skip to main content
10.1145/3487552.3487824acmconferencesArticle/Chapter ViewAbstractPublication PagesimcConference Proceedingsconference-collections
research-article
Public Access

TsuNAME: exploiting misconfiguration and vulnerability to DDoS DNS

Published:02 November 2021Publication History

ABSTRACT

TheInternet's Domain Name System (DNS) is a part of every web request and e-mail exchange, so DNS failures can be catastrophic, taking out major websites and services. This paper identifies TsuNAME, a vulnerability where some recursive resolvers can greatly amplify queries, potentially resulting in a denial-of-service to DNS services. TsuNAME is caused by cyclical dependencies in DNS records. A recursive resolver repeatedly follows these cycles, coupled with insufficient caching and application-level retries greatly amplify an initial query, stressing authoritative servers. Although issues with cyclic dependencies are not new, the scale of amplification has not previously been understood. We document real-world events in .nz (a country-level domain), where two misconfigured domains resulted in a 50% increase on overall traffic. We reproduce and document root causes of this event through experiments, and demostrate a 500× amplification factor. In response to our disclosure, several DNS software vendors have documented their mitigations, including Google public DNS and Cisco OpenDNS. For operators of authoritative DNS services we have developed and released CycleHunter, an open-source tool that detects cyclic dependencies and prevents attacks. We use CycleHunter to evaluate roughly 184 million domain names in 7 large, top-level domains (TLDs), finding 44 cyclic dependent NS records used by 1.4k domain names. The TsuNAME vulnerability is weaponizable, since an adversary can easily create cycles to attack the infrastructure of a parent domains. Documenting this threat and its solutions is an important step to ensuring it is fully addressed.

References

  1. 1.1.1.1. 2018. The Internet's Fastest, Privacy-First DNS Resolver. https://1.1.1.1/. https://1.1.1.1/Google ScholarGoogle Scholar
  2. Gautam Akiwate, Mattijs Jonker, Raffaele Sommese, Ian Foster, Geoffrey M. Voelker, Stefan Savage, and KC Claffy. 2020. Unresolved Issues: Prevalence, Persistence, and Perils of Lame Delegations. In Proceedings of the ACM Internet Measurement Conference (Virtual Event, USA) (IMC '20). Association for Computing Machinery, New York, NY, USA, 281--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Mark Allman. 2018. Comments on DNS Robustness. In Proceedings of the Internet Measurement Conference 2018 (Boston, MA, USA) (IMC '18). Association for Computing Machinery, New York, NY, USA, 84--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Andrews. 1998. Negative Caching of DNS Queries (DNS NCACHE). RFC 2308. IETF. http://tools.ietf.org/rfc/rfc2308.txtGoogle ScholarGoogle Scholar
  5. Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Menscher, Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. 2017. Understanding the Mirai Botnet. In Proceedings of the 26th USENIX Security Symposium. USENIX. Vancouver, BC, Canada, 1093--1110. https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-antonakakis.pdfGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  6. ISC BIND. 2021. TsuNAME DNS Vulnerability and BIND 9. https://www.isc.org/blogs/2021_tsuname_vulnerability/.Google ScholarGoogle Scholar
  7. Jonas Bushart and Christian Rossow. 2018. DNS Unchained: Amplified Application-Layer DoS Attacks Against DNS Authoritatives. In Research in Attacks, Intrusions, and Defenses, Michael Bailey, Thorsten Holz, Manolis Stamatogiannakis, and Sotiris Ioannidis (Eds.). Springer International Publishing, Cham, 139--160.Google ScholarGoogle Scholar
  8. Sebastian Castro, Duane Wessels, Marina Fomenkov, and Kimberly Claffy. 2008. A day at the root of the Internet. ACM Computer Communication Review 38, 5 (Oct. 2008), 41--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. cert.gov. 2021. Vulnerability Disclosure Policy. https://vuls.cert.org/confluence/display/Wiki/Vulnerability+Disclosure+Policy.Google ScholarGoogle Scholar
  10. CycleHunter. 2021. GitHub - SIDN/CycleHunter: Python software that reads zone files, extract NS records, and detect cyclic dependencies. https://github.com/SIDN/CycleHunter.Google ScholarGoogle Scholar
  11. CZ-NIC. 2021. Knot DNS. https://www.knot-dns.cz/Google ScholarGoogle Scholar
  12. Peter B. Danzig, Katia Obraczka, and Anant Kumar. 1992. An Analysis of Wide-Area Name Server Traffic: A study of the Domain Name System. In Proceedings of the ACM SIGCOMM Conference (johnh: folder: networking/dns). ACM, Baltimore, Mayrland, USA, 281--292. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Wouter B. De Vries, Roland Van Rijswijk-Deij, Pieter Tjerk De Boer, and Aiko Pras. 2018. Passive Observations of a Large DNS Service: 2.5 Years in the Life of Google. In 2018 Network Traffic Measurement and Analysis Conference (TMA). IEEE, United States. Google ScholarGoogle ScholarCross RefCross Ref
  14. Batya Friedman, David G. Hendry, and Alan Borning. 2017. A Survey of Value Sensitive Design Methods. Foundations and Trends® in Human-Computer Interaction 11, 2 (2017), 63--125. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Google. 2020. Public DNS. https://developers.google.com/speed/public-dns/. https://developers.google.com/speed/public-dns/Google ScholarGoogle Scholar
  16. Google Project Zero. 2021. Vulnerability Disclosure FAQ. https://googleprojectzero.blogspot.com/p/vulnerability-disclosure-faq.html.Google ScholarGoogle Scholar
  17. Kenneth Einar Himma, Herman T Tavani, et al. 2008. The handbook of information and computer ethics. Wiley Online Library.Google ScholarGoogle Scholar
  18. P. Hoffman, A. Sullivan, and K. Fujiwara. 2018. DNS Terminology. RFC 8499. IETF. http://tools.ietf.org/rfc/rfc8499.txtGoogle ScholarGoogle Scholar
  19. ICANN. 2020. Centralized Zone Data Service. https://czds.icann.org/.Google ScholarGoogle Scholar
  20. Internet Assigned Numbers Authority (IANA). 2020. Root Files. https://www.iana.org/domains/root/files.Google ScholarGoogle Scholar
  21. Internetstiftelsen. 2020. Zone Data. https://zonedata.iis.se/.Google ScholarGoogle Scholar
  22. ISC. 2021. BIND 9. https://www.isc.org/bind/.Google ScholarGoogle Scholar
  23. Georgios Kambourakis, Tassos Moschos, Dimitris Geneiatakis, and Stefanos Gritzalis. 2007. A Fair Solution to DNS Amplification Attacks. In Proceedings of the Second IEEE International Workshop on Digital Forensics and Incident Analysis (WDFIA). IEEE, 38--47. Google ScholarGoogle ScholarCross RefCross Ref
  24. Aqsa Kashaf, Vyas Sekar, and Yuvraj Agarwal. 2020. Analyzing Third Party Service Dependencies in Modern Web Services: Have We Learned from the Mirai-Dyn Incident?. In Proceedings of the ACM Internet Measurement Conference (Virtual Event, USA) (IMC '20). Association for Computing Machinery, New York, NY, USA, 634--647. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. A. Kumar, J. Postel, C. Neuman, P. Danzig, and S. Miller. 1993. Common DNS Implementation Errors and Suggested Fixes. RFC 1536. IETF. http://tools.ietf.org/rfc/rfc1536.txtGoogle ScholarGoogle Scholar
  26. M. Larson and P. Barber. 2006. Observed DNS Resolution Misbehavior. RFC 4697. IETF. http://tools.ietf.org/rfc/rfc4697.txtGoogle ScholarGoogle Scholar
  27. P.V. Mockapetris. 1987. Domain names - concepts and facilities. RFC 1034. IETF. http://tools.ietf.org/rfc/rfc1034.txtGoogle ScholarGoogle Scholar
  28. P.V. Mockapetris. 1987. Domain names - implementation and specification. RFC 1035. IETF. http://tools.ietf.org/rfc/rfc1035.txtGoogle ScholarGoogle Scholar
  29. Giovane C. M. Moura. 2021. OARC Members Only Session: Vulnerability Disclosure (DDoS). https://indico.dns-oarc.net/event/37/contributions/821/. https://indico.dns-oarc.net/event/37/contributions/821/Google ScholarGoogle Scholar
  30. Giovane C. M. Moura, Sebastian Castro, Wes Hardaker, Maarten Wullink, and Cristian Hesselman. 2020. Clouding up the Internet: How Centralized is DNS Traffic Becoming?. In Proceedings of the ACM Internet Measurement Conference (Virtual Event, USA) (IMC '20). Association for Computing Machinery, New York, NY, USA, 42--49.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Giovane C. M. Moura, Sebastian Castro, John Heidemann, and Wes Hardaker. 2021. tsuNAME: exploiting misconfiguration and vulnerability to DDoS DNS. Technical Report 2021-01. SIDN Labs. https://tsuname.io/tech_report.pdf. https://doi.org/paper.pdfGoogle ScholarGoogle Scholar
  32. Giovane C. M. Moura, Ricardo de O. Schmidt, John Heidemann, Wouter B. de Vries, Moritz Müller, Lan Wei, and Christian Hesselman. 2016. Anycast vs. DDoS: Evaluating the November 2015 Root DNS Event. In Proceedings of the ACM Internet Measurement Conference. ACM, Santa Monica, California, USA, 255--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Giovane C. M. Moura, John Heidemann, Ricardo de O. Schmidt, and Wes Hardaker. 2019. Cache Me If You Can: Effects of DNS Time-to-Live. In Proceedings of the ACM Internet Measurement Conference. ACM, Amsterdam, the Netherlands, 101--115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Giovane C. M. Moura, John Heidemann, Moritz Müller, Ricardo de O. Schmidt, and Marco Davids. 2018. When the Dike Breaks: Dissecting DNS Defenses During DDoS. In Proceedings of the ACM Internet Measurement Conference. ACM, Boston, MA, USA, 8--21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Giovane C. M. Moura, John Heidemann, Moritz Müller, Ricardo de O. Schmidt, and Marco Davids. 2018. When the Dike Breaks: Dissecting DNS Defenses During DDoS (extended). Technical Report ISI-TR-725. USC/Information Sciences Institute. https://www.isi.edu/%7ejohnh/PAPERS/Moura18a.htmlGoogle ScholarGoogle Scholar
  36. NL Netlabs. 2021. UNBOUND. https://www.nlnetlabs.nl/projects/unbound/about/.Google ScholarGoogle Scholar
  37. NLnetLabs. 2021. tsuNAME vulnerability and Unbound. https://nlnetlabs.nl/news/2021/May/10/tsuname-vulnerability-and-unbound/.Google ScholarGoogle Scholar
  38. OpenDNS. 2021. Setup Guide: OpenDNS. https://www.opendns.com/. https://www.opendns.com/Google ScholarGoogle Scholar
  39. Vasileios Pappas, Zhiguo Xu, Songwu Lu, Daniel Massey, Andreas Terzis, and Lixia Zhang. 2004. Impact of Configuration Errors on DNS Robustness. SIGCOMM Comput. Commun. Rev. 34, 4 (Aug. 2004), 319--330. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Nicole Perlroth. 2016. Hackers Used New Weapons to Disrupt Major Websites Across U.S. New York Times (Oct. 22 2016), A1. http://www.nytimes.com/2016/10/22/business/internet-problems-attack.htmlGoogle ScholarGoogle Scholar
  41. PowerDNS. 2021. Changelogs for all pre 4.0 releases. https://doc.powerdns.com/recursor/changelog/pre-4.0.html.Google ScholarGoogle Scholar
  42. PowerDNS. 2021. TsuNAME vulnerability and PowerDNS Recursor. https://blog.powerdns.com/2021/05/10/tsuname-vulnerability-and-powerdns-recursor/.Google ScholarGoogle Scholar
  43. Quad9. 2018. Quad9 | Internet Security & Privacy In a Few Easy Steps. https://quad9.net.Google ScholarGoogle Scholar
  44. Audrey Randall, Enze Liu, Gautam Akiwate, Ramakrishna Padmanabhan, Geoffrey M. Voelker, Stefan Savage, and Aaron Schulman. 2020. Trufflehunter: Cache Snooping Rare Domains at Large Public DNS Resolvers. In Proceedings of the ACM Internet Measurement Conference (Virtual Event, USA) (IMC '20). Association for Computing Machinery, New York, NY, USA, 50--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear. 1996. Address Allocation for Private Internets. RFC 1918. IETF. http://tools.ietf.org/rfc/rfc1918.txtGoogle ScholarGoogle Scholar
  46. RIPE NCC. 2021. RIPE Atlas Measurement IDS. https://atlas.ripe.net/measurements/ID., where ID is the experiment ID: New Domain:25666966, Recurrent:25683316, One-off-AfterGoogle: 29078085, RecurrentAfterGoogle: 29099244, probe52196:29491104, TripeDep:29559226, CNAME: 29560025.Google ScholarGoogle Scholar
  47. RIPE NCC Staff. 2015. RIPE Atlas: A Global Internet Measurement Network. Internet Protocol Journal (IPJ) 18, 3 (Sep 2015), 2--26.Google ScholarGoogle Scholar
  48. RIPE Network Coordination Centre. 2020. RIPE Atlas. https://atlas.ripe.net.Google ScholarGoogle Scholar
  49. RIPE Network Coordination Centre. 2020. RIPE Atlas - Raw data structure documentations, https://atlas.ripe.net/docs/data_struct/.Google ScholarGoogle Scholar
  50. Root Server Operators. 2015. Events of 2015-11-30. http://root-servers.org/news/events-of-20151130.txt.Google ScholarGoogle Scholar
  51. Root Server Operators. 2020. Root DNS. http://root-servers.org/.Google ScholarGoogle Scholar
  52. Root Zone file. 2020. Root. http://www.internic.net/domain/root.zone.Google ScholarGoogle Scholar
  53. Kyle Schomp, Tom Callahan, Michael Rabinovich, and Mark Allman. 2013. On measuring the client-side DNS infrastructure. In Proceedings of the 2015 ACM Conference on Internet Measurement Conference. ACM, 77--90.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. SIDN Labs. 2020. ENTRADA - DNS Big Data Analytics. https://entrada.sidnlabs.nl/.Google ScholarGoogle Scholar
  55. Raffaele Sommese, Leandro Bertholdo, Gautam Akiwate, Mattijs Jonker, van Rijswijk-Deij, Roland, Alberto Dainotti, KC Claffy, and Anna Sperotto. 2020. MAnycast2---Using Anycast to Measure Anycast. In Proceedings of the ACM Internet Measurement Conference. ACM, Pittsburgh, PA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Suzanne Goldlust. 2018. Using the Response Rate Limiting Feature. https://kb.isc.org/docs/aa-00994.Google ScholarGoogle Scholar
  57. S. Thomson, C. Huitema, V. Ksinant, and M. Souissi. 2003. DNS Extensions to Support IP Version 6. RFC 3596. IETF. http://tools.ietf.org/rfc/rfc3596.txtGoogle ScholarGoogle Scholar
  58. Sipat Triukose, Zakaria Al-Qudah, and Michael Rabinovich. 2009. Content Delivery Networks: Protection or Threat?. In Computer Security - ESORICS 2009, Michael Backes and Peng Ning (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 371--389.Google ScholarGoogle ScholarCross RefCross Ref
  59. Roland van Rijswijk-Deij, Anna Sperotto, and Aiko Pras. 2014. DNSSEC and Its Potential for DDoS Attacks: a comprehensive measurement study. In Proceedings of the 2014 ACM Conference on Internet Measurement Conference (IMC). ACM, 449--460.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Duane Wessels and Marina Fomenkov. 2003. Wow, That's a Lot of Packets. In Proceedings of the Passive and Active Measurement Workshop. https://www.caida.org/publications/papers/2003/dnspackets/wessels-pam2003.pdfGoogle ScholarGoogle Scholar
  61. Chris Williams. 2019. Bezos DDoS'd: Amazon Web Services' DNS systems knackered by hours-long cyber-attack. https://www.theregister.co.uk/2019/10/22/aws_dns_ddos/.Google ScholarGoogle Scholar
  62. D. Wing and A. Yourtchenko. 2012. Happy Eyeballs: Success with Dual-Stack Hosts. RFC 6555. IETF. http://tools.ietf.org/rfc/rfc6555.txtGoogle ScholarGoogle Scholar
  63. S. Woolf and D. Conrad. 2007. Requirements for a Mechanism Identifying a Name Server Instance. RFC 4892. IETF. http://tools.ietf.org/rfc/rfc4892.txtGoogle ScholarGoogle Scholar
  64. Maarten Wullink, Giovane CM Moura, Moritz Müller, and Cristian Hesselman. 2016. ENTRADA: A high-performance network traffic data streaming warehouse. In Network Operations and Management Symposium (NOMS), 2016 IEEE/IFIP. IEEE, 913--918.Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    IMC '21: Proceedings of the 21st ACM Internet Measurement Conference
    November 2021
    768 pages
    ISBN:9781450391290
    DOI:10.1145/3487552

    Copyright © 2021 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 2 November 2021

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

    Acceptance Rates

    Overall Acceptance Rate277of1,083submissions,26%

    Upcoming Conference

    IMC '24
    ACM Internet Measurement Conference
    November 4 - 6, 2024
    Madrid , AA , Spain

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader