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Abstract—In response to high-profile attacks that ex-
ploit hash function collisions, software vendors have
started to phase out the use of MD5 and SHA-1 in
third-party digital signature applications such as X.509
certificates. However, weak hash constructions continue
to be used in various cryptographic constructions within
mainstream protocols such as TLS, IKE, and SSH, because
practitioners argue that their use in these protocols relies
only on second preimage resistance, and hence is unaf-
fected by collisions. This paper systematically investigates
and debunks this argument.

We identify a new class of transcript collision attacks
on key exchange protocols that rely on efficient collision-
finding algorithms on the underlying hash construc-
tions. We implement and demonstrate concrete credential-
forwarding attacks on TLS 1.2 client authentication, TLS
1.3 server authentication, and TLS channel bindings. We
describe almost-practical impersonation and downgrade
attacks in TLS 1.1, IKEv2 and SSH-2. As far as we know,
these are the first collision-based attacks on the crypto-
graphic constructions used in these popular protocols.

Our practical attacks on TLS were responsibly dis-
closed (under the name SLOTH) and have resulted in
security updates to several TLS libraries. Our analysis
demonstrates the urgent need for disabling all uses of
weak hash functions in mainstream protocols, and our
recommendations have been incorporated in the upcoming
Token Binding and TLS 1.3 protocols.

I. INTRODUCTION

Hash functions, such as MD5 and SHA-1, are widely
used to build authentication and integrity mechanisms
in cryptographic protocols. They are used within public-
key certificates, digital signatures, message authentica-
tion codes (MAC), and key derivation functions (KDF).

However, recent practical attacks on MD5 and almost-
practical attacks on SHA-1 have led researchers and
practitioners to question whether these uses of hash
functions in popular protocols are still secure.

The first collision on MD5 was demonstrated in
2005 [38], and since then, collision-finding algorithms
have gotten much better. Simple MD5 collisions can
now be found in seconds on a standard desktop. In re-
sponse, protocol experts reviewed the use of MD5 in In-
ternet protocols such as Transport Layer Security (TLS)
and IPsec [16], [15], [3]. Despite some disagreement
on the long-term impact of collisions, they concluded
that most uses of hash functions in these protocols
were not affected by collisions. Consequently, MD5
continues to be supported (alongside newer, stronger
hash algorithms) in protocols like TLS and IPsec.

In 2009, an MD5 collision was used to create a
rogue CA certificate [36], hence breaking the security
of certificate-based authentication in many protocols. A
variant of this attack was used by the Flame malware
to disguise itself as a valid Windows Update security
patch [34]. Due to these high-profile attacks, there
is now consensus among certification authorities and
software vendors to stop issuing and accepting new
MD5 certificates. Learning from the MD5 experience,
software vendors are also pro-actively phasing out SHA-
1 certificates, since collisions on SHA-1 are believed to
be almost practical [35].

This leaves open the question of what to do about
other uses of MD5 and SHA-1 in popular crypto-
graphic protocols. Practitioners commonly believe that
collisions only affect non-repudiable signatures (like
certificates), but that signatures and MACs used within
protocols are safe as long as they include unpredictable
contents, such as nonces [16], [15].In these cases,
protocol folklore says that a second preimage attack
would be required to break these protocols, and such
attacks are still considered hard, even for MD5.

Conversely, theoretical cryptographers routinely as-
sume collision-resistance in proofs of security for
these protocols. For example, various recent proofs of

Permission to freely reproduce all or part of this paper for noncommer-
cial purposes is granted provided that copies bear this notice and the
full citation on the first page. Reproduction for commercial purposes
is strictly prohibited without the prior written consent of the Internet
Society, the first-named author (for reproduction of an entire paper
only), and the author’s employer if the paper was prepared within the
scope of employment.
NDSS ’16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23418



TLS [17], [22], [11] assume collision-resistance even
though the most popular hash functions used in TLS
are MD5 and SHA-1. Whom shall we believe? Either it
is the case that cryptographic proofs of these protocols
are based on too-strong (i.e. false) assumptions that
should be weakened, or that practitioners are wrong and
collision resistance is required for protocol security.

This paper seeks to clarify this situation by systemat-
ically investigating the use of hash functions in the key
exchanges underlying various versions of TLS, IPsec,
and SSH. We demonstrate that, contrary to common
belief, collisions can be used to break fundamental secu-
rity guarantees of these protocols. We describe a generic
class of attacks called transcript collision attacks, and
detail concrete instances of these attacks against real-
world applications. In particular, we demonstrate how
a man-in-the-middle attacker can impersonate TLS 1.2
clients, TLS 1.3 servers, and IKEv2 initiators. We also
show how a network attacker can downgrade TLS 1.1
and SSH-2 [39] connections to use weak ciphers. We
implement proofs-of-concept exploit demos for three
of these attacks to demonstrate their practicality, and
provide attack complexities for the others. We believe
that ours are the first hash collision-based attacks on the
cryptographic constructions within these protocols.

We do not claim to have found all transcript col-
lision attacks in these protocols; nor do we think that
our attack implementations are the most efficient. Still,
our results already provide enough evidence for us
to strongly recommend that weak hash functions like
MD5 and SHA-1 should be immediately disabled from
Internet protocols. Partly due to recommendations by
us and other researchers, these hash functions and other
weak constructions based on them have been removed
from the draft version of the TLS 1.3 protocol.

Outline Section II introduces transcript collision at-
tacks on authenticated key exchange protocols. Sec-
tion III outlines the state-of-the-art in collision-finding
algorithms for MD5, SHA-1, and their concatenation.
Section IV describe the TLS protocol, and Section V
describes concrete attacks on various versions of TLS
and three proof-of-concept demos. Section VI describes
concrete attacks on IKE and SSH. Section VII summa-
rizes the impact of our attacks and disclosure status.
Section VIII concludes.

II. TRANSCRIPT COLLISION ATTACKS ON
AUTHENTICATED KEY EXCHANGE

Authenticated Key Exchange (AKE) protocols are
executed between two parties, usually called client and
server or initiator and responder, in order to establish
a shared session key that can be used to encrypt sub-
sequent messages. A typical example is the SIGMA’
protocol depicted in Figure 1. This protocol is a variant

Fig. 1. SIGMA’: A mutually-authenticated key exchange protocol

of the basic SIGMA (sign-and-mac) protocol from [21]
which served as the inspiration for the key exchanges
used in many protocols including IKE, OTR, and JFK.

In SIGMA’, the initiator A first sends a message
m1 to B, consisting of Diffie-Hellman public value gx,
along with some protocol-specific parameters infoA that
may include, for example, a nonce, a protocol version,
a proposed ciphersuite, etc. B responds with a message
m2 containing its own Diffie-Hellman public value gy
and some parameters infoB . A and B have now com-
pleted an anonymous Diffie-Hellman exchange and can
compute the shared secret gxy and use it to derive the
session key. However, before using the session key, they
authenticate each other by exchanging digital signatures
over the protocol transcript hash(m1|m2) using their
long-term signing keys (skA, skB). (Digital signature
algorithms typically hash their arguments before sign-
ing them, and we have chosen to make this hashing
explict in our presentation of SIGMA’.) By signing the
transcript, A and B verify that they agree upon all the
elements of the key exchange, and in particular, that a
network attacker has not tampered with the messages.
Finally, A and B also prove to each other that they know
the session key gxy by exchanging MACs computed
with this key over their own identities.

Like other AKE protocols, SIGMA’ aims to prevent
message tampering, peer impersonation, and session
key leakage, even if the network and other clients and
servers are under the control of the adversary. Formally,
authenticating the transcript guarantees matching con-
versations, that is, that the two parties agree on each
others identity and other important protocol parameters.

Transcript Collision Attacks The alert reader will
notice that SIGMA’ does not in fact guarantee that A
and B agree on the message sequence m1|m2; it only
guarantees that they agree on the hash of this sequence.
What if a network attacker were to tamper with the mes-
sages, so that A and B see different message sequences
but the hashes of the two sequences is the same? In that
case, the protocol will proceed to completion but the
integrity and authentication guarantees no longer hold.

Figure 2 illustrates such an attack. The man-in-the-
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Fig. 2. Man-in-the-middle credential forwarding attack on SIGMA’.
The attacker creates a transcript collision by tampering with the
messages shown in red. At the end of the protocol, the client and
server have seemingly authenticated each other, but the attacker knows
both connection keys, and hence can read or write any data.

middle (MitM) intercepts messages sent between A and
B. It sends its own message m′1 = gx

′ |info′A to B and
it sends it own response m′2 = gy

′ |info′B to A. Suppose
it can choose these messages such that the authenticated
transcripts match:

hash(m1|m′2) = hash(m′1|m2)

We call this a transcript collision. Now, MitM can
simply forward A’s signature over this transcript to B
and vice versa. A and B will accept the signatures
since the hashed transcripts match and the signing keys
are correct. However, the MitM knows the session keys
(gx
′y, gxy

′
) on both connections (since it knows x′, y′).

Hence, the MitM has fully hijacked both connections
and can now send messages to B pretending to be A
and to A pretending to be B. This is an impersonation
attack that breaks peer authentication.

If the boundaries between the messages m1 and m2

are not clearly demarcated, there are a number of trivial
attacks that can ensure that m1|m′2 = m′1|m2 with no
need for hash collisions. In the examples of this paper,
we will assume that each message (and each message
field) is prefixed with its length, so that we can focus
on attacks that rely on weaknesses in the hash function.

A Generic Transcript Collision The main challenge
in implementing the attack in Figure 2 is that the MitM
has to compute the messages m′1 and m′2 after receiving
m1 but before the responder has sent its response m2.
The feasibility of the attack depends on the contents and
formats of these messages.

Suppose the responder B always sends the same
message m2 for every request; that is, it uses the same
(static) Diffie-Hellman value gy and same parameters
infoB . (This situation occurs, for example in protocols
like QUIC, where the server uses a static configuration.)
In that case, after receiving m1, the MitM can compute

a transcript collision by finding x′, y′, info′A, info
′
B such

that hash(m1|m′2) = hash(m′1|m2). The amount of
work required to find such a collision depends on the
hash function. As we will see in the next section, such
collisions require 2N/2 work for hash functions that
produce N bits. Hence, for MD5, such a collision would
require the MitM to compute 264 MD5 hashes, which
may well be achievable by powerful adversaries.

A Chosen-Prefix Transcript Collision We now con-
sider a more efficient attack that works even when
B sends an unpredictable m2 containing a fresh
(ephemeral) Diffie-Hellman value gy and a previously
unknown infoB . However, we assume that the length
of m2 (M ) is fixed and known to MitM. Moreover,
suppose that in the second message of SIGMA’, infoB
is allowed to have arbitrary length and arbitrary con-
tents. That is, even if infoB has junk data at the end,
A will accept the message. Specifically, suppose that
infoB = lenB |dataB where dataB is opaque data that
will be ignored by A. (We will see several examples
of such “collision-friendly” messages in TLS, IKE, and
SSH.) Finally, we assume that the hash function uses the
Merkle-Damgård construction [29], [7], so that it obeys
the length extension property: if hash(x) = hash(y)
then hash(x|z) = hash(y|z). (Strictly speaking, this
property only holds when the lengths of x, y are equal
and a multiple of the hash function block size.)

Under all these conditions, MitM can compute a
transcript collision by finding two collision bitstrings
C1, C2 of L1 and L2 bytes respectively, such that:

hash(m1| [gy
′
|

info′B︷ ︸︸ ︷
len ′B |C1|−]︸ ︷︷ ︸

m′2

) = hash([gx
′
|
info′A︷︸︸︷
C2 ]︸ ︷︷ ︸

m′1

)

where len ′B = L1 +M . Note that we have left empty
space (written −) of size M bytes that still needs to
be filled after C1 in info′B . As we will see in the next
section, this kind of collision is called a chosen-prefix
collision and is typically achievable with far less work
than a generic collision attack. For example, a chosen-
prefix collision in MD5 requires the MitM to compute
about 239 MD5 hashes, which takes only a few CPU
hours.

After receiving m1 from A and computing C1, C2,
MitM now sends m′1 to B. When B responds with m2

(of size M bytes), MitM now stuffs m2 at the end of
info′B (in place of −) and sends m′2 to A. Due to the
length extension property, we have:

hash(m1| [gy
′
|

info′B︷ ︸︸ ︷
len ′B |C1|m2]︸ ︷︷ ︸

m′2

) = hash([gx
′
|
info′A︷︸︸︷
C2 ]︸ ︷︷ ︸

m′1

|m2)
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That is, the MitM has obtained a transcript collision and
the impersonation attack succeeds.

The attack here exploits hash collisions in combi-
nation with flexible protocol-specific message formats,
and as we will see, this is one of the main novel tricks
that we use to mount various attacks in this paper.

Other Transcript Collisions The transcript collisions
described above are not the only attacks possible on
such protocols. In some cases, MitM may not be able
to use its own Diffie-Hellman values gx

′
, gy

′
but it may

still be able to tamper with the protocol parameters (e.g.
ciphersuites) in info′A, info

′
B . In such cases, the MitM

does not have full control over either connection (i.e. it
cannot impersonate A or B) because it does know the
session keys, but it may still be able to downgrade the
protocol parameters to use weak, breakable ciphers.

In other cases, the message format may lend itself to
simpler common-prefix collisions that require even less
work than chosen-prefix collisions. Such collisions on
MD5 can be found in seconds even on standard desk-
tops. In the next section, we will discuss these different
types of collisions in more detail (some technical details
of previous results are given in the Appendix), and in the
remainder of the paper, we will exploit them to mount
transcript collision attacks on real-world protocols.

III. HASH FUNCTION CRYPTANALYSIS

A hash function H : {0, 1}∗ → {0, 1}N maps arbi-
trary length binary strings to strings of N bits. Broadly
speaking, a cryptographic hash function is expected
to behave like a randomly selected function from the
set of all functions from {0, 1}∗ to {0, 1}N ; building
input/output values with specific properties should be as
hard for H as for a random function. More concretely,
a cryptographic hash functions should meet four goals:

1) Preimage resistance: Given a target value H ,
it should be hard to find x such that H(x) = H

2) Second-preimage resistance: Given an input
x, it should be hard to find a second input
x′ 6= x such that H(x′) = H(x)

3) Chosen-prefix collision resistance: Given
prefixes P and P ′, it should be hard to find
a pair of values x, x′ such that H(P ′|x′) =
H(P |x).

4) Collision resistance: For a hash function H , it
should be hard to find a pair of inputs x 6= x′

such that H(x′) = H(x).

The expected security of a hash function is defined
as the complexity of the best generic attack, i.e. the
best attack that works on any hash function, without
using any specific property of the design. For preimages
or second-preimages, the best attack is a brute-force

search: an adversary has to try about 2N random inputs
in order to find a preimage. However, for collisions,
there is a generic attack with complexity 2N/2 because
of the birthday paradox. If an adversary computes the
images of a set of 2N/2 inputs, this defines about 2N
pairs of inputs, and there is a high probability that one
of these pairs is a collision.

Generic collision attacks While a naive collision at-
tack requires to store 2N/2 images of the hash function,
it is possible to mount a parallel and memory-less attack
with a very small overhead [37]. This generic collision
attack is very powerful: it can use meaningful messages,
and can easily be used for chosen-prefix collisions (see
details in Appendix).

Concatenation To strengthen protocols against colli-
sions in any one hash function, it may be tempting to
use a combination of two independent hash functions.
For example, TLS versions up to 1.1 use a concatenation
of MD5 and SHA-1. While the output length of this
construction is 288 bits, it does not offer the security
of a 288-bit hash function. In particular, Joux described
a multi-collision attack that breaks the concatenation
of two hash functions with roughly the same effort as
breaking the strongest one of the two [18].

Shortcut collision attacks In the last decade, hash
function cryptanalysis has been a very active research
area, and more efficient attacks have been discovered on
widely used hash functions. The (estimated) complexity
of the best attacks currently known against MD5 and
SHA-1 are the following:

MD5 Common-prefix collision: 216 [36]
Chosen-prefix collision: 239 [36]

SHA-1 Common-prefix collision: 261 [35]
Chosen-prefix collision: 277 [35]

MD5 |SHA-1 Common-prefix collision: 267 [18]
Chosen-prefix collision: 277 [18]

Shortcut collision attack usually return messages with
random-looking blocks that are not controlled by the
adversary. This makes it harder to use these messages
in a real attack, but we will see that in many cases
we can still have meaningful messages by stuffing the
random blocks in non-significant sections.

Implementation of attacks Since generic collision
attacks can be easily parallelized and require little
memory, they can efficiently be implemented in GPUs.
In particular, an attack against MD5 require 264 com-
putations. This is well within reach for a motivated
adversary: it would cost around $165 000 on Amazon
EC2 (using a spot price of 8 ¢/h for a g2.2xlarge instance
doing 2.5GH/s). Dedicated hardware would be signifi-
cantly more efficient, but require a large investment. As
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a point of comparison, the current Bitcoin network is
able to compute up to 259 SHA-256 hashes per second.

We have implemented this attack against the 96-bit
MAC used for the Finished message of TLS 1.1. Our
demo took 20 days using four Tesla K20Xm GPUs,
which is comparable to the expected time we can derive
from hash function benchmarks.

For a chosen-prefix collision, an important part of
the computation is spend constructed differential paths,
and this is much harder to parallelize on GPU. We
used the HashClash software [33] by Marc Stevens to
perform this computation. Stevens et al.’s estimate that
the chosen-collision attack should require 239 hash com-
putations, or 35 core-hours [36]. In order to build the
collision as fast as possible, we modified the software to
take better advantage of parallelism. The hashclash soft-
ware spends most of its time building differential paths,
with a forward step, a backward step, and a connection
step. We realized that the backward step uses a limited
number of potential starting points, and we precomputed
the results for all possible starting points. In addition,
we merged the forward and connection steps, in order to
avoid the serialization and deserialization of the result.
With these optimisations, we can build a chosen-prefix
collision in one hour with a 48 cores machine, using
a few gigabytes of RAM (the original code required
at least 3 hours). We believe the time can be further
reduced, but this will require a significant rewrite of the
hashclash software to allow parallelism across several
machines, or to rewrite it for GPUs.

IV. THE TLS HANDSHAKE PROTOCOL

The Transport Layer Security protocol (TLS) [8] is
perhaps the most widely used secure channel protocol.
Many versions of TLS are used on the Internet; the latest
released version is TLS 1.2 [8], while TLS 1.3 [9] is
currently undergoing standardization at the IETF.

Figure 3 depicts a typical handshake in TLS (in
versions 1.0 to 1.2). The client first sends a hello
message CH that contains a fresh random client nonce
nc and various protocol parameters exc, including the
protocol version, supported list of ciphersuites, and
various protocol extensions. Each extension is prefixed
by its length and can contain a payload of up to 216

bytes. Notably, the client hello may include extensions
that the server does not understand or support, and the
server will ignore them.

The server responds to the client hello with a series
of messages (from SH to SHD). The server hello SH
contains a fresh server nonce ns and parameters exs,
including the server’s chosen version, ciphersuite, and
protocol extensions. In most ciphersuites, the server then
sends its public-key certificate SC. In Ephemeral Diffie-
Hellman (DHE) ciphersuites, SC is followed by a server

Fig. 3. TLS 1.2: A mutually-authenticated DHE handshake. Fields
shown in red indicate parts of the handshake that can contain arbitrary-
length opaque data (useful for stuffing collision blocks). Handshake
transcripts (log1, log2, log3) refer to the concatenation of all mes-
sages up to (and including) the current one. Messages SCR, CC, CCV are
optional and only appear when client certificate authentication is used.
NPN is optional and only appears when the client and server support
the next-protocol-negotiation extension. The tls-unique channel
binding is a connection identifier that may be used by applications
to bind user authentication tokens, such as cookies and passwords, to
the underlying TLS channel to prevent credential forwarding.

key exchange message SKE that contains an ephemeral
public value gy along with a description of the Diffie-
Hellman group chosen by the server, including the prime
p and generator g. The server signs these values to
protect then from tampering and to prove that it knows
the private key (skS) for the certificate:

sign(skS , hash(nc|ns|p|g|gy))
The signature and hash algorithm used for this signature
is chosen by the server based on its certificate as well
as the supported algorithms indicated by the client
within an optional signature-algorithms extension
in the client hello. In TLS versions before 1.2, the hash
algorithm was fixed to be MD5 |SHA-1 but TLS 1.2
allows clients and servers to choose any hash algorithm
they both support (MD5, SHA-1, SHA-256, etc.) Hence
in TLS 1.2, each digital signature is prefixed with
identifiers for the chosen signature and hash algorithm.

If the server wants the client to authenticate itself
with a public-key certificate, it then sends a certificate
request message SCR indicating the certificate types and
signature algorithms it supports, as well as an optional
list of distinguished names dn for the client certification
authorities that it trusts. As with hello extensions, each
distinguished name can be 216 bytes long and can
contain arbitrary data that the client will ignore if it does
not recognize the name. The server’s message flight then
ends with the server hello done message SHD.

The client then sends its own certificate CC if the
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server asked for it, and its own Diffie-Hellman key
share gx in a client key exchange message CKE. If the
client sent a certificate, it must prove that it knows the
private key skC by sending a client certificate verify
CCV message with a signature over the full message log
up to this point in the protocol:

sign(skC , hash(CH|SH|SC|SKE|SCR|SHD|CC|CKE))︸ ︷︷ ︸
log1

At this point, the client and server both derive a session
master secret ms and authenticated encryption keys
for both directions (k1, k2). The client sends a change
cipher spec message to indicate that the subsequent mes-
sages it sends will be encrypted (with k1.) This message
is not technically part of the handshake protocol and
does not appear in the authenticated transcript, and so
it is not shown in Figure 3.

If the client and server both indicate support for the
next-protocol-negotiation extension [24] in their hello
messages, the client then sends an encrypted extensions
message NPN containing a selected application layer
protocol (e.g. http/1.1 or spdy/3). The protocol
name is ASCII-encoded and then padded to the nearest
multiple of 32 bytes (to avoid leaking information via
the encrypted message length.)

The client then sends an encrypted finished message
CFIN containing a MAC of the full handshake log log2
using the master secret ms . In TLS 1.0 and 1.1, this
MAC is computed using a combination of HMAC-MD5
and HMAC-SHA-1, whereas in TLS 1.2, it uses HMAC-
SHA-256. In all these versions, the result of the MAC
is then truncated to 12 bytes (96 bits):

mac96(ms, hash(CH|SH|SC|SKE|SCR|SHD|CC|CKE|CCV|NPN))︸ ︷︷ ︸
log2

When a server receives CFIN, it verifies that the client
agrees with it on the full message log and on the master
secret. It responds by sending its own change cipher
spec message to turn on encryption and a server finished
message SFIN that contains a 96-bit MAC over the full
handshake log log3 using the master secret ms .

At the end of the handshake, both client and server
have authenticated each other, proved knowledge of the
master secret, and agreed upon the message log. They
can now start encrypting application data to each other
using the connection keys (k1, k2).

In most common TLS usage scenarios, clients are
not authenticated using certificates. The handshake au-
thenticates only the server and the client-side user is
authenticated within the application using a challenge-
response protocol based on a password or some other
bearer token (e.g. HTTP cookie). Such application-level
authentication protocols are known to be vulnerable to

a general class of credential forwarding attacks unless
the application-level credential is channel bound to the
TLS connection (e.g. see [5]. In such attacks, a client
C connects to a malicious server M and authenticates
with some credential over TLS, but M forwards the
authentication message over another TLS channel to S,
thereby logging in as C at S. The attack is prevented if
the authentication protocol embeds a unique identifier
for the underlying TLS channel, so that a message sent
over one channel cannot be forwarded over another. One
such identifier, called tls-unique, defined in [2], uses
the contents of the CFIN message as a unique identifier
for the TLS connection. This tls-unique channel
binding is used by a number of emerging application-
level authentication protocols, such as SCRAM [28],
FIDO [14], and Token Binding [32], specifically to
avoid credential-forwarding attacks.

V. TRANSCRIPT COLLISION ATTACKS ON TLS

As we saw in the previous section, TLS uses a
variety of hash constructions to implement key security
mechanisms like client and server authentication, hand-
shake integrity, and channel binding. We now demon-
strate weaknesses in these constructions and show how
they can be exploited to mount practical transcript
collision attacks on real-world clients and servers.

A. Breaking TLS 1.2 Client Authentication
using a Chosen-Prefix Transcript Collision

Suppose a client C uses the same certificate to
connect to two different servers A and S. We show that
if A is malicious, it can force C to create a signature
(in CCV) that A can use to impersonate C at S, as
depicted in Figure 4. Here, A acts as a man-in-the-
middle between C and S. Note, however, that A uses
its own certificate certa and does not rely on knowing
any long-term secrets belonging to C or S.

Recall that the client signs the transcript hash(logc1);
so the key idea of the attack is to compute a collision
between this client-side transcript and the server-side
transcript hash(logs1), even though the two connections
see different message sequences. When the MitM A
receives a client hello from C, it responds with its
own hello SH′, certificate SC′, key exchange SKE′. It
then initiates a connection with the server S by sending
a carefully crafted client hello CH′. A now runs both
connections in parallel. It will receive a hello SH, certifi-
cate SC, key exchange SKE, and certificate request SCR
from S. We assume that the length of these messages
SH|SC|SKE|SCR is fixed (=M ) and is known in advance.

Note that A needs to choose CH′ before it receives
any messages from S. A can compute CH′ and SCR′ as
follows. A uses a chosen-prefix collision to find two bit-
strings (C1, C2) of length L1 and L2 bytes respectively
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Fig. 4. Man-in-the-middle client signature forwarding attack on TLS
1.2. The client C connects to a malicious server A and offers to
authenticate with its certificate certC . The attacker A computes a
chosen-prefix collision on the client signature transcript hash(log1),
and uses it to impersonate the client at a different server S. Messages
that the attacker controls are labeled in red. A sends a bogus Diffie-
Hellman group (k2 − k, k) to C; we use k = g here for simplicity.

such that C1 appears within the last distinguished name
dn′ in SCR′ and C2 appears within the last extension
ex′c in CH′:

hash(CH|SH′|SC′|SKE′|SCR′(C1|−︸ ︷︷ ︸
dn′

))
= hash(CH′(nc, C2︸︷︷︸

ex′c

))

Furthermore, we set the length of dn′ in SCR′ to be
L1 +M , so that it still has M bytes (denoted by −)
that need to be filled in after C1.

Now, A sends CH′ to S, receives SH|SC|SKE|SCR in
response, and stuffs these messages into the remaining
M bytes in SCR′ and sends it to C. At this point the
hash of the message transcripts in the two connections
coincide, assuming that the hash function satisfies the
length extension property:

hash(CH|SH|SC′|SKE′|SCR′(C1|SH|SC|SKE|SCR︸ ︷︷ ︸
dn′

))

= hash(CH′(nc, C2︸︷︷︸
ex′c

)|SH|SC|SKE|SCR)

From this message onwards, the hash of the handshake
log in both connections will remain the same. A then
forwards the sever hello done SHD to C. In response,
C sends a certificate CC, a key exchange CKE, and
a certificate verify CCV that contains a signature over
the transcript hash(logc1) which is now the same as

hash(logs1). A simply forwards these messages to S,
pretending to be C, and S accepts these messages.

Controlling the master secret Even though S has
accept C’s certificate on its connection with A, A
cannot complete the connection unless it knows the
master secret on its connection with S. The master
secret is computed from gxy so A needs to know the
x corresponding the gx that C sent in its key exchange
message CKE. In order to accomplish this task, we rely
on a key forcing attack in the DHE handshake.

When A sends SKE′ to C, it does not send a
valid Diffie-Hellman group (p, g). Instead, it chooses an
arbitrary public value k = gx

′
and sets p = k2 − k and

g = k. This p value is clearly not a prime, and it has the
property that no matter what private value x is generated
by C, we will have gx mod p = k. Hence, by choosing
such a bogus Diffie-Hellman group, A can force C to
send a CKE with a public value that it controls.

To complete the attack, we assume that S always
uses the same Diffie-Hellman group (p, g). A chooses
some x′ and sets k = gx

′
mod p. It then sends SKE′

to C with the bogus group (k2 − k, k) and the public
value k. Now, the CKE sent by C will contain k, and A
will forward it to S. A will then forward C’s signature
CCV as usual. The master secret between A and S will
be derived from gx

′y mod p, but A knows x′ and hence
can compute this value. Consequently, A can complete
the handshake and impersonate C at S.

We observe that the attack here relies on the client
not validating the Diffie-Hellman groups it receives
from the server. From our experiments, we find that
most TLS libraries do not validate the groups they
receive in the server key exchange, probably because
checking for primality is expensive. In some libraries,
the value k2−k is rejected because it is an even number.
In those cases, we find that we can use p = k2− 1 and
with 50% probability, the client will compute gx = k,
allowing the attack to succeed. This weakness in TLS-
DHE has been noted before [6] and a new protocol
extension aims to fix it by allowing only well-known
Diffie-Hellman groups [12]. However, an optional ex-
tension cannot prevent our attack scenario, since A
could always pretend to not support the extension and
mount the attack anyway.

Note that the attack only relies on DHE between
C and A; the connection between A and S can use
ECDHE or RSA and the attack would still work. In
other words, such transcript collisions can also be used
to mount cross-protocol attacks in the sense of [26].

Attack Complexity The transcript collision attack
requires A to compute a chosen-prefix collision for
the hash function used in the client signature. In TLS
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versions before 1.2, the default hash function is a
concatenation of MD5 and SHA-1 and hence requires
computing 277 MD5 and SHA-1 hashes. In TLS 1.2,
if the signature uses SHA-1, the cost is 277 hashes.
Remarkably, TLS 1.2 also allows RSA-MD5 signatures,
and for such signatures, the cost of the collision is
only 239 MD5 hashes. Below, we describe our proof-
of-concept implementation that relies on RSA-MD5.

Note that these cost estimates are per-connection be-
cause the collision needs to be computed once for each
client nonce nc. Usually, these nonces are generated
with a strong random number generator. However, in
some cases the client random can become predictable
due to implementation bugs (e.g. see CVE-2015-0285
in OpenSSL). We also observe that it is commonly
believed that these nonces only need to be unique, not
unpredictable. For example, the OpenSSL library uses
RAND_pseudo_bytes to generate the client and server
random, whereas it uses RAND_bytes to generate other
key material; the former succeeds even when there is
not enough entropy in the system. If the client nonce
were predictable, or if it were to be repeated with
high frequency, the collision can be computed offline at
leisure, making SHA-1 collisions almost feasible. Even
though our attack below does not rely on predictable
nonces, it offers yet another justification for the need
for strongly random nonces in TLS.

Implementing a Proof-Of-Concept To implement the
attack, we need a client that is willing to sign with
RSA-MD5 and a server that is willing to accept such
signatures. We found a number of TLS libraries that
support RSA-MD5 client signatures, including certain
versions of OpenSSL, GnuTLS, Oracle and IBM Java,
and BouncyCastle. (See Section VII for more details.)
In particular, all major Java web application servers and
the default TLS servers on Red Hat Enterprise Linux (6
and 7) accept RSA-MD5 signatures.

For our demo, we set up a man-in-the-middle attack
between a standard Java HTTPS client and a Java
HTTPS server (with default configurations.) The MitM
implements Figure 4. In order to setup the collision
while preserving the TLS message formats, the attacker
needs to carefully set the length fields in various places
in CH′ and SCR′. For example, in CH′ it needs to set
consistent lengths for the full hello message, for the
extensions field, and for the last extension. Furthermore,
the MitM needs to make sure that the two prefixes have
a length that is a multiple of the MD5 block size (512
bits). To achieve this, we fill up the last extension in
CH′ and the last distinguished name in SCR′ with enough
zero bytes until the prefixes are block-aligned.

As explained in Section III, the chosen-prefix col-
lision can be be computed in one hour on a 48 core
workstation using a modified version of the hashclash

software [33]. In our demo, A accepts the client hello
and then keeps the client-side TLS connection alive
until a collision has been found. Most TLS connections
can be kept alive by sending regular warning alerts;
Java clients are willing to keep the connection open
indefinitely. Keeping the client waiting for an hour is not
always practical, but we note that some unsupervised
TLS clients (such as git) are used to perform long-
running connections to web APIs, and long connection
times may not be noticed. In any case, the collision
search scales well with computational power and can
be significantly sped up by a powerful adversary.

Once the collision has been found, A connects to S
to completes the attack and is able to impersonate C
at S and read and write data that only C should have
access to. Hence, the demo shows that A is able to
break TLS 1.2 client authentication between mainstream
TLS clients and servers. The precise handshake traces
exhibiting the collision are available from our website.

B. Breaking TLS 1.2 Server Authentication
using a Generic Transcript Collision

The key to our attack above on TLS 1.2 client
authentication is that the client is willing to sign the hash
of the full message log, and the format of various TLS
messages is flexible enough to allow the attacker to stuff
meaningless collision blocks and server-side messages
into them. A similar chosen-prefix transcript collision
attack would not work on TLS 1.2 server authentication
because the server signature transcript does not contain
flexible-size elements.

In DHE handshakes, the signature covers only the
client and server nonces and the server’s Diffie-Hellman
key share: sign(skS , hash(nc|ns|p|g|gy)). So, the only
part of the signed value that the attacker may control
is the client nonce nc which is fixed-length (32 bytes),
half the size of one MD5 block.

This prevents the use of shortcut collision attacks
against MD5, but generic attacks based on the small
128-bit MD5 hash length are still possible, and not too
far from being practical.

Collecting and storing signatures. To mount a tran-
script collision attack on TLS 1.2 server authentication,
an attacker first has to collect a large number, say
2x, of RSA-MD5 signatures signed by the server. The
attacker may do this by passively observing RSA-MD5
connections to the server, but since such connections
may be rare, it may have to actively connect to the
server to obtain a sufficient number of signatures. Once
these signatures (and the corresponding hashes) have
been collected and stored, the attacker can impersonate
the server to any client.
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Upon receiving a client hello message including
the client nonce nc, the attacker chooses a DH secret
y′ and computes the MD5 hashes of the transcripts
nc|ns|p|g|gy

′
for a series of random server nonces

ns, until the hash matches a value that was collected
previously. Finding this collision requires the attacker
to compute about 2128−x MD5 hashes and then look
them up in the stored signature database. When a
match is found, the stored signature can be used by
the attacker to forge the server’s SKE message for the
current connection, and hence impersonate the server.

The complexity of this attack on TLS 1.2 server
authentication is therefore 2128−x MD5 hashes per
connection, in addition to 2x connections performed
before-hand, and 2x storage. The attacker can trade-off
between these costs—the more signatures he can collect,
the less he has to compute per connection. For example,
if it is feasible to collect, store, and search through 264

signatures, then the per-connection cost is 264 hashes.
Although we have described the attack in terms of MD5,
a similar but more expensive attack can be mounted
on RSA-SHA1 server signatures, which would require
2160−x computation per-connection.

Practical Impact of the Attack. Both the precompu-
tation and per-connection cost of the attack is currently
out of reach for academic researchers, but might be
within the capabilities of well-resourced adversaries.

A prerequisite for the attack is to find servers that
would be willing to sign their SKE messages with
RSA-MD5. Internet-wide scans show that about 31%
of the Alexa top 1 million websites support RSA-
MD5 signatures.1 This subset includes popular websites
hosted by Akamai, such as microsoft.com.

A second question is whether TLS clients would ac-
cept RSA-MD5 signatures. Most popular web browsers
and TLS libraries do not offer RSA-MD5 as one of
the supported signature algorithm in the client hello.
This might lead one to believe that they would not
accept RSA-MD5 server signatures. However, we found
and reported security bugs in NSS (the library used
by Firefox and some versions of Chrome), GnuTLS
(used in curl and git), and BouncyCastle; these libraries
(and applications that rely on them) incorrectly accept
RSA-MD5 signatures even if they have been explicitly
disabled. For example, Firefox will accept an RSA-MD5
signature from a website, even though it is not supposed
to. Furthermore, other TLS libraries such as versions of
OpenSSL (up to version 1.0.1e), mbedTLS, and Java
routinely offer and accept RSA-MD5 signatures.

Conseqently, if an attacker has the resources to
achieve the server impersonation attack, a large number

1https://securitypitfalls.wordpress.com/2015/12/07/november-
2015-scan-results/

Fig. 5. TLS 1.3: A server-authenticated 1-RTT (EC)DHE handshake
based on draft 10 of the specification. The client and server send their
key shares within the hello messages and all subsequent handshake
messages are encrypted. The server signs the current handshake
transcript hash(log2) in a new SCV message.

of TLS clients would be affected. To err on the safe side,
we recommend that TLS libraries should immediately
disable all MD5-based signatures.

Exploiting predictable nonces and keys. We observe
that the precomputation in the above attack can be
avoided if the server uses a predictable nonce ns and
predictable DH parameters p, g, gy . In this case, the
attacker only has to perform 264 computations online.
How realistic is this assumption? Many TLS imple-
mentations allow DH keys to be reused; in OpenSSL,
for example, keys are reused by default unless the
application sets the SSL_OP_SINGLE_DH_USE flag. For
such servers, the parameters are clearly predictable.

That leaves the server nonce, and as we noted for
clients, a bug in the use of the random number gen-
erator could lead to predictable nonces. Alternatively,
the server may support a recent TLS variant called
Snap-Start [23] that allows the client (and hence the
attacker) to choose the server nonce. That said, we do
not know of any deployed TLS 1.2 implementation that
uses predictable nonces, but this section serves as a
warning to implementors that strongly random nonces
are needed in TLS, and not just for preventing replays.

C. Breaking TLS 1.3 Client and Server Authentication
using a Chosen-Prefix Transcript Collision

From the viewpoint of transcript collisions, TLS 1.2
server signatures may seem stronger than client signa-
tures, but not signing enough leads to other security
problems. For example, the server becomes vulnerable
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to cross-protocol attacks [26] and to downgrade attacks
like Logjam [1]. In response to such attacks, the new
design of TLS 1.3 requires the server to sign the full
handshake log, including the negotiated parameters.

Figure 5 illustrates the standard one-round-trip (1-
RTT) message flow in the current draft (version 10) of
the TLS 1.3 specification. In comparison to TLS 1.2,
this protocol flips the order in which the DH key shares
are sent, so that the handshake can complete in one
round trip. The key shares are sent within extensions
in the hello messages CH and SH. The server no longer
sends an SKE message. Instead, it sends a new server
certificate verify message SCV just before the finished
message. The SCV contains a signature over the hash
of the full message log up to this point (log2). Another
departure from TLS 1.2 is that all handshake messages
after SH are encrypted, in order to protect the privacy of
the client and server certificates from passive attackers.

We demonstrate a chosen-prefix transcript collision
on TLS 1.3 that breaks both client and server signatures,
enabling a full man-in-the-middle attack on the protocol.
The attack is similar in spirit to the one on TLS 1.2
client signatures; we use the flexible formats of the
client and server hello messages to create a trascript
collision immediately after the server hello SH.

The client C wants to connect to S, but its mes-
sages are intercepted by a network attacker A. After
A receives the client’s CH, it sends its own CH′ to
the server, receives the servers SH, and sends its own
SH′ to the client. A now knows the Diffie-Hellman
shared secrets on both connections, and it has chosen
CH′ and SH′ such that hash(CH|SH′) = hash(CH′|SH).
Consequently, A can now simply forward all hanshake
messages between C and S, and both client and server
authentication will succeed. A will need to decrypt and
reencrypt these messages, but it can do so because it
knows the encryption keys on both connections. More
importantly, once the handshake is complete, A can read
and tamper with application data in both directions.

To compute CH′ and SH′, A needs to find a chosen-
prefix collision C1, C2 of length L1 and L2 bytes re-
spectively such that C1 appears within the last extension
of of SH′ and C2 appears as the last extension of CH′:

hash(CH|SH′(ns, gy
′
, C1|−︸ ︷︷ ︸

ex′s

)) = hash(CH′(nc, g
x′ , C2︸︷︷︸

ex′c

))

Suppose we know that the server S will respond to
CH′ with a server hello message SH of known length
M . Then in SH′, we set the length of ex′s to L1 +M
so that there is room for M more bytes after C1.
Once A receives SH from S, it stuffs this message
within this extra space in SH′ and sends it to C. Hence,
after the server hello, the handshake transcripts at the
client and server have the same hash. Moreover, due to

the length extension property of the hash function, all
subsequent handshake hashes collide. So, A can forward
S’s signature in SCV to C and C’s signature in CCV to
S, and both will be accepted, even though the DH keys
have been tampered with by a man-in-the-middle.

Implementing a Proof-Of-Concept Up to draft 7,
the TLS 1.3 specification explicitly allowed RSA-MD5
signatures. We wrote a proof-of-concept attack demo
based on our own simple prototype implementation
of TLS 1.3 that signs with RSA-MD5. As with TLS
1.2 client authentication, we found the chosen-prefix
collision in roughly one hour on a single workstation.

As we observed when discussing TLS 1.2, a large
number of TLS servers and clients support RSA-MD5
signatures. Consequently, we believe that if TLS 1.3
draft 7 were to be implemented today, it is quite likely
that many of its clients and servers would be vulnerable
to our man-in-the-middle attack. However, this attack
vector was removed from TLS 1.3, at least partly due
to our findings, when draft 8 of the protocol explicitly
deprecated MD5-based signatures.

D. Downgrading TLS 1.0-1.1 to Weak Ciphersuites
using a Chosen-Prefix Transcript Collision

In TLS, the integrity of the handshake depends
upon the MACs exchanged in the Finished messages. If
these MACs were broken, the attacker would be free to
modify the hello messages to downgrade the connection
to an old protocol version or weak ciphersuite, or to
delete important extensions such as the renegotiation
indication countermeasure [11].

Recall that the Finished MACs are computed over
the hash of the full handshake trascript (hash(log2) and
hash(log3) in Figure 3). In TLS 1.0 and 1.1, this hash
function is the concatenation of MD5 and SHA-1. As
we saw in Section III, a chosen-prefix collision on this
construction can be computed with 277 work. We find a
man-in-the-middle transcript collision attack on server-
authenticated TLS 1.1 that is similar to the TLS 1.3
attack. A network attacker modifies the client and server
hellos so that the handshake hashes collide immediately
after these two messages; the rest of the handshake
is left unchanged. The client authenticates the server
and the handshake completes successfully, and although
the attacker does not know the master secret, it can
downgrade the connection to use any weak algorithm
that both the client and server support, but prefer not
to use, such as an EXPORT ciphersuite [1], or a weak
encryption algorithm like RC4.

A similar transcript collision attack appears in DTLS
1.0, a UDP-based variant of TLS 1.1. In DTLS, the
attack can be made even more efficient by exploiting
its cookie mechanism. In response to a client hello CH,
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Fig. 6. Man-in-the-middle credential forwarding attack on
tls-unique channel binding. The attack uses a transcript collision
to impersonate the client to the server.

a DTLS server can send a hello verify request message
HVR containing a cookie. The client is meant to restart
the handshake by sending the exact same client hello
message but with this cookie included in it. Since the
HVR is not authenticated, the arbitrary-length cookie
field allows any network attacker to inject data into the
transcript, after a known prefix of a fixed length. This
allows the chosen-prefix attack to be transformed to
an almost common prefix attack, similar to the cookie-
based attack on IKEv2 in Section VI-A.

E. Breaking the tls-unique Channel Binding
using a Generic Transcript Collision

Suppose an application-level authentication protocol
at C binds its login credential to the tls-unique
channel binding [2], so that when the credential is
sent from C to A, it cannot be used by A at S. We
demonstrate how the attacker A could use a generic
collision attack to break this protection.

Figure 6 depicts the attack. It follows the general
pattern of the TLS 1.2 client authentication attack,
except that it relies on a collision on the transcript
MAC in the client finished message, rather than a
collision in the hash function. The client C connects
to the MitM A who then opens a new connection to S.
The attacker sends a SKE′ to C that contains a bogus
group (k2 − 1, k), thereby forcing the client to send
kx mod (k2 − 1) = k in its client key exchange CKE.
On the server side, the attacker can send its own CKE′

containing any Diffie-Hellman value. Hence, the MitM
knows the master secrets msc,mss and connection keys
on both connections.

The goal of the attacker is to make sure that
the contents of the client finished message (i.e. the
tls-unique) coincide on both connections:

mac96(ms
c, logc2) = mac96(ms

s, logs2)

The attacker can use any controlled part of the tran-
script, but we will set things up carefully so that he
can compute the collision as late as possible, in order
to reduce the size of the messages to hash. More
precisely, we use the certificate request SCR′ on the
client-side and the NPN message on the server side,
which are sent when all other messages in the transcript
are already fixed. The attacker uses C1 as the last
distinguished name in SCR′ and C2 as the padding in
the NPN message (after the protocol name “http/1.1”),
and computes (C1, C2) such that the MAC coincides.
Once this collision is found, the MitM sends these
two messages on the corresponding connections and
completes the handshakes. A can then impersonate C
at S by forwarding any application-level channel-bound
credentials sent by C (for A) to S.

Implementing a Proof-Of-Concept We implemented
a man-in-the-middle attacker to demonstrate the attack.
We used an OpenSSL client as C and the main Google
website as S, since this website supports the next-
protocol-negotiation protocol extension. After receiving
the client hello CH from the client and the server hello
done SHD from the server-side, the MitM runs a generic
collision search to compute SCR′ and NPN.

For the collision search, we implemented the TLS
PRF mac96 function using the CUDA framework for
NVIDIA GPUs. In TLS versions up to 1.1, this con-
struction is built using MD5 and SHA-1; in TLS 1.2
the construction uses SHA-256. However, the strength
of the hash function is immaterial because what we are
attacking is the truncated 96-bit MAC. The underlying
hash function does not matter. Following the analysis
explain in Section III, it should require about 248

computations on average to get a collision.

Our implementation run at 160 MH/s for TLS 1.1
and 113 MH/s for TLS 1.2 on a Tesla K20Xm GPU.
This is comparable to the expected speed we can derive
from benchmarks of MD5, SHA-1 and SHA-256 on this
GPU.It took 20 days to find a collision for TLS 1.1,
using four Tesla K20Xm GPUs. Our demo evaluated
the PRF about 249.9 times, which is rather unlucky: it
should take half that number on average. We note that
the generic collision attack is completely parallelizable
and hence the time for finding a collision can be brought
down to an arbitrarily small number by throwing enough
computational power at it. Using Amazon EC2, this
should cost about $140 for TLS 1.1, and $200 for TLS
1.2. The transcripts are available on our website.
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Fig. 7. IKEv2: A mutually-authenticated key exchange. Message
parts colored in red can have arbitrary length.

Truncated HMAC is not collision-resistant A
more general lesson to be taken from our attack on
tls-unique is that there are many uses of HMAC
in cryptographic protocols that are not protected from
collisions in the underlying hash function. For example,
although HMAC-MD5 may be a good MAC, it is not
collision-resistant when the key is known to the attacker.
Similarly, when HMAC-SHA256 is truncated to 96 bits,
it may still be a good MAC, but it is certainly not a good
hash function (since collisions can still be found in 248

steps). Consequently, when inspecting the use of hash
functions in Internet protocols, it would be a mistake to
assume that all uses of HMAC are safe; it is important
to look both at the mechanism and its intended security
goal. In some cases, we may need HMAC to be both a
MAC and a collision-resistant hash function.

VI. TRANSCRIPT COLLISIONS IN IKE AND SSH

Although the bulk of this paper has focused on colli-
sions in TLS, similar attacks apply to other mainstream
protocols like IKEv1, IKEv2, and SSH. We describe
two exemplary attacks here.

A. Breaking IKEv2 Initiator Authentication using a
Precomputed Common-Prefix Transcript Collision

Figure 7 depicts the IKEv2 authenticated key ex-
change protocol, which is similar to the SIGMA’ pro-
tocol discussed in Section II. The initiator first sends
an SA INIT request containing its Diffie-Hellman value
gx, nonce ni, and proposed cryptographic parameters
SAi, infoi. The responder replies with its own public
value gy , nonce nr and parameters SAr, infor. Alter-
natively, the responder may send a cookie ck, thereby
asking the initiator to restart the protocol by sending the
same SA INIT request but with ck included in it.

After the SA INIT exchange, the initiator and re-
sponder authenticate each other by signing a portion of
the message transcript. Notably the initiator signs:

hash(SA INIT(ck|SAi|gx|ni|infoi)︸ ︷︷ ︸
m1

|nr|mac(ki, IDi))

Figure 11 in Appendix depicts an attack on IKEv2 ini-
tiator authentication that relies on a transcript collision
on this signature. The network attacker intercepts the
SA INIT request from I to R and responds with a
cookie ck. The initiator I restarts the key exchange
by including ck in the new SA INIT request (m1).
However, the attacker has chosen ck in a way that the
hash of m1 is the same as the hash of a tampered
SA INIT request m′1 that contains the attacker’s Diffie-
Hellman public value gx

′
. The attacker sends this tam-

pered request m′1 to the responder and upon receiving
a response, it tampers with the response to replace R’s
Diffie-Hellman key gy with its own key gy

′
. Note that

the attacker does not tamper with the nonces ni, nr.

At this point, the attacker knows the shared secrets
gx
′y, gxy

′
and encryption keys on the two connections.

Moreover the hash used in the signature transcript
collides all the way to the mac(ki, IDi). To complete
the attack, the attacker must ensure that ki is that same
at I and R. It can ensure this by choosing x′, y′ such
that gx

′y = gxy
′

(as discussed below). Thereafter, it can
forward I’s signature to R and hence impersonate I .

Implementing the Attack To implement the attack,
we must first find a collision between m1 and m′1.
We observe that in IKEv2 the length of the cookie is
supposed to be at most 64 octets but we found that many
implementations allow cookies of up to 216 bytes. We
can use this flexibility in computing long collisions.

The attacker finds two length-prefixed bitstrings
(C1, C2) of L bytes each such that

hash(SA INIT([C1|−]︸ ︷︷ ︸
ck

|−)) = hash(SA INIT( C2︸︷︷︸
ck′

|−))

where the length of ck is set to L+M , that is, ck has M
empty bytes ready to fill in. We set M to the length of
the bitstring SA′i|gx

′ |ni that the attacker wants to send
to R in its tampered SA INIT request m′1. The idea is
that the attacker can now stuff the tampered message
into ck, and can stuff the original message into info′i to
obtain a transcript collision:

hash(SA INIT([C1|SA′i|gx
′
|ni]︸ ︷︷ ︸

ck

|SAi|gx|ni|infoi)|−) =

hash(SA INIT([C2]︸︷︷︸
ck

|SA′i|gx
′
|ni|[SAi|gx|ni|infoi]︸ ︷︷ ︸

info′i

)|−)

The collision (C1, C2) can be found easily as a chosen-
prefix collision attack. Since the collision occurs be-
fore any unpredictable value has been included in the
message, it can be computed offline; that is, it does
not have to be computed while a connection is live.
The collision can then be used to break any number
of connections between I and R. Such collisions are
easy to compute for MD5, but we found that even
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though MD5 signatures are allowed by the standard,
they are not commonly supported by IKEv2 imple-
mentations. However, SHA-1 signatures are mandatory
for all IKEv2 implementations, so an offline chosen-
prefix collision on SHA-1 is enough to mount the
attack. The best known complexity of such collisions
is currently 277, which may be feasible for a powerful
adversary (especially if better shortcut attacks on SHA-
1 are discovered).

We also observe that the two prefixes are very simi-
lar: we only need the length of the cookie to be different.
Following the format of IKE message, the length field
is on bytes 22 and 23 of the hashed transcript, and
all previous bytes must have a fixed value. Hence, we
can almost use a common-prefix collision attack, if the
collision algorithm introduces a difference in bytes 22-
23, and no difference in preceding bytes. For MD5, the
most efficient collision attacks do not have a compatible
message difference, but it seems possible to build a
dedicated attack with complexity below 239. However,
for SHA-1, all known collision attacks use differences
in every message words, and are thus unsuitable.

The final step to implement the attack is to ensure
that gxy

′
= gx

′y . To achieve this, we rely on a small
subgroup confinement attack. To see a simple example,
suppose the attacker chose x′ = y′ = 0; then the two
shared secrets would have the value 1. This specific so-
lution would not work in practice because most IKEv2
implementations validate the received Diffie-Hellman
public value to ensure that it is larger than 1 and smaller
than p − 1. However, many IKEv2 implementations
support the Diffie-Hellman groups 22-24 that are known
to have many small subgroups. These implementations
do not validate the incoming public value, and hence
are susceptible to similar small subgroup confinement
attacks, as discussed in [5]. To complete our transcript
collision attack, the MitM can use one such small
subgroup to ensure that the shared values on the two
connections are the same with high probability.

B. Breaking IKEv1 Initiator Authentication
with a Generic Transcript Collision

IKEv1, the predecessor of IKEv2, and is also vul-
nerable to transcript collision attacks. We briefly outline
one attack, without giving more details for lack of space.
The initiator’s signature in IKEv1 is computed as:

sign(sk I , prf(prf(ni|nr, gxy), gx|gy|ci|cr|SAi|IDi))

A commonly-used PRF function in IKEv1 is HMAC-
MD5, and we find a generic transcript collision attack
on the outer PRF value that allows initiator imperson-
ation. A man-in-the-middle attacker intercepts a con-
nection between I and R; it tries out many random
gy
′

values on the client-side, and many random values

Fig. 8. SSH-2: Key exchange and user authentication.

(embedded in) ID′i on the server side, until the PRF
values on the two sides collide. It can then forward
I’s signature to R, even though it knows the Diffie-
Hellman shared secret. When the PRF is HMAC-MD5,
this generic collision attack costs about 2 ∗ 264 HMAC
computations per connection.

C. Downgrading SSH-2 to Weak Ciphersuites
with a Chosen-Prefix Transcript Collision

Figure 8 depicts the SSH-2 [39] protocol, which
implements yet another variation of an authenticated
Diffie-Hellman protocol. The client and server exchange
identification strings Vc, Vs, negotiate protocol param-
eters Ic, Is, and perform a Diffie-Hellman exchange
gx, gy . To authenticate the exchange, clients and servers
sign a session hash, defined as:

H = hash(Vc|Vs|Ic|Is|pkS |gx|gy|gxy)

We show that a target collision on this hash value can
allow downgrade attaks.

Figure 12 in Appendix depicts a downgrade attack
on SSH-2. The network attacker tampers with the key
exchange message Ic in one direction and with Is in
the other. It chooses their values in a way such that the
following hashes coincide

hash(Vc|Vs|Ic|C1|−︸ ︷︷ ︸
I′s

) = hash(Vc|Vs| C2︸︷︷︸
I′c

)

Using this collision, we leave enough space empty in
I ′s to stuff the real Is inside. Consequently the session
hashes on the two sides coincide and the connection
is completed. In this attack, the MitM does not tamper
with the Diffie-Hellman values and hence it does not
know the connection keys. However, it manages to
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tamper with both Ic and Is, and can therefore down-
grade the negotiate ciphersuite to a weak cryptographic
algorithm that the attacker knows how to break.

Implementing the target collision for SSH-2 requires
a chosen-prefix attack on SHA-1 which is still consid-
ered impractical (at least 277 work). Moreover, since the
two tampered fields Ic and Is are meant to be strings
(not bitstrings), we cannot use arbitrary collisions. Still,
we find this attack to be an interesting illustration of
the use of transcipt collisions for downgrade attacks.

SSH-2 has a peculiar session hash construction, with
the shared secret gxy placed at the end. This makes
certain kinds of collision attacks more difficult, but we
note that this construction is not particularly secure;
since it includes the shared secret, the session hash
needs to be non-leaking in addition to being collision-
resistant [4]. Moreover, if the SSH server reuses its
Diffie-Hellman public value, this secret suffix becomes
vulnerable to key recovery attacks like on APOP [25].

Other variations of SSH allow for more tampering,
which may enable new attacks. The SSH Diffie-Hellman
Group Exchange protocol [10] allows SSH servers to
choose any Diffie-Hellman group for use in the key
exchange. So, like in our TLS attacks, a man-in-the-
middle attacker can send a bogus or weak group to the
client, and use it to control more fields in the session
hash and mount new transcript collision attacks.

VII. SLOTH: RESPONSIBLE DISCLOSURE AND
IMPACT

Table I summarizes the attacks discussed in this
paper. Three of our attacks on TLS are already practical;
others are within the reach of powerful adversaries.

Our attacks on TLS were publicly disclosed under
the acronym SLOTH (security losses from obsolete
and truncated transcript hashes) and were assigned a
protocol-level CVE-2015-7575. We informed the au-
thors of affected protocol specifications and developers
for various TLS libraries. We recommended that pro-
tocols and implementations should stop using MD5-
based signatures and other weak hash constructions.
Our disclosure and recommendations resulted in the
following security updates:

1) TLS 1.3 draft 7 stopped truncating the Fin-
ished MACs and started using the full HMAC
output.

2) TLS 1.3 draft 8 deprecated MD5 signatures.
3) The Token Binding Protocol draft 2 removed

tls-unique and moved to a stronger channel
binding.

4) Akamai servers disabled support or RSA-MD5
client and server signatures.

5) Red Hat issued backported patches RHEL 6
and 7 to disable MD5 signatures in their ver-
sion of OpenSSL version 1.0.1e.

6) NSS 3.21 (FireFox 43) disabled support for
MD5 server signatures; MD5-based client sig-
natures were already disabled.

7) GnuTLS 3.3.15 disabled MD5 signatures in
the default configuration.

8) BouncyCastle Java 1.54 (C# 1.8.1) disabled
MD5 signatures in the default configuration.

9) Oracle and IBM are updating the TLS im-
plementation in their Java runtimes to disable
MD5 signatures in the default configuration.

10) mbedTLS is being updated to disable MD5
server signatures; MD5 client signatures were
already disabled.

These changes impact the Firefox and Android
browsers, about 31% of web servers, most Java
application servers and their clients, and many
other custom applications that use less well-known
TLS libraries. We are maintaining a website with
the currently known attacks, affected software, and
disclosure status at our website:

http://sloth-attack.org .

VIII. CONCLUSIONS

We have demonstrated that the use of MD5 and
truncated HMACs for authenticating transcripts in vari-
ous Internet protocols leads to exploitable chosen-prefix
and generic collision attacks. We also showed several
unsafe uses of SHA-1 that will become dangerous when
more efficient collision-finding algorithms for SHA-
1 are discovered. In all cases, the complexity of our
transcript collision attacks are significantly lower than
the estimated work for a second preimage attack on
the underlying hash function. This definitively settles
the debate on whether the security of mainstream
cryptographic protocols depend on collision resistance.
The answer is yes, cryptographers were right. Except
in rare cases, mainstream protocols do require colli-
sion resistance for protection against man-in-the-middle
transcript collision attacks. Consequently, we strongly
recommend that weak hash functions like MD5 and
SHA-1 should not just be deprecated; they should be
forcefully disabled in existing protocols.

An open research question is whether it is possible
to design key exchange protocols that will be resilient
to new collision attacks. One strategy is to use a
commitment scheme (like ZRTP [40]) that would make
it more difficult for a man-in-the-middle to tamper
with the transcript. However, such schemes may still
be vulnerable to certain shortcut collisions [19]. For
signatures, randomized hashing [13] provides a different
way forward but its integration into a complex protocol
like TLS would need to be carefully analyzed.
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Protocol Property Mechanism Attack Collision Type Precomp. Work/conn. Preimage Wall-clock time

TLS 1.2 Client Auth RSA-MD5 Impersonation Chosen Prefix 239 2128 48 core hours
TLS 1.3 Server Auth RSA-MD5 Impersonation Chosen Prefix 239 2128 48 core hours
TLS 1.0-1.2 Channel Binding HMAC (96 bits) Impersonation Generic 248 296 80 GPU days
TLS 1.2 Server Auth RSA-MD5 Impersonation Generic 2X conn. 2128−X 2128

TLS 1.0-1.1 Handshake Integrity MD5 | SHA-1 Downgrade Chosen Prefix 277 2160

IKE v1 Initiator Auth HMAC-MD5 Impersonation Generic 265 2128

IKE v2 Initiator Auth RSA-SHA-1 Impersonation Chosen Prefix 277 0 2160

SSH-2 Exchange Integrity SHA-1 Downgrade Chosen Prefix 277 2160

TABLE I. SUMMARY OF TRANSCRIPT COLLISION ATTACKS ON INTERNET PROTOCOLS
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than weak: Attacks on concatenated combiners. In ASIACRYPT,
2009.

[28] A. Menon-Sen, N. Williams, A. Melnikov, and C. New-
man. Salted Challenge Response Authentication Mechanism
(SCRAM) SASL and GSS-API Mechanisms. IETF RFC 5802,
2010.

[29] R. C. Merkle. A certified digital signature. In CRYPTO’89,
1990.

[30] J. M. Pollard. A monte carlo method for factorization. BIT
Numerical Mathematics, 15(3):331–334, 1975.

[31] J. M. Pollard. Monte carlo methods for index computation.
Mathematics of computation, 32(143):918–924, 1978.

[32] A. Popov, M. Nystroem, D. Balfanz, and A. Langley. The
Token Binding Protocol Version 1.0. Internet Draft, 2015.

[33] M. Stevens. Hashclash. https://marc-stevens.nl/p/hashclash/.
[34] M. Stevens. Counter-cryptanalysis. In CRYPTO, 2013.
[35] M. Stevens. New collision attacks on SHA-1 based on optimal

joint local-collision analysis. In EUROCRYPT, 2013.
[36] M. Stevens, A. K. Lenstra, and B. de Weger. Chosen-prefix

collisions for MD5 and applications. IJACT, 2(4):322–359,
2012.

[37] P. C. van Oorschot and M. J. Wiener. Parallel collision search
with cryptanalytic applications. J. Cryptology, 12(1):1–28,
1999.

[38] X. Wang and H. Yu. How to break MD5 and other hash
functions. In EUROCRYPT, 2005.

[39] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Transport
Layer Protocol. RFC 4253 (Proposed Standard), 2006.

[40] P. Zimmermann. ZRTP: Media Path Key Agreement for Unicast
Secure RTP. IETF RFC 6189, 2012.

15

https://marc-stevens.nl/p/hashclash/


H Collision CPC

Generic 2N/2 2N/2

H1|H2 2N1/2N2/2 + 2N2/2 2N1/2N2/2 + 2N2/2

MD5 216 239

SHA-1 261 277

MD5 | SHA-1 267 277

TABLE II. COMPLEXITY OF FINDING COLLISIONS IN VARIOUS
HASH CONSTRUCTIONS

APPENDIX

A. Attacks against Hash Functions

We now give more details about attacks against hash
function, considering both generic attacks and dedicated
attacks against widely-used functions MD5 and SHA-1.
The main results are summarizex in Table II.

Generic collision attacks While a basic collision
attack requires to compute and store 2N/2 images of
the hash function, it is possible to mount a parallel and
memory-less attack with a very small overhead. The
main idea was introduced by Pollard as the Rho algo-
rithm for factorization [30] and discrete logarithms [31],
and was later generalized to collision search. The hash
function is first restricted from {0, 1}∗ → {0, 1}N to
{0, 1}N → {0, 1}N , so that it can be iterated. After
some number of steps, a chain of iterations reaches a
cycle, and the graph will have the shape of the greek
letter ρ. On average, the cycle has length O(2N/2) and
is reached after O(2N/2) steps. The point where the
tail of the meets with the cycle reveals a collision in
the hash function. It can be detected in time O(2N/2)
with little or no memory, using various cycle detection
methods, such as Floyd’s algorithm [20] (also known as
tortoise and hare).

Some variants of this attack using distinguished
points can be parallelized efficiently. We now describe
a parallel version of Pollard’s Lambda algorithm, as
described by van Oorschot and Wiener [37], using c
CPUs. Each CPU will compute iteration chains of the
function H , and stop when reaching a distinguished
point, that is a point with some easy to test property. For
instance, we stop a computation when the ending point
satisfies x < 2N/2αc for some small constant α, so that
the expected length of a chain is 2N/2/αc. When a chain
is finished, we store the starting point, the length, and
the ending point. We generate αc chains in this way, so
that the function has been evaluated about 2N/2 times,
and there is a high probability that there was a collision.
The important idea of this attack is that if a given point
is reached by two different chains, both chain will stop
at the same distinguished point. Therefore, we look at
the ending points of the chains, and when a collision is
detected, we restart the chains from the starting point in
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Fig. 10. CPC attack against MD5 | SHA-1

order to locate the collision. This attack requires about
2N/2 evaluations of H , and a memory of αc when using
c CPUs.

This attack can be tweaked for a chosen-prefix col-
lision attack using an auxiliary function g : {0, 1}N →
{0, 1}N defined as:

g(x) =

{
H(P |x) if x is even
H(P ′|x) if x is odd.

Collisions in g can be found with the previous
techniques. With probability 1/2 a collision is g is
between an even x and an odd x′ (or vice versa), this
implies a chosen-prefix collision H(P |x) = H(P ′|x′).
An accurate complexity analysis is provided in [37]:
a collision is expected to be found after

√
π2N/2

evaluations. For a chosen-prefix collision, we expect to
find two collisions in g after

√
π2N evaluations.

Concatenation Collisions in the concatenation of two
hash functions H1|H2 can be found with roughly the
same effort as breaking the strongest one of the two,
using the multi-collision technique of Joux [18].

The adversary first finds a collision pair (x0, x
′
0)

for H1, starting from the initialization value of H1.
Then it finds a collision pair (x1, x

′
1) starting from

H1(x0) = H1(x
′
0). This defines 4 messages with the

same H1-digest: x0|x1, x0|x′1, x′0|x1, x′0|x′1. After N2/2
steps, this defines a set of 2N2/2 messages with the
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same H1-digest. With high probability, two of these
messages have the same H2-digest as well (see Fig-
ure 9). Therefore, one can find a collision in H1|H2

with a complexity only N2/2 × 2N1/2 + 2N2/2. For
MD5 |SHA-1, this translates to 280, roughly as much
as a generic collision attack on SHA-1.

Better attacks against MD5 |SHA-1 result from the
combination of Joux’s multicollision technique with
shortcut attacks against SHA-1. A collision attack can
be build for a cost of 64 × 261 + 264 ≈ 267 (building
sequentially 64 collisions for MD5). For a chosen-
prefix collision, we first perform a chosen-prefix col-
lision against SHA-1, to generate messages (x, x′) such
that SHA-1(P |x) = SHA-1(P ′|x′). Then we build
a multicollision in SHA-1 starting from this value,
and we evaluate MD5 over a set of 264 messages
in order to find a collision. The total cost is about
277 + 64× 261 + 264 ≈ 277 (see Figure 10).

Moreover it has been shown that it is possible to
combine cryptanalytic shortcuts both on SHA-1 and
MD5, assuming that collision attacks against SHA-1
improve in the future [27]. This may allow collision
attacks against MD5 |SHA-1 with less than 264 work.
Table II summarizes the currently-known complexities
for computing various hash collisions.

B. Transcript Collision Attacks on IKEv2 and SSH-2

Fig. 11. Man-in-the-middle initiator impersonation attack on IKEv2.
The initiator I connects to the responder R but a man-in-the-middle
attacker A intercepts and tampers with some messages (shown in
red). A pecomputes a collision (C1, C2) between the prefixes of two
SA INIT messages that both begin with a cookie payload. Then by
sending a carefully crafted cookie to I , A can trigger a transcript
collision on the initiator signature, which it can then forward to R,
thereby impersonating I on a connection that it controls.

Fig. 12. Man-in-the-middle downgrade attack on SSH-2. The client
C connects to a server S, but a network attacker A tampers with the
key exchange messages (shown in red) to downgrade them to a weak
ciphersuite. To succeed, A must compute a chosen-prefix collision on
the session hash H after receiving C’s key exchange message.
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