchanged, except that the BG
senders are now using the new network ITN backgrounding
method.

A. Unlimited FG Load

The left graph in Figure V.1 shows how a fully loaded TCP
FG sender behaves under BG load generated by TCP or UDP
senders that use the ITN backgrounder. In both cases, FG
throughput is over 99% of the maximum – a 50%
improvement from the basic case.

The right graph of the same figure displays the result for a
UDP FG sender. Again, FG throughput under full load reaches
97-99% for both UDP and TCP BG traffic. With TCP BG
traffic, this is no improvement over the basic case, which is
the worst-case scenario for TCP (see Section II.D). (In fact,
throughput is 1-2% lower, maybe due to processing overhead
of the ITN mechanism.) With a UDP BG sender, performance

TCP BG Sender UDP BG Sender
0

50

100
FG

 T
C

P
T

hr
ou

gh
pu

t [
%

]

IT
N No

IT
N No

TCP BG Sender UDP BG Sender
0

50

100

FG
 U

D
P

T
hr

ou
gh

pu
t [

%
]

IT
N No

IT
N No

Figure V.1 Normalized mean throughput of a FG sender under unlimited load in the basic case (No) and with ITN backgrounding mechanism (ITN), using TCP
(left graph) and UDP (right graph) with 95% confidence intervals.

TCP BG Sender UDP BG Sender
0

50

100

FG
 T

C
P

T
hr

ou
gh

pu
t [

%
]

IT
N No

IT
N No

TCP BG Sender UDP BG Sender
0

50

100

FG
 U

D
P

T
hr

ou
gh

pu
t [

%
]

IT
N No

IT
N No

Figure V.2 Normalized mean throughput of a bursty FG sender in the basic case (No) and with the ITN backgrounding mechanism (ITN), using TCP (left graph)
and UDP (right graph) with 95% confidence intervals.
.

 9

increases by about 55% to 99%.
The idle-time network backgrounder is effective in isolating

the FG traffic from the presence of any BG traffic in these four
full-load scenarios.

B. Bursty FG Load

The next experiments look at the performance of a bursty
FG sender using the ITN backgrounder. For a TCP FG sender
(left graph in Figure V.2), the new mechanism improves FG
throughput between 35-80% to 99% total for both TCP and
UDP BG traffic.

For a UDP FG sender (right graph in Figure V.2), the ITN
backgrounding method also increases throughput to 99% for
both TCP and UDB BG traffic. With a TCP BG sender, this is
a minor improvement of 5% over the basic case (again, this is
the worst-case scenario for TCP). For a BG UDP sender, the
performance increase is around 90% – bursty FG UDP traffic
was almost denied service in the basic case, now its
performance is close to optimal.

C. Discussion

The experimental results presented in this section show that
the proposed ITN extensions are effective in isolating FG
traffic from the presence of BG traffic. In all the investigated
scenarios, FG performance reaches 97-99% of the basic case
(where no BG traffic is present), effectively isolating FG
packets from the presence of BG traffic.

While the benchmark framework used for these experiments
is flexible, the current load-generating processes are very
simple. This was a deliberate choice, to factor out secondary
system interactions from the results. Future experiments
should investigate the behavior of the ITN backgrounder
under real workloads, such as supporting a web server with
FG and BG service classes.

VI. RELATED WORK

A. Application Layer Mechanisms

Migrating sockets [16] and Real-Time Mach push most
protocol processing out of the kernel and into user-level
process. A rate-controlling network scheduler then controls
send operations from multiple sources to meet pre-defined
quality-of-services parameters. In a sense, this design is the
inverse of ours: The design for the ITN extensions minimizes
changes to the network stack, and targets hidden scheduling
(processing due to asynchronous events) at the lowest possible
layer. Migrating sockets, on the other hand, completely re-
design the network stack, and minimize hidden scheduling by
doing protocol processing at the user level, where CPU
scheduling controls it.

Building support for different service levels into the
application through rate or resource limits is another effective
approach to establish network service at multiple levels
[20][21], especially for dedicated systems (e.g., web servers).
However, these mechanisms can only hope to control traffic at
a relatively coarse granularity – once data enters the kernel, it
will be sent, and can possibly interfere with higher-priority
data.

B. Middleware Mechanisms

Middleware approaches [18] for quality-of-service support,
interposed between the application and the kernel, promise
effective support for different service profiles without kernel
changes, and only minor changes to the applications.
However, by layering them above the kernel, scheduling
traffic on a per-packet scale – like ITN does – become
unattainable. Instead, middleware approaches try to control
traffic at a coarser granularity (e.g., flow-based), similarly to
application-layer approaches.

C. Kernel-Based Mechanisms

Many proposals exist to augment current kernels for
networking at different service levels. Soft-real-time kernel
extensions propose allowing processes to control scheduling
and resource allocation. AQUA [17] is a kernel-level
framework that allows cooperating processes to dynamically
negotiate their CPU and network I/O requirements with the
kernel. If a resource becomes congested, AQUA notifies
processes so they can adapt to the new service environment.
OMEGA [15] is an end-system kernel framework supporting
soft-real-time scheduling of CPU, memory and network
resources. Its focus is on providing end-to-end quality-of-
service for multimedia applications. OMEGA is similar to
AQUA; applications dynamically negotiate their resource
requirements with a quality-of-service-broker. This is a key
difference to ITN, which does not require extensive
application changes. In addition, processes need not inform
the ITN mechanism of their resource requirements.

Waldspurger and Weihl present a proportional-share
scheduler, and have applied it to control network
transmissions in the Linux kernel [14]. Experiments show that
they are successful in allocating different shares of the
managed resource to different applications. Eclipse [22]
augments a BSD-based OS with proportional-share schedulers
for CPU, disk and network schedulers. The key difference
between proportional-share schedulers and ITN is that the
schedulers prevent starvation, which is essentially prohibits
ITN. Proportional-share schedulers also depend on a policy
that governs assignment of priorities to resource requests,
which ITN does not require.

As mentioned above, some of the proposed Internet
extensions for differentiated services [11] are similar to the
idea of ITN, and could provide its required network support
[1]. Few of the differentiated services proposals discuss end-
system requirements for an effective end-to-end
implementation of the new service model. ITN is one possible
implementation to support for some of these proposals in an
end-system.

VII. FUTURE WORK

As mentioned above, the benchmark processes used during
the experiments throughout this paper are deliberately simple.
The next set of experiments should investigate the behavior of
the current ITN design under a realistic workload, such as
supporting a web server with FG and BG service classes.

An ideal ITN system would only send BG traffic during

 10

times when the network interface would otherwise have been
idle. Comparing the packet-scale send behavior of an ITN-
enabled host with BG traffic against a basic one without
(under the same workload) would illustrate how close the
current design approaches the ideal.

Another set of experiments should evaluate the
effectiveness of the proposed ITN design for CPU- or disk-
bound applications. The scheduling discipline of the
bottleneck resource likely governs overall system behavior.
For example, in a disk-bound process mix, the disk I/O
scheduler will essentially control process scheduling –
servicing one processes requests over that of another allow the
former to progress, while the latter stalls. Generalizing the
idea of ITN to idle-time use of other resources may improve
performance in those situations.

Lazy receiver processing [23] demultiplexes the incoming
packet stream at the link layer into channels according to their
destination socket, and does receiver protocol processing at
application priority. The main goal of this proposal is to
increase system fairness and stability under increasing traffic
load by shortening the time spent in response to device
interrupts. However, shorter processing at high IPL may also
increase performance of for ITN.

VIII. CONCLUSION

This paper presented a design for a network scheduler to
support idle-time networking (where lower-priority traffic is
only sent using otherwise idle resources), after experimental
results showed that current OS mechanisms are unable to
effectively support such a service model.

An analysis of the current BSD networking stack identified
the asynchronous, event-driven nature of processing in the
kernel to counteract most effects the current CPU-scheduler-
based mechanisms. The resulting design of extensions to
support idle-time network use comprises of a minimal set of
changes to the current BSD network stack. The new
mechanism leaves socket API and transport protocols
unchanged – most changes concentrate on outbound
processing at the network layer. At the core of the ITN
extensions lies a mechanism to identify active users of a
network interface, and only pass BG data down to the driver
level when no FG senders are active for an outbound interface.

Experimental results with the new ITN method show it to
achieve 97-99% of the maximum throughput of the basic case
in all investigated scenarios, effectively isolating FG packets
from the presence of concurrent BG traffic.

ACKNOWLEDGEMENTS

Kernel patches against the KAME networking stack of the
prototype implementation and the benchmark software used
during the experiments in Sections II.D and V are available
from the authors’ web site at http://www.isi.edu/larse/.

REFERENCES
[1] V. Jacobson, K. Nichols and K. Poduri. An Expedited Forwarding PHB.

RFC 2598, Internet Request For Comments. June 1999.

[2] POSIX 1003.1b-1993. Portable Operating System Interface (POSIX)
Part 1: System Application Program Interface Amendment 1: Realtime
Extension [C Language], 1993.

[3] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels and John S.
Quarterman. The Design and Implementation of the 4.4BSD Operating
System. Addison-Wesley, Reading, MA, 1996.

[4] David Clark. The Design Philosophy of the DARPA Internet Protocols.
Computer Communication Review, Vol. 18, No. 4, 1988, pp. 106-114.

[5] Jeffrey C. Mogul and K. K. Ramakrishnan. Eliminating Receive
Livelock in an Interrupt-Driven Kernel. ACM Transactions on Computer
Systems, Vol. 15, No. 3, August 1997, pp. 217-252.

[6] Kenjiro Cho. A Framework for Alternate Queueing: Towards Traffic
Management by PC-UNIX Based Routers. Proc. USENIX Annual
Technical Conference, New Orleans, LA, June 1998, pp. 247-258.

[7] Tatuya Jinmei, Kazu Yamamoto, Jun-ichiro Hagino, Munechika
Sumikawa, Yoshinou Inoue, Kazushi Sugyo and Soichi Sakane. An
Overview of the KAME Network Software: Design and Implementation
of the Advanced Internetworking Platform. Proc. 9th Annual Conference
of the Internet Society (INET’99), San Jose, CA, USA, 1998.

[8] Jon Postel. DARPA Internet Protocol Specification. RFC 791, Internet
Request For Comments. September 1981.

[9] David D. Clark and Wenjia Fang. Explicit Allocation of Best-Effort
Packet Delivery Service. IEEE/ACM Transactions on Networking, Vol.6,
August 1998, pp. 362-373.

[10] Alok Gupta, Dale O. Stahl and Andrew B. Whinston. Priority Pricing of
Integrated Services Networks. In Internet Economics, L. W. McKnight
and J. P. Bailey (editors), MIT Press, 1997, pp. 323-352.

[11] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang and W. Weiss. An
Architecture for Differentiated Services. RFC 2475, Internet Request
For Comments, December 1998.

[12] ATM Forum. ATM Forum Traffic Management Specification Version
4.1. AF-TM-0121.000, March 1999.

[13] Jan Thibodeau (editor). The Basic Guide to Frame Relay Networking.
Frame Relay Forum, Fremont, CA, USA, 1998.

[14] Carl A. Waldspurger and William E. Weihl. Stride Scheduling:
Deterministic Proportional-Share Resource Management. Technical
Memorandum MIT/LCS/TM-528, MIT Laboratory for Computer
Science, Massachusetts Institute of Technology, Cambridge, MA.

[15] Klara Nahrstedt and Jonathan M. Smith. Design, Implementation and
Experiences with the OMEGA End-point Architecture. IEEE Journal on
Selected Areas in Communications, Vol. 17, No. 7, September 1996, pp.
1263-1279.

[16] David K. Y. Yau and Simon S. Lam. Migrating Sockets – End System
Support for Networking with Quality of Service Guarantees. IEEE/ACM
Transactions on Networking, Vol. 6, No. 6, December 1988, pp. 700-
716.

[17] K. Lakshman, Raj Yavatkar and Raphael Finkel. Integrated CPU and
Network-I/O QoS Management in an Endsystem. Computer
Communications, Vol. 21, No. 4, April 1998, pp. 325-333.

[18] Tarek F. Abdelzaher and Kang G. Shin. QoS Provisioning with
qContracts in Web and Multimedia Servers. Proc. 20th IEEE Real-Time
Systems Symposium, Phoenix, AZ, USA, December 1999, pp. 44-53.

[19] Chen Lee, Katsuhiko Yoshida, Cliff Mercer and Ragunathan Rajkumar.
Predictable Communication Protocol Processing in Real-Time Mach.
Proc. IEEE Real-Time Technology and Applications Symposium, June
1996, pp. 220 –229.

[20] Lars Eggert and John Heidemann. Application-Level Differentiated
Services for Web Servers. World Wide Web Journal, Volume 3, Issue 2,
1999, pp. 133-142

[21] Jussara Almeida, Mihaela Dabu, Anand Manikutty and Pei Cao.
Providing Differentiated Levels of Service in Web Content Hosting.
Proc. 1988 SIGMETRICS Workshop on Internet Server Performance,
Madison, WI, USA, June 1998, pp. 91-102.

[22] John Bruno, José Brustoloni, Eran Gabber, Banu Özden and Abraham
Silberschatz. Retrofitting Quality of Service into a Time-Sharing
Operating System. Proc. USENIX 1999 Annual Technical Conference,
Monterey, CA, USA, June 1999, pp. 15-26.

[23] Peter Druschel and Gaurav Banga. Lazy Receiver Processing (LRP): A
Network Subsystem Architecture for Server Systems. Proc. 2nd USENIX
Symposium on Operating System Design and Implementation (OSDI),
Seattle, WA, USA, October 1996, pp. 261-275.

[24] Joe Touch and Amy S. Hughes. The LSAM Proxy Cache - a Multicast
Distributed Virtual Cache. Computer Networks and ISDN Systems, Vol.
30, No. 22-23, November 1998, pp. 2245-2252.

		2003-08-19T13:54:01-0700
	Lars Eggert
	I am the author of this document

