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Abstract— This paper presents a design for an end-to-
end transport protocol for multi-homed end systems that
pools the communication resources of multiple network
paths to support a single communication session. This
approach offers improved performance and resilience
compared to communicating over a single path. Compared
to previous efforts, deployability in the current commercial
Internet, i.e., in the presence of middleboxes, filtering and
restricted connectivity, was a key driver for the design of
the Resource Pooling Protocol (RPP).

I. INTRODUCTION

Efficient, lightweight and scalable allocation of net-
work resources is among the key requirement for a
future Internet. Resource pooling [1] has recently been
proposed as a principle by which an end-to-end transport
architecture can simultaneously utilize multiple, distinct
paths between two communicating end systems in a way
that will result in improved resource allocation.

The theoretical foundation for resource pooling was
laid in earlier work by others, including [2]–[4], and
has demonstrated significant performance and reliability
improvements for end systems, as well as significant
traffic engineering benefits for the network. For end
systems, these benefits derive from the ability to pool
the bandwidth and reliability offered by all their network
interfaces to support each individual end-to-end path,
compared to using only the network resources along
a single path for each. For the network, the benefit
comes from a much finer-grained traffic engineering
control loop, which executes at timescales of network
round-trips and operates at the flow level, compared to
traditional traffic engineering mechanisms that operate
on longer timescales and on coarser traffic aggregates.

The majority of bytes on the Internet are being trans-
mitted over TCP. Compared to about ten years ago, the
fraction of longer-lived TCP flows has been increasing,
likely fueled by the widespread use of video streaming
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and peer-to-peer file sharing [5], [6]. This development
is important, because the resource allocation provided
by TCP’s congestion control only becomes fully effec-
tive for connections that reach steady-state, which short
connections rarely do. It also illustrates that a resource
pooling protocol should be designed as a TCP extension
that is transparent to applications and the network, if it
is to have any chance at deployment. Hence, an RPP
connection exposes the same communication primitive
and API to applications as TCP, and its transmissions
look like a set of TCP connections to the network.

During the same ten years, more and more end
systems have shipped with multiple network interfaces.
Most notebooks ship at least with Ethernet and WLAN
interfaces, and many handhelds and mobile phones offer
several different wireless interfaces, such as WLAN and
3G. This means that a significant fraction of current end
systems already has the necessary equipment to benefit
from resource pooling transport protocols.

This paper is by no means the first to describe a trans-
port protocol based on multipath transmission. pTCP [7],
mTCP [8], cTCP [9], AMS [10] and MPLOT [11],
among others, extend TCP for multipath communication,
and CMT [12] extends SCTP. The design of RPP pre-
sented in this paper has many of the same mechanisms
explored in these earlier designs. The key difference is
that the design of RPP is driven by the deployment
necessities of today’s commercial Internet, i.e., the pres-
ence of middleboxes, filtering and otherwise restricted
connectivity. The design is also as minimal as possible,
in order to be tractable for eventual IETF standardization.

This paper discusses these design requirements and
presents the rationale behind the key features of RPP.
Due to space constraints, companion papers will describe
the prototype implementations of RPP under develop-
ment and present an experimental evaluation of RPP.

II. DESIGN OVERVIEW

The design of RPP was driven by the desire for
widespread deployability. This section discusses the de-



Fig. 1. One RPP connection consisting of two subflows.

tails of this overarching requirement and how it relates to
applications, backwards compatibility and middleboxes.

TCP provides a communication primitive to applica-
tions that is a reliable and ordered byte stream. To be a
drop-in replacement for TCP—the protocol carrying the
majority of Internet bytes—RPP must provide exactly
the same communication primitive through exactly the
same API (with possible optional extensions [13]).

RPP will be deployed incrementally. This means that
RPP end systems will need to be able to communicate
with end systems that implement standard TCP. This
could be accomplished by designing RPP as a standalone
protocol and determine at connection start whether to
use TCP or RPP. However, using a separate IP protocol
number for RPP has the serious drawback of being
incompatible with many deployed firewalls, NATs and
other middleboxes. SCTP and DCCP suffer from this
issue, and to this day have therefore failed to see much
deployment. RPP has consequently been designed as
a strictly modular extension to standard TCP, reusing
the same IP protocol number. RPP implementations will
try to negotiate the use of RPP during the SYN/ACK
exchange and fall back to standard unicast TCP trans-
mission when this negotiation fails.

Figure 1 illustrates the components of the RPP design
by showing one RPP connection between endpoints EP1
and EP2. EP1 and EP2 are multi-homed, each having
two network interfaces with two different IP addresses
(A and B, and C and D). The next-hop routers for each
of those interfaces are labeled G1-4. Hence, four distinct
paths exist between EP1 and EP2: A-C, A-D, B-C and
B-D. The connection shown uses only the two paths A-C
and B-D through two subflows transmitting along them.

An RPP connection is the entity over which applica-
tions communicate. It provides a reliable and ordered
byte stream that has exactly the same semantics as a
TCP connection. An RPP connection transmits appli-
cation data over one or more subflows. It is up to the
implementation to schedule which chunk of application
data is transmitted over which subflow or subflows.

The receiving end must read chunks of application data
from all subflows and deliver them in order. An RPP
connection is implicitly created when its first subflow is
created and terminated when its last subflow terminates.

An RPP subflow is the entity over which RPP trans-
mits chunks of application data along a single path. In
order to maximize the chances of a subflow to traverse
any middleboxes along “its” path, it is important that a
subflow resembles a single TCP connection as closely
as possible. Hence, a subflow is established through a
standard three-way SYN exchange with a piggybacked
new TCP option used to negotiate the use of RPP,
similar to how use of many other TCP extensions is
negotiated. After the initial handshake, every subflow
packet contains a regular TCP segment.

When the use of RPP has been negotiated for a con-
nection between two end systems, they start exchanging
data across multiple distinct paths, using one subflow
along each such path that is independently congestion
controlled. Initially, RPP congestion control uses stan-
dard TCP mechanisms for each subflow; more advanced
congestion control is one topic of further research.

III. DESIGN DETAILS

This section discusses the key design choices for
RPP in more detail, including connection identification,
subflow termination, path discovery, sequence number
spaces, transmission scheduling and congestion control.

A. Connection Identification

An RPP connection is created when its first subflow
has been established. If one end wants to create another
subflow for that same connection, it needs to indicate this
to the peer, so that the peer can differentiate between a
subflow SYN for a new connection vs. one for a new
subflow that is joining an existing connection. This can
be done in different ways, and there are subtle tradeoffs.

One approach is to identify a connection for joining by
referring to one of its existing subflows. TCP identifies
a connection by a four-tuple consisting of source and
destination IP addresses and ports, and the four-tuple
of an existing subflow could be used to identify the
connection that a new subflow is joining. In practice,
however, this has the drawback that because NATs can
rewrite source IP addresses and port numbers, both ends
may refer to the same subflow with different identifiers.

A second approach is to identify connections through a
shared, probabilistically unique initial sequence number
(ISN), which is done by AMS [10]. Instead of using the
four-tuple to identify a subflow, AMS re-uses the ISN of



a subflow that is part of the desired existing connection
when sending a SYN for a new subflow. Unfortunately,
some middleboxes are known to rewrite sequence num-
bers, again rendering this technique problematic from a
deployment perspective.

A third approach, introduced by pTCP [7] and adopted
by RPP, creates an explicit new namespace for connec-
tions that does not reuse existing header fields and is
hence safe from modification by NATs. RPP exchanges
these connection IDs inside TCP options piggybacked
onto the SYN exchange. This approach has the downside
of introducing a new TCP option, which decreases the
success rate of subflow establishment in a minor way
(by 0.3% [14]). It is still possible to fall back to standard
TCP in these rare cases, so communication will not be
prevented. It is also probable that as RPP gains adoption,
middleboxes will be updated to pass the new option.

Under this third approach, the SYN and SYN/ACK
for the first subflow of an RPP connection contain a
new connection ID chosen by the sender. SYN and
SYN/ACKs for additional subflows for the same RPP
connection contain the same connection ID as the first
subflow. pTCP inserts connection identifiers into all
packets. This is redundant, because after a subflow is
established, both ends know which connection it belongs
to. RPP only includes connection IDs in the SYN and
SYN/ACK, in order to conserve option space.

B. Subflow Identification

All subflows should normally be explicitly terminated
by exchanging FIN packets, in order to allow any mid-
dleboxes to free up state. However, this is not always
possible, e.g., when one end abruptly loses connectivity
on a network interface.

It is straightforward for the end to stop transmission
over the subflows affected by the outage. However,
the peer cannot do the same, and will likely continue
to try using the defunct subflows. This can degrade
performance, because application data transmitted over
defunct subflows is lost and will require retransmission,
causing delays until the peer eventually stops using the
defunct subflows due to timeouts.

Consequently, it is a useful optimization to allow
one end to notify its peer about the termination of one
subflow over a different subflow belonging to the same
connection. It is important to note that such subflow
termination is an optional optimization—loss of connec-
tivity can occur anywhere along a path, and RPP must
correctly deal with this situation even when it cannot
detect connectivity status directly. The TCP timeout

Fig. 2. The RPP state machine.

mechanisms that RPP inherits provide the necessary
timeout mechanisms to eventually tear down subflows.

Subflow termination requires a subflow ID, in order to
allow identification of a defunct subflow. Similar to the
connection ID discussed above, four-tuples are unsuit-
able as identifiers. RPP defines a namespace for subflow
IDs for this purpose and includes them during the SYN
exchange of each subflow alongside its connection ID.

Figure 2 ties together RPP connection and subflow
management into one state machine. An RPP connection
has the same states as a TCP connection. A connection
ID is exchanged during the SYN handshake of the initial
subflow of a connection, using the RPP INIT option.
Subflow IDs are exchanged during the SYN handshakes
of any additional subflows that are joining an existing
connection, using the RPP ADD option. Subflow states
are also generally similar to those of a TCP connection.
An RPP connection is established when its first subflow
is established. As long as at least one subflow remains in
the ESTABLISHED state, the entire connection remains
there, because it can still make progress. The connection
is closed when its last subflow is closed, which happens
either via a FIN exchange or via a timeout event.

It is worth noting that another design possibility for
subflow termination exists. It assumes that all subflows
transmitted across the same network interface will be
affected by loss of interface connectivity. Subflows are
tagged with an interface or address ID, and when con-
nectivity is lost, all subflows sharing an interface are
terminated. RPP did not choose this variant, because
subflow IDs are no more complicated, but allow finer-
grained per-subflow operations.



C. Path Discovery and Subflow Establishment

The benefits of resource pooling become stronger with
an increasing number of distinct paths that are being used
to support a single end-to-end connection. It is hence
important for RPP to be able to discover as many poten-
tial candidate paths as possible. Equally important are
techniques to establish subflows across those candidate
paths even when they suffer from restricted connectivity.
Some end systems might want to use only specific
network interfaces or paths, hence advanced APIs and
administrative parameters e.g., sysctl will also support
such operation in future work.

The current design of RPP focuses on multi-homed
end systems and assumes that subflows between different
source and destination IP addresses will be routed along
different paths. This means that candidate paths can be
discovered by exposing all available local IP addresses to
the peer, and keeping track of which addresses the peer
exposes. It is a design goal to keep RPP independent
of IP versions; it should be possible to create an RPP
connection that has some subflows traversing an IPv6
network while others traverse the IPv4 Internet.

The path discovery process begins at the initiator of a
connection, i.e., the end that sends the SYN of the first
subflow. The initiator knows about its local IP addresses,
and it knows at least one IP address of the peer. e.g., via
getaddrinfo(). If the initiator in Figure 1 is EP1 and the
initial peer address it knows is C, it can for example
initiate the subflow A-C, creating the RPP connection.
After that, based on its local IP addresses, it can also
initiate subflow B-C. At this point, EP1 has discovered
all the paths it can, based on its current information, and
it has also exposed all of its local addresses to the peer by
opening one subflow from each. EP2, however, has local
address D that is not yet being used for the connection
and it can hence create subflows D-A and D-B.

The general principle is that the two ends of a connec-
tion establish new subflows whenever they learn about a
new local or remote address that results in the availability
of new path candidates. In other words, information
about endpoint addresses is implicitly shared by estab-
lishing subflows to or from them. SCTP, in contrast, has
protocol messages that let the ends explicitly add and
remove IP addresses from the peer’s address set. RPP
shares addresses implicitly, because successful establish-
ment of a subflow tests connectivity—the peer never
learns about addresses that have connectivity issues.

As described above, subflows are established with a
normal SYN handshake. However, middleboxes often

restrict connectivity by dropping “inbound” SYNs. For
example, if G1 in Figure 1 is a NAT, EP2’s attempt to
create the D-A subflow will fail, because G1 will drop
the inbound SYN. This reduces the number of subflows
of the RPP connection, which in turn limits performance
and reliability. This issue depends on the direction of
connection establishment—establishment of a subflow
from A to D across G1 will succeed.

RPP consequently offers the feature to also reverse
the direction of subflow establishment along a path.
This is done by notifying the peer of an IP address
to make the peer send a SYN to the address. This
IP address is notified by using protocol option inside
packets transmitted on a different, already established
subflow. In the example, EP2 would include IP address
D in such a “ SYN requested” option transmitted on the
A-C subflow, causing EP1 to send a SYN from A to D.
In general, RPP has no way of knowing if a middlebox
exists along a path, and when one end attempts to create
a new subflow, it will both send a SYN and piggyback a
“SYN requested” option on another subflow, if possible.

Finally, RPP provides a “hole-punching” mecha-
nism [15] to establish a subflow along a path where
both endpoint addresses are behind middleboxes. This
mechanism requires at least one end to have at least
one globally reachable address, from which it can create
an initial subflow. In the example in Figure 1, suppose
that G2 and G4 are NATs. The B-D subflow cannot be
established by any of the above techniques. In order to
create it, EP1 sends a SYN from B to C, causing G2 to
create a binding entry for B and the chosen source port.
EP2 replies with a SYN/ACK from D (instead of C),
causing G4 to create a binding entry for D and the chosen
source port. EP1 sends the final ACK to the address it
received the SYN/ACK from, and because G4 a binding
entry for this address and port, it forwards it to D.

Mechanisms by which single-homed hosts could ex-
ploit the availability of multipath routing deeper inside
the network for resource pooling are currently being
investigated [16].

D. Sequence Number Spaces

TCP detects loss events based on its sequence num-
bers by observing holes in the acknowledgment stream.
Loss events drive both TCP’s reliability (retransmission)
mechanisms as well as its congestion control mech-
anisms. RPP connections also provide a reliable and
ordered byte stream, but congestion control happens per
subflow, because it needs to be based on the measured
characteristics of each path. RPP consequently teases



Fig. 3. One RPP connection sending over two subflows, showing
transport sequence numbers and subflow sequence numbers.

apart reliability and congestion control, resulting in two
sequence number spaces, the connection-level transport
sequence number (TSN) and the subflow sequence num-
ber (SSN). RPP transmits TSNs using a new TCP option
included with each segment; SSNs are carried in the
sequence number field in the TCP header.

Each TSN identifies one unique byte of application
data transmitted over the RPP connection. In other
words, the TSN establishes the order in which received
data is delivered. SSNs, on the other hand, have no mean-
ing at the connection level. They are purely subflow-
specific, and have the purpose of allowing loss detection.
Detected losses will affect the congestion control state
of the subflow on which they were detected. The ACK
packets of individual subflows contain SSN information
but no TSN information. The sender is responsible
for maintaining a mapping of which application bytes
(which TSNs) it transmitted inside which subflow bytes
(which SSNs). When data loss is detected for a subflow,
the sender determines which application data was lost
using this mapping. Application data lost during trans-
mission along one subflow can be retransmitted over a
different subflow. In this case, the SSN of the original
subflow is adjusted accordingly.

Figure 3 illustrates how the two sequence number
spaces play together for an example consisting of two
subflows of one RPP connection transmitting application
data segments with TSNs 1–10. Subflow 1 carries TSNs
1, 3 and 5 in subflow segments with SSNs 11, 12, and 13.
Subflow 2 carries TSNs 2, 4 and 6 in subflow segments
35, 36, and 37. SSN 36 (carrying TSN 4) is lost. The
connection retransmits TSN 4 over subflow 1 in SSN 14
and reuses SSNs 36 and 37 on subflow 2 for transmitting
TSNs 7 and 8. Another design option under investigation
is to not reuse SSNs in this way, but instead transmit

gratuitous “get over it” ACKs on the original subflow for
TSNs successfully retransmitted over another subflow.

The design choice of two sequence number spaces
is different from CMT [12], mTCP [8] and cTCP [9],
which only employ connection-level sequence numbers.
Our choice was motivated by several reasons. First, in
the presence of middleboxes, the sequence numbers of
different subflows can be rewritten, causing the receiver
to be unable to reassemble the application data received
on different subflows. Second, a data stream transmitted
along several paths is likely to have many more chunks
arriving out-of-order than one transmitted along a single
path. These reorderings are indistinguishable from loss
events, causing issues for standard TCP congestion con-
trol. Even when selective acknowledgments (SACK) [17]
are used, frequent reorderings will necessitate transmit-
ting large SACK blocks, which is problematic due to
limited option space.

E. Transmission Scheduling

Because an RPP connection has the same semantics
and the same API as a TCP connection, applications
interact with it through a single socket and socket buffer.
A transmission scheduler is responsible for determining
which chunk of application data should be transmitted
over which subflow. These scheduling decisions affect
flow control and might cause performance issues.

On one hand, a sender should transmit data in the
send buffer as soon as possible, to minimize delay
and maximize utilization. On the other hand, different
subflows have different RTTs, and data transmitted along
one subflow may arrive significantly later than data trans-
mitted over another. Because RPP provides a reliable
byte stream, data received “early” cannot be delivered to
the application and must be buffered. A bad transmission
scheduler can hence exhaust the available receive buffer
with out-of-order data, degrading performance and even
requiring additional retransmissions. A bad transmission
scheduler will also tie up more memory for the send
buffer, because transmitted data cannot be freed until all
gaps in the acknowledgment space have been filled.

The design of a transmission scheduler that efficiently
transmits application data over multiple subflows in a
way that maximizes throughput and minimizes delay is
future work.

F. Congestion Control

Each subflow of an RPP connection traverses a differ-
ent network path with different characteristics. Conges-
tion control, which adapts network transmissions to what



a given path can sustain, hence needs to happen on a
per-subflow basis. The current design of RPP is targeted
at multi-homed end systems, and assumes that subflows
between unique source and destination IP address pairs
will not have a shared bottleneck.

It is not clear if this assumption will hold in all cases.
For example, with an over-provisioned core, a network
interface at the end systems can become the shared path
bottleneck for all subflows using it. Another example
occurs when the paths of multiple subflows between
unique source and destination IP address converge in the
core of the network and are routed together.

When several subflows of one connection share a
bottleneck, their resource consumption adds up. Each
subflow is as aggressive as a single TCP connection, and
a bundle of n TCP-friendly subflows will hence use an
approximately n times greater share of the bottleneck
resource than they should. This behavior can lead to
unfairness, when multipath connections with large n
or many multipath connections compete with a smaller
number of regular TCP connections.

Two approaches exist to mitigate these issues. First,
detection mechanisms for shared bottlenecks [18], [19]
allow suppressing transmissions on some of the subflows
sharing the bottleneck. mTCP [8] adopts this approach
and finds that it can take around 15 seconds, during
which significant unfairness could occur. A second ap-
proach is to use some form of integrated congestion con-
trol for all the subflows belonging to an RPP connection,
along the lines of [20]. This latter approach has been
explored in more detail for use with RPP [21].

IV. CONCLUSION

This paper has presented the design of RPP, a transport
protocol that pools transmission resources along multiple
Internet paths in order to support one end-to-end con-
nection. Compared to previous proposals, the design of
RPP is driven by the deployment necessities of today’s
commercial Internet, i.e., the presence of middleboxes,
filtering and otherwise restricted connectivity. The design
is also as minimal as possible, in order to be tractable
for eventual IETF standardization. An implementation
of RPP for Linux 2.6 is currently underway, and com-
panion papers will describe the details of the prototype
implementation as well as experimental results. A second
implementation of some key features of RPP has been
completed for the ns2 network simulator.
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