
A Transport Protocol for Content-Centric Networks
Somaya Arianfar and Jörg Ott

Aalto University
Lars Eggert

Nokia Research Center
Pekka Nikander

Ericsson Research NomadicLab
Walter Wong

University of Campinas

I. I NTRODUCTION

In the current Internet architecture, the hosts and the net-
work have very different roles. Hosts generate and consume
packets; the network is in charge of delivering those packets.
The Internet architecture has no inherent notion of “content”.
In the Internet, content resides in applications that themselves
reside on specific hosts. In order to access content across the
Internet, a hosts first needs to determine a host that holds (a
copy of) the content of interest and then it needs to obtain the
specific IP address at which that hosts resides at the time.

In content-centric networking, content becomes a first-
order element. It is liberated from the shackles of Internet
application silos, and the role of the network changes from
transporting topologically addressed packets between hosts to
delivering uniquely identifiable content to the hosts requesting
it. With this approach, hosts no longer need to identify which
other host stores a copy of the content of interest; they simply
request a named piece of content from the network and let the
network to worry about where to retrieve it from.

Several content-centric networking architectures have re-
cently been proposed, including Van Jacobson’s CCN [1] and
the PSIRP [2]. The focus of these efforts has so far been
mostly on the architecture of the inter-networking functions
required for content-centric networking,e.g., identification of
content, routing, etc.

This work describes ConTug, a receiver-driven transport
protocol that can reliably and efficiently retrieve large pieces
of content from the network in a way that is congestion-
controlled. The work highlights the transport aspects of
content-centric networks and their design challenges.

II. CONCEPTUAL DETAILS

In content-centric networks, to retrieve a piece of content, a
host – therequesteror receiver– issues arequestfor it to the
network. The network is responsible for forwarding requests
towards the original source that announced the content item. A
piece ofcontentis a sequence of bytes identified by a globally
unique and persistentidentifier (ID). Pieces of content larger
than maximum network segment size require segmentation
before they can be transmitted; a common design approach
– as this work assumes – is that each resultingsegmentof a
large content item is a uniquely identifiable piece of content
in its own right.

While we do not assume consistent host names in content-
centric environment, some forwarding-level identifiers are
needed to tell the network where to send segments to. For
this purpose, we use the notion offorwarding channels, or

Fig. 1. Example topology with requesters on the left, original sources on
the right, and potential caches along the path.

channelsfor short. Briefly, a channel is an anycast or multicast
like network tree, originating at the sender and terminating at
one or more locations in the network. A packet traveling along
a channel will be forwarded towards one or more of the ends,
until someone processes the packet or it hits a dead end.

As discussed in our previous work [3], the network has
the freedom of moving and storing the content in different
places. Therefore, intermediate nodes on the channel are free
to cache some or all content items that are being transmitted
across them as they see fit. When such areal time cachesees
a request for a content item that it has a copy of, it may
directly respond with the cached item instead of forwardingthe
request towards the original source. Caches are consequently
also fractional sources, trying to reduce the flow completion
time (FCT), in case of repeated content requests.

In such an environment, the requested segments will often
flow to a requester from several sources at the same time.
From the receiver point of view, the different active sources
responding to a stream of segment requests in a content net-
work appear to act unpredictably. Because a requester issues
requests to the network – instead of sending them to a single,
individually known source – it has no direct control over which
source will respond. Adding to this apparent unpredictability
there are two other factors. First, sources may only cache
an arbitrary (non-contiguous) fraction of the segments of a
content item, so a source that happened to responded to the
some of past segment requests may “disappear” when requests
are made for segments it does not have available. Second,
whether a given source decides to respond may depend on
its load level as well as network load. Fig. 1 illustrates this
operation in simple topology with requesters on the left,
original sources on the right, and potential caches along the
path.

Our subgoal on keeping no control states in the network
while having the freedom of moving the content, poses an

0 %

5 %

10 %

15 %

20 %

25 %

30 %

35 %

 1 2 3 4 5 6 7 8 9
 0

 5

 10

 15

 20

 25

 30

 35

S
eg

m
en

ts
 R

et
rie

ve
d

F
ro

m
 [%

]

Source [#]

Fig. 2. 32 concurrent ConTug transfers in a scenariowith caches. Plots show measures taken for asingle receiver(transfer); showing (a) CCWNDs used
with different sources on the left, (b) RTTs to different sources in the middle and (c) which fraction of segments was retrieved from which source.

interesting challenge in our design. The challenge is how to
perform some transmission control per known source, because
as requester asks for the content the paths to the sources – and
hence the control loops used by the protocol – will interact
and alsothere is no predictability on which source can serve
which range of the requests.

III. D ESIGN OVERVIEW

To address the conceptual challenges, the ConTug transport
is designed as a completely data-oriented pull-based mecha-
nism, where the receiver controls the segment reception based
on its local parameters. The receiver is able to either request
each of the segments separately or send multiple concurrent
requests into the network to enhance its download rate.

Starting with an initialization phase, the receiver gets the
meta-information required to retrieve a piece of content. This
meta information at minimum contains the channel identifier
and the list of segment ids to be requested. In case of real time
streaming, instead of the simple list of segment ids, the meta
information may contain a seed identifier and a corresponding
algorithm to generate the identity of the rest of the segments.

After the initialization phase, the actual content retrieval
operation starts. The requester tries to approximate how much
resources are available in the network, to serve its requests.
The approximation is done over a channel with unpredictable
sources without binding to any specific one of them. In
order to control the number of outstanding requests and
responses, ConTug uses theConceptualcongestion control
window (CCWND) per channel that operates similar to the
TCP congestion window (CWND). Their main difference is
that CCWND is kept at the receiver and all estimates are
performed by the receiver. Another difference is that ConTug
may have to use multiple stochastic conceptual windows for
the multiple transient sources on a single channel. To compute
the windows, the receiver needs to be able to differentiate
between different sources. For example, the sources may be
identified by the reply channel identifiers included in the
segments, or based on TTL and RTT sample clustering.

The receiver starts requesting segments with one conceptual
window,CCWND1. Then, the receiver enters the slow start
(later congestion avoidance) ramp-up phase for that window,
increasing its size on successful responses. Whenever there is
a response from a new source, ConTug assumes more resource
availability and creates a newCCWNDi. Each response
from the sourcei triggers an increase on the correspondent

CCWNDi, thereby increasing the overall conceptual window
size, allowing more outstanding requests on the channel.

In the design, any indicator of the resource unavailabilityat
the channel , e.g. temporary bandwidth shortage or unavailabil-
ity of certain range of the segments on a source, is addressed
as congestion. The requester is able to adapt its request rate
to the congestion situation and prevent congestion collapse.
To adapt to congestion and source unpredictabilities, ConTug
uses the timeouts and increased RTT estimation as signs of
congestion and react to them in different ways.

IV. I MPLEMENTATION AND EVALUATION

In order to evaluate the different features provided by
ConTug, we have implemented a new native protocol stack in
ns-3. Instead of using IP as the forwarding fabric, we employ
an implementation of the so-called zFilter-based host-identity
independent forwarding layer [4].

Our primary evaluation topology follows Fig. 1. Different
possible segment sources are identified with id’s of #1 to #9,
#9 being the original source, each able to cache and re-play
different proportion of the passing data. Channel has the base
RTT of 1500 ms with no queuing. FCT is∼ 5200 s when only
one source is available . As an example, Fig. 2a illustrates
the variations of differentCCWNDis at one of the random
receivers. The FCT of the flow is shown on theX axis of
this plot. Comparing with Fig. 2c, the plot easily mirrors the
dependency ofCCWNDis to the amount of data served from
each sources. Fig. 2b displays the variations of differentRTTi

estimates at one receiver. It can be seen that although different
segments are retrieved quite randomly from different parts
of the channel, ConTug is successful in keeping the overall
RTT, FCT, and congestion sufficiently low. ConTug manages
to receive the data in a more efficient manner compared to
TCP, by retrieving some parts of the content from closer nodes,
this can be seen in Fig. 2c .

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking Named Content,” inProc. ACM
CoNEXT, 2009, pp. 1–12.

[2] D. Trossen (ed.), “Architecture Definition, Component Descriptions, and
Requirements,” PSIRP Project, Deliverable D2.3, 2009.

[3] S. Arianfar, P. Nikander, and J. Ott, “Packet-level caching for
information-centric networking,” Finnish ICT-SHOK Future Internet
Project, Tech. Rep., 2010. [Online]. Available: http://users.piuha.net/
blackhawk/contug/cache.pdf

[4] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar, and P. Nikan-
der, “LIPSIN: Line Speed Publish/Subscribe Inter-Networking,” in Proc.
ACM SIGCOMM, 2009, pp. 195–206.

