The Javee Virtual
Machine Specification
Java SE 11 Edition

Tim Lindholm
Frank Yellin
Gilad Bracha
Alex Buckley
Daniel Smith

2018-08-21

Specification: JSR-384 Java SE 11 (18.9) (" Specification")
Version: 11

Status: Final Release

Specification Lead: Oracle America, Inc. (" Specification Lead")
Release: September 2018

Copyright © 1997, 2018, Oracle America, Inc.
All rights reserved.

The Specification provided hereinis provided to you only under the Limited License Grant
included herein as Appendix A. Please see Appendix A, Limited License Grant.

Table of Contents

1 Introduction 1

11
12
13
14
15

A Bit of History 1

The JavaVirtual Machine 2
Organization of the Specification 3
Notation 4

Feedback 4

2 The Structure of the Java Virtual Machine 5

21
22
23

24
25

2.6

2.7
2.8

2.9

2.10

Thecl ass FileFormat 5

DataTypes 6

Primitive Typesand Values 6

231 Integra Typesand Values 7

2.3.2 Floating-Point Types, Vaue Sets, and Values 8

233 ThereturnAddress Typeand Vaues 10

234 Thebool ean Type 10

Reference Typesand Values 11

Run-Time Data Areas 11

251 Thepc Register 12

252 JavaVirtua Machine Stacks 12

253 Heap 13

254 Method Area 13

255 Run-Time Constant Pool 14

256 Native Method Stacks 14

Frames 15

26.1 Locd Variables 16

26.2 Operand Stacks 17

2.6.3 Dynamic Linking 18

264 Norma Method Invocation Completion 18

26.5 Abrupt Method Invocation Completion 18

Representation of Objects 19

Floating-Point Arithmetic 19

28.1 JavaVirtua Machine Floating-Point Arithmetic and |EEE
754 19

2.8.2 Floating-Point Modes 20

28.3 Value Set Conversion 20

Special Methods 22

29.1 Instance Initialization Methods 22

29.2 Classlnitiaization Methods 22

29.3 Signature Polymorphic Methods 23

Exceptions 23

The Javae Virtual Machine Specification

211 Instruction Set Summary 26
2111 Typesand the JavaVirtua Machine 26
2112 Load and Store Instructions 29
2.11.3 Arithmetic Instructions 30
2114 Type Conversion Instructions 32
2115 Object Creation and Manipulation 34
2.11.6 Operand Stack Management Instructions 34
2.11.7 Control Transfer Instructions 34
2.11.8 Method Invocation and Return Instructions 35
2119 Throwing Exceptions 36
2.11.10 Synchronization 36

212 ClassLibraries 37

2.13 Public Design, Private Implementation 37

3 Compiling for the Java Virtual Machine 39

3.1 Format of Examples 39

3.2 Useof Congtants, Local Variables, and Control Constructs 40
3.3 Arithmetic 45

34 Accessing the Run-Time Constant Pool 46
3.5 MoreControl Examples 47

3.6 Receving Arguments 50

3.7 Invoking Methods 51

3.8 Working with Class Instances 53

3.9 Arrays 55

3.10 Compiling Switches 57

3.11 Operations on the Operand Stack 59

3.12 Throwing and Handling Exceptions 59
3.13 Compilingfinally 63

3.14 Synchronization 66

3.15 Annotations 67

3.16 Modules 68

4 Theclass FileFormat 71

4.1 Thed assFil e Structure 72
4.2 Names 77
421 Binary Classand Interface Names 77
4.2.2 Unquaified Names 78
4.2.3 Module and Package Names 78
4.3 Descriptors 79
431 Grammar Notation 79
4.3.2 Field Descriptors 79
4.3.3 Method Descriptors 81
44 The Constant Pool 82
441 TheCONSTANT O ass_i nf o Structure 85
442 The CONSTANT Fi el dref _i nf o, CONSTANT_Met hodr ef _i nf 0, and
CONSTANT _I nt er f aceMet hodr ef _i nf o Structures 86
443 TheCONSTANT String_i nf o Structure 87

45
4.6
47

444

445

4.4.6
4.4.7
4.4.8
449
4.4.10

4411
4.4.12

The Javae Virtual Machine Specification

The CONSTANT _I nt eger _i nf o and CONSTANT_Fl oat _i nfo
Structures 87

The CONSTANT _Long_i nf o and CONSTANT _Doubl e_i nf o
Structures 89

The CONSTANT_NaneAndType_i nf o Structure 90

The CONSTANT _Ut f 8_i nf o Structure 91

The CONSTANT_Met hodHandl e_i nf o Structure 93

The CONSTANT_Met hodType_i nf o Structure 95

The CONSTANT_Dynani c_i nf o and

CONSTANT _I nvokeDynani c_i nf o Structures 95

The CONSTANT _Mbdul e_i nf o Structure 96

The CONSTANT _Package_i nf o Structure 97

Fields 98
Methods 100
Attributes 103

4.7.1
4.7.2
4.7.3
4.7.4
4.7.5
4.7.6
4.7.7
4.7.8
4.7.9

4.7.10
4.7.11
4.7.12
4.7.13
4.7.14
4.7.15
4.7.16

4.7.17
4.7.18
4.7.19
4.7.20

4.7.21
4.7.22
4.7.23
4.7.24
4.7.25
4.7.26
4.7.27
4.7.28
4.7.29

Defining and Naming New Attributes 110

The Const ant Val ue Attribute 110

The Code Attribute 111

The St ackMapTabl e Attribute 115

TheExcept i ons Attribute 122

Thel nner d asses Attribute 123

The Encl osi ngMet hod Attribute 126

The Synt het i ¢ Attribute 127

The Si gnat ur e Attribute 128

479.1 Signatures 129

The Sour ceFi | e Attribute 133

The Sour ceDebugExt ensi on Attribute 133

The Li neNunber Tabl e Attribute 134

The Local Vari abl eTabl e Attribute 135

The Local Vari abl eTypeTabl e Attribute 137

The Depr ecat ed Attribute 139

TheRunt i meVi si bl eAnnot at i ons Attribute 140
47.16.1 Theel enent _val ue structure 142
TheRunti nel nvi si bl eAnnot at i ons Attribute 145
The Runt i meVi si bl ePar amet er Annot at i ons Attribute 146
The Runti el nvi si bl ePar anet er Annot at i ons Attribute 147
TheRunt i meVi si bl eTypeAnnot at i ons Attribute 149
4,7.20.1 Thetarget _infounion 155

47.20.2 Thetype_pat h structure 159

TheRunti nel nvi si bl eTypeAnnot at i ons Attribute 163
The Annot at i onDef aul t Attribute 164

The Boot st rapMet hods Attribute 165

The Met hodPar aret er s Attribute 167

The Mbdul e Attribute 169

The Mvdul ePackages Attribute 176

The Mbdul eMai nCl ass Attribute 177

The Nest Host Attribute 178

The Nest Menber s Attribute 178

The Javae Virtual Machine Specification

4.8
4.9

4.10

Format Checking 180
Constraints on Java Virtual Machine Code 180

491
49.2

Static Constraints 181
Structural Constraints 184

Verification of cl ass Files 188

4.10.1

4.10.2

Verification by Type Checking 189

4.10.1.1 Accessorsfor Java Virtual Machine Artifacts 192

410.1.2 Veification Type System 196

4.10.1.3 Instruction Representation 200

4.10.1.4 Stack Map Frames and Type Transitions 202

4.10.1.5 Type Checking Abstract and Native Methods 207

4.10.1.6 Type Checking Methods with Code 210

4.10.1.7 Type Checking Load and Store Instructions 219

4.10.1.8 Type Checking for pr ot ect ed Members 221

4.10.1.9 Type Checking Instructions 224

Verification by Type Inference 343

4.10.2.1 TheProcess of Verification by Type Inference 343

4.10.2.2 TheBytecode Verifier 343

4.10.2.3 Valuesof Types! ong and doubl e 347

4.10.2.4 Instance Initialization Methods and Newly Created
Objects 347

4.10.25 Exceptionsandfinally 349

411 Limitations of the Java Virtual Machine 351

5 Loading, Linking, and Initializing 353

The Run-Time Constant Pool 353
Java Virtual Machine Startup 356
Creation and Loading 357

51
52
53

54

Vi

531
532
533
5.34
5.35
5.3.6
Linking
541
5.4.2
5.4.3

544
54.5

Loading Using the Bootstrap Class Loader 359

Loading Using a User-defined Class Loader 359

Creating Array Classes 360

Loading Constraints 361

Deriving aClassfrom acl ass File Representation 362

Modules and Layers 364

366

Verification 367

Preparation 367

Resolution 368

5431 Classand Interface Resolution 370

5432 Field Resolution 371

5433 Method Resolution 372

5434 Interface Method Resolution 374

5435 Method Type and Method Handle Resolution 375

54.36 Dynamically-Computed Constant and Call Site
Resolution 379

Access Control 384

Method Overriding 386

6

55
5.6
5.7

The Javae Virtual Machine Specification

54.6 Method Selection 387

Initialization 387

Binding Native Method Implementations 390
JavaVirtua Machine Exit 391

TheJava Virtual Machine Instruction Set 393

6.1
6.2
6.3
6.4

6.5

Assumptions: The Meaning of "Must" 393
Reserved Opcodes 394
Virtual Machine Errors 394
Format of Instruction Descriptions 395
mnemonic 396
Instructions 398
aaload 399
aastore 400
aconst_null 402
aload 403
aload <n> 404
anewarray 405
areturn 406
arraylength 407
astore 408
astore <n> 409
athrow 410
baload 412
bastore 413
bipush 414
caload 415
castore 416
checkcast 417
d2f 419
d2i 420
d2l 421
dadd 422
daload 424
dastore 425
dcmp<op> 426
dconst_ <d> 428
ddiv 429
dload 431
dload <n> 432
dmul 433
dneg 435
drem 436
dreturn 438
dstore 439
dstore <n> 440
dsub 441

Vii

The Javae Virtual Machine Specification

dup 442
dup x1 443
dup x2 444
dup2 445
dup2 x1 446
dup2 x2 447
f2ad 449

f2i 450

f2l 451

fadd 452
faload 454
fastore 455
fcmp<op> 456
fconst_<f> 458
fdiv 459

fload 461
fload_<n> 462
fmul 463

fneg 465

frem 466
freturn 468
fstore 469
fstore <n> 470
fsub 471
getfield 472
getstatic 473
goto 475
goto_w 476
i2b 477

i2c 478

i2d 479

i2f 480

i2l 481

i2s 482

iadd 483
iaload 484
iand 485
iastore 486
iconst_<i> 487
idiv 488

if acmp<cond> 489
if icmp<cond> 490
if<cond> 492
ifnonnull 494
ifnull 495

iinc 496

iload 497
iload <n> 498

viii

imul 499

ineg 500
instanceof 501
invokedynamic 503
invokeinterface 505
invokespecial 509
invokestatic 513
invokevirtual 516
ior 523

irem 524

ireturn 525

ishl 527

ishr 528

istore 529
istore <n> 530
isub 531

iushr 532

ixor 533

jsr 534

jsr_w 535

12d 536

|2f 537

[2i 538

ladd 539

laload 540

land 541

lastore 542

lcmp 543
lconst_<I> 544
ldc 545

Idc w 547
Idc2 w 549

Idiv 551

lload 552
[load_<n> 553
Imul 554

Ineg 555
lookupswitch 556
lor 558

Irem 559

Ireturn 560

Isnl 561

Ishr 562

Istore 563
Istore <n> 564
Isub 565

lushr 566

Ixor 567

The Javae Virtual Machine Specification

The Javae Virtual Machine Specification

monitorenter 568
monitorexit 570
multianewarray 572
new 574
newarray 576
nop 578

pop 579

pop2 580
putfield 581
putstatic 583

ret 585

return 586
saload 587
sastore 588
sipush 589
swap 590
tableswitch 591
wide 593

7 Opcode Mnemonics by Opcode 595

A Limited License Grant 599

CHAPTER 1

| ntroduction

1.1 A Bit of History

The Javaer programming language isageneral -purpose, concurrent, object-oriented
language. Its syntax is similar to C and C++, but it omits many of the features that
make C and C++ complex, confusing, and unsafe. The Java platform was initially
developed to address the problems of building software for networked consumer
devices. It was designed to support multiple host architectures and to allow secure
delivery of software components. To meet these requirements, compiled code had
to survive transport across networks, operate on any client, and assure the client
that it was safe to run.

The popularization of the World Wide Web made these attributes much more
interesting. Web browsers enabled millions of people to surf the Net and access
media-rich content in simple ways. At last there was a medium where what you
saw and heard was essentially the same regardless of the machine you were using
and whether it was connected to afast network or a slow modem.

Web enthusiasts soon discovered that the content supported by the Web's HTML
document format was too limited. HTML extensions, such as forms, only
highlighted those limitations, while making it clear that no browser could include
al the features users wanted. Extensibility was the answer.

The HotJava browser first showcased the interesting properties of the Java
programming language and platform by making it possible to embed programs
inside HTML pages. Programs are transparently downloaded into the browser
aong with the HTML pages in which they appear. Before being accepted by the
browser, programs are carefully checked to make sure they are safe. Like HTML
pages, compiled programs are network- and host-independent. The programs
behave the same way regardless of where they come from or what kind of machine
they are being loaded into and run on.

1.2

The Java Virtual Machine INTRODUCTION

A Web browser incorporating the Java platform is no longer limited to a
predetermined set of capabilities. Visitors to Web pages incorporating dynamic
content can be assured that their machines cannot be damaged by that content.
Programmers can write a program once, and it will run on any machine supplying
aJava run-time environment.

1.2 TheJava Virtual Machine

The Java Virtual Machine is the cornerstone of the Java platform. It is the
component of the technology responsible for its hardware- and operating system-
independence, the small size of its compiled code, and its ability to protect users
from malicious programs.

The JavaVirtual Machineis an abstract computing machine. Likeareal computing
machine, it hasan instruction set and mani pul ates variousmemory areasat runtime.
It is reasonably common to implement a programming language using a virtua
machine; the best-known virtual machine may be the P-Code machine of UCSD
Pascal.

The first prototype implementation of the Java Virtual Machine, done at Sun
Microsystems, Inc., emulated the Java Virtual Machine instruction set in software
hosted by a handheld device that resembled a contemporary Personal Digital
Assistant (PDA). Oracle's current implementations emulate the Java Virtua
Machine on mobile, desktop and server devices, but the Java Virtual Machine
does not assume any particular implementation technology, host hardware, or
host operating system. It is not inherently interpreted, but can just as well be
implemented by compiling its instruction set to that of asilicon CPU. It may also
be implemented in microcode or directly in silicon.

The Java Virtual Machine knows nothing of the Java programming language, only
of a particular binary format, the cl ass file format. A cl ass file contains Java
Virtual Machine instructions (or bytecodes) and a symbol table, as well as other
ancillary information.

For the sake of security, the Java Virtual Machine imposes strong syntactic and
structural constraints on the code in a cl ass file. However, any language with
functionality that can be expressed in terms of avalid cl ass file can be hosted by
the Java Virtual Machine. Attracted by a generally available, machine-independent
platform, implementors of other languages can turn to the Java Virtual Machine as
adelivery vehicle for their languages.

INTRODUCTION Organization of the Specification

The Java Virtual Machine specified here is compatible with the Java SE 11
platform, and supports the Java programming language specified in The Java
Language Specification, Java SE 11 Edition.

1.3 Organization of the Specification

Chapter 2 gives an overview of the Java Virtual Machine architecture.

Chapter 3 introduces compilation of code written in the Java programming
language into the instruction set of the Java Virtual Machine.

Chapter 4 specifies the cl ass file format, the hardware- and operating system-
independent binary format used to represent compiled classes and interfaces.

Chapter 5 gpecifies the start-up of the Java Virtual Machine and the loading,
linking, and initialization of classes and interfaces.

Chapter 6 specifies the instruction set of the Java Virtual Machine, presenting the
instructions in alphabetical order of opcode mnemonics.

Chapter 7 gives a table of Java Virtual Machine opcode mnemonics indexed by
opcode value.

In the Second Edition of The Java® Virtual Machine Specification, Chapter 2
gave an overview of the Java programming language that was intended to support
the specification of the Java Virtual Machine but was not itself a part of the
specification. In The Java Virtual Machine Specification, Java SE 11 Edition, the
reader is referred to The Java Language Specification, Java SE 11 Edition for
information about the Java programming language. References of the form: (JLS
8x.y) indicate where this is necessary.

In the Second Edition of The Javae Virtual Machine Specification, Chapter 8
detailed thelow-level actionsthat explained theinteraction of JavaVirtual Machine
threads with a shared main memory. In The Java Virtual Machine Specification,
Java SE 11 Edition, the reader is referred to Chapter 17 of The Java Language
Soecification, Java SE 11 Edition for information about threads and |ocks. Chapter
17 reflects The Java Memory Model and Thread Specification produced by the JISR
133 Expert Group.

13

14

Notation INTRODUCTION

1.4 Notation

Throughout this specification we refer to classes and interfaces drawn from the
Java SE Platform API. Whenever we refer to a class or interface (other than those
declared in an example) using asingle identifier N, the intended reference isto the
class or interface named N in the package j ava. | ang. We use the fully qualified
name for classes or interfaces from packages other than j ava. | ang.

Whenever we refer to a class or interface that is declared in the package j ava or
any of its subpackages, the intended reference isto that class or interface asloaded
by the bootstrap class loader (85.3.1).

Whenever we refer to a subpackage of a package named j ava, the intended
referenceis to that subpackage as determined by the bootstrap class loader.

The use of fontsin this specification is as follows:

* Afixed width fontisused for Java Virtual Machine data types, exceptions,
errors, cl ass file structures, Prolog code, and Java code fragments.

« Italic is used for Java Virtual Machine "assembly language”, its opcodes and
operands, as well asitems in the Java Virtua Machine's run-time data areas. It
is also used to introduce new terms and simply for emphasis.

Non-normative information, designed to clarify the specification, is given in
smaller, indented text.

Thisis non-normative information. It provides intuition, rationale, advice, examples, etc.

1.5 Feedback

Readers are invited to report technical errors and ambiguitiesin The Javae Virtual
Machine Specificationtoj I s-j vis- spec- comrent s@penj dk. j ava. net .

Questions concerning the generation and manipulation of ¢l ass filesby j avac (the
reference compiler for the Java programming language) may be sent to conpi | er -
dev@penj dk. j ava. net .

CHAPTER2

The Structure of the Java
Virtual Machine

T HIS document specifies an abstract machine. It does not describe any particular
implementation of the Java Virtual Machine.

To implement the Java Virtual Machine correctly, you need only be able to
read the cl ass file format and correctly perform the operations specified therein.
Implementation detailsthat are not part of the Java Virtual Machine's specification
would unnecessarily constrain the creativity of implementors. For example, the
memory layout of run-time data areas, the garbage-collection algorithm used, and
any internal optimization of the Java Virtual Machine instructions (for example,
trangdlating them into machine code) are | eft to the discretion of the implementor.

All references to Unicode in this specification are given with respect to The
Unicode Sandard, Version 10.0.0, available at ht t p: / / ww. uni code. or g/ .

2.1 Thecl ass File Format

Compiled code to be executed by the Java Virtual Machine is represented using
a hardware- and operating system-independent binary format, typically (but not
necessarily) stored in afile, known asthecl ass fileformat. Thecl ass file format
precisely defines the representation of a class or interface, including details such
as byte ordering that might be taken for granted in a platform-specific object file
format.

Chapter 4, "Thecl ass File Format", coversthecl ass file format in detail.

22

Data Types THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

2.2 DataTypes

Like the Java programming language, the Java Virtual Machine operates on two
kinds of types: primitivetypes and referencetypes. Thereare, correspondingly, two
kinds of values that can be stored in variables, passed as arguments, returned by
methods, and operated upon: primitive values and reference values.

The Java Virtual Machine expects that nearly al type checking is done prior
to run time, typically by a compiler, and does not have to be done by the Java
Virtual Machine itself. Values of primitive types need not be tagged or otherwise
be inspectable to determine their types at run time, or to be distinguished from
values of reference types. Instead, the instruction set of the Java Virtual Machine
distinguishes its operand types using instructions intended to operate on values of
specific types. For instance, iadd, ladd, fadd, and dadd are all JavaVirtual Machine
instructions that add two numeric values and produce numeric results, but each is
specidized for itsoperand type: i nt , | ong, f | oat , and doubl e, respectively. For a
summary of type support in the Java Virtual Machine instruction set, see 82.11.1.

The Java Virtual Machine contains explicit support for objects. An object is
either adynamically allocated class instance or an array. A reference to an object
is considered to have Java Virtual Machine type reference. Vaues of type
r ef er ence can be thought of as pointers to objects. More than one reference to an
object may exist. Objects are always operated on, passed, and tested via values of
typer ef er ence.

2.3 Primitive Typesand Values

The primitive data types supported by the Java Virtual Machine are the numeric
types, the bool ean type (§2.3.4), and ther et ur nAddr ess type (82.3.3).

The numeric types consist of theintegral types (82.3.1) and the floating-point types
(82.3.2).

Theintegral types are:

* byte, whose values are 8-bit signed two's-complement integers, and whose
default valueis zero

* short, whose values are 16-hit signed two's-complement integers, and whose
default valueis zero

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Primitive Types and Values

* int, whose values are 32-bit signed two's-complement integers, and whose
default value is zero

* | ong, whose values are 64-bit signed two's-complement integers, and whose
default valueis zero

» char, whose values are 16-hit unsigned integers representing Unicode code
pointsin the Basic Multilingual Plane, encoded with UTF-16, and whose default
valueisthe null code point (' \ u0000')

The floating-point types are:

* float, whose values are el ements of the float value set or, where supported, the
float-extended-exponent value set, and whose default value is positive zero

* doubl e, whose values are elements of the double value set or, where supported,
the doubl e-extended-exponent val ue set, and whose default value is positive zero

The values of the bool ean type encode the truth valuest r ue and f al se, and the
default valueisf al se.

The First Edition of The Java® Virtual Machine Specification did not consider bool ean
to be a Java Virtual Machine type. However, bool ean values do have limited support in
the Java Virtual Machine. The Second Edition of The Javae Virtual Machine Specification
clarified the issue by treating bool ean asatype.

The values of ther et ur nAddr ess type are pointers to the opcodes of Java Virtua
Machine instructions. Of the primitive types, only ther et ur nAddr ess type is not
directly associated with a Java programming language type.

231 Integral Typesand Values

The values of theintegral types of the Java Virtual Machine are:

* For byt e, from-128 to 127 (-27 to 2’ - 1), inclusive

* For short, from -32768 to 32767 (-215 to 21°- 1), inclusive

« Fori nt, from -2147483648 to 2147483647 (-2** to 2*! - 1), inclusive

« For | ong, from -9223372036854775808 to 9223372036854775807 (-2% to 2%
- 1), inclusive

e For char, from 0 to 65535 inclusive

2.3

2.3

Primitive Types and Values THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

2.3.2 Floating-Point Types, Value Sets, and Values

The floating-point typesaref | oat and doubl e, which are conceptually associated
with the 32-bit single-precision and 64-bit double-precision format |IEEE 754
values and operations as specified in IEEE Sandard for Binary Floating-Point
Arithmetic (ANSI/IEEE Std. 754-1985, New Y ork).

The IEEE 754 standard includes not only positive and negative sign-magnitude
numbers, but also positive and negative zeros, positive and negative infinities, and
a specia Not-a-Number value (hereafter abbreviated as "NaN"). The NaN value
is used to represent the result of certain invalid operations such as dividing zero
by zero.

Every implementation of the Java Virtual Machine is required to support two
standard sets of floating-point values, called the float val ue set and the double value
set. In addition, an implementation of the Java Virtual Machine may, at its option,
support either or both of two extended-exponent floating-point value sets, called
the fl oat-extended-exponent val ue set and the doubl e-extended-exponent val ue set.
These extended-exponent value sets may, under certain circumstances, be used
instead of the standard value setsto represent the values of typef 1 oat or doubl e.

The finite nonzero values of any floating-point value set can all be expressed in
the form s Om [(2©®"N* Y where sis +1 or -1, mis a positive integer less than
2N and eis an integer between Epip = -(2-2) and Epux = 2€°-1, inclusive, and
where N and K are parameters that depend on the value set. Some values can
be represented in this form in more than one way; for example, supposing that a
value v in a value set might be represented in this form using certain values for
s, m, and e, then if it happened that m were even and e were less than 2%, one
could halve mand increase e by 1 to produce a second representation for the same
value v. A representation in this form is called normalized if m > 2V otherwise
the representation is said to be denormalized. If a value in a value set cannot be
represented in such away that m= 2"V, then the valueis said to be adenormalized
value, because it has no normalized representation.

The constraints on the parameters N and K (and on the derived parameters Ein
and Engy) for the two required and two optiona floating-point value sets are
summarized in Table 2.3.2-A.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Primitive Types and Values

Table 2.3.2-A. Floating-point value set parameters

Par ameter float float-extended- double double-extended-
exponent exponent
24 24 53 53
8 >11 1 215
Emax +127 > +1023 +1023 > +16383
Enmin -126 <-1022 -1022 <-16382

Where one or both extended-exponent value sets are supported by an
implementation, then for each supported extended-exponent value set there is
a specific implementation-dependent constant K, whose value is constrained by
Table 2.3.2-A; thisvalue K in turn dictates the values for Eqin and Epax.

Each of the four value sets includes not only the finite nonzero values that are
ascribed to it above, but also the five values positive zero, negative zero, positive
infinity, negative infinity, and NaN.

Note that the constraintsin Table 2.3.2-A are designed so that every element of the
float value set is necessarily also an element of the float-extended-exponent value
set, the double value set, and the double-extended-exponent value set. Likewise,
each element of the double value set is necessarily also an element of the double-
extended-exponent value set. Each extended-exponent value set has alarger range
of exponent values than the corresponding standard value set, but does not have
more precision.

The elements of the float value set are exactly the values that can be represented
using the single floating-point format defined in the IEEE 754 standard, except
that there is only one NaN value (IEEE 754 specifies 2242 distinct NaN values).
The elements of the double value set are exactly the values that can be represented
using the double floating-point format defined in the IEEE 754 standard, except
that there is only one NaN value (IEEE 754 specifies 2°3-2 distinct NaN values).
Note, however, that the elements of the float-extended-exponent and double-
extended-exponent value sets defined here do not correspond to the values that
can be represented using | EEE 754 single extended and double extended formats,
respectively. This specification does not mandate a specific representation for the
values of the floating-point value sets except where floating-point values must be
represented in the cl ass fileformat (84.4.4, 84.4.5).

The float, float-extended-exponent, double, and double-extended-exponent value
sets are not types. It is always correct for an implementation of the Java Virtua

2.3

2.3

10

Primitive Types and Values THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

Machineto use an element of the float value set to represent avalue of typef oat ;
however, it may be permissible in certain contexts for an implementation to use
an element of the float-extended-exponent value set instead. Similarly, itisaways
correct for an implementation to use an element of the double value set to represent
a value of type doubl e; however, it may be permissible in certain contexts for
an implementation to use an element of the double-extended-exponent value set
instead.

Except for NaNs, values of the floating-point value sets are ordered. When
arranged from smallest to largest, they are negative infinity, negative finite values,
positive and negative zero, positive finite values, and positive infinity.

Floating-point positive zero and floating-point negative zero compare as equal, but
there are other operations that can distinguish them; for example, dividing 1. 0 by
0. 0 produces positiveinfinity, but dividing 1. 0 by - 0. 0 produces negativeinfinity.

NaNs are unordered, so numerical comparisons and tests for numerical egquality
have the value f al se if either or both of their operands are NaN. In particular, a
test for numerical equality of avalue against itself hasthe valuef al se if and only
if the value is NaN. A test for numerical inequality has the value t r ue if either
operand is NaN.

2.3.3 ThereturnAddress Typeand Values

Ther et ur nAddr ess type is used by the Java Virtual Maching'sjsr, ret, and jsr_w
instructions (§jsr, 8ret, §jsr_w). Thevaluesof ther et ur nAddr ess typearepointers
to the opcodes of Java Virtual Machine instructions. Unlike the numeric primitive
types, the ret urnAddr ess type does not correspond to any Java programming
language type and cannot be modified by the running program.

234 Thebool ean Type

Although the Java Virtual Machine defines a bool ean type, it only provides
very limited support for it. There are no Java Virtual Machine instructions solely
dedicated to operations on bool ean values. Instead, expressions in the Java
programming language that operate on bool ean values are compiled to use values
of the Java Virtual Machinei nt datatype.

The Java Virtual Machine does directly support bool ean arrays. Its newarray
instruction (8newarray) enables creation of bool ean arrays. Arrays of type
bool ean are accessed and modified using the byt e array instructions baload and
bastore (8baload, 8bastore).

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Reference Types and Values

In Oracle's Java Virtual Machine implementation, bool ean arrays in the Java
programming language are encoded as Java Virtual Machine byt e arrays, using 8 bits per
bool ean element.

The JavaVirtual Machine encodesbool ean array componentsusing 1 to represent
t rue and 0 to represent f al se. Where Javaprogramming language bool ean values
are mapped by compilersto values of JavaVirtual Machinetypei nt , the compilers
must use the same encoding.

2.4 Reference Typesand Values

There are three kinds of r ef er ence types: class types, array types, and interface
types. Their values are referencesto dynamically created classinstances, arrays, or
classinstances or arrays that implement interfaces, respectively.

An array type consists of a component type with asingle dimension (whose length
isnot given by thetype). The component type of an array type may itself bean array
type. If, starting from any array type, one considers its component type, and then
(if that isalso an array type) the component type of that type, and so on, eventually
one must reach acomponent typethat isnot an array type; thisis called the element
type of the array type. The element type of an array type is necessarily either a
primitive type, or aclasstype, or an interface type.

A ref erence value may also bethe special null reference, areferenceto no object,
which will be denoted here by nul I . Thenul I reference initially has no run-time
type, but may be cast to any type. The default value of ar ef er ence typeisnul | .

This specification does not mandate a concrete value encoding nul | .

2.5 Run-Time Data Areas

The JavaVirtual Machine defines various run-time data areas that are used during
execution of a program. Some of these data areas are created on Java Virtua
Machine start-up and are destroyed only when the Java Virtual Machine exits.
Other data areas are per thread. Per-thread data areas are created when athread is
created and destroyed when the thread exits.

24

11

25

12

Run-Time Data Areas THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

251 Thepc Register

The Java Virtual Machine can support many threads of execution at once (JLS
817). Each Java Virtual Machine thread hasits own pc (program counter) register.
At any point, each Java Virtual Machine thread is executing the code of a single
method, namely the current method (82.6) for that thread. If that method is not
nati ve, the pc register containsthe address of the Java Virtual Machineinstruction
currently being executed. If the method currently being executed by the thread is
nati ve, the value of the Java Virtual Machine's pc register is undefined. The Java
Virtual Machine's pc register iswide enough to hold ar et ur nAddr ess or anative
pointer on the specific platform.

2.5.2 JavaVirtual Machine Stacks

Each JavaVirtual Machinethread hasaprivate Java Virtual Machine stack, created
at the same time as the thread. A Java Virtual Machine stack stores frames (82.6).
A JavaVirtual Machine stack is analogous to the stack of a conventional language
such as C: it holds local variables and partial results, and plays a part in method
invocation and return. Becausethe JavaVirtual Machine stack isnever manipul ated
directly except to push and pop frames, frames may be heap allocated. The memory
for aJava Virtua Machine stack does not need to be contiguous.

In the First Edition of The Javae Virtual Machine Specification, the Java Virtua Machine
stack was known as the Java stack.

This specification permits Java Virtual Machine stacks either to be of afixed size
or to dynamically expand and contract as required by the computation. If the Java
Virtual Machine stacks are of afixed size, the size of each Java Virtual Machine
stack may be chosen independently when that stack is created.

A Java Virtua Machine implementation may provide the programmer or the user control
over the initial size of Java Virtual Machine stacks, as well as, in the case of dynamically
expanding or contracting Java Virtua Machine stacks, control over the maximum and
minimum sizes.

The following exceptional conditions are associated with Java Virtua Machine
stacks:

« |If the computation in athread requires alarger Java Virtual Machine stack than
is permitted, the Java Virtual Machine throws a St ackOver f | owEr r or .

* If Java Virtual Machine stacks can be dynamically expanded, and expansion is
attempted but insufficient memory can be made available to effect the expansion,
or if insufficient memory can be made available to create the initia Java

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Run-Time Data Areas

Virtua Machine stack for a new thread, the Java Virtual Machine throws an
Qut OF Menor yError .

253 Heap

TheJavaVirtual Machine has aheap that is shared among all JavaVirtual Machine
threads. The heap is the run-time data area from which memory for all class
instances and arraysis allocated.

The heap is created on virtual machine start-up. Heap storage for objects is
reclaimed by an automatic storage management system (known as a garbage
collector); objects are never explicitly deallocated. The Java Virtua Machine
assumes no particular type of automatic storage management system, and the
storage management technique may be chosen according to the implementor's
system requirements. The heap may be of a fixed size or may be expanded as
required by the computation and may be contracted if a larger heap becomes
unnecessary. The memory for the heap does not need to be contiguous.

A Java Virtua Machine implementation may provide the programmer or the user control
over the initial size of the heap, as well as, if the heap can be dynamically expanded or
contracted, control over the maximum and minimum heap size.

The following exceptional condition is associated with the heap:

* If a computation requires more heap than can be made available by the
automatic storage management system, the Java Virtual Machine throws an
Qut O Menor yError .

254 Method Area

The Java Virtual Machine has a method area that is shared among all Java
Virtual Machine threads. The method area is analogous to the storage area for
compiled code of a conventional language or analogous to the "text" segment in
an operating system process. It stores per-class structures such as the run-time
constant pool, field and method data, and the code for methods and constructors,
including the special methods used in class and interface initialization and in
instance initialization (82.9).

The method areais created on virtual machine start-up. Although the method area
is logically part of the heap, simple implementations may choose not to either
garbage collect or compact it. This specification does not mandate the location of
the method area or the policies used to manage compiled code. The method area
may be of afixed size or may be expanded as required by the computation and may

25

13

25

14

Run-Time Data Areas THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

be contracted if a larger method area becomes unnecessary. The memory for the
method area does not need to be contiguous.

A Java Virtua Machine implementation may provide the programmer or the user control
over theinitial size of themethod area, aswell as, in the case of avarying-size method area,
control over the maximum and minimum method area size.

The following exceptional condition is associated with the method area:

* If memory in the method area cannot be made available to satisfy an allocation
reguest, the Java Virtual Machine throws an Qut O Menor yEr r or .

255 Run-Time Constant Pool

A run-time constant pool is a per-class or per-interface run-time representation
of the constant _pool table in acl ass file (84.4). It contains severa kinds of
constants, ranging from numeric literalsknown at compile-timeto method and field
references that must be resolved at run-time. The run-time constant pool serves a
function similar to that of asymbol tablefor aconventional programming language,
although it contains awider range of data than atypical symbol table.

Each run-time constant pool is allocated from the Java Virtual Machine's method
area (82.5.4). The run-time constant pool for a class or interface is constructed
when the class or interface is created (85.3) by the Java Virtual Machine.

Thefollowing exceptional condition is associated with the construction of the run-
time constant pool for a class or interface:

» When creating a class or interface, if the construction of the run-time constant
pool requires more memory than can be made available in the method area of the
Java Virtual Machine, the Java Virtua Machine throws an cut Of Menor yEr r or .

See 85 (Loading, Linking, and Initializing) for information about the construction of the
run-time constant pool.

25.6 Native Method Stacks

An implementation of the Java Virtual Machine may use conventional stacks,
colloquially called "C stacks,” to support nat i ve methods (methods written in a
language other than the Java programming language). Native method stacks may
also be used by the implementation of an interpreter for the Java Virtual Machine's
instruction set in a language such as C. Java Virtua Machine implementations
that cannot load nat i ve methods and that do not themselves rely on conventional

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Frames

stacks need not supply native method stacks. If supplied, native method stacks are
typically allocated per thread when each thread is created.

This specification permits native method stacks either to be of a fixed size or to
dynamically expand and contract as required by the computation. If the native
method stacks are of a fixed size, the size of each native method stack may be
chosen independently when that stack is created.

A Java Virtua Machine implementation may provide the programmer or the user control
over theinitial size of the native method stacks, aswell as, in the case of varying-size native
method stacks, control over the maximum and minimum method stack sizes.

The following exceptional conditions are associated with native method stacks:

* If the computation in a thread requires a larger native method stack than is
permitted, the Java Virtual Machine throws a St ackOver f 1 owEr r or .

« If native method stacks can be dynamically expanded and native method stack
expansion is attempted but insufficient memory can be made available, or if
insufficient memory can be made available to create the initial native method
stack for anew thread, the Java Virtual Machine throws an cut & Menor yErr or .

2.6 Frames

A frame is used to store data and partial results, as well as to perform dynamic
linking, return values for methods, and dispatch exceptions.

A new frameis created each time a method isinvoked. A frameis destroyed when
its method invocation completes, whether that completion is normal or abrupt (it
throwsan uncaught exception). Framesare allocated fromthe JavaVirtual Machine
stack (82.5.2) of the thread creating the frame. Each frame has its own array of
local variables (82.6.1), its own operand stack (82.6.2), and areference to the run-
time constant pool (82.5.5) of the class of the current method.

A frame may be extended with additional implementation-specific information, such as
debugging information.

The sizes of the local variable array and the operand stack are determined at
compile-time and are supplied along with the code for the method associated with
the frame (84.7.3). Thus the size of the frame data structure depends only on the
implementation of the Java Virtual Machine, and the memory for these structures
can be alocated simultaneously on method invocation.

2.6

15

2.6

16

Frames THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

Only oneframe, theframefor the executing method, isactive at any pointinagiven
thread of control. Thisframeisreferred to as the current frame, and its method is
known as the current method. The class in which the current method is defined is
the current class. Operations on local variables and the operand stack are typically
with reference to the current frame.

A frame ceases to be current if its method invokes another method or if its method
completes. When amethod isinvoked, anew frameis created and becomes current
when control transfers to the new method. On method return, the current frame
passes back the result of its method invocation, if any, to the previous frame. The
current frame is then discarded as the previous frame becomes the current one.

Notethat aframe created by athread islocal to that thread and cannot be referenced
by any other thread.

2.6.1 Local Variables

Each frame (82.6) contains an array of variables known asitslocal variables. The
length of the local variable array of a frame is determined at compile-time and
supplied in the binary representation of aclass or interface along with the code for
the method associated with the frame (84.7.3).

A singlelocal variable can hold avalue of type bool ean, byt e, char, short,int,
float, reference, Of ret urnAddress. A pair of local variables can hold avalue
of typel ong or doubl e.

Local variables are addressed by indexing. The index of the first local variableis
zero. Aninteger isconsidered to be anindex into thelocal variablearray if and only
if that integer is between zero and one less than the size of the local variable array.

A value of type | ong or type doubl e occupies two consecutive local variables.
Such avaue may only be addressed using the lesser index. For example, avalue of
typedoubl e stored in the local variable array at index n actually occupiesthelocal
variables with indices n and n+1; however, the local variable at index n+1 cannot
be loaded from. It can be stored into. However, doing so invalidates the contents
of local variablen.

The Java Virtual Machine does not require n to be even. In intuitive terms, values
of types| ong and doubl e need not be 64-bit aligned in the local variables array.
Implementors are free to decide the appropriate way to represent such values using
the two local variables reserved for the value.

The Java Virtua Machine uses local variables to pass parameters on method
invocation. On class method invocation, any parameters are passed in consecutive

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Frames

local variables starting from local variable 0. On instance method invocation,
local variable 0 is always used to pass a reference to the object on which the
instance method is being invoked (t hi s in the Java programming language). Any
parameters are subsequently passed in consecutive local variables starting from
local variable 1.

2.6.2 Operand Stacks

Each frame (82.6) contains a last-in-first-out (LIFO) stack known as its operand
stack. The maximum depth of the operand stack of a frame is determined at
compile-time and is supplied along with the code for the method associated with
the frame (84.7.3).

Where it is clear by context, we will sometimes refer to the operand stack of the
current frame as simply the operand stack.

The operand stack is empty when the frame that contains it is created. The
Java Virtual Machine supplies instructions to load constants or values from local
variables or fields onto the operand stack. Other Java Virtual Machine instructions
take operands from the operand stack, operate on them, and push the result back
onto the operand stack. The operand stack is aso used to prepare parametersto be
passed to methods and to receive method results.

For example, theiadd instruction (Siadd) addstwo i nt valuestogether. It requires
that thei nt valuesto be added be the top two values of the operand stack, pushed
there by previousinstructions. Both of thei nt values are popped from the operand
stack. They are added, and their sum is pushed back onto the operand stack.
Subcomputations may be nested on the operand stack, resulting in values that can
be used by the encompassing computation.

Each entry on the operand stack can hold avalue of any JavaVirtual Machinetype,
including avalue of type|l ong or type doubl e.

Values from the operand stack must be operated upon in ways appropriate to their
types. It isnot possible, for example, to pushtwoi nt valuesand subsequently treat
them as al ong or to push two f | oat values and subseguently add them with an
iadd instruction. A small number of Java Virtual Machine instructions (the dup
instructions (8dup) and swap (8swap)) operate on run-time dataareas asraw values
without regard to their specific types; these instructions are defined in such away
that they cannot be used to modify or break up individual values. Theserestrictions
on operand stack manipulation are enforced through cl ass fileverification (84.10).

2.6

17

2.6

18

Frames THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

At any point in time, an operand stack has an associated depth, where a value of
type | ong or doubl e contributes two units to the depth and a value of any other
type contributes one unit.

2.6.3 DynamicLinking

Each frame (82.6) contains a reference to the run-time constant pool (82.5.5) for
the type of the current method to support dynamic linking of the method code.
The cl ass file code for a method refers to methods to be invoked and variables
to be accessed via symboalic references. Dynamic linking translates these symbolic
method references into concrete method references, loading classes as necessary to
resolve as-yet-undefined symbols, and trandl ates variabl e accessesinto appropriate
offsetsin storage structures associated with the run-time |l ocation of these variabl es.

Thislate binding of the methods and variables makes changesin other classes that
amethod uses less likely to break this code.

2.6.4 Normal Method Invocation Completion

A method invocation completes normally if that invocation does not cause an
exception (8§2.10) to bethrown, either directly from the Java Virtual Machine or as
aresult of executing an explicit t hr ow statement. If the invocation of the current
method completes normally, then avalue may be returned to the invoking method.
This occurs when the invoked method executes one of the return instructions
(82.11.8), the choice of which must be appropriate for the type of the value being
returned (if any).

The current frame (82.6) is used in this case to restore the state of the invoker,
including its local variables and operand stack, with the program counter of the
invoker appropriately incremented to skip past the method invocation instruction.
Execution then continues normally in the invoking method's frame with the
returned value (if any) pushed onto the operand stack of that frame.

2.6.5 Abrupt Method Invocation Completion

A method invocation completes abruptly if execution of a Java Virtua Machine
instruction within the method causes the Java Virtual Machine to throw an
exception (82.10), and that exception is not handled within the method. Execution
of an athrow instruction (8athrow) also causes an exception to be explicitly thrown
and, if the exception is not caught by the current method, results in abrupt method

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Representation of Objects

invocation completion. A method invocation that completes abruptly never returns
avaueto itsinvoker.

2.7 Representation of Objects

The Java Virtual Machine does not mandate any particular internal structure for
objects.

In some of Oracle's implementations of the Java Virtual Machine, a reference to a class
instance is a pointer to a handle that isitself a pair of pointers: one to a table containing
the methods of the object and a pointer to the O ass object that represents the type of the
object, and the other to the memory allocated from the heap for the object data.

2.8 Floating-Point Arithmetic

The Java Virtual Machine incorporates a subset of the floating-point arithmetic
specified in IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std.
754-1985, New Y ork).

2.8.1 JavaVirtual Machine Floating-Point Arithmetic and | EEE 754

The key differences between the floating-point arithmetic supported by the Java
Virtua Machine and the |EEE 754 standard are:

The floating-point operations of the Java Virtual Machine do not throw
exceptions, trap, or otherwise signal the IEEE 754 exceptional conditions of
invalid operation, division by zero, overflow, underflow, or inexact. The Java
Virtual Machine has no signaling NaN value.

The Java Virtual Machine does not support |IEEE 754 signaling floating-point
comparisons.

Therounding operations of the JavaVirtual Machine always use | EEE 754 round
to nearest mode. Inexact results are rounded to the nearest representable value,
with ties going to the value with a zero least-significant bit. This is the IEEE
754 default mode. But Java Virtual Machine instructions that convert values
of floating-point types to values of integral types round toward zero. The Java
Virtual Machine does not give any means to change the floating-point rounding
mode.

2.7

19

2.8

20

Floating-Point Arithmetic THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

» The JavaVirtua Machine does not support either the |EEE 754 single extended
or double extended format, except insofar as the double and double-extended-
exponent value sets may be said to support the single extended format. The
float-extended-exponent and double-extended-exponent value sets, which may
optionally be supported, do not correspond to the values of the IEEE 754
extended formats: the IEEE 754 extended formats require extended precision as
well as extended exponent range.

2.8.2 Floating-Point Modes

Every method has a floating-point mode, which is either FP-strict or not FP-
strict. The floating-point mode of a method is determined by the setting of the
ACC_STRI CT flag of the access_f 1 ags item of the met hod_i nf o structure (84.6)
defining the method. A method for which thisflag is set is FP-strict; otherwise, the
method is not FP-strict.

Note that this mapping of the ACC_STRI CT flag implies that methods in classes compiled
by a compiler in IDK release 1.1 or earlier are effectively not FP-strict.

We will refer to an operand stack as having a given floating-point mode when the
method whose invocation created the frame containing the operand stack has that
floating-point mode. Similarly, we will refer to aJava Virtual Machine instruction
as having a given floating-point mode when the method containing that instruction
has that floating-point mode.

If afloat-extended-exponent value set is supported (8§2.3.2), values of typef | oat
on an operand stack that is not FP-strict may range over that value set except
where prohibited by value set conversion (82.8.3). If a double-extended-exponent
value set is supported (82.3.2), values of type doubl e on an operand stack that is
not FP-strict may range over that value set except where prohibited by value set
conversion.

In all other contexts, whether on the operand stack or elsewhere, and regardless
of floating-point mode, floating-point values of typef | oat and doubl e may only
range over the float value set and double value set, respectively. In particular, class
and instance fields, array elements, local variables, and method parameters may
only contain values drawn from the standard value sets.

2.8.3 Value Set Conversion

Animplementation of the JavaVirtual Machine that supports an extended floating-
point value set is permitted or required, under specified circumstances, to map a

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Floating-Point Arithmetic

value of the associated floating-point type between the extended and the standard
value sets. Such a value set conversion is not a type conversion, but a mapping
between the value sets associated with the same type.

Wherevalue set conversion isindicated, an implementation is permitted to perform
one of the following operations on avalue:

 If thevalueisof typef! oat and isnot an element of the float value set, it maps
the value to the nearest element of the float value set.

* If the valueis of type doubl e and is not an element of the double value set, it
maps the value to the nearest element of the double value set.

Inaddition, where value set conversionisindicated, certain operationsare required:

» Suppose execution of a Java Virtua Machine instruction that is not FP-strict
causes avalue of typef | oat to be pushed onto an operand stack that is FP-strict,
passed as a parameter, or stored into alocal variable, afield, or an element of an
array. If the value is not an element of the float value set, it maps the value to
the nearest element of the float value set.

» Suppose execution of a Java Virtua Machine instruction that is not FP-strict
causes a value of type doubl e to be pushed onto an operand stack that is FP-
strict, passed as a parameter, or stored into alocal variable, afield, or an element
of an array. If the value is not an element of the double value set, it maps the
value to the nearest el ement of the double value set.

Such required value set conversions may occur as a result of passing a parameter
of a floating-point type during method invocation, including native method
invocation; returning avalue of afloating-point type from amethod that is not FP-
strict to amethod that is FP-strict; or storing a value of afloating-point typeinto a
local variable, afield, or an array in a method that is not FP-strict.

Not al values from an extended-exponent value set can be mapped exactly to a
valuein the corresponding standard value set. If avalue being mapped istoo large
to berepresented exactly (itsexponent isgreater than that permitted by the standard
value set), it is converted to a (positive or negative) infinity of the corresponding
type. If avalue being mapped istoo small to be represented exactly (its exponent
issmaller than that permitted by the standard value set), it is rounded to the nearest
of arepresentable denormalized value or zero of the same sign.

Value set conversion preserves infinities and NaNs and cannot change the sign of
the value being converted. Value set conversion has no effect on avalue that is not
of afloating-point type.

2.8

21

29

22

Special Methods THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

2.9 Special Methods

2.9.1 InstanceInitialization M ethods

A class has zero or more instance initialization methods, each typicaly
corresponding to a constructor written in the Java programming language.

A method is an instance initiaization method if al of the following are true:

* Itisdefined in aclass (not an interface).

* It hasthe special name<i ni t >.

* Itisvoid (84.3.3).

In a class, any non-voi d method named <i ni t > is not an instance initialization
method. In an interface, any method named <i ni t > isnot an instanceinitialization
method. Such methods cannot be invoked by any Java Virtual Machine instruction
(84.4.2, 84.9.2) and are rejected by format checking (84.6, §4.8).

The declaration and use of an instance initialization method is constrained by
the Java Virtual Machine. For the declaration, the method's access_fl ags item
and code array are constrained (84.6, 84.9.2). For a use, an instance initialization
method may be invoked only by the invokespecial instruction on an uninitialized
classinstance (84.10.1.9).

Because the name <i ni t > is not avalid identifier in the Java programming language, it
cannot be used directly in a program written in the Java programming language.

2.9.2 ClassInitialization Methods

A class or interface has at most one class or interface initialization method and is
initialized by the Java Virtua Machine invoking that method (85.5).

A methodisaclassor interfaceinitialization method if all of thefollowing aretrue:
* It hasthe special name <cl i ni t >.
* Itisvoid (84.3.3).

* In aclass file whose version number is 51.0 or above, the method has its
ACC_STATI C flag set and takes no arguments (84.6).

The requirement for ACC_STATI C was introduced in Java SE 7, and for taking no
argumentsin Java SE 9. In aclass file whose version number is 50.0 or bel ow, a method
named <cl i ni t > that isvoi d is considered the class or interface initialization method
regardless of the setting of its ACC_STATI Cflag or whether it takes arguments.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Exceptions

Other methods named <clinit> in a class file are not class or interface
initialization methods. They are never invoked by the Java Virtual Machine itself,
cannot be invoked by any Java Virtual Machine instruction (84.9.1), and are
rejected by format checking (84.6, §4.8).

Because the name <cl i ni t > isnot avalid identifier in the Java programming language, it
cannot be used directly in a program written in the Java programming language.

2.9.3 Signature Polymorphic M ethods

A method is signature polymorphic if all of the following are true:

e It is declared in the java.lang.invoke. MethodHandle class or the
j ava. |l ang. i nvoke. Var Handl e class.

* It hasasingle formal parameter of type j ect[] .
* It hasthe ACC_VARARGS and ACC_NATI VE flags set.

The Java Virtual Machine gives special treatment to signature polymorphic
methods in the invokevirtual instruction (8invokevirtual), in order to effect
invocation of a method handle or to effect access to a variable referenced by an
instance of j ava. | ang. i nvoke. Var Handl e.

A method handle is a dynamically strongly typed and directly executable
referenceto an underlying method, constructor, field, or similar low-level operation
(85.4.3.5), with optional transformations of argumentsor return values. Aninstance
of j ava. | ang. i nvoke. Var Handl e is a dynamically strongly typed reference to a
variable or family of variables, including st ati ¢ fields, non-st at i ¢ fields, array
elements, or components of an off-heap data structure. Seethej ava. | ang. i nvoke
package in the Java SE Platform API for more information.

2.10 Exceptions

An exception in the Java Virtual Machineisrepresented by an instance of the class
Thr owabl e or one of its subclasses. Throwing an exception resultsin an immediate
nonlocal transfer of control from the point where the exception was thrown.

M ost exceptions occur synchronously asaresult of an action by thethread inwhich
they occur. An asynchronous exception, by contrast, can potentially occur at any
point in the execution of aprogram. The JavaVirtua Machine throws an exception
for one of three reasons:

2.10

23

2.10 Exceptions THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

« An athrow instruction (8athrow) was executed.

* An abnormal execution condition was synchronously detected by the Java
Virtual Machine. These exceptions are not thrown at an arbitrary point in the
program, but only synchronously after execution of an instruction that either:

— Specifies the exception as a possible result, such as:

> When the instruction embodies an operation that violates the semantics of
the Java programming language, for example indexing outside the bounds
of an array.

> When an error occursin loading or linking part of the program.

— Causes some limit on aresource to be exceeded, for example when too much
memory is used.

» An asynchronous exception occurred because:
— The st op method of class Thr ead or Thr eadG oup Was invoked, or
— Aninternal error occurred in the Java Virtual Machine implementation.

The st op methods may be invoked by one thread to affect another thread or al
the threadsin aspecified thread group. They are asynchronous because they may
occur at any point in the execution of the other thread or threads. An internal
error is considered asynchronous (86.3).

A Java Virtual Machine may permit a small but bounded amount of execution to
occur before an asynchronous exception isthrown. Thisdelay is permitted to alow
optimized code to detect and throw these exceptions at points where it is practical
to handle them while obeying the semantics of the Java programming language.

A simple implementation might poll for asynchronous exceptions at the point of each
control transfer instruction. Since a program has a finite size, this provides a bound
on the total delay in detecting an asynchronous exception. Since no asynchronous
exception will occur between control transfers, the code generator has some flexibility
to reorder computation between control transfers for greater performance. The paper
Polling Efficiently on Stock Hardware by Marc Feeley, Proc. 1993 Conference on
Functional Programming and Computer Architecture, Copenhagen, Denmark, pp. 179—
187, isrecommended as further reading.

Exceptions thrown by the Java Virtual Machine are precise: when the transfer of
control takes place, al effects of the instructions executed before the point from
which the exception isthrown must appear to have taken place. No instructionsthat
occur after the point from which the exception is thrown may appear to have been
evaluated. If optimized code has speculatively executed some of the instructions

24

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Exceptions

which follow the point at which the exception occurs, such code must be prepared
to hide this specul ative execution from the user-visible state of the program.

Each method in the Java Virtual Machine may be associated with zero or more
exception handlers. An exception handler specifiesthe range of offsetsinto the Java
Virtual Machine code implementing the method for which the exception handler
is active, describes the type of exception that the exception handler is able to
handle, and specifies the location of the code that is to handle that exception. An
exception matches an exception handler if the offset of the instruction that caused
the exception isin the range of offsets of the exception handler and the exception
type is the same class as or a subclass of the class of exception that the exception
handler handles. When an exception is thrown, the Java Virtual Machine searches
for a matching exception handler in the current method. If a matching exception
handler is found, the system branches to the exception handling code specified by
the matched handler.

If no such exception handler is found in the current method, the current method
invocation completes abruptly (82.6.5). On abrupt completion, the operand stack
and local variables of the current method invocation are discarded, and its frame
is popped, reinstating the frame of the invoking method. The exception is then
rethrown in the context of the invoker's frame and so on, continuing up the method
invocation chain. If no suitable exception handler is found before the top of the
method invocation chain is reached, the execution of the thread in which the
exception was thrown is terminated.

The order in which the exception handlers of a method are searched for amatchis
important. Withinacl ass file, the exception handlersfor each method are stored in
atable(84.7.3). At runtime, when an exception isthrown, the Java Virtual Machine
searches the exception handlers of the current method in the order that they appear
in the corresponding exception handler table in the cl ass file, starting from the
beginning of that table.

Note that the Java Virtua Machine does not enforce nesting of or any ordering
of the exception table entries of a method. The exception handling semantics of
the Java programming language are implemented only through cooperation with
the compiler (83.12). When cl ass files are generated by some other means, the
defined search procedure ensures that al Java Virtual Machine implementations
will behave consistently.

2.10

25

211

26

Instruction Set Summary THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

2.11 Instruction Set Summary

A Java Virtual Machine instruction consists of a one-byte opcode specifying
the operation to be performed, followed by zero or more operands supplying
arguments or data that are used by the operation. Many instructions have no
operands and consist only of an opcode.

Ignoring exceptions, the inner loop of a Java Virtual Machine interpreter is
effectively

do {
atom cal ly calculate pc and fetch opcode at pc;
if (operands) fetch operands;
execute the action for the opcode;

} while (there is nore to do);

The number and size of the operands are determined by the opcode. If an operand
ismorethan one byte in size, then it is stored in big-endian order - high-order byte
first. For example, an unsigned 16-bit index into the local variablesis stored astwo
unsigned bytes, bytel and byte2, such that its valueis (bytel << 8) | byte2.

The bytecode instruction stream is only single-byte aligned. The two exceptions
are the lookupswitch and tableswitch instructions (8lookupswitch, Stableswitch),
which are padded to force internal alignment of some of their operands on 4-byte
boundaries.

Thedecisionto limit the JavaVirtual Machine opcode to abyte and to forgo data alignment
within compiled code reflects aconscious biasin favor of compactness, possibly at the cost
of some performance in naive implementations. A one-byte opcode a so limits the size of
the instruction set. Not assuming data alignment means that immediate data larger than a
byte must be constructed from bytes at run time on many machines.

2111 Typesand the Java Virtual Machine

Most of the instructions in the Java Virtual Machine instruction set encode type
information about the operations they perform. For instance, the iload instruction
(Siload) loads the contents of a local variable, which must be an i nt, onto the
operand stack. Thefload instruction (§fload) doesthe samewith af | oat value. The
two instructions may have identical implementations, but have distinct opcodes.

For the majority of typed instructions, theinstruction type is represented explicitly
in the opcode mnemonic by aletter: i for ani nt operation, | for | ong, sfor short,
b for byte, c for char, f for fl oat, d for doubl e, and a for r ef erence. Some
instructions for which the type is unambiguous do not have a type letter in their
mnemonic. For instance, arraylength always operates on an object that isan array.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Instruction Set Summary

Some instructions, such as goto, an unconditional control transfer, do not operate
on typed operands.

Given the Java Virtua Machine's one-byte opcode size, encoding types into
opcodes places pressure onthe design of itsinstruction set. If each typed instruction
supported al of the Java Virtual Machin€e's run-time data types, there would be
more instructions than could be represented in a byte. Instead, the instruction set
of the Java Virtual Machine provides a reduced level of type support for certain
operations. In other words, the instruction set is intentionally not orthogonal.
Separate instructions can be used to convert between unsupported and supported
data types as necessary.

Table 2.11.1-A summarizes the type support in the instruction set of the Java
Virtual Machine. A specificinstruction, with typeinformation, isbuilt by replacing
the T in the instruction template in the opcode column by the letter in the type
column. If the type column for some instruction template and type is blank, then
no instruction exists supporting that type of operation. For instance, thereisaload
instruction for typei nt , iload, but there is no load instruction for type byt e.

Note that most instructions in Table 2.11.1-A do not have forms for the integral
types byt e, char, and shor t . None have forms for the bool ean type. A compiler
encodes|oads of literal values of typesbyt e andshor t using JavaVirtual Machine
instructions that sign-extend those values to values of typeint at compile-time
or run-time. Loads of literal values of types bool ean and char are encoded using
instructions that zero-extend the literal to a value of typei nt at compile-time or
run-time. Likewise, loads from arrays of values of typebool ean, byt e, short , and
char areencoded using Java Virtual Machineinstructionsthat sign-extend or zero-
extend the values to values of typei nt . Thus, most operations on values of actual
types bool ean, byt e, char, and short are correctly performed by instructions
operating on values of computational typei nt .

211

27

211

28

Instruction Set Summary

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

Table2.11.1-A. Type support in the Java Virtual Machineinstruction set

opcode byte |short |int long |float |doubl elchar ref erence
Tipush bipush |sipush

Tconst iconst Iconst |fconst |dconst aconst
Tload iload lload |fload dload aload
Tstore istore Istore |fstore |dstore astore
Tinc iinc

Taload baload |saload |iaload laload |(faload |daload |caload |aaload
Tastore bastore |sastore |iastore lastore |fastore |dastore |castore |aastore
Tadd iadd ladd fadd dadd

Tsub isub Isub fsub dsub

Tmul imul Imul frnul dmul

Tdiv idiv Idiv fdiv ddiv

Trem irem Irem frem drem

Tneg ineg Ineg fneg dneg

Tshl ishl Ishl

Tshr ishr Ishr

Tushr iushr lushr

Tand iand land

Tor ior lor

Txor ixor Ixor

i2T i2b i2s i2 i2f i2d

12T 12i 12f 12d

f2T f2i f2l fad

a2t dzi a2l d2f

Temp lcmp

Templ fcmpl dempl

Tempg fcmpg |dempg

if_TcmpOP if_icmpOP if_acmpOP
Treturn ireturn Ireturn |(freturn |dreturn areturn

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Instruction Set Summary

The mapping between JavaVirtual Machine actual typesand Java Virtual Machine
computational typesis summarized by Table 2.11.1-B.

Certain Java Virtua Machine instructions such as pop and swap operate on the
operand stack without regard to type; however, such instructions are constrained
to use only on values of certain categories of computational types, also given in
Table2.11.1-B.

Table 2.11.1-B. Actual and Computational typesin the Java Virtual Machine

Actual type Computational type Category
bool ean i nt 1
byt e i nt 1
char i nt 1
short i nt 1
i nt i nt 1
fl oat fl oat 1
reference reference 1
ret ur nAddr ess ret ur nAddr ess 1
| ong | ong 2
doubl e doubl e 2

2.11.2 Load and Storelnstructions

Theload and store instructions transfer values between the local variables (82.6.1)
and the operand stack (8§2.6.2) of aJava Virtual Machine frame (82.6):

* Load a loca variable onto the operand stack: iload, iload <n>, lload,
lload <n>, fload, fload <n>, dload, dload_<n>, aload, aload <n>.

 Store a value from the operand stack into a local variable: istore, istore <n>,
Istore, Istore_<n>, fstore, fstore_<n>, dstore, dstore_<n>, astore, astore <n>.

» Load a constant on to the operand stack: bipush, sipush, Idc, Idc_w, 1dc2_w,
aconst_null, iconst_ml, iconst_<i>, lconst_<I>, fconst_<f>, dconst_<d>.

» Gain accessto morelocal variablesusing awider index, or to alarger immediate
operand: wide.

Instructions that access fields of objects and elements of arrays (§2.11.5) aso
transfer data to and from the operand stack.

211

29

211

30

Instruction Set Summary THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

Instruction mnemonics shown above with trailing letters between angle brackets
(for instance, iload_<n>) denote families of instructions (with membersiload_0,
iload 1, iload 2, and iload_3 in the case of iload <n>). Such families of
instructionsare specializations of an additional genericinstruction (iload) that takes
one operand. For the specialized instructions, the operand isimplicit and does not
need to be stored or fetched. The semantics are otherwise the same (iload_0 means
the same thing as iload with the operand 0). The letter between the angle brackets
specifies the type of the implicit operand for that family of instructions: for <n>,
anonnegative integer; for <i>, anint ; for <I>, al ong; for <f>, afl oat ; and for
<d>, adoubl e. Formsfor typei nt are used in many cases to perform operations
on values of typebyt e, char, and short (8§2.11.1).

This notation for instruction families is used throughout this specification.

2.11.3 ArithmeticInstructions

The arithmetic instructions compute a result that is typically a function of two
values on the operand stack, pushing the result back on the operand stack. There
aretwo main kinds of arithmetic instructions: those operating on integer values and
those operating on floating-point values. Within each of these kinds, the arithmetic
instructions are specialized to Java Virtua Machine numeric types. There is no
direct support for integer arithmetic on values of the byt e, short, and char types
(82.11.1), or for values of the bool ean type; those operations are handled by
instructions operating on type i nt. Integer and floating-point instructions also
differ intheir behavior on overflow and divide-by-zero. The arithmetic instructions
areasfollows:

+ Add: iadd, ladd, fadd, dadd.

* Subtract: isub, Isub, fsub, dsub.

o Multiply: imul, Imul, fmul, dmul.

» Divide: idiv, Idiv, fdiv, ddiv.

¢ Remainder: irem, Irem, frem, drem.

* Negate: ineg, Ineg, fneg, dneg.

e Shift: ishl, ishr, iushr, Ishl, Ishr, lushr.
» BitwiseOR:ior, lor.

» Bitwise AND: iand, land.

» Bitwise exclusive OR: ixor, Ixor.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Instruction Set Summary

* Local variableincrement: iinc.
» Comparison: dcmpg, dcmpl, fcmpg, fempl, lemp.

The semantics of the Java programming language operators on integer and floating-
point values (JLS 84.2.2, JLS §4.2.4) are directly supported by the semantics of
the Java Virtual Machine instruction set.

The Java Virtual Machine does not indicate overflow during operations on integer
datatypes. The only integer operations that can throw an exception are the integer
divide instructions (idiv and Idiv) and the integer remainder instructions (iremand
Irem), which throw an Ari t hnet i cExcept i on if the divisor is zero.

JavaVirtual Machine operations on floating-point numbers behave as specified in
IEEE 754. In particular, the Java Virtual Machine requires full support of IEEE
754 denormalized floating-point numbers and gradual underflow, which make it
easier to prove desirable properties of particular numerical algorithms.

The Java Virtual Machine requiresthat floating-point arithmetic behave asif every
floating-point operator rounded its floating-point result to the result precision.
Inexact results must be rounded to the representable value nearest to the infinitely
precise result; if the two nearest representable values are equally near, the one
having a least significant bit of zero is chosen. This is the IEEE 754 standard's
default rounding mode, known as round to nearest mode.

The Java Virtual Machine uses the |IEEE 754 round towards zero mode when
converting a floating-point value to an integer. This results in the number being
truncated; any bits of the significand that represent thefractional part of the operand
value are discarded. Round towards zero mode chooses asitsresult the type'svalue
closest to, but no greater in magnitude than, the infinitely precise result.

The Java Virtua Machine's floating-point operators do not throw run-time
exceptions (not to be confused with IEEE 754 floating-point exceptions). An
operation that overflows produces a signed infinity, an operation that underflows
produces a denormalized value or a signed zero, and an operation that has no
mathematically definite result produces NaN. All numeric operations with NaN as
an operand produce NaN as aresult.

Comparisons on values of type Iong (Icmp) perform a signed comparison.
Comparisons on values of floating-point types (dcmpg, dempl, fempg, fempl) are
performed using | EEE 754 nonsignaling comparisons.

211

31

211

32

Instruction Set Summary THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

2.11.4 TypeConversion Instructions

The type conversion instructions allow conversion between Java Virtual Machine
numeric types. These may be used to implement explicit conversionsin user code
or to mitigate the lack of orthogonality in the instruction set of the Java Virtual
Machine.

The Java Virtual Machine directly supports the following widening numeric
CONVersions:

* int tolong, fl oat, Or doubl e
* longtofl oat Or doubl e
e f| oat tOdoubl e

Thewidening numeric conversion instructionsarei2l, i2f, i2d, 12f, 12d, and f2d. The
mnemonics for these opcodes are straightforward given the naming conventions
for typed instructions and the punning use of 2 to mean "to." For instance, thei2d
instruction convertsani nt valueto adoubl e.

Most widening numeric conversions do not lose information about the overal
magnitude of anumeric value. Indeed, conversionswidening fromi nt tol ong and
i nt to doubl e do not lose any information at all; the numeric value is preserved
exactly. Conversions widening from f1 oat to doubl e that are FP-strict (82.8.2)
also preserve the numeric value exactly; only such conversions that are not FP-
strict may lose information about the overall magnitude of the converted value.

Conversionsfromint tofl oat, or from! ong tofl oat, or from | ong to doubl e,
may lose precision, that is, may lose some of the least significant bits of the value;
theresulting floating-point valueisacorrectly rounded version of theinteger value,
using |EEE 754 round to nearest mode.

Degspite the fact that loss of precision may occur, widening numeric conversions
never cause the Java Virtua Machine to throw a run-time exception (not to be
confused with an |EEE 754 floating-point exception).

A widening numeric conversion of ani nt toal ong simply sign-extendsthe two's-
complement representation of thei nt value to fill the wider format. A widening
numeric conversion of achar to an integral type zero-extends the representation
of the char vaueto fill the wider format.

Note that widening numeric conversions do not exist from integral types byt e,
char, and short totypeint. Asnotedin §2.11.1, values of type byt e, char, and
short areinternally widened to typei nt , making these conversionsimplicit.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Instruction Set Summary

The Java Virtual Machine also directly supports the following narrowing numeric
CONversions:

* int tobyte, short, Or char

* longtoint

e float tOoint Orlong

e doubl e toint, | ong, Of f1 oat

The narrowing numeric conversion instructions are i2b, i2¢, i2s, 12i, f2i, f2l, d2i,
d2l, and d2f. A narrowing numeric conversion can result in a value of different
sign, adifferent order of magnitude, or both; it may thereby lose precision.

A narrowing numeric conversion of anint or | ong to an integral type T ssimply
discards all but the n lowest-order bits, where n is the number of bits used to
represent type T. This may cause the resulting value not to have the same sign as
the input value.

In a narrowing numeric conversion of afloating-point value to an integral type T,
where T iseitherint or I ong, the floating-point value is converted as follows:

* If thefloating-point valueisNaN, theresult of theconversionisani nt orl ong 0.

» Otherwise, if the floating-point value is not an infinity, the floating-point value
isrounded to aninteger value V using | EEE 754 round towards zero mode. There
are two cases:

— If Tisl ong and thisinteger value can be represented as al ong, then the result
isthel ong value V.

— If Tisof typeint and this integer value can be represented as an i nt , then
theresult isthei nt value V.

» Otherwise:

— Either the value must be too small (a negative value of large magnitude or
negative infinity), and the result isthe smallest representabl e value of typei nt
or | ong.

— Or the value must be too large (a positive value of large magnitude or positive
infinity), and the result is the largest representable value of typei nt or | ong.

A narrowing numeric conversion from doubl e to f1 oat behaves in accordance
with IEEE 754. The result is correctly rounded using |EEE 754 round to nearest
mode. A value too small to be represented as afl oat is converted to a positive
or negative zero of type f1 oat ; a value too large to be represented as afl oat is

211

33

211

Instruction Set Summary THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

converted to a positive or negative infinity. A doubl e NaN is aways converted to
afl oat NaN.

Despitethefact that overflow, underflow, or [oss of precision may occur, narrowing
conversions among humeric types never cause the Java Virtual Machineto throw a
run-time exception (not to be confused with an | EEE 754 floating-point exception).

2115 Object Creation and Manipulation

Although both class instances and arrays are objects, the Java Virtual Machine
creates and manipulates class instances and arrays using distinct sets of
instructions:

» Create anew classinstance: new.
» Create anew array: newarray, anewarray, multianewarray.

» Access fields of classes (static fields, known as class variables) and fields
of class instances (non-st ati ¢ fields, known as instance variables): getstatic,
putstatic, getfield, putfield.

 Load an array component onto the operand stack: baload, caload, saload, iaload,
|aload, faload, daload, aaload.

» Store a value from the operand stack as an array component: bastore, castore,
sastore, iastore, lastore, fastore, dastore, aastore.

» Get the length of array: arraylength.

» Check properties of class instances or arrays: instanceof, checkcast.

2.11.6 Operand Stack Management I nstructions

A number of instructions are provided for the direct manipulation of the operand
stack: pop, pop2, dup, dup2, dup X1, dup2_x1, dup_x2, dup2 x2, swap.

2.11.7 Control Transfer Instructions

The contral transfer instructions conditionally or unconditionally cause the Java
Virtual Machine to continue execution with an instruction other than the one
following the control transfer instruction. They are:

» Conditional branch: ifeq, ifne, iflt, ifle, ifgt, ifge, ifnull, ifnonnull, if_icmpeq,
if_icmpne, if_icmplt, if_icmple, if_icmpgt if_icmpge, if_acmpeq, if_acmpne.

» Compound conditional branch: tableswitch, lookupswitch.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Instruction Set Summary

» Unconditional branch: goto, goto_w, jsr, jsr_w, ret.

The Java Virtual Machine has distinct sets of instructions that conditionally
branch on comparison with data of i nt and r ef er ence types. It also has distinct
conditional branch instructions that test for the null reference and thus it is not
required to specify aconcrete value for nul | (82.4).

Conditional branches on comparisons between data of types bool ean, byte,
char, and short are performed using i nt comparison instructions (§2.11.1). A
conditional branch on a comparison between data of types| ong, f I oat , Or doubl e
is initiated using an instruction that compares the data and produces an i nt
result of the comparison (82.11.3). A subsequent i nt comparison instruction tests
this result and effects the conditional branch. Because of its emphasis on i nt
comparisons, the Java Virtual Machine provides arich complement of conditional
branch instructions for typei nt .

All'i nt conditional control transfer instructions perform signed comparisons.

2.11.8 Method Invocation and Return Instructions

The following five instructions invoke methods:

* invokevirtual invokes an instance method of an object, dispatching on the
(virtual) type of the object. This is the norma method dispatch in the Java
programming language.

 invokeinterface invokes an interfface method, searching the methods
implemented by the particular run-time object to find the appropriate method.

* invokespecial invokes an instance method requiring special handling, either an
instance initialization method (82.9.1) or a method of the current class or its
supertypes.

* invokestatic invokes aclass (st at i ¢) method in a named class.

* invokedynamic invokes the method which is the target of the call site object
bound to the invokedynamic instruction. The call site object was bound to a
specific lexical occurrence of the invokedynamic instruction by the Java Virtua
Machine as aresult of running a bootstrap method before the first execution of
the instruction. Therefore, each occurrence of an invokedynamic instruction has
aunique linkage state, unlike the other instructions which invoke methods.

The method return instructions, which are distinguished by return type, areireturn
(used toreturn values of typebool ean, byt e, char, short, ori nt), lreturn, freturn,
dreturn, and areturn. In addition, the return instruction is used to return from

211

35

211

36

Instruction Set Summary THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

methods declared to be void, instance initialization methods, and class or interface
initialization methods.

2119 Throwing Exceptions

An exception isthrown programmatically using the athrow instruction. Exceptions
can also be thrown by various Java Virtual Machine instructions if they detect an
abnormal condition.

2.11.10 Synchronization

The JavaVirtual Machine supports synchronization of both methods and sequences
of instructions within amethod by a single synchronization construct: the monitor.

Method-level synchronizationisperformedimplicitly, aspart of method invocation
and return (82.11.8). A synchroni zed method is distinguished in the run-time
constant pool's net hod_i nf o structure (84.6) by the ACC_SYNCHRONI ZED flag,
which is checked by the method invocation instructions. When invoking a method
for which ACC_SYNCHRONI ZED i S Set, the executing thread enters amonitor, invokes
the method itself, and exits the monitor whether the method invocation completes
normally or abruptly. During the time the executing thread owns the monitor,
no other thread may enter it. If an exception is thrown during invocation of
the synchroni zed method and the synchr oni zed method does not handle the
exception, the monitor for the method is automatically exited before the exception
isrethrown out of the synchr oni zed method.

Synchronization of sequences of instructions is typically used to encode the
synchr oni zed block of the Javaprogramming language. The JavaVirtual Machine
supplies the monitorenter and monitorexit instructions to support such language
constructs. Proper implementation of synchr oni zed blocks requires cooperation
from a compiler targeting the Java Virtual Machine (83.14).

Structured locking is the situation when, during a method invocation, every exit
on a given monitor matches a preceding entry on that monitor. Since there is
no assurance that all code submitted to the Java Virtual Machine will perform
structured locking, implementations of the Java Virtual Machine are permitted but
not required to enforce both of the following two rules guaranteeing structured
locking. Let T be athread and M be amonitor. Then:

1. The number of monitor entries performed by T on M during a method
invocation must equal the number of monitor exits performed by T on M during
the method invocation whether the method invocation completes normally or
abruptly.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Class Libraries

2. At no point during a method invocation may the number of monitor exits
performed by T on M since the method invocation exceed the number of
monitor entries performed by T on M since the method invocation.

Note that the monitor entry and exit automatically performed by the Java Virtua
Machine when invoking a synchr oni zed method are considered to occur during
the calling method's invocation.

2.12 ClassLibraries

The Java Virtual Machine must provide sufficient support for the implementation
of the classlibraries of the Java SE Platform. Some of the classes in these libraries
cannot be implemented without the cooperation of the Java Virtual Machine.

Classes that might require specia support from the Java Virtual Machine include
those that support:

» Reflection, such asthe classesin the packagej ava. | ang. ref | ect and the class
Cl ass.

» Loading and creation of a class or interface. The most obvious example is the
classd assLoader .

* Linking andinitialization of aclassor interface. The example classes cited above
fall into this category as well.

 Security, such as the classes in the package j ava. security and other classes
such as Securi t yManager .

» Multithreading, such asthe class Thr ead.
» Wesk references, such as the classesin the packagej ava. | ang. ref .

Thelist above is meant to beillustrative rather than comprehensive. An exhaustive
list of these classes or of the functionality they provide is beyond the scope of
this specification. See the specifications of the Java SE Platform class libraries for
details.

2.13 Public Design, Private Implementation

Thus far this specification has sketched the public view of the Java Virtua
Machine: thecl ass fileformat and the instruction set. These components are vita

212

37

2.13

38

Public Design, Private Implementation THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

to the hardware-, operating system-, and implementati on-independence of the Java
Virtual Machine. The implementor may prefer to think of them as a means to
securely communicate fragments of programs between hosts each implementing
the Java SE Platform, rather than as a blueprint to be followed exactly.

It is important to understand where the line between the public design and the
private implementation lies. A Java Virtual Machine implementation must be
able to read cl ass files and must exactly implement the semantics of the Java
Virtual Machine code therein. One way of doing this is to take this document
as a gpecification and to implement that specification literally. But it is aso
perfectly feasible and desirable for the implementor to modify or optimize the
implementation within the constraints of thisspecification. Solong asthecl ass file
format can be read and the semantics of its code are maintained, the implementor
may implement these semantics in any way. What is "under the hood" is the
implementor's business, as long as the correct externa interface is carefully
maintained.

There are some exceptions: debuggers, profilers, and just-in-time code generators can each
reguire access to elements of the Java Virtual Machine that are normally considered to
be “under the hood.” Where appropriate, Oracle works with other Java Virtual Machine
implementors and with tool vendors to develop common interfaces to the Java Virtual
Machine for use by such tools, and to promote those interfaces across the industry.

The implementor can use this flexibility to tailor Java Virtua Machine
implementations for high performance, low memory use, or portability. What
makes sense in a given implementation depends on the goals of that
implementation. The range of implementation options includes the following:

» Trandating Java Virtual Machine code at |oad-time or during execution into the
instruction set of another virtual machine.

» Trandating Java Virtual Machine code at load-time or during execution into the
native instruction set of the host CPU (sometimes referred to as just-in-time, or
JIT, code generation).

Theexistence of aprecisely defined virtual machine and object file format need not
significantly restrict the creativity of theimplementor. The JavaVirtual Machineis
designed to support many different implementations, providing new andinteresting
solutions while retaining compatibility between implementations.

CHAPTER3

Compiling for the Java
Virtual Machine

T HE JavaVirtual Machine machineisdesigned to support the Java programming
language. Oracle's JDK software contains a compiler from source code written
in the Java programming language to the instruction set of the Java Virtua
Machine, and a run-time system that implements the Java Virtual Machine itself.
Understanding how one compiler utilizes the Java Virtual Machine is useful to the
prospective compiler writer, aswell asto one trying to understand the Java Virtual
Machine itself. The numbered sections in this chapter are not normative.

Notethat theterm "compiler” is sometimes used when referring to atranslator from
the instruction set of a Java Virtual Machine to the instruction set of a specific
CPU. Oneexample of such atrand ator isajust-in-time (JIT) code generator, which
generates platform-specific instructions only after Java Virtual Machine code has
been loaded. This chapter does not address i ssues associated with code generation,
only those associated with compiling source code written in the Java programming
language to Java Virtual Machine instructions.

3.1 Format of Examples

This chapter consists mainly of examples of source code together with annotated
listings of the Java Virtual Machine code that the j avac compiler in Oracle’ s IDK
release 1.0.2 generates for the examples. The Java Virtual Machine codeiswritten
in the informal “virtual machine assembly language” output by Oracl€e's j avap
utility, distributed with the JDK release. Y ou can usej avap to generate additional
examples of compiled methods.

39

3.2

40

Use of Constants, Local Variables, and Control Constructs COMPILING FOR THE JAVA
VIRTUAL MACHINE

The format of the examples should be familiar to anyone who has read assembly
code. Each instruction takes the form:

<i ndex> <opcode> [<operandl> [<operand2>...]] [<conment >]

The <i ndex> istheindex of the opcode of the instruction in the array that contains
the bytes of Java Virtual Machine code for this method. Alternatively, the <i ndex>
may be thought of as abyte offset from the beginning of the method. The <opcode>
is the mnemonic for the instruction's opcode, and the zero or more <oper andN>
are the operands of the instruction. The optional <conment > isgiven in end-of-line
comment syntax:

8 bi push 100 /1 Push int constant 100

Some of the material in the commentsis emitted by j avap; the rest is supplied by
the authors. The <i ndex> prefacing each instruction may be used as the target of
a control transfer instruction. For instance, agot o 8 instruction transfers control
to theinstruction at index 8. Note that the actual operands of Java Virtual Machine
control transfer instructions are offsets from the addresses of the opcodes of those
instructions; these operands are displayed by j avap (and are shown in this chapter)
as more easily read offsetsinto their methods.

We preface an operand representing a run-time constant pool index with a hash
sign and follow theinstruction by acomment identifying the run-time constant pool
item referenced, asin:

10 Ildc #1 /1 Push float constant 100.0
or:
9 i nvokevirtual #4 /1 Method Exanpl e.addTwo(I1)]I

For the purposes of this chapter, we do not worry about specifying details such as
operand sizes.

3.2 Useof Constants, Local Variables, and Control Constructs

JavaVirtual Machine code exhibits a set of general characteristicsimposed by the
JavaVirtual Machine's design and use of types. In the first example we encounter
many of these, and we consider them in some detail.

The spi n method simply spins around an empty for loop 100 times:

void spin() {

COMPILING FOR THE JAVA VIRTUAL MACHINE Use of Constants, Local Variables, and
Control Constructs

int i;
for (i =0; i < 100; i++) {
; /1 Loop body is enpty
}
}

A compiler might compile spi n to:

0 iconst_0O /1 Push int constant 0O

1 istore_1 /1 Store into local variable 1 (i=0)

2 goto 8 /1 First tinme through don't increnent

5 iinc 11 /1 Increnent local variable 1 by 1 (i++)
8 iload_1 /] Push |ocal variable 1 (i)

9 bi push 100 /1 Push int constant 100

11 if_icmplt 5 /1l Conpare and loop if less than (i < 100)
14 return /] Return void when done

The Java Virtual Machine is stack-oriented, with most operations taking one or
more operands from the operand stack of the Java Virtual Machine's current frame
or pushing results back onto the operand stack. A new frame is created each time
a method is invoked, and with it is created a new operand stack and set of local
variables for use by that method (82.6). At any one point of the computation, there
are thus likely to be many frames and equally many operand stacks per thread of
control, corresponding to many nested method invocations. Only the operand stack
in the current frame is active.

The instruction set of the Java Virtual Machine distinguishes operand types by
using distinct bytecodes for operations on its various data types. The method
spi n operates only on values of type i nt. The instructions in its compiled code
chosen to operate on typed data (iconst_0, istore 1, iinc, iload_1, if_icmplt) areall
specialized for typei nt .

The two constants in spi n, 0 and 100, are pushed onto the operand stack using
two different instructions. The o is pushed using an iconst_0 instruction, one of the
family of iconst_<i> instructions. The 100 is pushed using a bipush instruction,
which fetches the value it pushes as an immediate operand.

The Java Virtual Machine frequently takes advantage of the likelihood of certain
operands (i nt constants -1, 0, 1, 2, 3, 4 and 5 in the case of the iconst_<i>
instructions) by making those operands implicit in the opcode. Because the
iconst_0 instruction knows it is going to push ani nt 0, iconst_0 does not need to
store an operand to tell it what value to push, nor doesit need to fetch or decode an
operand. Compiling the push of 0 as bipush 0 would have been correct, but would
have made the compiled code for spi n one byte longer. A ssimple virtual machine
would have also spent additional time fetching and decoding the explicit operand

3.2

41

3.2

42

Use of Constants, Local Variables, and Control Constructs COMPILING FOR THE JAVA
VIRTUAL MACHINE

each time around the loop. Use of implicit operands makes compiled code more
compact and efficient.

Theint i inspinisstored asJavaVirtua Machinelocal variable 1. Because most
JavaVirtua Machineinstructions operate on values popped from the operand stack
rather than directly on local variables, instructions that transfer values between
local variables and the operand stack are common in code compiled for the Java
Virtual Machine. These operations also have special support in the instruction
set. In spi n, values are transferred to and from local variables using the istore 1
and iload_1 instructions, each of which implicitly operates on local variable 1.
Theistore_1 instruction pops ani nt from the operand stack and storesit in local
variable 1. Theiload 1 instruction pushes the value in local variable 1 on to the
operand stack.

The use (and reuse) of local variablesis the responsihility of the compiler writer.
The specialized load and store instructions should encourage the compiler writer
to reuse local variables as much as is feasible. The resulting code is faster, more
compact, and uses less space in the frame.

Certain very frequent operations on local variables are catered to specialy by
the Java Virtua Machine. The iinc instruction increments the contents of a local
variable by a one-byte signed value. The iinc instruction in spi n increments the
first local variable (itsfirst operand) by 1 (its second operand). Theiinc instruction
is very handy when implementing looping constructs.

Thef or loop of spi n isaccomplished mainly by these instructions:

5 iinc 11 /1 Increnent local variable 1 by 1 (i++)
8 iload_1 /] Push local variable 1 (i)

9 bi push 100 /1 Push int constant 100

11 if_icmplt 5 /1 Conpare and loop if less than (i < 100)

The bipush instruction pushes the value 100 onto the operand stack as an i nt,
then the if_icmplt instruction pops that value off the operand stack and compares
it against i. If the comparison succeeds (the variable i is less than 100), control
is transferred to index 5 and the next iteration of the f or loop begins. Otherwise,
control passes to the instruction following the if_icmplt.

If the spi n example had used a data type other than i nt for the loop counter,
the compiled code would necessarily change to reflect the different data type. For
instance, if instead of ani nt the spi n example uses adoubl e, as shown:

voi d dspin() {
doubl e i;
for (i =0.0; i <100.0; i++) {
; /1 Loop body is enpty

COMPILING FOR THE JAVA VIRTUAL MACHINE Use of Constants, Local Variables, and 32
Control Constructs

}
the compiled codeis:

Met hod voi d dspin()

0 dconst _0 /1 Push doubl e constant 0.0

1 dstore_1 /1l Store into local variables 1 and 2

2 goto 9 /1 First tine through don't increnent

5 dl oad_1 /1 Push local variables 1 and 2

6 dconst _1 /1 Push double constant 1.0

7 dadd /'l Add; there is no dinc instruction

8 dstore_1 /1 Store result in local variables 1 and 2
9 dl oad_1 /1 Push |l ocal variables 1 and 2

10 ldc2_w #4 /1 Push doubl e constant 100.0

13 dcnpg /] There is no if_dcnplt instruction

14 iflt 5 /| Conpare and loop if less than (i < 100.0)
17 return /] Return void when done

The instructions that operate on typed data are now specialized for type doubl e.
(Theldc2_w instruction will be discussed later in this chapter.)

Recall that doubl e values occupy two local variables, although they are only
accessed using the lesser index of the two local variables. Thisis also the case for
values of typel ong. Again for example,

doubl e doubl eLocal s(doubl e d1, double d2) {
return dl + d2;

}

becomes
Met hod doubl e doubl eLocal s(doubl e, doubl €)
0 dl oad_1 /1 First argument in local variables 1 and 2
1 dl oad_3 /1 Second argunent in local variables 3 and 4
2 dadd
3 dreturn

Note that local variables of the local variable pairs used to store doubl e valuesin
doubl eLocal s must never be manipulated individually.

The JavaVirtual Machine's opcode size of 1 byteresultsin its compiled code being
very compact. However, 1-byte opcodes al'so mean that the Java Virtual Machine
instruction set must stay small. As a compromise, the Java Virtua Machine does
not provide equal support for al data types: it is not completely orthogonal
(Table 2.11.1-A).

For example, the comparison of values of typei nt inthef or statement of example
spi n can be implemented using a single if_icmplt instruction; however, there is

43

3.2

Use of Constants, Local Variables, and Control Constructs COMPILING FOR THE JAVA
VIRTUAL MACHINE

no single instruction in the Java Virtua Machine instruction set that performs a
conditional branch on values of type doubl e. Thus, dspi n must implement its
comparison of values of type doubl e using a dcmpg instruction followed by an iflt
instruction.

The Java Virtual Machine provides the most direct support for data of typeint.
This is partly in anticipation of efficient implementations of the Java Virtua
Machine's operand stacks and local variable arrays. It is aso motivated by the
frequency of i nt datain typical programs. Other integral types have less direct
support. There are no byt e, char, or short versions of the store, load, or add
instructions, for instance. Here is the spi n example written using ashort :

void sspin() {
short i;
for (i =0; i < 100; i++) {
; /1 Loop body is enpty
}

}

It must be compiled for the Java Virtual Machine, as follows, using instructions
operating on another type, most likely i nt, converting between short and i nt
valuesasnecessary to ensurethat theresults of operationsonshor t datastay within
the appropriate range:

Met hod voi d sspin()
0 iconst_0O

1 istore_1

2 goto 10

5 iload_1 /1 The short is treated as though an int
6 iconst_1

7 i add

8 i2s /] Truncate int to short

9 istore_1

10 iload_1

11 bipush 100

13 if_icnplt 5

16 return

The lack of direct support for byt e, char, and short types in the Java Virtua
Machine is not particularly painful, because values of those types are internally
promotedtoi nt (byte andshort aresign-extendedtoi nt,char iszero-extended).
Operationson byt e, char, and shor t data can thusbe doneusingi nt instructions.
The only additional cost isthat of truncating the values of i nt operationsto valid
ranges.

COMPILING FOR THE JAVA VIRTUAL MACHINE Arithmetic

Thel ong and floating-point types have an intermediate level of support in the Java
Virtual Machine, lacking only the full complement of conditional control transfer
instructions.

3.3 Arithmetic

The Java Virtual Machine generally does arithmetic on its operand stack. (The
exception is the iinc instruction, which directly increments the value of a local
variable.) For instance, the al i gn2gr ai n method aligns an i nt value to a given
power of 2:

int align2grain(int i, int grain) {
return ((i + grain-1) & ~(grain-1));
}

Operands for arithmetic operations are popped from the operand stack, and
the results of operations are pushed back onto the operand stack. Results of
arithmetic subcomputati ons can thus be made availabl e as operands of their nesting
computation. For instance, the calculation of ~(grain-1) is handled by these
instructions:

5 iload_2 /1 Push grain

6 iconst_1 /1 Push int constant 1
7 i sub /1 Subtract; push result
8 iconst_ml /1 Push int constant -1
9 i xor /1 Do XOR;, push result

First gr ai n- 1 is calculated using the contents of local variable 2 and an immediate
i nt value1. These operandsare popped from the operand stack and their difference
pushed back onto the operand stack. The difference is thusimmediately available
for use as one operand of theixor instruction. (Recall that ~x == - 12x.) Similarly,
the result of the ixor instruction becomes an operand for the subsequent iand
instruction.

The code for the entire method follows:

Met hod int align2grain(int,int)
iload 1

iload_2

i add

iconst 1

i sub

iload_2

iconst 1

i sub

~NOoO O WNEFLO

3.3

45

3.4

46

Accessing the Run-Time Constant Pool COMPILING FOR THE JAVA VIRTUAL MACHINE

8 iconst_ml
9 i xor

10 iand

11 ireturn

3.4 Accessing the Run-Time Constant Pool

Many numeric constants, as well as objects, fields, and methods, are accessed
via the run-time constant pool of the current class. Object access is considered
later (83.8). Data of typesint, | ong, fl oat, and doubl e, as well as references
to instances of class string, are managed using the Idc, Idc_w, and ldc2_w
instructions.

The Idc and Idc_w instructions are used to access values in the run-time constant
pool (including instances of class St ri ng) of types other than doubl e and | ong.
Theldc_w instruction is used in place of Idc only when thereis alarge number of
run-time constant pool items and a larger index is needed to access an item. The
Idc2_w instruction is used to access all values of types doubl e and | ong; thereis
no non-wide variant.

Integral constants of types byte, char, or short, as well as smal i nt values,
may be compiled using the bipush, sipush, or iconst_<i> instructions (83.2).
Certain small floating-point constants may be compiled using the fconst_<f> and
dconst_<d> instructions.

Inall of these cases, compilation is straightforward. For instance, the constantsfor:

voi d useManyNureric() {
int i = 100;
int j = 1000000;
long I'1 1;
long |2 Oxffffffff;
double d = 2. 2;
...do sone cal cul ations..

}
are set up asfollows:

Met hod voi d useManyNuneric()

0 bi push 100 /1 Push small int constant with bipush

2 istore_1

3 I dc #1 /1 Push large int constant (1000000) with |dc
5 istore_2

6 I const _1 /1l Atiny long value uses small fast lconst_1
7 | store_3

8

I dc2_w #6 /1 Push long Oxffffffff (that is, an int -1)

COMPILING FOR THE JAVA VIRTUAL MACHINE More Control Examples

/1 Any | ong constant value can be pushed with |dc2_w
11 Istore 5
13 ldc2_w #8 /1 Push doubl e constant 2.200000

/1 Uncommon doubl e val ues are al so pushed with |dc2_w
16 dstore 7
...do those cal cul ations. .

3.5 MoreControl Examples

Compilation of f or statements was shown in an earlier section (83.2). Most of the
Java programming language's other control constructs (i f - t hen- el se, do, whi | e,
br eak, and cont i nue) are al'so compiled in the obvious ways. The compilation of
swi t ch statementsis handled in a separate section (83.10), as are the compilation
of exceptions (83.12) and the compilation of fi nal | y clauses (83.13).

As afurther example, awhi | e loop is compiled in an obvious way, although the
specific control transfer instructions made available by the Java Virtual Machine
vary by datatype. Asusual, thereis more support for dataof typei nt , for example:

void whilelnt() {
int i =o0;
while (i < 100) {
i ++;
}

}
is compiled to:

Met hod void whilelnt()
iconst_0O
istore_1
goto 8
iinc 11
iload_1
bi push 100
1 if_icnplt 5
4 return

PP OOUOINEFLO

Note that the test of the while statement (implemented using the if icmplt
instruction) is at the bottom of the Java Virtual Machine code for the loop. (This
was also the case in the spi n examples earlier.) The test being at the bottom of the
loop forcesthe use of agoto instruction to get to thetest prior to thefirst iteration of
the loop. If that test fails, and the loop body is never entered, this extrainstruction
is wasted. However, whi | e loops are typically used when their body is expected
to be run, often for many iterations. For subsequent iterations, putting the test at

35

47

3.5

48

More Control Examples COMPILING FOR THE JAVA VIRTUAL MACHINE

the bottom of the loop saves a Java Virtual Machine instruction each time around
the loop: if the test were at the top of the loop, the loop body would need atrailing
goto instruction to get back to the top.

Control constructs involving other data types are compiled in similar ways, but
must use the instructions available for those data types. This leads to somewhat
|ess efficient code because more Java Virtual Machine instructions are needed, for
example:

voi d whil eDoubl e() {
double i = 0.0;
while (i < 100.1) {
i ++;
}

}

is compiled to:
Met hod voi d whi | eDoubl e()
0 dconst _0
1 dstore_1
2 goto 9
5 dl oad_1
6 dconst _1
7 dadd
8 dstore_1
9 dl oad_1
10 ldc2_w #4 /1l Push doubl e constant 100.1
13 dcnpg /1 To conpare and branch we have to use..
14 iflt 5 /1 ...two instructions

17 return

Each floating-point type has two comparison instructions: fcmpl and fcmpg for type
fl oat, and dcmpl and dempg for type doubl e. The variants differ only in their
treatment of NaN. NaN is unordered (8§2.3.2), so al floating-point comparisons
fail if either of their operands is NaN. The compiler chooses the variant of the
comparison instruction for the appropriate type that produces the same result
whether the comparison fails on non-NaN values or encounters a NaN. For
instance:

int | essThan100(double d) {
if (d < 100.0) {
return 1;
} else {
return -1;
}

}

compilesto:

COMPILING FOR THE JAVA VIRTUAL MACHINE More Control Examples

Met hod int | essThanl100(doubl e)

0 dl oad_1

1 ldc2_w #4 /] Push doubl e constant 100.0

4 dcnpg // Push 1 if dis NaN or d > 100.0;
/'l push 0 if d == 100.0

5 ifge 10 /1 Branch on 0 or 1

8 iconst 1

9 ireturn

10 iconst_ml
11 ireturn

If d isnot NaN and islessthan 100. 0, the decmpg instruction pushesani nt -1 onto
the operand stack, and the ifge instruction does not branch. Whether d is greater
than 100. 0 or is NaN, the dcmpg instruction pushes an i nt 1 onto the operand
stack, and the ifge branches. If d is equal to 100. 0, the dcmpg instruction pushes
anint 0 onto the operand stack, and the ifge branches.

The dempl instruction achieves the same effect if the comparison is reversed:

int greaterThanl100(double d) {
if (d > 100.0) {

return 1;
} else {
return -1,
}
}
becomes:
Met hod i nt greater Than100(doubl e)
0 dl oad_1
1 ldc2_w #4 /1 Push doubl e constant 100.0
4 dcnpl // Push -1 if dis NaN or d < 100.0;
/1 push 0 if d == 100.0
5 ifle 10 /1 Branch on 0 or -1
8 iconst_1
9 ireturn

10 iconst_nl
11 ireturn

Once again, whether the comparison fails on a non-NaN value or because it is
passed a NaN, the dempl instruction pushes an i nt value onto the operand stack
that causes the ifle to branch. If both of the dcmp instructions did not exist, one of
the example methods would have had to do more work to detect NaN.

35

49

3.6

50

Receiving Arguments COMPILING FOR THE JAVA VIRTUAL MACHINE

3.6 Receiving Arguments

If n arguments are passed to an instance method, they are received, by convention,
inthelocal variablesnumbered 1 through n of the frame created for the new method
invocation. Theargumentsarereceived in the order they were passed. For example:

int addTwo(int i, int j) {
return i + j;
}
compilesto:
Met hod int addTwo(int,int)
0 iload_1 /] Push value of local variable 1 (i)
1 iload_2 /1 Push value of |ocal variable 2 (j)
2 i add /1 Add; leave int result on operand stack
3 ireturn /] Return int result

By convention, an instance method is passed ar ef er ence to itsinstance in local
variable 0. In the Java programming language the instance is accessible via the
t hi s keyword.

Class (stati ¢) methods do not have an instance, so for them this use of local
variable 0 isunnecessary. A class method starts using local variables at index O. If
theaddTwo method were aclass method, its argumentswould be passed in asimilar
way to thefirst version:

static int addTwoStatic(int i, int j) {
return i + j;
}

compilesto:

Met hod int addTwoStatic(int,int)
0 iload_O

1 iload 1
2 i add

3 ireturn

The only difference is that the method arguments appear starting in local variable
O rather than 1.

COMPILING FOR THE JAVA VIRTUAL MACHINE Invoking Methods

3.7 Invoking Methods

The normal method invocation for a instance method dispatches on the run-
time type of the object. (They are virtual, in C++ terms.) Such an invocation is
implemented using the invokevirtual instruction, which takes as its argument an
index to arun-time constant pool entry giving the internal form of the binary name
of the classtype of the object, the name of the method to invoke, and that method's
descriptor (84.3.3). To invoke the addTwo method, defined earlier as an instance
method, we might write:

int add12and13() {
return addTwo(12, 13);
}
This compilesto:

Met hod int addl2and13()

0 al oad_0 /1 Push local variable 0 (this)

1 bi push 12 /1 Push int constant 12

3 bi push 13 /1 Push int constant 13

5 i nvokevirtual #4 /1 Method Exanpl e.addtwo(I11)]I

8 ireturn /1 Return int on top of operand stack

/1 it is the int result of addTwo()

Theinvocation is set up by first pushing ar ef er ence to the current instance, t hi s,
on to the operand stack. The method invocation's arguments, i nt values12 and 13,
are then pushed. When the frame for the addTwo method is created, the arguments
passed to the method become the initial values of the new frame's local variables.
That is, ther ef er ence for t hi s and the two arguments, pushed onto the operand
stack by the invoker, will become the initial values of local variables O, 1, and 2
of the invoked method.

Finally, addTwo is invoked. When it returns, itsi nt return value is pushed onto
the operand stack of the frame of the invoker, the add12and13 method. The return
valueisthus put in place to beimmediately returned to the invoker of add12and13.

The return from add12and13 is handled by the ireturn instruction of add12and13.
The ireturn instruction takes the i nt value returned by addTwo, on the operand
stack of the current frame, and pushes it onto the operand stack of the frame of
the invoker. It then returns control to the invoker, making the invoker's frame
current. The Java Virtual Machine provides distinct return instructions for many of
its numeric and r ef er ence datatypes, aswell as areturn instruction for methods
with no return value. The same set of return instructions is used for all varieties
of method invocations.

3.7

51

3.7

52

Invoking Methods COMPILING FOR THE JAVA VIRTUAL MACHINE

The operand of the invokevirtual instruction (in the example, the run-time constant
pool index #4) is not the offset of the method in the class instance. The compiler
does not know the internal layout of aclassinstance. Instead, it generates symbolic
references to the methods of an instance, which are stored in the run-time constant
pool. Those run-time constant pool items are resolved at run-time to determine
the actual method location. The same is true for al other Java Virtual Machine
instructions that access class instances.

Invoking addTwoSt at i ¢, aclass (st ati ¢) variant of addTwo, is similar, as shown:

int add12and13() {
return addTwoStatic(12, 13);
}

although a different Java Virtual Machine method invocation instruction is used:

Met hod int addl12and13()

0 bi push 12

2 bi push 13

4 i nvokestatic #3 /1 Method Exanpl e. addTwoStatic(l1)]
7 ireturn

Compiling an invocation of aclass (st at i ¢) method is very much like compiling
an invocation of an instance method, except thisis not passed by the invoker. The
method argumentswill thus be received beginning with local variable 0 (83.6). The
invokestatic instruction is always used to invoke class methods.

The invokespecial instruction must be used to invoke instance initialization
methods (83.8). It is also used when invoking methods in the superclass (super).
For instance, given classes Near and Far declared as:
class Near {
int it;
int getltNear() {
return it;
}

cl ass Far extends Near {
int getltFar() {
return super.getltNear();
}

}
The method Far . get I t Far (which invokes a superclass method) becomes:

Met hod int getltFar()

0 al oad_0
1 i nvokespeci al #4 /1 Method Near.getltNear()I
4 ireturn

COMPILING FOR THE JAVA VIRTUAL MACHINE Working with Class Instances

Note that methods called using the invokespecial instruction always passt hi s to
theinvoked method asitsfirst argument. Asusual, itisreceived inlocal variableO.

Toinvokethetarget of amethod handle, acompiler must form amethod descriptor
that records the actual argument and return types. A compiler may not perform
method invocation conversions on the arguments; instead, it must push them on
the stack according to their own unconverted types. The compiler arranges for
areference to the method handle object to be pushed on the stack before the
arguments, asusual. The compiler emitsan invokevirtual instruction that references
adescriptor which describesthe argument and return types. By special arrangement
with method resolution (85.4.3.3), an invokevirtual instruction which invokes
the i nvokeExact or i nvoke methods of j ava. | ang. i nvoke. Met hodHand! e will
always link, provided the method descriptor is syntactically well-formed and the
types named in the descriptor can be resolved.

3.8 Working with Class I nstances

JavaVirtual Machine class instances are created using the Java Virtual Machine's
new instruction. Recall that at the level of the Java Virtual Machine, a constructor
appears as a method with the compiler-supplied name <i ni t>. This specialy
named method is known as the instance initialization method (82.9). Multiple
instance initialization methods, corresponding to multiple constructors, may exist
for agiven class. Oncethe classinstance has been created and itsinstance variables,
including those of the class and all of its superclasses, have been initialized to
their default values, an instance initialization method of the new class instance is
invoked. For example:

oj ect create() {
return new Cbject();
}

compilesto:
Met hod j ava. |l ang. Obj ect create()
0 new #1 /1 dass java.l ang. Obj ect
3 dup
4 invokespecial #4 /1 Method java.lang. bject.<init>()V
7 areturn

Class instances are passed and returned (as ref erence types) very much like
numeric values, although typer ef er ence hasits own complement of instructions,
for example:

3.8

53

3.8 Working with Class Instances COMPILING FOR THE JAVA VIRTUAL MACHINE

int i; // An instance vari abl e
MyQoj exanpl e() {

M/Qoj o = new MyQj ();

return silly(o);

}
W] silly(MQoj o) {
if (o!=null) {
return o;
} else {
return o;
}

}
becomes:

Met hod MyObj exanpl e()

new #2 /1 dass MyOQbj

dup

i nvokespeci al #5 /1 Method MyQoj . <init>()V

astore_1

al oad_0

al oad_1

i nvokevirtual #4 /1 Method Exanple.silly(LMQoj;)LMWOj;
areturn

PPRPOONP_WO

w o

Met hod MyObj silly(M/Obj)
al oad_1

ifnull 6

al oad_1

areturn

al oad_1

areturn

~NOoO Ol O

The fields of a class instance (instance variables) are accessed using the getfield
and putfield instructions. If i isaninstance variableof typei nt , themethodsset I t
and get I t , defined as:

void setlt(int value) {
i = val ue;

}
int getlt() {

return i;
}
become:
Met hod void setlt(int)
0 al oad_0
1 iload 1
2 putfield #4 /1 Field Exanple.i
5 return

COMPILING FOR THE JAVA VIRTUAL MACHINE Arrays

Met hod int getlt()

0 al oad_0
1 getfield #4 /1 Field Exanple.i |
4 ireturn

Aswith the operands of method invocation instructions, the operands of the putfield
and getfield instructions (the run-time constant pool index #4) are not the offsets
of the fields in the class instance. The compiler generates symbolic references to
the fields of an instance, which are stored in the run-time constant pool. Those run-
time constant pool items are resolved at run-time to determine the location of the
field within the referenced object.

3.9 Arrays

Java Virtual Machine arrays are also objects. Arrays are created and manipulated
using a distinct set of instructions. The newarray instruction is used to create an
array of anumeric type. The code:

void createBuffer() {
int buffer[];
int bufsz = 100;
int value = 12;
buffer = new int[bufsz];
buffer[10] = val ue;
val ue = buffer[11];

}
might be compiled to:

Met hod void createBuffer()

0 bi push 100 /1 Push int constant 100 (bufsz)

2 istore_2 /'l Store bufsz in local variable 2
3 bi push 12 /1 Push int constant 12 (val ue)

5 istore_3 /1 Store value in local variable 3
6 iload_2 /1 Push bufsz...

7 newarray int /1 ...and create newint array of that |length
9 astore_1 /1 Store new array in buffer

10 aload_1 /] Push buffer

11 bipush 10 /1 Push int constant 10

13 iload_3 /1 Push val ue

14 iastore /1 Store value at buffer[10]

15 aload_1 /1 Push buffer

16 bipush 11 /1 Push int constant 11

18 ial oad /] Push value at buffer[11]...

19 istore_ 3 /1l ...and store it in value

20 return

3.9

55

3.9

56

Arrays COMPILING FOR THE JAVA VIRTUAL MACHINE

The anewarray instruction is used to create a one-dimensional array of object
references, for example:

voi d createThreadArray() ({
Thread threads[];
int count = 10;
threads = new Thread[count];
t hreads[0] = new Thread();

}
becomes:
Met hod void createThreadArray()
0 bi push 10 /1 Push int constant 10
2 istore_2 /1 Initialize count to that
3 iload_2 /1 Push count, used by anewarray
4 anewarray class #1 // Create new array of class Thread
7 astore_1 /1 Store new array in threads
8 al oad_1 /1 Push val ue of threads
9 iconst_O /! Push int constant O
10 new #1 /'l Create instance of class Thread
13 dup /1 Make duplicate reference...
14 invokespecial #5 /1 ...for Thread's constructor
/1 Method java.lang. Thread.<init>()V
17 aastore /1 Store new Thread in array at O
18 return

The anewarray instruction can aso be used to create the first dimension of a
multidimensional array. Alternatively, the multianewarray instruction can be used
to create severa dimensions at once. For example, the three-dimensional array:

int[][]1[] create3DArray() {
int grid][][];
grid = new int[10][5][];
return grid;

}
is created by:
Method int create3DArray()[]1[]1[]
0 bi push 10 /] Push int 10 (dinension one)
2 iconst_5 /1 Push int 5 (di mension two)

3 mul tianewarray #1 dim#2 // Cass [[[|, a three-dinensional
/1 int array; only create the
/1 first two di nensions

7 astore_1 /] Store new array. ..
8 al oad_1 /] ...then prepare to return it
9 areturn

The first operand of the multianewarray instruction is the run-time constant pool
index to the array classtypeto be created. The second isthe number of dimensions

COMPILING FOR THE JAVA VIRTUAL MACHINE Compiling Switches

of that array typeto actually create. The multianewarray instruction can be used to
create al the dimensions of the type, as the code for cr eat e3DAr r ay shows. Note
that the multidimensional array is just an object and so is loaded and returned by
anaload_1 and areturninstruction, respectively. For information about array class
names, see 84.4.1.

All arrays have associated lengths, which are accessed via the arraylength
instruction.

3.10 Compiling Switches

Compilation of switch statements uses the tableswitch and lookupswitch
instructions. The tableswitch instruction is used when the cases of the swi t ch can
be efficiently represented as indices into a table of target offsets. The def aul t
target of theswi t ch isusedif the value of the expression of theswi t ch fallsoutside
the range of valid indices. For instance:

int chooseNear(int i) {
switch (i) {

case 0: return

case 1: return

case 2: return ;

default: return -1;

)

1

NP

}
}
compilesto:

Met hod i nt chooseNear (i nt)
0 iload_1 /'l Push local variable 1 (argunent i)
1 tableswitch O to 2: // Valid indices are 0 through 2

0: 28 // 1f i is O, continue at 28

1: 30 /1 1f i is 1, continue at 30

2: 32 /1 1f i is 2, continue at 32

defaul t: 34 // Otherwi se, continue at 34
28 iconst_0 /1 i was 0; push int constant O...
29 ireturn /1 ...and return it
30 iconst_1 /1 i was 1; push int constant 1...
31 ireturn /1 ...and return it
32 iconst_2 /1 i was 2; push int constant 2...
33 ireturn /1l ...and return it
34 iconst_nl /1 otherw se push int constant -1...
35 ireturn /1 ...and return it

TheJavaVirtual Machine'stableswitch and lookupswitch instructions operate only
on i nt data. Because operations on byt e, char, or short vaues are internally

3.10

57

3.10

58

Compiling Switches COMPILING FOR THE JAVA VIRTUAL MACHINE

promoted to i nt, aswi t ch whose expression evaluates to one of those types is
compiled as though it evaluated to typei nt . If the chooseNear method had been
written using type shor t , the same Java Virtual Machine instructions would have
been generated as when using typei nt . Other numeric types must be narrowed to
typeint foruseinaswitch.

Wherethe casesof theswi t ch are sparse, thetabl e representation of thetableswitch
instruction becomesinefficient intermsof space. Thelookupswitch instruction may
be used instead. Thelookupswitchinstruction pairsi nt keys(thevaluesof thecase
labels) with target offsets in atable. When alookupswitch instruction is executed,
the value of the expression of theswi t ch iscompared against the keysin the table.
If one of the keys matches the value of the expression, execution continues at the
associated target offset. If no key matches, execution continues at the def aul t

target. For instance, the compiled code for:

int chooseFar(int i) {

switch (i) {
case -100: return -1
case 0: return O;
case 100: return 1;
defaul t: return -1

}
looks just like the code for chooseNear , except for the lookupswitch instruction:

Met hod int chooseFar (int)

0 iload 1
1 | ookupswi tch 3:
-100: 36
0: 38
100: 40
default: 42

36 iconst_m
37 ireturn
38 iconst_0
39 ireturn
40 iconst_1
41 ireturn
42 iconst_ml
43 ireturn

The Java Virtual Machine specifies that the table of the lookupswitch instruction
must be sorted by key so that implementati ons may use searches more efficient than
alinear scan. Even so, thelookupswitch instruction must search itskeysfor amatch
rather than simply perform a bounds check and index into atable like tableswitch.
Thus, a tableswitch instruction is probably more efficient than a lookupswitch
where space considerations permit a choice.

COMPILING FOR THE JAVA VIRTUAL MACHINE Operations on the Operand Stack

3.11 Operationson the Operand Stack

The Java Virtual Machine has a large complement of instructions that manipulate
the contents of the operand stack as untyped values. These are useful because of
the Java Virtual Machine's reliance on deft manipulation of its operand stack. For
instance:

public | ong nextlndex() {
return i ndex++;

}
private long index = O;
is compiled to:
Met hod | ong next | ndex()
0 al oad_0 /1 Push this
1 dup /1 Make a copy of it

2 getfield #4 /1 One of the copies of this is consuned
/'l pushing long field index,
/| above the original this

5 dup2_x1 /1 The long on top of the operand stack is
/] inserted into the operand stack bel ow t he
/1 original this

6 I const _1 /1 Push long constant 1

7 | add /1 The index value is incremented...

8 putfield #4 /1 ...and the result stored in the field
11 Ireturn /1 The original value of index is on top of

/'l the operand stack, ready to be returned

Note that the Java Virtual Machine never allows its operand stack manipulation
instructions to modify or break up individual values on the operand stack.

3.12 Throwing and Handling Exceptions

Exceptions are thrown from programs using the t hr ow keyword. Its c