
Application-Level Differentiated Services for Web Servers
Lars Eggert and John Heidemann

USC Information Sciences Institute
4676 Admiralty Way, Suite 1001

Marina del Rey, CA 90292-6695 USA
larse@isi.edu, johnh@isi.edu

September 22, 1999

USC Technical Report 99-695
In World Wide Web Journal, Volume 3 (1999), Issue 2, pp. 133-142
e
al
ing
del
g

ns
e
s

s
r-
e
to

g
ive
i-
s a
g
in

f
in
e
ng
,
d

er-
a

-
y

for-

-
ail-
lts

er-
Abstract*

The current World-Wide Web service model treats a
requests equivalently, both while being processed
servers and while being transmitted over the networ
For some uses, such as web prefetching or multiple p
ority schemes, different levels of service are desirab
This paper presents three simple, server-side, applic
tion-level mechanisms (limiting process pool size, low
ering process priorities, limiting transmission rate) to
provide two different levels of web service (regular an
low priority). We evaluated the performance of thes
mechanisms under combinations of two foregroun
workloads (light and heavy) and two levels of availab
network bandwidth (10Mb/s and 100Mb/s). Our exper
ments show that even with background traffic sufficie
to saturate the network, foreground performance
reduced by at most 4-17%. Thus, our user-level mech
nisms can effectively provide different service class
even in the absence of operating system and netw
support.

1. Introduction

The World-Wide Web is a typical example of a cli
ent/server system: in a webtransaction, clients send
requeststo servers, servers process them and send co
sponding responsesback to the clients. Concurrent
transactions with a server compete for resources in
network and server and client end systems. Inside t
network, messages contest for network bandwidth a
with other messages flowing between the same end s

* This research is supported by the Defense Advanced Research Proj
Agency (DARPA) through FBI contract #J-FBI-95-185 entitled “Large Scal
Active Middleware”. The views and conclusions contained in this docume
are those of the authors and should not be interpreted as necessarily repre
ing the official policies, either expressed or implied, of the Department of t
Army, DARPA, or the U.S. Government. The authors can be contacted
4676 Admiralty Way, Marina del Rey, CA 90292-6695, or by electronic ma
at larse@isi.edu or johnh@isi.edu .
ll
by
k.
ri-
le.
a-
-

d
e
d

le
i-
nt
is
a-
es
ork

-

rre-

the
he
nd
ys-

tem pair and with other traffic present at the time. Insid
the end systems, transactions compete for loc
resources while being processed. Servers implement
the process-per-request (or thread-per-request) mo
will allocate one process (or thread) to an incomin
request.

The current web service model treats all transactio
equivalently according to the Internet best-effort servic
[Clark 1988]. Neither the network nor the end system
typically prioritize traffic. However, there are case
where having multiple levels of service would be desi
able. Not all transactions are equally important to th
clients or to the server, and some applications need
treat them differently. One example is prefetchin
requests for web pages by proxies; such speculat
requests should receive lower priority than user-init
ated, non-speculative ones. Another simple example i
web site that wishes to offer better service to payin
subscribers. We explore these and other examples
Section 2.

Ongoing efforts attempt to provide multiple levels o
service, both in the server operating system (OS) and
the network (see Section 6). Although promising in th
long run, replacing the OS of end systems or upgradi
all routers in the network is often impractical. Instead
we will show that substantial benefit can be achieve
with server-side, application-level-only mechanisms.

We have designed and implemented three simple serv
side, application-level mechanisms that approximate
service model with two levels of service, in which high
priority responses preempt low-priority ones. The ke
characteristic of such idealbackgroundresponses is that
their presence in the system never decreases the per
mance of concurrentforeground transactions. This is
approximated by slowing down the serving of back
ground responses to make more resource capacity av
able to the average foreground response. Our resu
show that our most effective mechanism has an ov

ects
e
nt
sent-
he
at

il
11

r-
L
nd
to

r
rts,
n-
es

he
P

g
e
on,
till

t.
L
or-
the
i-

or-
if-
st

ed
of
ed

n
ns
of
r-
ng
nt
g

ing
ve
f
e

nt)
e
to
head on foreground performance of only 4-17%. Th
indicates that it is possible to provide effective back
ground data traffic service even without network-lev
or operating-system-level support.

2. Three cases for differentiated services

This section describes three cases where multiple lev
of service for web transactions are needed. The fi
example is a web server offeringless-effortserving of
background requests. The second example is a w
server that assigns different priorities to responses ba
on the requested object. In the third example, respon
priorities are assigned based on an external policy.

2.1. Background requests and responses

Background transactions are low-priority transaction
that are preemptable. The key characteristic of a bac
ground transaction is that its presence in the syste
never decreases the performance of concurrent fo
ground transactions. This may be achieved by on
transmitting or processing it if enough idle resourc
capacities are available. If not, a background transact
may be indefinitely delayed or dropped. Thus, bac
ground transactions receiveless-effort service.

One application that would greatly benefit from th
availability of background transactions is anticipator
caching (for example, [Touch 1998]). Currently, specu
lative transactions and pushes can only be sent as re
lar (foreground) traffic, and may thus interfere with non
speculative traffic. Caches using speculative transactio
(prefetching) and servers using speculative pushes n
to balance the amount of speculative traffic sent agai
possible future traffic reduction due to cache hits.
such transactions could be serviced in the backgrou
interference with non-speculative traffic could be elim
nated. This would lead to a better overall system perfo
mance, as well as a simplified cache system, because
penalty of sending too much speculative traffic would b
greatly reduced.

One example of a cache using speculative pushes is
LSAM Proxy Cache [Touch and Hughes 1998]. It use
background multicasts of related web pages, based
automatically-selected interest groups, to load caches
natural network aggregation points. The proxy
designed to reduce server and network load, a
increase client performance. Other applications th
would benefit from the availability of background pro
cessing include data-driven push [Touch 1995], su
scription push [Pointcast 1998], web prefetching [Pa
manabhan and Mogul 1996] and TCP pacin
[Visweswaraiah and Heidemann 1997; Padmanabh
and Katz 1998].
is
-

el

els
rst

eb
sed
se

s
k-
m
re-
ly
e
ion
k-

e
y
-
gu-
-
ns

eed
nst
If
nd,
i-
r-
the
e

the
s
on
at

is
nd
at
-
b-
d-
g
an

2.2. Content-derived priorities

Having different levels of service may improve user-pe
ceived rendering time of web pages by sending HTM
responses at a higher priority than all others. The seco
example is a web server assigning different priorities
responses based on the requested objects.

A typical web page consists of both HTML parts (one o
more frames) and inline images. For each of those pa
one request will be issued by the client more or less co
currently. These requests may compete for resourc
inside the network [Balakrishnanet al. 1998] and at the
end systems. If the transaction uses HTTP 1.0, t
responses will typically be sent as an ensemble of TC
connections, which will compete for bandwidth alon
the path back to the client. If HTTP 1.1 is used, th
responses will be sent over a single shared connecti
but since responses cannot be interleaved, there will s
be competition for the order in which they will be sen
Thus, image responses may interfere with HTM
responses. However, HTML responses are more imp
tant to a browser, because they drive the rendering of
whole page. The server could reflect this by giving pr
ority to delivering HTML over images.

In this example, the requested content controls the pri
ity of a transaction. Even though transactions have d
ferent priorities, none are expendable; all of them mu
be processed.

2.3. Policy-derived priorities

In the previous case, transaction priorities were deriv
from the type of the requested object. Different levels
service are also useful when priorities are assign
according to an external policy.

Consider the example of a web site offering informatio
both to paying subscribers and the public. Transactio
by paying customers should be favored over those
nonpaying ones by serving the former at a higher prio
ity. Here, transaction priorities are assigned dependi
on the requester. A second example, where a differe
policy is enforced, is a web hosting service managin
multiple sites on the same end system. Here, the host
service might want to guarantee its clients’ sites recei
outgoing bandwidth proportional to the amount o
money payed. Thus, transaction priorities would b
assigned based on the requested object.

In these two simple examples, external (manageme
policies control priority assignments. Depending on th
nature of the policy, it may or may not be acceptable
delay or drop transactions.
22

isk
re
I

ing
e
.3.

he
e

is
y
. A
/s

e
s
lly
ri-
no
s.
isk
e
al
an
fi-

he
li-
ut
1)

er
-

.0
s-

ny
ys-
ve
is
3. Finding the server bottleneck resource

In the previous section, we have described several ca
in which different levels of service for web transaction
are useful. The first step in designing an effective bac
ground processing (backgrounding) mechanism is to
locate the bottleneck resource of the system. Control
the bottleneck resource has primary influence on over
system behavior by granting or not granting the resour
to processes. For example, in a CPU-bound system
process that is not being granted the CPU cannot u
other resources; thus, CPU-scheduling controls syst
performance. In the same scenario, network schedul
would have little effect on performance. A successf
backgrounding mechanism will control the schedulin
decisions of the bottleneck resource to optimize perfo
mance.

Any resource of a web server (CPU, physical memor
disk, network) may become the bottleneck, dependi
on the kind of workload it is experiencing. We evaluate
the bottleneck resource in two web serving scenarios
web server connected to its clients by private, no
switched 10Mb/s and 100Mb/s Ethernet links. We co
ducted experiments to determine which server resour
became saturated first. The server was monitored un
a growing request load generated by an increasing nu
ber of clients, each of which made requests at a fix
rate of (at most) ten requests per second. The aggreg
request load exceeded 1200 requests per second, w
was more than enough to fully load the server.

The server machine was a 300Mhz Pentium-II PC wi
128MB of physical memory running FreeBSD 2.2.6
The kernel had been optimized for web serving [Apach
HTTP Server Project 1998a] by increasing the sock
listen queue to 256 connections and increasing t
MAXUSERS kernel parameter to 256. We modified th
Apache version 1.3 beta 1 web server [Apache HTT
Server Project 1998b] to collect CPU, physical memor
page fault and physical disk I/O statistics. The serv
load was generated by a version of Webstone-1.1 [Tre
and Sage 1995] that we modified to gather more exte
sive per-request statistics. Each point in the grap
below is based on data gathered during a five minu
period in which several thousand requests were p
cessed. No other traffic was present during the expe
ment. Network utilization could therefore simply be
measured by the amount of data transferred in a t
period.

During both experiments, requests were made over
standard Webstone file set, which is about 2MB in siz
and is modeled after a small, static web server. T
entire file sets easily fit into the disk buffer cache of ou
server. Thus, repeated requests for the same file w
ses
s
k-

of
all
ce
, a
se

em
ing
ul
g
r-

y,
ng
d
: a
n-
n-
ces
der
m-
ed
ate

hich

th
.
e
et
he
e
P
y,
er
nt
n-
hs
te

ro-
ri-

est

the
e

he
r
ere

always served from the cache. Consequently, the d
subsystem was mostly idle. Furthermore, all pages we
static, i.e. no additional server-side processing (CG
scripts, database queries, etc.) was done. Characteriz
dynamic web workloads is still an area of study. W
consider how this affects our conclusions in Section 5

3.1. Results for 10Mb/s Ethernet

The results for the 10Mb/s Ethernet case show that t
server was network-bound during this experiment. In th
left graph of Figure 1, HTTP transaction throughput
plotted over the number of clients. Throughput quickl
reached 7Mb/s and then settled around that number
single bulk TCP connection can achieve around 7.6Mb
over the same link (measured withnetperf [Netperf
Project 1998]).

All other monitored resources were mostly idle: Th
server CPU utilization (right graph of Figure 1) wa
never higher than 25%. Server memory was never fu
utilized; we observed no page faults during the expe
ment. The disk subsystem was also idle; there were
physical (not served from the buffer cache) disk input
The disk output rate peaked at around 10 physical d
writes per five minute test period, all of which were du
to logging. The local file system can sustain sever
thousand physical disk writes per second at less th
25% CPU utilization, so the measured rate is not signi
cant.

3.2. Results for 100Mb/s Ethernet

For 100Mb/s Ethernet, the server was CPU-bound. T
right graph of Figure 1 shows that the server CPU uti
zation rose rapidly to around 95%. Network throughp
stagnated at around 30Mb/s, (left graph of Figure
which is well below the 72.1Mb/s (measured withnet-
perf [Netperf Project 1998]) that a single bulk TCP
connection can achieve over the same link. The serv
was clearly not network-bound. We believe the rela
tively low network throughput to be an artifact of the
Webstone benchmark, which only supports HTTP 1
and will thus open a new TCP connection for each tran
action, causing significant CPU overhead.

As in the 10Mb/s case before, we did not observe a
page faults or disk input operations. The measured ph
ical disk output rate never exceeded 50 writes per fi
minute test run; as explained in Section 3.1, this rate
not significant.
33

Figure 1. HTTP throughput and server CPU utilization over both 10Mb/s and 100Mb/s Ethernet.

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120

H
T

T
P

 T
h

ro
u

g
h

p
u

t
[M

b
/s

]

Clients

10Mb/s Ethernet
100Mb/s Ethernet

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120

C
P

U
 U

til
iz

a
tio

n
 [
%

]

Clients

10Mb/s Ethernet
100Mb/s Ethernet
ion
nd

k-
is
of
o-
ns-
o-
for
re-
an
ad.
ble
he
a

nd
h
e
ve
d

e
ly
t
uld
ec-

he
rs
the
ld

ge
ly

ro-
ra-
4. Designing application-level background
processing

As mentioned above, transactions compete for resour
inside the network and at the end systems. Thus, f
support for different levels of service for web transac
tions would require both network and end system so
ware (OS and applications) to be extended. These ext
sions are still under development; and even when fi
ished, deployment will take time, because many route
in the network must be updated for the system to
effective. In the meantime, application-level mecha
nisms promise most of the benefits of a OS/netwo
solution with the additional advantage of being easy
deploy. Only the application software of the serve
needs to be modified to offer different service levels.

We have designed and implemented three server-si
application-level background processing mechanism
that approximate a service model with two classes: Re
ular foreground transactions, and preemptable, lowe
priority backgroundtransactions. We assume a proces
per-request model, with pools offoreground processes
and background processes. (Our results also apply to
thread-based servers, and our third and most effect
mechanism can be implemented in an event-driv
server.) All processes in one such class form thefore-
ground pooland background poolof server processes,
respectively. Since we implemented server-side-on
mechanisms, requests are always being sent in the fo
ground; our mechanisms can only control processi
and sending of the responses. The idea of backgrou
processing can also be applied to clients (see Sect
5.3).

The key idea behind all our application-level back
grounding mechanisms is to slow down the backgrou
pool, thus making more resource capacity available
the average foreground process. Our three mechanis
differ in how they slow down background processing
We assume that the request stream is demultiplexed
ces
ull
-

ft-
en-
n-
rs

be
-

rk
to
r

de,
s

g-
r-
s-

ive
en

ly
re-

ng
nd
ion

-
nd
to
ms
.
by

the OS before reaching the server; the server applicat
has two queues from which to accept foreground a
background requests.

Our first mechanism limits resource usage of bac
ground processes by limiting concurrency. This
achieved by imposing an upper bound on the number
processes in the background pool. If all background pr
cesses are busy, additional incoming background tra
actions are delayed (in the OS) until a background pr
cess becomes available. No such bound is enforced
the foreground pool, and consequently the average fo
ground transactions will experience less delay th
background ones under an increasing background lo
The size of the background pool is a parameter tuna
by the administrator of the web server, based on t
allowable overhead on foreground traffic. We picked
value of five background servers. Fewer backgrou
servers would result in less background traffic, whic
would make it difficult to compare the overhead of th
backgrounding mechanisms. Using many more than fi
would diminish the differences between foreground an
background traffic classes.

This first backgrounding mechanism could even b
implemented without changing the server code, simp
by running two web servers configured with differen
pool sizes on the same machine. These servers wo
need to serve the same documents, but accept conn
tions on different ports.

Our second backgrounding mechanism also limits t
size of the background pool, but in addition also lowe
the process priority of the background processes to
minimum. For CPU-bound servers, this approach shou
produce better control than the first.

The two prior mechanisms directly reduce CPU usa
only. Usage of network I/O and other resources is on
indirectly controlled. Our third mechanism limits the
aggregate network transmission rate of background p
cesses by coordinating and scheduling their send ope
44

nd

-
of
r-

id-
ve
s
ed
m
of
,
s

e
d
a

c-
e

ng
d

s,
e

ri-

ri-
ng

ts

-

k,
y 3
/s
52
ing

in
d.
to
o
r
5

tions. Background processes intentionally slow the
transmission, monitoring and explicitly pacing thei
sending rate by pausing while sending. Multiple bac
ground processes collaborate to split the limit fairly. Th
rate limit is a parameter tunable by the administrator
the web server, based on the permissible overhead
foreground traffic. We picked a rate limit of 1Mb/s. As
with the first mechanism, a significantly lower valu
would make comparisons of the backgrounding mech
nisms more difficult, and a much greater value wou
diminish the differences between the two traffic classe

Our third mechanism also limits the size of the back
ground pool to five processes running at the lowest pr
cess priority. Note that limiting the background pool i
this scenario is not necessary to enforce service differe
tiation; that is established through the send rate lim
Here, limiting the background pool will simply control
the send rate for each response: With only one bac
ground process, background responses will be sent
full rate limit (but only one at a time); with more than
one, multiple background responses will be sent, each
a fraction of the rate limit. Lowering the process priorit
is also not strictly necessary, but since it is an extreme
simple addition, we included it in the mechanism.

One problem with the third approach is that even if th
network is underutilized, the background processes c
never exceed the rate limit, because they have no me
of detecting idle network capacity. However, back
ground transactions are not important by definition, s
serving them at less-than-peak performance is approp
ate. More elaborate rate-limiting algorithms (see Secti
7) may solve this limitation.

None of our three background processing mechanis
rely on OS-level or network-level support for QoS
However, if such support was available, they could a
be easily modified to take advantage of such mech
nisms.

5. Background processing evaluation

We implemented the three background processi
mechanisms described above in Apache version 1.3 b
1 [Apache HTTP Server Project 1998b]. The server ra
on the same machine as during the bottleneck resou
experiments (see Section 3). Foreground and ba
ground transactions were generated by two synch
nized Webstone [Trent and Sage 1995] benchmar
each with several clients. Foreground load was kept a
fixed level during an experiment while increasing bac
ground load over time. We expect that increasing th
background load will reduce foreground performance
a basic system. By introducing specific background pr
ir
r
k-
e
of
on

e
a-
ld
s.

-
o-
n
n-

it.

k-
at

at
y
ly

e
an
ans
-
o
ri-

on

ms
.
ll
a-

ng
eta
n

rce
ck-
ro-
ks,
t a
k-
e

in
o-

cessing mechanisms, we attempt to reduce foregrou
performance degradation.

To quantify the effect of background traffic on fore
ground load, we measured the response time and size
each transaction. Since different size replies have diffe
ent response times, we normalize these times by div
ing them by the best observed time for the respecti
size for each network configuration. Normalized time
are thus dimensionless. The best possible normaliz
response time is 1 (all responses took the minimu
time). Because we aggregate traffic from a number
clients, typical normalized times are 1-2 for light loads
or 3-5 for heavier loads where foreground traffic ha
more self-interference.

To characterize the variability in measured traffic, w
report median and quartiles of normalized foregroun
response times for all transactions measured during
five minute test run (typically several thousand transa
tions). As background load rises, we would expect th
median to rise and the quartiles to spread, indicati
more interference and variability. The ideal backgroun
processing mechanism will minimize these effect
resulting in a flat, low foreground performance curv
and a low interquartile gap.

Figures 2 and 3 summarize the results of our expe
ments. To explore the design space, we varied:

• Backgrounding Algorithm:
unmodified server (no distinction between request p
orities), and each of our three background processi
mechanisms

• Network:
10Mb/s and 100Mb/s private, non-switched Etherne
with no other traffic present

• Foreground Load:
light load (causing 20% bottleneck resource utiliza
tion) and heavy load (causing 80% utilization)

For 10Mb/s Ethernet, the bottleneck was the networ
and high foreground request loads were generated b
and 15 Webstone clients, respectively. For 100Mb
Ethernet and a CPU-bound system, we used 15 and
clients to generate the loads (numbers chosen accord
to Figure 1.)

5.1. Results for 10Mb/s Ethernet

The first two graphs show foreground response times
the basic case with no backgrounding being performe
With one service class, median performance grew up
40 times worse (from 1.05 without background load t
about 40) under light load (Figure 2: light/basic). Unde
heavy load (Figure 2: heavy/basic), it grew about 1
55

nd the
round
Light Foreground Load (light) Heavy Foreground Load (heavy)

N
o

B
G

 P
ro

ce
ss

in
g

(ba
si

c)
Li

m
ite

d
B

G
 P

oo
l (

ltd
po

ol
)

Lo
w

-P
rio

rit
y

B
G

 P
oo

l (
lo

pr
io

)
R

at
e-

Li
m

ite
d

B
G

 P
oo

l (
ltd

ra
te

)

Figure 2. Normalized median foreground response times (with first and third quartiles) for the baseline case a
three different backgrounding mechanisms over 10Mb/s Ethernet; both under light and heavy foreg
load.

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

N
o

rm
a

liz
e

d
 R

e
sp

o
n

se
 T

im
e

Background Clients

Median

■ ■
■

■

■

■

■

■

■

■

■

■
■

■

Quartiles

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

N
o

rm
a

liz
e

d
 R

e
sp

o
n

se
 T

im
e

Background Clients

Median

■

■

■

■

■

■

■

■ ■

■ ■
■ ■

■

Quartiles

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

N
o

rm
a

liz
e

d
 R

e
sp

o
n

se
 T

im
e

Background Clients

Median

■ ■
■ ■

■ ■ ■ ■ ■ ■ ■ ■
■

■

Quartiles

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

N
o

rm
a

liz
e

d
 R

e
sp

o
n

se
 T

im
e

Background Clients

Median

■

■
■

■ ■
■ ■ ■

■ ■ ■
■

■

■

Quartiles

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

N
o

rm
a

liz
e

d
 R

e
sp

o
n

se
 T

im
e

Background Clients

Median

■ ■
■ ■

■ ■
■ ■

■ ■
■

■ ■

■

Quartiles

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

N
o

rm
a

liz
e

d
 R

e
sp

o
n

se
 T

im
e

Background Clients

Median

■

■

■ ■
■

■ ■ ■ ■

■
■ ■

■

■

Quartiles

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

N
o

rm
a

liz
e

d
 R

e
sp

o
n

se
 T

im
e

Background Clients

Median

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■

Quartiles

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

N
o

rm
a

liz
e

d
 R

e
sp

o
n

se
 T

im
e

Background Clients

Median

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■

Quartiles
66

ht
t
o
it

i-
ee
d
n

ad
e
es

use
se
ed
of
re

-
of

e
to
-
-
y
.

the
ed
to
o.
er

in-
-

an
si-

D

U
at
n-

n

in
:
y
ly
:
%,
-
n

times worse (from 2.8 to 42). We also saw a substant
increase in response time variation, as illustrated by t
wide inter-quartile gap. Under heavy foreground loa
there was substantial interference within the group
foreground connections: With no background traffi
present, we observed a median response time that w
two to three times slower than under light load. From
this, we conclude that background requests can subst
tially reduce median performance in an unmodified sy
tem.

Next, we will look at the result from our first back-
grounding algorithm, where the server limited its back
ground pool size to five. For both light and heavy (Fig
ure 2: light/ltdpool, heavy/ltdpool) foreground load
median performance only grew 5-6 times worse. Th
simple idea of limiting the background pool resulted in
considerable improvement compared to the basic ca
However, median performance was degraded noticeab
and the variance in observed median performance w
substantial, although smaller than in the basic case. T
simple mechanism keeps median performance under
times normal for half of all requests.

Our second algorithm also lowers the process priority
the background processes to the minimum in addition
keeping the pool size limited to five servers. Media
performance under light (Figure 2: light/loprio) load
was unchanged from the previous case, while medi
performance under heavy load (Figure 2: heavy/lopri
was marginally better than during the previous expe
ment (four times worse compared to five times before
Performance variance was also virtually identical to th
previous experiment. We have shown above that CPU
not the bottleneck for 10Mb/s Ethernet. Thus, even low
priority processes received enough CPU time to gen
ate a substantial amount of network traffic. Process p
orities are therefore not an adequate mechanism
establish different levels of service in this scenario. Th
result emphasizes the point that knowledge of the bott
neck resource is essential.

The third backgrounding mechanism we evaluated w
rate-limiting background sends. It performed best, wi
very low overhead and variance, under both foregrou
loads: With light load (Figure 2: light/ltdrate), median
performance grew by only 4% and variance was al
extremely low. Under heavy foreground load (Figure 2
heavy/ltdrate) median performance degraded by le
than 18%.

5.2. Results for 100Mb/s Ethernet

We expected different results for 100Mb/s Etherne
because of the different bottleneck resource. As befo
performance (both median and variance) degraded in
ial
he
d
of
c
as

an-
s-

-
-
,
e
a
se.
ly,
as

his
10

of
to
n

an
o)
ri-
).
e
is
-

er-
ri-
to

is
le-

as
th
nd

so
:
ss

t,
re,
the

basic case with increasing background load: For lig
foreground load (Figure 3: light/basic), it grew almos
ten times worse (from 1.3 with no background load t
about 11.6) For heavy load (Figure 3: heavy/basic)
grew from 2.8 to almost 16; over five times worse. Var
ance in both cases was extremely high. Again, we s
substantial interference within the group of foregroun
connections alone; with no background load, media
performance for heavy load is more than twice as b
than for light load. Comparing this case against th
10Mb/s case, note that the normalized response tim
here are about 50% smaller than before. This is beca
in the network-bound 10Mb/s case, delays in respon
time are mostly due to packet losses and the incurr
retransmission. In the 100Mb/s case there is plenty
idle network capacity. Thus, delays in response time a
mostly due to queueing inside the kernel.

By limiting the background pool, both median perfor
mance and its variance was improved under both sets
foreground load. As for the 10Mb/s case, limiting th
size of the background pool is an effective first step
establish different levels of service. Under light fore
ground load (Figure 3: light/ltdpool) median perfor
mance only grows worse twofold, while under heav
load (Figure 3: heavy/ltdpool) it only increases by 40%
Again, this very simple mechanism can limit the
excesses of backgrounding.

Our second backgrounding mechanism also lowered
priority of the background processes. We had design
this mechanism specifically for a CPU-bound system
evaluate if process priorities would help in this scenari
Our results indicate that this is not the case. Both und
light and heavy (Figure 3: light/loprio, heavy/loprio)
background loads, median performance is only marg
ally better than in the previous case (Figure 3: light/ltd
pool, heavy/ltdpool), where the background servers r
at the same priority as the foreground ones. One pos
ble explanation for this lies in the nature of the 4.4BS
CPU scheduler [McKusicket al. 1996]. It lowers the
priority of processes that have accumulated more CP
time than others, and it raises the priority of process th
are blocked. These two features of the scheduler cou
teract our intention to use priorities to further slow dow
background processes.

Rate-limiting the background pool works best again
this scenario. Under light foreground load (Figure 3
light/ltdrate), median performance only degrades b
about 6%, and the performance variance is extreme
small. Under heavy foreground load (Figure 3
heavy/ltdrate), median performance decreases by 11
which is a moderately better than the first two algo
rithms, but variance is significantly reduced, as show
by the quartiles.
77

e and
round
Light Foreground Load (light) Heavy Foreground Load (heavy)

N
o

B
G

 P
ro

ce
ss

in
g

(ba
si

c)
Li

m
ite

d
B

G
 P

oo
l (

ltd
po

ol
)

Lo
w

-P
rio

rit
y

B
G

 P
oo

l (
lo

pr
io

)
R

at
e-

Li
m

ite
d

B
G

 P
oo

l (
ltd

ra
te

)

Figure 3. Normalized median foreground response times (with first and third quartiles) for the baseline cas
three different backgrounding mechanisms over 100Mb/s Ethernet; both under light and heavy foreg
load.

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120

N
o

rm
a

liz
e

d
 R

e
sp

o
n

se
 T

im
e

Background Clients

Median

■ ■ ■
■

■
■

■

■
■

■ ■

■

■
■

■

Quartiles

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120

N
o

rm
a

liz
e

d
 R

e
sp

o
n

se
 T

im
e

Background Clients

Median

■

■
■

■

■

■
■ ■

■
■

■ ■

■

■
■

Quartiles

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120

N
o

rm
a

liz
e

d
 R

e
sp

o
n

se
 T

im
e

Background Clients

Median

■ ■ ■
■ ■ ■

■ ■ ■ ■ ■ ■ ■ ■

■

Quartiles

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120

N
o

rm
a

liz
e

d
 R

e
sp

o
n

se
 T

im
e

Background Clients

Median

■
■

■ ■ ■
■

■ ■ ■ ■ ■ ■ ■
■

■

Quartiles

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120

N
o

rm
a

liz
e

d
 R

e
sp

o
n

se
 T

im
e

Background Clients

Median

■ ■ ■ ■ ■ ■
■ ■ ■ ■ ■

■
■ ■

■

Quartiles

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120

N
o

rm
a

liz
e

d
 R

e
sp

o
n

se
 T

im
e

Background Clients

Median

■
■

■
■ ■ ■

■ ■ ■ ■
■ ■ ■ ■

■

Quartiles

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120

N
o

rm
a

liz
e

d
 R

e
sp

o
n

se
 T

im
e

Background Clients

Median

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

■

Quartiles

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120

N
o

rm
a

liz
e

d
 R

e
sp

o
n

se
 T

im
e

Background Clients

Median

■ ■ ■ ■ ■ ■ ■
■

■ ■ ■ ■ ■ ■

■

Quartiles
88

tic
ill
k

ng
at
c-
er
ide
k-
a-

k-
m
rce

he
li-
a-

d

e
ges
all

of
on
k-

o-

eb
e
nt
e
d
ch-
ler
ns
is

-
e,
p-
ce.
re
m-
el
s,

a-
lo-
5.3. Discussion of results

In this section, we will summarize the experimenta
results of our three background traffic mechanisms, a
then discuss how our mechanisms can be applied to s
narios where the server is not CPU- or network-boun
or to scenarios where request messages need to be
in the background.

An important first result of our experiments is that sub
stantial benefits can be provided with user-lev
changes. Even the very simple approach of limiting th
background server pool works well in both scenario
The median foreground response time is kept arou
five and ten times the minimum for the 10Mb/s an
100Mb/s cases. A surprising outcome is that our seco
mechanism (lowering the process priority of the bac
ground pool) did not result in the expected improveme
over the first one (just limiting the pool size) - especiall
in the CPU-bound case, where process priorities sho
be most useful. As described above, the BSD CP
scheduler diminishes the difference between high-prio
ity and low-priority processes by rewarding I/O. On
other systems, especially non-Unix systems, this may
different. However, since there are minor median perfo
mance improvements in some cases (and no penaltie
the other ones), we consider lowering the priority of th
background pool useful in addition to other measures

Of the three simple backgrounding mechanisms we ha
designed, limiting the network sending rate of back
ground processes performs best. In all cases, med
foreground performance decreased slowly (and only
about 4-17%) as background load increased subst
tially. This is the primary requirement for a good back
grounding mechanism (see the beginning of Section
Another improvement of rate-limiting (compared to
simply limiting the background pool size) is that rat
limits offer a much finer granularity of control. Even a
single server process can put a considerable load o
system, if presented with enough requests. Thus,
increase of one in the background pool size can transl
into a large change in bottleneck resource utilization d
to background requests. For our third mechanism to
effective, it is important to set the rate limit to a fraction
of the available uplink bandwidth to the Internet. Eve
then, background traffic may interfere with other traffi
after the first hop, if a bandwidth bottleneck exists fu
ther up the path. To minimize these interferences, t
rate limit should be kept low both relative to the uplin
bandwidth and in absolute terms. An additional mino
benefit of this mechanism is that it may generate le
bursty background traffic by spreading out the transm
sion of the response message over an interval of time
l
nd
ce-
d,
sent

-
el
e

s:
nd
d
nd
k-
nt
y
uld
U
r-

be
r-
s in
e
.

ve
-
ian
by
an-
-
5).

e

n a
an
ate
ue
be

n
c
r-
he
k
r
ss
is-
.

Our experiments were conducted using a small, sta
set of web pages. A server offering dynamic content w
usually have higher local resource utilization (CPU, dis
and physical memory) due to the extra processi
involved with each request. Our experiments show th
application-level backgrounding mechanisms are effe
tive in the CPU-bound case. (As CPU requirements p
request increase, our second mechanism may prov
better service discrimination than the first.) For a dis
or memory-bound server, we believe our current mech
nisms would be effective, since slowing down the bac
ground pool will result in fewer resource requests fro
those processes, so a larger share of the critical resou
is available to foreground processes. Knowledge of t
system bottleneck (see Section 3) would allow genera
zation of our approaches to further address this situ
tion, such as rate-limiting the disk I/O of backgroun
processes.

We have limited ourselves to implementing server-sid
backgrounding mechanisms. Thus, all request messa
are sent in the foreground. Since most requests are sm
[Mah 1997], requests will not typically lower perfor-
mance. If backgrounding of request messages is
prime concern, our mechanisms can also be applied
the client-side, to allow sending requests in the bac
ground.

6. Related work

Extensions for differentiated services have been pr
posed at the application-, kernel- and network layer.

Almeida et al. [Almeidaet al.1998] have designed sev-
eral application-level and kernel approaches to w
QoS. Their first application-level mechanism limits th
server pool sizes allocated to requests of differe
classes. It is similar to out first mechanism (limiting th
background pool) except that they demultiplex an
queue requests inside the application. The second me
anism they have implemented is a kernel level-schedu
that allows preemption of low-level requests and assig
process priorities based on the request class, which
similar to our lowered-priority approach. While they
confirm our result that simple application-level mecha
nisms (such as a limited pool of servers) are effectiv
they claim that under heavy load, kernel-level preem
tion mechanisms are needed to improve performan
We examined application-level mechanisms in mo
depth, evaluating three different mechanisms. We de
onstrated that a carefully designed application-lev
method will perform well even under heavy load. Thu
additional kernel mechanisms may not be required.

Several soft-realtime kernel extensions to give applic
tions more control about scheduling and resource al
99

d
ng

is
d-
is
et-

ad
.

k-
uch
k-
et

ve
ta-
d-

e
by
d

at
el.
to
line
ket
To
g

ni-
fit
-
as
s-
si-
o
e

d-

to
the
he
ts

nt
cation have been proposed. AQUA [Lakshmanet al.
1998] is a kernel-level framework that allows coopera
ing multimedia applications to dynamically negotiat
their CPU and network I/O requirements with the ke
nel. If a resource becomes congested, applications
notified by AQUA and may adapt to the new servic
environment. This approach allows background pr
cesses to use allocated resources, addressing the
problem we identify in Section 7. Unfortunately, i
requires kernel changes and does not address non-a
cated bottlenecks. OMEGA [Nahrstedt and Smith 199
is an end-system kernel framework that supports so
realtime scheduling of CPU, memory and networ
resource allocation to provide end-to-end QoS
OMEGA is similar to AQUA; applications dynamically
negotiate their resource requirements with a QoS brok

Waldspurger and Weihl have successfully applied the
proportional-share resource schedulers [Waldspurg
and Weihl 1994, 1995] to CPU and network interfac
scheduling for a modified Linux kernel. Experiment
show that they are successful in allocating differe
shares of the managed resource to different applicatio
As with AQUA before, these schedulers can improv
application-level backgrounding, but require kerne
changes.

Application-level mechanisms cannot directly contro
what happens to their traffic inside the network. Ne
work-level mechanisms could be used to improve app
cation-level backgrounding mechanisms. At the ne
work-level, several proposals have been made to acco
modate different levels of service. One such proposal
to extend IP for integrated services [Wroclawski 1997
In this scheme, receivers initiate a resource reservat
request to receive a guaranteed service commitm
with the Resource Reservation Protocol (RSVP) [Zha
et al. 1993]. A second proposal is to extend IP to sup
port differentiated services [Blakeet al. 1998]. This
approach allows high priority traffic to take precedenc
over existing traffic on a per-packet basis. Complia
routers will respect priorities in their queueing and fo
warding decisions.

Ultimately the network and end system OS are the be
places to provide differentiated services. A router ca
react to traffic requirements directly, and the end syste
OS has better means of enforcing QoS than non-pri
leged applications. Deployment of these mechanisms
difficult since many routers must support these protoco
for the system to become effective. Our work sugges
that much of the benefits of background service is pos
ble through application-level mechanisms. For be
results, however, the administrator must tune the bac
ground transfer rate proportional to the bottleneck ban
width. If this bottleneck is not known, network suppor
t-
e
r-
are
e
o-
first

t
llo-
6]
ft-
k
.

er.

ir
er
e
s
nt
ns.
e
l

l
t-
li-
t-
m-
is
].
ion
ent
ng
-

e
nt
r-

st
n
m

vi-
is
ls
ts
si-
st
k-
d-
t

is important, but if the bottleneck is well understoo
(such as at the server’s Internet connection) this tuni
is straightforward.

7. Future work

We have shown that rate-limiting background sends
an effective server-side, application-level backgroun
ing mechanism. The major problem of that approach
that the rate limit can never be exceeded; even if the n
work could sustain the additional traffic without a
decrease in foreground performance. If foreground lo
could be quantified, this limitation could be overcome
We plan on experimenting with more elaborate bac
ground processing schemes to that purpose. One s
scheme (requiring OS support) would be to have bac
ground processes send only if the foreground sock
buffers are empty. Another mechanism might be to ha
the (foreground) server pool aggregate throughput s
tistics over time to estimate the available network ban
width.

At this time, our modified web server demultiplexes th
request stream into service classes at the OS-level
using different sockets for background and foregroun
requests. We would like to investigate a server th
demultiplexes its request stream at the application lev
This gives the server more control over how and when
process each request, but raises the issue of head-of-
blocking (background request at the head of the soc
queue delays foreground requests queued behind it).
overcome this problem, application-level queuein
needs to be implemented.

This paper has concentrated on backgrounding of u
cast traffic. However, multicast traffic may also bene
from the availability of background service. One exam
ple are multicast content-push applications such
video-conferencing: the audio channel could be tran
mitted in the foreground, since humans are more sen
tive to interruptions of the audio stream, while the vide
channel could be transmitted in the background. W
have applied the idea of application-level backgroun
ing to multicast distribution in the LSAM system [Touch
and Hughes 1998].

One limitation of the Webstone benchmark we used
generate the request load during our experiments is
inability to generate a load that completely overloads t
server [Banga and Druschel 1997]. Future experimen
should use a more realistic model to simulate clie
behavior.
1010

s
,

-

nd

d

ng

ue

i-

,

s

in
-

of
ce

e

le-

n-
an-
8. Conclusion

We have described several scenarios in which havi
different levels of service for web requests would resu
in a better overall service model. An ideal system
requires extensions to most network routers and the e
system OS and applications. These extensions are un
development, but will take time to standardize an
deploy.

Application-level mechanisms can achieve several
the key benefits of a complete solution while bein
extremely easy to set up. Knowing the bottlenec
resource of the system is essential in designing an eff
tive mechanism. A web server has been monitored
two different experiments to detect its bottlenec
resource. Using that information, we have designed a
implemented three simple, server-side, application-lev
mechanisms to support different levels of service. The
mechanisms have been compared against the basic
tem in four different sets of experiments. Analyzing th
results showed that while any of our mechanism pe
forms better than the basic case, limiting the send rate
background responses is particularly effective in esta
lishing different levels of service: The performanc
impact of this mechanism on foreground traffic was le
than 4-17% in all cases.

Acknowledgments

We would like to thank Joe Touch for his detailed dis
cussions of background processing alternatives and
his valuable comments on an earlier draft of this pap
Ted Faber, Steve Hotz and Joe Bannister have also p
vided helpful feedback for the paper.

References

Almeida, J., M. Dabu, A. Manikutty and P. Cao (1998), “Providing
Differentiated Levels of Service in Web Content Hosting,” InProceed-
ings of the 1988 SIGMETRICS Workshop on Internet Server Perf
mance, Madison, WI, USA, June 1998, pp. 91-102.

Apache HTTP Server Project (1998), “Running a High-Performan
Web Server for BSD.”
web page http://www.apache.org/docs/misc/perf-bsd44.html

Apache HTTP Server Project (1998).
web page http://www.apache.org/

Balakrishnan, H., V. Padmanabhan, S. Seshan, M. Stemm and R. K
(1998), “TCP Behavior of a Busy Internet Server: Analysis an
Improvements,” InProceedings of the IEEE INFOCOM ‘98,1, pp.
152-162.

Banga, G. and P. Druschel (1997), “Measuring the Capacity of a W
Server,” InProceedings of the USENIX Symposium on Internet Tec
nologies and Systems, USENIX Association, Berkeley, CA, pp. 61-71.
ng
lt

nd
der
d

of
g
k

ec-
in
k
nd
el
se
sys-
e
r-
of
b-
e
ss

-
for
er.
ro-

or-

ce

atz
d

eb
h-

Blake, S., D. Black, M. Carlson, E. Davies, Z. Wang and W. Weis
(1998), “An Architecture for Differentiated Services,” RFC 2475
Internet Request For Comments.

Clark, D. (1988), “The Design Philosophy of the DARPA Internet Pro
tocols,”Computer Communication Review 18,4, pp. 106-114.

Netperf Project (1998).
web page http://www.netperf.org/

Lakshman, K., R. Yavatkar and R. Finkel (1998), “Integrated CPU a
network-I/O QoS management in an endsystem,”Computer Commu-
nications 21, 4, pp. 325-333.

Mah, B. (1997), “An Empirical Model of HTTP Network Traffic,” In
Proceedings of the IEEE INFOCOM ‘97, IEEE Computer Society
Press, Los Alamitos, CA, pp. 592-600.

McKusick, M., K. Bostic, M. Karels and J. Quarterman (1996),The
Design and Implementation of the 4.4BSD Operating System, Addi-
son-Wesley, Reading, MA, pp. 92-97.

Nahrstedt, K. and J. Smith.(1996), “Design, Implementation an
Experiences with the OMEGA End-point Architecture,”IEEE Journal
on Selected Areas in Communications, pp. 1263-1279.

Padmanabhan, V. and J. Mogul (1996), “Using Predictive Prefetchi
to Improve World Wide Web Latency,”ACM Computer Communica-
tion Review 26, 3, pp. 22-36

Padmanabhan, V. and R. Katz (1998), “TCP Fast Start: A Techniq
for Speeding Up Web Transfers,” InProceedings of the IEEE GLOBE-
COM Internet Mini-Conference, pp. 41-46.

Pointcast, Inc. (1998), “How Pointcast Works.”
web page http://www.pointcast.com/products/pcn/hwork.html

Touch, J. and A. Hughes (1998), “The LSAM Proxy Cache - a Mult
cast Distributed Virtual Cache,”Computer Networks and ISDN Sys-
tems 30, 22-23, pp. 2245-2252.

Touch, J. (1998), “LowLat ‘Containment’ Issues,” In Preparation
Technical Report, USC Information Sciences Institute.

Touch, J. (1995), “Defining ‘High Speed’ Protocols: Five Challenge
& an Example That Survives the Challenges,”IEEE Journal on
Selected Areas in Communications 13,5, pp. 828-835.

Trent, G. and M. Sage (1995), “WebSTONE: The First Generation
HTTP Server Benchmarking,” Technical Report, MTS, Silicon Graph
ics, Inc., Mountain View, CA, now maintained by Mindcraft, Inc.
web page http://www.mindcraft.com/webstone/

Visweswaraiah, V. and J. Heidemann (1997), “Improving Restart
Idle TCP Connections,” Technical Report 97-661, Computer Scien
Department, University of Southern California, Los Angeles, CA.

Waldspurger, C. and W. Weihl (1994), “Lottery Scheduling: Flexibl
Proportional-Share Resource Management,” InProceedings of the
First USENIX Symposium on Operating System Design and Imp
mentation (OSDI), USENIX Association, Berkeley, CA, pp. 1-11.

Waldspurger, C. and W. Weihl (1995), “Stride Scheduling: Determi
istic Proportional-Share Resource Management,” Technical Memor
1111

dum MIT/LCS/TM-528, MIT Laboratory for Computer Science, Mas
sachusetts Institute of Technology, Cambridge, MA.

Wroclawski, J. (1997), “The Use of RSVP with IETF Integrated Se
vices,” RFC 2210, Internet Request For Comments.

Zhang, L., S. Deering, D. Estrin, S. Shenker and D. Zappala (199
“RSVP: A New Resource ReSerVation Protocol,”IEEE Network 7,5,
pp. 8-18.
-

r-

3),
1212

	Abstract
	1. Introduction
	2. Three cases for differentiated services
	2.1. Background requests and responses
	2.2. Content-derived priorities
	2.3. Policy-derived priorities

	3. Finding the server bottleneck resource
	3.1. Results for 10Mb/s Ethernet
	3.2. Results for 100Mb/s Ethernet

	4. Designing application-level background processing
	5. Background processing evaluation
	5.1. Results for 10Mb/s Ethernet
	5.2. Results for 100Mb/s Ethernet
	5.3. Discussion of results

	6. Related work
	7. Future work
	8. Conclusion
	Acknowledgments
	References

		2003-08-19T13:55:11-0700
	Lars Eggert
	I am the author of this document

