
Extensions to FreeBSD Datacenter TCP for Incremental
Deployment Support

Midori Kato
Fixstars Solutions

midori.kato@fixstars.com

Lars Eggert
NetApp

lars@netapp.com

Alexander Zimmermann
NetApp

alexandz@netapp.com

Rodney Van Meter
Keio University

rdv@sfc.keio.ac.jp

Hideyuki Tokuda
Keio University

hxt@sfc.keio.ac.jp

Abstract
Datacenter TCP (DCTCP) achieves low latencies for short
flows while maintaining high throughputs for concur-
rent bulk transfers, but requires changes to both end-
points, which presents a deployment challenge. This paper
presents extensions to DCTCP that enables one-sided de-
ployment when peers implement standard TCP/ECN func-
tionality. This makes DCTCP significantly easier to deploy
incrementally. This paper also improves DCTCP in two-
sided deployments by refining ECN processing and the
calculation of the congestion estimate. A FreeBSD kernel
implementation of these DCTCP improvements demon-
strates better performance than the original DCTCP vari-
ant, and validates that incremental one-sided deployments
see benefits similar to those previously only achievable in
two-sided deployments.

1 Introduction
Datacenter workloads are diverse and range from web ap-
plication hosting, content and media streaming, databases
and virtual desktop infrastructures (VDI) to big-data ana-
lytics and other specialized applications. A common theme
among these workloads is that their traffic mix consists of
concurrent short interactive and long bulk-transfer flows.
Efficiently supporting such a traffic mix requires network
mechanisms that can maintain low and predictable laten-
cies for short flows, absorb traffic bursts, and maintain high

throughputs for bulk flows. Traditional TCP congestion
control over a FIFO switch fabric fails to achieve these
goals.

Datacenter TCP (DCTCP) [1, 2] is a recently proposed
TCP variant that addresses this limitation. DCTCP as-
sumes that Explicit Congestion Notification (ECN) [14]
is enabled in the network fabric and uses this information
to estimate network congestion more accurately than TCP.
Based on this congestion estimate, DCTCP adjusts its send-
ing rate with more precision than TCP, avoiding long stand-
ing queues that increase latencies. DCTCP first shipped
in a production OS with Microsoft Windows Server 2012
and is enabled by default for paths with RTTs of less than
10ms.

DCTCP is not the only recent proposal in this space.
D2TCP [15] and D3 [18] provide deadline-aware flow
scheduling, i.e., a stronger service model than DCTCP
and TCP. VCP [19], RCP [7] and XCP [11] augment the
switching fabric in order to derive even finer-grained con-
gestion information. Other proposals [5, 12] extend ECN
to enable new uses or return more accurate congestion
information.

Many of these other proposals are difficult to deploy, be-
cause they require modifications to switch queuing mecha-
nisms. Even DCTCP, which only requires standard ECN
support from the network fabric, has deployment chal-
lenges, because both the sender and receiver must be modi-
fied, i.e., it requires a two-sided deployment. And DCTCP
has no built-in negotiation mechanism to detect if a peer

1

supports it; a sender needs out-of-band information about
whether a given peer supports DCTCP1. This is hurdle
for incremental deployment, because as this paper shows
in later sections, enabling DCTCP to communicate with
a peer that does not support it can seriously reduce per-
formance. This is problematic in particular for a network
which contains expensive service such as storage appliance
because the available protocol is restricted from operating
system upgrading.

This paper addresses the deployment challenge to such
networks by describing a variant of DCTCP in Section 3
that can be deployed one-sided, i.e., on only one of the
endpoints of a connection.

As long as the other endpoint is ECN-capable, the one-
sided variant achieves many of the same performance
benefits of the original two-sided DCTCP. If the peer is
DCTCP-capable, performance is increased over conven-
tional DCTCP, due to our second contribution, which is
presented in Section 4. We describe additional optimiza-
tions to the original two-sided DCTCP algorithm at startup
and after an idle period, timeout or packet loss. Together,
these modifications address DCTCP’s deployment prob-
lem, because a sender can always enable our modified
DCTCP, without risking performance degradation when
communicating with legacy peers.

Section 5 presents an experimental evaluation of these
improvements based on our FreeBSD kernel implemen-
tation of DCTCP, using a Cisco Nexus 3548 switch with
support for ECN threshold marking. The results confirm
that our modifications improve data transmission times
and fairness between short and long flows for two-sided
DCTCP, and demonstrate that a one-sided deployment of
DCTCP is now feasible.

2 DCTCP Overview
DCTCP uses ECN in a non-standard way, in order to derive
a more precise estimate of the congestion on the transmis-
sion path. A standard ECN-capable TCP endpoint regards
ECN as a congestion event [14]. When an ECN-capable
endpoint receives a packet with the “congestion experi-
enced” (CE) bit set by the switch fabric, it echoes it back
to the sender by setting the “Echo CE” (ECE) bit in all

1This is contrast to most other TCP extensions, which negotiate their
use in the SYN exchange.

its acknowledgments (ACKs) until seeing a “congestion
window reduced” (CWR) indication from the sender. On
the other hand, a DCTCP receiver sends back information
about incoming (or missing) CE marks by setting (or clear-
ing) ECE marks whenever there is a change in the inbound
CE bits [4].

The resulting stream of ECE marks allows the DCTCP
sender to estimate the fraction of sent bytes that experi-
enced congestion during a time period. The sender uses
the fraction of marked bytes in the next congestion window
calculation. It calculates congestion window (cwnd) per
RTT as:

cwnd← cwnd ∗
(
1− α

2

)
The variable α is an estimator of the congestion on

the path. Small values of α indicate light congestion; α
approaching one indicates heavy congestion. When α
equals one, the DCTCP sender behaves identical to a ECN-
capable TCP sender. The value for α is computed as:

α← α ∗ (1− g) + g ∗M

The value g is the estimation gain (a constant 1
16 in the

Windows Server 2012 implementation), and M is the frac-
tion of bytes estimated to have experienced congestion
during the last RTT.

DCTCP relies on an ECN-enabled switch fabric. In-
dividual switches can employ different queueing mech-
anisms to generate ECN marks, such as RED [9] or
BLUE [8]. Similar to the original DCTCP paper [2], this
paper uses a simple threshold marking approach in Sec-
tion 5, which marks CE when the instantaneous queue
length exceeds a pre-defined threshold.

3 Enabling One-Sided DCTCP
Deployment

This section proposes a variant of DCTCP that can be
deployed only on one endpoint of a connection including
the one-sided DCTCP problem explanation. A FreeBSD
implementation, which contains the new variant will yield
many of the benefits of a two-sided deployment as long as
the peer is ECN-capable2.

2Most operating systems have been ECN-capable for years; support
can typically enabled through a simple configuration change.

2

3.1 Emitting CWRs at One-Sided Senders

A severe performance issue can manifest when a regular
DCTCP sender communicates with a non-DCTCP ECN-
capable peer. The DCTCP paper [2] and specification [4]
do not require that the sender set the CWR flag, probably
because a DCTCP receiver would only ignore it. When
sending to a non-DCTCP ECN-capable receiver, never
sending CWR causes the receiver to keep emitting ACKs
with the ECE mark set while waiting for a CWR mark to
arrive. This ECE-marked ACK stream in turn appears to
the DCTCP sender as if all sent bytes experienced conges-
tion, causing it to shrink cwnd (and hence throughput) to
the minimum.

In order to facilitate one-sided deployment, a DCTCP
sender should set the CWR mark after receiving an ECE-
marked ACK once per RTT. This avoids the performance
issue identified above. It is also safe in two-sided deploy-
ments, because a regular DCTCP receiver will simply ig-
nore the CWR mark. Our FreeBSD kernel implementation
therefore always enables this modification.

With this modification, DCTCP performance when com-
municating with a ECN-capable non-DCTCP receiver be-
comes similar to that achievable in a two-sided deployment
of DCTCP. The ECE stream of ECN-capable TCP receiver
in the ACK stream makes cwnd of the one-sided DCTCP
sender set to the relative small value. However, it never
leads to the significant impact of the DCTCP performance.

3.2 Delayed ACKs at One-Sided Receivers

As mentioned in the previous section, the standard ECN-
capable TCP endpoint handles ECN as a congestion event.
Because of this, a congestion reaction to the ECN-capable
endpoint is in the same manner of the data retransmis-
sion. It refrains from new data transmission for an RTT
which corresponds to the duration responding to ECE. The
FreeBSD kernel name this duration “congestion recovery”.

After congestion recovery, ECN-capable TCP start in-
creasing window size. The size depends on the sender
detection of the use of delayed ACK at receiver side. De-
layed ACK sends an ACK every m packets3 reaches, it
allows a sender to increase cwnd by two full-sized seg-
ments (SMSS); otherwise, by one SMSS [3].

3FreeBSD sets m to two

cwnd <-
 cwnd + 1MSS

cwnd <- cwnd/2

congestion
 recovery
 mode

ECN: CE mark

seq 12896 : 14344, CWR

Figure 1: One-sided DCTCP sequence diagram illutrating
problematic behavior.

This window increase adjustment rises to another per-
formance issue when a ECN-capable TCP sender is com-
municating with a DCTCP receiver. Figure 1 shows the
problematic situation. This in turn causes the sender to
halve cwnd and, enter and exit congestion recovery. The
sender, then, starts increasing cwnd. The ACK behavior
of DCTCP can cause mis-detection at the sender. Here, the
non-DCTCP sender incorrectly determines that delayed
ACKs are not in use, and hence increases cwnd by one
instead of two SMSS. This is the minor point but we found
this leads lower throughput compared to ECN capable TCP,
which no user expects.

In order to eliminate this performance issue and facili-
tate one-sided deployment, a one-sided DCTCP receiver
should always delay an ACK for incoming packets marked
with CWR, which is the only indication of congestion re-
covery exit. This modification impacts the accuracy of
calculating α for two-sided DCTCP flows, however, this
is only of minor concern, because α is calculated as a
weighted average. Therefore, our FreeBSD kernel im-
plementation always delays ACKs for incoming CWR
packets.

4 Improving Two-Sided DCTCP

This section motivates and describes additional improve-
ments to DCTCP that are unrelated to enabling one-sided
deployment, also enabled in our FreeBSD implementation.

3

4.1 ECE Processing

A congestion control reaction in TCP can be triggered
by several events: First, an out-of-order ACK will trigger
fast recovery [10]. Second, an ACK with an ECE mark
will trigger congestion recovery. (Other events include
timeouts or receiving multiple duplicate ACKs.) When
one of these two cases happens, a sender stops increasing
cwnd for roughly one RTT.

For DCTCP, there is no reason for this behavior. DCTCP
does not use ECN marks to detect congestion events, it
uses ECN marks to estimate and quantify the extent of
congestion, and then reacts proportionally to that extent.
Therefore, there is no need to stop cwnd from increasing.
In addition, a DCTCP sender frequently enters congestion
recovery, because it tries to adapt to the available path
bandwidth, aggravating the issue. Our FreeBSD imple-
mentation therefore does not enter congestion recovery
when receiving an ECE mark for two-sided DCTCP flows.

4.2 Congestion Estimation

The DCTCP algorithm [2] can be improved in terms of
managing α; namely, how α is initialized, and how α is
calculated after an idle period, timeout or packet loss.

4.2.1 Initialization of α

According to the draft DCTCP specification [4], α is con-
servatively initialized to one. This initial value determines
how DCTCP reacts when receiving the first CE mark.
When α is one, cwnd will be halved on the first CE mark.
This is the most conservative behavior, because it causes a
reaction as if all bytes sent during the last RTT experienced
congestion.

An initial α of one may be a good choice for latency-
sensitive applications, because potential queue buildup is
minimized. However, for throughput-sensitive applica-
tions, a smaller initial α may be preferred, so that cwnd is
not reduced quite as drastically.

Our FreeBSD implementation allows flows to select an
initial α that is appropriate for them, and defaults to setting
α to zero.

4.2.2 Idle Periods

A second related improvement opportunity is if – and how –
α should be re-initialized after an idle period. The draft
DCTCP specification [4] does not currently discuss this
issue. The choices are to re-initialize α to the value used
at the beginning of the connection, to keep using the α that
was in effect before the idle period, or to age or otherwise
adjust that α.

There are tradeoffs surrounding this choice, similar to
the TCP “slow-start restart” [17] issue. If the path charac-
teristics after an idle period are similar to before it started,
using the last α is reasonable. Otherwise, re-initializing
α to a more conservative value is safer. Our FreeBSD im-
plementation chooses to re-initialize α after an idle period
longer than the retransmission timeout (RTO)4.

4.2.3 Timeouts and Packet Loss

Because DCTCP tries hard to avoid queue buildup and
overflow, the probability for packet losses or TCP time-
outs is lower than for standard TCP. However, it is still
important that the algorithm handle packet loss correctly.

The draft DCTCP specification [4] defines the update
interval for α as one RTT. In order to track whether this
interval has expired, DCTCP compares received ACKs
against the sequence number of outgoing packets. This
simple approach is problematic when a packet loss oc-
curs. In that case, the incoming (cumulative) ACKs never
changes until a retransmission arrives at the receiver, and
its ACK arrives back at the sender. This process can take
two or more RTTs, during which DCTCP will not update
α.

To avoid this problem, DCTCP should update α when it
detects either a duplicate ACK or a timeout. This addition
is part of our FreeBSD kernel implementation.

5 Experimental Evaluation
This section evaluates the performance of the proposed
DCTCP modifications for one-sided and two-sided de-
ployments through experiments with a FreeBSD imple-

4 Whether 1RTO is an appropriate amount of time is an open ques-
tion, cf. [17]; this value was chosen because of ease of implementation in
FreeBSD.

4

mentation in a testbed, using flowgrind [20] as a traffic
generator.

The testbed consists of four x86 machines running
FreeBSD-CURRENT and one Cisco Nexus 3548 switch.
Each machine is equipped with two dual-core Intel Xeon
E5240 CPUs running at 3GHz, 16GB RAM and one four-
port Intel PRO/1000 1G Ethernet card.

Three machines act as senders (S1–S3) and one hosts
two receiver processes (R1–R2) on two different IP ad-
dresses assigned to the same network interface. S1 sends
data to R1. S2 and S3 send data to R2. The Nagle algo-
rithm [13] was disabled, and the TCP host cache is flushed
before each run.

The Cisco Nexus 3548 shares a large buffer pool among
four adjacent ports [6]. Due to its deep buffers and a
low configured ECN marking threshold of 20 packets, no
packet loss occurs during the experiments when DCTCP
is used.

The experiments focus on two different scenarios, an
incast scenario and a bulk transfer scenario. In all fig-
ures, error bars illustrate the standared deviation. In the
incast [16] scenario, many flows start at the same time
and converge in the same egress queue of the switch. If
these flows use regular TCP, they overflow the queue and
experience packet loss. The experiment creates an incast
situation by starting ten flows at the same time. The trans-
fer size of the flows is one parameter of the experiment
and varies between 10–800KB. The metrics for this ex-
periment are the transmission time and the smoothed RTT
(SRTT)5 as calculated by TCP.

The second bulk transfer scenario models a case where
short latency-sensitive flows share a path with several bulk
transfers. With regular TCP, short flows running concur-
rently with bulk transfers take longer to finish than when
they run in isolation, due to longer standing queues and a
therefore higher propagation delay. The desired behavior
for short flows is short completion times, whereas high
throughputs should be maintained for bulk transfers. The
experiment runs ten short flows in parallel to eight bulk
transfers. The start times of the short flows are staggered
by 500ms, which is long enough for them to reach steady-
state. The transfer size of the bulk transfers is 40MB, the

5 The SRTT approximates the queuing delay at the switch; however,
the timer resolution of the FreeBSD kernel is 1ms, which limits the
accuracy of the estimation.

● ● ●
● ●

●

●

●

● ● ●
● ●

●

●

●

0.5

25

55.9
● two−sided DCTCP

one−sided DCTCP
two−sided standard ECN

T
ra

ns
. t

im
e

[m
s]

●
● ● ● ● ●

●

●
●

● ● ● ● ●

●

●

10 20 40 80 200 400 800

0.7
1.1
1.6

Transfer size [KB]

S
R

T
T

 [
m

s]

Figure 2: Incast results for one-sided DCTCP senders,
transmission times (top) and SRTT (bottom).

transfer size of short flows is one parameter. The metric of
interest in this scenario is the transmission time.

5.1 Results for One-Sided DCTCP
The evaluation for one-sided deployments is split into
results for one-sided DCTCP senders and for one-sided
DCTCP receivers; the peer always uses standard TCP with
ECN. As a baseline, results where both sides use standard
TCP with ECN are also included. We also compare these
results to those obtained for two-sided deployments of
original DCTCP and of standard TCP with ECN.

5.1.1 One-Sided DCTCP Senders

The incast results in Figure 2 show that one-sided DCTCP
achieves a performance that is identical to two-sided
DCTCP. When compared to standard TCP with ECN, both
one- and two-sided DCTCP have a somewhat higher queu-
ing delay, while they still achieve short transmission times.
The higher queuing delay results from DCTCP behavior
after slow start. Because one- and two-sided DCTCP react
to congestion based on the available bandwidth at the bot-
tleneck link, they have a higher queuing delay until they
converge on an adjusted value for cwnd.

Figure 3 shows the results for the bulk transfer scenario,
when eight bulk transfers are running concurrently with
ten short interactive flows. The performance of the bulk
transfers show no significant difference in any of the cases.
This validates that DCTCP is able to achieve bulk transfer

5

● ● ●
● ●

●

●

●

1.4

44.6

88.9

177.2
● two...sided DCTCP used for both short and long flows

(short flows) one−sided DCTCP (long flows) two−sided standard ECN
(short flows) two−sided standard ECN (long flows) one−sided DCTCP
two−sided standard ECN used for both short and long flows

T
ra

ns
. t

im
e

[m
s]

● ● ● ● ● ● ● ●

10 20 40 80 200 400 800

2670

Short flow transfer size [KB]

T
ra

ns
. t

im
e

[m
s]

Figure 3: Bulk transfer results for one-sided DCTCP
senders, transmission times of short flows (top) and eight
bulk transfers (bottom).

throughputs that are comparable with standard TCP with
ECN.

When one-sided DCTCP is used for short flows, they
experience up to 28ms (23%) shorter transmission times
than over a two-sided deployment of standard TCP with
ECN. Because one-sided DCTCP senders react to conges-
tion more accurately, their short flows take bandwidth from
bulk transfers over standard TCP with ECN, and completes
more quickly.

When one-sided DCTCP is used for bulk transfers, short
flows using standard TCP with ECN experience up to
57ms (32%) longer transmission times than when the bulk
transfers use also standard TCP with ECN. The DCTCP
bulk transfers use all available bandwidth when the short
flows using standard TCP with ECN start up, and they
hence take a longer time to complete.

The results of the incast and bulk transfer scenarios
validate that one-sided DCTCP senders achieve a perfor-
mance that is very similar to that of a two-sided DCTCP
deployment. In the incremental deployment path, although
competitive ECN-capable TCP flows must compromise
transmission time, one-sided DCTCP shows similarity to
two-sided ECN-capable TCP/DCTCP deployment.

5.1.2 One-Sided DCTCP Receivers

The incast results in Figure 4 show that one-sided DCTCP
receivers remark identical performance to that of a two-
sided deployment of standard TCP with ECN. This val-

idates that as expected, our modified DCTCP receivers
behave like ECN-capable TCP receivers in a partial de-
ployment when communicating with ECN-capable TCP
senders.

Figure 5 shows the results for eight bulk transfers in
parallel with ten short flows. The performance of the
bulk transfers is almost identical in all cases, as expected.
The performance of the short flows, however, differs. For
example, in 800KB data transmission, short flows to a one-
sided DCTCP receiver takes extra 25ms (17%) compared
to the transmission time of short flows to a ECN-capable
TCP receiver. When one-sided DCTCP is used for bulk
transfers, the transmission time is reduced.

This is caused by disabling delayed ACKs and at the
same time configuring a low ECN marking threshold at the
switch. Why we can say it because a one-sided DCTCP re-
ceiver behaves as a ECN-capable TCP receiver except for
delayed ACK. Although – in theory – the number of trans-
mitted packets is same with or without delayed ACKs [3],
when the switch uses a low ECN marking threshold, the
number of packets the sender transmits at any time affects
the probability to receive CE marks. A sender that com-
municates with a peer using delayed ACKs transmits a
larger burst of packets on each ACK compared to when
a receiver is not using delayed ACKs. With a relatively
large number of bulk transfers (for a given bandwidth)
and receivers using delayed ACKs, a single bulk transfer
can easily occupy the entire queue. The result is that the
flows not using delayed ACKs tend to receive more CE
marks, reduce their cwnd more, and hence have longer
transmission times.

We see the same transmission times in the bulk transfer
scenario that the number of short flows is changed from
eight to two From this result, we can conclude that one-
sided DCTCP achieves similar transmission times only
when the number of bulk transfers is small. The tradeoffs
surrounding the use of delayed ACKs at one-sided DCTCP
receivers must be better understood, which is future work.

Overall, the experimental results show that one-sided
DCTCP flows are fair to concurrent two-sided ECN flows
in an incremental deployment secenario. In the result of
incast experiment, one-sided DCTCP shows identically
same plots to ECN-capable TCP. In bulk transfer exper-
iments, plots differs slightly between one-sided DCTCP
and ECN-capable TCP. But this new finding will be a hint
to complete a DCTCP design as a protocol.

6

● ● ●
● ●

●

●

●

● ● ●
● ●

●

●

●

0.5

25

55.9
● two−sided DCTCP

one−sided DCTCP
two−sided standard ECN

T
ra

ns
. t

im
e

[m
s]

●
● ●

● ● ●

●

●

●
● ●

● ● ●

●

●

10 20 40 80 200 400 800

0.7
1

1.3
1.6

Transfer size [KB]

S
R

T
T

 [
m

s]

Figure 4: Incast results for one-sided DCTCP receivers,
transmission times (top) and SRTT (bottom).

● ● ●
● ●

●

●

●

1.7

36.7

73.1

106.8

145.3 ● two−sided DCTCP used for both short and long flows
(short flows) one−sided DCTCP (long flows) two−sided standard ECN
(short flows) two−sided standard ECN (long flows) one−sided DCTCP
two−sided standard ECN used for both short and long flows

T
ra

ns
. t

im
e

[m
s]

● ● ● ● ● ● ● ●

10 20 40 80 200 400 800

2670

Short flow transfer size [KB]

T
ra

ns
. t

im
e

[m
s]

Figure 5: Bulk transfer results for one-sided DCTCP re-
ceivers, transmission times of short flows (top) and eight
bulk transfers (bottom).

5.2 Results for Two-Sided DCTCP

The focus of the evaluation of two-sided DCTCP deploy-
ments is on validating our modifications to ECE processing
(see Section 4.1) and the selection of the initial α (see Sec-
tion 4.2).

In both the incast and the bulk transfer scenarios, four
results are plotted in each figure, as labeled. The first two
explore the effect of different initial α values (zero and
one) on our modified DCTCP. The other results – two-
sided standard TCP with ECN and original DCTCP – are
used as baselines for comparison.

Figure 6 shows the incast results. The performance
of our modified DCTCP with an initial α of zero is very

● ● ●
● ●

●

●

●

● ● ●
● ●

●

●

●

0.5

25.9

55.3
● modified DCTCP (a = 0)

modified DCTCP (a = 1)
original DCTCP
standard ECN

T
ra

ns
. t

im
e

[m
s]

●
● ●

● ●

●

● ●

●
● ●

● ●

●

● ●

10 20 40 80 200 400 800

0.7
1.1

2

Transfer size [KB]

S
R

T
T

 [
m

s]

Figure 6: Incast results for two-sided DCTCP, transmission
times (top) and SRTT (bottom).

Tr
an

s.
tim

e
[m

se
c]

1.7
31

57.6

117.4 modified DCTCP (a=0)
modified DCTCP (a=1)
original DCTCP
standard ECN

short flow transfer size [KB]

Tr
an

s.
tim

e
[m

se
c]

10 20 40 80 200 400 800
2300

2589.9
2674.1
2754.5

Figure 7: Bulk transfer results for two-sided DCTCP, trans-
mission times of short flows (top) and eight bulk transfers
(bottom).

similar to that of the original DCTCP (less than 1ms dif-
ference.) With an initial α of one, our modified DCTCP
almost behaves like a standard TCP with ECN (less than
3ms difference.) We conclude that the modifications to
ECE processing have a very small benefit in the incast
scenario.

Figure 7 shows the results of the bulk transfer secnario
with eight bulk flows. Overall, there is less than 5% dif-
ference in the transfer times of short flows. Our modified
DCTCP behaves very similar to the original DCTCP (less
than 10ms difference.) For the bulk transfers, our modi-
fied DCTCP shows has a 110ms (2%) longer transmission
time than the original DCTCP, but also has a substantially
lower variability in the result, with the standard deviation

7

declining from 6% to 2%. Because the modified ECE
processing never stops cwnd from increasing, modified
DCTCP bulk transfers achieve higher throughputs than
bulk transfers using traditional DCTCP .

When the initial α is set to one, our modified DCTCP
behaves like standard TCP with ECN. The difference in
performance for short flows is at most 4ms (7%); bulk
transfer performance is similar.

These experimental results validate that the modified
ECE processing has benefits for the transfer time of bulk
transfers. When the initial α is one, the transmission time
is improved by a very small amount compared to standard
TCP with ECN, while the queuing latency is similar. This
validates that our modified DCTCP with an initial α of one
behaves like standard TCP with ECN.

6 Conclusion
This paper presented modifications to DCTCP that make
it more incrementally deployable in environments where
some peers may use regular ECN-enabled TCP. It also
presented some general performance improvements to
DCTCP. The experimental evaluation of our FreeBSD ker-
nel implementation, which is slated to be merged into
FreeBSD-CURRENT in the near future, validates our hy-
pothesis that the proposed modifications improve perfor-
mance for two-sided DCTCP deployments, and improve
the performance of one-sided deployments to a point where
it is comparable to the two-sided case, while being easier
to deploy incrementally.

7 Acknowledgements
We thank Mirja Kühlewind, Richard Scheffenegger and
Michio Honda for feedback on ECN and DCTCP, Cisco for
donating a Nexus 3548 for experimentation, and Lucien
Avramov from Cisco for help with the switch configuration.
We also appreciate to Hiren Panchasara for the deligent
support when we merge our DCTCP impelementation into
the FreeBSD kernel.

8 References
[1] M. Alizadeh et al. “Analysis of DCTCP: Stability,

Convergence, and Fairness”. In: Proc. ACM SIG-
METRICS. 2011, pp. 73–84.

[2] M. Alizadeh et al. “Data Center TCP (DCTCP)”. In:
Proc. ACM SIGCOMM. 2010, pp. 63–74.

[3] M. Allman. TCP Congestion Control with Appro-
priate Byte Counting (ABC). RFC 3465. IETF, Feb.
2003.

[4] S. Bensley et al. Datacenter TCP (DCTCP): TCP
Congestion Control for Datacenters. Internet-Draft
draft-bensley-tcpm-dctcp-00. Work in Progress.
IETF, Feb. 2014.

[5] B. Briscoe et al. Re-ECN: A Framework for adding
Congestion Accountability to TCP/IP. Internet-
Draft draft-briscoe-conex-re-ecn-motiv-02. Work
in Progress. IETF, July 2013.

[6] Cisco Nexus 3548 Switch Architecture. Tech. rep.
C11-715262-01. Cisco, Sept. 2012.

[7] N. Dukkipati et al. “Processor Sharing Flows in the
Internet”. In: Proc. IWQoS. 2005, pp. 271–285.

[8] W.-c. Feng et al. “The BLUE Active Queue Man-
agement Algorithms”. In: IEEE/ACM Trans. Netw.
10.4 (Aug. 2002), pp. 513–528.

[9] S. Floyd et al. “Random Early Detection Gateways
for Congestion Avoidance”. In: IEEE/ACM Trans.
Netw. 1.4 (Aug. 1993), pp. 397–413.

[10] T. Henderson et al. The NewReno Modification to
TCP’s Fast Recovery Algorithm. RFC 6582. IETF,
Apr. 2012.

[11] D. Katabi et al. “Congestion Control for High
Bandwidth-delay Product Networks”. In: Proc.
ACM SIGCOMM. 2002, pp. 89–102.

[12] M. Kühlewind et al. More Accurate ECN Feed-
back in TCP. Internet-Draft draft-kuehlewind-tcpm-
accurate-ecn-02. Work in Progress. IETF, June
2013.

[13] J. Nagle. Congestion Control in IP/TCP Internet-
works. RFC 896. IETF, Jan. 1984.

8

[14] K. K. Ramakrishnan et al. The Addition of Explicit
Congestion Notification (ECN) to IP. RFC 3168.
IETF, Sept. 2001.

[15] B. Vamanan et al. “Deadline-aware Datacenter
TCP (D2TCP)”. In: Proc. ACM SIGCOMM. 2012,
pp. 115–126.

[16] V. Vasudevan et al. “Safe and Effective Fine-grained
TCP Retransmissions for Datacenter Communica-
tion”. In: Proc. ACM SIGCOMM. 2009, pp. 303–
314.

[17] V. Visweswaraiah et al. Improving Restart of Idle
TCP Connections. Tech. rep. 97-661. University of
Southern California, Nov. 1997.

[18] C. Wilson et al. “Better Never Than Late: Meeting
Deadlines in Datacenter Networks”. In: Proc. ACM
SIGCOMM. 2011, pp. 50–61.

[19] Y. Xia et al. “One More Bit is Enough”. In: Proc.
ACM SIGCOMM. 2005, pp. 37–48.

[20] A. Zimmermann et al. “Flowgrind – A New Perfor-
mance Measurement Tool”. In: Proc. IEEE GLOBE-
COM. Dec. 2010, pp. 1–6.

9

	Introduction
	DCTCP Overview
	Enabling One-Sided DCTCP Deployment
	Emitting CWRs at One-Sided Senders
	Delayed ACKs at One-Sided Receivers

	Improving Two-Sided DCTCP
	ECE Processing
	Congestion Estimation
	Initialization of
	Idle Periods
	Timeouts and Packet Loss

	Experimental Evaluation
	Results for One-Sided DCTCP
	One-Sided DCTCP Senders
	One-Sided DCTCP Receivers

	Results for Two-Sided DCTCP

	Conclusion
	Acknowledgements
	References

