
Programming
Techniques

S.L. Graham, R.L. Rivest,
Editors

A Technique for
Isolating Differences
Between Files
Paul Heckel
Interactive Systems Consultants

A simple algorithm is described for isolating the
differences between two files. One application is the
comparing of two versions of a source program or
other file in order to display all differences. The
algorithm isolates differences in a way that
corresponds closely to our intuitive notion of
difference, is easy to implement, and is
computationally efficient, with time linear in the file
length. For most applications the algorithm isolates
differences similar to those isolated by the longest
common subsequence. Another application of this
algorithm merges files containing independently
generated changes into a single f'de. The algorithm can
also be used to generate efficient encodings of a file in
the form of the differences between itself and a given
"datum" file, permitting reconstruction of the original
file from the difference and datum files.

Key Words and Phrases: difference isolation, word
processing, text editing, program maintenance,
hashcoding, file compression, bandwidth compression,
longest common subsequence, file comparison,
molecular evolution

CR Categories: 3.63, 3.73, 3.81, 4.43

General permission to make fair use in teaching or research of
all or part of this material is granted to individual readers and to
nonprofit libraries acting for them provided that ACM's copyright
notice is given and that reference is made to the publication, to its
date of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery. To
otherwise reprint a figure, table, other substantial excerpt, or the
entire work requires specific permission as does republication, or
systematic or multiple reproduction.
Author 's Address: Interactive Systems Consultants, P.O. Box 2345,
Palo Alto, CA 94305.

© 1978 ACM 0001-0782/78/0400-0264 $00.75

264

1. Introduction

The problem of finding all differences between two
files occurs in several contexts. This discussion is
directed toward building a tool that locates differences
in source programs and other text files. Once under-
stood, the technique described is transferable to related
applications.

A tool that compares different versions of text files
can be used for source program maintenance in at
least four ways: (1) as an editing aid, to verify modifi-
cations and detect spurious edits; (2) as a debugging
aid, to find the differences between a version of a
program that is known to work and one that does not
work; (3) as a program maintenance aid for locating
and merging program changes introduced by several
different people (or organizations); and (4) as a quality
control tool to highlight the differences between the
output of the latest version of a program and the
output of an earlier version.

This tool is also useful when documents, or any
text files, are edited and maintained on a computer .
Text-editing and word-processing systems such as QEO
[2] and WYLBVR [4] rarely have a f i le-compare capabil-
ity. This capability is useful when new editions of
documents are issued in which all changes from a
previous edition are to be underlined or otherwise
identified.

2. Current Methods of File Comparison

Two other methods of file comparison are known.
In the first, the files are scanned, and whenever a
difference is detected, the next M lines are scanned
until N consecutive identical lines are found. DEC ' s
F I L E C O M [3] is implemented this way. This technique
has two disadvantages: (1) M and/or N usually have to
be tuned by the user to get useful output, and (2) if a
whole block of text is moved, then all of it, ra ther than
just the beginning and end, is detected as changed.
This can be misleading, for any changes made within a
moved block are not highlighted.

The algorithm described here avoids these difficul-
ties. It detects differences that correspond very closely
to our intuitive notion of difference. In particular, if a
block of text is moved, only its beginning and end are
detected as different, and any other differences within
the moved block will be highlighted.

The second method is the longest common subse-
quence (LCS) method, which has received some atten-
tion in the literature [1, 6, 7, 10]. Given strings (or

Communications April 1978
of Volume 21
the ACM Number 4

files) A = ala2 • • • a , , B = bib2 • • • b , , , and C = clcz
• . . c,,, C is a common subsequence of A and B if n -
p characters can be deleted from string A to produce
string C and m - p characters can be deleted from
string B to produce string C. Given strings A and B,
the LCS problem is to find the longest string C that is
a common subsequence of A and B. When this is
done, the file comparison output can be generated by
simultaneously scanning strings A, B, and C, flagging
characters that appear in A but not in C one way, and
flagging those that appear in B but not in C another
way.

The LCS method has strong appeal: It is a simple
formal statement of the problem that yields good
results. However , it has two basically different disad-
vantages. The first is that it is not necessarily the
correct formalization of the problem. In the two ex-
amples below, the longest common subsequence is
probably not what is desired. In these examples, the
differences are displayed by underlining the inserted
characters and putting minus signs through the deleted
ones. In the second example, the parentheses indicate
a block of characters that has been moved relative to
its neighboring blocks.

OLD STRING NEW STRING LCS METHOD "'BETTER"

AXCYDWEABE ABCDE AX-BCYDI~EABE AXCYDWE,~,BCDE
ABCDEG DEFGAC ~..~CDEFGAC (DEFG) (AS-C)

In the first example, the LCS finds four deleted
strings and one inserted one, while the "be t t e r " display
shows one deleted string and one inserted one. (Note:
Minimization of the number of inserts plus deletes is
not a good formulation of the problem since the
differences between any two strings can be trivially
displayed as one deleted string and one inserted one.)
In the second example, the LCS method does not find
a moved block of characters (it never does), but the
"be t t e r " display both shows the moved block and finds
edits within the blocks. The algorithm described here
produces the "be t t e r " display in both examples.

Counterexamples in which the algorithm described
here produces poorer results are easy to construct.
The author 's opinion is that there is no "correct"
formulation of the problem, just as there is no "cor-
rect" way to determine which of two equivalent alge-
braic expressions is simpler. In both cases it depends
on the preferences of the person reading it.

The second disadvantage of the LCS method con-
cerns the computational problems associated with it
[1, 6, 7]. In the worst case, it can take time O (m n) -

that is, time proportional to the product of the lengths
of the two strings. The only implementat ion of LCS
for file comparison of which the author is aware [7]
takes linear time and space for most practical cases but

265

takes worst-case O (m n l o g n) t ime and O (m n) space. As
a practical LCS implementat ion, it uses several clever
techniques and is neither concise nor easy to under-
stand.

The method described here avoids these computa-
tional problems. It is concise and easy to understand
and takes linear t ime and space for all cases. It also
produces output that is probably as good as or bet ter
than the LCS method in most practical cases.

3. The Algorithm

To compare two files, it is usually convenient to
take a line as the basic unit, although other units are
possible, such as word, sentence, paragraph, or char-
acter. We approach the problem by finding similarities
unti l only d i f f e r e n c e s r e m a i n . We m a k e two
observations:

1. A line that occurs once and on ly once in each file

m u s t be the s a m e line (u n c h a n g e d bu t poss ib ly

m o v e d) . This "finds" most lines and thus excludes
them from further consideration.

2. I f in each file i m m e d i a t e l y ad jacent to a " f o u n d "
line pa i r there are lines ident ical to each other, these

lines m u s t be the s a m e line. Repeated application
will "f ind" sequences of unchanged lines.

The algorithm acts on two files, which we call the
"old" file O and the "new" file N. Our conception is
that O was changed to produce N, although the algo-
rithm is virtually symmetric. There are three data
structures: a symbol table and two arrays O A and N A .

We use the text of the line as a symbol to key the
symbol table entries. Each entry has two counters O C

and N C specifying the number of copies of that line in
files O and N, respectively. These counters need only
contain the values 0, 1, and many. The symbol table
entry also has a field O L N O , which contains the line
number of the line in the "old" file. It is of interest
only if O C = 1.

The array O A (N A) has one entry for each line of
file O (N); it contains either a pointer to the line's
symbol table entry or the line's number in file N (O)
and a bit to specify which.

The algorithm consists of six simple passes. Pass 1
comprises the following: (a) each line i of file N is read
in sequence; (b) a symbol table entry for each line i is
created if it does not already exist; (c) N C for the
line's symbol table entry is incremented; and (d) N A [i]
is set to point to the symbol table entry of line i.

Pass 2 is identical to pass 1 except that it acts on
file O, array O A , and counter O C , and O L N O for the
symbol table entry is set to the line's number .

In pass 3 we use observation 1 and process only
those lines having N C = O C = 1. Since each represents
(we assume) the same unmodified line, for each we
replace the symbol table pointers in N A and O A by

Communications April 1978
of Volume 21
the ACM Number 4

the number of the line in the other file. For example,
if NA [i] corresponds to such a line, we look NA [i] up
in the symbol table and set NA[i] to O L N O and
OA[OLNO] to i. In pass 3 we also "find" unique
virtual lines immediately before the first and immedi-
ately after the last lines of the files.

In pass 4, we apply observation 2 and process each
line in NA in ascending order: If NA[i] points to
OA[1"] and NA[i + 1] and OA[j + 1] contain identical
symbol table entry pointers, then OA [j + 1] is set to
line i + 1 and NA[i + 1] is set to l ine j + 1.

In pass 5, we also apply observation 2 and process
each entry in descending order: if NA[i] points to
OA [1"] and NA [i - 1] and OA [j - 1] contain identical
symbol table pointers, then NA [i - 1] is replaced by
j - 1 and OA[1" - 1] is replaced by i - 1.

Array NA now contains the information needed to
list (or encode) the differences: If NA[i] points to a
symbol table entry, then we assume that line i is an
insert, and we can flag it as new text. If it points to
OA[j], but NA[i + 1] does not point to OA[1" + 1],
then line i is at the boundary of a deletion or block
move and can be flagged as such. In the final pass, the
file is output with its changes described in a form
appropriate to a particular application environment.
Figure 1 illustrates how this works.

A formal version of this algorithm is presented in
an earlier version of this paper [5]. It outputs each line
flagged by the type of change it finds: insert, delete,
beginning of block, end of block, or unchanged.

4. Analysis of Potential Problems

The technique described here is prone to detecting
false differences. Consider an unchanged sequence of
lines none of which is unique. If the lines immediately
above and below the sequence are changed, they will
be (correctly) detected as different, but the unchanged
sequence of lines between them will also be (falsely)
marked as different.

Because they occur at points to which attention is
directed, false differences, if few in number, are annoy-
ing rather than serious. For applications where the
files in question have less convenient characteristics, a
different basic unit or a hierarchy of basic units could
be chosen. 1

The technique described can be modified by using
a hashcode [9] as a surrogate for the characters in the
line. Hashcoding buys greater speed, program simplic-
ity, and storage efficiency at the cost of letting some
changes go undetected. A good hashcoding algorithm
with a large number of potential hashcodes will keep

For example, a three-line block could be chosen as the basic
unit, with the exclusive or of the hashcodes for lines 1 to 3, 2 to 4, 3
to 5, etc. forming the indices into the hash table. Since the index for
lines i + 1 t o j + 1 can be computed with two exclusive ors from the
index for lines i t o j and the hashcode for line i, the time it takes to
perform the algorithm for a k-line block is independent of k.

Fig. l . Difference isolation. The hashcodes for the lines in the files
being compared are the corresponding entries of arrays OA and
NA. The first and last locations are used for unique generated begin
and end lines. In pass 3, all unique lines are connected (solid lines).
In passes 4 and 5, identical but nonunique lines are found (dashed
lines). The file comparison can then be generated. Each insert (I),
delete (D), unchanged line (U), or moved block ([and]) can be
detected and printed out. The output could be printed as:

F I L E N F I L E 0

Array NA Array OA

[U

U

U

I

U

U

U

U

U

U]

[U

I

U

U]

[U

U

U

U

U

BEGIN

A

MASS

OF

LATIN

WORDS

FALLS

UPON

THE

RELEVANT

FACTS

LIKE

SOFT

SNOW

COVERING

UP

THE

DETAILS

END

BEGIN

MUCH

WRITING

IS

LIKE

SNOW

A

MASS

OF

LONG

WORDS

AND

PHRASES

FALLS

UPON

THE

RELEVANT

FACTS

COVERING

UP

THE

DETAI LS

END

D

D

D

D

D

D

the number of undetected changes small. For example,
a good 20-bit hashcode would mean that about one
change in a million would go undetected. If a single
line is changed, the chance it will be changed to a line
with the same hashcode is 1/22°. A change to a line
having the same hashcode as some other line would, at
worst, detect the line as moved when, in fact, it had
been changed. A complete analysis is beyond the scope
of this paper.

This technique can be used on very large files. The
symbol table is the only randomly accessed data struc-
ture that grows with the size of the files. The size of
each symbol table entry can be reduced to two bits by
combining the functions of NC and OC into one field
and eliminating O L N O .

266 Communica t ions April 1978
of Volume 21
the A C M Number 4

Fig. 2. File merging. We have three files, P, D1, and D2; P is the
parent file, D1 and D2 are the descendant files, with D1 being the
dominant file. Differences are isolated between D1 (in NA) and D2
(in OA), and between D1 (in NA2) and P (in OA2). The result is
shown by the solid lines. The merged file can be generated by

iterating through NA to generate lines that are: unchanged (U);
deleted from file 1 (D1), file 2 (D2), both files (DB); inserted into
file 1 (I1), file 2 (I2), both files (IB); or on block boundaries
([and]). The output could be printed as:

DB

DB

DB

O R I G I N A L FILE MAIN MERGE FILE MAIN MERGE FILE SECOND MERGE FILE
File P File D1 File D1 File D2

Array OA2 Array NA2 Array NA Array OA

BEGIN

MUCH

WRITING

IS

LIKE

SNOW

J
A

MASS

OF

LONG

WORDS

AND

PHRASES

FALLS

UPON

THE

RELEVANT

FACTS

COVERING

UP

THE

DETAILS

END

BEGIN

A

MASS

OF

LATIN

WORDS

FALLS

UPON

THE

RELEVANT

FACTS

LIKE

SOFT

SNOW

J
COVERING

UP

THE

DETAILS

END

[U

U

U

I1

U

U

U

U

D2

U]

[U

IB

U

U]

[U

U

U

U

U

BEGIN

A

MASS

OF

LATIN

WORDS

FALLS

UPON

THE

RELEVANT

FACTS

LIKE

SOFT

SNOW

J

COVERING

UP

THE

DETAILS

END

I _AND

/ / \ \ \ '1 . FALLs
' \ \ ' 1 - UPON

~ . THE

FACTS

BLURRING

THE

OUTLINE

AND
\

COVERING

\ UP

ALL
\

THE
\

DETAILS
\

END
\

D1

D1

D1

12

12

12

12

12

One seems to face a choice between a hashcode
size having a large number of bits and minimizing
undetected changes and one that has a small number
and allows direct addressing of the hash table entry.
However, one can get the advantages of both by using
a double hashcode technique, where a long hashcode
is stored in N A and O A and is rehashed into a smaller
sized hashcode for accessing the symbol table directly.
The number of extra entries required for such a symbol
table depends on the number of differences in the files
being compared. If the number of symbol table entries
is two or three times the number of different lines,
very few false differences will be detected unless the
files have a great many changes. This modification
means that the marginal storage cost can be reduced
to three to six bits per unique line.

267

5. Encoding Files

Difference isolation can be used to produce a
differential encoding of one of two versions of a file.
This encoding can be stored or transmitted more
efficiently than the complete file. The original file can
later be reconstructed from its differential encoding
and the other version. Two applications are: (1) A file
system can keep several versions of a file by storing
one version in toto and the others as differential
encodings; and (2) copies of files on remote computers
can be updated with minimum communications cost.

The analysis of the problem of undetected changes
for the encoding process is different from that for
source comparison since the decoding algorithm will
not tolerate an occasional false moved block, while the

Communications April 1978
of Volume 21
the ACM Number 4

user who reads a source comparison listing will. Two
techniques can be used to mitigate this problem. First,
checksums of the original and reconstructed files can
be computed and compared, and, if they are not the
same, the original file can be transmitted in full.
Second, the extra pass, which "unfinds" any single
line blocks, can be inserted into the algorithm. Most
undetected changes, since they look like single line
blocks, would be eliminated at the small cost of trans-
mitting all single line blocks.

Efficient encoding can be done even if the old
version is not saved on the "new file" computer . The
encoding algorithm does not require the text of the old
file, but only the array of hashcodes OA. The array of
hashcodes can be transmitted from the "old file"
computer to the new file computer and the encoding
sent back. In general, this procedure would require
less bandwidth than would be needed to transmit the
whole file.

The bandwidth used can be reduced even more by
using a recursive scheme with hierarchy of basic units
(e.g. chapters, sections, paragraphs, and sentences).
The "new file" computer would load the array NA,
and the "old file" computer would load the array OA
with hashcodes. During phase 1, the "old file" com-
puter would scan OA to calculate the hashcodes for all
the chapters and then transmit them with the beginning
and ending line numbers. The "new file" computer
would then compare these hashcodes with those that it
calculated for the chapters; differences can be isolated
at the chapter level, with each line of the chapter
linked for each identical chapter found. In the second
phase, only the changed chapters are divided into
sections, and their hashcodes computed and transmit-
ted in like manner . Only during the last phase is the
unchanged basic unit (lines) transmitted if it is detected
as changed.

was implemented on an XDS-940 about 5 years ago.
More recently, Bill Frantz of Tymshare implemented
both PL/1 and 370 machine language versions. Codie
Wells made some technical suggestions including the
double hashcode and recursive schemes. Mark Hal-
pern, Butler Lampson, Tom Weston, Glenn Manacher ,
and Bonnie Simrell made several useful editorial sug-
gestions which have improved the presentation of the
ideas in this paper. Glenn Manacher also pointed out
the relevance of the longest common subsequence
problem [1, 6, 7, 10].

Received April 1976; revised December 1976

References
1. Aho, A., Hirschberg, D., and Ullman, J. Bounds on the
complexity of the longest common subsequence problem. J. ACM
23, 1 (Jan. 1976), 1-12.
2. Deutsch, P., and Lampson, B. An online editor. Comm. A C M
10, 12 (Dec. 1967), 793-799.
3. Digital Equipment Corp. DEC System 10 Assembly Language
Handbook, 3d ed., 1972, pp. 931-942.
4. Fajman, R., and Borgelt, J. WYLBUR: An interactive text
editing and remote job entry system. Comm. A CM 16, 5 (May
1973), 314-322.
5. Heckel, P. A technique for isolating differences between files.
Tech. Pub. 73, Interactive Systems Consultants, Palo Alto, Calif.
6. Hirschberg, D. A linear space algorithm for computing maximal
common subsequences. Comm. A C M 18, 6 (June 1975), 342-343.
7. Hunt, J., and McIlroy, M. An algorithm for differential file
comparison. Compt. Sci. Techn. Rep. 41, Bell Telephone Labs,
Murray Hill, N.J., Aug. 1976.
8. IBM Corp. IBM Virtual Machine Facility/370 Command
Language Guide for General Users, Release 2 ,225-226.1
(UPDATE).
9. Knuth, D.E. The Art o f Computer Programming, Vol. 3:
Sorting and Searching. Addison-Wesley, Reading, Mass., 1973, p.
509.
10. Wagner, R., and Fischer, M. The string-to-string correction
problem. J. A CM 21, 1 (Jan. 1974), 168-173.

6. Merging Files

Another application of difference isolation involves
the merging of text changes. This can happen when an
organization maintains its own version of a vendor 's
program and wishes to merge vendor changes with its
own whenever a new version of the program is distrib-
uted. IBM has such a syste m [8], but all changes must
be especially encoded by the user. The method for
generating the merged output should be fairly easy to
understand from Figure 2; an algorithm for this pur-
pose is given in the appendix to [5]. Where blocks of
lines have been moved, the order of the output lines is
determined by choosing one of the files as the main
file. Thus two possible merged files can be generated,
depending on which of the modified files is chosen as
dominant .

Acknowledgments. The algorithm described here

268 Communications April 1978
of Volume 21
the ACM Number 4

