
On Traffic Phase Effects in Packet-Switched

Gateways

Sally Floyd and Van Jacobson

Lawrence Berkeley Laboratory

1 Cyclotron Road

Berkeley, CA 94720

floyd@ee.lbl.gov, van@ee.lbl.gov

SUMMARY
Much of the traffic in existing packet networks is highly periodic, either be-
cause of periodic sources (e.g., real time speech or video, rate control) or be-
cause window flow control protocols have a periodic cycle equal to the con-
nection roundtrip time (e.g., a network-bandwidth limited TCP bulk data
transfer). Control theory suggests that this periodicity can resonate (i.e.,
have a strong, non-linear interaction) with deterministic control algorithms
in network gateways.1 In this paper we define the notion of traffic phase in a
packet-switched network and describe how phase differences between compet-
ing traffic streams can be the dominant factor in relative throughput. Drop
Tail gateways in a TCP/IP network with strongly periodic traffic can result
in systematic discrimination against some connections. We demonstrate this

An earlier version of this paper appeared in Computer Communication Review, V.21 N.2, April

1991.
This work was supported by the Director, Office of Energy Research, Scientific Computing

Staff, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
1While gateway congestion control algorithms are almost non-existent at present, there is one

(particularly poorly behaved) algorithm in almost universal use: If a gateway’s output queue is full

it deterministically drops a newly arriving packet. In this paper, we refer to this algorithm as “Drop

Tail” and examine its (mis-)behavior in some detail.

behavior with both simulations and theoretical analysis. This discrimination
can be eliminated with the addition of appropriate randomization to the net-
work. In particular, analysis suggests that simply coding a gateway to drop a
random packet from its queue on overflow, rather than dropping the tail, is
often sufficient.

We do not claim that Random Drop gateways solve all of the problems of
Drop Tail gateways. Biases against bursty traffic and long roundtrip time con-
nections are shared by both Drop Tail and Random Drop gateways. Correcting
the bursty traffic bias has led us to investigate a different kind of randomized
gateway algorithm that operates on the traffic stream, rather than on the queue.
Preliminary results show that the Random Early Detection gateway, a newly
developed gateway congestion avoidance algorithm, corrects this bias against
bursty traffic. The roundtrip time bias in TCP/IP networks results from the
TCP window increase algorithm, not from the gateway dropping policy, and
we briefly discuss changes to the window increase algorithm that could elimi-
nate this bias.

KEY WORDS Congestion control Phase effects Random drop gateways

1 Introduction

The first part of this paper presents fundamental problems resulting from the interac-
tion between deterministic gateway algorithms and highly periodic network traffic.
We define the notion of traffic phase for periodic traffic and show that phase effects
can result in performance biases in networks and in network simulations. We show
that gateways with appropriate randomization, such as Random Drop gateways, can
eliminate the bias due to traffic phase effects.

The second part of this paper discusses the biases against bursty traffic and the
biases against connections with longer roundtrip times that have been reported in
networks with both Drop Tail and with Random Drop gateways. We show that
the first bias results from the gateway congestion recovery algorithms, and that
the second bias results from the TCP window modification algorithm. We show
that these biases could be avoided by modifications to the gateway and to the TCP
window modification algorithm respectively.

Gateway algorithms for congestion control and avoidance are frequently de-
veloped assuming that incoming traffic is ‘random’ (according to some probability
distribution). However, much real network traffic, such as bulk data transfer shown
in Figure 1, has a strongly periodic structure. For a particular connection the number
of outstanding packets is controlled by the current window. When the sink receives
a data packet it immediately sends an acknowledgment (ACK) packet in response.
When the source receives an ACK it immediately transmits another data packet.

31

SINKGATEWAYFTP SOURCE

2

Figure 1: Periodic traffic.

Thus the roundtrip time (including queueing delays) of the connection is the traffic
“period”.

Most current network traffic is either bulk data transfer (i.e., the total amount of
data is large compared to the bandwidth-delay product and throughput is limited by
network bandwidth) or interactive (i.e., transfers are small compared to bandwidth-
delay product and/or infrequent relative to the roundtrip time). In this paper we
refer to the former as “FTP traffic” and are concerned with its periodic structure.
We refer to interactive traffic as “telnet traffic” and use Poisson sources to model it.
By random traffic we mean traffic sent at a random time from a telnet source.

Consider FTP traffic with a single bottleneck gateway and a backlog at the
bottleneck.2 When all of the packets in one direction are the same size, output
packet completions occur at a fixed frequency, determined by the time to transmit a
packet on the output line.

For example, the following is a schematic of the packet flow in figure 1:

Departure

Next Arrival

b

packet flow

Figure 2: The phase () of a simple packet stream.

Packets leaving the bottleneck gateway are all the same size and have a trans-
mission time of seconds. The source-sink-source “pipe” is completely full (i.e., if
the roundtrip time including queueing delay is , there are packets in transit).
A packet that departs the gateway at time results in a new packet arrival at time

(the time to take one trip around the loop). The queue length is decremented

2Since many topologies consist of a high-speed LAN gatewayed onto a much lower speed WAN,

this is a reasonable approximation of reality: The bottleneck is the LAN-to-WAN transition and,

since current gateways rarely do congestion avoidance, it could have a sizable queue.

at packet departures and incremented at packet arrivals. There will be a gap of
mod between the departure of a packet from the gateway queue and the

arrival of the next packet at the queue. We call this gap the phase of the conversation
relative to this gateway. Phase is defined formally in Section 2.2.

For a connection where the window is just large enough to fill the queue the
phase is simply the (average) time this particular connection leaves a vacancy in
the queue. If the connection has filled the gateway queue, the probability that
a (random) telnet packet will successfully grab a vacancy created by a departure
(thereby forcing the gateway to drop the next packet that arrives for the bulk-data
connection) is simply . Since is a function of the physical propagation time ,
small topology or conversation endpoint changes can make the gateway completely
shut out telnets (0) or always give them preference (). Section 2.7
describes this in detail.

Phase effects are more common than the example above suggests. When a
deterministic gateway congestion management mechanism is driven by backlog,
phase effects can cause a significant bias. In this paper, we concentrate on traffic
phase effects in networks with Drop Tail gateways and TCP congestion manage-
ment, where each source executes the 4.3BSD TCP congestion control algorithm
(Jacobson, 1988). Section 2.3 demonstrates phase effects in an ISO-IP/TP4 network
using DECbit congestion management (Ramakrishnan and Jain, 1990).

Another type of periodic traffic, rate controlled or real-time sources, exhibits
phase effects similar to those described in this paper. These effects have been
described in the digital teletraffic literature and, more recently, in a general packet-
switching context. One example concerns the periodicity of packetized voice traffic
where each voice source alternates between talk spurts and silences (Ramaswami
and Willinger, 1990). A small random number of packets (mean 22) is transmitted
for each talk spurt and these packets arrive at the multiplexer separated by a fixed
time interval. The packet stream from many conversations is multiplexed on a
slotted channel with a finite buffer. The authors show that when a packet from a
voice spurt encounters a full buffer there is a high probability that the next packet
from that voice spurt also encounters a full buffer. Because packets arriving at a
full buffer are dropped, this results in successive packet losses for a single voice
spurt. In fact, with this model any position-based strategy of dropping packets
results in successive packet losses for one voice spurt (LaTouche, 1989) (LaTouche,
1990). Even though the beginning and endings of talk spurts break up the periodic
pattern of packet drops, the periodic pattern is quickly reestablished. However, a
“random drop” strategy works well in distributing the packet losses across the active
conversations (Ramaswami and Willinger, 1990).

The first half of the paper contains simulations showing a bias due to traffic
phase in networks with Drop Tail gateways, and analyzes this bias. The behavior
in a small, deterministic simulation network is not necessarily characteristic of
behavior in an actual network such as the Internet. The bias from traffic phase

effects can be broken by adding sufficient randomization to the network, either in
the form of random telnet traffic or in the form of random processing time at the
nodes. The first half of the paper shows the success of Random Drop gateways in
eliminating the bias due to traffic phase effects.

We believe that the pattern of bias discussed in this paper is noteworthy because
it could appear in actual networks and because it shows up frequently in network
simulations. Many simulations and measurement studies of networks with Drop
Tail gateways are sensitive to small changes in network parameters. The phase
interaction can be sufficiently large compared to other effects on throughput that
simulations have to be designed with care and interpreted carefully to avoid a phase-
induced bias.

The second half of the paper addresses some of the criticisms of Random Drop
gateways from the literature. TCP/IP networks with either Drop Tail or Random
Drop gateways share a bias against bursty traffic and a bias against connections with
longer roundtrip times. The second half of the paper suggests that the bias against
bursty traffic could be corrected by a gateway that detects incipient congestion, with
the probability of dropping a packet from a particular connection proportional to
that connection’s share of the throughput.

The paper shows that the bias of TCP/IP networks (with either Drop Tail or Ran-
dom Drop gateways) against connections with longer roundtrip times results from
TCP’s window modification algorithm. The second half of the paper investigates
a modification to TCP’s window increase algorithm that eliminates this bias. This
modified window increase algorithm increases each connection’s throughput rate
(in pkts/sec) by a constant amount each second. In contrast, the current TCP win-
dow increase algorithm increases each connection’s window by a constant amount
each roundtrip time.

2 Traffic phase effects

2.1 Simulations of phase effects

This section gives the results of simulations showing the discriminatory behavior of
a network with Drop Tail gateways and TCP congestion control. These simulations
are of the network in Figure 3, with two FTP connections, a Drop Tail gateway
and a shared sink. The roundtrip time for node 2 packets is changed slightly for
each new simulation, while the roundtrip time for node 1 packets is kept constant.
In simulations where the two connections have the same roundtrip time, the two
connections receive equal throughput. However, when the two roundtrip times
differ, the network preferentially drops packets from one of the two connections
and its throughput suffers. This behavior is a function of the relative phase of the

two connections and changes with small changes to the propagation time of any link.
Section 2.5 shows that this preferential behavior is absent in simulations where an
appropriate random component (other than queueing delay) is added to the roundtrip
time for each packet. This preferential behavior is also absent in simulations with
Random Drop instead of Drop Tail gateways.

3

1 2

4

SINK

bandwidth 8000 kbps

bandwidth 800 kbps

GATEWAY

FTP SOURCEFTP SOURCE

d = 5 ms d

d

1,3 2,3

3,4 ~ 100 ms

Figure 3: Simulation network.

Our simulator is a version of the REAL simulator (Keshav, 1988) built on
Columbia’s Nest simulation package (Bacon et al., 1988), with extensive modifi-
cations and bug fixes made by Steven McCanne at LBL. The gateways use FIFO
queueing, and this section’s simulations use Drop Tail on queue overflow. FTP
sources always have a packet to send and always send a maximal-sized packet as
soon as the window allows them to do so. A sink immediately sends an ACK packet
when it receives a data packet.

Source and sink nodes implement a congestion control algorithm similar to that
in 4.3-tahoe BSD TCP (Jacobson, 1988).3 Briefly, there are two phases to the
window-adjustment algorithm. A threshold is set initially to half the receiver’s
advertised window. The connection begins in slow-start phase, and the current
window is doubled each roundtrip time until the window reaches the threshold. Then
the congestion-avoidance phase is entered, and the current window is increased by
roughly one packet each roundtrip time. The window is never allowed to increase to
more than the receiver’s advertised window, which is referred to as the “maximum
window” in this paper.

In 4.3-tahoe BSD TCP, packet loss (a dropped packet) is treated as a “congestion
experienced” signal. The source uses the fast retransmit procedure to discover a
packet loss: if four ACK packets are received acknowledging the same data packet,
the source decides that a packet has been dropped. The source reacts to a packet loss
by setting the threshold to half the current window, decreasing the current window

3Our simulator does not use the 4.3-tahoe TCP code directly but we believe it is functionally

identical.

to one, and entering the slow-start phase. (The source also uses retransmission
timers to detect lost packets. However, for a bulk-data connection a packet loss is
usually detected by the fast retransmit procedure before the retransmission timer
expires.)

Because of the window-increase algorithm, during the slow-start phase the
source node transmits two data packets for every ACK packet received. During
the congestion-avoidance phase the source generally sends one data packet for ev-
ery ACK packet received. If an arriving ACK packet causes the source to increase
the current window by one, then the source responds by sending two data packets
instead of one.

The essential characteristic of the network in Figure 3 is that two fast lines are
feeding into one slower line. Our simulations use 1000-byte FTP packets and 40-
byte ACK packets. The gateway buffer in Figure 3 has a capacity of 15 packets.
With the parameters in Figure 3, with propagation delay 3 4 100 ms., packets
from node 1 have a roundtrip time of 221.44 ms. in the absence of queues. The
gateway takes 10 ms. to transmit an FTP packet on the slow line, so a window of
23 packets is sufficient to “fill the pipe”. (This means that when a connection has
a window greater than 23 packets, there must be at least one packet in the gateway
queue.) This small network is not intended to model realistic network traffic, but is
intended as a simple model exhibiting traffic phase effects.

•••••••••

••

•••

•••••••

•

••

•

•

•

•••

••

••

•

•

•

•
•
••

•

••

•

•

•

•

•

••

•

••

•
•

••

•

•

•

•

••

•

•

•

•
•
•

•

•

••

•

••
•

•

••

•

••

•

•

•

•

••

•

•

••

••

•

••••

•

••

•••••

•••

••

•

•

•••

•
•
•

••

•••••••

•

•••

••

•

•••••

•

••

••••••••

•

•••

••••••

•

••

•••••••

•

•

•

•••••••

•

••

•••••••

•

•

•

••••
•
••

•

••

•••••••

•

••

•••••••

•

••

•••••

••

•

••

•••••••

•

••

•••••••

•
•

round trip time ratio

No
de

 1
 th

ro
ug

hp
ut

 (%
)

1.0 1.2 1.4 1.6 1.8 2.0

0
20

40
60

80
10

0

Figure 4: Node 1 throughput as a function of node 2’s roundtrip time.

The results of simulations where each source has a maximum window of 32
packets are shown in Figure 4. Each source is prepared to use all of the available
bandwidth. Each dot on the graph is the result from one 100 sec. simulation, each
run with a different value for 2 3, the propagation delay on the edge from node 2 to
gateway 3. The x-axis gives the ratio between node 2’s and node 1’s roundtrip time
for each simulation. The y-axis gives node 1’s average throughput for the second
50-second interval in each simulation, measured as the percentage of the maximum
possible throughput through the gateway. For all simulations, steady state was

•••••••••

••
••
••

•••

•••••••

•

••

•

•

•

•••
•

•

••

•

•

•

•
•
••

•

••

•

•

•

•

•

••

•

••

••

••

•

•

•

•

••

•

•

•

•

••
•

•

••

•

••
•

•

••

•

••

•

•

•

•

••

•

•

••

••

•

••••

•

••

•••••

••

•

••

•

•

•••

•••

••

•••••••

•

•

•

••

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•••••••

•

••

•••••

••

•

••

•••••••

•

••

•••••••

•

•

round trip time ratio

No
de

 1
 p

ac
ke

t d
ro

ps
 (%

)

1.0 1.2 1.4 1.6 1.8 2.0

0
20

40
60

80
10

0

Figure 5: Node 1’s share of the packet drops.

reached early in the first 50 seconds. The results for the first 50-second interval in
each simulation differ slightly from Figure 4 because the two connections started
at slightly different times. The results in Figure 4 would be evident even if each
connection had only a few hundred packets to send.

Figure 5 shows node 1’s share of the total packet drops for the second 50-second
interval in each simulation. In some simulations only node 1 packets were dropped
and in other simulations only node 2 packets were dropped. In each 50-second
interval the gateway usually dropped between 20 and 40 packets.

Figures 4 and 5 show that this configuration is highly biased: for most values of
node 2’s link delay, node 1 gets few of the packet drops, and 90% of the available
bandwidth. But some node 2 delay values cause node 1 to receive all of the packet
drops and cause the node 1 bandwidth share to drop to only 10–20%. These node
2 delay values appear to be regularly spaced. As the next section explains in more
detail, this behavior results from the precise timing of the packet arrivals at the
gateway. The gateway takes 10 ms. to transmit one FTP packet, therefore during
congestion packets leave the gateway every 10 ms. The structure in the graph (the
space between the large throughput dips) corresponds to a 10 ms. change in node
2’s roundtrip time.

Figure 6 shows the result of making a small (4%) change in the delay of the
shared link, 3 4. There is still a huge bias but its character has changed completely:
Now Node 2 gets 80–90% of the bandwidth at almost any value of its link delay and
the bandwidth reversal peaks are much narrower (though still spaced at 10ms. in-
tervals). For these simulations, 3 4 has been changed from 100 ms. to 103.5 ms.
This changes node 1’s roundtrip time from 221.44 ms. to 228.44 ms.

In most of the simulations in this paper, the sink sends an ACK packet as soon
as it receives a data packet. For the simulations in Figure 7, a “delayed-ACK” sink
is used, as in current TCP implementations. In other respects, the scenario is the
same as that in Figure 4. A delayed-ACK sink sets a 100 ms. timer when a packet

••

•••••••••

••••••••••

•

•••••••••

•

••••••••

•

••••••••••
•
•••••••••••••••••••

•

•••••••••

•

•••••••••••••••••••

•

•••••••••

•

•••••••••

•

•••••••••

•

•

•

•

•

•
••••

•

round trip time ratio

No
de

 1
 th

ro
ug

hp
ut

 (%
)

1.0 1.1 1.2 1.3 1.4 1.5

0
20

40
60

80
10

0

Figure 6: Node 1’s throughput with a phase shift (3 4 103.5 ms).

••••••••

••

•••••••

••

•••••

•••

•

••
•

•

•

•

•••

•
•

•

•

••
•

••

•

•

•

•

•••

•

•••

•

•

••

••

•

•••

•

•
••
•••••

•

•

•

•

•

••

••

•

•

••
••

••
•

•
•

•••

•

•

••

•

•

•

•

•

•

•
••

•

••

•

•

•

•

••

••

•

•

•

•

•

•••

•

•

•

••

•

•

•

••

•

•

•
•

•

•

round trip time ratio

No
de

 1
 th

ro
ug

hp
ut

 (%
)

1.0 1.1 1.2 1.3 1.4 1.5

0
20

40
60

80
10

0

Figure 7: Node 1’s throughput with a “delayed-ACK” sink.

is received. If a new packet from the same connection arrives at the sink before the
timer expires then an ACK packet is sent immediately acknowledging the packet
with the higher sequence number. Otherwise, the ACK packet is sent when the
100 ms. timer expires. As Figure 7 shows, the discriminatory behavior persists
in simulations with a “delayed-ACK” sink. For the remaining simulations in this
paper, we use sinks that send an ACK packet as soon as they receive a data packet,
because the analysis in this case is more straightforward.

It is not necessary to have large maximum windows or few connections to get
the bias in Figure 4. The pattern of phase effects remains essentially the same in a
simulation with many FTP connections, each with a maximum window of 8 packets.
For all of the simulations in this section, a small change in roundtrip times can result
in a large change in network performance. Section 2.4 shows traffic phase effects in
slightly more complex TCP/IP networks with multiple connections and gateways.

As the simulations in this section show, the pattern of bias does not depend

on a particular choice of window sizes, of roundtrip times, or of sink protocols.
Other simulations show that this pattern of bias does not depend on details of
the TCP transport algorithm; bias due to phase effects is still present with a TCP
implementation where the window is decreased by half rather than decreased to one
after a packet drop, for example. The pattern of segregation requires a network with
a congested gateway that occasionally drops packets and that uses a deterministic
strategy in choosing a packet to drop based only on that packet’s position in the
gateway queue. As section 2.5 shows, this pattern of segregation is likely to be
absent in a network with a strong mix of packet sizes, or with an appropriate random
component (other than queueing delay) added to the roundtrip time for each packet.

2.2 Analysis of phase effects

In this section, we present a model for the timing of packet arrivals at the bottleneck
gateway, define the notion of traffic phase, and describe the pattern of packet arrivals
at the gateway for the network in Figure 3. This description is used to explain the
simulation results in the previous section.

Let packets from node 1 have roundtrip time 1 in the absence of queueing delay.
This means that, in the absence of queues, when node 1 transmits an FTP packet the
ACK packet is received back at node 1 after 1 seconds. For the network in Figure
3, the only nonempty queue is the output queue for the line from gateway 3 to node
4. Assume that the gateway begins transmission of an FTP packet from node 1 at
time . When this FTP packet arrives at the sink, the sink immediately sends an
ACK packet, and when the ACK packet arrives at node 1, node 1 immediately sends
another FTP packet. This new FTP packet arrives at the gateway queue exactly 1

seconds after the old FTP packet left the gateway. (For this discussion, assume that
a packet arrives at the gateway queue when the last bit of a packet arrives at the
gateway, and a packet leaves the gateway when the gateway begins transmission
of the packet.) Thus, in the absence of window decreases, exactly 1 seconds after
a node 1 FTP packet leaves the gateway, another node 1 FTP packet arrives at the
gateway.

Definitions: roundtrip times 1 and 2, bottleneck service time , queue size
, transmission time . Packets from node 1 have roundtrip time 1, and packets

from node 2 have roundtrip time 2, in the absence of queues. The gateway takes
seconds to transmit an FTP packet, and has maximum queue size

. Node 1 and node 2 each take seconds to transmit a packet on the line to the
gateway.

Defining the model: We give a model of gateway behavior for the network in
Figure 3. The model starts with the time when the gateway queue is occasionally
full, but not yet overflowing. Assume that initially the window for each connection
is fixed (this period of fixed windows could be thought of as lasting less than one
roundtrip time) and then each connection is allowed to increase its window at most

once. Assume that the gateway queue is never empty and that all FTP packets are
of the same size. This model is not concerned with how the windows reach their
initial sizes.

The model specifies that a source can only increase its window immediately
after the arrival of an ACK packet. When the source receives this ACK packet, it
immediately transmits an FTP data packet and increases the current window by one.
In a mild abuse of terminology, we say that this FTP packet “increased” the source
window. When the output line becomes free seconds later, the source sends a
second data packet. Without the additional packet, the gateway queue occasionally
would have reached size . Because of the additional packet, the queue at some
point fills, and some packet arrives at a full queue and is dropped. The pattern of
packet arrivals at the gateway determines which packet will be dropped.

Definitions: service intervals, phases 1, 2. Now we describe the timing of
packet arrivals at the gateway. Every seconds the gateway processes a packet
and decrements the output queue by one. (This number equals the size of the
FTP data packet divided by the speed of the output line.) Using queueing theory
terminology, a new service interval begins each time the gateway processes a new
packet. Each time the gateway begins transmitting a packet from node 1, another
FTP packet from node 1 arrives at the gateway exactly 1 seconds later. This new
packet arrives exactly 1 1 mod seconds after the beginning of some service
interval. 4 Similarly, when the gateway transmits a node 2 packet, another node 2
packet arrives at the gateway 2 seconds later, or 2 2 mod seconds after the
beginning of some service interval. The time intervals 1 and 2 give the phases of
the two connections. Notice that if 1 2, then when a node 1 and a node 2 packet
arrive at the gateway in the same service interval, the node 1 packet arrives at the
gateway after the node 2 packet.

This section gives the intuition explaining the behavior of the model; the ap-
pendix contains more formal proofs. The three cases discussed correspond to node
2’s roundtrip time 2 being equal to, slightly less than, or slightly greater than node
1’s roundtrip time 1. Node 1 has the same roundtrip time in all three cases, and the
same value 1 1 mod . However, node 2’s roundtrip time 2 is different in the
three cases, and as a result the value for 2 changes.

Case 1: In this case the two roundtrip times and the two phases are the same. A
new packet arrives at the gateway every seconds. The order of the packet arrivals
depends on the order of the packet departures one roundtrip time earlier. Each new
arrival increases the gateway queue to . The queue is decremented every
seconds, at the end of each service interval. Line D of Figure 8 shows the service
intervals at the gateway. Line C shows the node 1 packets arriving at the gateway,
line B shows node 2 packet arrivals, and line A shows the queue. The x-axis shows
time, and for line A the y-axis shows the queue size.

4 mod is the positive remainder from dividing by .

service intervals

node 2 packet arrivals

node 1 packet arrivals

queue size

b

t 1t 1

t
2

t
2

A.

B.

C.

D.

Figure 8: Phase of packet arrivals at the gateway, for 1 2.

For this informal argument, assume for simplicity that , the time for nodes 1
and 2 to transmit packets on the output line, is zero. When some node increases
its window by one, two packets from that node arrive at the gateway back-to-back.
The second packet arrives at a full queue and is dropped. Thus with the two equal
roundtrip times, after some node increases its window a packet from that node will
be dropped at the gateway.

Case 2: Now consider a network where node 2’s roundtrip time 2 is slightly
smaller than 1. Assume that roundtrip time 2 is smaller than 1 by at least 1 and
by at most , the bottleneck service time. We have two periodic processes with
slightly different periods. The packet arrivals are shown in Figure 9. (The labels
for Line D are explained in the proofs in the appendix.) It is no longer true that
exactly one packet arrives at the gateway in each service interval. In Figure 9, the
packets from node 2 arrive slightly earlier than their arrival time in Figure 8. When
a node 2 packet arrives at the gateway following a node 1 packet, the two packets
arrive in the same service interval.

service intervals

node 2 packet arrivals

node 1 packet arrivals

queue size

b

t 1t 1

t
2

t
2

A.

B.

C.

D. ‘blank’ ‘node 1’ ‘node 2’‘double’ ‘blank’ . . .

Figure 9: Phase of packet arrivals at the gateway, for 2 1.

From Figure 9, in a service interval with both a node 1 and a node 2 packet
arrival, a node 1 packet arrives at time 1, followed at time 2 1 by a node 2
packet. During the period when windows are fixed and the queue occasionally
reaches size , only node 2 packets increase the queue size to . As a result,

regardless of which connection first increases its window, the gateway responds by
dropping a packet from node 2. If node 2 increases its window, the additional node
2 packet arrives to a full queue, and is dropped. If node 1 increases its window, the
additional node 1 packet increases the queue size to . The next node 2 packet
that arrives at the gateway will be dropped. Claim 1 describes this behavior in detail
in the appendix.

Case 3: A similar case occurs if roundtrip time 2 is slightly greater than 1.
Assume that roundtrip time 2 is larger than 1 by at least 1 and by at most
, the bottleneck service time. The packet arrivals are shown in Figure 10. When

a node 1 packet arrives at the gateway after a node 2 packet, both packets arrive
in the same service interval. During the period when windows are fixed and the
queue occasionally reaches size , only node 1 packets cause the gateway queue
to increase to . When some connection’s window is increased, the gateway
always drops a node 1 packet.

service intervals

node 2 packet arrivals

node 1 packet arrivals

queue size

b

t 1t 1

t
2

t
2

A.

B.

C.

D.

Figure 10: Phase of packet arrivals at the gateway, for 2 1.

Thus, with a slight change in node 2’s roundtrip time, the pattern of packet
arrivals at the gateway can change completely. The network can change from
unbiased behavior to always dropping packets from a particular connection. The
pattern of packet arrivals is slightly more complex when 1 and 2 differ by more
than , but the performance results are similar.

Claims 1 through 6 in the appendix describe the behavior of the model when the
two roundtrip times differ by at most , the bottleneck service time, as is discussed
in the Cases 1 through 3 above. There is a range for 2 where the gateway only
drops node 2 packets, followed by a range for 2 where the gateway drops both node
1 and node 2 packets, followed by a range for 2 where the gateway only drops node
1 packets.

Claims 7 through 9 in the appendix describe the pattern of packet drops when
the two roundtrip times differ by more than . For 2 1 , the gateway always
drops a node 1 packet when node 1 increases its window, and for 1 2 ,
the gateway always drops a node 2 packet when node 2 increases its window.

Definitions: drop period. The model that we have described concerns the drop
period in a simulation, the period that begins when the queue first reaches size max

and that ends when one of the connections reduces its window, decreasing the rate
of packets arriving at the gateway. The drop period is similar to the congestion
epoch defined elsewhere (Shenker et al., 1990). If the maximum windows have not
all been reached, then after the queue first reaches size max, it takes at most one
roundtrip time until some node increases its window and some packet is dropped.
It takes one more roundtrip time until the rate of packets arriving at the gateway is
decreased. Therefore, the drop period lasts between one and two roundtrip times.

For the simulations in Figure 4, node 1 packets arrive at the gateway early in
the current service interval, after 0.144 of the current service interval. However,
for the simulations in Figure 6 node 1 packets arrive at the gateway quite late in the
current service interval. In this case, for a wide range of roundtrip times, packets
from node 2 arrive at the gateway earlier in the service interval than node 1 packets,
forcing a disproportionate number of drops for node 1 packets.

For simulations with a “delayed-ACK” sink, the proofs in this section no longer
hold. In this case, the ACK for some packets is delayed at the sink for 100 ms.
For the simulations in Figure 7, this delay happens to be an integer multiple of the
bottleneck time . In these simulations, the use of a “delayed-ACK” sink changes
the exact pattern of packet arrivals at the gateway, but node 1 packets still arrive at
the gateway at a fixed time 1 after the start of some service interval, and node 2
packets still arrive at the gateway at a fixed time 2 after the start of some service
interval. The pattern of segregation is changed slightly with a “delayed-ACK” sink,
but the segregation still varies sharply as a function of the roundtrip times. Traffic
phase effects can still be observed in simulations with a “delayed-ACK” sink where
the delay is not an integer multiple of .

2.3 Phase effects with DECbit congestion avoidance

In this section we demonstrate phase effects in an ISO TP4 network using DECbit
congestion avoidance (Ramakrishnan and Jain, 1990). In the DECbit congestion
avoidance scheme, the gateway uses a congestion-indication bit in packet headers
to provide feedback about congestion in the network. When a packet arrives at the
gateway the gateway calculates the average queue length for the last (busy + idle)
period plus the current busy period. (The gateway is busy when it is transmitting
packets, and idle otherwise.) When the average queue length is greater than one,
then the gateway sets the congestion-indication bit in the packet header of arriving
packets.

The source uses window flow control, and updates its window once every two
roundtrip times. If at least half of the packets in the last window had the congestion
indication bit set, then the window is decreased exponentially. Otherwise, the
window is increased linearly.

Figure 11 shows the results of simulations of the network in Figure 3. Node 2’s

••••••

••••••

•••
•••
•••••••••

•••

•••

••••••••••••••••••

•••

•••

••••••

••
•
••••
••
••
•

•••

•
•
•

••••
••
••
•
•••••••••••••••••

•
•••••••••••

•••••••••••••••••••••
••••

•••••
•••
•••
•
••••
••
•••••••••••

•
••••••••••

••••
•
••
•
•••••
•
••
•
••
••••

•••••••
•
•

•
••••
•
••••••••

•
•••••
••••••••

••
••
•••
•••
•

••
••••••

•
•••••
•••••••

•••

•
•••••••

•
•••••
••••••••••

••••••
•
••
•••••••••••••••••

•••
•••

•
••
•
•
••
••
•

••
•
••
•

••
•
••
•
••••••

••
••••••••••••

•

••
•
••
•

•
•••••••••

•••••
••
••••••••

••••••••••
••
•••••

round trip time ratio

No
de

 1
 th

ro
ug

hp
ut

 (%
)

1.0 1.1 1.2 1.3 1.4 1.5

0
20

40
60

80
10

0

Figure 11: Node 1’s throughput with the DECbit scheme.

roundtrip time is varied by varying 2 3. (The roundtrip time for node 1 packets is
still 221.44 ms.) These simulations use the implementation of the DECbit scheme
in the REAL simulator (Keshav, 1988). Each simulation was run for 200 seconds.
Figure 11 represents each 50-second interval (excluding the first 50-second interval)
by a dot showing node 1’s throughput for that interval. The line shows node 1’s
average throughput.

For the simulations where the two roundtrip times differ by less than the bottle-
neck service time, the total throughput for nodes 1 and 2 is close to 100% of the link
bandwidth. For the simulations where the two roundtrip times differ by more than
the bottleneck service time, the throughput for node 2 is similar to the throughput
for node 1, and the total throughput is roughly 80% of the link bandwidth. In this
case, when the gateway drops packets, it generally drops packets from both node 1
and from node 2.

The traffic phase effects are present in Figure 11 only for those simulations
where node 1 and node 2’s roundtrip times differ by less than 10 ms., the bottleneck
service time. For other roundtrip times with this scenario, the DECbit congestion
avoidance scheme avoids the phase effects in simulations with TCP and Drop Tail
gateways. When the two roundtrip times differ by less than the bottleneck service
time, the network bias is in favor of the connection with the slightly longer roundtrip
time. When node 1 and node 2’s roundtrip times differ by less than the bottleneck
service time and the current windows are both less than the pipe size then node 1
and node 2 packets are not interleaved at the gateway. The gateway transmits a
window of node 1 packets, followed by a window of node 2 packets. In the next
few paragraphs we give some insight into the phase effects exhibited by the DECbit
congestion avoidance scheme under these conditions.

Case 1: Figure 12 shows packet arrivals at the gateway when the roundtrip
times 1 and 2 are equal. Assume that one roundtrip time earlier, the gateway
transmitted a window of two node 1 packets, immediately followed by a window

node 2 packet arrivals

node 1 packet arrivals

queue size

A.

B.

C.

b

1 2

3 4 5

service intervalsb

b

D.

Figure 12: Packet arrivals at the gateway, for 1 2.

of three node 2 packets. (These small window sizes are chosen for illustration
purposes only.) The five packets leave the gateway at regular intervals of seconds,
and one roundtrip time later, assuming that the window has not changed, five more
packets arrive at the gateway at regular intervals of seconds. Line C in Figure
12 shows the node 1 packet arrivals, and line B shows the node 2 packet arrivals.
Packet numbers are shown for each packet. The gateway is idle when packet #1
arrives at the gateway. Packet #1 is immediately serviced, the queue goes to size
one, and the current busy period begins. (In the DECbit algorithm the queue is
considered to be of size one when a packet is being transmitted on the output line.)
The gateway takes seconds to transmit each packet on the output line; Line D
shows these -second service intervals for the five packets. Packets also arrive at
the gateway once every seconds. Line A shows the queue size. For each packet,
the average queue size during the current busy period is 1.

node 2 packet arrivals

node 1 packet arrivals

queue size

A.

B.

C.

b

1 2

3 4 5

service intervalsb

r - r
1 2

D.

b

Figure 13: Packet arrivals at the gateway, 2 1.

Case 2: Figure 13 shows the packet arrivals at the gateway when roundtrip time
2 is less than 1 by at most , the bottleneck service time. Two packets from node

1 arrive at the gateway, followed 1 2 seconds later by the first of three

packets from node 2. For packet #2 and packet #3, the average queue size in the
current busy period is 1. For packet # , for 4, the average queue size is

1 4 1 2

1 1 2
1

The average queue size for the current busy period increases as the packet number
increases.

The gateway decision to set the congestion indication bit for a packet is based
on the average queue size for the last (busy + idle) cycle as well as on the average
queue size for the current busy cycle. If the gateway sets the congestion indication
bit for one packet in a busy cycle, then the gateway will set the congestion indication
bit for all succeeding packets in that busy cycle. Therefore, node 2 packets are more
likely to have the congestion indication bit set than are node 1 packets. As a result,
node 2 is more likely than node 1 to decrease its current window.

It is not our intention in this paper to consider whether these traffic phase effects
are likely to occur in actual networks. Our intention is to show that traffic phase
effects can occur in unexpected ways in packet-switched networks (or in network
simulations) with periodic traffic and a deterministic gateway driven by the gateway
backlog. The phase effects in this section are similar to the unfairness observed in
a testbed running the DECbit congestion scheme with two competing connections
(Wilder et al., 1991).

The behavior with the DECbit congestion scheme in Figure 11 differs from the
behavior with TCP and Drop Tail gateways in Figure 4 in part because the two
schemes use different methods to detect congestion in the network. A TCP/IP
network with Drop Tail gateways detects congestion when a packet is dropped at
the gateway; as this paper shows, this can be sensitive to the exact timing of packet
arrivals at the gateway. A network using the DECbit congestion avoidance scheme
detects congestion by computing an average queue size over some period of time.
This is less sensitive to the exact timing of packet arrivals at the gateway. As
Section 2.6 shows, phase effects are also avoided in simulations using TCP with
Random Drop gateways instead of with Drop Tail gateways. In Section 3.2 we
briefly discuss the performance of TCP/IP networks with Random Early Detection
gateways, which are similar to the gateways in the DECbit scheme in that they
detect congestion by computing the average queue size.

2.4 Phase effects in larger TCP/IP networks

In this section we show that traffic phase effects can still be present in TCP/IP
networks with three or more connections or with multiple gateways. The phase
effects in networks with three or more connections are somewhat more complicated
than the phase effects in networks with only two connections, and we do not attempt
an analysis. In the section we discuss one network with multiple connections and

multiple gateways where a change in propagation delay along one edge of the
network significantly changes the throughput for a connection in a different part of
the network.

1

2

SINK

bandwidth 8000 kbps

bandwidth 800 kbps

FTP SOURCE

FTP SOURCE

d = 5 ms

d

SINK
FTP SOURCE

3

4 5 6 7

8

1,4

2,4

4,5

3,5

5,6 6,7

6,8
d

d d

d

d

= 12 ms

= 5 ms

= 5 ms

= 20 ms = 80 ms

for source 1

for sources 2,3

:

:

GATEWAYS

Figure 14: Simulation network with multiple gateways.

••••••
• •••••• •••••• •••••• ••

••••

••
•••
•

••
••••

•••
•
••

•••••• •••••• •••••• •••••
•

•••••• •••••
•

•
•••
••

••
•

•

••

•
••
••
•

•••
••
•

•••••
•

•••••
•

••••••
••••••

•••
••
•

••••
•
•

•••
••• •••

••
•

••••
••

•
••
•••

•••••
•

••••• •••••• •
•
••••

•••
•••

•••
•••

•
•
••
••

•

•
•••
•

•••
••
•

••
•
•
••

••••
•• •••

•••

•••••
•

••
•••
••

••
••••

•••••
• •

•
•
••
•

•
•
•••

•

•

••
•
••

•
••

••

•

•
•••
••

••
••
•

•••••
• ••••

••
•••
••
•

•
••••
• •

••
•
•
•

••
•
••
•

•
•••
•
•

•

••

•
••

••
•••
•

•••
•••

•

•

• • • •

• • • •
• • • • • •

•
•

•
•

• • •
•

• •

• • • •

• • •
• • •

• •
• •

• •
•

• • •

•

• •

•

• •
•

• • •

• • •
•

• •

node 2/node 1 round trip time ratio

No
de

 3
 th

ro
ug

hp
ut

 (%
)

1.00 1.05 1.10 1.15 1.20

0
20

40
60

80
10

0

Figure 15: Node 3’s throughput as a function of node 2’s roundtrip time.

Figure 14 shows a network with three connections and multiple gateways. Fig-
ure 15 shows the throughput for node 3 as the propagation delay 2 4 is varied,
varying node 2’s roundtrip time. Node 3’s throughput is plotted as a percentage of
the maximum possible throughput through gateway 5. Changing node 2’s roundtrip
time changes the phase of node 2 packet arrivals at gateway 5. This changes the
throughput for node 3 as well as for nodes 1 and 2. The network in Figure 14
exhibits significant traffic phase effects for all three connections.

2.5 Adding telnet traffic

In this section, we explore the extent to which patterns of bias persist in TCP/IP
networks in the presence of (randomly-timed) telnet traffic. For the simulation
network in Figure 16, telnet nodes send fixed-size packets at random intervals
drawn from an exponential distribution. In this section we show that the bias due
to traffic phase effects is strongest when all of the packets in the congested gateway
queue are of the same size. The simulations in this section show that significant bias
remains when roughly 15% of the packets are 1000-byte telnet packets, and also
when roughly 3% of the packets are 40-byte telnet packets. However, when 15% of
the packets are 40-byte telnet packets, the bias due to traffic phase effects is largely
eliminated. This means that traffic phase effects are unlikely to be observed in
networks or simulations with a strong mix of packets sizes through each congested
gateway.

The second half of this secion shows that traffic phase effects are unlikely to
be observed in a network where there is a random component of the roundtrip time
(other than queueing delay) that is often as large as the bottleneck service time.

3

1 2

4

5 6

7 8

9

TELNET FTP FTP TELNET

TELNET

SINK

bandwidth 800 kbps

bandwidth 8000 kbps

bandwidth 8000 kbpsd2,6

Figure 16: Simulation network with telnet and FTP nodes.

Figure 16 shows a simulation network with both FTP and telnet nodes. The
delays on each edge are set so that, in the absence of queues, packets from node 1
have the same roundtrip time as in the network in Figure 3.

Figure 17 shows results from simulations where each telnet node sends on the
average five 1000-byte packets per second. (This is not meant to reflect realistic sizes
for telnet packets, but simply to add a small number of randomly-arriving 1000-byte
packets to the network.) In these simulations, roughly 15% of the packets are from
the telnet nodes. Because the results are not deterministic, for each set of parameters
we show the results from several 50-second periods of a longer simulation. Each
dot gives node 1’s average throughput from one 50-second period of a simulation.

•
•
••••

••
•••
•

••
•••
• •••

•••

•

••
•
••

••
••
••

•

••
•
•
•

••
•
••
•

•
•
•••
•

•

•

•••

•

•
•
••
••

••••
••

•
••
••
•

•
•
•
••
•

••••
•

•

••
••
•
•

•
••
•
••

••
••
••

•
••
••

•

••

••
•• •

••
••
• ••

•••

•

•
••
••
•

•••
••
•

•
••
••
•

••
••
••

••••
•

•
••
••
•
•

••
•••
•

••

••

••

•

•••
••

••
••
••

••
••
•
•

•
•
•••
•

•••
•
•
•

•
••••

•

•••
••
• •••

•••

•••
••
•

•••
••••
•••
••••••
••••
•••
• •

••••
•

•

•

round trip time ratio

No
de

 1
 th

ro
ug

hp
ut

 (%
)

1.00 1.05 1.10

0
20

40
60

80
10

0

Figure 17: Node 1’s throughput, with 1000-byte telnet packets as 15% of packets.

•
•••
•

•
•••
•

•••
••

••••

•
•••
••

•••
••

••
•
•
•

••
••
•

•
••••

•

••
••

•
•
•••

••
••
•

••
•
••

••
•
•
•

•
•
••
•

•••
•
•

••
••
•

•
•••
•

•
••
•
•

•••
•
•

•
••••

••
•
••

•
••
•
•

•••
••

•
••
•• •••••

•

•
••
•

•
••
••

••
•
••

•••
••

•
•
••
•

•

•
••
•

•
•
••
•

••
•

••

••

•••

•
••
••

•
••
••

•
••
•
•

•••
•
•

••••
•••
••••
•
••••
•••• •

•
••
•

round trip time ratio

No
de

 1
 th

ro
ug

hp
ut

 (%
)

1.00 1.05 1.10

0
20

40
60

80
10

0

Figure 18: Node 1’s throughput, with 1000-byte telnet packets as 30% of packets.

The solid line gives the average throughput for node 1, averaged over all of the
simulations. Figure 18 shows results from simulations where roughly 30% of the
packets are from the telnet nodes. As Figure 18 shows, there is still discrimination
for some roundtrip ratios even from simulations where roughly 30% of the packets
through the gateway are 1000-byte telnet packets.

The results are different when each telnet node sends 40-byte packets instead
of 1000-byte packets. When roughly 3% of the packets at the gateway are 40-byte
telnet packets, the pattern of discrimination still holds. However in simulations in
Figure 19 roughly 15% of the packets at the gateway are 40-byte telnet packets, and
the pattern of bias is largely broken.

If all of the packets in the gateway queue are the same size, then the gateway
queue requires the same time to transmit each packet. In this case, given conges-
tion, each FTP packet from node arrives at the gateway at a fixed time mod after
the start of some service interval, for 1 2 . These fixed phase relationships

•

•••
•

•
•

•
••

•

••
•
•

•

••

•

•

••
•
•
•

•••
•

•

•
•••

•

•

•
•
••

•
••
•
•

•
••

••

••
••
•

•

•
•
•
•

•
••

•

•

•
•
•
••

••
••
•

•

••
••

•
•

••
•

•

••
••

••

•

••

•••
••

•

•••
• ••

•
•

•

•••

•

•

••

••
•

••

•
•

•

•
•
•••

••

•

•

•

•
•

•
•
•

••
•
••

•••
••

••
•••

••
•
•• •

••
•
•

••••

•

••
••

•

•
••
••

•
••
•• •••

••

•
•
••
•

•••
••
•••
••••••
•••
•••

•
••
•

•

round trip time ratio

No
de

 1
 th

ro
ug

hp
ut

 (%
)

1.00 1.05 1.10

0
20

40
60

80
10

0

Figure 19: Node 1’s throughput, with 40-byte telnet packets as 15% of packets.

no longer hold when the gateway queue contains packets of different sizes. This
section suggests that phase effects are unlikely to be found in a nondeterministic
network with a strong mix of packet sizes.

The node processing times in the simulations described so far have been deter-
ministic. Each node is charged zero seconds of simulation time for the CPU time
to process each packet. What if each node spends a random time processing each
packet? In this case, the roundtrip time for each packet would have a random com-
ponent apart from time waiting in queues. This helps to break up the fixed pattern
of packet arrivals at the gateway.

In simulations where each source node uses a time uniformly chosen between
zero and half the bottleneck service time to prepare each FTP packet after an ACK
packet is received, the pattern of phase effects is changed somewhat, but is still
present. However, in simulations where each source node uses a time uniformly
chosen between zero and the bottleneck service time to prepare each FTP packet
after an ACK packet is received, the pattern of phase effects is largely eliminated.
In general, when the goal of network simulations is to explore properties of network
behavior unmasked by the specific details of traffic phase effects, a useful technique
is to add a random packet-processing time in the source nodes that ranges from zero
to the bottleneck service time.

As Figure 20 shows, the pattern of discrimination is still present when node 1 and
node 2 each use a time uniformly chosen between 0 and 5 ms., half the bottleneck
service time, to prepare each FTP packet after an ACK packet is received. Figure 21
shows the results of simulations when each source node requires a time uniformly
chosen between 0 and 10 ms., one bottleneck service time, to prepare each FTP
packet. Each packet now arrives at the gateway at a random time with respect to the
start of the current service interval. As Figure 21 shows, the pattern of segregation
is muted. However, in simulations where the two roundtrip times differ by less than
the bottleneck service time the segregation is not completely eliminated. For these

•

•

••

••

••

••
••

•
•
••

••

•
•

••••

•

•
••••••••••••••••••••••

•
•

••••

••••••••••••••••••••••••••••••

•

•

••••••••••••••
••

•

•

•

••
•

•••••

•

•••••

•

••••••
•
•
•

•
•
•

••
•

•
••
••
•••
••••
•••
•••
•••

•
•
••
••

••
•

•
•
•

•
•

•
•

•
•

••

•
•
•

•

•
•
•

•

••••
•••
•

•

••
•

••

••
•••
•
••••
••
••••
•
•

•

••
•••

••
••
•
•

•
•
••
•

•

•
•
•
•••
•
••
•

•
•
••
•
••
•

•

•••
•

•

•
••
•
•
•

••
•
•
••

••

••
•

•

•

••
•
•
•

••
••
••

•

••

••
•

••
••
•

•

•
•

••

•

•

•••
•

•
•

••
•
•
•
•

•
••
••
•

•
•
••
•

•

•
•
••••

•
•
••
••

••
•
•
••

•
•
•
••

•

••
••

••

•

•
•

•

•••
•
•
••
•

•
•

•

••

•

••
•••

•

••••
•
•

•
••

•
••

•

••
•

•
•

•

•••
•
•

••

•
•
•
•

•

•

•

•
•

•

•

•
•

••
•

•••
•
•
•

•
•
••
•

•

•
••
••
•

•••

•••

••

•
••
•

•

•••
•
•

••
•••
•

•

•
•

•

•

•

•
•

•

•
•
•

•

••
••

•
•
•••
••
•
•
•••
•

•
•
••
••

•

•••
•

•

•
•
••
••

••
••
••

•
•••••

•
••
•

••

•
•

•
••
•

•

•••
•

•
•

•
•
•

•
•

•

••
•

•
•

•
••
•
•

•

••
•
•••

•
••

•
•

•

••
•
••
•

•

••••
•

•

••
•
••

•

•••

•

•

•

••
•••

•

•
••
•
•

•
••

••

•

•

••
•
•

•

••
•

••
•

••••
•
•

•

•
•••
•

•
•••
••

••
••
••

•

•
•
•
•
•

•

••••
•

•
••
••
•

•

•

••

••

•
••
••
•

•
•••
•

•

••
••

•

•

•••
•

•
•

•
••
•••

••
•
•••

•

••
••
•

•
•••
•

•

•
••
•

•

•

•
•••
••

•

••

•••

••••

•
•

••
••
•
•

••
••
••

•••
••
•

•

•
•
••

•

••

••
•
•
••
•
•••

•
•

••
•
•

•
••
•

••

••

•••
•
••
••
••

••

•••
•

•
•

•••
•

••

•
•••

•
•

••

••

••
••

•
•
•

•
•
••
••
••
•
••

•

•

round trip time ratio

No
de

 1
 th

ro
ug

hp
ut

 (%
)

1.0 1.1 1.2 1.3 1.4 1.5

0
20

40
60

80
10

0

Figure 20: Node 1’s throughput, with random processing time from 0 to 5 ms.

••
•

•

•

•

•
•

••

••

•

••

•

•
•

•
•
•

••
•

••
•

••
•

•
•
•
••
•

•

••••
•••
•

••••••
•
••

•

••

•

••

•

•
••

•

•

•
•••
•

•

•
•
•

•
•••
••

•
•
•

•

•
•

•

••

••
•••
•••
•
•
••••
•

••

•

•
••

•
•
•
•

••

•
•

•

•
•
•

••

•
•
•
•

••

•

•
•
•
•

•
•

•••

••••

•
•

••
•
•
•
•

••
•

•

•

•

•
••••
•••
•

•

•
•

•••••
•

•

•

•

•
•••
•••
••

••

•

•

•
•
•
•
•
•
••

•
••

•
••••
•••
•
•
••

••
•••
•

••
•
•
••

•

•

•

•••

•••
•
••

•
•

•

••
••
•
•

••
•
••

•

•

•
•
•
•
•

••

•

•

•
•

•••

•

•
•

•

••••
••••

••

•

•

•
•
••
•

•

•

•

•
••

•

•

•

•••

•

•
•

•
•
•
•
••

•
•

•

•
••
••
•
•
•
•

•
•
•

•
••

•

••

•
••

•

•

•

•
•
••••

••

•

••

•
••

•

•

•
•

•
•
•

•
•••
•
•

•
•

•••

•

•
•••
•
•

•
••••

•

•

•
•

•

••

••

•••

•

••

•

••
•

••

•

•

•
•
••
•

•

•

•

•

•••
•
•

•
••
•••

•

•

round trip time ratio

No
de

 1
 th

ro
ug

hp
ut

 (%
)

1.0 1.1 1.2 1.3 1.4 1.5

0
20

40
60

80
10

0

Figure 21: Node 1’s throughput, with random processing time from 0 to 10 ms.

parameters there is little interleaving of node 1 and node 2 packets at the gateway.

2.6 Phase effects and Random Drop gateways

This section shows that Random Drop gateways eliminate the network bias due to
traffic phase effects. With Random Drop gateways, when a packet arrives at the
gateway and the queue is full, the gateway randomly chooses a packet from the
gateway queue to drop. One goal for a randomized gateway is that the probability
that the gateway drops a packet from a particular connection should be proportional
to that connection’s share of the total throughput. As we show in the following
sections, Random Drop gateways do not achieve this goal in all circumstances.
Nevertheless, Random Drop gateways are an easily-implemented, low-overhead,
stateless mechanism that samples over some range of packets in deciding which
packet to drop. The probability that the gateway drops a packet from a particular

connection is proportional to that connection’s share of the packets in the gateway
queue when the queue overflows.

Consider a gateway with a maximum queue of . When a packet arrives
to a full queue, the gateway uses a pseudo-random number generator to choose a
pseudo-random number between 1 and 1. (The pseudo-random numbers
could be chosen in advance.) The gateway drops the th packet in the gateway
queue. Consider a queue that overflows when a node 1 packet arrives at the gateway
immediately following a node 2 packet. With Random Drop gateways, the node
1 packet and the node 2 packet are equally likely to be dropped, along with any
of the other packets in the queue at that time. (A variant not investigated in this
paper is a Random Drop gateway that measures the queue in bytes rather than in
packets. With this variant a packet’s probability of being dropped is proportional
to that packet’s size in bytes.)

•

••
•••
•••
••
•

•
••
•••

•
•••
••
••••
••
•
••
••
•

•••••
•
••
•••

•

••
•••
•

•
•••
••
••••
••

••••
••

•••
••
•

••
•••
•

•
••••
•

••
••
••

•••
•••••••
•
•
••
••••

•
•
••
•
•

••
•
•••

•
••
•
•
•

•

••
•
•
•

•

•
••

••

••
••
•
•

•

••
••
•

•
••
••
•

•
•••
••

•
•
•
••

•

•
•
•
••
•

•

••
•••

••
••
•
•

•

•••
••

••
••
••

••
•
••

•

•
•

•
••

•

••••

••

••
••
••

•••
•

•

•

•
••
•

•
•

•
••
•
••

•

•
•
••
•

••

•••
•

••
•
••
•

••
•
•
•
•

•
••
•
•
•

•••
•

•
•

•

•
•••
•

•

••
•
•
•

•

•
•

••
•

•

••
•
•

•

•
••

••
•

•
••
•
••

•••
••

•

••
•

••
•

•
•••
••

•
•
••

••

•
•
••
•
•

•
••
•

••

••
•

••

•

•
•
••
••

•

•
••
••

•
••
•
••

•••
•

•

•

•

•••

••

•

•
•
•••

•

•
••
•

•

•

•
•
•
••

•
•
••

•
•

•
•
••
••

•

••
•
••

•
••
•

••

•
••
••

•

•••
•
••

••
•
•
•
•

••••
•
•

•
••
•

•
•

••
••
••

•
••••

•

••
•
•••

•

•
••
••

•
••
••
•
•••
••
•

•
••••
•

••
•
••
•

•
•

•••
•

•
•••
•
•

••
•
•
••

••
•
•
•
•

•
•••••

•

•
•
•
••

••
•
••
•

•
•
••
•

•

•••

•
••

•
•
••

••

•
•
••
••

•
••

••
•

••
••
••

••
•
••
•

•

•

•••
•

•
•••
•
•

••
•••
•

•
••
•

•

•

••••

•

•

•

••
•
•
•

••
••
••

•
•
••
••

•

••
•
••

••••••

•
••
••

•

•
••
••
•

•••
•
••

•
•
••
•

•

•
••••
•
•
•••
•
•

•
••
•
•

•

••
••
•
•

•
•••
•

•

••
•
••

•

••
•
•

••

•
••
••
•

••
••
••••
••
••

•
•
•••
•

••

•••
•

•
••
••
•

••••
•

•

•
•
••
•
•

••
•••
•

•
•
•
••
•

•••
••

•

•
•
••

•
•

•
•••
•
•

•

••
••

•

•
••
••

•

•
•

••
•
•

•
••
•
•
•

•
•

••
•

•

••
•
••
•
••
••
••

••••
••

•
••
••
•

round trip time ratio

No
de

 1
 th

ro
ug

hp
ut

 (%
)

1.0 1.1 1.2 1.3 1.4 1.5

0
20

40
60

80
10

0

Figure 22: Node 1’s throughput with Random Drop gateways.

Figure 22 shows the results from simulations using a Random Drop gateway
in the network shown in Figure 3. These simulations differ from the simulations
in Figure 4 only in that the network uses a Random-Drop instead of the Drop-
Tail gateway. In Figure 22, each dot represents the throughput for node 1 in one
50-second interval of simulation. For each node 2 roundtrip time, six 50-second
simulation intervals are shown. The solid line shows the average throughput for
node 1 for each roundtrip time ratio. As Figure 22 shows, Random Drop eliminates
the bias due to traffic phase effects.

For the simulations in Figure 22 there are roughly 30 packet drops in each
50-second interval of simulation. If the queue contains an equal numbers of pack-
ets from node 1 and node 2 each time it overflows, the probability that one node
receives all 30 packet drops is 2 29 (roughly one in a billion). In this case, the statis-
tical nature of the Random Drop algorithm is a good protection against systematic
discrimination against a particular connection.

Random Drop gateways are not the only possible gateway mechanism for cor-
recting the bias caused by traffic phase effects. This pattern of discrimination could
be controlled with Fair Queueing gateways (Demers et al., 1990), for example,
where the gateway maintains separate queues for each connection. However, the
use of randomization allows Random Drop gateways to break up the bias caused
by traffic phase effects with a stateless, low-overhead algorithm that is easily im-
plemented and that scales well to networks with many connections.

The simulations in Figure 22 work well because, for these simulations, the
contents of the gateway queue at overflow are fairly representative of the average
contents of the gateway queue. Nevertheless, it is possible to construct simulations
with Random Drop gateways where this is not the case. In simulations with two
connections with the same roundtrip time and with maximum windows less than the
pipe size, the gateway always transmits a window of node 1 packets followed by a
window of node 2 packets (Shenker et al., 1990). In this case there is no mechanism
to break up clumps of packets, and the contents of the gateway queue at overflow
are seldom representative of the average contents. Thus, the use of randomization
in Random Drop gateways is not sufficiently powerful to break up all patterns of
packet drops.

2.7 Bias against telnet nodes

In this section we examine possible discrimination against telnet nodes in a network
where all connections have the same roundtrip times. We show that discrimination
against telnet nodes is possible in networks with Drop Tail gateways. This discrim-
ination can be affected by small changes in either the phase of the FTP connections
or the maximum queue size at the bottleneck. We show that the use of Random
Drop gateways eliminates discrimination against telnet traffic.

1 4

SINK

bandwidth 8000 kbps

bandwidth 800 kbps

GATEWAY

1

FTP NODES

TELNET

NODE
window = 2window = 4window = 8

2 3 4 5 6 7 8

9

10

delay

d9,10 ~ 50 ms

= 5 ms

Figure 23: Simulation network with FTP and telnet nodes.

The simulation network in Figure 23 has one telnet connection and seven FTP
connections, with maximum windows ranging from 2 to 8 packets. The telnet
connection sends an average of one packet per second, for an average of 50 packets
in 50 seconds of simulation. All connections have the same roundtrip time.

(solid, ‘x’ = random drop; dashed, ‘+’ = drop tail)
max queue size

te
ln

et
 th

ro
ug

hp
ut

 (%
)

5 10 15 20 250.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Figure 24: Telnet throughput in Set A.

(solid, ‘x’ = random drop; dashed, ‘+’ = drop tail)
max queue size

te
ln

et
 th

ro
ug

hp
ut

 (%
)

5 10 15 20 250.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Figure 25: Telnet throughput in Set B.

We compare simulations with Random Drop and with Drop Tail gateways. For
the simulations in Set A in Figure 24, 9 10 50 ms., for a roundtrip time in
the absence of queues of 121.44 ms. For the simulations in Set B in Figure 25,

9 10 53.7 ms. Each set of simulations was run with the maximum queue size
ranging from 5 to 25 packets. For each choice of parameters, three 100-second
simulations were run. Each “ ” or “ ” shows the telnet node’s average throughput
in one 50-second period of simulation. The solid line shows the telnet node’s
average throughput with Random Drop gateways, and the dashed line shows the
results with Drop Tail gateways.

For the simulations in Set A, when the maximum queue is 20 packets the FTP
connections fill but don’t overflow the gateway queue. FTP packets arrive at the
gateway 1.44 ms. after the start of the current service interval, or after 14.4% of
the current service interval has been completed. With Drop Tail gateways, a telnet
packet arriving at the gateway at a random time has an 85.6% chance of arriving
at a full queue and being dropped. For these parameters the telnet node is easily
shut out. When the maximum queue is greater than 20 packets no packets are
dropped and the telnet node’s throughput is limited only by the rate at which telnet
packets are generated. When the maximum queue is less than 20 packets, even for a
fixed set of parameters the throughput for the telnet node can vary widely from one
simulation to the next. In some simulations with Drop Tail gateways, some of the
FTP connections get shut out, allowing the queue to fill up and shutting out the telnet
node. In other simulations, the FTP connections continually adjust their windows
as a result of packet drops and the queue is often not full. In these simulations, the
telnet node’s throughput is relatively high.

For the simulations in Set B, the roundtrip time in the absence of queues is
128.84 ms. and FTP packets arrive at the gateway after 88.4% of the current service
interval has been completed. Even with Drop Tail gateways and a maximum queue
size of 20 packets, randomly-arriving telnet packets have only an 11.6% chance
of arriving at the gateway after some FTP packet and of being dropped. For the
simulations with 9 10 53.7 ms. telnet nodes are never shut out, regardless of the
maximum queue size.

These simulations show that with Drop Tail gateways, it is possible for telnet
nodes to be shut out by FTP connections. This behavior is affected by small changes
in the network parameters, and this behavior can also change drastically from one
simulation to the next, for a fixed set of parameters. The simulation showing
two telnet connections shut out by six FTP connections (Demers et al., 1990), for
example, should be interpreted with this sensitivity to the exact network parameters
in mind.

The throughput for the telnet node is consistently high in all of the simulations
with Random Drop gateways. The randomization in Random Drop gateways is
sufficient to overcome any pattern of discrimination against the telnet nodes.

3 Shared biases of Random Drop and Drop Tail gate-

ways

The first half of this paper showed that networks with Drop Tail gateways can be
sensitive to traffic phase effects, and that these traffic phase effects can be largely
eliminated with Random Drop gateways. The second half of the paper discusses
the bias against bursty traffic and the bias against connections with longer roundtrip

times that are shared by networks with Drop Tail and with Random Drop gate-
ways. The bias against bursty traffic can be eliminated by Random Early Detection
gateways, where the probability that a packet is dropped from a connection is pro-
portional to that connection’s share of the throughput. The bias against connections
with longer roundtrip times can be eliminated by a modified TCP window-increase
algorithm where each connection increases its throughput rate (in pkts/sec) by a
constant amount each second.

3.1 Previous research on Random Drop gateways

The reported benefits of Random Drop gateways over Drop Tail gateways (Hashem,
1989) include fairness to late-starting connections and slightly improved throughput
for connections with longer roundtrip times. In simulations of a network with two
connections, one local and one long-distance, with large maximum windows and
a shared gateway, the long-distance connection receives higher throughput with
Random Drop gateways than with Drop Tail gateways. Nevertheless, in both cases,
the local connection receives higher throughput than the long-distance connection.

The reported shortcomings of the Random Drop algorithm (Hashem, 1989) in-
clude the preferential treatment reported above for connections with shorter roundtrip
times, a higher throughput for connections with larger packet sizes, and a failure to
limit the throughput for connections with aggressive TCP implementations. These
shortcomings are shared by networks with Drop Tail gateways.

Early Random Drop gateways have been investigated as a mechanism for con-
gestion avoidance as well as for congestion control (Hashem, 1989). In that imple-
mentation of Early Random Drop gateways, the gateway drops each packet with
a fixed probability when the queue length exceeds a certain level. Because Early
Random Drop gateways have a broader view of the traffic distribution than do Ran-
dom Drop gateways, Hashem suggests that they have a better chance than Random
Drop gateways of targeting aggressive users. Hashem further suggests that Early
Random Drop gateways might correct the tendency of Drop Tail and Random Drop
gateways of synchronously dropping many connections during congestion. Hashem
recommends additional work on Early Random Drop gateways. The conclusions on
Random Drop gateways are that “In general, ... Random Drop has not performed
much better than the earlier No Gateway Policy (Drop Tail) approach. It is still
vulnerable to the performance biases of TCP/IP networks (Hashem, 1989, p.103).”
We examine these performance biases in more detail in the next two sections.

Zhang uses simulations to evaluate Random Drop gateways (Zhang 1989).
Zhang concludes that Random Drop does not correct Drop Tail’s problem of uneven
throughput given uneven path lengths, and that neither Random Drop nor a version
of Early Random Drop is successful at controlling misbehaving users. Zhang re-
marks that in the simulations, the bias against traffic with longer roundtrip times
results because “after a period of congestion, connections with a shorter path can

reopen the control window more quickly than those with a longer path (Zhang 1989,
p.99).” We examine this problem in Section 3.3.

The Random Drop and the Drop Tail gateway algorithms are compared in a
measurement study of a network with local and long distance traffic, with several
congested gateways (Mankin, 1990). Three topologies are explored, with one, two,
and three congested gateways, respectively. For each topology, there was one longer
connection, and many shorter connections, each with a maximum window of eight
packets. For some of the topologies, the throughput for the longer connection was
better with Random Drop gateways, and for other topologies the throughput was
better with Drop Tail gateways. In both cases, connections with longer roundtrip
times and small windows received a disproportionate number of dropped packets.
As Section 3.2 explains, these results should be interpreted keeping traffic phase
effects in mind. Mankin reports that “Random Drop Congestion Recovery improves
the fairness of homogeneous connections that have the same bottleneck, but beyond
that, it has limited value (Mankin, 1990, p.6).”

The Gateway Congestion Control Survey by the IETF Performance and Con-
gestion Control Working Group (Mankin and Ramakrishnan, 1991) discusses the
research results on Random Drop gateways. The suggestion is that “Random Drop
Congestion Recovery should be avoided unless it is used within a scheme that
groups traffic more or less by roundtrip time (Mankin and Ramakrishnan, 1991,
p.8).” In this paper, we suggest that, in comparison to Drop Tail gateways, Random
Drop gateways offer significant advantages and no significant disadvantages.

Demers et al. briefly compare Fair Queueing gateways with Random Drop
gateways (Demers et al., 1990). They report that Random Drop gateways “greatly
alleviate” the problem of segregation with Drop Tail gateways, but that Random
Drop gateways do not provide fair bandwidth allocation, do not control ill-behaved
sources, and do not provide reduced delay to low-bandwidth conversations. A
comparison of Random Drop gateways with rate-based gateway algorithms such as
Fair Queueing, or an examination of traffic phase effects in Fair Queueing gateways,
is beyond the scope of this paper.

3.2 Bursty traffic

One objection to Random Drop gateways in the literature has been that Random
Drop gateways are biased against connections with longer roundtrip times. As
some of the papers mention, this bias is shared by Drop Tail gateways. This section
examines the bias of Random Drop and of Drop Tail gateways against bursty traffic.
5 The following section examines the bias of the TCP window increase algorithm

5By bursty traffic we mean traffic from connections where the current window is small compared

to the bandwidth-delay product, or connections where the amount of data generated in one roundtrip

time is small compared to the bandwidth-delay product.

against connections with long roundtrip times and large maximum windows.
One reason to examine the bias of Drop Tail gateways against bursty traffic

is that, due in part to traffic phase effects, the bias of Drop Tail gateways can
change significantly with small changes to network parameters. We emphasize
the danger of interpreting results from simulations or measurement studies with
Drop Tail gateways without considering the effect of small changes in the network
parameters on network performance.

The main reason to compare the bias of Drop Tail and of Random Drop gateways
against bursty traffic is that the poor performance of Random Drop gateways for
connections with long roundtrip times has been cited as one reason to avoid the
use of Random Drop gateways with mixed traffic. This section shows that the bias
against bursty traffic is more severe with Drop Tail gateways for some parameters,
and more severe with Random Drop gateways for other parameters. In general,
the bias of Random Drop gateways against bursty traffic is no worse than the bias
of Drop Tail gateways. In either case, this bias occurs because the contents of the
gateway queue when the queue overflows are not necessarily representative of the
average traffic through the queue.

1

SINK

bandwidth 8000 kbps

bandwidth 800 kbps

GATEWAY

FTP SOURCES

2 3 4

5

6

7

d5,6 ~ 450 ms

delay = 100 ms

delay = 5 ms

Figure 26: Simulation network with five FTP connections.

We consider simulations of the network in Figure 26, with a maximum window
of 8 packets for each connection. For a node with maximum window and
roundtrip time , the throughput is limited to packets per second. A node
with a long roundtrip time and a small window receives only a small fraction of
the total throughput. In our configuration, when node 5 has a small window the
packets from node 5 often arrive at the gateway in a loose cluster. (By this, we mean
that considering only node 5 packets, there is one long interarrival time and many
smaller interarrival times.) If the gateway queue is only likely to overflow when
a cluster of node 5 packets arrives at the gateway, then even with Random Drop
gateways node 5 packets have a disproportionate probability of being dropped.

Figures 27 and Figure 28 show the results of simulations for the network with
four short FTP connections and one long FTP connection. The simulations were

(solid, "x" = random drop; dashed, "+" = drop tail)
max queue size

No
de

 5
 th

ro
ug

hp
ut

 (%
)

8 10 12 14 16

0
1

2
3

4
5

6
7

Figure 27: Node 5’s throughput with Set A.

(solid, "x" = random drop; dashed, "+" = drop tail)
max queue size

No
de

 5
 th

ro
ug

hp
ut

 (%
)

8 10 12 14 16

0
1

2
3

4
5

6
7

(solid, "x" = random drop; dashed, "+" = drop tail)
max queue size

No
de

 5
 th

ro
ug

hp
ut

 (%
)

8 10 12 14 16

0
1

2
3

4
5

6
7

Figure 28: Node 5’s throughput with Set B.

run for Drop Tail and for Random Drop gateways, for a range of queue sizes, and
for two slightly different choices for node 5’s roundtrip time. For the simulations
in Set A, 5 6 449 4 ms., and node 5 packets arrive at the gateway at the start of
a service interval. For the simulations in Set B, 5 6 453 ms., and node 5 packets
arrive at the gateway towards the end of a service interval. With Drop Tail gateways
the throughput for node 5 is affected by small changes in phase for node 5 packets;
this is not the case with Random Drop gateways. Node 5’s roundtrip time differs by
less than one bottleneck service time in the two sets of simulations. In both cases,
node 5’s roundtrip time is more than five times larger than the other roundtrip times.

For each set of parameters, the simulation was run for 500 seconds. Each mark
represents one 50-second period, excluding the first 50-second period. The x-axis
shows the queue size, and the y-axis shows node 5’s average throughput. For each
figure, the solid line shows the average throughput with Random Drop gateways
and the dashed line shows the average throughput with Drop Tail gateways.

(‘x’ for random drop, ‘+’ for drop tail)
Node 5 throughput (%)

N
od

e
5

dr
op

s
(%

)

0 5 10 15 20

0
20

40
60

80
10

0

(‘x’ for random drop, ‘+’ for drop tail)
Node 5 throughput (%)

N
od

e
5

dr
op

s
(%

)

0 5 10 15 20

0
20

40
60

80
10

0

Figure 29: Packet drops vs. throughput for node 5, for Sets A and B.

Because the node 5 packets are transmitted in a loose cluster, the queue is more
likely to overflow when it contains packets from node 5. With Random Drop
gateways the node 5 packets have a disproportionate probability of being dropped,
because the queue contents when the queue overflows are not representative of the
average queue contents.

With Drop Tail gateways and a maximum queue greater than 10, the probability
that a node 5 packet arrives to a full queue depends on the precise timing of packet
arrivals at the gateway. For simulations in Set A, because node 5 packets arrive at
the gateway at the start of a service interval, these packets are unlikely to arrive at
a full queue. For simulations in Set B node 5 packets arrive towards the end of the
service interval and are more likely to be dropped. Thus for Drop Tail gateways
node 5 receives better throughput for the simulations in Set A.

Note that with Random Drop gateways, node 5 is never completely shut out.
However, in simulations with Drop Tail gateways and a maximum queue of 10,
node 5 is completely shut out. With this queue size, the gateway queue is full but
not overflowing before packets from node 5 arrive. For Drop Tail simulations in
Set B node 5 packets are always dropped when they arrive at the gateway. For
Drop Tail simulations in Set A the explanation is slightly more complicated, but the
results are similar. In this case, node 5 packets are likely to be dropped when they
arrive at the gateway at a somewhat random time after a timeout.

In general, when running simulations or measurement studies with Drop Tail
gateways in small deterministic networks, it is wise to remember that a small change
in traffic phase or in the level of congestion might result in a large change in the
performance results. Thus, the results in this section are not inconsistent with the
earlier results which show that for a particular network with one congested gateway,
the throughput for the longer connection was higher with Drop Tail gateways than

with Random Drop gateways (Mankin, 1990).
In summary, for some set of parameters Drop Tail gateways give better through-

put for node 5, and for other sets of parameters Random Drop gateways give better
throughput for node 5. The performance problems for nodes with long roundtrip
times and small windows are neither cured, nor significantly worsened, by Random
Drop gateways. Figure 3.2 shows that with both Drop Tail and Random Drop gate-
ways, node 5 receives a disproportionate share of packet drops. The chart on the
left shows the results from the simulations in Set A, and the chart on the right shows
the simulations in Set B. Each mark represents the result from one 50-second sim-
ulation. The x-axis shows node 5’s average throughput (as a percentage of the total
throughput through that gateway) and the y-axis shows node 5’s average number
of packet drops (as a percentage of the total number of packet drops). The dashed
line shows the position of points where node 5’s share of the drops equals node 5’s
share of the throughput. These figures only show those simulations with at least
20 packet drops in a 50-second simulation. Tor the simulations in Set B with Drop
Tail gateways node 5 gets from 1% to 4% of the throughput and up to 100% of the
packet drops. This is unfair behavior by any definition of unfairness.

The throughput for bursty traffic can be improved with gateways such as Random
Early Detection gateways, which detect incipient congestion early and which do
not have a bias against connections with bursty traffic. With our implementation of
Random Early Detection gateways the gateway computes the average size for the
output queue using an exponential weighted moving average. When the average
queue size is less than the minimum threshold, no packets are dropped. When the
average queue size is greater than the maximum threshold, every arriving packet
is dropped, ensuring that the average queue size does not exceed the maximum
threshold. When the average queue size is between the minimum threshold and the
maximum threshold, each arriving packet packet is dropped with probability ,
where is a linear function of the average queue size . (When the average queue
size equals the minimum threshold, is set to zero, and when the average queue
size equals the maximum threshold, is set to 0.1.) In order to avoid dropping two
packets in quick succession, after the gateway drops a packet the gateway waits for
a maximum of 1 and 100 packets before allowing another packet to be dropped.
With a Random Early Detection gateway, a node that transmits packets in a cluster
does not have a disproportionate probability of having a dropped packet.

The result of simulations with Random Early Detection gateways are shown
in Figure 30, with 5 6 450 ms. The x-axis shows the minimum threshold (in
packets) for the Random Early Detection gateway, and the y-axis shows the average
throughput for node 5. The maximum threshold is 5 greater than the minimum
threshold. The throughput for node 5 is close to the maximum possible throughput,
given node 5’s roundtrip time and maximum window. For these simulations, the
maximum queue is 15 packets, as in the simulations with Drop Tail and with Random
Drop gateways. Figure 31 shows node 5’s percentage of the total packet drops,

minimum threshold

No
de

 5
 th

ro
ug

hp
ut

 (%
)

2 4 6 8 10

0
2

4
6

Figure 30: Node 5 throughput with Random Early Detection gateways

Node 5 throughput (%)

N
od

e
5

dr
op

s
(%

)

0 5 10 15 20

0
5

10
15

20

Figure 31: Packet drops vs. throughput for node 5 with Random Early Detection
gateways.

plotted against node 5’s percentage of the total throughput. Node 5 gets from 3% to
7% of the throughput and from zero to 20% of the packet drops. These simulations
suggest that the problems of reduced throughput for connections with long roundtrip
times and small windows could be cured by a gateway where the probability of a
packet drop for a connection is roughly proportional to that connection’s fraction
of the throughput.

3.3 Interactions with window adjustment algorithms

The bias against connections with longer roundtrip times and large maximum win-
dows in networks with TCP congestion control is similar for Drop Tail or for Ran-

dom Drop gateways. This bias results from the TCP window increase algorithm,
not from the gateway packet-dropping algorithm. With the window modification
algorithm in 4.3 BSD TCP, in the absence of congestion each connection increases
its window by one packet each roundtrip time. This algorithm is attractive because
it is simple and time-invariant, but has the result that throughput increases at a faster
rate for connections with a shorter roundtrip time. This results in a bias against con-
nections with longer roundtrip times. This section examines this bias and discusses
possible alternatives to the current window increase algorithm.

This section shows simulations for the configuration in Figure 3 with two FTP
connections and one shared gateway. In these simulations, each source has a maxi-
mum window equal to the bandwidth-delay product. For the simulations, node 1’s
roundtrip time is fixed and node 2’s roundtrip time ranges up to more that eight
times node 1’s roundtrip time. Thus node 2’s maximum window ranges from 22
packets to more than 180 packets. The simulations with Drop Tail gateways are
shown in Figure 32, and the simulations with Random Drop gateways are shown
in Figure 33. The x-axis shows node 2’s roundtrip time as a multiple of node 1’s
roundtrip time. The solid line shows node 1’s average throughput, and the dashed
line shows node 2’s average throughput.

(solid = node 1, dashed = node 2)
round trip time ratio

Th
ro

ug
hp

ut
 (%

)

2 4 6 8

0
20

40
60

80
10

0

Figure 32: Node 1 and node 2 throughput with Drop Tail gateways.

For each cluster of simulations with Drop Tail gateways in Figure 32, we varied
node 2’s roundtrip time over a 10 ms. range to consider phase effects. In these
simulations phase changes significantly affect performance only when node 2’s
roundtrip time is less than twice node 1’s. For simulations with both Drop Tail and
Random Drop gateways, as node 2’s roundtrip time increases node 2’s throughput
decreases significantly. We suggest that this behavior is a result of the TCP window
modification algorithms.

As Figure 34 shows, the performance is not significantly improved by the use
of Random Early Detection gateways. For the simulations with Random Early
Detection gateways, the source and sink nodes use the Fast Recovery algorithm in

(solid = node 1, dashed = node 2)
round trip time ratio

Th
ro

ug
hp

ut
 (%

)

2 4 6 8

0
20

40
60

80
10

0

Figure 33: Node 1 and node 2 throughput with Random Drop gateways.

(solid, ’+’ = node 1, dashed, ’x’ = node 2)
round trip time ratio

Th
ro

ug
hp

ut
 (%

)

2 4 6 8

0
20

40
60

80
10

0

Figure 34: Node 1 and node 2 throughput with Random Early Detection gateways.

4.3-reno BSD TCP (Jacobson, 1990), designed for improved performance over long
high-speed links. With the Fast Recovery algorithm, when a packet is dropped the
current window is effectively cut in half rather than reduced to one. The simulations
in Figure 34 also use Selective Acknowledgement sinks. Each acknowledgement
specifies not only the last sequential packet received for that connection but also
the highest sequence number received, along with a list of the sequence numbers
of the missing packets. For the simulations in Figure 34, the maximum queue is
60 packets, the minimum threshold for the average queue size is 5 packets, and the
maximum threshold is 15 packets. As Figure 34 shows, even with Random Early
Detection gateways and these improvements to TCP there is a strong network bias
in favor of connections with shorter roundtrip times.

For the moment, let denote node ’s average roundtrip time including queueing
delays. In the congestion avoidance phase of TCP, node ’s window is increased by
roughly 1 packet every seconds. Thus, node ’s throughput is increased by 1

(solid, ’+’ = node 1, dashed, ’x’ = node 2)
round trip time ratio

Th
ro

ug
hp

ut
 (%

)

2 4 6 8

0
20

40
60

80
10

0

Figure 35: Node 1 and node 2 throughput with Random Early Detection gateways
and a modified window increase algorithm.

pkts/sec every seconds, or by 1 2 pkts/sec every second. Therefore, after a
packet from node 2 is dropped and node 2’s window is decreased, it takes node 2
significantly longer than node 1 to recover its former throughput rate. This accounts
for the reduced throughput for node 2.

Note that if each node increases its window by 2 packets each roundtrip
time, for some constant , then each node would increase its throughput by pkts/sec
in one second, regardless of roundtrip time. Since each source already has an
estimate for the roundtrip time for each connection, such an algorithm is easily
implemented. Figure 35 shows the results of simulations where each connection
increases its window by 2 2 packets each roundtrip time. These simulations
differ from the simulations in Figure 34 only in the window increase algorithm; in
every other respect the two sets of simulations are the same. These simulations
use Fast Recovery TCP, Selective Acknowledgement sinks, and Random Early
Detection gateways that do not discriminate against bursty traffic. Node 1 and node
2 each receive roughly half of the total throughput, regardless of roundtrip time.
This result is analyzed in more detail elsewhere (Floyd, 1991).

These simulation results are in accord with previous analytical results (Chiu and
Jain, 1989). Chiu and Jain consider linear algorithms for increasing and decreasing
the load, where the load could be considered either as a rate or as a window. They
show that a purely additive increase in the load gives the quickest convergence
to fairness. For the model investigated by Chiu and Jain, this increase occurs at
fixed time intervals. For a network with connections with different roundtrip times,
comparable rates and comparable windows are quite different things. If the fairness
goal is to provide comparable rates for connections with different roundtrip times,
then the quickest convergence to fairness should occur with an additive increase in
the rate for each fixed time interval. This is accomplished if every source increases
its rate by pkts/sec each second, for some constant . This is equivalent to each

connection increasing its window by 2 packets each roundtrip time.
If the fairness goal is to allocate equal network resources to different connections,

a connection traversing congested gateways uses times the resources of one
traversing one gateway. To be ‘fair’, the long connection should get only 1 th the
bandwidth of the short. Thus, different fairness goals would imply different window
increase algorithms. With a window increase of packets each roundtrip time,
for example, each connection increases its window by packets in one second, and
increases its throughput by pkts/sec each second. Fairness goals for connections
with multiple congested gateways are discussed further elsewhere (Floyd, 1991).

There are many open questions concerning alternatives to the TCP window
modification algorithms. If the goal is for each connection to increase its rate
by pkts/sec each second, how do we choose ? What would be the impact of
connections with large maximum windows increasing their window much more
rapidly than they do now? Instead of using the average roundtrip time to calculate
window increases, would it be better to use the average window size, averaged over
a rather long period of time, or some other measure? And the ultimate difficult
question: What is the meaning of “fair”? At the moment, this section is intended
only to suggest that the current network bias in favor of connections with shorter
roundtrip times is a result of the TCP window increase algorithm, and not of the
performance of Random Drop or of Drop Tail gateways.

4 Conclusions

This paper examines traffic phase effects in networks with highly periodic traffic
and deterministic gateways. Because of traffic phase effects, the use of Drop Tail
gateways can result in systematic discrimination against a particular connection.
This performance depends on the phase relationship between connections, and is
therefore sensitive to small changes in the roundtrip times for the connections. The
paper discusses the extent to which this pattern of discrimination can persist in
the presence of random traffic in the network or in the presence of random CPU
processing time.

We do not feel this pattern of discrimination is a significant problem in current
networks (the present NSFNet backbone is too lightly loaded to suffer greatly from
this problem). However, we do believe that this pattern of discrimination is a signif-
icant problem in the interpretation of simulation results or of measurement studies
of networks using Drop Tail gateways. We show that phase-related biases can be
eliminated with the use of appropriate randomization in the gateways. Section 2.5
recommends that when the goal of network simulations is to explore properties of
networks with Drop Tail gateways unmasked by the specific details of traffic phase
effects, a useful technique is to add a random packet-processing time in the source
nodes that ranges from zero to the bottleneck service time.

Random Drop gateways are a stateless, easily-implemented gateway algorithm
that does not depend on the exact pattern of packet arrivals at the gateway. The
use of Random Drop gateways eliminates the pattern of bias due to traffic phase.
Nevertheless, there are several areas in which networks with Random Drop or Drop
Tail gateways both give disappointing performance. This includes a bias against
connections with longer roundtrip times, a bias against bursty traffic, a bias against
traffic with multiple gateways, and an inability to control misbehaving users. We
have discussed several of these biases either in this paper or in another paper (Floyd,
1991). We are aware of no significant disadvantages to Random Drop gateways in
comparison to Drop Tail gateways. This is in contrast to some earlier reports in the
literature (Mankin and Ramakrishnan, 1991).

We show in Section 3.2 that the bias against connections with bursty traffic is
slightly different for Random Drop and for Drop Tail gateways. With Drop Tail
gateways, the performance is sensitive to small changes in traffic phase or in the
level of congestion. Thus in some cases Drop Tail gateways give better performance
for bursty traffic and in other cases Random Drop gateways give better performance.
This is not an argument against Random Drop gateways. Our research suggests that
this bias against connections with bursty traffic can be corrected with gateways such
as Random Early Detection gateways, which provide for congestion avoidance as
well as congestion control.

We suggest in Section 3.3 that the bias against connections with longer roundtrip
times and large windows results from the TCP window increase algorithm. We have
investigated the implications of the bias against traffic with multiple congested gate-
ways (Floyd, 1991). Additional research is necessary to explore possible modifi-
cations of the Random Early Detection gateway to identify misbehaving users. We
believe that Random Early Detection gateways in general are a promising area for
further research.

There are still many open questions. Additional research is needed to evaluate
the implications of the competing goals for network performance. Maximizing
fairness and maximizing total throughput are examples of possibly competing goals.
Given congestion, do we want existing networks to provide the same throughput
for connections with multiple congested gateways as for connections that use only
one congested gateway? What would be the consequences of changing the window
increase algorithm so that connections with longer roundtrip times increased their
throughput at the same rate as connections with shorter roundtrip times? Can we
develop a mechanism for controlling misbehaving users that is easy to implement
and requires low overhead? These questions all require additional research.

This paper has focused on understanding the behavior of existing networks and
network simulations rather than on designing high-speed networks for the future.
Nevertheless, many of the issues discussed in this paper should still be of concern
in future high-speed networks. Such issues include the use of randomization in
gateways to cope with patterns in network traffic, the design of gateways to accom-

modate bursty traffic, and the adaptation of window modification algorithms for
networks containing connections with a broad range of roundtrip times.

5 Acknowledgements

We thank Scott Shenker, Lixia Zhang, Sugih Jamin, Srinivasan Keshav, Steven
McCanne, Chris Torek, and the anonymous referees for helpful comments on this
work. This work would have been impossible without Steven McCanne, who made
the extensive modifications to our simulator.

A Proofs for analysis of phase effects

In this appendix we give proofs for the analysis of phase effects in Section 2.2.
These proofs use the model of packet arrivals at the bottleneck gateway described
in that section.

Assumptions for proofs:
We assume that the transmission time from the sources is less than the bottleneck

transmission time . This is always true when two fast lines feed into a slow line.
For simplicity, we assume that 1 , where 1 is the phase for node 1 packets.

Thus, when node 1 increases its window, both node 1 packets arrive at the gateway
during the same service interval.

For the proofs, we assume that after the gateway queue first reaches size
but before the gateway queue first overflows, at least one node 1 and one node 2
packet arrive at the gateway queue without being dropped. This assumption will
not necessarily be true if either connection is in the slow-start phase of the window
increment algorithm when the gateway queue first reaches size .

Definitions: blank, node 1, node 2, and double service intervals. A node 1
interval is a service interval with only a node 1 packet arrival at the gateway. A
node 2 interval is a service interval with only a node 2 packet arrival. A blank
interval is a service interval with no packet arrivals, and double interval is a service
interval with both node 1 and node 2 packet arrivals. These are shown in Figure 9.

Claim 1 and Corollary 2 prove that for 2 slightly less than 1, after either node
increases its window the gateway drops a packet from node 2. Claim 1 applies
to the simulations in Figure 4 for 0 5 2 3 3 78 (for an 2 1 roundtrip time
ratio between 0.959 and 0.989). Corollary 2 applies to the same simulations for
3 78 2 3 4 28 (for an 2 1 roundtrip time ratio between 0.989 and 0.993).
Figure 36 shows the same data in Figure 4, with a line showing the roundtrip time
ratios covered by each claim below.

* * * * * * * * *

* ** * * * * * * *

* * *

* * * * * * *
*

* *

*

*

*

* * *

* *

* *

*

*

*

*
*

* *

*

* *

*

*

*

*

*

* *

*

* *

* *

* *

*

*

*

*

* *

*

*

*

*
*

*

*

*

* *

*

* *
*

*

* *

*

* *

*

*

*

*

* *
*

*

* *

* *

*

* * * *

*

* *

* * * * *

* * *

* *

*
*

* * *

*
*

*

* *

* * * * * * *

*

* **

**

*

* * * * *

*

* *

** * * * * * *

*

* * *

* * * * * *

*

* *

* * * * * * *

*

*

*

* * * * * * *

*

* *

* * * * * * *

*

*

*

* * * *
*

* *

*

* *

* * * * * * *

*

* *

* * * * * * *

*

* *

* * * * *

* *

*

* *

* * * * * * *

*

* *

* * * * * * *

*
*

round trip time ratio

No
de

 1
thr

ou
gh

pu
t (%

)

1.00 1.05 1.10 1.15 1.20

0
20

40
60

80
10

0

Claims 1,2

Claim 3

4,5,6 7

Claim 9

7

Claim 9

7

Claim 9

Figure 36: Node 1 throughput as a function of node 2’s roundtrip time.

Claim 1 Let 1 2 1 1 . Then after either node 1 or node 2
increases its window, the gateway drops a packet from node 2.

Proof: The phase of packet arrivals is illustrated in Figure 9. In this case,
1 2 . Consider the packet arrivals at the gateway before the gateway

queue overflows. Each service interval is either a blank interval, a node 1 interval,
a node 2 interval, or a double interval. In a double interval, a node 1 packet arrives
at time 1, followed at time 2 1 by a node 2 packet. For each service interval
during which the gateway transmits a node 1 packet, another node 1 packet arrives
at the gateway 1 service intervals later. For each service interval during which
the gateway transmits a node 2 packet, another node 2 packet arrives at the gateway

2 1 1

service intervals later.
Each double or node 2 interval is followed by a node 2 or blank interval. To

prove this, assume for contradiction that some interval containing a node 2 packet
arrival is followed by some interval containing a node 1 packet arrival. Then one
roundtrip earlier, the gateway transmitted a node 1 packet and a node 2 packet at
the same time. This is not possible.

Each blank or node 1 interval is followed by a node 1 or a double interval.
To prove this, assume for contradiction that some interval with no node 2 packet
arrival is followed by some interval with no node 1 packet arrival. Then one
roundtrip earlier, there was a service interval in which no node 1 or node 2 packets
were transmitted. This violates the assumptions of the model.

Thus, following each blank interval, there is a (possibly empty) sequence of
node 1 intervals, followed by a double interval, followed by a (possibly empty)
sequence of node 2 intervals, again followed by a blank interval. For a node 1 or
node 2 interval the overall queue size does not change. However, during a blank

interval the overall queue size decreases, and during a double interval the overall
queue size increases. At the end of each double or node 2 interval, the queue is of
size . Therefore, after each node 2 packet arrival the queue is of size , and
after each node 1 packet arrival the queue is of size 1.

If node 1 increases its window the additional packet increases the queue to size
, because 1 2. When a node 2 packet arrives during the double service

interval the queue is already full, and the gateway drops the node 2 packet.
If node 2 increases its window the queue full when the additional node 2 packet

arrives, because 2 . The gateway drops the additional node 2 packet.

Corollary 2 Let 1 1 2 1 1. Then after either node increases its
window, the gateway drops a packet from node 2.

Proof: The pattern of packet arrivals at the gateway is described in Claim 1.
Because 2, if node 2 increases its window the first node 2 packet arrives
at the gateway in one service interval, and the additional node 2 packet arrives at
the gateway at the start of the following service interval, when the queue is at size

1. This additional node 2 packet increases the queue to size . The next
packet from node 2, possibly arriving many service intervals later, is dropped at the
gateway.

Claim 3 proves that when 1 and 2 are roughly the same, then when some node
increases its window a packet from that node is dropped. Claim 3 applies to the
simulations in Figure 4 for 4 28 2 3 8 78 (for an 2 1 roundtrip time ratio
between 0.993 and 1.034).

Claim 3 Let 1 1 2 1 1 . Then after either node increases its
window, the gateway drops a packet from that node.

Proof: The phase of packet arrivals is shown in Figure 8. In this case, 1 2

. Each service interval is either a node 1 interval or a node 2 interval. Following
the arrival of each packet the queue is at size , and at the end of the service
interval the queue returns to size 1. When some node increases its window,
the additional packet arrives at time after the original packet, and is dropped.

Corollary 4 applies to the simulations in Figure 4 for 8 78 2 3 9 28 (for
an 2 1 roundtrip time ratio between 1.034 and 1.039). For these parameters
Corollary 4 shows that when node 1 increases its window the gateway drops a node
1 packet. When node 2 increases its window the gateway drops the packet following
the pair of node 2 packets. If node 2 packets arrive at the gateway in a cluster, then
in this case the gateway is likely to drop a node 2 packet.

Corollary 4 Let 1 1 2 1 1 . When node 1 increases
its window, the gateway drops a node 1 packet. When node 2 increases its window,

the gateway drops the packet that arrives following the additional node 2 packet.
This packet could be either from node 1 or from node 2.

Proof: In this case, 1 2. When node 2 increases its window, the
two packets arrive at the gateway in different service intervals.

Claim 5 shows that when 2 is slightly greater than 1, when either node increases
its window the gateway drops a node 1 packet. Claim 5 applies to the simulations
in Figure 4 for 9 28 2 3 9 5 (for an 2 1 roundtrip time ratio between 1.039
and 1.041).

Claim 5 Let 1 1 2 1 . Then after either node increases its
window, the gateway drops a node 1 packet.

Proof: The proof for Claim 5 is similar to that of Claim 1 and Corollary 2, and
is omitted.

Corollary 6 applies to the simulations in Figure 4 for 9 5 2 3 10 0, (for an
2 1 roundtrip time ratio between 1.041 and 1.045). Corollary 6 states that if node

1 increases its window the gateway drops a node 1 packet. When node 2 increases
its window, the gateway drops a node 2 packet only if node 2’s window is increased
by a node 2 packet that arrives at the gateway during a double interval.

Corollary 6 Let 1 2 1 . If node 2’s window is increased by a
node 2 packet that arrives at the gateway during a double interval, then the gateway
drops the additional node 2 packet arriving at the gateway. Otherwise, after either
node’s window is increased, the gateway drops a node 1 packet.

Proof: In this case, 1 2 1. The behavior differs from Claim 5 above
only if node 2’s window is increased by a node 2 packet that arrives at the gateway
during a double interval. In this case, the additional node 2 packet arrives at the
gateway after a node 1 packet, when the queue is already at size , and the
additional node 2 packet is dropped.

Claim 7 applies to the simulations in Figure 4 for 9 28 5 2 3 9 5 5 ,
for any nonnegative integer . (This corresponds to an 2 1 roundtrip time ratio
from 1.039 + 0.045* to 1.041 + 0.045* .) For the simulations in Figure 4 for
this range, node 1 generally receives all of the packet drops. Claim 7 states that
if node 1 increases its window, the gateway drops a node 1 packet. If node 2
increases its window, the gateway could drop either a node 1 or a node 2 packet.
Corollary 8 gives a condition that, if satisfied, ensures that the gateway only drops
node 1 packets.

Claim 7 Let 2 1 , and 2 1 . If node 1 increases its window, the
gateway drops a node 1 packet. If node 2’s window is increased by a node 2 packet

that arrives at the gateway during a node 2 interval with a maximum-size queue,
then the gateway drops a node 2 packet. Otherwise, the gateway drops a node 1
packet.

Proof: For some 1,

2 1 1 1 2

By definition 1 1 for some , and each node 1 packet arrives at the
gateway service intervals after some previous node 1 packet was transmitted by
the gateway. Each node 2 packet arrives at the gateway 1 service intervals
after some previous node 2 packet was transmitted by the gateway. Each service
interval containing a node 1 packet arrival is followed 1 intervals later by a service
interval that does not contain a node 2 packet arrival. Similarly, each service interval
that doesn’t contain a node 1 packet arrival is followed 1 intervals later by an
interval that contains a node 2 packet arrival.

Start in one of the first 1 service intervals after the queue first reaches size
, and consider the subsequence that includes that service interval and each suc-

ceeding (i+1)th service interval. We call this a mod(i+1)-subsequence. Within each
mod(i+1)-subsequence, following each blank interval there is a (possibly empty)
sequence of node 2 intervals, followed by a double interval, followed by a (possibly
empty) sequence of node 1 intervals. Each double interval contains a node 2 packet
arrival followed by a node 1 packet arrival.

For each service interval and for each mod(i+1)-subsequence, we say that that
service interval is in either the low part or the high part of that subsequence. We
say that a service interval is in the low part of a subsequence if it occurs on or after
a blank interval in that subsequence and before the following double interval in that
subsequence. Otherwise, the service interval is in the high part of that subsequence.
If some subsequence contains no blank or double intervals, then we will say that all
service intervals lie in the high part of that subsequence. Note that a service interval
can lie in the high part of some subsequences, and in the low part of others.

Each service interval lies in the high part of subsequences for some , for
0 1. If one service interval lies in the high part of subsequences, and
the following service interval lies in the high part of 1 subsequences, then the
second service interval is a double interval, and the queue at the end of the second
service interval is larger than the queue at the end of the first service interval. On
the other hand, if one service interval lies in the high part of subsequences, and
the following service interval lies in the high part of 1 subsequences, then the
second service interval is a blank interval, and the queue at the end of the second
service interval is smaller than the queue at the end of the first service interval. If
two consecutive service intervals both lie in the high part of subsequences for
some , then they have the same queue size.

Assume that some service interval lies in the high part of mod(i+1)-subsequences,
for 1, and that no service interval lies in the high part of 1 mod(i+1)-
subsequences. Then the maximum queue size is reached only during those service
intervals that lie in the high part of mod(i+1)-subsequences. We call these the
maximum service intervals. For each consecutive run of maximum service inter-
vals, the first interval is a double interval, and each succeeding interval is either a
node 2 or a node 1 interval.

If node 1’s window is increased by a node 1 packet that arrives at the gateway
during a maximum service interval, then the queue is at size when the additional
node 1 packet arrives at the gateway, and the gateway drops the additional node 1
packet.

If node 1 or node 2’s window is increased by a packet that arrives at the gateway
during a non-maximum service interval, then the queue size increases by one, and
the gateway drops the node 1 packet that arrives in the first succeeding maximum
service interval.

If node 2’s window is increased by a packet that arrives at the gateway during a
maximum service interval that is also a double interval, then the gateway drops the
node 1 packet arriving in that service interval. If node 2’s is increased by a packet
that arrives during a maximum service interval that is a node 2 interval, then the
gateway drops the additional node 2 packet arriving in that service interval.

Corollary 8 Let 2 1 , and 2 1 , as in Claim 7. If there exists some
service interval that lies in the high part of all 1 1 -subsequences (as
defined in the proof of Claim 7), then when either node increases its window, the
gateway drops a node 1 packet.

Proof: A node 2 interval lies in the low part of the subsequence containing
that service interval. Therefore no node 2 interval lies in the high part of all 1
mod(i+1)-subsequences. From Claim 7, when either node increases its window,
the gateway drops a node 1 packet.

Claim 9 applies to the simulations in Figure 4 for 10 5 5 2 3 13 78 5 ,
for any nonnegative integer . (This corresponds to an 2 1 roundtrip time ratio
from 1.050 + 0.045* to 1.08 + 0.045* .) For the simulations in Figure 4 for this
range, the percentage of packet drops for node 1 ranges from 0% to 50%. Claim 9
states that when node 2 increases its window, the gateway drops a node 2 packet.
When node 1 increases its window, the gateway drops either a node 1 or a node 2
packet.

Claim 9 Let 2 1 , and 1 2 . When node 2 increases its
window the gateway drops a node 2 packet. When node 1 increases its window the
gateway could drop either a node 1 or a node 2 packet.

Proof: We omit this proof, which is similar to that of Claim 7 above.

We use the results above to explain the simulations presented in Section 2.1.
If both roundtrip times are equal and neither node 1 nor node 2 has reached its
maximum window, then both nodes increase their windows in each drop period.
From Claim 3, when some node increases its window, the gateway drops a packet
from that node. In this case the gateway drops a node 1 and a node 2 packet in
each drop period. As a result, node 1 and node 2 each get roughly half of the total
throughput. (This is shown in Figure 4 when the roundtrip time ratio is 1.)

When 1 2 1 1, as in Case 2, Claim 1, and Corollary 2, the
gateway only drops node 2 packets. Even if node 1 and node 2 both increase their
windows during a drop period, for each increase a node 2 packet is dropped. (This
is shown in Figure 4 when 2 ranges from 212.44 ms. to 220 ms., corresponding to
roundtrip ratios from 0.960 to 0.993.)

When 1 1 2 1 , as in Case 3 and Claim 5, the gateway only
drops node 1 packets. This is shown in Figure 4 when 2 ranges roughly from 230
ms. to 230.44 ms. (corresponding to roundtrip ratios from 1.039 to 1.041). Note that
even when only node 1 packets are dropped, node 1’s throughput is still nonzero.
Node 1’s window is allowed to increase each time until the queue overflows and
node 1 packets are dropped.

In the simulations for 2 1 there is a repeating pattern as shown in Figure
4. For each nonnegative integer , for 1 2 1 1 , first there is
a range for 2 in which node 2 packets are dropped in every drop period and node 1
packets might or might not be dropped. This is followed by a range for 2 in which
node 1 packets are dropped in every drop period and node 2 packets might or might
not be dropped. This behavior depends on the phase relationship between node 1
and node 2 packet arrivals. This is explained in Claim 7 and Claim 9.

References

Bacon, D,. Dupuy, A., Schwartz, J., and Yemimi, Y., “Nest: a Network Simulation
and Prototyping Tool”, Proceedings of Winter 1988 Usenix Conference, 1988,
pp. 17-78.

Chiu, D.-M., and Jain, R., “Analysis of the Increase and Decrease Algorithms
for Congestion Avoidance in Computer Networks”, Computer Networks and
ISDN Systems, V. 17, pp. 1-14, 1989.

Demers, A., Keshav, S., and Shenker, S., “Analysis and Simulation of a Fair Queue-
ing Algorithm”, Internetworking: Research and Experience, Vol. 1, 1990, pp.
3-26.

Floyd, S., and Jacobson, V., Traffic Phase Effects in Packet-Switched Gateways,
Computer Communications Review, V.21 N.2, April 1991, pp. 26-42.

Floyd, S., Connections with Multiple Congested Gateways in Packet-Switched Net-
works Part 1: One-way Traffic, Computer Communication Review, V.21 N.5,
October 1991, pp. 30-47.

Hashem, E., “Analysis of random drop for gateway congestion control”, Report
LCS TR-465, Laboratory for Computer Science, MIT, Cambridge, MA, 1989.

Jacobson, V., Congestion Avoidance and Control, Proceedings of SIGCOMM ’88,
August 1988, pp. 314-329.

Jacobson, V., “Berkeley TCP Evolution from 4.3-Tahoe to 4.3-Reno”, Proceedings
of the British Columbia Internet Engineering Task Force, July 1990.

Keshav, S., “REAL: a Network Simulator”, Report 88/472, Computer Science De-
partment, University of California at Berkeley, Berkeley, California, 1988.

LaTouche, Guy, “A Study of Deterministic Cycles in Packet Queues Subject to
Periodic Traffic”, Bellcore Technical Memorandum, 1989.

LaTouche, Guy, “Sample Path Analysis of Packet Queues Subject to Periodic Traf-
fic”, Computer Networks and ISDN Systems, V. 20, pp. 409-413, 1990.

Mankin, A., Random Drop Congestion Control, Proceedings of SIGCOMM 90,
Sept. 1990, pp.1-7.

Mankin, A. and Ramakrishnan, K. K., editors for the IETF Performance and Con-
gestion Control Working Group, “Gateway congestion control survey”, RFC
1254, August 1991.

Ramakrishnan, K.K., and Jain, R., “A Binary Feedback Scheme for Congestion
Avoidance in Computer Networks”, ACM Transactions on Computer Systems,
V.8 N.2, May 1990, pp. 158-181.

Ramaswami, W., and Willinger, W., “Efficient Traffic Performance Strategies for
Packet Multiplexors”, Computer Networks and ISDN Systems, V. 20, pp. 401-
412, 1990.

Shenker, S., Zhang, L., and Clark, D., “Some Observations on the Dynamics of a
Congestion Control Algorithm”, Computer Communication Review, V.20 N.5,
October 1990, pp. 30-39.

Wilder, R., Ramakrishnan, K.K., and Mankin, A., “Dynamics of Congestion Control
and Avoidance in Two-Way Traffic in an OSI Testbed”, Computer Communi-
cation Review, V.21 N.2, April 1991. pp.43-48.

Zhang, L., “A New Architecture for Packet Switching Network Protocols”, MIT
LCS TR-455, Laboratory for Computer Science, Massachusetts Institute of
Technology, August 1989.

