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C H A P T E R 1
Introduction

1.1 A Bit of History

The Java® programming language is a general-purpose, concurrent, object-oriented
language. Its syntax is similar to C and C++, but it omits many of the features that
make C and C++ complex, confusing, and unsafe. The Java platform was initially
developed to address the problems of building software for networked consumer
devices. It was designed to support multiple host architectures and to allow secure
delivery of software components. To meet these requirements, compiled code had
to survive transport across networks, operate on any client, and assure the client
that it was safe to run.

The popularization of the World Wide Web made these attributes much more
interesting. Web browsers enabled millions of people to surf the Net and access
media-rich content in simple ways. At last there was a medium where what you
saw and heard was essentially the same regardless of the machine you were using
and whether it was connected to a fast network or a slow modem.

Web enthusiasts soon discovered that the content supported by the Web's HTML
document format was too limited. HTML extensions, such as forms, only
highlighted those limitations, while making it clear that no browser could include
all the features users wanted. Extensibility was the answer.

The HotJava browser first showcased the interesting properties of the Java
programming language and platform by making it possible to embed programs
inside HTML pages. Programs are transparently downloaded into the browser
along with the HTML pages in which they appear. Before being accepted by the
browser, programs are carefully checked to make sure they are safe. Like HTML
pages, compiled programs are network- and host-independent. The programs
behave the same way regardless of where they come from or what kind of machine
they are being loaded into and run on.
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A Web browser incorporating the Java platform is no longer limited to a
predetermined set of capabilities. Visitors to Web pages incorporating dynamic
content can be assured that their machines cannot be damaged by that content.
Programmers can write a program once, and it will run on any machine supplying
a Java run-time environment.

1.2 The Java Virtual Machine

The Java Virtual Machine is the cornerstone of the Java platform. It is the
component of the technology responsible for its hardware- and operating system-
independence, the small size of its compiled code, and its ability to protect users
from malicious programs.

The Java Virtual Machine is an abstract computing machine. Like a real computing
machine, it has an instruction set and manipulates various memory areas at run time.
It is reasonably common to implement a programming language using a virtual
machine; the best-known virtual machine may be the P-Code machine of UCSD
Pascal.

The first prototype implementation of the Java Virtual Machine, done at Sun
Microsystems, Inc., emulated the Java Virtual Machine instruction set in software
hosted by a handheld device that resembled a contemporary Personal Digital
Assistant (PDA). Oracle's current implementations emulate the Java Virtual
Machine on mobile, desktop and server devices, but the Java Virtual Machine
does not assume any particular implementation technology, host hardware, or
host operating system. It is not inherently interpreted, but can just as well be
implemented by compiling its instruction set to that of a silicon CPU. It may also
be implemented in microcode or directly in silicon.

The Java Virtual Machine knows nothing of the Java programming language, only
of a particular binary format, the class file format. A class file contains Java
Virtual Machine instructions (or bytecodes) and a symbol table, as well as other
ancillary information.

For the sake of security, the Java Virtual Machine imposes strong syntactic and
structural constraints on the code in a class file. However, any language with
functionality that can be expressed in terms of a valid class file can be hosted by
the Java Virtual Machine. Attracted by a generally available, machine-independent
platform, implementors of other languages can turn to the Java Virtual Machine as
a delivery vehicle for their languages.
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The Java Virtual Machine specified here is compatible with the Java SE 11
platform, and supports the Java programming language specified in The Java
Language Specification, Java SE 11 Edition.

1.3 Organization of the Specification

Chapter 2 gives an overview of the Java Virtual Machine architecture.

Chapter 3 introduces compilation of code written in the Java programming
language into the instruction set of the Java Virtual Machine.

Chapter 4 specifies the class file format, the hardware- and operating system-
independent binary format used to represent compiled classes and interfaces.

Chapter 5 specifies the start-up of the Java Virtual Machine and the loading,
linking, and initialization of classes and interfaces.

Chapter 6 specifies the instruction set of the Java Virtual Machine, presenting the
instructions in alphabetical order of opcode mnemonics.

Chapter 7 gives a table of Java Virtual Machine opcode mnemonics indexed by
opcode value.

In the Second Edition of The Java® Virtual Machine Specification, Chapter 2
gave an overview of the Java programming language that was intended to support
the specification of the Java Virtual Machine but was not itself a part of the
specification. In The Java Virtual Machine Specification, Java SE 11 Edition, the
reader is referred to The Java Language Specification, Java SE 11 Edition for
information about the Java programming language. References of the form: (JLS
§x.y) indicate where this is necessary.

In the Second Edition of The Java® Virtual Machine Specification, Chapter 8
detailed the low-level actions that explained the interaction of Java Virtual Machine
threads with a shared main memory. In The Java Virtual Machine Specification,
Java SE 11 Edition, the reader is referred to Chapter 17 of The Java Language
Specification, Java SE 11 Edition for information about threads and locks. Chapter
17 reflects The Java Memory Model and Thread Specification produced by the JSR
133 Expert Group.
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1.4 Notation

Throughout this specification we refer to classes and interfaces drawn from the
Java SE Platform API. Whenever we refer to a class or interface (other than those
declared in an example) using a single identifier N, the intended reference is to the
class or interface named N in the package java.lang. We use the fully qualified
name for classes or interfaces from packages other than java.lang.

Whenever we refer to a class or interface that is declared in the package java or
any of its subpackages, the intended reference is to that class or interface as loaded
by the bootstrap class loader (§5.3.1).

Whenever we refer to a subpackage of a package named java, the intended
reference is to that subpackage as determined by the bootstrap class loader.

The use of fonts in this specification is as follows:

• A fixed width font is used for Java Virtual Machine data types, exceptions,
errors, class file structures, Prolog code, and Java code fragments.

• Italic is used for Java Virtual Machine "assembly language", its opcodes and
operands, as well as items in the Java Virtual Machine's run-time data areas. It
is also used to introduce new terms and simply for emphasis.

Non-normative information, designed to clarify the specification, is given in
smaller, indented text.

This is non-normative information. It provides intuition, rationale, advice, examples, etc.

1.5 Feedback

Readers are invited to report technical errors and ambiguities in The Java® Virtual
Machine Specification to jls-jvms-spec-comments@openjdk.java.net.

Questions concerning the generation and manipulation of class files by javac (the
reference compiler for the Java programming language) may be sent to compiler-
dev@openjdk.java.net.



5

C H A P T E R 2
The Structure of the Java

Virtual Machine

THIS document specifies an abstract machine. It does not describe any particular
implementation of the Java Virtual Machine.

To implement the Java Virtual Machine correctly, you need only be able to
read the class file format and correctly perform the operations specified therein.
Implementation details that are not part of the Java Virtual Machine's specification
would unnecessarily constrain the creativity of implementors. For example, the
memory layout of run-time data areas, the garbage-collection algorithm used, and
any internal optimization of the Java Virtual Machine instructions (for example,
translating them into machine code) are left to the discretion of the implementor.

All references to Unicode in this specification are given with respect to The
Unicode Standard, Version 10.0.0, available at http://www.unicode.org/.

2.1 The class File Format

Compiled code to be executed by the Java Virtual Machine is represented using
a hardware- and operating system-independent binary format, typically (but not
necessarily) stored in a file, known as the class file format. The class file format
precisely defines the representation of a class or interface, including details such
as byte ordering that might be taken for granted in a platform-specific object file
format.

Chapter 4, "The class File Format", covers the class file format in detail.
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2.2 Data Types

Like the Java programming language, the Java Virtual Machine operates on two
kinds of types: primitive types and reference types. There are, correspondingly, two
kinds of values that can be stored in variables, passed as arguments, returned by
methods, and operated upon: primitive values and reference values.

The Java Virtual Machine expects that nearly all type checking is done prior
to run time, typically by a compiler, and does not have to be done by the Java
Virtual Machine itself. Values of primitive types need not be tagged or otherwise
be inspectable to determine their types at run time, or to be distinguished from
values of reference types. Instead, the instruction set of the Java Virtual Machine
distinguishes its operand types using instructions intended to operate on values of
specific types. For instance, iadd, ladd, fadd, and dadd are all Java Virtual Machine
instructions that add two numeric values and produce numeric results, but each is
specialized for its operand type: int, long, float, and double, respectively. For a
summary of type support in the Java Virtual Machine instruction set, see §2.11.1.

The Java Virtual Machine contains explicit support for objects. An object is
either a dynamically allocated class instance or an array. A reference to an object
is considered to have Java Virtual Machine type reference. Values of type
reference can be thought of as pointers to objects. More than one reference to an
object may exist. Objects are always operated on, passed, and tested via values of
type reference.

2.3 Primitive Types and Values

The primitive data types supported by the Java Virtual Machine are the numeric
types, the boolean type (§2.3.4), and the returnAddress type (§2.3.3).

The numeric types consist of the integral types (§2.3.1) and the floating-point types
(§2.3.2).

The integral types are:

• byte, whose values are 8-bit signed two's-complement integers, and whose
default value is zero

• short, whose values are 16-bit signed two's-complement integers, and whose
default value is zero
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• int, whose values are 32-bit signed two's-complement integers, and whose
default value is zero

• long, whose values are 64-bit signed two's-complement integers, and whose
default value is zero

• char, whose values are 16-bit unsigned integers representing Unicode code
points in the Basic Multilingual Plane, encoded with UTF-16, and whose default
value is the null code point ('\u0000')

The floating-point types are:

• float, whose values are elements of the float value set or, where supported, the
float-extended-exponent value set, and whose default value is positive zero

• double, whose values are elements of the double value set or, where supported,
the double-extended-exponent value set, and whose default value is positive zero

The values of the boolean type encode the truth values true and false, and the
default value is false.

The First Edition of The Java® Virtual Machine Specification did not consider boolean
to be a Java Virtual Machine type. However, boolean values do have limited support in
the Java Virtual Machine. The Second Edition of The Java® Virtual Machine Specification
clarified the issue by treating boolean as a type.

The values of the returnAddress type are pointers to the opcodes of Java Virtual
Machine instructions. Of the primitive types, only the returnAddress type is not
directly associated with a Java programming language type.

2.3.1 Integral Types and Values

The values of the integral types of the Java Virtual Machine are:

• For byte, from -128 to 127 (-27 to 27 - 1), inclusive

• For short, from -32768 to 32767 (-215 to 215 - 1), inclusive

• For int, from -2147483648 to 2147483647 (-231 to 231 - 1), inclusive

• For long, from -9223372036854775808 to 9223372036854775807 (-263 to 263

- 1), inclusive

• For char, from 0 to 65535 inclusive
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2.3.2 Floating-Point Types, Value Sets, and Values

The floating-point types are float and double, which are conceptually associated
with the 32-bit single-precision and 64-bit double-precision format IEEE 754
values and operations as specified in IEEE Standard for Binary Floating-Point
Arithmetic (ANSI/IEEE Std. 754-1985, New York).

The IEEE 754 standard includes not only positive and negative sign-magnitude
numbers, but also positive and negative zeros, positive and negative infinities, and
a special Not-a-Number value (hereafter abbreviated as "NaN"). The NaN value
is used to represent the result of certain invalid operations such as dividing zero
by zero.

Every implementation of the Java Virtual Machine is required to support two
standard sets of floating-point values, called the float value set and the double value
set. In addition, an implementation of the Java Virtual Machine may, at its option,
support either or both of two extended-exponent floating-point value sets, called
the float-extended-exponent value set and the double-extended-exponent value set.
These extended-exponent value sets may, under certain circumstances, be used
instead of the standard value sets to represent the values of type float or double.

The finite nonzero values of any floating-point value set can all be expressed in
the form s ⋅ m ⋅ 2(e - N + 1), where s is +1 or -1, m is a positive integer less than
2N, and e is an integer between Emin = -(2K-1-2) and Emax = 2K-1-1, inclusive, and
where N and K are parameters that depend on the value set. Some values can
be represented in this form in more than one way; for example, supposing that a
value v in a value set might be represented in this form using certain values for
s, m, and e, then if it happened that m were even and e were less than 2K-1, one
could halve m and increase e by 1 to produce a second representation for the same
value v. A representation in this form is called normalized if m ≥ 2N-1; otherwise
the representation is said to be denormalized. If a value in a value set cannot be
represented in such a way that m ≥ 2N-1, then the value is said to be a denormalized
value, because it has no normalized representation.

The constraints on the parameters N and K (and on the derived parameters Emin
and Emax) for the two required and two optional floating-point value sets are
summarized in Table 2.3.2-A.
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Table 2.3.2-A. Floating-point value set parameters

Parameter float float-extended-

exponent

double double-extended-

exponent

N 24 24 53 53

K 8 ≥ 11 11 ≥ 15

Emax +127 ≥ +1023 +1023 ≥ +16383

Emin -126 ≤ -1022 -1022 ≤ -16382

Where one or both extended-exponent value sets are supported by an
implementation, then for each supported extended-exponent value set there is
a specific implementation-dependent constant K, whose value is constrained by
Table 2.3.2-A; this value K in turn dictates the values for Emin and Emax.

Each of the four value sets includes not only the finite nonzero values that are
ascribed to it above, but also the five values positive zero, negative zero, positive
infinity, negative infinity, and NaN.

Note that the constraints in Table 2.3.2-A are designed so that every element of the
float value set is necessarily also an element of the float-extended-exponent value
set, the double value set, and the double-extended-exponent value set. Likewise,
each element of the double value set is necessarily also an element of the double-
extended-exponent value set. Each extended-exponent value set has a larger range
of exponent values than the corresponding standard value set, but does not have
more precision.

The elements of the float value set are exactly the values that can be represented
using the single floating-point format defined in the IEEE 754 standard, except
that there is only one NaN value (IEEE 754 specifies 224-2 distinct NaN values).
The elements of the double value set are exactly the values that can be represented
using the double floating-point format defined in the IEEE 754 standard, except
that there is only one NaN value (IEEE 754 specifies 253-2 distinct NaN values).
Note, however, that the elements of the float-extended-exponent and double-
extended-exponent value sets defined here do not correspond to the values that
can be represented using IEEE 754 single extended and double extended formats,
respectively. This specification does not mandate a specific representation for the
values of the floating-point value sets except where floating-point values must be
represented in the class file format (§4.4.4, §4.4.5).

The float, float-extended-exponent, double, and double-extended-exponent value
sets are not types. It is always correct for an implementation of the Java Virtual
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Machine to use an element of the float value set to represent a value of type float;
however, it may be permissible in certain contexts for an implementation to use
an element of the float-extended-exponent value set instead. Similarly, it is always
correct for an implementation to use an element of the double value set to represent
a value of type double; however, it may be permissible in certain contexts for
an implementation to use an element of the double-extended-exponent value set
instead.

Except for NaNs, values of the floating-point value sets are ordered. When
arranged from smallest to largest, they are negative infinity, negative finite values,
positive and negative zero, positive finite values, and positive infinity.

Floating-point positive zero and floating-point negative zero compare as equal, but
there are other operations that can distinguish them; for example, dividing 1.0 by
0.0 produces positive infinity, but dividing 1.0 by -0.0 produces negative infinity.

NaNs are unordered, so numerical comparisons and tests for numerical equality
have the value false if either or both of their operands are NaN. In particular, a
test for numerical equality of a value against itself has the value false if and only
if the value is NaN. A test for numerical inequality has the value true if either
operand is NaN.

2.3.3 The returnAddress Type and Values

The returnAddress type is used by the Java Virtual Machine's jsr, ret, and jsr_w
instructions (§jsr, §ret, §jsr_w). The values of the returnAddress type are pointers
to the opcodes of Java Virtual Machine instructions. Unlike the numeric primitive
types, the returnAddress type does not correspond to any Java programming
language type and cannot be modified by the running program.

2.3.4 The boolean Type

Although the Java Virtual Machine defines a boolean type, it only provides
very limited support for it. There are no Java Virtual Machine instructions solely
dedicated to operations on boolean values. Instead, expressions in the Java
programming language that operate on boolean values are compiled to use values
of the Java Virtual Machine int data type.

The Java Virtual Machine does directly support boolean arrays. Its newarray
instruction (§newarray) enables creation of boolean arrays. Arrays of type
boolean are accessed and modified using the byte array instructions baload and
bastore (§baload, §bastore).
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In Oracle’s Java Virtual Machine implementation, boolean arrays in the Java
programming language are encoded as Java Virtual Machine byte arrays, using 8 bits per
boolean element.

The Java Virtual Machine encodes boolean array components using 1 to represent
true and 0 to represent false. Where Java programming language boolean values
are mapped by compilers to values of Java Virtual Machine type int, the compilers
must use the same encoding.

2.4 Reference Types and Values

There are three kinds of reference types: class types, array types, and interface
types. Their values are references to dynamically created class instances, arrays, or
class instances or arrays that implement interfaces, respectively.

An array type consists of a component type with a single dimension (whose length
is not given by the type). The component type of an array type may itself be an array
type. If, starting from any array type, one considers its component type, and then
(if that is also an array type) the component type of that type, and so on, eventually
one must reach a component type that is not an array type; this is called the element
type of the array type. The element type of an array type is necessarily either a
primitive type, or a class type, or an interface type.

A reference value may also be the special null reference, a reference to no object,
which will be denoted here by null. The null reference initially has no run-time
type, but may be cast to any type. The default value of a reference type is null.

This specification does not mandate a concrete value encoding null.

2.5 Run-Time Data Areas

The Java Virtual Machine defines various run-time data areas that are used during
execution of a program. Some of these data areas are created on Java Virtual
Machine start-up and are destroyed only when the Java Virtual Machine exits.
Other data areas are per thread. Per-thread data areas are created when a thread is
created and destroyed when the thread exits.
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2.5.1 The pc Register

The Java Virtual Machine can support many threads of execution at once (JLS
§17). Each Java Virtual Machine thread has its own pc (program counter) register.
At any point, each Java Virtual Machine thread is executing the code of a single
method, namely the current method (§2.6) for that thread. If that method is not
native, the pc register contains the address of the Java Virtual Machine instruction
currently being executed. If the method currently being executed by the thread is
native, the value of the Java Virtual Machine's pc register is undefined. The Java
Virtual Machine's pc register is wide enough to hold a returnAddress or a native
pointer on the specific platform.

2.5.2 Java Virtual Machine Stacks

Each Java Virtual Machine thread has a private Java Virtual Machine stack, created
at the same time as the thread. A Java Virtual Machine stack stores frames (§2.6).
A Java Virtual Machine stack is analogous to the stack of a conventional language
such as C: it holds local variables and partial results, and plays a part in method
invocation and return. Because the Java Virtual Machine stack is never manipulated
directly except to push and pop frames, frames may be heap allocated. The memory
for a Java Virtual Machine stack does not need to be contiguous.

In the First Edition of The Java® Virtual Machine Specification, the Java Virtual Machine
stack was known as the Java stack.

This specification permits Java Virtual Machine stacks either to be of a fixed size
or to dynamically expand and contract as required by the computation. If the Java
Virtual Machine stacks are of a fixed size, the size of each Java Virtual Machine
stack may be chosen independently when that stack is created.

A Java Virtual Machine implementation may provide the programmer or the user control
over the initial size of Java Virtual Machine stacks, as well as, in the case of dynamically
expanding or contracting Java Virtual Machine stacks, control over the maximum and
minimum sizes.

The following exceptional conditions are associated with Java Virtual Machine
stacks:

• If the computation in a thread requires a larger Java Virtual Machine stack than
is permitted, the Java Virtual Machine throws a StackOverflowError.

• If Java Virtual Machine stacks can be dynamically expanded, and expansion is
attempted but insufficient memory can be made available to effect the expansion,
or if insufficient memory can be made available to create the initial Java
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Virtual Machine stack for a new thread, the Java Virtual Machine throws an
OutOfMemoryError.

2.5.3 Heap

The Java Virtual Machine has a heap that is shared among all Java Virtual Machine
threads. The heap is the run-time data area from which memory for all class
instances and arrays is allocated.

The heap is created on virtual machine start-up. Heap storage for objects is
reclaimed by an automatic storage management system (known as a garbage
collector); objects are never explicitly deallocated. The Java Virtual Machine
assumes no particular type of automatic storage management system, and the
storage management technique may be chosen according to the implementor's
system requirements. The heap may be of a fixed size or may be expanded as
required by the computation and may be contracted if a larger heap becomes
unnecessary. The memory for the heap does not need to be contiguous.

A Java Virtual Machine implementation may provide the programmer or the user control
over the initial size of the heap, as well as, if the heap can be dynamically expanded or
contracted, control over the maximum and minimum heap size.

The following exceptional condition is associated with the heap:

• If a computation requires more heap than can be made available by the
automatic storage management system, the Java Virtual Machine throws an
OutOfMemoryError.

2.5.4 Method Area

The Java Virtual Machine has a method area that is shared among all Java
Virtual Machine threads. The method area is analogous to the storage area for
compiled code of a conventional language or analogous to the "text" segment in
an operating system process. It stores per-class structures such as the run-time
constant pool, field and method data, and the code for methods and constructors,
including the special methods used in class and interface initialization and in
instance initialization (§2.9).

The method area is created on virtual machine start-up. Although the method area
is logically part of the heap, simple implementations may choose not to either
garbage collect or compact it. This specification does not mandate the location of
the method area or the policies used to manage compiled code. The method area
may be of a fixed size or may be expanded as required by the computation and may
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be contracted if a larger method area becomes unnecessary. The memory for the
method area does not need to be contiguous.

A Java Virtual Machine implementation may provide the programmer or the user control
over the initial size of the method area, as well as, in the case of a varying-size method area,
control over the maximum and minimum method area size.

The following exceptional condition is associated with the method area:

• If memory in the method area cannot be made available to satisfy an allocation
request, the Java Virtual Machine throws an OutOfMemoryError.

2.5.5 Run-Time Constant Pool

A run-time constant pool is a per-class or per-interface run-time representation
of the constant_pool table in a class file (§4.4). It contains several kinds of
constants, ranging from numeric literals known at compile-time to method and field
references that must be resolved at run-time. The run-time constant pool serves a
function similar to that of a symbol table for a conventional programming language,
although it contains a wider range of data than a typical symbol table.

Each run-time constant pool is allocated from the Java Virtual Machine's method
area (§2.5.4). The run-time constant pool for a class or interface is constructed
when the class or interface is created (§5.3) by the Java Virtual Machine.

The following exceptional condition is associated with the construction of the run-
time constant pool for a class or interface:

• When creating a class or interface, if the construction of the run-time constant
pool requires more memory than can be made available in the method area of the
Java Virtual Machine, the Java Virtual Machine throws an OutOfMemoryError.

See §5 (Loading, Linking, and Initializing) for information about the construction of the
run-time constant pool.

2.5.6 Native Method Stacks

An implementation of the Java Virtual Machine may use conventional stacks,
colloquially called "C stacks," to support native methods (methods written in a
language other than the Java programming language). Native method stacks may
also be used by the implementation of an interpreter for the Java Virtual Machine's
instruction set in a language such as C. Java Virtual Machine implementations
that cannot load native methods and that do not themselves rely on conventional
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stacks need not supply native method stacks. If supplied, native method stacks are
typically allocated per thread when each thread is created.

This specification permits native method stacks either to be of a fixed size or to
dynamically expand and contract as required by the computation. If the native
method stacks are of a fixed size, the size of each native method stack may be
chosen independently when that stack is created.

A Java Virtual Machine implementation may provide the programmer or the user control
over the initial size of the native method stacks, as well as, in the case of varying-size native
method stacks, control over the maximum and minimum method stack sizes.

The following exceptional conditions are associated with native method stacks:

• If the computation in a thread requires a larger native method stack than is
permitted, the Java Virtual Machine throws a StackOverflowError.

• If native method stacks can be dynamically expanded and native method stack
expansion is attempted but insufficient memory can be made available, or if
insufficient memory can be made available to create the initial native method
stack for a new thread, the Java Virtual Machine throws an OutOfMemoryError.

2.6 Frames

A frame is used to store data and partial results, as well as to perform dynamic
linking, return values for methods, and dispatch exceptions.

A new frame is created each time a method is invoked. A frame is destroyed when
its method invocation completes, whether that completion is normal or abrupt (it
throws an uncaught exception). Frames are allocated from the Java Virtual Machine
stack (§2.5.2) of the thread creating the frame. Each frame has its own array of
local variables (§2.6.1), its own operand stack (§2.6.2), and a reference to the run-
time constant pool (§2.5.5) of the class of the current method.

A frame may be extended with additional implementation-specific information, such as
debugging information.

The sizes of the local variable array and the operand stack are determined at
compile-time and are supplied along with the code for the method associated with
the frame (§4.7.3). Thus the size of the frame data structure depends only on the
implementation of the Java Virtual Machine, and the memory for these structures
can be allocated simultaneously on method invocation.
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Only one frame, the frame for the executing method, is active at any point in a given
thread of control. This frame is referred to as the current frame, and its method is
known as the current method. The class in which the current method is defined is
the current class. Operations on local variables and the operand stack are typically
with reference to the current frame.

A frame ceases to be current if its method invokes another method or if its method
completes. When a method is invoked, a new frame is created and becomes current
when control transfers to the new method. On method return, the current frame
passes back the result of its method invocation, if any, to the previous frame. The
current frame is then discarded as the previous frame becomes the current one.

Note that a frame created by a thread is local to that thread and cannot be referenced
by any other thread.

2.6.1 Local Variables

Each frame (§2.6) contains an array of variables known as its local variables. The
length of the local variable array of a frame is determined at compile-time and
supplied in the binary representation of a class or interface along with the code for
the method associated with the frame (§4.7.3).

A single local variable can hold a value of type boolean, byte, char, short, int,
float, reference, or returnAddress. A pair of local variables can hold a value
of type long or double.

Local variables are addressed by indexing. The index of the first local variable is
zero. An integer is considered to be an index into the local variable array if and only
if that integer is between zero and one less than the size of the local variable array.

A value of type long or type double occupies two consecutive local variables.
Such a value may only be addressed using the lesser index. For example, a value of
type double stored in the local variable array at index n actually occupies the local
variables with indices n and n+1; however, the local variable at index n+1 cannot
be loaded from. It can be stored into. However, doing so invalidates the contents
of local variable n.

The Java Virtual Machine does not require n to be even. In intuitive terms, values
of types long and double need not be 64-bit aligned in the local variables array.
Implementors are free to decide the appropriate way to represent such values using
the two local variables reserved for the value.

The Java Virtual Machine uses local variables to pass parameters on method
invocation. On class method invocation, any parameters are passed in consecutive
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local variables starting from local variable 0. On instance method invocation,
local variable 0 is always used to pass a reference to the object on which the
instance method is being invoked (this in the Java programming language). Any
parameters are subsequently passed in consecutive local variables starting from
local variable 1.

2.6.2 Operand Stacks

Each frame (§2.6) contains a last-in-first-out (LIFO) stack known as its operand
stack. The maximum depth of the operand stack of a frame is determined at
compile-time and is supplied along with the code for the method associated with
the frame (§4.7.3).

Where it is clear by context, we will sometimes refer to the operand stack of the
current frame as simply the operand stack.

The operand stack is empty when the frame that contains it is created. The
Java Virtual Machine supplies instructions to load constants or values from local
variables or fields onto the operand stack. Other Java Virtual Machine instructions
take operands from the operand stack, operate on them, and push the result back
onto the operand stack. The operand stack is also used to prepare parameters to be
passed to methods and to receive method results.

For example, the iadd instruction (§iadd) adds two int values together. It requires
that the int values to be added be the top two values of the operand stack, pushed
there by previous instructions. Both of the int values are popped from the operand
stack. They are added, and their sum is pushed back onto the operand stack.
Subcomputations may be nested on the operand stack, resulting in values that can
be used by the encompassing computation.

Each entry on the operand stack can hold a value of any Java Virtual Machine type,
including a value of type long or type double.

Values from the operand stack must be operated upon in ways appropriate to their
types. It is not possible, for example, to push two int values and subsequently treat
them as a long or to push two float values and subsequently add them with an
iadd instruction. A small number of Java Virtual Machine instructions (the dup
instructions (§dup) and swap (§swap)) operate on run-time data areas as raw values
without regard to their specific types; these instructions are defined in such a way
that they cannot be used to modify or break up individual values. These restrictions
on operand stack manipulation are enforced through class file verification (§4.10).
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At any point in time, an operand stack has an associated depth, where a value of
type long or double contributes two units to the depth and a value of any other
type contributes one unit.

2.6.3 Dynamic Linking

Each frame (§2.6) contains a reference to the run-time constant pool (§2.5.5) for
the type of the current method to support dynamic linking of the method code.
The class file code for a method refers to methods to be invoked and variables
to be accessed via symbolic references. Dynamic linking translates these symbolic
method references into concrete method references, loading classes as necessary to
resolve as-yet-undefined symbols, and translates variable accesses into appropriate
offsets in storage structures associated with the run-time location of these variables.

This late binding of the methods and variables makes changes in other classes that
a method uses less likely to break this code.

2.6.4 Normal Method Invocation Completion

A method invocation completes normally if that invocation does not cause an
exception (§2.10) to be thrown, either directly from the Java Virtual Machine or as
a result of executing an explicit throw statement. If the invocation of the current
method completes normally, then a value may be returned to the invoking method.
This occurs when the invoked method executes one of the return instructions
(§2.11.8), the choice of which must be appropriate for the type of the value being
returned (if any).

The current frame (§2.6) is used in this case to restore the state of the invoker,
including its local variables and operand stack, with the program counter of the
invoker appropriately incremented to skip past the method invocation instruction.
Execution then continues normally in the invoking method's frame with the
returned value (if any) pushed onto the operand stack of that frame.

2.6.5 Abrupt Method Invocation Completion

A method invocation completes abruptly if execution of a Java Virtual Machine
instruction within the method causes the Java Virtual Machine to throw an
exception (§2.10), and that exception is not handled within the method. Execution
of an athrow instruction (§athrow) also causes an exception to be explicitly thrown
and, if the exception is not caught by the current method, results in abrupt method
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invocation completion. A method invocation that completes abruptly never returns
a value to its invoker.

2.7 Representation of Objects

The Java Virtual Machine does not mandate any particular internal structure for
objects.

In some of Oracle’s implementations of the Java Virtual Machine, a reference to a class
instance is a pointer to a handle that is itself a pair of pointers: one to a table containing
the methods of the object and a pointer to the Class object that represents the type of the
object, and the other to the memory allocated from the heap for the object data.

2.8 Floating-Point Arithmetic

The Java Virtual Machine incorporates a subset of the floating-point arithmetic
specified in IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std.
754-1985, New York).

2.8.1 Java Virtual Machine Floating-Point Arithmetic and IEEE 754

The key differences between the floating-point arithmetic supported by the Java
Virtual Machine and the IEEE 754 standard are:

• The floating-point operations of the Java Virtual Machine do not throw
exceptions, trap, or otherwise signal the IEEE 754 exceptional conditions of
invalid operation, division by zero, overflow, underflow, or inexact. The Java
Virtual Machine has no signaling NaN value.

• The Java Virtual Machine does not support IEEE 754 signaling floating-point
comparisons.

• The rounding operations of the Java Virtual Machine always use IEEE 754 round
to nearest mode. Inexact results are rounded to the nearest representable value,
with ties going to the value with a zero least-significant bit. This is the IEEE
754 default mode. But Java Virtual Machine instructions that convert values
of floating-point types to values of integral types round toward zero. The Java
Virtual Machine does not give any means to change the floating-point rounding
mode.
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• The Java Virtual Machine does not support either the IEEE 754 single extended
or double extended format, except insofar as the double and double-extended-
exponent value sets may be said to support the single extended format. The
float-extended-exponent and double-extended-exponent value sets, which may
optionally be supported, do not correspond to the values of the IEEE 754
extended formats: the IEEE 754 extended formats require extended precision as
well as extended exponent range.

2.8.2 Floating-Point Modes

Every method has a floating-point mode, which is either FP-strict or not FP-
strict. The floating-point mode of a method is determined by the setting of the
ACC_STRICT flag of the access_flags item of the method_info structure (§4.6)
defining the method. A method for which this flag is set is FP-strict; otherwise, the
method is not FP-strict.

Note that this mapping of the ACC_STRICT flag implies that methods in classes compiled
by a compiler in JDK release 1.1 or earlier are effectively not FP-strict.

We will refer to an operand stack as having a given floating-point mode when the
method whose invocation created the frame containing the operand stack has that
floating-point mode. Similarly, we will refer to a Java Virtual Machine instruction
as having a given floating-point mode when the method containing that instruction
has that floating-point mode.

If a float-extended-exponent value set is supported (§2.3.2), values of type float
on an operand stack that is not FP-strict may range over that value set except
where prohibited by value set conversion (§2.8.3). If a double-extended-exponent
value set is supported (§2.3.2), values of type double on an operand stack that is
not FP-strict may range over that value set except where prohibited by value set
conversion.

In all other contexts, whether on the operand stack or elsewhere, and regardless
of floating-point mode, floating-point values of type float and double may only
range over the float value set and double value set, respectively. In particular, class
and instance fields, array elements, local variables, and method parameters may
only contain values drawn from the standard value sets.

2.8.3 Value Set Conversion

An implementation of the Java Virtual Machine that supports an extended floating-
point value set is permitted or required, under specified circumstances, to map a
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value of the associated floating-point type between the extended and the standard
value sets. Such a value set conversion is not a type conversion, but a mapping
between the value sets associated with the same type.

Where value set conversion is indicated, an implementation is permitted to perform
one of the following operations on a value:

• If the value is of type float and is not an element of the float value set, it maps
the value to the nearest element of the float value set.

• If the value is of type double and is not an element of the double value set, it
maps the value to the nearest element of the double value set.

In addition, where value set conversion is indicated, certain operations are required:

• Suppose execution of a Java Virtual Machine instruction that is not FP-strict
causes a value of type float to be pushed onto an operand stack that is FP-strict,
passed as a parameter, or stored into a local variable, a field, or an element of an
array. If the value is not an element of the float value set, it maps the value to
the nearest element of the float value set.

• Suppose execution of a Java Virtual Machine instruction that is not FP-strict
causes a value of type double to be pushed onto an operand stack that is FP-
strict, passed as a parameter, or stored into a local variable, a field, or an element
of an array. If the value is not an element of the double value set, it maps the
value to the nearest element of the double value set.

Such required value set conversions may occur as a result of passing a parameter
of a floating-point type during method invocation, including native method
invocation; returning a value of a floating-point type from a method that is not FP-
strict to a method that is FP-strict; or storing a value of a floating-point type into a
local variable, a field, or an array in a method that is not FP-strict.

Not all values from an extended-exponent value set can be mapped exactly to a
value in the corresponding standard value set. If a value being mapped is too large
to be represented exactly (its exponent is greater than that permitted by the standard
value set), it is converted to a (positive or negative) infinity of the corresponding
type. If a value being mapped is too small to be represented exactly (its exponent
is smaller than that permitted by the standard value set), it is rounded to the nearest
of a representable denormalized value or zero of the same sign.

Value set conversion preserves infinities and NaNs and cannot change the sign of
the value being converted. Value set conversion has no effect on a value that is not
of a floating-point type.
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2.9 Special Methods

2.9.1 Instance Initialization Methods

A class has zero or more instance initialization methods, each typically
corresponding to a constructor written in the Java programming language.

A method is an instance initialization method if all of the following are true:

• It is defined in a class (not an interface).

• It has the special name <init>.

• It is void (§4.3.3).

In a class, any non-void method named <init> is not an instance initialization
method. In an interface, any method named <init> is not an instance initialization
method. Such methods cannot be invoked by any Java Virtual Machine instruction
(§4.4.2, §4.9.2) and are rejected by format checking (§4.6, §4.8).

The declaration and use of an instance initialization method is constrained by
the Java Virtual Machine. For the declaration, the method's access_flags item
and code array are constrained (§4.6, §4.9.2). For a use, an instance initialization
method may be invoked only by the invokespecial instruction on an uninitialized
class instance (§4.10.1.9).

Because the name <init> is not a valid identifier in the Java programming language, it
cannot be used directly in a program written in the Java programming language.

2.9.2 Class Initialization Methods

A class or interface has at most one class or interface initialization method and is
initialized by the Java Virtual Machine invoking that method (§5.5).

A method is a class or interface initialization method if all of the following are true:

• It has the special name <clinit>.

• It is void (§4.3.3).

• In a class file whose version number is 51.0 or above, the method has its
ACC_STATIC flag set and takes no arguments (§4.6).

The requirement for ACC_STATIC was introduced in Java SE 7, and for taking no
arguments in Java SE 9. In a class file whose version number is 50.0 or below, a method
named <clinit> that is void is considered the class or interface initialization method
regardless of the setting of its ACC_STATIC flag or whether it takes arguments.



THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Exceptions 2.10

23

Other methods named <clinit> in a class file are not class or interface
initialization methods. They are never invoked by the Java Virtual Machine itself,
cannot be invoked by any Java Virtual Machine instruction (§4.9.1), and are
rejected by format checking (§4.6, §4.8).

Because the name <clinit> is not a valid identifier in the Java programming language, it
cannot be used directly in a program written in the Java programming language.

2.9.3 Signature Polymorphic Methods

A method is signature polymorphic if all of the following are true:

• It is declared in the java.lang.invoke.MethodHandle class or the
java.lang.invoke.VarHandle class.

• It has a single formal parameter of type Object[].

• It has the ACC_VARARGS and ACC_NATIVE flags set.

The Java Virtual Machine gives special treatment to signature polymorphic
methods in the invokevirtual instruction (§invokevirtual), in order to effect
invocation of a method handle or to effect access to a variable referenced by an
instance of java.lang.invoke.VarHandle.

A method handle is a dynamically strongly typed and directly executable
reference to an underlying method, constructor, field, or similar low-level operation
(§5.4.3.5), with optional transformations of arguments or return values. An instance
of java.lang.invoke.VarHandle is a dynamically strongly typed reference to a
variable or family of variables, including static fields, non-static fields, array
elements, or components of an off-heap data structure. See the java.lang.invoke
package in the Java SE Platform API for more information.

2.10 Exceptions

An exception in the Java Virtual Machine is represented by an instance of the class
Throwable or one of its subclasses. Throwing an exception results in an immediate
nonlocal transfer of control from the point where the exception was thrown.

Most exceptions occur synchronously as a result of an action by the thread in which
they occur. An asynchronous exception, by contrast, can potentially occur at any
point in the execution of a program. The Java Virtual Machine throws an exception
for one of three reasons:
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• An athrow instruction (§athrow) was executed.

• An abnormal execution condition was synchronously detected by the Java
Virtual Machine. These exceptions are not thrown at an arbitrary point in the
program, but only synchronously after execution of an instruction that either:

– Specifies the exception as a possible result, such as:

› When the instruction embodies an operation that violates the semantics of
the Java programming language, for example indexing outside the bounds
of an array.

› When an error occurs in loading or linking part of the program.

– Causes some limit on a resource to be exceeded, for example when too much
memory is used.

• An asynchronous exception occurred because:

– The stop method of class Thread or ThreadGroup was invoked, or

– An internal error occurred in the Java Virtual Machine implementation.

The stop methods may be invoked by one thread to affect another thread or all
the threads in a specified thread group. They are asynchronous because they may
occur at any point in the execution of the other thread or threads. An internal
error is considered asynchronous (§6.3).

A Java Virtual Machine may permit a small but bounded amount of execution to
occur before an asynchronous exception is thrown. This delay is permitted to allow
optimized code to detect and throw these exceptions at points where it is practical
to handle them while obeying the semantics of the Java programming language.

A simple implementation might poll for asynchronous exceptions at the point of each
control transfer instruction. Since a program has a finite size, this provides a bound
on the total delay in detecting an asynchronous exception. Since no asynchronous
exception will occur between control transfers, the code generator has some flexibility
to reorder computation between control transfers for greater performance. The paper
Polling Efficiently on Stock Hardware by Marc Feeley, Proc. 1993 Conference on
Functional Programming and Computer Architecture, Copenhagen, Denmark, pp. 179–
187, is recommended as further reading.

Exceptions thrown by the Java Virtual Machine are precise: when the transfer of
control takes place, all effects of the instructions executed before the point from
which the exception is thrown must appear to have taken place. No instructions that
occur after the point from which the exception is thrown may appear to have been
evaluated. If optimized code has speculatively executed some of the instructions
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which follow the point at which the exception occurs, such code must be prepared
to hide this speculative execution from the user-visible state of the program.

Each method in the Java Virtual Machine may be associated with zero or more
exception handlers. An exception handler specifies the range of offsets into the Java
Virtual Machine code implementing the method for which the exception handler
is active, describes the type of exception that the exception handler is able to
handle, and specifies the location of the code that is to handle that exception. An
exception matches an exception handler if the offset of the instruction that caused
the exception is in the range of offsets of the exception handler and the exception
type is the same class as or a subclass of the class of exception that the exception
handler handles. When an exception is thrown, the Java Virtual Machine searches
for a matching exception handler in the current method. If a matching exception
handler is found, the system branches to the exception handling code specified by
the matched handler.

If no such exception handler is found in the current method, the current method
invocation completes abruptly (§2.6.5). On abrupt completion, the operand stack
and local variables of the current method invocation are discarded, and its frame
is popped, reinstating the frame of the invoking method. The exception is then
rethrown in the context of the invoker's frame and so on, continuing up the method
invocation chain. If no suitable exception handler is found before the top of the
method invocation chain is reached, the execution of the thread in which the
exception was thrown is terminated.

The order in which the exception handlers of a method are searched for a match is
important. Within a class file, the exception handlers for each method are stored in
a table (§4.7.3). At run time, when an exception is thrown, the Java Virtual Machine
searches the exception handlers of the current method in the order that they appear
in the corresponding exception handler table in the class file, starting from the
beginning of that table.

Note that the Java Virtual Machine does not enforce nesting of or any ordering
of the exception table entries of a method. The exception handling semantics of
the Java programming language are implemented only through cooperation with
the compiler (§3.12). When class files are generated by some other means, the
defined search procedure ensures that all Java Virtual Machine implementations
will behave consistently.



2.11 Instruction Set Summary THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

26

2.11 Instruction Set Summary

A Java Virtual Machine instruction consists of a one-byte opcode specifying
the operation to be performed, followed by zero or more operands supplying
arguments or data that are used by the operation. Many instructions have no
operands and consist only of an opcode.

Ignoring exceptions, the inner loop of a Java Virtual Machine interpreter is
effectively

do {
    atomically calculate pc and fetch opcode at pc;
    if (operands) fetch operands;
    execute the action for the opcode;
} while (there is more to do);

The number and size of the operands are determined by the opcode. If an operand
is more than one byte in size, then it is stored in big-endian order - high-order byte
first. For example, an unsigned 16-bit index into the local variables is stored as two
unsigned bytes, byte1 and byte2, such that its value is (byte1 << 8) | byte2.

The bytecode instruction stream is only single-byte aligned. The two exceptions
are the lookupswitch and tableswitch instructions (§lookupswitch, §tableswitch),
which are padded to force internal alignment of some of their operands on 4-byte
boundaries.

The decision to limit the Java Virtual Machine opcode to a byte and to forgo data alignment
within compiled code reflects a conscious bias in favor of compactness, possibly at the cost
of some performance in naive implementations. A one-byte opcode also limits the size of
the instruction set. Not assuming data alignment means that immediate data larger than a
byte must be constructed from bytes at run time on many machines.

2.11.1 Types and the Java Virtual Machine

Most of the instructions in the Java Virtual Machine instruction set encode type
information about the operations they perform. For instance, the iload instruction
(§iload) loads the contents of a local variable, which must be an int, onto the
operand stack. The fload instruction (§fload) does the same with a float value. The
two instructions may have identical implementations, but have distinct opcodes.

For the majority of typed instructions, the instruction type is represented explicitly
in the opcode mnemonic by a letter: i for an int operation, l for long, s for short,
b for byte, c for char, f for float, d for double, and a for reference. Some
instructions for which the type is unambiguous do not have a type letter in their
mnemonic. For instance, arraylength always operates on an object that is an array.
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Some instructions, such as goto, an unconditional control transfer, do not operate
on typed operands.

Given the Java Virtual Machine's one-byte opcode size, encoding types into
opcodes places pressure on the design of its instruction set. If each typed instruction
supported all of the Java Virtual Machine's run-time data types, there would be
more instructions than could be represented in a byte. Instead, the instruction set
of the Java Virtual Machine provides a reduced level of type support for certain
operations. In other words, the instruction set is intentionally not orthogonal.
Separate instructions can be used to convert between unsupported and supported
data types as necessary.

Table 2.11.1-A summarizes the type support in the instruction set of the Java
Virtual Machine. A specific instruction, with type information, is built by replacing
the T in the instruction template in the opcode column by the letter in the type
column. If the type column for some instruction template and type is blank, then
no instruction exists supporting that type of operation. For instance, there is a load
instruction for type int, iload, but there is no load instruction for type byte.

Note that most instructions in Table 2.11.1-A do not have forms for the integral
types byte, char, and short. None have forms for the boolean type. A compiler
encodes loads of literal values of types byte and short using Java Virtual Machine
instructions that sign-extend those values to values of type int at compile-time
or run-time. Loads of literal values of types boolean and char are encoded using
instructions that zero-extend the literal to a value of type int at compile-time or
run-time. Likewise, loads from arrays of values of type boolean, byte, short, and
char are encoded using Java Virtual Machine instructions that sign-extend or zero-
extend the values to values of type int. Thus, most operations on values of actual
types boolean, byte, char, and short are correctly performed by instructions
operating on values of computational type int.
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Table 2.11.1-A. Type support in the Java Virtual Machine instruction set

opcode byte short int long float double char reference

Tipush bipush sipush

Tconst iconst lconst fconst dconst aconst

Tload iload lload fload dload aload

Tstore istore lstore fstore dstore astore

Tinc iinc

Taload baload saload iaload laload faload daload caload aaload

Tastore bastore sastore iastore lastore fastore dastore castore aastore

Tadd iadd ladd fadd dadd

Tsub isub lsub fsub dsub

Tmul imul lmul fmul dmul

Tdiv idiv ldiv fdiv ddiv

Trem irem lrem frem drem

Tneg ineg lneg fneg dneg

Tshl ishl lshl

Tshr ishr lshr

Tushr iushr lushr

Tand iand land

Tor ior lor

Txor ixor lxor

i2T i2b i2s i2l i2f i2d

l2T l2i l2f l2d

f2T f2i f2l f2d

d2T d2i d2l d2f

Tcmp lcmp

Tcmpl fcmpl dcmpl

Tcmpg fcmpg dcmpg

if_TcmpOP if_icmpOP if_acmpOP

Treturn ireturn lreturn freturn dreturn areturn
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The mapping between Java Virtual Machine actual types and Java Virtual Machine
computational types is summarized by Table 2.11.1-B.

Certain Java Virtual Machine instructions such as pop and swap operate on the
operand stack without regard to type; however, such instructions are constrained
to use only on values of certain categories of computational types, also given in
Table 2.11.1-B.

Table 2.11.1-B. Actual and Computational types in the Java Virtual Machine

Actual type Computational type Category

boolean int 1

byte int 1

char int 1

short int 1

int int 1

float float 1

reference reference 1

returnAddress returnAddress 1

long long 2

double double 2

2.11.2 Load and Store Instructions

The load and store instructions transfer values between the local variables (§2.6.1)
and the operand stack (§2.6.2) of a Java Virtual Machine frame (§2.6):

• Load a local variable onto the operand stack: iload, iload_<n>, lload,
lload_<n>, fload, fload_<n>, dload, dload_<n>, aload, aload_<n>.

• Store a value from the operand stack into a local variable: istore, istore_<n>,
lstore, lstore_<n>, fstore, fstore_<n>, dstore, dstore_<n>, astore, astore_<n>.

• Load a constant on to the operand stack: bipush, sipush, ldc, ldc_w, ldc2_w,
aconst_null, iconst_m1, iconst_<i>, lconst_<l>, fconst_<f>, dconst_<d>.

• Gain access to more local variables using a wider index, or to a larger immediate
operand: wide.

Instructions that access fields of objects and elements of arrays (§2.11.5) also
transfer data to and from the operand stack.
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Instruction mnemonics shown above with trailing letters between angle brackets
(for instance, iload_<n>) denote families of instructions (with members iload_0,
iload_1, iload_2, and iload_3 in the case of iload_<n>). Such families of
instructions are specializations of an additional generic instruction (iload) that takes
one operand. For the specialized instructions, the operand is implicit and does not
need to be stored or fetched. The semantics are otherwise the same (iload_0 means
the same thing as iload with the operand 0). The letter between the angle brackets
specifies the type of the implicit operand for that family of instructions: for <n>,
a nonnegative integer; for <i>, an int; for <l>, a long; for <f>, a float; and for
<d>, a double. Forms for type int are used in many cases to perform operations
on values of type byte, char, and short (§2.11.1).

This notation for instruction families is used throughout this specification.

2.11.3 Arithmetic Instructions

The arithmetic instructions compute a result that is typically a function of two
values on the operand stack, pushing the result back on the operand stack. There
are two main kinds of arithmetic instructions: those operating on integer values and
those operating on floating-point values. Within each of these kinds, the arithmetic
instructions are specialized to Java Virtual Machine numeric types. There is no
direct support for integer arithmetic on values of the byte, short, and char types
(§2.11.1), or for values of the boolean type; those operations are handled by
instructions operating on type int. Integer and floating-point instructions also
differ in their behavior on overflow and divide-by-zero. The arithmetic instructions
are as follows:

• Add: iadd, ladd, fadd, dadd.

• Subtract: isub, lsub, fsub, dsub.

• Multiply: imul, lmul, fmul, dmul.

• Divide: idiv, ldiv, fdiv, ddiv.

• Remainder: irem, lrem, frem, drem.

• Negate: ineg, lneg, fneg, dneg.

• Shift: ishl, ishr, iushr, lshl, lshr, lushr.

• Bitwise OR: ior, lor.

• Bitwise AND: iand, land.

• Bitwise exclusive OR: ixor, lxor.
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• Local variable increment: iinc.

• Comparison: dcmpg, dcmpl, fcmpg, fcmpl, lcmp.

The semantics of the Java programming language operators on integer and floating-
point values (JLS §4.2.2, JLS §4.2.4) are directly supported by the semantics of
the Java Virtual Machine instruction set.

The Java Virtual Machine does not indicate overflow during operations on integer
data types. The only integer operations that can throw an exception are the integer
divide instructions (idiv and ldiv) and the integer remainder instructions (irem and
lrem), which throw an ArithmeticException if the divisor is zero.

Java Virtual Machine operations on floating-point numbers behave as specified in
IEEE 754. In particular, the Java Virtual Machine requires full support of IEEE
754 denormalized floating-point numbers and gradual underflow, which make it
easier to prove desirable properties of particular numerical algorithms.

The Java Virtual Machine requires that floating-point arithmetic behave as if every
floating-point operator rounded its floating-point result to the result precision.
Inexact results must be rounded to the representable value nearest to the infinitely
precise result; if the two nearest representable values are equally near, the one
having a least significant bit of zero is chosen. This is the IEEE 754 standard's
default rounding mode, known as round to nearest mode.

The Java Virtual Machine uses the IEEE 754 round towards zero mode when
converting a floating-point value to an integer. This results in the number being
truncated; any bits of the significand that represent the fractional part of the operand
value are discarded. Round towards zero mode chooses as its result the type's value
closest to, but no greater in magnitude than, the infinitely precise result.

The Java Virtual Machine's floating-point operators do not throw run-time
exceptions (not to be confused with IEEE 754 floating-point exceptions). An
operation that overflows produces a signed infinity, an operation that underflows
produces a denormalized value or a signed zero, and an operation that has no
mathematically definite result produces NaN. All numeric operations with NaN as
an operand produce NaN as a result.

Comparisons on values of type long (lcmp) perform a signed comparison.
Comparisons on values of floating-point types (dcmpg, dcmpl, fcmpg, fcmpl) are
performed using IEEE 754 nonsignaling comparisons.
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2.11.4 Type Conversion Instructions

The type conversion instructions allow conversion between Java Virtual Machine
numeric types. These may be used to implement explicit conversions in user code
or to mitigate the lack of orthogonality in the instruction set of the Java Virtual
Machine.

The Java Virtual Machine directly supports the following widening numeric
conversions:

• int to long, float, or double

• long to float or double

• float to double

The widening numeric conversion instructions are i2l, i2f, i2d, l2f, l2d, and f2d. The
mnemonics for these opcodes are straightforward given the naming conventions
for typed instructions and the punning use of 2 to mean "to." For instance, the i2d
instruction converts an int value to a double.

Most widening numeric conversions do not lose information about the overall
magnitude of a numeric value. Indeed, conversions widening from int to long and
int to double do not lose any information at all; the numeric value is preserved
exactly. Conversions widening from float to double that are FP-strict (§2.8.2)
also preserve the numeric value exactly; only such conversions that are not FP-
strict may lose information about the overall magnitude of the converted value.

Conversions from int to float, or from long to float, or from long to double,
may lose precision, that is, may lose some of the least significant bits of the value;
the resulting floating-point value is a correctly rounded version of the integer value,
using IEEE 754 round to nearest mode.

Despite the fact that loss of precision may occur, widening numeric conversions
never cause the Java Virtual Machine to throw a run-time exception (not to be
confused with an IEEE 754 floating-point exception).

A widening numeric conversion of an int to a long simply sign-extends the two's-
complement representation of the int value to fill the wider format. A widening
numeric conversion of a char to an integral type zero-extends the representation
of the char value to fill the wider format.

Note that widening numeric conversions do not exist from integral types byte,
char, and short to type int. As noted in §2.11.1, values of type byte, char, and
short are internally widened to type int, making these conversions implicit.
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The Java Virtual Machine also directly supports the following narrowing numeric
conversions:

• int to byte, short, or char

• long to int

• float to int or long

• double to int, long, or float

The narrowing numeric conversion instructions are i2b, i2c, i2s, l2i, f2i, f2l, d2i,
d2l, and d2f. A narrowing numeric conversion can result in a value of different
sign, a different order of magnitude, or both; it may thereby lose precision.

A narrowing numeric conversion of an int or long to an integral type T simply
discards all but the n lowest-order bits, where n is the number of bits used to
represent type T. This may cause the resulting value not to have the same sign as
the input value.

In a narrowing numeric conversion of a floating-point value to an integral type T,
where T is either int or long, the floating-point value is converted as follows:

• If the floating-point value is NaN, the result of the conversion is an int or long 0.

• Otherwise, if the floating-point value is not an infinity, the floating-point value
is rounded to an integer value V using IEEE 754 round towards zero mode. There
are two cases:

– If T is long and this integer value can be represented as a long, then the result
is the long value V.

– If T is of type int and this integer value can be represented as an int, then
the result is the int value V.

• Otherwise:

– Either the value must be too small (a negative value of large magnitude or
negative infinity), and the result is the smallest representable value of type int
or long.

– Or the value must be too large (a positive value of large magnitude or positive
infinity), and the result is the largest representable value of type int or long.

A narrowing numeric conversion from double to float behaves in accordance
with IEEE 754. The result is correctly rounded using IEEE 754 round to nearest
mode. A value too small to be represented as a float is converted to a positive
or negative zero of type float; a value too large to be represented as a float is



2.11 Instruction Set Summary THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

34

converted to a positive or negative infinity. A double NaN is always converted to
a float NaN.

Despite the fact that overflow, underflow, or loss of precision may occur, narrowing
conversions among numeric types never cause the Java Virtual Machine to throw a
run-time exception (not to be confused with an IEEE 754 floating-point exception).

2.11.5 Object Creation and Manipulation

Although both class instances and arrays are objects, the Java Virtual Machine
creates and manipulates class instances and arrays using distinct sets of
instructions:

• Create a new class instance: new.

• Create a new array: newarray, anewarray, multianewarray.

• Access fields of classes (static fields, known as class variables) and fields
of class instances (non-static fields, known as instance variables): getstatic,
putstatic, getfield, putfield.

• Load an array component onto the operand stack: baload, caload, saload, iaload,
laload, faload, daload, aaload.

• Store a value from the operand stack as an array component: bastore, castore,
sastore, iastore, lastore, fastore, dastore, aastore.

• Get the length of array: arraylength.

• Check properties of class instances or arrays: instanceof, checkcast.

2.11.6 Operand Stack Management Instructions

A number of instructions are provided for the direct manipulation of the operand
stack: pop, pop2, dup, dup2, dup_x1, dup2_x1, dup_x2, dup2_x2, swap.

2.11.7 Control Transfer Instructions

The control transfer instructions conditionally or unconditionally cause the Java
Virtual Machine to continue execution with an instruction other than the one
following the control transfer instruction. They are:

• Conditional branch: ifeq, ifne, iflt, ifle, ifgt, ifge, ifnull, ifnonnull, if_icmpeq,
if_icmpne, if_icmplt, if_icmple, if_icmpgt if_icmpge, if_acmpeq, if_acmpne.

• Compound conditional branch: tableswitch, lookupswitch.
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• Unconditional branch: goto, goto_w, jsr, jsr_w, ret.

The Java Virtual Machine has distinct sets of instructions that conditionally
branch on comparison with data of int and reference types. It also has distinct
conditional branch instructions that test for the null reference and thus it is not
required to specify a concrete value for null (§2.4).

Conditional branches on comparisons between data of types boolean, byte,
char, and short are performed using int comparison instructions (§2.11.1). A
conditional branch on a comparison between data of types long, float, or double
is initiated using an instruction that compares the data and produces an int
result of the comparison (§2.11.3). A subsequent int comparison instruction tests
this result and effects the conditional branch. Because of its emphasis on int
comparisons, the Java Virtual Machine provides a rich complement of conditional
branch instructions for type int.

All int conditional control transfer instructions perform signed comparisons.

2.11.8 Method Invocation and Return Instructions

The following five instructions invoke methods:

• invokevirtual invokes an instance method of an object, dispatching on the
(virtual) type of the object. This is the normal method dispatch in the Java
programming language.

• invokeinterface invokes an interface method, searching the methods
implemented by the particular run-time object to find the appropriate method.

• invokespecial invokes an instance method requiring special handling, either an
instance initialization method (§2.9.1) or a method of the current class or its
supertypes.

• invokestatic invokes a class (static) method in a named class.

• invokedynamic invokes the method which is the target of the call site object
bound to the invokedynamic instruction. The call site object was bound to a
specific lexical occurrence of the invokedynamic instruction by the Java Virtual
Machine as a result of running a bootstrap method before the first execution of
the instruction. Therefore, each occurrence of an invokedynamic instruction has
a unique linkage state, unlike the other instructions which invoke methods.

The method return instructions, which are distinguished by return type, are ireturn
(used to return values of type boolean, byte, char, short, or int), lreturn, freturn,
dreturn, and areturn. In addition, the return instruction is used to return from
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methods declared to be void, instance initialization methods, and class or interface
initialization methods.

2.11.9 Throwing Exceptions

An exception is thrown programmatically using the athrow instruction. Exceptions
can also be thrown by various Java Virtual Machine instructions if they detect an
abnormal condition.

2.11.10 Synchronization

The Java Virtual Machine supports synchronization of both methods and sequences
of instructions within a method by a single synchronization construct: the monitor.

Method-level synchronization is performed implicitly, as part of method invocation
and return (§2.11.8). A synchronized method is distinguished in the run-time
constant pool's method_info structure (§4.6) by the ACC_SYNCHRONIZED flag,
which is checked by the method invocation instructions. When invoking a method
for which ACC_SYNCHRONIZED is set, the executing thread enters a monitor, invokes
the method itself, and exits the monitor whether the method invocation completes
normally or abruptly. During the time the executing thread owns the monitor,
no other thread may enter it. If an exception is thrown during invocation of
the synchronized method and the synchronized method does not handle the
exception, the monitor for the method is automatically exited before the exception
is rethrown out of the synchronized method.

Synchronization of sequences of instructions is typically used to encode the
synchronized block of the Java programming language. The Java Virtual Machine
supplies the monitorenter and monitorexit instructions to support such language
constructs. Proper implementation of synchronized blocks requires cooperation
from a compiler targeting the Java Virtual Machine (§3.14).

Structured locking is the situation when, during a method invocation, every exit
on a given monitor matches a preceding entry on that monitor. Since there is
no assurance that all code submitted to the Java Virtual Machine will perform
structured locking, implementations of the Java Virtual Machine are permitted but
not required to enforce both of the following two rules guaranteeing structured
locking. Let T be a thread and M be a monitor. Then:

1. The number of monitor entries performed by T on M during a method
invocation must equal the number of monitor exits performed by T on M during
the method invocation whether the method invocation completes normally or
abruptly.
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2. At no point during a method invocation may the number of monitor exits
performed by T on M since the method invocation exceed the number of
monitor entries performed by T on M since the method invocation.

Note that the monitor entry and exit automatically performed by the Java Virtual
Machine when invoking a synchronized method are considered to occur during
the calling method's invocation.

2.12 Class Libraries

The Java Virtual Machine must provide sufficient support for the implementation
of the class libraries of the Java SE Platform. Some of the classes in these libraries
cannot be implemented without the cooperation of the Java Virtual Machine.

Classes that might require special support from the Java Virtual Machine include
those that support:

• Reflection, such as the classes in the package java.lang.reflect and the class
Class.

• Loading and creation of a class or interface. The most obvious example is the
class ClassLoader.

• Linking and initialization of a class or interface. The example classes cited above
fall into this category as well.

• Security, such as the classes in the package java.security and other classes
such as SecurityManager.

• Multithreading, such as the class Thread.

• Weak references, such as the classes in the package java.lang.ref.

The list above is meant to be illustrative rather than comprehensive. An exhaustive
list of these classes or of the functionality they provide is beyond the scope of
this specification. See the specifications of the Java SE Platform class libraries for
details.

2.13 Public Design, Private Implementation

Thus far this specification has sketched the public view of the Java Virtual
Machine: the class file format and the instruction set. These components are vital
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to the hardware-, operating system-, and implementation-independence of the Java
Virtual Machine. The implementor may prefer to think of them as a means to
securely communicate fragments of programs between hosts each implementing
the Java SE Platform, rather than as a blueprint to be followed exactly.

It is important to understand where the line between the public design and the
private implementation lies. A Java Virtual Machine implementation must be
able to read class files and must exactly implement the semantics of the Java
Virtual Machine code therein. One way of doing this is to take this document
as a specification and to implement that specification literally. But it is also
perfectly feasible and desirable for the implementor to modify or optimize the
implementation within the constraints of this specification. So long as the class file
format can be read and the semantics of its code are maintained, the implementor
may implement these semantics in any way. What is "under the hood" is the
implementor's business, as long as the correct external interface is carefully
maintained.

There are some exceptions: debuggers, profilers, and just-in-time code generators can each
require access to elements of the Java Virtual Machine that are normally considered to
be “under the hood.” Where appropriate, Oracle works with other Java Virtual Machine
implementors and with tool vendors to develop common interfaces to the Java Virtual
Machine for use by such tools, and to promote those interfaces across the industry.

The implementor can use this flexibility to tailor Java Virtual Machine
implementations for high performance, low memory use, or portability. What
makes sense in a given implementation depends on the goals of that
implementation. The range of implementation options includes the following:

• Translating Java Virtual Machine code at load-time or during execution into the
instruction set of another virtual machine.

• Translating Java Virtual Machine code at load-time or during execution into the
native instruction set of the host CPU (sometimes referred to as just-in-time, or
JIT, code generation).

The existence of a precisely defined virtual machine and object file format need not
significantly restrict the creativity of the implementor. The Java Virtual Machine is
designed to support many different implementations, providing new and interesting
solutions while retaining compatibility between implementations.



39

C H A P T E R 3
Compiling for the Java

Virtual Machine

THE Java Virtual Machine machine is designed to support the Java programming
language. Oracle's JDK software contains a compiler from source code written
in the Java programming language to the instruction set of the Java Virtual
Machine, and a run-time system that implements the Java Virtual Machine itself.
Understanding how one compiler utilizes the Java Virtual Machine is useful to the
prospective compiler writer, as well as to one trying to understand the Java Virtual
Machine itself. The numbered sections in this chapter are not normative.

Note that the term "compiler" is sometimes used when referring to a translator from
the instruction set of a Java Virtual Machine to the instruction set of a specific
CPU. One example of such a translator is a just-in-time (JIT) code generator, which
generates platform-specific instructions only after Java Virtual Machine code has
been loaded. This chapter does not address issues associated with code generation,
only those associated with compiling source code written in the Java programming
language to Java Virtual Machine instructions.

3.1 Format of Examples

This chapter consists mainly of examples of source code together with annotated
listings of the Java Virtual Machine code that the javac compiler in Oracle’s JDK
release 1.0.2 generates for the examples. The Java Virtual Machine code is written
in the informal “virtual machine assembly language” output by Oracle's javap
utility, distributed with the JDK release. You can use javap to generate additional
examples of compiled methods.
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The format of the examples should be familiar to anyone who has read assembly
code. Each instruction takes the form:

<index> <opcode> [ <operand1> [ <operand2>... ]] [<comment>]

The <index> is the index of the opcode of the instruction in the array that contains
the bytes of Java Virtual Machine code for this method. Alternatively, the <index>
may be thought of as a byte offset from the beginning of the method. The <opcode>
is the mnemonic for the instruction's opcode, and the zero or more <operandN>
are the operands of the instruction. The optional <comment> is given in end-of-line
comment syntax:

8   bipush 100     // Push int constant 100

Some of the material in the comments is emitted by javap; the rest is supplied by
the authors. The <index> prefacing each instruction may be used as the target of
a control transfer instruction. For instance, a goto 8 instruction transfers control
to the instruction at index 8. Note that the actual operands of Java Virtual Machine
control transfer instructions are offsets from the addresses of the opcodes of those
instructions; these operands are displayed by javap (and are shown in this chapter)
as more easily read offsets into their methods.

We preface an operand representing a run-time constant pool index with a hash
sign and follow the instruction by a comment identifying the run-time constant pool
item referenced, as in:

10  ldc #1         // Push float constant 100.0

or:

9   invokevirtual #4    // Method Example.addTwo(II)I

For the purposes of this chapter, we do not worry about specifying details such as
operand sizes.

3.2 Use of Constants, Local Variables, and Control Constructs

Java Virtual Machine code exhibits a set of general characteristics imposed by the
Java Virtual Machine's design and use of types. In the first example we encounter
many of these, and we consider them in some detail.

The spin method simply spins around an empty for loop 100 times:

void spin() {
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    int i;
    for (i = 0; i < 100; i++) {
        ;    // Loop body is empty
    }
}

A compiler might compile spin to:

0   iconst_0       // Push int constant 0
1   istore_1       // Store into local variable 1 (i=0)
2   goto 8         // First time through don't increment
5   iinc 1 1       // Increment local variable 1 by 1 (i++)
8   iload_1        // Push local variable 1 (i)
9   bipush 100     // Push int constant 100
11  if_icmplt 5    // Compare and loop if less than (i < 100)
14  return         // Return void when done

The Java Virtual Machine is stack-oriented, with most operations taking one or
more operands from the operand stack of the Java Virtual Machine's current frame
or pushing results back onto the operand stack. A new frame is created each time
a method is invoked, and with it is created a new operand stack and set of local
variables for use by that method (§2.6). At any one point of the computation, there
are thus likely to be many frames and equally many operand stacks per thread of
control, corresponding to many nested method invocations. Only the operand stack
in the current frame is active.

The instruction set of the Java Virtual Machine distinguishes operand types by
using distinct bytecodes for operations on its various data types. The method
spin operates only on values of type int. The instructions in its compiled code
chosen to operate on typed data (iconst_0, istore_1, iinc, iload_1, if_icmplt) are all
specialized for type int.

The two constants in spin, 0 and 100, are pushed onto the operand stack using
two different instructions. The 0 is pushed using an iconst_0 instruction, one of the
family of iconst_<i> instructions. The 100 is pushed using a bipush instruction,
which fetches the value it pushes as an immediate operand.

The Java Virtual Machine frequently takes advantage of the likelihood of certain
operands (int constants -1, 0, 1, 2, 3, 4 and 5 in the case of the iconst_<i>
instructions) by making those operands implicit in the opcode. Because the
iconst_0 instruction knows it is going to push an int 0, iconst_0 does not need to
store an operand to tell it what value to push, nor does it need to fetch or decode an
operand. Compiling the push of 0 as bipush 0 would have been correct, but would
have made the compiled code for spin one byte longer. A simple virtual machine
would have also spent additional time fetching and decoding the explicit operand
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each time around the loop. Use of implicit operands makes compiled code more
compact and efficient.

The int i in spin is stored as Java Virtual Machine local variable 1. Because most
Java Virtual Machine instructions operate on values popped from the operand stack
rather than directly on local variables, instructions that transfer values between
local variables and the operand stack are common in code compiled for the Java
Virtual Machine. These operations also have special support in the instruction
set. In spin, values are transferred to and from local variables using the istore_1
and iload_1 instructions, each of which implicitly operates on local variable 1.
The istore_1 instruction pops an int from the operand stack and stores it in local
variable 1. The iload_1 instruction pushes the value in local variable 1 on to the
operand stack.

The use (and reuse) of local variables is the responsibility of the compiler writer.
The specialized load and store instructions should encourage the compiler writer
to reuse local variables as much as is feasible. The resulting code is faster, more
compact, and uses less space in the frame.

Certain very frequent operations on local variables are catered to specially by
the Java Virtual Machine. The iinc instruction increments the contents of a local
variable by a one-byte signed value. The iinc instruction in spin increments the
first local variable (its first operand) by 1 (its second operand). The iinc instruction
is very handy when implementing looping constructs.

The for loop of spin is accomplished mainly by these instructions:

5   iinc 1 1       // Increment local variable 1 by 1 (i++)
8   iload_1        // Push local variable 1 (i)
9   bipush 100     // Push int constant 100
11  if_icmplt 5    // Compare and loop if less than (i < 100)

The bipush instruction pushes the value 100 onto the operand stack as an int,
then the if_icmplt instruction pops that value off the operand stack and compares
it against i. If the comparison succeeds (the variable i is less than 100), control
is transferred to index 5 and the next iteration of the for loop begins. Otherwise,
control passes to the instruction following the if_icmplt.

If the spin example had used a data type other than int for the loop counter,
the compiled code would necessarily change to reflect the different data type. For
instance, if instead of an int the spin example uses a double, as shown:

void dspin() {
    double i;
    for (i = 0.0; i < 100.0; i++) {
        ;    // Loop body is empty
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    }
}

the compiled code is:

Method void dspin()
0   dconst_0       // Push double constant 0.0
1   dstore_1       // Store into local variables 1 and 2
2   goto 9         // First time through don't increment
5   dload_1        // Push local variables 1 and 2 
6   dconst_1       // Push double constant 1.0 
7   dadd           // Add; there is no dinc instruction
8   dstore_1       // Store result in local variables 1 and 2
9   dload_1        // Push local variables 1 and 2 
10  ldc2_w #4      // Push double constant 100.0 
13  dcmpg          // There is no if_dcmplt instruction
14  iflt 5         // Compare and loop if less than (i < 100.0)
17  return         // Return void when done

The instructions that operate on typed data are now specialized for type double.
(The ldc2_w instruction will be discussed later in this chapter.)

Recall that double values occupy two local variables, although they are only
accessed using the lesser index of the two local variables. This is also the case for
values of type long. Again for example,

double doubleLocals(double d1, double d2) {
    return d1 + d2;
}

becomes

Method double doubleLocals(double,double)
0   dload_1       // First argument in local variables 1 and 2
1   dload_3       // Second argument in local variables 3 and 4
2   dadd
3   dreturn

Note that local variables of the local variable pairs used to store double values in
doubleLocals must never be manipulated individually.

The Java Virtual Machine's opcode size of 1 byte results in its compiled code being
very compact. However, 1-byte opcodes also mean that the Java Virtual Machine
instruction set must stay small. As a compromise, the Java Virtual Machine does
not provide equal support for all data types: it is not completely orthogonal
(Table 2.11.1-A).

For example, the comparison of values of type int in the for statement of example
spin can be implemented using a single if_icmplt instruction; however, there is
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no single instruction in the Java Virtual Machine instruction set that performs a
conditional branch on values of type double. Thus, dspin must implement its
comparison of values of type double using a dcmpg instruction followed by an iflt
instruction.

The Java Virtual Machine provides the most direct support for data of type int.
This is partly in anticipation of efficient implementations of the Java Virtual
Machine's operand stacks and local variable arrays. It is also motivated by the
frequency of int data in typical programs. Other integral types have less direct
support. There are no byte, char, or short versions of the store, load, or add
instructions, for instance. Here is the spin example written using a short:

void sspin() {
    short i;
    for (i = 0; i < 100; i++) {
        ;    // Loop body is empty
    }
}

It must be compiled for the Java Virtual Machine, as follows, using instructions
operating on another type, most likely int, converting between short and int
values as necessary to ensure that the results of operations on short data stay within
the appropriate range:

Method void sspin()
0   iconst_0
1   istore_1
2   goto 10
5   iload_1        // The short is treated as though an int
6   iconst_1
7   iadd
8   i2s            // Truncate int to short
9   istore_1
10  iload_1
11  bipush 100
13  if_icmplt 5
16  return

The lack of direct support for byte, char, and short types in the Java Virtual
Machine is not particularly painful, because values of those types are internally
promoted to int (byte and short are sign-extended to int, char is zero-extended).
Operations on byte, char, and short data can thus be done using int instructions.
The only additional cost is that of truncating the values of int operations to valid
ranges.
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The long and floating-point types have an intermediate level of support in the Java
Virtual Machine, lacking only the full complement of conditional control transfer
instructions.

3.3 Arithmetic

The Java Virtual Machine generally does arithmetic on its operand stack. (The
exception is the iinc instruction, which directly increments the value of a local
variable.) For instance, the align2grain method aligns an int value to a given
power of 2:

int align2grain(int i, int grain) {
    return ((i + grain-1) & ~(grain-1));
}

Operands for arithmetic operations are popped from the operand stack, and
the results of operations are pushed back onto the operand stack. Results of
arithmetic subcomputations can thus be made available as operands of their nesting
computation. For instance, the calculation of ~(grain-1) is handled by these
instructions:

5   iload_2        // Push grain
6   iconst_1       // Push int constant 1
7   isub           // Subtract; push result
8   iconst_m1      // Push int constant -1
9   ixor           // Do XOR; push result

First grain-1 is calculated using the contents of local variable 2 and an immediate
int value 1. These operands are popped from the operand stack and their difference
pushed back onto the operand stack. The difference is thus immediately available
for use as one operand of the ixor instruction. (Recall that ~x == -1^x.) Similarly,
the result of the ixor instruction becomes an operand for the subsequent iand
instruction.

The code for the entire method follows:

Method int align2grain(int,int)
0   iload_1
1   iload_2
2   iadd
3   iconst_1
4   isub
5   iload_2
6   iconst_1
7   isub
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8   iconst_m1
9   ixor
10  iand
11  ireturn

3.4 Accessing the Run-Time Constant Pool

Many numeric constants, as well as objects, fields, and methods, are accessed
via the run-time constant pool of the current class. Object access is considered
later (§3.8). Data of types int, long, float, and double, as well as references
to instances of class String, are managed using the ldc, ldc_w, and ldc2_w
instructions.

The ldc and ldc_w instructions are used to access values in the run-time constant
pool (including instances of class String) of types other than double and long.
The ldc_w instruction is used in place of ldc only when there is a large number of
run-time constant pool items and a larger index is needed to access an item. The
ldc2_w instruction is used to access all values of types double and long; there is
no non-wide variant.

Integral constants of types byte, char, or short, as well as small int values,
may be compiled using the bipush, sipush, or iconst_<i> instructions (§3.2).
Certain small floating-point constants may be compiled using the fconst_<f> and
dconst_<d> instructions.

In all of these cases, compilation is straightforward. For instance, the constants for:

void useManyNumeric() {
    int i = 100;
    int j = 1000000;
    long l1 = 1;
    long l2 = 0xffffffff;
    double d = 2.2;
    ...do some calculations...
}

are set up as follows:

Method void useManyNumeric()
0   bipush 100   // Push small int constant with bipush
2   istore_1
3   ldc #1       // Push large int constant (1000000) with ldc
5   istore_2
6   lconst_1     // A tiny long value uses small fast lconst_1
7   lstore_3
8   ldc2_w #6    // Push long 0xffffffff (that is, an int -1)
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        // Any long constant value can be pushed with ldc2_w
11  lstore 5
13  ldc2_w #8    // Push double constant 2.200000
        // Uncommon double values are also pushed with ldc2_w
16  dstore 7
...do those calculations...

3.5 More Control Examples

Compilation of for statements was shown in an earlier section (§3.2). Most of the
Java programming language's other control constructs (if-then-else, do, while,
break, and continue) are also compiled in the obvious ways. The compilation of
switch statements is handled in a separate section (§3.10), as are the compilation
of exceptions (§3.12) and the compilation of finally clauses (§3.13).

As a further example, a while loop is compiled in an obvious way, although the
specific control transfer instructions made available by the Java Virtual Machine
vary by data type. As usual, there is more support for data of type int, for example:

void whileInt() {
    int i = 0;
    while (i < 100) {
        i++;
    }
}

is compiled to:

Method void whileInt()
0   iconst_0
1   istore_1
2   goto 8
5   iinc 1 1
8   iload_1
9   bipush 100
11  if_icmplt 5
14  return

Note that the test of the while statement (implemented using the if_icmplt
instruction) is at the bottom of the Java Virtual Machine code for the loop. (This
was also the case in the spin examples earlier.) The test being at the bottom of the
loop forces the use of a goto instruction to get to the test prior to the first iteration of
the loop. If that test fails, and the loop body is never entered, this extra instruction
is wasted. However, while loops are typically used when their body is expected
to be run, often for many iterations. For subsequent iterations, putting the test at
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the bottom of the loop saves a Java Virtual Machine instruction each time around
the loop: if the test were at the top of the loop, the loop body would need a trailing
goto instruction to get back to the top.

Control constructs involving other data types are compiled in similar ways, but
must use the instructions available for those data types. This leads to somewhat
less efficient code because more Java Virtual Machine instructions are needed, for
example:

void whileDouble() {
    double i = 0.0;
    while (i < 100.1) {
        i++;
    }
}

is compiled to:

Method void whileDouble()
0   dconst_0
1   dstore_1
2   goto 9
5   dload_1
6   dconst_1
7   dadd
8   dstore_1
9   dload_1
10  ldc2_w #4      // Push double constant 100.1
13  dcmpg          // To compare and branch we have to use...
14  iflt 5         // ...two instructions
17  return

Each floating-point type has two comparison instructions: fcmpl and fcmpg for type
float, and dcmpl and dcmpg for type double. The variants differ only in their
treatment of NaN. NaN is unordered (§2.3.2), so all floating-point comparisons
fail if either of their operands is NaN. The compiler chooses the variant of the
comparison instruction for the appropriate type that produces the same result
whether the comparison fails on non-NaN values or encounters a NaN. For
instance:

int lessThan100(double d) {
    if (d < 100.0) {
        return 1;    
    } else {
        return -1;    
    }
}

compiles to:
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Method int lessThan100(double)
0   dload_1
1   ldc2_w #4      // Push double constant 100.0
4   dcmpg          // Push 1 if d is NaN or d > 100.0;
                   // push 0 if d == 100.0
5   ifge 10        // Branch on 0 or 1
8   iconst_1
9   ireturn
10  iconst_m1
11  ireturn

If d is not NaN and is less than 100.0, the dcmpg instruction pushes an int -1 onto
the operand stack, and the ifge instruction does not branch. Whether d is greater
than 100.0 or is NaN, the dcmpg instruction pushes an int 1 onto the operand
stack, and the ifge branches. If d is equal to 100.0, the dcmpg instruction pushes
an int 0 onto the operand stack, and the ifge branches.

The dcmpl instruction achieves the same effect if the comparison is reversed:

int greaterThan100(double d) {
    if (d > 100.0) {
        return 1;   
    } else {
        return -1;   
    }
}

becomes:

Method int greaterThan100(double)
0   dload_1
1   ldc2_w #4      // Push double constant 100.0
4   dcmpl          // Push -1 if d is NaN or d < 100.0;
                   // push 0 if d == 100.0
5   ifle 10        // Branch on 0 or -1
8   iconst_1
9   ireturn
10  iconst_m1
11  ireturn

Once again, whether the comparison fails on a non-NaN value or because it is
passed a NaN, the dcmpl instruction pushes an int value onto the operand stack
that causes the ifle to branch. If both of the dcmp instructions did not exist, one of
the example methods would have had to do more work to detect NaN.
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3.6 Receiving Arguments

If n arguments are passed to an instance method, they are received, by convention,
in the local variables numbered 1 through n of the frame created for the new method
invocation. The arguments are received in the order they were passed. For example:

int addTwo(int i, int j) {
    return i + j;
}

compiles to:

Method int addTwo(int,int)
0   iload_1        // Push value of local variable 1 (i)
1   iload_2        // Push value of local variable 2 (j)
2   iadd           // Add; leave int result on operand stack
3   ireturn        // Return int result

By convention, an instance method is passed a reference to its instance in local
variable 0. In the Java programming language the instance is accessible via the
this keyword.

Class (static) methods do not have an instance, so for them this use of local
variable 0 is unnecessary. A class method starts using local variables at index 0. If
the addTwo method were a class method, its arguments would be passed in a similar
way to the first version:

static int addTwoStatic(int i, int j) {
    return i + j;
}

compiles to:

Method int addTwoStatic(int,int)
0   iload_0
1   iload_1
2   iadd
3   ireturn

The only difference is that the method arguments appear starting in local variable
0 rather than 1.
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3.7 Invoking Methods

The normal method invocation for a instance method dispatches on the run-
time type of the object. (They are virtual, in C++ terms.) Such an invocation is
implemented using the invokevirtual instruction, which takes as its argument an
index to a run-time constant pool entry giving the internal form of the binary name
of the class type of the object, the name of the method to invoke, and that method's
descriptor (§4.3.3). To invoke the addTwo method, defined earlier as an instance
method, we might write:

int add12and13() {
    return addTwo(12, 13);
}

This compiles to:

Method int add12and13()
0   aload_0             // Push local variable 0 (this)
1   bipush 12           // Push int constant 12
3   bipush 13           // Push int constant 13
5   invokevirtual #4    // Method Example.addtwo(II)I
8   ireturn             // Return int on top of operand stack;
                        // it is the int result of addTwo()

The invocation is set up by first pushing a reference to the current instance, this,
on to the operand stack. The method invocation's arguments, int values 12 and 13,
are then pushed. When the frame for the addTwo method is created, the arguments
passed to the method become the initial values of the new frame's local variables.
That is, the reference for this and the two arguments, pushed onto the operand
stack by the invoker, will become the initial values of local variables 0, 1, and 2
of the invoked method.

Finally, addTwo is invoked. When it returns, its int return value is pushed onto
the operand stack of the frame of the invoker, the add12and13 method. The return
value is thus put in place to be immediately returned to the invoker of add12and13.

The return from add12and13 is handled by the ireturn instruction of add12and13.
The ireturn instruction takes the int value returned by addTwo, on the operand
stack of the current frame, and pushes it onto the operand stack of the frame of
the invoker. It then returns control to the invoker, making the invoker's frame
current. The Java Virtual Machine provides distinct return instructions for many of
its numeric and reference data types, as well as a return instruction for methods
with no return value. The same set of return instructions is used for all varieties
of method invocations.
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The operand of the invokevirtual instruction (in the example, the run-time constant
pool index #4) is not the offset of the method in the class instance. The compiler
does not know the internal layout of a class instance. Instead, it generates symbolic
references to the methods of an instance, which are stored in the run-time constant
pool. Those run-time constant pool items are resolved at run-time to determine
the actual method location. The same is true for all other Java Virtual Machine
instructions that access class instances.

Invoking addTwoStatic, a class (static) variant of addTwo, is similar, as shown:

int add12and13() {
    return addTwoStatic(12, 13);
}

although a different Java Virtual Machine method invocation instruction is used:

Method int add12and13()
0   bipush 12
2   bipush 13
4   invokestatic #3     // Method Example.addTwoStatic(II)I
7   ireturn

Compiling an invocation of a class (static) method is very much like compiling
an invocation of an instance method, except this is not passed by the invoker. The
method arguments will thus be received beginning with local variable 0 (§3.6). The
invokestatic instruction is always used to invoke class methods.

The invokespecial instruction must be used to invoke instance initialization
methods (§3.8). It is also used when invoking methods in the superclass (super).
For instance, given classes Near and Far declared as:

class Near {
    int it;
    int getItNear() {
        return it;
    }
}
class Far extends Near {
    int getItFar() {
        return super.getItNear();
    }
}

The method Far.getItFar (which invokes a superclass method) becomes:

Method int getItFar()
0   aload_0
1   invokespecial #4    // Method Near.getItNear()I
4   ireturn
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Note that methods called using the invokespecial instruction always pass this to
the invoked method as its first argument. As usual, it is received in local variable 0.

To invoke the target of a method handle, a compiler must form a method descriptor
that records the actual argument and return types. A compiler may not perform
method invocation conversions on the arguments; instead, it must push them on
the stack according to their own unconverted types. The compiler arranges for
a reference to the method handle object to be pushed on the stack before the
arguments, as usual. The compiler emits an invokevirtual instruction that references
a descriptor which describes the argument and return types. By special arrangement
with method resolution (§5.4.3.3), an invokevirtual instruction which invokes
the invokeExact or invoke methods of java.lang.invoke.MethodHandle will
always link, provided the method descriptor is syntactically well-formed and the
types named in the descriptor can be resolved.

3.8 Working with Class Instances

Java Virtual Machine class instances are created using the Java Virtual Machine's
new instruction. Recall that at the level of the Java Virtual Machine, a constructor
appears as a method with the compiler-supplied name <init>. This specially
named method is known as the instance initialization method (§2.9). Multiple
instance initialization methods, corresponding to multiple constructors, may exist
for a given class. Once the class instance has been created and its instance variables,
including those of the class and all of its superclasses, have been initialized to
their default values, an instance initialization method of the new class instance is
invoked. For example:

Object create() {
    return new Object();
}

compiles to:

Method java.lang.Object create()
0   new #1              // Class java.lang.Object
3   dup
4   invokespecial #4    // Method java.lang.Object.<init>()V
7   areturn

Class instances are passed and returned (as reference types) very much like
numeric values, although type reference has its own complement of instructions,
for example:
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int i;                                  // An instance variable
MyObj example() {
    MyObj o = new MyObj();
    return silly(o);
}
MyObj silly(MyObj o) {
    if (o != null) {
        return o;
    } else {
        return o;
    }
}

becomes:

Method MyObj example()
0   new #2              // Class MyObj
3   dup
4   invokespecial #5    // Method MyObj.<init>()V
7   astore_1
8   aload_0
9   aload_1
10  invokevirtual #4    // Method Example.silly(LMyObj;)LMyObj;
13  areturn

Method MyObj silly(MyObj)
0   aload_1
1   ifnull 6
4   aload_1
5   areturn
6   aload_1
7   areturn

The fields of a class instance (instance variables) are accessed using the getfield
and putfield instructions. If i is an instance variable of type int, the methods setIt
and getIt, defined as:

void setIt(int value) {
    i = value;
}
int getIt() {
    return i;
}

become:

Method void setIt(int)
0   aload_0
1   iload_1
2   putfield #4    // Field Example.i I
5   return
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Method int getIt()
0   aload_0
1   getfield #4    // Field Example.i I
4   ireturn

As with the operands of method invocation instructions, the operands of the putfield
and getfield instructions (the run-time constant pool index #4) are not the offsets
of the fields in the class instance. The compiler generates symbolic references to
the fields of an instance, which are stored in the run-time constant pool. Those run-
time constant pool items are resolved at run-time to determine the location of the
field within the referenced object.

3.9 Arrays

Java Virtual Machine arrays are also objects. Arrays are created and manipulated
using a distinct set of instructions. The newarray instruction is used to create an
array of a numeric type. The code:

void createBuffer() {
    int buffer[];
    int bufsz = 100;
    int value = 12;
    buffer = new int[bufsz];
    buffer[10] = value;
    value = buffer[11];
}

might be compiled to:

Method void createBuffer()
0   bipush 100     // Push int constant 100 (bufsz)
2   istore_2       // Store bufsz in local variable 2
3   bipush 12      // Push int constant 12 (value)
5   istore_3       // Store value in local variable 3
6   iload_2        // Push bufsz...
7   newarray int   // ...and create new int array of that length
9   astore_1       // Store new array in buffer
10  aload_1        // Push buffer
11  bipush 10      // Push int constant 10
13  iload_3        // Push value
14  iastore        // Store value at buffer[10]
15  aload_1        // Push buffer
16  bipush 11      // Push int constant 11
18  iaload         // Push value at buffer[11]...
19  istore_3       // ...and store it in value
20  return
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The anewarray instruction is used to create a one-dimensional array of object
references, for example:

void createThreadArray() {
    Thread threads[];
    int count = 10;
    threads = new Thread[count];
    threads[0] = new Thread();
}

becomes:

Method void createThreadArray()
0   bipush 10           // Push int constant 10
2   istore_2            // Initialize count to that
3   iload_2             // Push count, used by anewarray
4   anewarray class #1  // Create new array of class Thread
7   astore_1            // Store new array in threads
8   aload_1             // Push value of threads
9   iconst_0            // Push int constant 0
10  new #1              // Create instance of class Thread
13  dup                 // Make duplicate reference...
14  invokespecial #5    // ...for Thread's constructor
                        // Method java.lang.Thread.<init>()V
17  aastore             // Store new Thread in array at 0
18  return

The anewarray instruction can also be used to create the first dimension of a
multidimensional array. Alternatively, the multianewarray instruction can be used
to create several dimensions at once. For example, the three-dimensional array:

int[][][] create3DArray() {
    int grid[][][];
    grid = new int[10][5][];
    return grid;
}

is created by:

Method int create3DArray()[][][]
0   bipush 10                // Push int 10 (dimension one)
2   iconst_5                 // Push int 5 (dimension two)
3   multianewarray #1 dim #2 // Class [[[I, a three-dimensional
                             // int array; only create the
                             // first two dimensions
7   astore_1                 // Store new array...
8   aload_1                  // ...then prepare to return it
9   areturn

The first operand of the multianewarray instruction is the run-time constant pool
index to the array class type to be created. The second is the number of dimensions
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of that array type to actually create. The multianewarray instruction can be used to
create all the dimensions of the type, as the code for create3DArray shows. Note
that the multidimensional array is just an object and so is loaded and returned by
an aload_1 and areturn instruction, respectively. For information about array class
names, see §4.4.1.

All arrays have associated lengths, which are accessed via the arraylength
instruction.

3.10 Compiling Switches

Compilation of switch statements uses the tableswitch and lookupswitch
instructions. The tableswitch instruction is used when the cases of the switch can
be efficiently represented as indices into a table of target offsets. The default
target of the switch is used if the value of the expression of the switch falls outside
the range of valid indices. For instance:

int chooseNear(int i) {
    switch (i) {
        case 0:  return  0;
        case 1:  return  1;
        case 2:  return  2;
        default: return -1;
    }
}

compiles to:

Method int chooseNear(int)
0   iload_1             // Push local variable 1 (argument i)
1   tableswitch 0 to 2: // Valid indices are 0 through 2
      0: 28             // If i is 0, continue at 28
      1: 30             // If i is 1, continue at 30
      2: 32             // If i is 2, continue at 32
      default:34        // Otherwise, continue at 34
28  iconst_0            // i was 0; push int constant 0...
29  ireturn             // ...and return it
30  iconst_1            // i was 1; push int constant 1...
31  ireturn             // ...and return it
32  iconst_2            // i was 2; push int constant 2...
33  ireturn             // ...and return it
34  iconst_m1           // otherwise push int constant -1...
35  ireturn             // ...and return it

The Java Virtual Machine's tableswitch and lookupswitch instructions operate only
on int data. Because operations on byte, char, or short values are internally
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promoted to int, a switch whose expression evaluates to one of those types is
compiled as though it evaluated to type int. If the chooseNear method had been
written using type short, the same Java Virtual Machine instructions would have
been generated as when using type int. Other numeric types must be narrowed to
type int for use in a switch.

Where the cases of the switch are sparse, the table representation of the tableswitch
instruction becomes inefficient in terms of space. The lookupswitch instruction may
be used instead. The lookupswitch instruction pairs int keys (the values of the case
labels) with target offsets in a table. When a lookupswitch instruction is executed,
the value of the expression of the switch is compared against the keys in the table.
If one of the keys matches the value of the expression, execution continues at the
associated target offset. If no key matches, execution continues at the default
target. For instance, the compiled code for:

int chooseFar(int i) {
    switch (i) {
        case -100: return -1;
        case 0:    return  0;
        case 100:  return  1;
        default:   return -1;
    }
}

looks just like the code for chooseNear, except for the lookupswitch instruction:

Method int chooseFar(int)
0   iload_1
1   lookupswitch 3:
         -100: 36
            0: 38
          100: 40
      default: 42
36  iconst_m1
37  ireturn
38  iconst_0
39  ireturn
40  iconst_1
41  ireturn
42  iconst_m1
43  ireturn

The Java Virtual Machine specifies that the table of the lookupswitch instruction
must be sorted by key so that implementations may use searches more efficient than
a linear scan. Even so, the lookupswitch instruction must search its keys for a match
rather than simply perform a bounds check and index into a table like tableswitch.
Thus, a tableswitch instruction is probably more efficient than a lookupswitch
where space considerations permit a choice.
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3.11 Operations on the Operand Stack

The Java Virtual Machine has a large complement of instructions that manipulate
the contents of the operand stack as untyped values. These are useful because of
the Java Virtual Machine's reliance on deft manipulation of its operand stack. For
instance:

public long nextIndex() { 
    return index++;
}

private long index = 0;

is compiled to:

Method long nextIndex()
0   aload_0        // Push this
1   dup            // Make a copy of it
2   getfield #4    // One of the copies of this is consumed
                   // pushing long field index,
                   // above the original this
5   dup2_x1        // The long on top of the operand stack is 
                   // inserted into the operand stack below the 
                   // original this
6   lconst_1       // Push long constant 1 
7   ladd           // The index value is incremented...
8   putfield #4    // ...and the result stored in the field
11  lreturn        // The original value of index is on top of
                   // the operand stack, ready to be returned

Note that the Java Virtual Machine never allows its operand stack manipulation
instructions to modify or break up individual values on the operand stack.

3.12 Throwing and Handling Exceptions

Exceptions are thrown from programs using the throw keyword. Its compilation
is simple:

void cantBeZero(int i) throws TestExc {
    if (i == 0) {
        throw new TestExc();
    }
}

becomes:
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Method void cantBeZero(int)
0   iload_1             // Push argument 1 (i)
1   ifne 12             // If i==0, allocate instance and throw
4   new #1              // Create instance of TestExc
7   dup                 // One reference goes to its constructor
8   invokespecial #7    // Method TestExc.<init>()V
11  athrow              // Second reference is thrown
12  return              // Never get here if we threw TestExc

Compilation of try-catch constructs is straightforward. For example:

void catchOne() {
    try {
        tryItOut();
    } catch (TestExc e) {
        handleExc(e);
    }
}

is compiled as:

Method void catchOne()
0   aload_0             // Beginning of try block
1   invokevirtual #6    // Method Example.tryItOut()V
4   return              // End of try block; normal return
5   astore_1            // Store thrown value in local var 1
6   aload_0             // Push this
7   aload_1             // Push thrown value
8   invokevirtual #5    // Invoke handler method: 
                        // Example.handleExc(LTestExc;)V
11  return              // Return after handling TestExc
Exception table:
From    To      Target      Type
0       4       5           Class TestExc

Looking more closely, the try block is compiled just as it would be if the try were
not present:

Method void catchOne()
0   aload_0             // Beginning of try block
1   invokevirtual #6    // Method Example.tryItOut()V
4   return              // End of try block; normal return

If no exception is thrown during the execution of the try block, it behaves as though
the try were not there: tryItOut is invoked and catchOne returns.

Following the try block is the Java Virtual Machine code that implements the
single catch clause:

5   astore_1            // Store thrown value in local var 1
6   aload_0             // Push this
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7   aload_1             // Push thrown value
8   invokevirtual #5    // Invoke handler method: 
                        // Example.handleExc(LTestExc;)V
11  return              // Return after handling TestExc
Exception table:
From    To      Target      Type
0       4       5           Class TestExc

The invocation of handleExc, the contents of the catch clause, is also compiled
like a normal method invocation. However, the presence of a catch clause causes
the compiler to generate an exception table entry (§2.10, §4.7.3). The exception
table for the catchOne method has one entry corresponding to the one argument (an
instance of class TestExc) that the catch clause of catchOne can handle. If some
value that is an instance of TestExc is thrown during execution of the instructions
between indices 0 and 4 in catchOne, control is transferred to the Java Virtual
Machine code at index 5, which implements the block of the catch clause. If the
value that is thrown is not an instance of TestExc, the catch clause of catchOne
cannot handle it. Instead, the value is rethrown to the invoker of catchOne.

A try may have multiple catch clauses:

void catchTwo() {
    try {
        tryItOut();
    } catch (TestExc1 e) {
        handleExc(e);
    } catch (TestExc2 e) {
        handleExc(e);
    }
}

Multiple catch clauses of a given try statement are compiled by simply appending
the Java Virtual Machine code for each catch clause one after the other and adding
entries to the exception table, as shown:

Method void catchTwo()
0   aload_0             // Begin try block
1   invokevirtual #5    // Method Example.tryItOut()V
4   return              // End of try block; normal return
5   astore_1            // Beginning of handler for TestExc1;
                        // Store thrown value in local var 1
6   aload_0             // Push this
7   aload_1             // Push thrown value
8   invokevirtual #7    // Invoke handler method:
                        // Example.handleExc(LTestExc1;)V
11  return              // Return after handling TestExc1
12  astore_1            // Beginning of handler for TestExc2;
                        // Store thrown value in local var 1
13  aload_0             // Push this
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14  aload_1             // Push thrown value
15  invokevirtual #7    // Invoke handler method:
                        // Example.handleExc(LTestExc2;)V
18  return              // Return after handling TestExc2
Exception table:
From    To      Target      Type
0       4       5           Class TestExc1
0       4       12          Class TestExc2

If during the execution of the try clause (between indices 0 and 4) a value is thrown
that matches the parameter of one or more of the catch clauses (the value is an
instance of one or more of the parameters), the first (innermost) such catch clause
is selected. Control is transferred to the Java Virtual Machine code for the block of
that catch clause. If the value thrown does not match the parameter of any of the
catch clauses of catchTwo, the Java Virtual Machine rethrows the value without
invoking code in any catch clause of catchTwo.

Nested try-catch statements are compiled very much like a try statement with
multiple catch clauses:

void nestedCatch() {
    try {
        try {
            tryItOut();
        } catch (TestExc1 e) {
            handleExc1(e);
        }
    } catch (TestExc2 e) {
        handleExc2(e);
    }
}

becomes:

Method void nestedCatch()
0   aload_0             // Begin try block
1   invokevirtual #8    // Method Example.tryItOut()V
4   return              // End of try block; normal return
5   astore_1            // Beginning of handler for TestExc1;
                        // Store thrown value in local var 1
6   aload_0             // Push this
7   aload_1             // Push thrown value
8   invokevirtual #7    // Invoke handler method: 
                        // Example.handleExc1(LTestExc1;)V
11  return              // Return after handling TestExc1
12  astore_1            // Beginning of handler for TestExc2;
                        // Store thrown value in local var 1
13  aload_0             // Push this
14  aload_1             // Push thrown value
15  invokevirtual #6    // Invoke handler method:
                        // Example.handleExc2(LTestExc2;)V
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18  return              // Return after handling TestExc2
Exception table:
From    To      Target      Type
0       4       5           Class TestExc1
0       12      12          Class TestExc2

The nesting of catch clauses is represented only in the exception table. The Java
Virtual Machine does not enforce nesting of or any ordering of the exception table
entries (§2.10). However, because try-catch constructs are structured, a compiler
can always order the entries of the exception handler table such that, for any thrown
exception and any program counter value in that method, the first exception handler
that matches the thrown exception corresponds to the innermost matching catch
clause.

For instance, if the invocation of tryItOut (at index 1) threw an instance of
TestExc1, it would be handled by the catch clause that invokes handleExc1. This
is so even though the exception occurs within the bounds of the outer catch clause
(catching TestExc2) and even though that outer catch clause might otherwise have
been able to handle the thrown value.

As a subtle point, note that the range of a catch clause is inclusive on the "from"
end and exclusive on the "to" end (§4.7.3). Thus, the exception table entry for the
catch clause catching TestExc1 does not cover the return instruction at offset 4.
However, the exception table entry for the catch clause catching TestExc2 does
cover the return instruction at offset 11. Return instructions within nested catch
clauses are included in the range of instructions covered by nesting catch clauses.

3.13 Compiling finally

(This section assumes a compiler generates class files with version number 50.0
or below, so that the jsr instruction may be used. See also §4.10.2.5.)

Compilation of a try-finally statement is similar to that of try-catch. Prior to
transferring control outside the try statement, whether that transfer is normal or
abrupt, because an exception has been thrown, the finally clause must first be
executed. For this simple example:

void tryFinally() {
    try {
        tryItOut();
    } finally {
        wrapItUp();
    }
}
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the compiled code is:

Method void tryFinally()
0   aload_0             // Beginning of try block
1   invokevirtual #6    // Method Example.tryItOut()V
4   jsr 14              // Call finally block
7   return              // End of try block
8   astore_1            // Beginning of handler for any throw
9   jsr 14              // Call finally block
12  aload_1             // Push thrown value
13  athrow              // ...and rethrow value to the invoker
14  astore_2            // Beginning of finally block
15  aload_0             // Push this
16  invokevirtual #5    // Method Example.wrapItUp()V
19  ret 2               // Return from finally block
Exception table:
From    To      Target      Type
0       4       8           any

There are four ways for control to pass outside of the try statement: by falling
through the bottom of that block, by returning, by executing a break or continue
statement, or by raising an exception. If tryItOut returns without raising an
exception, control is transferred to the finally block using a jsr instruction. The
jsr 14 instruction at index 4 makes a "subroutine call" to the code for the finally
block at index 14 (the finally block is compiled as an embedded subroutine).
When the finally block completes, the ret 2 instruction returns control to the
instruction following the jsr instruction at index 4.

In more detail, the subroutine call works as follows: The jsr instruction pushes
the address of the following instruction (return at index 7) onto the operand stack
before jumping. The astore_2 instruction that is the jump target stores the address
on the operand stack into local variable 2. The code for the finally block (in
this case the aload_0 and invokevirtual instructions) is run. Assuming execution of
that code completes normally, the ret instruction retrieves the address from local
variable 2 and resumes execution at that address. The return instruction is executed,
and tryFinally returns normally.

A try statement with a finally clause is compiled to have a special exception
handler, one that can handle any exception thrown within the try statement. If
tryItOut throws an exception, the exception table for tryFinally is searched for
an appropriate exception handler. The special handler is found, causing execution
to continue at index 8. The astore_1 instruction at index 8 stores the thrown value
into local variable 1. The following jsr instruction does a subroutine call to the
code for the finally block. Assuming that code returns normally, the aload_1
instruction at index 12 pushes the thrown value back onto the operand stack, and
the following athrow instruction rethrows the value.
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Compiling a try statement with both a catch clause and a finally clause is more
complex:

void tryCatchFinally() {
    try {
        tryItOut();
    } catch (TestExc e) {
        handleExc(e);
    } finally {
        wrapItUp();
    }
}

becomes:

Method void tryCatchFinally()
0   aload_0             // Beginning of try block
1   invokevirtual #4    // Method Example.tryItOut()V
4   goto 16             // Jump to finally block
7   astore_3            // Beginning of handler for TestExc;
                        // Store thrown value in local var 3
8   aload_0             // Push this
9   aload_3             // Push thrown value
10  invokevirtual #6    // Invoke handler method:
                        // Example.handleExc(LTestExc;)V
13  goto 16             // This goto is unnecessary, but was
                        // generated by javac in JDK 1.0.2
16  jsr 26              // Call finally block
19  return              // Return after handling TestExc
20  astore_1            // Beginning of handler for exceptions
                        // other than TestExc, or exceptions
                        // thrown while handling TestExc
21  jsr 26              // Call finally block
24  aload_1             // Push thrown value...
25  athrow              // ...and rethrow value to the invoker
26  astore_2            // Beginning of finally block
27  aload_0             // Push this
28  invokevirtual #5    // Method Example.wrapItUp()V
31  ret 2               // Return from finally block
Exception table:
From    To      Target      Type
0       4       7           Class TestExc
0       16      20          any

If the try statement completes normally, the goto instruction at index 4 jumps
to the subroutine call for the finally block at index 16. The finally block at
index 26 is executed, control returns to the return instruction at index 19, and
tryCatchFinally returns normally.

If tryItOut throws an instance of TestExc, the first (innermost) applicable
exception handler in the exception table is chosen to handle the exception. The
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code for that exception handler, beginning at index 7, passes the thrown value to
handleExc and on its return makes the same subroutine call to the finally block
at index 26 as in the normal case. If an exception is not thrown by handleExc,
tryCatchFinally returns normally.

If tryItOut throws a value that is not an instance of TestExc or if handleExc itself
throws an exception, the condition is handled by the second entry in the exception
table, which handles any value thrown between indices 0 and 16. That exception
handler transfers control to index 20, where the thrown value is first stored in local
variable 1. The code for the finally block at index 26 is called as a subroutine. If it
returns, the thrown value is retrieved from local variable 1 and rethrown using the
athrow instruction. If a new value is thrown during execution of the finally clause,
the finally clause aborts, and tryCatchFinally returns abruptly, throwing the
new value to its invoker.

3.14 Synchronization

Synchronization in the Java Virtual Machine is implemented by monitor entry and
exit, either explicitly (by use of the monitorenter and monitorexit instructions) or
implicitly (by the method invocation and return instructions).

For code written in the Java programming language, perhaps the most common
form of synchronization is the synchronized method. A synchronized method is
not normally implemented using monitorenter and monitorexit. Rather, it is simply
distinguished in the run-time constant pool by the ACC_SYNCHRONIZED flag, which
is checked by the method invocation instructions (§2.11.10).

The monitorenter and monitorexit instructions enable the compilation of
synchronized statements. For example:

void onlyMe(Foo f) {
    synchronized(f) {
        doSomething();
    }
}

is compiled to:

Method void onlyMe(Foo)
0   aload_1             // Push f
1   dup                 // Duplicate it on the stack
2   astore_2            // Store duplicate in local variable 2
3   monitorenter        // Enter the monitor associated with f
4   aload_0             // Holding the monitor, pass this and...
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5   invokevirtual #5    // ...call Example.doSomething()V
8   aload_2             // Push local variable 2 (f)
9   monitorexit         // Exit the monitor associated with f
10  goto 18             // Complete the method normally
13  astore_3            // In case of any throw, end up here
14  aload_2             // Push local variable 2 (f)
15  monitorexit         // Be sure to exit the monitor!
16  aload_3             // Push thrown value...
17  athrow              // ...and rethrow value to the invoker
18  return              // Return in the normal case
Exception table:
From    To      Target      Type
4       10      13          any
13      16      13          any

The compiler ensures that at any method invocation completion, a monitorexit
instruction will have been executed for each monitorenter instruction executed
since the method invocation. This is the case whether the method invocation
completes normally (§2.6.4) or abruptly (§2.6.5). To enforce proper pairing
of monitorenter and monitorexit instructions on abrupt method invocation
completion, the compiler generates exception handlers (§2.10) that will match
any exception and whose associated code executes the necessary monitorexit
instructions.

3.15 Annotations

The representation of annotations in class files is described in §4.7.16-§4.7.22.
These sections make it clear how to represent annotations on declarations of
classes, interfaces, fields, methods, method parameters, and type parameters, as
well as annotations on types used in those declarations. Annotations on package
declarations require additional rules, given here.

When the compiler encounters an annotated package declaration that must be made
available at run time, it emits a class file with the following properties:

• The class file represents an interface, that is, the ACC_INTERFACE and
ACC_ABSTRACT flags of the ClassFile structure are set (§4.1).

• If the class file version number is less than 50.0, then the ACC_SYNTHETIC flag is
unset; if the class file version number is 50.0 or above, then the ACC_SYNTHETIC
flag is set.

• The interface has package access (JLS §6.6.1).
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• The interface's name is the internal form (§4.2.1) of package-name.package-
info.

• The interface has no superinterfaces.

• The interface's only members are those implied by The Java Language
Specification, Java SE 11 Edition (JLS §9.2).

• The annotations on the package declaration are stored as
RuntimeVisibleAnnotations and RuntimeInvisibleAnnotations attributes
in the attributes table of the ClassFile structure.

3.16 Modules

A compilation unit that contains a module declaration (JLS §7.7) is compiled to a
class file that contains a Module attribute.

By convention, the name of a compilation unit that contains a module
declaration is module-info.java, echoing the package-info.java convention for
a compilation unit that contains solely a package declaration. Consequently, by
convention, the name for the compiled form of a module declaration is module-
info.class.

A flag in the access_flags item of the ClassFile structure, ACC_MODULE
(0x8000), indicates that this class file declares a module. ACC_MODULE plays a
similar role to ACC_ANNOTATION (0x2000) and ACC_ENUM (0x4000) in flagging this
class file as "not an ordinary class". ACC_MODULE does not describe accessibility
of a class or interface.

The Module attribute is explicit about the module's dependences; there are no
implicit requires directives at the ClassFile level. If the requires_count item
is zero, then the Java SE Platform does not infer the existence of a requires table
nor any particular entry therein. java.base is the only module in which a zero
requires_count is legal, because it is the primordial module. For every other
module, the Module attribute must have a requires table of at least length one,
because every other module depends on java.base. If a compilation unit contains
a module declaration (except java.base) that does not state its dependence on
java.base explicitly, then a compiler must emit an entry for java.base in the
requires table and flag it as ACC_MANDATED to denote that it was implicitly
declared.

For encapsulation, the Module attribute is explicit about the packages exported and
opened by a normal module; there are no implicit exports or opens directives at the
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ClassFile level for a normal module. If the exports_count item or opens_count
item is zero, then the Java SE Platform does not infer the existence of an exports
table or opens table, nor any particular entry therein. On the other hand, for an open
module, the Module attribute is implicit about the packages opened by the module.
All packages of an open module are opened to all other modules, even though the
opens_count item is zero.

The Module attribute is explicit about the module's consumption and provision of
services; there are no implicit uses or provides directives at the ClassFile level.
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C H A P T E R 4
The class File Format

THIS chapter describes the class file format of the Java Virtual Machine. Each
class file contains the definition of a single class, interface, or module. Although
a class, interface, or module need not have an external representation literally
contained in a file (for instance, because the class is generated by a class loader),
we will colloquially refer to any valid representation of a class, interface, or module
as being in the class file format.

A class file consists of a stream of 8-bit bytes. 16-bit and 32-bit quantities
are constructed by reading in two and four consecutive 8-bit bytes, respectively.
Multibyte data items are always stored in big-endian order, where the high bytes
come first. This chapter defines the data types u1, u2, and u4 to represent an
unsigned one-, two-, or four-byte quantity, respectively.

In the Java SE Platform API, the class file format is supported by
interfaces java.io.DataInput and java.io.DataOutput and classes such as
java.io.DataInputStream and java.io.DataOutputStream. For example, values
of the types u1, u2, and u4 may be read by methods such as readUnsignedByte,
readUnsignedShort, and readInt of the interface java.io.DataInput.

This chapter presents the class file format using pseudostructures written in a
C-like structure notation. To avoid confusion with the fields of classes and class
instances, etc., the contents of the structures describing the class file format are
referred to as items. Successive items are stored in the class file sequentially,
without padding or alignment.

Tables, consisting of zero or more variable-sized items, are used in several class
file structures. Although we use C-like array syntax to refer to table items, the fact
that tables are streams of varying-sized structures means that it is not possible to
translate a table index directly to a byte offset into the table.

Where we refer to a data structure as an array, it consists of zero or more contiguous
fixed-sized items and can be indexed like an array.
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Reference to an ASCII character in this chapter should be interpreted to mean the
Unicode code point corresponding to the ASCII character.

4.1 The ClassFile Structure

A class file consists of a single ClassFile structure:

ClassFile {
    u4             magic;
    u2             minor_version;
    u2             major_version;
    u2             constant_pool_count;
    cp_info        constant_pool[constant_pool_count-1];
    u2             access_flags;
    u2             this_class;
    u2             super_class;
    u2             interfaces_count;
    u2             interfaces[interfaces_count];
    u2             fields_count;
    field_info     fields[fields_count];
    u2             methods_count;
    method_info    methods[methods_count];
    u2             attributes_count;
    attribute_info attributes[attributes_count];
}

The items in the ClassFile structure are as follows:

magic

The magic item supplies the magic number identifying the class file format;
it has the value 0xCAFEBABE.

minor_version, major_version

The values of the minor_version and major_version items are the minor and
major version numbers of this class file. Together, a major and a minor version
number determine the version of the class file format. If a class file has major
version number M and minor version number m, we denote the version of its
class file format as M.m. Thus, class file format versions may be ordered
lexicographically, for example, 1.5 < 2.0 < 2.1.

A Java Virtual Machine implementation can support a class file format of
version v if and only if v lies in some contiguous range Mi.0 ≤ v ≤ Mj.m.
The range is based on the version of the Java SE Platform to which the
implementation conforms. An implementation which conforms to a given Java
SE Platform version must support the range specified in Table 4.1-A for that
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version, and no other range. (For historical cases, the JDK version is shown
instead of the Java SE Platform version.)

Table 4.1-A. class file format version ranges (by Java SE Platform)

Java SE class file format version range

1.0.2 45.0 ≤ v ≤ 45.3

1.1 45.0 ≤ v ≤ 45.65535

1.2 45.0 ≤ v ≤ 46.0

1.3 45.0 ≤ v ≤ 47.0

1.4 45.0 ≤ v ≤ 48.0

5.0 45.0 ≤ v ≤ 49.0

6 45.0 ≤ v ≤ 50.0

7 45.0 ≤ v ≤ 51.0

8 45.0 ≤ v ≤ 52.0

9 45.0 ≤ v ≤ 53.0

10 45.0 ≤ v ≤ 54.0

11 45.0 ≤ v ≤ 55.0

constant_pool_count

The value of the constant_pool_count item is equal to the number of entries
in the constant_pool table plus one. A constant_pool index is considered
valid if it is greater than zero and less than constant_pool_count, with the
exception for constants of type long and double noted in §4.4.5.

constant_pool[]

The constant_pool is a table of structures (§4.4) representing various string
constants, class and interface names, field names, and other constants that are
referred to within the ClassFile structure and its substructures. The format of
each constant_pool table entry is indicated by its first "tag" byte.

The constant_pool table is indexed from 1 to constant_pool_count - 1.
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access_flags

The value of the access_flags item is a mask of flags used to denote access
permissions to and properties of this class or interface. The interpretation of
each flag, when set, is specified in Table 4.1-B.

Table 4.1-B. Class access and property modifiers

Flag Name Value Interpretation

ACC_PUBLIC 0x0001 Declared public; may be accessed from outside its

package.

ACC_FINAL 0x0010 Declared final; no subclasses allowed.

ACC_SUPER 0x0020 Treat superclass methods specially when invoked by

the invokespecial instruction.

ACC_INTERFACE 0x0200 Is an interface, not a class.

ACC_ABSTRACT 0x0400 Declared abstract; must not be instantiated.

ACC_SYNTHETIC 0x1000 Declared synthetic; not present in the source code.

ACC_ANNOTATION 0x2000 Declared as an annotation type.

ACC_ENUM 0x4000 Declared as an enum type.

ACC_MODULE 0x8000 Is a module, not a class or interface.

The ACC_MODULE flag indicates that this class file defines a module, not a class
or interface. If the ACC_MODULE flag is set, then special rules apply to the class
file which are given at the end of this section. If the ACC_MODULE flag is not set,
then the rules immediately below the current paragraph apply to the class file.

An interface is distinguished by the ACC_INTERFACE flag being set. If the
ACC_INTERFACE flag is not set, this class file defines a class, not an interface
or module.

If the ACC_INTERFACE flag is set, the ACC_ABSTRACT flag must also be set, and
the ACC_FINAL, ACC_SUPER, ACC_ENUM, and ACC_MODULE flags set must not be
set.

If the ACC_INTERFACE flag is not set, any of the other flags in Table 4.1-B may
be set except ACC_ANNOTATION and ACC_MODULE. However, such a class file
must not have both its ACC_FINAL and ACC_ABSTRACT flags set (JLS §8.1.1.2).

The ACC_SUPER flag indicates which of two alternative semantics is to be
expressed by the invokespecial instruction (§invokespecial) if it appears in
this class or interface. Compilers to the instruction set of the Java Virtual
Machine should set the ACC_SUPER flag. In Java SE 8 and above, the Java
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Virtual Machine considers the ACC_SUPER flag to be set in every class file,
regardless of the actual value of the flag in the class file and the version of
the class file.

The ACC_SUPER flag exists for backward compatibility with code compiled by older
compilers for the Java programming language. In JDK releases prior to 1.0.2, the compiler
generated access_flags in which the flag now representing ACC_SUPER had no assigned
meaning, and Oracle's Java Virtual Machine implementation ignored the flag if it was set.

The ACC_SYNTHETIC flag indicates that this class or interface was generated by
a compiler and does not appear in source code.

An annotation type (JLS §9.6) must have its ACC_ANNOTATION flag set. If the
ACC_ANNOTATION flag is set, the ACC_INTERFACE flag must also be set.

The ACC_ENUM flag indicates that this class or its superclass is declared as an
enumerated type (JLS §8.9).

All bits of the access_flags item not assigned in Table 4.1-B are reserved for
future use. They should be set to zero in generated class files and should be
ignored by Java Virtual Machine implementations.

this_class

The value of the this_class item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Class_info structure (§4.4.1) representing the class or interface
defined by this class file.

super_class

For a class, the value of the super_class item either must be zero or
must be a valid index into the constant_pool table. If the value of the
super_class item is nonzero, the constant_pool entry at that index must
be a CONSTANT_Class_info structure representing the direct superclass of the
class defined by this class file. Neither the direct superclass nor any of its
superclasses may have the ACC_FINAL flag set in the access_flags item of its
ClassFile structure.

If the value of the super_class item is zero, then this class file must represent
the class Object, the only class or interface without a direct superclass.

For an interface, the value of the super_class item must always be a valid
index into the constant_pool table. The constant_pool entry at that index
must be a CONSTANT_Class_info structure representing the class Object.
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interfaces_count

The value of the interfaces_count item gives the number of direct
superinterfaces of this class or interface type.

interfaces[]

Each value in the interfaces array must be a valid index into
the constant_pool table. The constant_pool entry at each value
of interfaces[i], where 0 ≤ i < interfaces_count, must be a
CONSTANT_Class_info structure representing an interface that is a direct
superinterface of this class or interface type, in the left-to-right order given in
the source for the type.

fields_count

The value of the fields_count item gives the number of field_info
structures in the fields table. The field_info structures represent all fields,
both class variables and instance variables, declared by this class or interface
type.

fields[]

Each value in the fields table must be a field_info structure (§4.5) giving
a complete description of a field in this class or interface. The fields table
includes only those fields that are declared by this class or interface. It does
not include items representing fields that are inherited from superclasses or
superinterfaces.

methods_count

The value of the methods_count item gives the number of method_info
structures in the methods table.

methods[]

Each value in the methods table must be a method_info structure (§4.6) giving
a complete description of a method in this class or interface. If neither of the
ACC_NATIVE and ACC_ABSTRACT flags are set in the access_flags item of a
method_info structure, the Java Virtual Machine instructions implementing
the method are also supplied.

The method_info structures represent all methods declared by this class
or interface type, including instance methods, class methods, instance
initialization methods (§2.9.1), and any class or interface initialization method
(§2.9.2). The methods table does not include items representing methods that
are inherited from superclasses or superinterfaces.
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attributes_count

The value of the attributes_count item gives the number of attributes in the
attributes table of this class.

attributes[]

Each value of the attributes table must be an attribute_info structure
(§4.7).

The attributes defined by this specification as appearing in the attributes
table of a ClassFile structure are listed in Table 4.7-C.

The rules concerning attributes defined to appear in the attributes table of a
ClassFile structure are given in §4.7.

The rules concerning non-predefined attributes in the attributes table of a
ClassFile structure are given in §4.7.1.

If the ACC_MODULE flag is set in the access_flags item, then no other flag in the
access_flags item may be set, and the following rules apply to the rest of the
ClassFile structure:

• major_version, minor_version: ≥ 53.0 (i.e. Java SE 9 and above)

• this_class: module-info

• super_class, interfaces_count, fields_count, methods_count: zero

• attributes: One Module attribute must be present. Except
for Module, ModulePackages, ModuleMainClass, InnerClasses,
SourceFile, SourceDebugExtension, RuntimeVisibleAnnotations, and
RuntimeInvisibleAnnotations, none of the pre-defined attributes (§4.7) may
appear.

4.2 Names

4.2.1 Binary Class and Interface Names

Class and interface names that appear in class file structures are always
represented in a fully qualified form known as binary names (JLS §13.1).
Such names are always represented as CONSTANT_Utf8_info structures (§4.4.7)
and thus may be drawn, where not further constrained, from the entire
Unicode codespace. Class and interface names are referenced from those
CONSTANT_NameAndType_info structures (§4.4.6) which have such names as part
of their descriptor (§4.3), and from all CONSTANT_Class_info structures (§4.4.1).
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For historical reasons, the syntax of binary names that appear in class file
structures differs from the syntax of binary names documented in JLS §13.1. In this
internal form, the ASCII periods (.) that normally separate the identifiers which
make up the binary name are replaced by ASCII forward slashes (/). The identifiers
themselves must be unqualified names (§4.2.2).

For example, the normal binary name of class Thread is java.lang.Thread. In the
internal form used in descriptors in the class file format, a reference to the name of class
Thread is implemented using a CONSTANT_Utf8_info structure representing the string
java/lang/Thread.

4.2.2 Unqualified Names

Names of methods, fields, local variables, and formal parameters are stored as
unqualified names. An unqualified name must contain at least one Unicode code
point and must not contain any of the ASCII characters . ; [ / (that is, period or
semicolon or left square bracket or forward slash).

Method names are further constrained so that, with the exception of the special
method names <init> and <clinit> (§2.9), they must not contain the ASCII
characters < or > (that is, left angle bracket or right angle bracket).

Note that a field name or interface method name may be <init> or <clinit>, but
no method invocation instruction may reference <clinit> and only the invokespecial
instruction (§invokespecial) may reference <init>.

4.2.3 Module and Package Names

Module names referenced from the Module attribute are stored in
CONSTANT_Module_info structures in the constant pool (§4.4.11). A
CONSTANT_Module_info structure wraps a CONSTANT_Utf8_info structure that
denotes the module name. Module names are not encoded in "internal form" like
class and interface names, that is, the ASCII periods (.) that separate the identifiers
in a module name are not replaced by ASCII forward slashes (/).

Module names may be drawn from the entire Unicode codespace, subject to the
following constraints:

• A module name must not contain any code point in the range '\u0000' to '\u001F'
inclusive.

• The ASCII backslash (\) is reserved for use as an escape character in module
names. It must not appear in a module name unless it is followed by an ASCII
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backslash, an ASCII colon (:), or an ASCII at-sign (@). The ASCII character
sequence \\ may be used to encode a backslash in a module name.

• The ASCII colon (:) and at-sign (@) are reserved for future use in module names.
They must not appear in module names unless they are escaped. The ASCII
character sequences \: and \@ may be used to encode a colon and an at-sign in
a module name.

Package names referenced from the Module attribute are stored in
CONSTANT_Package_info structures in the constant pool (§4.4.12). A
CONSTANT_Package_info structure wraps a CONSTANT_Utf8_info structure that
represents a package name encoded in internal form.

4.3 Descriptors

A descriptor is a string representing the type of a field or method. Descriptors are
represented in the class file format using modified UTF-8 strings (§4.4.7) and thus
may be drawn, where not further constrained, from the entire Unicode codespace.

4.3.1 Grammar Notation

Descriptors are specified using a grammar. The grammar is a set of productions that
describe how sequences of characters can form syntactically correct descriptors of
various kinds. Terminal symbols of the grammar are shown in fixed width font.
Nonterminal symbols are shown in italic type. The definition of a nonterminal is
introduced by the name of the nonterminal being defined, followed by a colon. One
or more alternative definitions for the nonterminal then follow on succeeding lines.

The syntax {x} on the right-hand side of a production denotes zero or more
occurrences of x.

The phrase (one of) on the right-hand side of a production signifies that each of the
terminal symbols on the following line or lines is an alternative definition.

4.3.2 Field Descriptors

A field descriptor represents the type of a class, instance, or local variable.

FieldDescriptor:
FieldType
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FieldType:
BaseType
ObjectType
ArrayType

BaseType:
(one of)
B C D F I J S Z

ObjectType:
L ClassName ;

ArrayType:
[ ComponentType

ComponentType:
FieldType

The characters of BaseType, the L and ; of ObjectType, and the [ of ArrayType
are all ASCII characters.

ClassName represents a binary class or interface name encoded in internal form
(§4.2.1).

The interpretation of field descriptors as types is shown in Table 4.3-A.

A field descriptor representing an array type is valid only if it represents a type
with 255 or fewer dimensions.
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Table 4.3-A. Interpretation of field descriptors

FieldType term Type Interpretation

B byte signed byte

C char Unicode character code point in the Basic

Multilingual Plane, encoded with UTF-16

D double double-precision floating-point value

F float single-precision floating-point value

I int integer

J long long integer

L ClassName ; reference an instance of class ClassName

S short signed short

Z boolean true or false

[ reference one array dimension

The field descriptor of an instance variable of type int is simply I.

The field descriptor of an instance variable of type Object is Ljava/lang/Object;. Note
that the internal form of the binary name for class Object is used.

The field descriptor of an instance variable of the multidimensional array type double[]
[][] is [[[D.

4.3.3 Method Descriptors

A method descriptor contains zero or more parameter descriptors, representing the
types of parameters that the method takes, and a return descriptor, representing the
type of the value (if any) that the method returns.

MethodDescriptor:
( {ParameterDescriptor} ) ReturnDescriptor

ParameterDescriptor:
FieldType

ReturnDescriptor:
FieldType
VoidDescriptor
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VoidDescriptor:
V

The character V indicates that the method returns no value (its result is void).

The method descriptor for the method:

Object m(int i, double d, Thread t) {...}

is:

(IDLjava/lang/Thread;)Ljava/lang/Object;

Note that the internal forms of the binary names of Thread and Object are used.

A method descriptor is valid only if it represents method parameters with a total
length of 255 or less, where that length includes the contribution for this in the
case of instance or interface method invocations. The total length is calculated by
summing the contributions of the individual parameters, where a parameter of type
long or double contributes two units to the length and a parameter of any other
type contributes one unit.

A method descriptor is the same whether the method it describes is a class method
or an instance method. Although an instance method is passed this, a reference
to the object on which the method is being invoked, in addition to its intended
arguments, that fact is not reflected in the method descriptor. The reference to this
is passed implicitly by the Java Virtual Machine instructions which invoke instance
methods (§2.6.1, §4.11).

4.4 The Constant Pool

Java Virtual Machine instructions do not rely on the run-time layout of classes,
interfaces, class instances, or arrays. Instead, instructions refer to symbolic
information in the constant_pool table.

All constant_pool table entries have the following general format:

cp_info {
    u1 tag;
    u1 info[];
}
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Each entry in the constant_pool table must begin with a 1-byte tag indicating
the kind of constant denoted by the entry. There are 17 kinds of constant, listed
in Table 4.4-A with their corresponding tags, and ordered by their section number
in this chapter. Each tag byte must be followed by two or more bytes giving
information about the specific constant. The format of the additional information
depends on the tag byte, that is, the content of the info array varies with the value
of tag.

Table 4.4-A. Constant pool tags (by section)

Constant Kind Tag Section

CONSTANT_Class 7 §4.4.1

CONSTANT_Fieldref 9 §4.4.2

CONSTANT_Methodref 10 §4.4.2

CONSTANT_InterfaceMethodref 11 §4.4.2

CONSTANT_String 8 §4.4.3

CONSTANT_Integer 3 §4.4.4

CONSTANT_Float 4 §4.4.4

CONSTANT_Long 5 §4.4.5

CONSTANT_Double 6 §4.4.5

CONSTANT_NameAndType 12 §4.4.6

CONSTANT_Utf8 1 §4.4.7

CONSTANT_MethodHandle 15 §4.4.8

CONSTANT_MethodType 16 §4.4.9

CONSTANT_Dynamic 17 §4.4.10

CONSTANT_InvokeDynamic 18 §4.4.10

CONSTANT_Module 19 §4.4.11

CONSTANT_Package 20 §4.4.12

In a class file whose version number is v, each entry in the constant_pool table
must have a tag that was first defined in version v or earlier of the class file format
(§4.1). That is, each entry must denote a kind of constant that is approved for use
in the class file. Table 4.4-B lists each tag with the first version of the class file
format in which it was defined. Also shown is the version of the Java SE Platform
which introduced that version of the class file format.
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Table 4.4-B. Constant pool tags (by tag)

Constant Kind Tag class file format Java SE

CONSTANT_Utf8 1 45.3 1.0.2

CONSTANT_Integer 3 45.3 1.0.2

CONSTANT_Float 4 45.3 1.0.2

CONSTANT_Long 5 45.3 1.0.2

CONSTANT_Double 6 45.3 1.0.2

CONSTANT_Class 7 45.3 1.0.2

CONSTANT_String 8 45.3 1.0.2

CONSTANT_Fieldref 9 45.3 1.0.2

CONSTANT_Methodref 10 45.3 1.0.2

CONSTANT_InterfaceMethodref 11 45.3 1.0.2

CONSTANT_NameAndType 12 45.3 1.0.2

CONSTANT_MethodHandle 15 51.0 7

CONSTANT_MethodType 16 51.0 7

CONSTANT_Dynamic 17 55.0 11

CONSTANT_InvokeDynamic 18 51.0 7

CONSTANT_Module 19 53.0 9

CONSTANT_Package 20 53.0 9

Some entries in the constant_pool table are loadable because they represent
entities that can be pushed onto the stack at run time to enable further computation.
In a class file whose version number is v, an entry in the constant_pool table is
loadable if it has a tag that was first deemed to be loadable in version v or earlier of
the class file format. Table 4.4-C lists each tag with the first version of the class
file format in which it was deemed to be loadable. Also shown is the version of the
Java SE Platform which introduced that version of the class file format.

In every case except CONSTANT_Class, a tag was first deemed to be loadable in the same
version of the class file format that first defined the tag.
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Table 4.4-C. Loadable constant pool tags

Constant Kind Tag class file format Java SE

CONSTANT_Integer 3 45.3 1.0.2

CONSTANT_Float 4 45.3 1.0.2

CONSTANT_Long 5 45.3 1.0.2

CONSTANT_Double 6 45.3 1.0.2

CONSTANT_Class 7 49.0 5.0

CONSTANT_String 8 45.3 1.0.2

CONSTANT_MethodHandle 15 51.0 7

CONSTANT_MethodType 16 51.0 7

CONSTANT_Dynamic 17 55.0 11

4.4.1 The CONSTANT_Class_info Structure

The CONSTANT_Class_info structure is used to represent a class or an interface:

CONSTANT_Class_info {
    u1 tag;
    u2 name_index;
}

The items of the CONSTANT_Class_info structure are as follows:

tag

The tag item has the value CONSTANT_Class (7).

name_index

The value of the name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure (§4.4.7) representing a valid binary class or
interface name encoded in internal form (§4.2.1).

Because arrays are objects, the opcodes anewarray and multianewarray - but
not the opcode new - can reference array "classes" via CONSTANT_Class_info
structures in the constant_pool table. For such array classes, the name of the class
is the descriptor of the array type (§4.3.2).

For example, the class name representing the two-dimensional array type int[][] is [[I,
while the class name representing the type Thread[] is [Ljava/lang/Thread;.
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An array type descriptor is valid only if it represents 255 or fewer dimensions.

4.4.2 The CONSTANT_Fieldref_info, CONSTANT_Methodref_info, and
CONSTANT_InterfaceMethodref_info Structures

Fields, methods, and interface methods are represented by similar structures:

CONSTANT_Fieldref_info {
    u1 tag;
    u2 class_index;
    u2 name_and_type_index;
}

CONSTANT_Methodref_info {
    u1 tag;
    u2 class_index;
    u2 name_and_type_index;
}

CONSTANT_InterfaceMethodref_info {
    u1 tag;
    u2 class_index;
    u2 name_and_type_index;
}

The items of these structures are as follows:

tag

The tag item of a CONSTANT_Fieldref_info structure has the value
CONSTANT_Fieldref (9).

The tag item of a CONSTANT_Methodref_info structure has the value
CONSTANT_Methodref (10).

The tag item of a CONSTANT_InterfaceMethodref_info structure has the
value CONSTANT_InterfaceMethodref (11).

class_index

The value of the class_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Class_info structure (§4.4.1) representing a class or interface type
that has the field or method as a member.

In a CONSTANT_Fieldref_info structure, the class_index item may be either
a class type or an interface type.

In a CONSTANT_Methodref_info structure, the class_index item must be a
class type, not an interface type.
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In a CONSTANT_InterfaceMethodref_info structure, the class_index item
must be an interface type, not a class type.

name_and_type_index

The value of the name_and_type_index item must be a valid index into
the constant_pool table. The constant_pool entry at that index must be a
CONSTANT_NameAndType_info structure (§4.4.6). This constant_pool entry
indicates the name and descriptor of the field or method.

In a CONSTANT_Fieldref_info structure, the indicated descriptor must be a
field descriptor (§4.3.2). Otherwise, the indicated descriptor must be a method
descriptor (§4.3.3).

If the name of the method in a CONSTANT_Methodref_info structure begins
with a '<' ('\u003c'), then the name must be the special name <init>,
representing an instance initialization method (§2.9.1). The return type of such
a method must be void.

4.4.3 The CONSTANT_String_info Structure

The CONSTANT_String_info structure is used to represent constant objects of the
type String:

CONSTANT_String_info {
    u1 tag;
    u2 string_index;
}

The items of the CONSTANT_String_info structure are as follows:

tag

The tag item has the value CONSTANT_String (8).

string_index

The value of the string_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure (§4.4.7) representing the sequence of Unicode
code points to which the String object is to be initialized.

4.4.4 The CONSTANT_Integer_info and CONSTANT_Float_info Structures

The CONSTANT_Integer_info and CONSTANT_Float_info structures represent 4-
byte numeric (int and float) constants:
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CONSTANT_Integer_info {
    u1 tag;
    u4 bytes;
}

CONSTANT_Float_info {
    u1 tag;
    u4 bytes;
}

The items of these structures are as follows:

tag

The tag item of the CONSTANT_Integer_info structure has the value
CONSTANT_Integer (3).

The tag item of the CONSTANT_Float_info structure has the value
CONSTANT_Float (4).

bytes

The bytes item of the CONSTANT_Integer_info structure represents the value
of the int constant. The bytes of the value are stored in big-endian (high byte
first) order.

The bytes item of the CONSTANT_Float_info structure represents the value
of the float constant in IEEE 754 floating-point single format (§2.3.2). The
bytes of the single format representation are stored in big-endian (high byte
first) order.

The value represented by the CONSTANT_Float_info structure is determined
as follows. The bytes of the value are first converted into an int constant bits.
Then:

• If bits is 0x7f800000, the float value will be positive infinity.

• If bits is 0xff800000, the float value will be negative infinity.

• If bits is in the range 0x7f800001 through 0x7fffffff or in the range
0xff800001 through 0xffffffff, the float value will be NaN.

• In all other cases, let s, e, and m be three values that might be computed from
bits:

int s = ((bits >> 31) == 0) ? 1 : -1;
int e = ((bits >> 23) & 0xff);
int m = (e == 0) ?
          (bits & 0x7fffff) << 1 :
          (bits & 0x7fffff) | 0x800000;
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Then the float value equals the result of the mathematical expression s · m
· 2e-150.

4.4.5 The CONSTANT_Long_info and CONSTANT_Double_info Structures

The CONSTANT_Long_info and CONSTANT_Double_info represent 8-byte numeric
(long and double) constants:

CONSTANT_Long_info {
    u1 tag;
    u4 high_bytes;
    u4 low_bytes;
}

CONSTANT_Double_info {
    u1 tag;
    u4 high_bytes;
    u4 low_bytes;
}

All 8-byte constants take up two entries in the constant_pool table of the class
file. If a CONSTANT_Long_info or CONSTANT_Double_info structure is the entry
at index n in the constant_pool table, then the next usable entry in the table is
located at index n+2. The constant_pool index n+1 must be valid but is considered
unusable.

In retrospect, making 8-byte constants take two constant pool entries was a poor choice.

The items of these structures are as follows:

tag

The tag item of the CONSTANT_Long_info structure has the value
CONSTANT_Long (5).

The tag item of the CONSTANT_Double_info structure has the value
CONSTANT_Double (6).

high_bytes, low_bytes

The unsigned high_bytes and low_bytes items of the CONSTANT_Long_info
structure together represent the value of the long constant

((long) high_bytes << 32) + low_bytes

where the bytes of each of high_bytes and low_bytes are stored in big-endian
(high byte first) order.
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The high_bytes and low_bytes items of the CONSTANT_Double_info
structure together represent the double value in IEEE 754 floating-point
double format (§2.3.2). The bytes of each item are stored in big-endian (high
byte first) order.

The value represented by the CONSTANT_Double_info structure is determined
as follows. The high_bytes and low_bytes items are converted into the long
constant bits, which is equal to

((long) high_bytes << 32) + low_bytes

Then:

• If bits is 0x7ff0000000000000L, the double value will be positive infinity.

• If bits is 0xfff0000000000000L, the double value will be negative infinity.

• If bits is in the range 0x7ff0000000000001L through 0x7fffffffffffffffL
or in the range 0xfff0000000000001L through 0xffffffffffffffffL, the
double value will be NaN.

• In all other cases, let s, e, and m be three values that might be computed from
bits:

int s = ((bits >> 63) == 0) ? 1 : -1;
int e = (int)((bits >> 52) & 0x7ffL);
long m = (e == 0) ?
           (bits & 0xfffffffffffffL) << 1 :
           (bits & 0xfffffffffffffL) | 0x10000000000000L;

Then the floating-point value equals the double value of the mathematical
expression s · m · 2e-1075.

4.4.6 The CONSTANT_NameAndType_info Structure

The CONSTANT_NameAndType_info structure is used to represent a field or method,
without indicating which class or interface type it belongs to:

CONSTANT_NameAndType_info {
    u1 tag;
    u2 name_index;
    u2 descriptor_index;
}

The items of the CONSTANT_NameAndType_info structure are as follows:

tag

The tag item has the value CONSTANT_NameAndType (12).
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name_index

The value of the name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure (§4.4.7) representing either a valid unqualified
name denoting a field or method (§4.2.2), or the special method name <init>
(§2.9.1).

descriptor_index

The value of the descriptor_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure (§4.4.7) representing a valid field descriptor
or method descriptor (§4.3.2, §4.3.3).

4.4.7 The CONSTANT_Utf8_info Structure

The CONSTANT_Utf8_info structure is used to represent constant string values:

CONSTANT_Utf8_info {
    u1 tag;
    u2 length;
    u1 bytes[length];
}

The items of the CONSTANT_Utf8_info structure are as follows:

tag

The tag item has the value CONSTANT_Utf8 (1).

length

The value of the length item gives the number of bytes in the bytes array (not
the length of the resulting string).

bytes[]

The bytes array contains the bytes of the string.

No byte may have the value (byte)0.

No byte may lie in the range (byte)0xf0 to (byte)0xff.

String content is encoded in modified UTF-8. Modified UTF-8 strings are encoded
so that code point sequences that contain only non-null ASCII characters can be
represented using only 1 byte per code point, but all code points in the Unicode
codespace can be represented. Modified UTF-8 strings are not null-terminated. The
encoding is as follows:
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• Code points in the range '\u0001' to '\u007F' are represented by a single byte:

0 bits 6-0

The 7 bits of data in the byte give the value of the code point represented.

• The null code point ('\u0000') and code points in the range '\u0080' to '\u07FF'
are represented by a pair of bytes x and y :

x: 1 1 0 bits 10-6

y: 1 0 bits 5-0

The two bytes represent the code point with the value:

((x & 0x1f) << 6) + (y & 0x3f)

• Code points in the range '\u0800' to '\uFFFF' are represented by 3 bytes x, y,
and z :

x: 1 1 1 0 bits 15-12

y: 1 0 bits 11-6

z: 1 0 bits 5-0

The three bytes represent the code point with the value:

((x & 0xf) << 12) + ((y & 0x3f) << 6) + (z & 0x3f)

• Characters with code points above U+FFFF (so-called supplementary
characters) are represented by separately encoding the two surrogate code units
of their UTF-16 representation. Each of the surrogate code units is represented by
three bytes. This means supplementary characters are represented by six bytes,
u, v, w, x, y, and z :
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u: 1 1 1 0 1 1 0 1

v: 1 0 1 0 (bits 20-16)-1

w: 1 0 bits 15-10

x: 1 1 1 0 1 1 0 1

y: 1 0 1 1 bits 9-6

z: 1 0 bits 5-0

The six bytes represent the code point with the value:

0x10000 + ((v & 0x0f) << 16) + ((w & 0x3f) << 10) +
((y & 0x0f) << 6) + (z & 0x3f)

The bytes of multibyte characters are stored in the class file in big-endian (high
byte first) order.

There are two differences between this format and the "standard" UTF-8 format.
First, the null character (char)0 is encoded using the 2-byte format rather than the
1-byte format, so that modified UTF-8 strings never have embedded nulls. Second,
only the 1-byte, 2-byte, and 3-byte formats of standard UTF-8 are used. The Java
Virtual Machine does not recognize the four-byte format of standard UTF-8; it uses
its own two-times-three-byte format instead.

For more information regarding the standard UTF-8 format, see Section 3.9 Unicode
Encoding Forms of The Unicode Standard, Version 10.0.0.

4.4.8 The CONSTANT_MethodHandle_info Structure

The CONSTANT_MethodHandle_info structure is used to represent a method handle:

CONSTANT_MethodHandle_info {
    u1 tag;
    u1 reference_kind;
    u2 reference_index;
}

The items of the CONSTANT_MethodHandle_info structure are the following:

tag

The tag item has the value CONSTANT_MethodHandle (15).
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reference_kind

The value of the reference_kind item must be in the range 1 to 9. The
value denotes the kind of this method handle, which characterizes its bytecode
behavior (§5.4.3.5).

reference_index

The value of the reference_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be as
follows:

• If the value of the reference_kind item is 1 (REF_getField), 2
(REF_getStatic), 3 (REF_putField), or 4 (REF_putStatic), then the
constant_pool entry at that index must be a CONSTANT_Fieldref_info
structure (§4.4.2) representing a field for which a method handle is to be
created.

• If the value of the reference_kind item is 5 (REF_invokeVirtual) or 8
(REF_newInvokeSpecial), then the constant_pool entry at that index must
be a CONSTANT_Methodref_info structure (§4.4.2) representing a class's
method or constructor (§2.9.1) for which a method handle is to be created.

• If the value of the reference_kind item is 6 (REF_invokeStatic)
or 7 (REF_invokeSpecial), then if the class file version number
is less than 52.0, the constant_pool entry at that index must be
a CONSTANT_Methodref_info structure representing a class's method
for which a method handle is to be created; if the class file
version number is 52.0 or above, the constant_pool entry at that
index must be either a CONSTANT_Methodref_info structure or a
CONSTANT_InterfaceMethodref_info structure (§4.4.2) representing a
class's or interface's method for which a method handle is to be created.

• If the value of the reference_kind item is 9 (REF_invokeInterface),
then the constant_pool entry at that index must be a
CONSTANT_InterfaceMethodref_info structure representing an interface's
method for which a method handle is to be created.

If the value of the reference_kind item is 5 (REF_invokeVirtual), 6
(REF_invokeStatic), 7 (REF_invokeSpecial), or 9 (REF_invokeInterface),
the name of the method represented by a CONSTANT_Methodref_info structure
or a CONSTANT_InterfaceMethodref_info structure must not be <init> or
<clinit>.

If the value is 8 (REF_newInvokeSpecial), the name of the method represented
by a CONSTANT_Methodref_info structure must be <init>.
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4.4.9 The CONSTANT_MethodType_info Structure

The CONSTANT_MethodType_info structure is used to represent a method type:

CONSTANT_MethodType_info {
    u1 tag;
    u2 descriptor_index;
}

The items of the CONSTANT_MethodType_info structure are as follows:

tag

The tag item has the value CONSTANT_MethodType (16).

descriptor_index

The value of the descriptor_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure (§4.4.7) representing a method descriptor
(§4.3.3).

4.4.10 The CONSTANT_Dynamic_info and CONSTANT_InvokeDynamic_info
Structures

Most structures in the constant_pool table represent entities directly, by
combining names, descriptors, and values recorded statically in the table.
In contrast, the CONSTANT_Dynamic_info and CONSTANT_InvokeDynamic_info
structures represent entities indirectly, by pointing to code which computes an
entity dynamically. The code, called a bootstrap method, is invoked by the Java
Virtual Machine during resolution of symbolic references derived from these
structures (§5.1, §5.4.3.6). Each structure specifies a bootstrap method as well as an
auxiliary name and type that characterize the entity to be computed. In more detail:

• The CONSTANT_Dynamic_info structure is used to represent a dynamically-
computed constant, an arbitrary value that is produced by invocation of a
bootstrap method in the course of an ldc instruction (§ldc), among others. The
auxiliary type specified by the structure constrains the type of the dynamically-
computed constant.

• The CONSTANT_InvokeDynamic_info structure is used to represent a
dynamically-computed call site, an instance of java.lang.invoke.CallSite
that is produced by invocation of a bootstrap method in the course of an
invokedynamic instruction (§invokedynamic). The auxiliary type specified by the
structure constrains the method type of the dynamically-computed call site.
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CONSTANT_Dynamic_info {
    u1 tag;
    u2 bootstrap_method_attr_index;
    u2 name_and_type_index;
}

CONSTANT_InvokeDynamic_info {
    u1 tag;
    u2 bootstrap_method_attr_index;
    u2 name_and_type_index;
}

The items of these structures are as follows:

tag

The tag item of a CONSTANT_Dynamic_info structure has the value
CONSTANT_Dynamic (17).

The tag item of a CONSTANT_InvokeDynamic_info structure has the value
CONSTANT_InvokeDynamic (18).

bootstrap_method_attr_index

The value of the bootstrap_method_attr_index item must be a valid index
into the bootstrap_methods array of the bootstrap method table of this class
file (§4.7.23).

CONSTANT_Dynamic_info structures are unique in that they are syntactically allowed to
refer to themselves via the bootstrap method table. Rather than mandating that such cycles
are detected when classes are loaded (a potentially expensive check), we permit cycles
initially but mandate a failure at resolution (§5.4.3.6).

name_and_type_index

The value of the name_and_type_index item must be a valid index into
the constant_pool table. The constant_pool entry at that index must be a
CONSTANT_NameAndType_info structure (§4.4.6). This constant_pool entry
indicates a name and descriptor.

In a CONSTANT_Dynamic_info structure, the indicated descriptor must be a field
descriptor (§4.3.2).

In a CONSTANT_InvokeDynamic_info structure, the indicated descriptor must
be a method descriptor (§4.3.3).

4.4.11 The CONSTANT_Module_info Structure

The CONSTANT_Module_info structure is used to represent a module:
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CONSTANT_Module_info {
    u1 tag;
    u2 name_index;
}

The items of the CONSTANT_Module_info structure are as follows:

tag

The tag item has the value CONSTANT_Module (19).

name_index

The value of the name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure (§4.4.7) representing a valid module name
(§4.2.3).

A CONSTANT_Module_info structure is permitted only in the constant pool of
a class file that declares a module, that is, a ClassFile structure where the
access_flags item has the ACC_MODULE flag set. In all other class files, a
CONSTANT_Module_info structure is illegal.

4.4.12 The CONSTANT_Package_info Structure

The CONSTANT_Package_info structure is used to represent a package exported or
opened by a module:

CONSTANT_Package_info {
    u1 tag;
    u2 name_index;
}

The items of the CONSTANT_Package_info structure are as follows:

tag

The tag item has the value CONSTANT_Package (20).

name_index

The value of the name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure (§4.4.7) representing a valid package name
encoded in internal form (§4.2.3).

A CONSTANT_Package_info structure is permitted only in the constant pool of
a class file that declares a module, that is, a ClassFile structure where the
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access_flags item has the ACC_MODULE flag set. In all other class files, a
CONSTANT_Package_info structure is illegal.

4.5 Fields

Each field is described by a field_info structure.

No two fields in one class file may have the same name and descriptor (§4.3.2).

The structure has the following format:

field_info {
    u2             access_flags;
    u2             name_index;
    u2             descriptor_index;
    u2             attributes_count;
    attribute_info attributes[attributes_count];
}

The items of the field_info structure are as follows:

access_flags

The value of the access_flags item is a mask of flags used to denote access
permission to and properties of this field. The interpretation of each flag, when
set, is specified in Table 4.5-A.
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Table 4.5-A. Field access and property flags

Flag Name Value Interpretation

ACC_PUBLIC 0x0001 Declared public; may be accessed from outside its

package.

ACC_PRIVATE 0x0002 Declared private; accessible only within the

defining class and other classes belonging to the same

nest (§5.4.4).

ACC_PROTECTED 0x0004 Declared protected; may be accessed within

subclasses.

ACC_STATIC 0x0008 Declared static.

ACC_FINAL 0x0010 Declared final; never directly assigned to after

object construction (JLS §17.5).

ACC_VOLATILE 0x0040 Declared volatile; cannot be cached.

ACC_TRANSIENT 0x0080 Declared transient; not written or read by a

persistent object manager.

ACC_SYNTHETIC 0x1000 Declared synthetic; not present in the source code.

ACC_ENUM 0x4000 Declared as an element of an enum.

Fields of classes may set any of the flags in Table 4.5-A. However, each
field of a class may have at most one of its ACC_PUBLIC, ACC_PRIVATE, and
ACC_PROTECTED flags set (JLS §8.3.1), and must not have both its ACC_FINAL
and ACC_VOLATILE flags set (JLS §8.3.1.4).

Fields of interfaces must have their ACC_PUBLIC, ACC_STATIC, and ACC_FINAL
flags set; they may have their ACC_SYNTHETIC flag set and must not have any
of the other flags in Table 4.5-A set (JLS §9.3).

The ACC_SYNTHETIC flag indicates that this field was generated by a compiler
and does not appear in source code.

The ACC_ENUM flag indicates that this field is used to hold an element of an
enumerated type.

All bits of the access_flags item not assigned in Table 4.5-A are reserved for
future use. They should be set to zero in generated class files and should be
ignored by Java Virtual Machine implementations.

name_index

The value of the name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
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CONSTANT_Utf8_info structure (§4.4.7) which represents a valid unqualified
name denoting a field (§4.2.2).

descriptor_index

The value of the descriptor_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be
a CONSTANT_Utf8_info structure (§4.4.7) which represents a valid field
descriptor (§4.3.2).

attributes_count

The value of the attributes_count item indicates the number of additional
attributes of this field.

attributes[]

Each value of the attributes table must be an attribute_info structure
(§4.7).

A field can have any number of optional attributes associated with it.

The attributes defined by this specification as appearing in the attributes
table of a field_info structure are listed in Table 4.7-C.

The rules concerning attributes defined to appear in the attributes table of a
field_info structure are given in §4.7.

The rules concerning non-predefined attributes in the attributes table of a
field_info structure are given in §4.7.1.

4.6 Methods

Each method, including each instance initialization method (§2.9.1) and the class
or interface initialization method (§2.9.2), is described by a method_info structure.

No two methods in one class file may have the same name and descriptor (§4.3.3).

The structure has the following format:

method_info {
    u2             access_flags;
    u2             name_index;
    u2             descriptor_index;
    u2             attributes_count;
    attribute_info attributes[attributes_count];
}

The items of the method_info structure are as follows:
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access_flags

The value of the access_flags item is a mask of flags used to denote access
permission to and properties of this method. The interpretation of each flag,
when set, is specified in Table 4.6-A.

Table 4.6-A. Method access and property flags

Flag Name Value Interpretation

ACC_PUBLIC 0x0001 Declared public; may be accessed from outside its

package.

ACC_PRIVATE 0x0002 Declared private; accessible only within the

defining class and other classes belonging to the same

nest (§5.4.4).

ACC_PROTECTED 0x0004 Declared protected; may be accessed within

subclasses.

ACC_STATIC 0x0008 Declared static.

ACC_FINAL 0x0010 Declared final; must not be overridden (§5.4.5).

ACC_SYNCHRONIZED 0x0020 Declared synchronized; invocation is wrapped

by a monitor use.

ACC_BRIDGE 0x0040 A bridge method, generated by the compiler.

ACC_VARARGS 0x0080 Declared with variable number of arguments.

ACC_NATIVE 0x0100 Declared native; implemented in a language other

than the Java programming language.

ACC_ABSTRACT 0x0400 Declared abstract; no implementation is

provided.

ACC_STRICT 0x0800 Declared strictfp; floating-point mode is FP-

strict.

ACC_SYNTHETIC 0x1000 Declared synthetic; not present in the source code.

Methods of classes may have any of the flags in Table 4.6-A set. However,
each method of a class may have at most one of its ACC_PUBLIC, ACC_PRIVATE,
and ACC_PROTECTED flags set (JLS §8.4.3).

Methods of interfaces may have any of the flags in Table 4.6-A set except
ACC_PROTECTED, ACC_FINAL, ACC_SYNCHRONIZED, and ACC_NATIVE (JLS §9.4).
In a class file whose version number is less than 52.0, each method of an
interface must have its ACC_PUBLIC and ACC_ABSTRACT flags set; in a class
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file whose version number is 52.0 or above, each method of an interface must
have exactly one of its ACC_PUBLIC and ACC_PRIVATE flags set.

If a method of a class or interface has its ACC_ABSTRACT flag set, it must not
have any of its ACC_PRIVATE, ACC_STATIC, ACC_FINAL, ACC_SYNCHRONIZED,
ACC_NATIVE, or ACC_STRICT flags set.

An instance initialization method (§2.9.1) may have at most one of its
ACC_PUBLIC, ACC_PRIVATE, and ACC_PROTECTED flags set, and may also have
its ACC_VARARGS, ACC_STRICT, and ACC_SYNTHETIC flags set, but must not have
any of the other flags in Table 4.6-A set.

In a class file whose version number is 51.0 or above, a method whose name
is <clinit> must have its ACC_STATIC flag set.

A class or interface initialization method (§2.9.2) is called implicitly by the
Java Virtual Machine. The value of its access_flags item is ignored except
for the setting of the ACC_STATIC and ACC_STRICT flags, and the method is
exempt from the preceding rules about legal combinations of flags.

The ACC_BRIDGE flag is used to indicate a bridge method generated by a
compiler for the Java programming language.

The ACC_VARARGS flag indicates that this method takes a variable number of
arguments at the source code level. A method declared to take a variable
number of arguments must be compiled with the ACC_VARARGS flag set to 1.
All other methods must be compiled with the ACC_VARARGS flag set to 0.

The ACC_SYNTHETIC flag indicates that this method was generated by a
compiler and does not appear in source code, unless it is one of the methods
named in §4.7.8.

All bits of the access_flags item not assigned in Table 4.6-A are reserved for
future use. They should be set to zero in generated class files and should be
ignored by Java Virtual Machine implementations.

name_index

The value of the name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure (§4.4.7) representing either a valid unqualified
name denoting a method (§4.2.2), or (if this method is in a class rather than
an interface) the special method name <init>, or the special method name
<clinit>.
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descriptor_index

The value of the descriptor_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be
a CONSTANT_Utf8_info structure representing a valid method descriptor
(§4.3.3). Furthermore:

• If this method is in a class rather than an interface, and the name of the
method is <init>, then the descriptor must denote a void method.

• If the name of the method is <clinit>, then the descriptor must denote a
void method, and, in a class file whose version number is 51.0 or above,
a method that takes no arguments.

A future edition of this specification may require that the last parameter descriptor of the
method descriptor is an array type if the ACC_VARARGS flag is set in the access_flags
item.

attributes_count

The value of the attributes_count item indicates the number of additional
attributes of this method.

attributes[]

Each value of the attributes table must be an attribute_info structure
(§4.7).

A method can have any number of optional attributes associated with it.

The attributes defined by this specification as appearing in the attributes
table of a method_info structure are listed in Table 4.7-C.

The rules concerning attributes defined to appear in the attributes table of a
method_info structure are given in §4.7.

The rules concerning non-predefined attributes in the attributes table of a
method_info structure are given in §4.7.1.

4.7 Attributes

Attributes are used in the ClassFile, field_info, method_info, and
Code_attribute structures of the class file format (§4.1, §4.5, §4.6, §4.7.3).

All attributes have the following general format:
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attribute_info {
    u2 attribute_name_index;
    u4 attribute_length;
    u1 info[attribute_length];
}

For all attributes, the attribute_name_index item must be a valid unsigned
16-bit index into the constant pool of the class. The constant_pool entry
at attribute_name_index must be a CONSTANT_Utf8_info structure (§4.4.7)
representing the name of the attribute. The value of the attribute_length item
indicates the length of the subsequent information in bytes. The length does
not include the initial six bytes that contain the attribute_name_index and
attribute_length items.

28 attributes are predefined by this specification. They are listed three times, for
ease of navigation:

• Table 4.7-A is ordered by the attributes' section numbers in this chapter. Each
attribute is shown with the first version of the class file format in which it was
defined. Also shown is the version of the Java SE Platform which introduced
that version of the class file format (§4.1).

• Table 4.7-B is ordered by the first version of the class file format in which each
attribute was defined.

• Table 4.7-C is ordered by the location in a class file where each attribute is
defined to appear.

Within the context of their use in this specification, that is, in the attributes tables
of the class file structures in which they appear, the names of these predefined
attributes are reserved.

Any conditions on the presence of a predefined attribute in an attributes table
are specified explicitly in the section which describes the attribute. If no conditions
are specified, then the attribute may appear any number of times in an attributes
table.

The predefined attributes are categorized into three groups according to their
purpose:

1. Six attributes are critical to correct interpretation of the class file by the Java
Virtual Machine:

• ConstantValue

• Code

• StackMapTable
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• BootstrapMethods

• NestHost

• NestMembers

In a class file whose version number is v, each of these attributes must
be recognized and correctly read by an implementation of the Java Virtual
Machine if the implementation supports version v of the class file format, and
the attribute was first defined in version v or earlier of the class file format,
and the attribute appears in a location where it is defined to appear.

2. Nine attributes are not critical to correct interpretation of the class file by
the Java Virtual Machine, but are either critical to correct interpretation of the
class file by the class libraries of the Java SE Platform, or are useful for tools
(in which case the section that specifies an attribute describes it as "optional"):

• Exceptions

• InnerClasses

• EnclosingMethod

• Synthetic

• Signature

• SourceFile

• LineNumberTable

• LocalVariableTable

• LocalVariableTypeTable

In a class file whose version number is v, each of these attributes must
be recognized and correctly read by an implementation of the Java Virtual
Machine if the implementation supports version v of the class file format, and
the attribute was first defined in version v or earlier of the class file format,
and the attribute appears in a location where it is defined to appear.

3. Thirteen attributes are not critical to correct interpretation of the class file
by the Java Virtual Machine, but contain metadata about the class file that is
either exposed by the class libraries of the Java SE Platform, or made available
by tools (in which case the section that specifies an attribute describes it as
"optional"):

• SourceDebugExtension
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• Deprecated

• RuntimeVisibleAnnotations

• RuntimeInvisibleAnnotations

• RuntimeVisibleParameterAnnotations

• RuntimeInvisibleParameterAnnotations

• RuntimeVisibleTypeAnnotations

• RuntimeInvisibleTypeAnnotations

• AnnotationDefault

• MethodParameters

• Module

• ModulePackages

• ModuleMainClass

An implementation of the Java Virtual Machine may use the information that
these attributes contain, or otherwise must silently ignore these attributes.



THE CLASS FILE FORMAT Attributes 4.7

107

Table 4.7-A. Predefined class file attributes (by section)

Attribute Section class file Java SE

ConstantValue §4.7.2 45.3 1.0.2

Code §4.7.3 45.3 1.0.2

StackMapTable §4.7.4 50.0 6

Exceptions §4.7.5 45.3 1.0.2

InnerClasses §4.7.6 45.3 1.1

EnclosingMethod §4.7.7 49.0 5.0

Synthetic §4.7.8 45.3 1.1

Signature §4.7.9 49.0 5.0

SourceFile §4.7.10 45.3 1.0.2

SourceDebugExtension §4.7.11 49.0 5.0

LineNumberTable §4.7.12 45.3 1.0.2

LocalVariableTable §4.7.13 45.3 1.0.2

LocalVariableTypeTable §4.7.14 49.0 5.0

Deprecated §4.7.15 45.3 1.1

RuntimeVisibleAnnotations §4.7.16 49.0 5.0

RuntimeInvisibleAnnotations §4.7.17 49.0 5.0

RuntimeVisibleParameterAnnotations §4.7.18 49.0 5.0

RuntimeInvisibleParameterAnnotations §4.7.19 49.0 5.0

RuntimeVisibleTypeAnnotations §4.7.20 52.0 8

RuntimeInvisibleTypeAnnotations §4.7.21 52.0 8

AnnotationDefault §4.7.22 49.0 5.0

BootstrapMethods §4.7.23 51.0 7

MethodParameters §4.7.24 52.0 8

Module §4.7.25 53.0 9

ModulePackages §4.7.26 53.0 9

ModuleMainClass §4.7.27 53.0 9

NestHost §4.7.28 55.0 11

NestMembers §4.7.29 55.0 11
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Table 4.7-B. Predefined class file attributes (by class file format)

Attribute class file Java SE Section

ConstantValue 45.3 1.0.2 §4.7.2

Code 45.3 1.0.2 §4.7.3

Exceptions 45.3 1.0.2 §4.7.5

SourceFile 45.3 1.0.2 §4.7.10

LineNumberTable 45.3 1.0.2 §4.7.12

LocalVariableTable 45.3 1.0.2 §4.7.13

InnerClasses 45.3 1.1 §4.7.6

Synthetic 45.3 1.1 §4.7.8

Deprecated 45.3 1.1 §4.7.15

EnclosingMethod 49.0 5.0 §4.7.7

Signature 49.0 5.0 §4.7.9

SourceDebugExtension 49.0 5.0 §4.7.11

LocalVariableTypeTable 49.0 5.0 §4.7.14

RuntimeVisibleAnnotations 49.0 5.0 §4.7.16

RuntimeInvisibleAnnotations 49.0 5.0 §4.7.17

RuntimeVisibleParameterAnnotations 49.0 5.0 §4.7.18

RuntimeInvisibleParameterAnnotations 49.0 5.0 §4.7.19

AnnotationDefault 49.0 5.0 §4.7.22

StackMapTable 50.0 6 §4.7.4

BootstrapMethods 51.0 7 §4.7.23

RuntimeVisibleTypeAnnotations 52.0 8 §4.7.20

RuntimeInvisibleTypeAnnotations 52.0 8 §4.7.21

MethodParameters 52.0 8 §4.7.24

Module 53.0 9 §4.7.25

ModulePackages 53.0 9 §4.7.26

ModuleMainClass 53.0 9 §4.7.27

NestHost 55.0 11 §4.7.28

NestMembers 55.0 11 §4.7.29
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Table 4.7-C. Predefined class file attributes (by location)

Attribute Location class file

SourceFile ClassFile 45.3

InnerClasses ClassFile 45.3

EnclosingMethod ClassFile 49.0

SourceDebugExtension ClassFile 49.0

BootstrapMethods ClassFile 51.0

Module, ModulePackages, ModuleMainClass ClassFile 53.0

NestHost, NestMembers ClassFile 55.0

ConstantValue field_info 45.3

Code method_info 45.3

Exceptions method_info 45.3

RuntimeVisibleParameterAnnotations,

RuntimeInvisibleParameterAnnotations

method_info 49.0

AnnotationDefault method_info 49.0

MethodParameters method_info 52.0

Synthetic ClassFile,

field_info,

method_info

45.3

Deprecated ClassFile,

field_info,

method_info

45.3

Signature ClassFile,

field_info,

method_info

49.0

RuntimeVisibleAnnotations,

RuntimeInvisibleAnnotations

ClassFile,

field_info,

method_info

49.0

LineNumberTable Code 45.3

LocalVariableTable Code 45.3

LocalVariableTypeTable Code 49.0

StackMapTable Code 50.0

RuntimeVisibleTypeAnnotations,

RuntimeInvisibleTypeAnnotations

ClassFile,

field_info,

method_info, Code

52.0
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4.7.1 Defining and Naming New Attributes

Compilers are permitted to define and emit class files containing new attributes
in the attributes tables of class file structures, field_info structures,
method_info structures, and Code attributes (§4.7.3). Java Virtual Machine
implementations are permitted to recognize and use new attributes found in
these attributes tables. However, any attribute not defined as part of this
specification must not affect the semantics of the class file. Java Virtual Machine
implementations are required to silently ignore attributes they do not recognize.

For instance, defining a new attribute to support vendor-specific debugging is
permitted. Because Java Virtual Machine implementations are required to ignore
attributes they do not recognize, class files intended for that particular Java Virtual
Machine implementation will be usable by other implementations even if those
implementations cannot make use of the additional debugging information that the
class files contain.

Java Virtual Machine implementations are specifically prohibited from throwing an
exception or otherwise refusing to use class files simply because of the presence of
some new attribute. Of course, tools operating on class files may not run correctly
if given class files that do not contain all the attributes they require.

Two attributes that are intended to be distinct, but that happen to use the same
attribute name and are of the same length, will conflict on implementations that
recognize either attribute. Attributes defined other than in this specification should
have names chosen according to the package naming convention described in The
Java Language Specification, Java SE 11 Edition (JLS §6.1).

Future versions of this specification may define additional attributes.

4.7.2 The ConstantValue Attribute

The ConstantValue attribute is a fixed-length attribute in the attributes table of
a field_info structure (§4.5). A ConstantValue attribute represents the value of
a constant expression (JLS §15.28), and is used as follows:

• If the ACC_STATIC flag in the access_flags item of the field_info structure is
set, then the field represented by the field_info structure is assigned the value
represented by its ConstantValue attribute as part of the initialization of the
class or interface declaring the field (§5.5). This occurs prior to the invocation
of the class or interface initialization method of that class or interface (§2.9.2).

• Otherwise, the Java Virtual Machine must silently ignore the attribute.
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There may be at most one ConstantValue attribute in the attributes table of a
field_info structure.

The ConstantValue attribute has the following format:

ConstantValue_attribute {
    u2 attribute_name_index;
    u4 attribute_length;
    u2 constantvalue_index;
}

The items of the ConstantValue_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index
into the constant_pool table. The constant_pool entry at that index
must be a CONSTANT_Utf8_info structure (§4.4.7) representing the string
"ConstantValue".

attribute_length

The value of the attribute_length item must be two.

constantvalue_index

The value of the constantvalue_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index gives the value
represented by this attribute. The constant_pool entry must be of a type
appropriate to the field, as specified in Table 4.7.2-A.

Table 4.7.2-A. Constant value attribute types

Field Type Entry Type

int, short, char, byte, boolean CONSTANT_Integer

float CONSTANT_Float

long CONSTANT_Long

double CONSTANT_Double

String CONSTANT_String

4.7.3 The Code Attribute

The Code attribute is a variable-length attribute in the attributes table of
a method_info structure (§4.6). A Code attribute contains the Java Virtual
Machine instructions and auxiliary information for a method, including an instance
initialization method and a class or interface initialization method (§2.9.1, §2.9.2).
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If the method is either native or abstract, and is not a class or interface
initialization method, then its method_info structure must not have a Code attribute
in its attributes table. Otherwise, its method_info structure must have exactly
one Code attribute in its attributes table.

The Code attribute has the following format:

Code_attribute {
    u2 attribute_name_index;
    u4 attribute_length;
    u2 max_stack;
    u2 max_locals;
    u4 code_length;
    u1 code[code_length];
    u2 exception_table_length;
    {   u2 start_pc;
        u2 end_pc;
        u2 handler_pc;
        u2 catch_type;
    } exception_table[exception_table_length];
    u2 attributes_count;
    attribute_info attributes[attributes_count];
}

The items of the Code_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index into
the constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure (§4.4.7) representing the string "Code".

attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial six bytes.

max_stack

The value of the max_stack item gives the maximum depth of the operand
stack of this method (§2.6.2) at any point during execution of the method.

max_locals

The value of the max_locals item gives the number of local variables in
the local variable array allocated upon invocation of this method (§2.6.1),
including the local variables used to pass parameters to the method on its
invocation.
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The greatest local variable index for a value of type long or double is
max_locals - 2. The greatest local variable index for a value of any other
type is max_locals - 1.

code_length

The value of the code_length item gives the number of bytes in the code array
for this method.

The value of code_length must be greater than zero (as the code array must
not be empty) and less than 65536.

code[]

The code array gives the actual bytes of Java Virtual Machine code that
implement the method.

When the code array is read into memory on a byte-addressable machine, if
the first byte of the array is aligned on a 4-byte boundary, the tableswitch and
lookupswitch 32-bit offsets will be 4-byte aligned. (Refer to the descriptions
of those instructions for more information on the consequences of code array
alignment.)

The detailed constraints on the contents of the code array are extensive and are
given in a separate section (§4.9).

exception_table_length

The value of the exception_table_length item gives the number of entries
in the exception_table table.

exception_table[]

Each entry in the exception_table array describes one exception handler in
the code array. The order of the handlers in the exception_table array is
significant (§2.10).

Each exception_table entry contains the following four items:

start_pc, end_pc

The values of the two items start_pc and end_pc indicate the ranges in the
code array at which the exception handler is active. The value of start_pc
must be a valid index into the code array of the opcode of an instruction.
The value of end_pc either must be a valid index into the code array of the
opcode of an instruction or must be equal to code_length, the length of the
code array. The value of start_pc must be less than the value of end_pc.
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The start_pc is inclusive and end_pc is exclusive; that is, the exception
handler must be active while the program counter is within the interval
[start_pc, end_pc).

The fact that end_pc is exclusive is a historical mistake in the design of the Java
Virtual Machine: if the Java Virtual Machine code for a method is exactly 65535 bytes
long and ends with an instruction that is 1 byte long, then that instruction cannot be
protected by an exception handler. A compiler writer can work around this bug by
limiting the maximum size of the generated Java Virtual Machine code for any method,
instance initialization method, or static initializer (the size of any code array) to 65534
bytes.

handler_pc

The value of the handler_pc item indicates the start of the exception
handler. The value of the item must be a valid index into the code array
and must be the index of the opcode of an instruction.

catch_type

If the value of the catch_type item is nonzero, it must be a valid index
into the constant_pool table. The constant_pool entry at that index
must be a CONSTANT_Class_info structure (§4.4.1) representing a class of
exceptions that this exception handler is designated to catch. The exception
handler will be called only if the thrown exception is an instance of the
given class or one of its subclasses.

The verifier checks that the class is Throwable or a subclass of Throwable (§4.9.2).

If the value of the catch_type item is zero, this exception handler is called
for all exceptions.

This is used to implement finally (§3.13).

attributes_count

The value of the attributes_count item indicates the number of attributes of
the Code attribute.

attributes[]

Each value of the attributes table must be an attribute_info structure
(§4.7).

A Code attribute can have any number of optional attributes associated with it.

The attributes defined by this specification as appearing in the attributes
table of a Code attribute are listed in Table 4.7-C.
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The rules concerning attributes defined to appear in the attributes table of
a Code attribute are given in §4.7.

The rules concerning non-predefined attributes in the attributes table of a
Code attribute are given in §4.7.1.

4.7.4 The StackMapTable Attribute

The StackMapTable attribute is a variable-length attribute in the attributes table
of a Code attribute (§4.7.3). A StackMapTable attribute is used during the process
of verification by type checking (§4.10.1).

There may be at most one StackMapTable attribute in the attributes table of a
Code attribute.

In a class file whose version number is 50.0 or above, if a method's Code attribute
does not have a StackMapTable attribute, it has an implicit stack map attribute
(§4.10.1). This implicit stack map attribute is equivalent to a StackMapTable
attribute with number_of_entries equal to zero.

The StackMapTable attribute has the following format:

StackMapTable_attribute {
    u2              attribute_name_index;
    u4              attribute_length;
    u2              number_of_entries;
    stack_map_frame entries[number_of_entries];
}

The items of the StackMapTable_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index
into the constant_pool table. The constant_pool entry at that index
must be a CONSTANT_Utf8_info structure (§4.4.7) representing the string
"StackMapTable".

attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial six bytes.

number_of_entries

The value of the number_of_entries item gives the number of
stack_map_frame entries in the entries table.
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entries[]

Each entry in the entries table describes one stack map frame of the method.
The order of the stack map frames in the entries table is significant.

A stack map frame specifies (either explicitly or implicitly) the bytecode offset at
which it applies, and the verification types of local variables and operand stack
entries for that offset.

Each stack map frame described in the entries table relies on the previous frame
for some of its semantics. The first stack map frame of a method is implicit,
and computed from the method descriptor by the type checker (§4.10.1.6). The
stack_map_frame structure at entries[0] therefore describes the second stack
map frame of the method.

The bytecode offset at which a stack map frame applies is calculated by taking the
value offset_delta specified in the frame (either explicitly or implicitly), and
adding offset_delta + 1 to the bytecode offset of the previous frame, unless
the previous frame is the initial frame of the method. In that case, the bytecode
offset at which the stack map frame applies is the value offset_delta specified
in the frame.

By using an offset delta rather than storing the actual bytecode offset, we ensure, by
definition, that stack map frames are in the correctly sorted order. Furthermore, by
consistently using the formula offset_delta + 1 for all explicit frames (as opposed to
the implicit first frame), we guarantee the absence of duplicates.

We say that an instruction in the bytecode has a corresponding stack map frame if
the instruction starts at offset i in the code array of a Code attribute, and the Code
attribute has a StackMapTable attribute whose entries array contains a stack map
frame that applies at bytecode offset i.

A verification type specifies the type of either one or two locations, where a location
is either a single local variable or a single operand stack entry. A verification type
is represented by a discriminated union, verification_type_info, that consists
of a one-byte tag, indicating which item of the union is in use, followed by zero or
more bytes, giving more information about the tag.
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union verification_type_info {
    Top_variable_info;
    Integer_variable_info;
    Float_variable_info;
    Long_variable_info;
    Double_variable_info;
    Null_variable_info;
    UninitializedThis_variable_info;
    Object_variable_info;
    Uninitialized_variable_info;
}

A verification type that specifies one location in the local variable array
or in the operand stack is represented by the following items of the
verification_type_info union:

• The Top_variable_info item indicates that the local variable has the
verification type top.

Top_variable_info {
    u1 tag = ITEM_Top; /* 0 */
}

• The Integer_variable_info item indicates that the location has the verification
type int.

Integer_variable_info {
    u1 tag = ITEM_Integer; /* 1 */
}

• The Float_variable_info item indicates that the location has the verification
type float.

Float_variable_info {
    u1 tag = ITEM_Float; /* 2 */
}

• The Null_variable_info type indicates that the location has the verification
type null.

Null_variable_info {
    u1 tag = ITEM_Null; /* 5 */
}

• The UninitializedThis_variable_info item indicates that the location has
the verification type uninitializedThis.

UninitializedThis_variable_info {
    u1 tag = ITEM_UninitializedThis; /* 6 */
}
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• The Object_variable_info item indicates that the location has the verification
type which is the class represented by the CONSTANT_Class_info structure
(§4.4.1) found in the constant_pool table at the index given by cpool_index.

Object_variable_info {
    u1 tag = ITEM_Object; /* 7 */
    u2 cpool_index;
}

• The Uninitialized_variable_info item indicates that the location has the
verification type uninitialized(Offset). The Offset item indicates the offset,
in the code array of the Code attribute that contains this StackMapTable attribute,
of the new instruction (§new) that created the object being stored in the location.

Uninitialized_variable_info {
    u1 tag = ITEM_Uninitialized; /* 8 */
    u2 offset;
}

A verification type that specifies two locations in the local variable array
or in the operand stack is represented by the following items of the
verification_type_info union:

• The Long_variable_info item indicates that the first of two locations has the
verification type long.

Long_variable_info {
    u1 tag = ITEM_Long; /* 4 */
}

• The Double_variable_info item indicates that the first of two locations has the
verification type double.

Double_variable_info {
    u1 tag = ITEM_Double; /* 3 */
}

• The Long_variable_info and Double_variable_info items indicate the
verification type of the second of two locations as follows:

– If the first of the two locations is a local variable, then:

› It must not be the local variable with the highest index.

› The next higher numbered local variable has the verification type top.

– If the first of the two locations is an operand stack entry, then:

› It must not be the topmost location of the operand stack.



THE CLASS FILE FORMAT Attributes 4.7

119

› The next location closer to the top of the operand stack has the verification
type top.

A stack map frame is represented by a discriminated union, stack_map_frame,
which consists of a one-byte tag, indicating which item of the union is in use,
followed by zero or more bytes, giving more information about the tag.

union stack_map_frame {
    same_frame;
    same_locals_1_stack_item_frame;
    same_locals_1_stack_item_frame_extended;
    chop_frame;
    same_frame_extended;
    append_frame;
    full_frame;
}

The tag indicates the frame type of the stack map frame:

• The frame type same_frame is represented by tags in the range [0-63]. This frame
type indicates that the frame has exactly the same local variables as the previous
frame and that the operand stack is empty. The offset_delta value for the frame
is the value of the tag item, frame_type.

same_frame {
    u1 frame_type = SAME; /* 0-63 */
}

• The frame type same_locals_1_stack_item_frame is represented by tags in
the range [64, 127]. This frame type indicates that the frame has exactly the same
local variables as the previous frame and that the operand stack has one entry.
The offset_delta value for the frame is given by the formula frame_type -
64. The verification type of the one stack entry appears after the frame type.

same_locals_1_stack_item_frame {
    u1 frame_type = SAME_LOCALS_1_STACK_ITEM; /* 64-127 */
    verification_type_info stack[1];
}

• Tags in the range [128-246] are reserved for future use.

• The frame type same_locals_1_stack_item_frame_extended is represented
by the tag 247. This frame type indicates that the frame has exactly the same
local variables as the previous frame and that the operand stack has one entry.
The offset_delta value for the frame is given explicitly, unlike in the frame
type same_locals_1_stack_item_frame. The verification type of the one stack
entry appears after offset_delta.
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same_locals_1_stack_item_frame_extended {
    u1 frame_type = SAME_LOCALS_1_STACK_ITEM_EXTENDED; /* 247 */
    u2 offset_delta;
    verification_type_info stack[1];
}

• The frame type chop_frame is represented by tags in the range [248-250]. This
frame type indicates that the frame has the same local variables as the previous
frame except that the last k local variables are absent, and that the operand stack
is empty. The value of k is given by the formula 251 - frame_type. The
offset_delta value for the frame is given explicitly.

chop_frame {
    u1 frame_type = CHOP; /* 248-250 */
    u2 offset_delta;
}

Assume the verification types of local variables in the previous frame are
given by locals, an array structured as in the full_frame frame type. If
locals[M-1] in the previous frame represented local variable X and locals[M]
represented local variable Y, then the effect of removing one local variable is
that locals[M-1] in the new frame represents local variable X and locals[M]
is undefined.

It is an error if k is larger than the number of local variables in locals for the
previous frame, that is, if the number of local variables in the new frame would
be less than zero.

• The frame type same_frame_extended is represented by the tag 251. This frame
type indicates that the frame has exactly the same local variables as the previous
frame and that the operand stack is empty. The offset_delta value for the frame
is given explicitly, unlike in the frame type same_frame.

same_frame_extended {
    u1 frame_type = SAME_FRAME_EXTENDED; /* 251 */
    u2 offset_delta;
}

• The frame type append_frame is represented by tags in the range [252-254]. This
frame type indicates that the frame has the same locals as the previous frame
except that k additional locals are defined, and that the operand stack is empty.
The value of k is given by the formula frame_type - 251. The offset_delta
value for the frame is given explicitly.
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append_frame {
    u1 frame_type = APPEND; /* 252-254 */
    u2 offset_delta;
    verification_type_info locals[frame_type - 251];
}

The 0th entry in locals represents the verification type of the first additional
local variable. If locals[M] represents local variable N, then:

– locals[M+1] represents local variable N+1 if locals[M] is one
of Top_variable_info, Integer_variable_info, Float_variable_info,
Null_variable_info, UninitializedThis_variable_info,
Object_variable_info, or Uninitialized_variable_info; and

– locals[M+1] represents local variable N+2 if locals[M] is either
Long_variable_info or Double_variable_info.

It is an error if, for any index i, locals[i] represents a local variable whose
index is greater than the maximum number of local variables for the method.

• The frame type full_frame is represented by the tag 255. The offset_delta
value for the frame is given explicitly.

full_frame {
    u1 frame_type = FULL_FRAME; /* 255 */
    u2 offset_delta;
    u2 number_of_locals;
    verification_type_info locals[number_of_locals];
    u2 number_of_stack_items;
    verification_type_info stack[number_of_stack_items];
}

The 0th entry in locals represents the verification type of local variable 0. If
locals[M] represents local variable N, then:

– locals[M+1] represents local variable N+1 if locals[M] is one
of Top_variable_info, Integer_variable_info, Float_variable_info,
Null_variable_info, UninitializedThis_variable_info,
Object_variable_info, or Uninitialized_variable_info; and

– locals[M+1] represents local variable N+2 if locals[M] is either
Long_variable_info or Double_variable_info.

It is an error if, for any index i, locals[i] represents a local variable whose
index is greater than the maximum number of local variables for the method.

The 0th entry in stack represents the verification type of the bottom of the
operand stack, and subsequent entries in stack represent the verification types
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of stack entries closer to the top of the operand stack. We refer to the bottom of
the operand stack as stack entry 0, and to subsequent entries of the operand stack
as stack entry 1, 2, etc. If stack[M] represents stack entry N, then:

– stack[M+1] represents stack entry N+1 if stack[M] is one of
Top_variable_info, Integer_variable_info, Float_variable_info,
Null_variable_info, UninitializedThis_variable_info,
Object_variable_info, or Uninitialized_variable_info; and

– stack[M+1] represents stack entry N+2 if stack[M] is either
Long_variable_info or Double_variable_info.

It is an error if, for any index i, stack[i] represents a stack entry whose index
is greater than the maximum operand stack size for the method.

4.7.5 The Exceptions Attribute

The Exceptions attribute is a variable-length attribute in the attributes table of a
method_info structure (§4.6). The Exceptions attribute indicates which checked
exceptions a method may throw.

There may be at most one Exceptions attribute in the attributes table of a
method_info structure.

The Exceptions attribute has the following format:

Exceptions_attribute {
    u2 attribute_name_index;
    u4 attribute_length;
    u2 number_of_exceptions;
    u2 exception_index_table[number_of_exceptions];
}

The items of the Exceptions_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be the
CONSTANT_Utf8_info structure (§4.4.7) representing the string "Exceptions".

attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial six bytes.
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number_of_exceptions

The value of the number_of_exceptions item indicates the number of entries
in the exception_index_table.

exception_index_table[]

Each value in the exception_index_table array must be a valid index into
the constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Class_info structure (§4.4.1) representing a class type that this
method is declared to throw.

A method should throw an exception only if at least one of the following three criteria is
met:

• The exception is an instance of RuntimeException or one of its subclasses.

• The exception is an instance of Error or one of its subclasses.

• The exception is an instance of one of the exception classes specified in the
exception_index_table just described, or one of their subclasses.

These requirements are not enforced in the Java Virtual Machine; they are enforced only
at compile time.

4.7.6 The InnerClasses Attribute

The InnerClasses attribute is a variable-length attribute in the attributes table
of a ClassFile structure (§4.1).

If the constant pool of a class or interface C contains at least one
CONSTANT_Class_info entry (§4.4.1) which represents a class or interface that is
not a member of a package, then there must be exactly one InnerClasses attribute
in the attributes table of the ClassFile structure for C.

The InnerClasses attribute has the following format:

InnerClasses_attribute {
    u2 attribute_name_index;
    u4 attribute_length;
    u2 number_of_classes;
    {   u2 inner_class_info_index;
        u2 outer_class_info_index;
        u2 inner_name_index;
        u2 inner_class_access_flags;
    } classes[number_of_classes];
}

The items of the InnerClasses_attribute structure are as follows:
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attribute_name_index

The value of the attribute_name_index item must be a valid index
into the constant_pool table. The constant_pool entry at that index
must be a CONSTANT_Utf8_info structure (§4.4.7) representing the string
"InnerClasses".

attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial six bytes.

number_of_classes

The value of the number_of_classes item indicates the number of entries in
the classes array.

classes[]

Every CONSTANT_Class_info entry in the constant_pool table which
represents a class or interface C that is not a package member must have exactly
one corresponding entry in the classes array.

If a class or interface has members that are classes or interfaces, its constant_pool table
(and hence its InnerClasses attribute) must refer to each such member (JLS §13.1), even
if that member is not otherwise mentioned by the class.

In addition, the constant_pool table of every nested class and nested interface must
refer to its enclosing class, so altogether, every nested class and nested interface will have
InnerClasses information for each enclosing class and for each of its own nested classes
and interfaces.

Each entry in the classes array contains the following four items:

inner_class_info_index

The value of the inner_class_info_index item must be a valid index into
the constant_pool table. The constant_pool entry at that index must be
a CONSTANT_Class_info structure representing C.

outer_class_info_index

If C is not a member of a class or an interface - that is, if C is a top-level
class or interface (JLS §7.6) or a local class (JLS §14.3) or an anonymous
class (JLS §15.9.5) - then the value of the outer_class_info_index item
must be zero.

Otherwise, the value of the outer_class_info_index item must be a valid
index into the constant_pool table, and the entry at that index must be
a CONSTANT_Class_info structure representing the class or interface of
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which C is a member. The value of the outer_class_info_index item
must not equal the the value of the inner_class_info_index item.

inner_name_index

If C is anonymous (JLS §15.9.5), the value of the inner_name_index item
must be zero.

Otherwise, the value of the inner_name_index item must be a valid index
into the constant_pool table, and the entry at that index must be a
CONSTANT_Utf8_info structure that represents the original simple name of
C, as given in the source code from which this class file was compiled.

inner_class_access_flags

The value of the inner_class_access_flags item is a mask of flags used
to denote access permissions to and properties of class or interface C as
declared in the source code from which this class file was compiled. It is
used by a compiler to recover the original information when source code
is not available. The flags are specified in Table 4.7.6-A.

Table 4.7.6-A. Nested class access and property flags

Flag Name Value Interpretation

ACC_PUBLIC 0x0001 Marked or implicitly public in source.

ACC_PRIVATE 0x0002 Marked private in source.

ACC_PROTECTED 0x0004 Marked protected in source.

ACC_STATIC 0x0008 Marked or implicitly static in source.

ACC_FINAL 0x0010 Marked or implicitly final in source.

ACC_INTERFACE 0x0200 Was an interface in source.

ACC_ABSTRACT 0x0400 Marked or implicitly abstract in source.

ACC_SYNTHETIC 0x1000 Declared synthetic; not present in the source code.

ACC_ANNOTATION 0x2000 Declared as an annotation type.

ACC_ENUM 0x4000 Declared as an enum type.

All bits of the inner_class_access_flags item not assigned in
Table 4.7.6-A are reserved for future use. They should be set to zero in
generated class files and should be ignored by Java Virtual Machine
implementations.

If a class file has a version number that is 51.0 or above, and
has an InnerClasses attribute in its attributes table, then for all
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entries in the classes array of the InnerClasses attribute, the value
of the outer_class_info_index item must be zero if the value of the
inner_name_index item is zero.

Oracle's Java Virtual Machine implementation does not check the consistency of an
InnerClasses attribute against a class file representing a class or interface referenced
by the attribute.

4.7.7 The EnclosingMethod Attribute

The EnclosingMethod attribute is a fixed-length attribute in the attributes table
of a ClassFile structure (§4.1). A class must have an EnclosingMethod attribute
if and only if it represents a local class or an anonymous class (JLS §14.3, JLS
§15.9.5).

There may be at most one EnclosingMethod attribute in the attributes table of
a ClassFile structure.

The EnclosingMethod attribute has the following format:

EnclosingMethod_attribute {
    u2 attribute_name_index;
    u4 attribute_length;
    u2 class_index;
    u2 method_index;
}

The items of the EnclosingMethod_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index
into the constant_pool table. The constant_pool entry at that index
must be a CONSTANT_Utf8_info structure (§4.4.7) representing the string
"EnclosingMethod".

attribute_length

The value of the attribute_length item must be four.

class_index

The value of the class_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Class_info structure (§4.4.1) representing the innermost class that
encloses the declaration of the current class.
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method_index

If the current class is not immediately enclosed by a method or constructor,
then the value of the method_index item must be zero.

In particular, method_index must be zero if the current class was immediately enclosed
in source code by an instance initializer, static initializer, instance variable initializer, or
class variable initializer. (The first two concern both local classes and anonymous classes,
while the last two concern anonymous classes declared on the right hand side of a field
assignment.)

Otherwise, the value of the method_index item must be a valid index into
the constant_pool table. The constant_pool entry at that index must be a
CONSTANT_NameAndType_info structure (§4.4.6) representing the name and
type of a method in the class referenced by the class_index attribute above.

It is the responsibility of a Java compiler to ensure that the method identified via the
method_index is indeed the closest lexically enclosing method of the class that contains
this EnclosingMethod attribute.

4.7.8 The Synthetic Attribute

The Synthetic attribute is a fixed-length attribute in the attributes table
of a ClassFile, field_info, or method_info structure (§4.1, §4.5, §4.6). A
class member that does not appear in the source code must be marked using a
Synthetic attribute, or else it must have its ACC_SYNTHETIC flag set. The only
exceptions to this requirement are compiler-generated methods which are not
considered implementation artifacts, namely the instance initialization method
representing a default constructor of the Java programming language (§2.9.1),
the class or interface initialization method (§2.9.2), and the Enum.values() and
Enum.valueOf() methods.

The Synthetic attribute was introduced in JDK 1.1 to support nested classes and
interfaces.

The Synthetic attribute has the following format:

Synthetic_attribute {
    u2 attribute_name_index;
    u4 attribute_length;
}

The items of the Synthetic_attribute structure are as follows:
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attribute_name_index

The value of the attribute_name_index item must be a valid index into
the constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure (§4.4.7) representing the string "Synthetic".

attribute_length

The value of the attribute_length item must be zero.

4.7.9 The Signature Attribute

The Signature attribute is a fixed-length attribute in the attributes table
of a ClassFile, field_info, or method_info structure (§4.1, §4.5, §4.6). A
Signature attribute records a signature (§4.7.9.1) for a class, interface, constructor,
method, or field whose declaration in the Java programming language uses type
variables or parameterized types. See The Java Language Specification, Java SE
11 Edition for details about these constructs.

There may be at most one Signature attribute in the attributes table of a
ClassFile, field_info, or method_info structure.

The Signature attribute has the following format:

Signature_attribute {
    u2 attribute_name_index;
    u4 attribute_length;
    u2 signature_index;
}

The items of the Signature_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index into
the constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure (§4.4.7) representing the string "Signature".

attribute_length

The value of the attribute_length item must be two.

signature_index

The value of the signature_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure (§4.4.7) representing a class signature if this
Signature attribute is an attribute of a ClassFile structure; a method
signature if this Signature attribute is an attribute of a method_info structure;
or a field signature otherwise.
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Oracle's Java Virtual Machine implementation does not check the well-formedness
of Signature attributes during class loading or linking. Instead, Signature
attributes are checked by methods of the Java SE Platform class libraries which
expose generic signatures of classes, interfaces, constructors, methods, and fields.
Examples include getGenericSuperclass in Class and toGenericString in
java.lang.reflect.Executable.

4.7.9.1 Signatures

Signatures encode declarations written in the Java programming language that use
types outside the type system of the Java Virtual Machine. They support reflection
and debugging, as well as compilation when only class files are available.

A Java compiler must emit a signature for any class, interface, constructor, method,
or field whose declaration uses type variables or parameterized types. Specifically,
a Java compiler must emit:

• A class signature for any class or interface declaration which is either generic,
or has a parameterized type as a superclass or superinterface, or both.

• A method signature for any method or constructor declaration which is either
generic, or has a type variable or parameterized type as the return type or a formal
parameter type, or has a type variable in a throws clause, or any combination
thereof.

If the throws clause of a method or constructor declaration does not involve type
variables, then a compiler may treat the declaration as having no throws clause
for the purpose of emitting a method signature.

• A field signature for any field, formal parameter, or local variable declaration
whose type uses a type variable or a parameterized type.

Signatures are specified using a grammar which follows the notation of §4.3.1. In
addition to that notation:

• The syntax [x] on the right-hand side of a production denotes zero or one
occurrences of x. That is, x is an optional symbol. The alternative which contains
the optional symbol actually defines two alternatives: one that omits the optional
symbol and one that includes it.

• A very long right-hand side may be continued on a second line by clearly
indenting the second line.

The grammar includes the terminal symbol Identifier to denote the name of a type,
field, method, formal parameter, local variable, or type variable, as generated by
a Java compiler. Such a name must not contain any of the ASCII characters .
; [ / < > : (that is, the characters forbidden in method names (§4.2.2) and also
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colon) but may contain characters that must not appear in an identifier in the Java
programming language (JLS §3.8).

Signatures rely on a hierarchy of nonterminals known as type signatures:

• A Java type signature represents either a reference type or a primitive type of
the Java programming language.

JavaTypeSignature:
ReferenceTypeSignature
BaseType

The following production from §4.3.2 is repeated here for convenience:

BaseType:
(one of)
B C D F I J S Z

• A reference type signature represents a reference type of the Java programming
language, that is, a class or interface type, a type variable, or an array type.

A class type signature represents a (possibly parameterized) class or interface
type. A class type signature must be formulated such that it can be reliably
mapped to the binary name of the class it denotes by erasing any type arguments
and converting each . character to a $ character.

A type variable signature represents a type variable.

An array type signature represents one dimension of an array type.

ReferenceTypeSignature:
ClassTypeSignature
TypeVariableSignature
ArrayTypeSignature

ClassTypeSignature:
L [PackageSpecifier]

 SimpleClassTypeSignature {ClassTypeSignatureSuffix} ;

PackageSpecifier:
Identifier / {PackageSpecifier}

SimpleClassTypeSignature:
Identifier [TypeArguments]
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TypeArguments:
< TypeArgument {TypeArgument} >

TypeArgument:
[WildcardIndicator] ReferenceTypeSignature
*

WildcardIndicator:
+

-

ClassTypeSignatureSuffix:
. SimpleClassTypeSignature

TypeVariableSignature:
T Identifier ;

ArrayTypeSignature:
[ JavaTypeSignature

A class signature encodes type information about a (possibly generic) class
declaration. It describes any type parameters of the class, and lists its (possibly
parameterized) direct superclass and direct superinterfaces, if any. A type
parameter is described by its name, followed by any class bound and interface
bounds.

ClassSignature:
[TypeParameters] SuperclassSignature {SuperinterfaceSignature}

TypeParameters:
< TypeParameter {TypeParameter} >

TypeParameter:
Identifier ClassBound {InterfaceBound}

ClassBound:
: [ReferenceTypeSignature]

InterfaceBound:
: ReferenceTypeSignature
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SuperclassSignature:
ClassTypeSignature

SuperinterfaceSignature:
ClassTypeSignature

A method signature encodes type information about a (possibly generic) method
declaration. It describes any type parameters of the method; the (possibly
parameterized) types of any formal parameters; the (possibly parameterized) return
type, if any; and the types of any exceptions declared in the method's throws clause.

MethodSignature:
[TypeParameters] ( {JavaTypeSignature} ) Result {ThrowsSignature}

Result:
JavaTypeSignature
VoidDescriptor

ThrowsSignature:
^ ClassTypeSignature
^ TypeVariableSignature

The following production from §4.3.3 is repeated here for convenience:

VoidDescriptor:
V

A method signature encoded by the Signature attribute may not correspond exactly to
the method descriptor in the method_info structure (§4.3.3). In particular, there is no
assurance that the number of formal parameter types in the method signature is the same
as the number of parameter descriptors in the method descriptor. The numbers are the
same for most methods, but certain constructors in the Java programming language have
an implicitly declared parameter which a compiler represents with a parameter descriptor
but may omit from the method signature. See the note in §4.7.18 for a similar situation
involving parameter annotations.

A field signature encodes the (possibly parameterized) type of a field, formal
parameter, or local variable declaration.

FieldSignature:
ReferenceTypeSignature
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4.7.10 The SourceFile Attribute

The SourceFile attribute is an optional fixed-length attribute in the attributes
table of a ClassFile structure (§4.1).

There may be at most one SourceFile attribute in the attributes table of a
ClassFile structure.

The SourceFile attribute has the following format:

SourceFile_attribute {
    u2 attribute_name_index;
    u4 attribute_length;
    u2 sourcefile_index;
}

The items of the SourceFile_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index into
the constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure (§4.4.7) representing the string "SourceFile".

attribute_length

The value of the attribute_length item must be two.

sourcefile_index

The value of the sourcefile_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure representing a string.

The string referenced by the sourcefile_index item will be interpreted as indicating the
name of the source file from which this class file was compiled. It will not be interpreted
as indicating the name of a directory containing the file or an absolute path name for the file;
such platform-specific additional information must be supplied by the run-time interpreter
or development tool at the time the file name is actually used.

4.7.11 The SourceDebugExtension Attribute

The SourceDebugExtension attribute is an optional attribute in the attributes
table of a ClassFile structure (§4.1).

There may be at most one SourceDebugExtension attribute in the attributes
table of a ClassFile structure.

The SourceDebugExtension attribute has the following format:
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SourceDebugExtension_attribute {
    u2 attribute_name_index;
    u4 attribute_length;
    u1 debug_extension[attribute_length];
}

The items of the SourceDebugExtension_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index
into the constant_pool table. The constant_pool entry at that index
must be a CONSTANT_Utf8_info structure (§4.4.7) representing the string
"SourceDebugExtension".

attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial six bytes.

debug_extension[]

The debug_extension array holds extended debugging information which has
no semantic effect on the Java Virtual Machine. The information is represented
using a modified UTF-8 string (§4.4.7) with no terminating zero byte.

Note that the debug_extension array may denote a string longer than that which can be
represented with an instance of class String.

4.7.12 The LineNumberTable Attribute

The LineNumberTable attribute is an optional variable-length attribute in the
attributes table of a Code attribute (§4.7.3). It may be used by debuggers to
determine which part of the code array corresponds to a given line number in the
original source file.

If multiple LineNumberTable attributes are present in the attributes table of a
Code attribute, then they may appear in any order.

There may be more than one LineNumberTable attribute per line of a source file
in the attributes table of a Code attribute. That is, LineNumberTable attributes
may together represent a given line of a source file, and need not be one-to-one
with source lines.

The LineNumberTable attribute has the following format:
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LineNumberTable_attribute {
    u2 attribute_name_index;
    u4 attribute_length;
    u2 line_number_table_length;
    {   u2 start_pc;
        u2 line_number; 
    } line_number_table[line_number_table_length];
}

The items of the LineNumberTable_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index
into the constant_pool table. The constant_pool entry at that index
must be a CONSTANT_Utf8_info structure (§4.4.7) representing the string
"LineNumberTable".

attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial six bytes.

line_number_table_length

The value of the line_number_table_length item indicates the number of
entries in the line_number_table array.

line_number_table[]

Each entry in the line_number_table array indicates that the line number
in the original source file changes at a given point in the code array. Each
line_number_table entry must contain the following two items:

start_pc

The value of the start_pc item must be a valid index into the code array
of this Code attribute. The item indicates the index into the code array at
which the code for a new line in the original source file begins.

line_number

The value of the line_number item gives the corresponding line number
in the original source file.

4.7.13 The LocalVariableTable Attribute

The LocalVariableTable attribute is an optional variable-length attribute in the
attributes table of a Code attribute (§4.7.3). It may be used by debuggers to
determine the value of a given local variable during the execution of a method.
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If multiple LocalVariableTable attributes are present in the attributes table of
a Code attribute, then they may appear in any order.

There may be no more than one LocalVariableTable attribute per local variable
in the attributes table of a Code attribute.

The LocalVariableTable attribute has the following format:

LocalVariableTable_attribute {
    u2 attribute_name_index;
    u4 attribute_length;
    u2 local_variable_table_length;
    {   u2 start_pc;
        u2 length;
        u2 name_index;
        u2 descriptor_index;
        u2 index;
    } local_variable_table[local_variable_table_length];
}

The items of the LocalVariableTable_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index
into the constant_pool table. The constant_pool entry at that index
must be a CONSTANT_Utf8_info structure (§4.4.7) representing the string
"LocalVariableTable".

attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial six bytes.

local_variable_table_length

The value of the local_variable_table_length item indicates the number
of entries in the local_variable_table array.

local_variable_table[]

Each entry in the local_variable_table array indicates a range of code array
offsets within which a local variable has a value, and indicates the index into
the local variable array of the current frame at which that local variable can be
found. Each entry must contain the following five items:

start_pc, length

The value of the start_pc item must be a valid index into the code array
of this Code attribute and must be the index of the opcode of an instruction.
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The value of start_pc + length must either be a valid index into the code
array of this Code attribute and be the index of the opcode of an instruction,
or it must be the first index beyond the end of that code array.

The start_pc and length items indicate that the given local variable has
a value at indices into the code array in the interval [start_pc, start_pc
+ length), that is, between start_pc inclusive and start_pc + length
exclusive.

name_index

The value of the name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must contain
a CONSTANT_Utf8_info structure representing a valid unqualified name
denoting a local variable (§4.2.2).

descriptor_index

The value of the descriptor_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must contain
a CONSTANT_Utf8_info structure representing a field descriptor which
encodes the type of a local variable in the source program (§4.3.2).

index

The value of the index item must be a valid index into the local variable
array of the current frame. The given local variable is at index in the local
variable array of the current frame.

If the given local variable is of type double or long, it occupies both index
and index + 1.

4.7.14 The LocalVariableTypeTable Attribute

The LocalVariableTypeTable attribute is an optional variable-length attribute in
the attributes table of a Code attribute (§4.7.3). It may be used by debuggers to
determine the value of a given local variable during the execution of a method.

If multiple LocalVariableTypeTable attributes are present in the attributes
table of a given Code attribute, then they may appear in any order.

There may be no more than one LocalVariableTypeTable attribute per local
variable in the attributes table of a Code attribute.

The LocalVariableTypeTable attribute differs from the LocalVariableTable
attribute (§4.7.13) in that it provides signature information rather than descriptor
information. This difference is only significant for variables whose type uses a type variable
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or parameterized type. Such variables will appear in both tables, while variables of other
types will appear only in LocalVariableTable.

The LocalVariableTypeTable attribute has the following format:

LocalVariableTypeTable_attribute {
    u2 attribute_name_index;
    u4 attribute_length;
    u2 local_variable_type_table_length;
    {   u2 start_pc;
        u2 length;
        u2 name_index;
        u2 signature_index;
        u2 index;
    } local_variable_type_table[local_variable_type_table_length];
}

The items of the LocalVariableTypeTable_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index
into the constant_pool table. The constant_pool entry at that index
must be a CONSTANT_Utf8_info structure (§4.4.7) representing the string
"LocalVariableTypeTable".

attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial six bytes.

local_variable_type_table_length

The value of the local_variable_type_table_length item indicates the
number of entries in the local_variable_type_table array.

local_variable_type_table[]

Each entry in the local_variable_type_table array indicates a range of code
array offsets within which a local variable has a value, and indicates the index
into the local variable array of the current frame at which that local variable
can be found. Each entry must contain the following five items:

start_pc, length

The value of the start_pc item must be a valid index into the code array
of this Code attribute and must be the index of the opcode of an instruction.

The value of start_pc + length must either be a valid index into the code
array of this Code attribute and be the index of the opcode of an instruction,
or it must be the first index beyond the end of that code array.
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The start_pc and length items indicate that the given local variable has
a value at indices into the code array in the interval [start_pc, start_pc
+ length), that is, between start_pc inclusive and start_pc + length
exclusive.

name_index

The value of the name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must contain
a CONSTANT_Utf8_info structure representing a valid unqualified name
denoting a local variable (§4.2.2).

signature_index

The value of the signature_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must contain
a CONSTANT_Utf8_info structure representing a field signature which
encodes the type of a local variable in the source program (§4.7.9.1).

index

The value of the index item must be a valid index into the local variable
array of the current frame. The given local variable is at index in the local
variable array of the current frame.

If the given local variable is of type double or long, it occupies both index
and index + 1.

4.7.15 The Deprecated Attribute

The Deprecated attribute is an optional fixed-length attribute in the attributes
table of a ClassFile, field_info, or method_info structure (§4.1, §4.5, §4.6). A
class, interface, method, or field may be marked using a Deprecated attribute to
indicate that the class, interface, method, or field has been superseded.

A run-time interpreter or tool that reads the class file format, such as a compiler,
can use this marking to advise the user that a superseded class, interface, method,
or field is being referred to. The presence of a Deprecated attribute does not alter
the semantics of a class or interface.

The Deprecated attribute has the following format:

Deprecated_attribute {
    u2 attribute_name_index;
    u4 attribute_length;
}

The items of the Deprecated_attribute structure are as follows:
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attribute_name_index

The value of the attribute_name_index item must be a valid index into
the constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure (§4.4.7) representing the string "Deprecated".

attribute_length

The value of the attribute_length item must be zero.

4.7.16 The RuntimeVisibleAnnotations Attribute

The RuntimeVisibleAnnotations attribute is a variable-length attribute in the
attributes table of a ClassFile, field_info, or method_info structure (§4.1,
§4.5, §4.6). The RuntimeVisibleAnnotations attribute records run-time visible
annotations on the declaration of the corresponding class, field, or method.

There may be at most one RuntimeVisibleAnnotations attribute in the
attributes table of a ClassFile, field_info, or method_info structure.

The RuntimeVisibleAnnotations attribute has the following format:

RuntimeVisibleAnnotations_attribute {
    u2         attribute_name_index;
    u4         attribute_length;
    u2         num_annotations;
    annotation annotations[num_annotations];
}

The items of the RuntimeVisibleAnnotations_attribute structure are as
follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index
into the constant_pool table. The constant_pool entry at that index
must be a CONSTANT_Utf8_info structure (§4.4.7) representing the string
"RuntimeVisibleAnnotations".

attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial six bytes.

num_annotations

The value of the num_annotations item gives the number of run-time visible
annotations represented by the structure.
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annotations[]

Each entry in the annotations table represents a single run-time visible
annotation on a declaration. The annotation structure has the following
format:

annotation {
    u2 type_index;
    u2 num_element_value_pairs;
    {   u2            element_name_index;
        element_value value;
    } element_value_pairs[num_element_value_pairs];
}

The items of the annotation structure are as follows:

type_index

The value of the type_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be
a CONSTANT_Utf8_info structure (§4.4.7) representing a field descriptor
(§4.3.2). The field descriptor denotes the type of the annotation represented
by this annotation structure.

num_element_value_pairs

The value of the num_element_value_pairs item gives the number of
element-value pairs of the annotation represented by this annotation
structure.

element_value_pairs[]

Each value of the element_value_pairs table represents a single element-
value pair in the annotation represented by this annotation structure. Each
element_value_pairs entry contains the following two items:

element_name_index

The value of the element_name_index item must be a valid index into
the constant_pool table. The constant_pool entry at that index must
be a CONSTANT_Utf8_info structure (§4.4.7). The constant_pool
entry denotes the name of the element of the element-value pair
represented by this element_value_pairs entry.

In other words, the entry denotes an element of the annotation type specified by
type_index.

value

The value of the value item represents the value of the element-value
pair represented by this element_value_pairs entry.
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4.7.16.1 The element_value structure

The element_value structure is a discriminated union representing the value of an
element-value pair. It has the following format:

element_value {
    u1 tag;
    union {
        u2 const_value_index;

        {   u2 type_name_index;
            u2 const_name_index;
        } enum_const_value;

        u2 class_info_index;

        annotation annotation_value;

        {   u2            num_values;
            element_value values[num_values];
        } array_value;
    } value;
}

The tag item uses a single ASCII character to indicate the type of the value of
the element-value pair. This determines which item of the value union is in use.
Table 4.7.16.1-A shows the valid characters for the tag item, the type indicated by
each character, and the item used in the value union for each character. The table's
fourth column is used in the description below of one item of the value union.
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Table 4.7.16.1-A. Interpretation of tag values as types

tag Item Type value Item Constant Type

B byte const_value_index CONSTANT_Integer

C char const_value_index CONSTANT_Integer

D double const_value_index CONSTANT_Double

F float const_value_index CONSTANT_Float

I int const_value_index CONSTANT_Integer

J long const_value_index CONSTANT_Long

S short const_value_index CONSTANT_Integer

Z boolean const_value_index CONSTANT_Integer

s String const_value_index CONSTANT_Utf8

e Enum type enum_const_value Not applicable

c Class class_info_index Not applicable

@ Annotation type annotation_value Not applicable

[ Array type array_value Not applicable

The value item represents the value of an element-value pair. The item is a union,
whose own items are as follows:

const_value_index

The const_value_index item denotes either a primitive constant value or a
String literal as the value of this element-value pair.

The value of the const_value_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be of a type
appropriate to the tag item, as specified in the fourth column of Table 4.7.16.1-
A.

enum_const_value

The enum_const_value item denotes an enum constant as the value of this
element-value pair.

The enum_const_value item consists of the following two items:

type_name_index

The value of the type_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be
a CONSTANT_Utf8_info structure (§4.4.7) representing a field descriptor
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(§4.3.2). The constant_pool entry gives the internal form of the binary
name of the type of the enum constant represented by this element_value
structure (§4.2.1).

const_name_index

The value of the const_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure (§4.4.7). The constant_pool entry gives
the simple name of the enum constant represented by this element_value
structure.

class_info_index

The class_info_index item denotes a class literal as the value of this element-
value pair.

The class_info_index item must be a valid index into the constant_pool
table. The constant_pool entry at that index must be a CONSTANT_Utf8_info
structure (§4.4.7) representing a return descriptor (§4.3.3). The return
descriptor gives the type corresponding to the class literal represented by this
element_value structure. Types correspond to class literals as follows:

• For a class literal C.class, where C is the name of a class, interface,
or array type, the corresponding type is C. The return descriptor in the
constant_pool will be an ObjectType or an ArrayType.

• For a class literal p.class, where p is the name of a primitive type, the
corresponding type is p. The return descriptor in the constant_pool will be
a BaseType character.

• For a class literal void.class, the corresponding type is void. The return
descriptor in the constant_pool will be V.

For example, the class literal Object.class corresponds to the type Object, so the
constant_pool entry is Ljava/lang/Object;, whereas the class literal int.class
corresponds to the type int, so the constant_pool entry is I.

The class literal void.class corresponds to void, so the constant_pool entry
is V, whereas the class literal Void.class corresponds to the type Void, so the
constant_pool entry is Ljava/lang/Void;.

annotation_value

The annotation_value item denotes a "nested" annotation as the value of this
element-value pair.

The value of the annotation_value item is an annotation structure (§4.7.16)
that gives the annotation represented by this element_value structure.
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array_value

The array_value item denotes an array as the value of this element-value pair.

The array_value item consists of the following two items:

num_values

The value of the num_values item gives the number of elements in the
array represented by this element_value structure.

values[]

Each value in the values table gives the corresponding element of the array
represented by this element_value structure.

4.7.17 The RuntimeInvisibleAnnotations Attribute

The RuntimeInvisibleAnnotations attribute is a variable-length attribute in
the attributes table of a ClassFile, field_info, or method_info structure
(§4.1, §4.5, §4.6). The RuntimeInvisibleAnnotations attribute records run-time
invisible annotations on the declaration of the corresponding class, method, or field.

There may be at most one RuntimeInvisibleAnnotations attribute in the
attributes table of a ClassFile, field_info, or method_info structure.

The RuntimeInvisibleAnnotations attribute is similar to the
RuntimeVisibleAnnotations attribute (§4.7.16), except that the annotations
represented by a RuntimeInvisibleAnnotations attribute must not be made available
for return by reflective APIs, unless the Java Virtual Machine has been instructed to retain
these annotations via some implementation-specific mechanism such as a command line
flag. In the absence of such instructions, the Java Virtual Machine ignores this attribute.

The RuntimeInvisibleAnnotations attribute has the following format:

RuntimeInvisibleAnnotations_attribute {
    u2         attribute_name_index;
    u4         attribute_length;
    u2         num_annotations;
    annotation annotations[num_annotations];
}

The items of the RuntimeInvisibleAnnotations_attribute structure are as
follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index
into the constant_pool table. The constant_pool entry at that index
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must be a CONSTANT_Utf8_info structure (§4.4.7) representing the string
"RuntimeInvisibleAnnotations".

attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial six bytes.

num_annotations

The value of the num_annotations item gives the number of run-time invisible
annotations represented by the structure.

annotations[]

Each entry in the annotations table represents a single run-time invisible
annotation on a declaration. The annotation structure is specified in §4.7.16.

4.7.18 The RuntimeVisibleParameterAnnotations Attribute

The RuntimeVisibleParameterAnnotations attribute is a variable-length
attribute in the attributes table of the method_info structure (§4.6).
The RuntimeVisibleParameterAnnotations attribute records run-time visible
annotations on the declarations of formal parameters of the corresponding method.

There may be at most one RuntimeVisibleParameterAnnotations attribute in
the attributes table of a method_info structure.

The RuntimeVisibleParameterAnnotations attribute has the following format:

RuntimeVisibleParameterAnnotations_attribute {
    u2 attribute_name_index;
    u4 attribute_length;
    u1 num_parameters;
    {   u2         num_annotations;
        annotation annotations[num_annotations];
    } parameter_annotations[num_parameters];
}

The items of the RuntimeVisibleParameterAnnotations_attribute structure
are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index
into the constant_pool table. The constant_pool entry at that index
must be a CONSTANT_Utf8_info structure (§4.4.7) representing the string
"RuntimeVisibleParameterAnnotations".
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attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial six bytes.

num_parameters

The value of the num_parameters item gives the number of run-time visible
parameter annotations represented by this structure.

There is no assurance that this number is the same as the number of parameter descriptors
in the method descriptor.

parameter_annotations[]

Each entry in the parameter_annotations table represents all of the run-
time visible annotations on the declaration of a single formal parameter. Each
parameter_annotations entry contains the following two items:

num_annotations

The value of the num_annotations item indicates the number of run-
time visible annotations on the declaration of the formal parameter
corresponding to the parameter_annotations entry.

annotations[]

Each entry in the annotations table represents a single run-time visible
annotation on the declaration of the formal parameter corresponding to the
parameter_annotations entry. The annotation structure is specified in
§4.7.16.

The i'th entry in the parameter_annotations table may, but is not required to,
correspond to the i'th parameter descriptor in the method descriptor (§4.3.3).

For example, a compiler may choose to create entries in the table corresponding only to
those parameter descriptors which represent explicitly declared parameters in source code.
In the Java programming language, a constructor of an inner class is specified to have
an implicitly declared parameter before its explicitly declared parameters (JLS §8.8.1), so
the corresponding <init> method in a class file has a parameter descriptor representing
the implicitly declared parameter before any parameter descriptors representing explicitly
declared parameters. If the first explicitly declared parameter is annotated in source
code, then a compiler may create parameter_annotations[0] to store annotations
corresponding to the second parameter descriptor.

4.7.19 The RuntimeInvisibleParameterAnnotations Attribute

The RuntimeInvisibleParameterAnnotations attribute is a variable-length
attribute in the attributes table of a method_info structure (§4.6). The
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RuntimeInvisibleParameterAnnotations attribute records run-time invisible
annotations on the declarations of formal parameters of the corresponding method.

There may be at most one RuntimeInvisibleParameterAnnotations attribute in
the attributes table of a method_info structure.

The RuntimeInvisibleParameterAnnotations attribute is similar to the
RuntimeVisibleParameterAnnotations attribute (§4.7.18), except that the
annotations represented by a RuntimeInvisibleParameterAnnotations attribute
must not be made available for return by reflective APIs, unless the Java Virtual Machine
has specifically been instructed to retain these annotations via some implementation-
specific mechanism such as a command line flag. In the absence of such instructions, the
Java Virtual Machine ignores this attribute.

The RuntimeInvisibleParameterAnnotations attribute has the following
format:

RuntimeInvisibleParameterAnnotations_attribute {
    u2 attribute_name_index;
    u4 attribute_length;
    u1 num_parameters;
    {   u2         num_annotations;
        annotation annotations[num_annotations];
    } parameter_annotations[num_parameters];
}

The items of the RuntimeInvisibleParameterAnnotations_attribute structure
are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index
into the constant_pool table. The constant_pool entry at that index
must be a CONSTANT_Utf8_info structure (§4.4.7) representing the string
"RuntimeInvisibleParameterAnnotations".

attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial six bytes.

num_parameters

The value of the num_parameters item gives the number of run-time invisible
parameter annotations represented by this structure.

There is no assurance that this number is the same as the number of parameter descriptors
in the method descriptor.
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parameter_annotations[]

Each entry in the parameter_annotations table represents all of the run-time
invisible annotations on the declaration of a single formal parameter. Each
parameter_annotations entry contains the following two items:

num_annotations

The value of the num_annotations item indicates the number of run-
time invisible annotations on the declaration of the formal parameter
corresponding to the parameter_annotations entry.

annotations[]

Each entry in the annotations table represents a single run-time invisible
annotation on the declaration of the formal parameter corresponding to the
parameter_annotations entry. The annotation structure is specified in
§4.7.16.

The i'th entry in the parameter_annotations table may, but is not required to,
correspond to the i'th parameter descriptor in the method descriptor (§4.3.3).

See the note in §4.7.18 for an example of when parameter_annotations[0] does not
correspond to the first parameter descriptor in the method descriptor.

4.7.20 The RuntimeVisibleTypeAnnotations Attribute

The RuntimeVisibleTypeAnnotations attribute is an variable-length attribute in
the attributes table of a ClassFile, field_info, or method_info structure, or
Code attribute (§4.1, §4.5, §4.6, §4.7.3). The RuntimeVisibleTypeAnnotations
attribute records run-time visible annotations on types used in the declaration of
the corresponding class, field, or method, or in an expression in the corresponding
method body. The RuntimeVisibleTypeAnnotations attribute also records run-
time visible annotations on type parameter declarations of generic classes,
interfaces, methods, and constructors.

There may be at most one RuntimeVisibleTypeAnnotations attribute in the
attributes table of a ClassFile, field_info, or method_info structure, or Code
attribute.

An attributes table contains a RuntimeVisibleTypeAnnotations attribute only
if types are annotated in kinds of declaration or expression that correspond to the
parent structure or attribute of the attributes table.

For example, all annotations on types in the implements clause of a class declaration are
recorded in the RuntimeVisibleTypeAnnotations attribute of the class's ClassFile
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structure. Meanwhile, all annotations on the type in a field declaration are recorded in the
RuntimeVisibleTypeAnnotations attribute of the field's field_info structure.

The RuntimeVisibleTypeAnnotations attribute has the following format:

RuntimeVisibleTypeAnnotations_attribute {
    u2              attribute_name_index;
    u4              attribute_length;
    u2              num_annotations;
    type_annotation annotations[num_annotations];
}

The items of the RuntimeVisibleTypeAnnotations_attribute structure are as
follows:

attribute_name_index

The value of the attribute_name_index item must be a valid
index into the constant_pool table. The constant_pool entry at that
index must be a CONSTANT_Utf8_info structure representing the string
"RuntimeVisibleTypeAnnotations".

attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial six bytes.

num_annotations

The value of the num_annotations item gives the number of run-time visible
type annotations represented by the structure.

annotations[]

Each entry in the annotations table represents a single run-time visible
annotation on a type used in a declaration or expression. The type_annotation
structure has the following format:
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type_annotation {
    u1 target_type;
    union {
        type_parameter_target;
        supertype_target;
        type_parameter_bound_target;
        empty_target;
        formal_parameter_target;
        throws_target;
        localvar_target;
        catch_target;
        offset_target;
        type_argument_target;
    } target_info;
    type_path target_path;
    u2        type_index;
    u2        num_element_value_pairs;
    {   u2            element_name_index;
        element_value value;
    } element_value_pairs[num_element_value_pairs];
}

The first three items - target_type, target_info, and target_path -
specify the precise location of the annotated type. The last three items
- type_index, num_element_value_pairs, and element_value_pairs[] -
specify the annotation's own type and element-value pairs.

The items of the type_annotation structure are as follows:

target_type

The value of the target_type item denotes the kind of target on which
the annotation appears. The various kinds of target correspond to the
type contexts of the Java programming language where types are used in
declarations and expressions (JLS §4.11).

The legal values of target_type are specified in Table 4.7.20-A and
Table 4.7.20-B. Each value is a one-byte tag indicating which item of
the target_info union follows the target_type item to give more
information about the target.

The kinds of target in Table 4.7.20-A and Table 4.7.20-B correspond to the type
contexts in JLS §4.11. Namely, target_type values 0x10-0x17 and 0x40-0x42
correspond to type contexts 1-10, while target_type values 0x43-0x4B correspond
to type contexts 11-16.

The value of the target_type item determines
whether the type_annotation structure appears in a
RuntimeVisibleTypeAnnotations attribute in a ClassFile structure,
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a field_info structure, a method_info structure, or a
Code attribute. Table 4.7.20-C gives the location of the
RuntimeVisibleTypeAnnotations attribute for a type_annotation

structure with each legal target_type value.

target_info

The value of the target_info item denotes precisely which type in a
declaration or expression is annotated.

The items of the target_info union are specified in §4.7.20.1.

target_path

The value of the target_path item denotes precisely which part of the
type indicated by target_info is annotated.

The format of the type_path structure is specified in §4.7.20.2.

type_index, num_element_value_pairs, element_value_pairs[]

The meaning of these items in the type_annotation structure is the same
as their meaning in the annotation structure (§4.7.16).
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Table 4.7.20-A. Interpretation of target_type values (Part 1)

Value Kind of target target_info item

0x00 type parameter declaration of generic class

or interface

type_parameter_target

0x01 type parameter declaration of generic

method or constructor

type_parameter_target

0x10 type in extends or implements clause

of class declaration (including the direct

superclass or direct superinterface of

an anonymous class declaration), or in

extends clause of interface declaration

supertype_target

0x11 type in bound of type parameter declaration

of generic class or interface

type_parameter_bound_target

0x12 type in bound of type parameter declaration

of generic method or constructor

type_parameter_bound_target

0x13 type in field declaration empty_target

0x14 return type of method, or type of newly

constructed object

empty_target

0x15 receiver type of method or constructor empty_target

0x16 type in formal parameter declaration of

method, constructor, or lambda expression

formal_parameter_target

0x17 type in throws clause of method or

constructor

throws_target
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Table 4.7.20-B. Interpretation of target_type values (Part 2)

Value Kind of target target_info item

0x40 type in local variable declaration localvar_target

0x41 type in resource variable declaration localvar_target

0x42 type in exception parameter declaration catch_target

0x43 type in instanceof expression offset_target

0x44 type in new expression offset_target

0x45 type in method reference expression using ::new offset_target

0x46 type in method reference expression using

::Identifier

offset_target

0x47 type in cast expression type_argument_target

0x48 type argument for generic constructor in new

expression or explicit constructor invocation

statement

type_argument_target

0x49 type argument for generic method in method

invocation expression

type_argument_target

0x4A type argument for generic constructor in method

reference expression using ::new

type_argument_target

0x4B type argument for generic method in method

reference expression using ::Identifier

type_argument_target
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Table 4.7.20-C. Location of enclosing attribute for target_type values

Value Kind of target Location

0x00 type parameter declaration of generic class or interface ClassFile

0x01 type parameter declaration of generic method or constructor method_info

0x10 type in extends clause of class or interface declaration, or

in implements clause of interface declaration

ClassFile

0x11 type in bound of type parameter declaration of generic class

or interface

ClassFile

0x12 type in bound of type parameter declaration of generic method

or constructor

method_info

0x13 type in field declaration field_info

0x14 return type of method or constructor method_info

0x15 receiver type of method or constructor method_info

0x16 type in formal parameter declaration of method, constructor,

or lambda expression

method_info

0x17 type in throws clause of method or constructor method_info

0x40-0x4B types in local variable declarations, resource variable

declarations, exception parameter declarations, expressions

Code

4.7.20.1 The target_info union

The items of the target_info union (except for the first) specify precisely which
type in a declaration or expression is annotated. The first item specifies not which
type, but rather which declaration of a type parameter is annotated. The items are
as follows:

• The type_parameter_target item indicates that an annotation appears on the
declaration of the i'th type parameter of a generic class, generic interface, generic
method, or generic constructor.

type_parameter_target {
    u1 type_parameter_index;
}

The value of the type_parameter_index item specifies which type parameter
declaration is annotated. A type_parameter_index value of 0 specifies the first
type parameter declaration.



4.7 Attributes THE CLASS FILE FORMAT

156

• The supertype_target item indicates that an annotation appears on a type in
the extends or implements clause of a class or interface declaration.

supertype_target {
    u2 supertype_index;
}

A supertype_index value of 65535 specifies that the annotation appears on the
superclass in an extends clause of a class declaration.

Any other supertype_index value is an index into the interfaces array of
the enclosing ClassFile structure, and specifies that the annotation appears on
that superinterface in either the implements clause of a class declaration or the
extends clause of an interface declaration.

• The type_parameter_bound_target item indicates that an annotation appears
on the i'th bound of the j'th type parameter declaration of a generic class,
interface, method, or constructor.

type_parameter_bound_target {
    u1 type_parameter_index;
    u1 bound_index;
}

The value of the of type_parameter_index item specifies which type parameter
declaration has an annotated bound. A type_parameter_index value of 0
specifies the first type parameter declaration.

The value of the bound_index item specifies which bound of the type parameter
declaration indicated by type_parameter_index is annotated. A bound_index
value of 0 specifies the first bound of a type parameter declaration.

The type_parameter_bound_target item records that a bound is annotated, but does
not record the type which constitutes the bound. The type may be found by inspecting
the class signature or method signature stored in the appropriate Signature attribute.

• The empty_target item indicates that an annotation appears on either the type
in a field declaration, the return type of a method, the type of a newly constructed
object, or the receiver type of a method or constructor.

empty_target {
}

Only one type appears in each of these locations, so there is no per-type information to
represent in the target_info union.
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• The formal_parameter_target item indicates that an annotation appears on
the type in a formal parameter declaration of a method, constructor, or lambda
expression.

formal_parameter_target {
    u1 formal_parameter_index;
}

The value of the formal_parameter_index item specifies which formal
parameter declaration has an annotated type. A formal_parameter_index value
of i may, but is not required to, correspond to the i'th parameter descriptor in the
method descriptor (§4.3.3).

The formal_parameter_target item records that a formal parameter's type is
annotated, but does not record the type itself. The type may be found by inspecting the
method descriptor, although a formal_parameter_index value of 0 does not always
indicate the first parameter descriptor in the method descriptor; see the note in §4.7.18
for a similar situation involving the parameter_annotations table.

• The throws_target item indicates that an annotation appears on the i'th type in
the throws clause of a method or constructor declaration.

throws_target {
    u2 throws_type_index;
}

The value of the throws_type_index item is an index into the
exception_index_table array of the Exceptions attribute of the method_info
structure enclosing the RuntimeVisibleTypeAnnotations attribute.

• The localvar_target item indicates that an annotation appears on the type in
a local variable declaration, including a variable declared as a resource in a try-
with-resources statement.

localvar_target {
    u2 table_length;
    {   u2 start_pc;
        u2 length;
        u2 index;
    } table[table_length];
}

The value of the table_length item gives the number of entries in the table
array. Each entry indicates a range of code array offsets within which a local
variable has a value. It also indicates the index into the local variable array of
the current frame at which that local variable can be found. Each entry contains
the following three items:
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start_pc, length

The given local variable has a value at indices into the code array in
the interval [start_pc, start_pc + length), that is, between start_pc
inclusive and start_pc + length exclusive.

index

The given local variable must be at index in the local variable array of the
current frame.

If the local variable at index is of type double or long, it occupies both
index and index + 1.

A table is needed to fully specify the local variable whose type is annotated, because
a single local variable may be represented with different local variable indices over
multiple live ranges. The start_pc, length, and index items in each table entry
specify the same information as a LocalVariableTable attribute.

The localvar_target item records that a local variable's type is annotated, but
does not record the type itself. The type may be found by inspecting the appropriate
LocalVariableTable attribute.

• The catch_target item indicates that an annotation appears on the i'th type in
an exception parameter declaration.

catch_target {
    u2 exception_table_index;
}

The value of the exception_table_index item is an index into
the exception_table array of the Code attribute enclosing the
RuntimeVisibleTypeAnnotations attribute.

The possibility of more than one type in an exception parameter declaration arises from
the multi-catch clause of the try statement, where the type of the exception parameter
is a union of types (JLS §14.20). A compiler usually creates one exception_table
entry for each type in the union, which allows the catch_target item to distinguish
them. This preserves the correspondence between a type and its annotations.

• The offset_target item indicates that an annotation appears on either the type
in an instanceof expression or a new expression, or the type before the :: in a
method reference expression.

offset_target {
    u2 offset;
}
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The value of the offset item specifies the code array offset of either the bytecode
instruction corresponding to the instanceof expression, the new bytecode
instruction corresponding to the new expression, or the bytecode instruction
corresponding to the method reference expression.

• The type_argument_target item indicates that an annotation appears either on
the i'th type in a cast expression, or on the i'th type argument in the explicit type
argument list for any of the following: a new expression, an explicit constructor
invocation statement, a method invocation expression, or a method reference
expression.

type_argument_target {
    u2 offset;
    u1 type_argument_index;
}

The value of the offset item specifies the code array offset of either the
bytecode instruction corresponding to the cast expression, the new bytecode
instruction corresponding to the new expression, the bytecode instruction
corresponding to the explicit constructor invocation statement, the bytecode
instruction corresponding to the method invocation expression, or the bytecode
instruction corresponding to the method reference expression.

For a cast expression, the value of the type_argument_index item specifies
which type in the cast operator is annotated. A type_argument_index value of
0 specifies the first (or only) type in the cast operator.

The possibility of more than one type in a cast expression arises from a cast to an
intersection type.

For an explicit type argument list, the value of the type_argument_index item
specifies which type argument is annotated. A type_argument_index value of
0 specifies the first type argument.

4.7.20.2 The type_path structure

Wherever a type is used in a declaration or expression, the type_path structure
identifies which part of the type is annotated. An annotation may appear on the
type itself, but if the type is a reference type, then there are additional locations
where an annotation may appear:

• If an array type T[] is used in a declaration or expression, then an annotation
may appear on any component type of the array type, including the element type.
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• If a nested type T1.T2 is used in a declaration or expression, then an annotation
may appear on the name of the top level type or any member type.

• If a parameterized type T<A> or T<? extends A> or T<? super A> is used in a
declaration or expression, then an annotation may appear on any type argument
or on the bound of any wildcard type argument.

For example, consider the different parts of String[][] that are annotated in:

@Foo String[][]   // Annotates the class type String
String @Foo [][]  // Annotates the array type String[][]
String[] @Foo []  // Annotates the array type String[]

or the different parts of the nested type Outer.Middle.Inner that are annotated in:

@Foo Outer.Middle.Inner
Outer.@Foo Middle.Inner
Outer.Middle.@Foo Inner

or the different parts of the parameterized types Map<String,Object> and List<...>
that are annotated in:

@Foo Map<String,Object>
Map<@Foo String,Object>
Map<String,@Foo Object>

List<@Foo ? extends String>
List<? extends @Foo String>

The type_path structure has the following format:

type_path {
    u1 path_length;
    {   u1 type_path_kind;
        u1 type_argument_index;
    } path[path_length];
}

The value of the path_length item gives the number of entries in the path array:

• If the value of path_length is 0, then the annotation appears directly on the type
itself.

• If the value of path_length is non-zero, then each entry in the path array
represents an iterative, left-to-right step towards the precise location of the
annotation in an array type, nested type, or parameterized type. (In an array
type, the iteration visits the array type itself, then its component type, then the
component type of that component type, and so on, until the element type is
reached.) Each entry contains the following two items:
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type_path_kind

The legal values for the type_path_kind item are listed in Table 4.7.20.2-A.

Table 4.7.20.2-A. Interpretation of type_path_kind values

Value Interpretation

0 Annotation is deeper in an array type

1 Annotation is deeper in a nested type

2 Annotation is on the bound of a wildcard type argument of a parameterized type

3 Annotation is on a type argument of a parameterized type

type_argument_index

If the value of the type_path_kind item is 0, 1, or 2, then the value of the
type_argument_index item is 0.

If the value of the type_path_kind item is 3, then the value of
the type_argument_index item specifies which type argument of a
parameterized type is annotated, where 0 indicates the first type argument
of a parameterized type.

Table 4.7.20.2-B. type_path structures for @A Map<@B ? extends @C String, @D List<@E

Object>>

Annotation path_length path

@A 0 []

@B 1 [{type_path_kind: 3; type_argument_index: 0}]

@C 2 [{type_path_kind: 3; type_argument_index: 0},

{type_path_kind: 2; type_argument_index: 0}]

@D 1 [{type_path_kind: 3; type_argument_index: 1}]

@E 2 [{type_path_kind: 3; type_argument_index: 1},

{type_path_kind: 3; type_argument_index: 0}]
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Table 4.7.20.2-C. type_path structures for @I String @F [] @G [] @H []

Annotation path_length path

@F 0 []

@G 1 [{type_path_kind: 0; type_argument_index: 0}]

@H 2 [{type_path_kind: 0; type_argument_index: 0},

{type_path_kind: 0; type_argument_index: 0}]

@I 3 [{type_path_kind: 0; type_argument_index: 0},

{type_path_kind: 0; type_argument_index: 0},

{type_path_kind: 0; type_argument_index: 0}]

Table 4.7.20.2-D. type_path structures for @A List<@B Comparable<@F Object @C [] @D []

@E []>>

Annotation path_length path

@A 0 []

@B 1 [{type_path_kind: 3; type_argument_index: 0}]

@C 2 [{type_path_kind: 3; type_argument_index: 0},

{type_path_kind: 3; type_argument_index: 0}]

@D 3 [{type_path_kind: 3; type_argument_index: 0},

{type_path_kind: 3; type_argument_index: 0},

{type_path_kind: 0; type_argument_index: 0}]

@E 4 [{type_path_kind: 3; type_argument_index: 0},

{type_path_kind: 3; type_argument_index: 0},

{type_path_kind: 0; type_argument_index: 0},

{type_path_kind: 0; type_argument_index: 0}]

@F 5 [{type_path_kind: 3; type_argument_index: 0},

{type_path_kind: 3; type_argument_index: 0},

{type_path_kind: 0; type_argument_index: 0},

{type_path_kind: 0; type_argument_index: 0},

{type_path_kind: 0; type_argument_index: 0}]
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Table 4.7.20.2-E. type_path structures for @C Outer . @B Middle . @A Inner

Annotation path_length path

@A 2 [{type_path_kind: 1; type_argument_index: 0},

{type_path_kind: 1; type_argument_index: 0}]

@B 1 [{type_path_kind: 1; type_argument_index: 0}]

@C 0 []

Table 4.7.20.2-F. type_path structures for Outer . Middle<@D Foo . @C Bar> . Inner<@B

String @A []>

Annotation path_length path

@A 3 [{type_path_kind: 1; type_argument_index: 0},

{type_path_kind: 1; type_argument_index: 0},

{type_path_kind: 3; type_argument_index: 0}]

@B 4 [{type_path_kind: 1; type_argument_index: 0},

{type_path_kind: 1; type_argument_index: 0},

{type_path_kind: 3; type_argument_index: 0},

{type_path_kind: 0; type_argument_index: 0}]

@C 3 [{type_path_kind: 1; type_argument_index: 0},

{type_path_kind: 3; type_argument_index: 0},

{type_path_kind: 1; type_argument_index: 0}]

@D 2 [{type_path_kind: 1; type_argument_index: 0},

{type_path_kind: 3; type_argument_index: 0}]

4.7.21 The RuntimeInvisibleTypeAnnotations Attribute

The RuntimeInvisibleTypeAnnotations attribute is an variable-length attribute
in the attributes table of a ClassFile, field_info, or method_info structure, or
Code attribute (§4.1, §4.5, §4.6, §4.7.3). The RuntimeInvisibleTypeAnnotations
attribute records run-time invisible annotations on types used in the corresponding
declaration of a class, field, or method, or in an expression in the corresponding
method body. The RuntimeInvisibleTypeAnnotations attribute also records
annotations on type parameter declarations of generic classes, interfaces, methods,
and constructors.

There may be at most one RuntimeInvisibleTypeAnnotations attribute in the
attributes table of a ClassFile, field_info, or method_info structure, or Code
attribute.
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An attributes table contains a RuntimeInvisibleTypeAnnotations attribute
only if types are annotated in kinds of declaration or expression that correspond to
the parent structure or attribute of the attributes table.

The RuntimeInvisibleTypeAnnotations attribute has the following format:

RuntimeInvisibleTypeAnnotations_attribute {
    u2              attribute_name_index;
    u4              attribute_length;
    u2              num_annotations;
    type_annotation annotations[num_annotations];
}

The items of the RuntimeInvisibleTypeAnnotations_attribute structure are
as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid
index into the constant_pool table. The constant_pool entry at that
index must be a CONSTANT_Utf8_info structure representing the string
"RuntimeInvisibleTypeAnnotations".

attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial six bytes.

num_annotations

The value of the num_annotations item gives the number of run-time invisible
type annotations represented by the structure.

annotations[]

Each entry in the annotations table represents a single run-time invisible
annotation on a type used in a declaration or expression. The type_annotation
structure is specified in §4.7.20.

4.7.22 The AnnotationDefault Attribute

The AnnotationDefault attribute is a variable-length attribute in the attributes
table of certain method_info structures (§4.6), namely those representing elements
of annotation types (JLS §9.6.1). The AnnotationDefault attribute records the
default value (JLS §9.6.2) for the element represented by the method_info
structure.

There may be at most one AnnotationDefault attribute in the attributes table
of a method_info structure which represents an element of an annotation type.
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The AnnotationDefault attribute has the following format:

AnnotationDefault_attribute {
    u2            attribute_name_index;
    u4            attribute_length;
    element_value default_value;
}

The items of the AnnotationDefault_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index
into the constant_pool table. The constant_pool entry at that index
must be a CONSTANT_Utf8_info structure (§4.4.7) representing the string
"AnnotationDefault".

attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial six bytes.

default_value

The default_value item represents the default value of the annotation
type element represented by the method_info structure enclosing this
AnnotationDefault attribute.

4.7.23 The BootstrapMethods Attribute

The BootstrapMethods attribute is a variable-length attribute in the attributes
table of a ClassFile structure (§4.1). The BootstrapMethods attribute records
bootstrap methods used to produce dynamically-computed constants and
dynamically-computed call sites (§4.4.10).

There must be exactly one BootstrapMethods attribute in the attributes table of
a ClassFile structure if the constant_pool table of the ClassFile structure has
at least one CONSTANT_Dynamic_info or CONSTANT_InvokeDynamic_info entry.

There may be at most one BootstrapMethods attribute in the attributes table of
a ClassFile structure.

The BootstrapMethods attribute has the following format:
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BootstrapMethods_attribute {
    u2 attribute_name_index;
    u4 attribute_length;
    u2 num_bootstrap_methods;
    {   u2 bootstrap_method_ref;
        u2 num_bootstrap_arguments;
        u2 bootstrap_arguments[num_bootstrap_arguments];
    } bootstrap_methods[num_bootstrap_methods];
}

The items of the BootstrapMethods_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index
into the constant_pool table. The constant_pool entry at that index
must be a CONSTANT_Utf8_info structure (§4.4.7) representing the string
"BootstrapMethods".

attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial six bytes.

num_bootstrap_methods

The value of the num_bootstrap_methods item determines the number of
bootstrap method specifiers in the bootstrap_methods array.

bootstrap_methods[]

Each entry in the bootstrap_methods table contains an index to a
CONSTANT_MethodHandle_info structure which specifies a bootstrap method,
and a sequence (perhaps empty) of indexes to static arguments for the bootstrap
method.

Each bootstrap_methods entry must contain the following three items:

bootstrap_method_ref

The value of the bootstrap_method_ref item must be a valid index into
the constant_pool table. The constant_pool entry at that index must be
a CONSTANT_MethodHandle_info structure (§4.4.8).

The method handle will be resolved during resolution of a dynamically-
computed constant or call site (§5.4.3.6), and then invoked as if by invocation
of invokeWithArguments in java.lang.invoke.MethodHandle. The method
handle must be able to accept the array of arguments described in §5.4.3.6, or
resolution will fail.
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num_bootstrap_arguments

The value of the num_bootstrap_arguments item gives the number of
items in the bootstrap_arguments array.

bootstrap_arguments[]

Each entry in the bootstrap_arguments array must be a valid index into
the constant_pool table. The constant_pool entry at that index must be
loadable (§4.4).

4.7.24 The MethodParameters Attribute

The MethodParameters attribute is a variable-length attribute in the attributes
table of a method_info structure (§4.6). A MethodParameters attribute records
information about the formal parameters of a method, such as their names.

There may be at most one MethodParameters attribute in the attributes table of
a method_info structure.

The MethodParameters attribute has the following format:

MethodParameters_attribute {
    u2 attribute_name_index;
    u4 attribute_length;
    u1 parameters_count;
    {   u2 name_index;
        u2 access_flags;
    } parameters[parameters_count];
}

The items of the MethodParameters_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index
into the constant_pool table. The constant_pool entry at that index
must be a CONSTANT_Utf8_info structure (§4.4.7) representing the string
"MethodParameters".

attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial six bytes.

parameters_count

The value of the parameters_count item indicates the number of
parameter descriptors in the method descriptor (§4.3.3) referenced by the
descriptor_index of the attribute's enclosing method_info structure.
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This is not a constraint which a Java Virtual Machine implementation must enforce during
format checking (§4.8). The task of matching parameter descriptors in a method descriptor
against the items in the parameters array below is done by the reflection libraries of the
Java SE Platform.

parameters[]

Each entry in the parameters array contains the following pair of items:

name_index

The value of the name_index item must either be zero or a valid index into
the constant_pool table.

If the value of the name_index item is zero, then this parameters element
indicates a formal parameter with no name.

If the value of the name_index item is nonzero, the constant_pool entry
at that index must be a CONSTANT_Utf8_info structure representing a valid
unqualified name denoting a formal parameter (§4.2.2).

access_flags

The value of the access_flags item is as follows:

0x0010 (ACC_FINAL)

Indicates that the formal parameter was declared final.

0x1000 (ACC_SYNTHETIC)

Indicates that the formal parameter was not explicitly or implicitly
declared in source code, according to the specification of the language
in which the source code was written (JLS §13.1). (The formal
parameter is an implementation artifact of the compiler which
produced this class file.)

0x8000 (ACC_MANDATED)

Indicates that the formal parameter was implicitly declared in source
code, according to the specification of the language in which the source
code was written (JLS §13.1). (The formal parameter is mandated by a
language specification, so all compilers for the language must emit it.)

The i'th entry in the parameters array corresponds to the i'th parameter descriptor in
the enclosing method's descriptor. (The parameters_count item is one byte because a
method descriptor is limited to 255 parameters.) Effectively, this means the parameters
array stores information for all the parameters of the method. One could imagine other
schemes, where entries in the parameters array specify their corresponding parameter
descriptors, but it would unduly complicate the MethodParameters attribute.
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The i'th entry in the parameters array may or may not correspond to the i'th type in
the enclosing method's Signature attribute (if present), or to the i'th annotation in the
enclosing method's parameter annotations.

4.7.25 The Module Attribute

The Module attribute is a variable-length attribute in the attributes table of a
ClassFile structure (§4.1). The Module attribute indicates the modules required
by a module; the packages exported and opened by a module; and the services used
and provided by a module.

There may be at most one Module attribute in the attributes table of a ClassFile
structure.

The Module attribute has the following format:
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Module_attribute {
    u2 attribute_name_index;
    u4 attribute_length;

    u2 module_name_index;
    u2 module_flags;
    u2 module_version_index;

    u2 requires_count;
    {   u2 requires_index;
        u2 requires_flags;
        u2 requires_version_index;
    } requires[requires_count];

    u2 exports_count;
    {   u2 exports_index;
        u2 exports_flags;
        u2 exports_to_count;
        u2 exports_to_index[exports_to_count];
    } exports[exports_count];

    u2 opens_count;
    {   u2 opens_index;
        u2 opens_flags;
        u2 opens_to_count;
        u2 opens_to_index[opens_to_count];
    } opens[opens_count];

    u2 uses_count;
    u2 uses_index[uses_count];

    u2 provides_count;
    {   u2 provides_index;
        u2 provides_with_count;
        u2 provides_with_index[provides_with_count];
    } provides[provides_count];
}

The items of the Module_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index into
the constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure (§4.4.7) representing the string "Module".

attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial six bytes.



THE CLASS FILE FORMAT Attributes 4.7

171

module_name_index

The value of the module_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Module_info structure (§4.4.11) denoting the current module.

module_flags

The value of the module_flags item is as follows:

0x0020 (ACC_OPEN)

Indicates that this module is open.

0x1000 (ACC_SYNTHETIC)

Indicates that this module was not explicitly or implicitly declared.

0x8000 (ACC_MANDATED)

Indicates that this module was implicitly declared.

module_version_index

The value of the module_version_index item must be either zero or a valid
index into the constant_pool table. If the value of the item is zero, then
no version information about the current module is present. If the value of
the item is nonzero, then the constant_pool entry at that index must be a
CONSTANT_Utf8_info structure representing the version of the current module.

requires_count

The value of the requires_count item indicates the number of entries in the
requires table.

If the current module is java.base, then requires_count must be zero.

If the current module is not java.base, then requires_count must be at least
one.

requires[]

Each entry in the requires table specifies a dependence of the current module.
The items in each entry are as follows:

requires_index

The value of the requires_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Module_info structure denoting a module on which the current
module depends.

At most one entry in the requires table may specify a module of a given
name with its requires_index item.
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requires_flags

The value of the requires_flags item is as follows:

0x0020 (ACC_TRANSITIVE)

Indicates that any module which depends on the current module,
implicitly declares a dependence on the module indicated by this entry.

0x0040 (ACC_STATIC_PHASE)

Indicates that this dependence is mandatory in the static phase, i.e., at
compile time, but is optional in the dynamic phase, i.e., at run time.

0x1000 (ACC_SYNTHETIC)

Indicates that this dependence was not explicitly or implicitly declared
in the source of the module declaration.

0x8000 (ACC_MANDATED)

Indicates that this dependence was implicitly declared in the source of
the module declaration.

If the current module is not java.base, and the class file version number
is 54.0 or above, then neither ACC_TRANSITIVE nor ACC_STATIC_PHASE
may be set in requires_flags.

requires_version_index

The value of the requires_version_index item must be either zero or a
valid index into the constant_pool table. If the value of the item is zero,
then no version information about the dependence is present. If the value
of the item is nonzero, then the constant_pool entry at that index must be
a CONSTANT_Utf8_info structure representing the version of the module
specified by requires_index.

Unless the current module is java.base, exactly one entry in the requires
table must have both a requires_index item which indicates java.base and
a requires_flags item which has the ACC_SYNTHETIC flag not set.

exports_count

The value of the exports_count item indicates the number of entries in the
exports table.

exports[]

Each entry in the exports table specifies a package exported by the current
module, such that public and protected types in the package, and their
public and protected members, may be accessed from outside the current
module, possibly from a limited set of "friend" modules.
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The items in each entry are as follows:

exports_index

The value of the exports_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be
a CONSTANT_Package_info structure (§4.4.12) representing a package
exported by the current module.

At most one entry in the exports table may specify a package of a given
name with its exports_index item.

exports_flags

The value of the exports_flags item is as follows:

0x1000 (ACC_SYNTHETIC)

Indicates that this export was not explicitly or implicitly declared in
the source of the module declaration.

0x8000 (ACC_MANDATED)

Indicates that this export was implicitly declared in the source of the
module declaration.

exports_to_count

The value of the exports_to_count indicates the number of entries in the
exports_to_index table.

If exports_to_count is zero, then this package is exported by the current
module in an unqualified fashion; code in any other module may access
the types and members in the package.

If exports_to_count is nonzero, then this package is exported by the
current module in a qualified fashion; only code in the modules listed in
the exports_to_index table may access the types and members in the
package.

exports_to_index[]

The value of each entry in the exports_to_index table must be a valid
index into the constant_pool table. The constant_pool entry at that
index must be a CONSTANT_Module_info structure denoting a module
whose code can access the types and members in this exported package.

For each entry in the exports table, at most one entry in its
exports_to_index table may specify a module of a given name.
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opens_count

The value of the opens_count item indicates the number of entries in the opens
table.

opens_count must be zero if the current module is open.

opens[]

Each entry in the opens table specifies a package opened by the current module,
such that all types in the package, and all their members, may be accessed from
outside the current module via the reflection libraries of the Java SE Platform,
possibly from a limited set of "friend" modules.

The items in each entry are as follows:

opens_index

The value of the opens_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Package_info structure representing a package opened by the
current module.

At most one entry in the opens table may specify a package of a given
name with its opens_index item.

opens_flags

The value of the opens_flags item is as follows:

0x1000 (ACC_SYNTHETIC)

Indicates that this opening was not explicitly or implicitly declared in
the source of the module declaration.

0x8000 (ACC_MANDATED)

Indicates that this opening was implicitly declared in the source of the
module declaration.

opens_to_count

The value of the opens_to_count indicates the number of entries in the
opens_to_index table.

If opens_to_count is zero, then this package is opened by the current
module in an unqualified fashion; code in any other module may
reflectively access the types and members in the package.

If opens_to_count is nonzero, then this package is opened by the current
module in a qualified fashion; only code in the modules listed in the
exports_to_index table may reflectively access the types and members
in the package.
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opens_to_index[]

The value of each entry in the opens_to_index table must be a valid index
into the constant_pool table. The constant_pool entry at that index must
be a CONSTANT_Module_info structure denoting a module whose code can
access the types and members in this opened package.

For each entry in the opens table, at most one entry in its opens_to_index
table may specify a module of a given name.

uses_count

The value of the uses_count item indicates the number of entries in the
uses_index table.

uses_index[]

The value of each entry in the uses_index table must be a valid index into
the constant_pool table. The constant_pool entry at that index must be
a CONSTANT_Class_info structure (§4.4.1) representing a service interface
which the current module may discover via java.util.ServiceLoader.

At most one entry in the uses_index table may specify a service interface of
a given name.

provides_count

The value of the provides_count item indicates the number of entries in the
provides table.

provides[]

Each entry in the provides table represents a service implementation for a
given service interface.

The items in each entry are as follows:

provides_index

The value of the provides_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Class_info structure representing a service interface for which
the current module provides a service implementation.

At most one entry in the provides table may specify a service interface of
a given name with its provides_index item.

provides_with_count

The value of the provides_with_count indicates the number of entries in
the provides_with_index table.

provides_with_count must be nonzero.
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provides_with_index[]

The value of each entry in the provides_with_index table must be a valid
index into the constant_pool table. The constant_pool entry at that
index must be a CONSTANT_Class_info structure representing a service
implementation for the service interface specified by provides_index.

For each entry in the provides table, at most one entry in its
provides_with_index table may specify a service implementation of a
given name.

4.7.26 The ModulePackages Attribute

The ModulePackages attribute is a variable-length attribute in the attributes
table of a ClassFile structure (§4.1). The ModulePackages attribute indicates all
the packages of a module that are exported or opened by the Module attribute, as
well as all the packages of the service implementations recorded in the Module
attribute. The ModulePackages attribute may also indicate packages in the module
that are neither exported nor opened nor contain service implementations.

There may be at most one ModulePackages attribute in the attributes table of
a ClassFile structure.

The ModulePackages attribute has the following format:

ModulePackages_attribute {
    u2 attribute_name_index;
    u4 attribute_length;
    u2 package_count;
    u2 package_index[package_count];
}

The items of the ModulePackages_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index
into the constant_pool table. The constant_pool entry at that index
must be a CONSTANT_Utf8_info structure (§4.4.7) representing the string
"ModulePackages".

attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial six bytes.
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package_count

The value of the package_count item indicates the number of entries in the
package_index table.

package_index[]

The value of each entry in the package_index table must be a valid index
into the constant_pool table. The constant_pool entry at that index must be
a CONSTANT_Package_info structure (§4.4.12) representing a package in the
current module.

At most one entry in the package_index table may specify a package of a
given name.

4.7.27 The ModuleMainClass Attribute

The ModuleMainClass attribute is a fixed-length attribute in the attributes table
of a ClassFile structure (§4.1. The ModuleMainClass attribute indicates the main
class of a module.

There may be at most one ModuleMainClass attribute in the attributes table of
a ClassFile structure.

The ModuleMainClass attribute has the following format:

ModuleMainClass_attribute {
    u2 attribute_name_index;
    u4 attribute_length;
    u2 main_class_index;
}

The items of the ModuleMainClass_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index
into the constant_pool table. The constant_pool entry at that index
must be a CONSTANT_Utf8_info structure (§4.4.7) representing the string
"ModuleMainClass".

attribute_length

The value of the attribute_length item must be two.

main_class_index

The value of the main_class_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
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CONSTANT_Class_info structure (§4.4.1) representing the main class of the
current module.

4.7.28 The NestHost Attribute

The NestHost attribute is a fixed-length attribute in the attributes table of a
ClassFile structure. The NestHost attribute records the nest host of the nest to
which the current class or interface claims to belong (§5.4.4).

There may be at most one NestHost attribute in the attributes table of a
ClassFile structure.

The NestHost attribute has the following format:

NestHost_attribute {
    u2 attribute_name_index;
    u4 attribute_length;
    u2 host_class_index;
}

The items of the NestHost_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index into
the constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure (§4.4.7) representing the string "NestHost".

attribute_length

The value of the attribute_length item must be two.

host_class_index

The value of the host_class_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Class_info structure (§4.4.1) representing a class or interface
which is the nest host for the current class or interface.

If the nest host cannot be loaded, or is not in the same run-time package as the current class
or interface, or does not authorize nest membership for the current class or interface, then
an error may occur during access control (§5.4.4).

4.7.29 The NestMembers Attribute

The NestMembers attribute is a variable-length attribute in the attributes table of
a ClassFile structure (§4.1). The NestMembers attribute records the classes and
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interfaces that are authorized to claim membership in the nest hosted by the current
class or interface (§5.4.4).

There may be at most one NestMembers attribute in the attributes table of a
ClassFile structure.

The attributes table of a ClassFile structure must not contain both a
NestMembers attribute and a NestHost attribute.

This rule prevents a nest host from claiming membership in a different nest. It is implicitly
a member of the nest that it hosts.

The NestMembers attribute has the following format:

NestMembers_attribute {
    u2 attribute_name_index;
    u4 attribute_length;
    u2 number_of_classes;
    u2 classes[number_of_classes];
}

The items of the NestMembers_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index
into the constant_pool table. The constant_pool entry at that index
must be a CONSTANT_Utf8_info structure (§4.4.7) representing the string
"NestMembers".

attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial six bytes.

number_of_classes

The value of the number_of_classes item indicates the number of entries in
the classes array.

classes[]

Each value in the classes array must be a valid index into the constant_pool
table. The constant_pool entry at that index must be a CONSTANT_Class_info
structure (§4.4.1) representing a class or interface which is a member of the
nest hosted by the current class or interface.

The classes array is consulted by access control (§5.4.4). It should consist of references
to other classes and interfaces that are in the same run-time package and have NestHost
attributes which reference the current class or interface. Array items that do not meet these
criteria are ignored by access control.
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4.8 Format Checking

When a prospective class file is loaded by the Java Virtual Machine (§5.3), the
Java Virtual Machine first ensures that the file has the basic format of a class file
(§4.1). This process is known as format checking. The checks are as follows:

• The first four bytes must contain the right magic number.

• All predefined attributes (§4.7) must be of the proper
length, except for StackMapTable, RuntimeVisibleAnnotations,
RuntimeInvisibleAnnotations, RuntimeVisibleParameterAnnotations,
RuntimeInvisibleParameterAnnotations,
RuntimeVisibleTypeAnnotations, RuntimeInvisibleTypeAnnotations, and
AnnotationDefault.

• The class file must not be truncated or have extra bytes at the end.

• The constant pool must satisfy the constraints documented throughout §4.4.

For example, each CONSTANT_Class_info structure in the constant pool must contain
in its name_index item a valid constant pool index for a CONSTANT_Utf8_info
structure.

• All field references and method references in the constant pool must have valid
names, valid classes, and valid descriptors (§4.3).

Format checking does not ensure that the given field or method actually exists
in the given class, nor that the descriptors given refer to real classes. Format
checking ensures only that these items are well formed. More detailed checking
is performed when the bytecodes themselves are verified, and during resolution.

These checks for basic class file integrity are necessary for any interpretation of
the class file contents. Format checking is distinct from bytecode verification,
although historically they have been confused because both are a form of integrity
check.

4.9 Constraints on Java Virtual Machine Code

The code for a method, instance initialization method (§2.9.1), or class or interface
initialization method (§2.9.2) is stored in the code array of the Code attribute
of a method_info structure of a class file (§4.7.3). This section describes the
constraints associated with the contents of the Code_attribute structure.
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4.9.1 Static Constraints

The static constraints on a class file are those defining the well-formedness of the
file. These constraints have been given in the previous sections, except for static
constraints on the code in the class file. The static constraints on the code in a
class file specify how Java Virtual Machine instructions must be laid out in the
code array and what the operands of individual instructions must be.

The static constraints on the instructions in the code array are as follows:

• Only instances of the instructions documented in §6.5 may appear in the code
array. Instances of instructions using the reserved opcodes (§6.2) or any opcodes
not documented in this specification must not appear in the code array.

If the class file version number is 51.0 or above, then neither the jsr opcode or
the jsr_w opcode may appear in the code array.

• The opcode of the first instruction in the code array begins at index 0.

• For each instruction in the code array except the last, the index of the opcode of
the next instruction equals the index of the opcode of the current instruction plus
the length of that instruction, including all its operands.

The wide instruction is treated like any other instruction for these purposes; the
opcode specifying the operation that a wide instruction is to modify is treated as
one of the operands of that wide instruction. That opcode must never be directly
reachable by the computation.

• The last byte of the last instruction in the code array must be the byte at index
code_length - 1.

The static constraints on the operands of instructions in the code array are as
follows:

• The target of each jump and branch instruction (jsr, jsr_w, goto, goto_w,
ifeq, ifne, ifle, iflt, ifge, ifgt, ifnull, ifnonnull, if_icmpeq, if_icmpne, if_icmple,
if_icmplt, if_icmpge, if_icmpgt, if_acmpeq, if_acmpne) must be the opcode of an
instruction within this method.

The target of a jump or branch instruction must never be the opcode used to
specify the operation to be modified by a wide instruction; a jump or branch
target may be the wide instruction itself.

• Each target, including the default, of each tableswitch instruction must be the
opcode of an instruction within this method.
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Each tableswitch instruction must have a number of entries in its jump table that
is consistent with the value of its low and high jump table operands, and its low
value must be less than or equal to its high value.

No target of a tableswitch instruction may be the opcode used to specify the
operation to be modified by a wide instruction; a tableswitch target may be a
wide instruction itself.

• Each target, including the default, of each lookupswitch instruction must be the
opcode of an instruction within this method.

Each lookupswitch instruction must have a number of match-offset pairs that is
consistent with the value of its npairs operand. The match-offset pairs must be
sorted in increasing numerical order by signed match value.

No target of a lookupswitch instruction may be the opcode used to specify the
operation to be modified by a wide instruction; a lookupswitch target may be a
wide instruction itself.

• The operands of each ldc instruction and each ldc_w instruction must represent
a valid index into the constant_pool table. The constant pool entry referenced
by that index must be loadable (§4.4), and not any of the following:

– An entry of kind CONSTANT_Long or CONSTANT_Double.

– An entry of kind CONSTANT_Dynamic that references a
CONSTANT_NameAndType_info structure which indicates a descriptor of J
(denoting long) or D (denoting double).

• The operands of each ldc2_w instruction must represent a valid index into the
constant_pool table. The constant pool entry referenced by that index must be
loadable, and in particular one of the following:

– An entry of kind CONSTANT_Long or CONSTANT_Double.

– An entry of kind CONSTANT_Dynamic that references a
CONSTANT_NameAndType_info structure which indicates a descriptor of J
(denoting long) or D (denoting double).

The subsequent constant pool index must also be a valid index into the constant
pool, and the constant pool entry at that index must not be used.

• The operands of each getfield, putfield, getstatic, and putstatic instruction must
represent a valid index into the constant_pool table. The constant pool entry
referenced by that index must be of kind CONSTANT_Fieldref.
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• The indexbyte operands of each invokevirtual instruction must represent a valid
index into the constant_pool table. The constant pool entry referenced by that
index must be of kind CONSTANT_Methodref.

• The indexbyte operands of each invokespecial and invokestatic instruction must
represent a valid index into the constant_pool table. If the class file version
number is less than 52.0, the constant pool entry referenced by that index
must be of kind CONSTANT_Methodref; if the class file version number is 52.0
or above, the constant pool entry referenced by that index must be of kind
CONSTANT_Methodref or CONSTANT_InterfaceMethodref.

• The indexbyte operands of each invokeinterface instruction must represent a
valid index into the constant_pool table. The constant pool entry referenced by
that index must be of kind CONSTANT_InterfaceMethodref.

The value of the count operand of each invokeinterface instruction
must reflect the number of local variables necessary to store the
arguments to be passed to the interface method, as implied by the
descriptor of the CONSTANT_NameAndType_info structure referenced by the
CONSTANT_InterfaceMethodref constant pool entry.

The fourth operand byte of each invokeinterface instruction must have the value
zero.

• The indexbyte operands of each invokedynamic instruction must represent a valid
index into the constant_pool table. The constant pool entry referenced by that
index must be of kind CONSTANT_InvokeDynamic.

The third and fourth operand bytes of each invokedynamic instruction must have
the value zero.

• Only the invokespecial instruction is allowed to invoke an instance initialization
method (§2.9.1).

No other method whose name begins with the character '<' ('\u003c') may be
called by the method invocation instructions. In particular, the class or interface
initialization method specially named <clinit> is never called explicitly from
Java Virtual Machine instructions, but only implicitly by the Java Virtual
Machine itself.

• The operands of each instanceof, checkcast, new, and anewarray instruction,
and the indexbyte operands of each multianewarray instruction, must represent
a valid index into the constant_pool table. The constant pool entry referenced
by that index must be of kind CONSTANT_Class.
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• No new instruction may reference a constant pool entry of kind CONSTANT_Class
that represents an array type (§4.3.2). The new instruction cannot be used to
create an array.

• No anewarray instruction may be used to create an array of more than 255
dimensions.

• A multianewarray instruction must be used only to create an array of a type that
has at least as many dimensions as the value of its dimensions operand. That is,
while a multianewarray instruction is not required to create all of the dimensions
of the array type referenced by its indexbyte operands, it must not attempt to
create more dimensions than are in the array type.

The dimensions operand of each multianewarray instruction must not be zero.

• The atype operand of each newarray instruction must take one of the values
T_BOOLEAN (4), T_CHAR (5), T_FLOAT (6), T_DOUBLE (7), T_BYTE (8), T_SHORT (9),
T_INT (10), or T_LONG (11).

• The index operand of each iload, fload, aload, istore, fstore, astore, iinc, and ret
instruction must be a non-negative integer no greater than max_locals - 1.

The implicit index of each iload_<n>, fload_<n>, aload_<n>, istore_<n>,
fstore_<n>, and astore_<n> instruction must be no greater than max_locals
- 1.

• The index operand of each lload, dload, lstore, and dstore instruction must be
no greater than max_locals - 2.

The implicit index of each lload_<n>, dload_<n>, lstore_<n>, and dstore_<n>
instruction must be no greater than max_locals - 2.

• The indexbyte operands of each wide instruction modifying an iload, fload,
aload, istore, fstore, astore, iinc, or ret instruction must represent a non-negative
integer no greater than max_locals - 1.

The indexbyte operands of each wide instruction modifying an lload, dload,
lstore, or dstore instruction must represent a non-negative integer no greater than
max_locals - 2.

4.9.2 Structural Constraints

The structural constraints on the code array specify constraints on relationships
between Java Virtual Machine instructions. The structural constraints are as
follows:
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• Each instruction must only be executed with the appropriate type and number
of arguments in the operand stack and local variable array, regardless of the
execution path that leads to its invocation.

An instruction operating on values of type int is also permitted to operate on
values of type boolean, byte, char, and short.

As noted in §2.3.4 and §2.11.1, the Java Virtual Machine internally converts values of
types boolean, byte, short, and char to type int.)

• If an instruction can be executed along several different execution paths, the
operand stack must have the same depth (§2.6.2) prior to the execution of the
instruction, regardless of the path taken.

• At no point during execution can the operand stack grow to a depth greater than
that implied by the max_stack item.

• At no point during execution can more values be popped from the operand stack
than it contains.

• At no point during execution can the order of the local variable pair holding a
value of type long or double be reversed or the pair split up. At no point can the
local variables of such a pair be operated on individually.

• No local variable (or local variable pair, in the case of a value of type long or
double) can be accessed before it is assigned a value.

• Each invokespecial instruction must name one of the following:

– an instance initialization method (§2.9.1)

– a method in the current class or interface

– a method in a superclass of the current class

– a method in a direct superinterface of the current class or interface

– a method in Object

If an invokespecial instruction names an instance initialization method, then the
target reference on the operand stack must be an uninitialized class instance.
An instance initialization method must never be invoked on an initialized class
instance. In addition:

– If the target reference on the operand stack is an uninitialized class instance
for the current class, then invokespecial must name an instance initialization
method from the current class or its direct superclass.
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– If an invokespecial instruction names an instance initialization method and the
target reference on the operand stack is a class instance created by an earlier
new instruction, then invokespecial must name an instance initialization
method from the class of that class instance.

If an invokespecial instruction names a method which is not an instance
initialization method, then the target reference on the operand stack must be a
class instance whose type is assignment compatible with the current class (JLS
§5.2).

The general rule for invokespecial is that the class or interface named by invokespecial
must be be "above" the caller class or interface, while the receiver object targeted by
invokespecial must be "at" or "below" the caller class or interface. The latter clause is
especially important: a class or interface can only perform invokespecial on its own
objects. See §invokespecial for an explanation of how the latter clause is implemented
in Prolog.

• Each instance initialization method, except for the instance initialization method
derived from the constructor of class Object, must call either another instance
initialization method of this or an instance initialization method of its direct
superclass super before its instance members are accessed.

However, instance fields of this that are declared in the current class may be
assigned by putfield before calling any instance initialization method.

• When any instance method is invoked or when any instance variable is accessed,
the class instance that contains the instance method or instance variable must
already be initialized.

• If there is an uninitialized class instance in a local variable in code protected by an
exception handler, then (i) if the handler is inside an <init> method, the handler
must throw an exception or loop forever; and (ii) if the handler is not inside an
<init> method, the uninitialized class instance must remain uninitialized.

• There must never be an uninitialized class instance on the operand stack or in a
local variable when a jsr or jsr_w instruction is executed.

• The type of every class instance that is the target of a method invocation
instruction (that is, the type of the target reference on the operand stack) must
be assignment compatible with the class or interface type specified in the
instruction.

• The types of the arguments to each method invocation must be method
invocation compatible with the method descriptor (JLS §5.3, §4.3.3).

• Each return instruction must match its method's return type:



THE CLASS FILE FORMAT Constraints on Java Virtual Machine Code 4.9

187

– If the method returns a boolean, byte, char, short, or int, only the ireturn
instruction may be used.

– If the method returns a float, long, or double, only an freturn, lreturn, or
dreturn instruction, respectively, may be used.

– If the method returns a reference type, only an areturn instruction may be
used, and the type of the returned value must be assignment compatible with
the return descriptor of the method (§4.3.3).

– All instance initialization methods, class or interface initialization methods,
and methods declared to return void must use only the return instruction.

• The type of every class instance accessed by a getfield instruction or modified by
a putfield instruction (that is, the type of the target reference on the operand stack)
must be assignment compatible with the class type specified in the instruction.

• The type of every value stored by a putfield or putstatic instruction must be
compatible with the descriptor of the field (§4.3.2) of the class instance or class
being stored into:

– If the descriptor type is boolean, byte, char, short, or int, then the value
must be an int.

– If the descriptor type is float, long, or double, then the value must be a float,
long, or double, respectively.

– If the descriptor type is a reference type, then the value must be of a type that
is assignment compatible with the descriptor type.

• The type of every value stored into an array by an aastore instruction must be
a reference type.

The component type of the array being stored into by the aastore instruction
must also be a reference type.

• Each athrow instruction must throw only values that are instances of class
Throwable or of subclasses of Throwable.

Each class mentioned in a catch_type item of the exception_table array of
the method's Code_attribute structure must be Throwable or a subclass of
Throwable.

• If getfield or putfield is used to access a protected field declared in a superclass
that is a member of a different run-time package than the current class, then the
type of the class instance being accessed (that is, the type of the target reference
on the operand stack) must be assignment compatible with the current class.
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If invokevirtual or invokespecial is used to access a protected method declared
in a superclass that is a member of a different run-time package than the current
class, then the type of the class instance being accessed (that is, the type of the
target reference on the operand stack) must be assignment compatible with the
current class.

• Execution never falls off the bottom of the code array.

• No return address (a value of type returnAddress) may be loaded from a local
variable.

• The instruction following each jsr or jsr_w instruction may be returned to only
by a single ret instruction.

• No jsr or jsr_w instruction that is returned to may be used to recursively call
a subroutine if that subroutine is already present in the subroutine call chain.
(Subroutines can be nested when using try-finally constructs from within a
finally clause.)

• Each instance of type returnAddress can be returned to at most once.

If a ret instruction returns to a point in the subroutine call chain above the ret
instruction corresponding to a given instance of type returnAddress, then that
instance can never be used as a return address.

4.10 Verification of class Files

Even though a compiler for the Java programming language must only produce
class files that satisfy all the static and structural constraints in the previous
sections, the Java Virtual Machine has no guarantee that any file it is asked to load
was generated by that compiler or is properly formed. Applications such as web
browsers do not download source code, which they then compile; these applications
download already-compiled class files. The browser needs to determine whether
the class file was produced by a trustworthy compiler or by an adversary
attempting to exploit the Java Virtual Machine.

An additional problem with compile-time checking is version skew. A user may
have successfully compiled a class, say PurchaseStockOptions, to be a subclass of
TradingClass. But the definition of TradingClass might have changed since the time
the class was compiled in a way that is not compatible with pre-existing binaries. Methods
might have been deleted or had their return types or modifiers changed. Fields might have
changed types or changed from instance variables to class variables. The access modifiers
of a method or variable may have changed from public to private. For a discussion of
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these issues, see Chapter 13, "Binary Compatibility," in The Java Language Specification,
Java SE 11 Edition.

Because of these potential problems, the Java Virtual Machine needs to verify
for itself that the desired constraints are satisfied by the class files it attempts to
incorporate. A Java Virtual Machine implementation verifies that each class file
satisfies the necessary constraints at linking time (§5.4).

Link-time verification enhances the performance of the run-time interpreter.
Expensive checks that would otherwise have to be performed to verify constraints
at run time for each interpreted instruction can be eliminated. The Java Virtual
Machine can assume that these checks have already been performed. For example,
the Java Virtual Machine will already know the following:

• There are no operand stack overflows or underflows.

• All local variable uses and stores are valid.

• The arguments to all the Java Virtual Machine instructions are of valid types.

There are two strategies that Java Virtual Machine implementations may use for
verification:

• Verification by type checking must be used to verify class files whose version
number is greater than or equal to 50.0.

• Verification by type inference must be supported by all Java Virtual Machine
implementations, except those conforming to the Java ME CLDC and Java Card
profiles, in order to verify class files whose version number is less than 50.0.

Verification on Java Virtual Machine implementations supporting the Java ME
CLDC and Java Card profiles is governed by their respective specifications.

In both strategies, verification is mainly concerned with enforcing the static and
structural constraints from §4.9 on the code array of the Code attribute (§4.7.3).
However, there are three additional checks outside the Code attribute which must
be performed during verification:

• Ensuring that final classes are not subclassed.

• Ensuring that final methods are not overridden (§5.4.5).

• Checking that every class (except Object) has a direct superclass.

4.10.1 Verification by Type Checking

A class file whose version number is 50.0 or above (§4.1) must be verified using
the type checking rules given in this section.
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If, and only if, a class file's version number equals 50.0, then if the type checking
fails, a Java Virtual Machine implementation may choose to attempt to perform
verification by type inference (§4.10.2).

This is a pragmatic adjustment, designed to ease the transition to the new verification
discipline. Many tools that manipulate class files may alter the bytecodes of a method
in a manner that requires adjustment of the method's stack map frames. If a tool does not
make the necessary adjustments to the stack map frames, type checking may fail even
though the bytecode is in principle valid (and would consequently verify under the old type
inference scheme). To allow implementors time to adapt their tools, Java Virtual Machine
implementations may fall back to the older verification discipline, but only for a limited
time.

In cases where type checking fails but type inference is invoked and succeeds, a certain
performance penalty is expected. Such a penalty is unavoidable. It also should serve as a
signal to tool vendors that their output needs to be adjusted, and provides vendors with
additional incentive to make these adjustments.

In summary, failover to verification by type inference supports both the gradual addition of
stack map frames to the Java SE Platform (if they are not present in a version 50.0 class
file, failover is allowed) and the gradual removal of the jsr and jsr_w instructions from the
Java SE Platform (if they are present in a version 50.0 class file, failover is allowed).

If a Java Virtual Machine implementation ever attempts to perform verification
by type inference on version 50.0 class files, it must do so in all cases where
verification by type checking fails.

This means that a Java Virtual Machine implementation cannot choose to resort to type
inference in once case and not in another. It must either reject class files that do not verify
via type checking, or else consistently failover to the type inferencing verifier whenever
type checking fails.

The type checker enforces type rules that are specified by means of Prolog clauses.
English language text is used to describe the type rules in an informal way, while
the Prolog clauses provide a formal specification.

The type checker requires a list of stack map frames for each method with a
Code attribute (§4.7.3). A list of stack map frames is given by the StackMapTable
attribute (§4.7.4) of a Code attribute. The intent is that a stack map frame must
appear at the beginning of each basic block in a method. The stack map frame
specifies the verification type of each operand stack entry and of each local variable
at the start of each basic block. The type checker reads the stack map frames for
each method with a Code attribute and uses these maps to generate a proof of the
type safety of the instructions in the Code attribute.

A class is type safe if all its methods are type safe, and it does not subclass a final
class.
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classIsTypeSafe(Class) :-

    classClassName(Class, Name), 

    classDefiningLoader(Class, L),

    superclassChain(Name, L, Chain),

    Chain \= [],

    classSuperClassName(Class, SuperclassName),

    loadedClass(SuperclassName, L, Superclass),

    classIsNotFinal(Superclass),  

    classMethods(Class, Methods), 

    checklist(methodIsTypeSafe(Class), Methods).

classIsTypeSafe(Class) :-

    classClassName(Class, 'java/lang/Object'),

    classDefiningLoader(Class, L),

    isBootstrapLoader(L),

    classMethods(Class, Methods), 

    checklist(methodIsTypeSafe(Class), Methods).

The Prolog predicate classIsTypeSafe assumes that Class is a Prolog term
representing a binary class that has been successfully parsed and loaded. This
specification does not mandate the precise structure of this term, but does require
that certain predicates be defined upon it.

For example, we assume a predicate classMethods(Class, Methods) that, given a
term representing a class as described above as its first argument, binds its second argument
to a list comprising all the methods of the class, represented in a convenient form described
later.

Iff the predicate classIsTypeSafe is not true, the type checker must throw the
exception VerifyError to indicate that the class file is malformed. Otherwise, the
class file has type checked successfully and bytecode verification has completed
successfully.

The rest of this section explains the process of type checking in detail:

• First, we give Prolog predicates for core Java Virtual Machine artifacts like
classes and methods (§4.10.1.1).

• Second, we specify the type system known to the type checker (§4.10.1.2).

• Third, we specify the Prolog representation of instructions and stack map frames
(§4.10.1.3, §4.10.1.4).

• Fourth, we specify how a method is type checked, for methods without code
(§4.10.1.5) and methods with code (§4.10.1.6).
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• Fifth, we discuss type checking issues common to all load and store instructions
(§4.10.1.7), and also issues of access to protected members (§4.10.1.8).

• Finally, we specify the rules to type check each instruction (§4.10.1.9).

4.10.1.1 Accessors for Java Virtual Machine Artifacts

We stipulate the existence of 28 Prolog predicates ("accessors") that have certain
expected behavior but whose formal definitions are not given in this specification.

classClassName(Class, ClassName)

Extracts the name, ClassName, of the class Class.

classIsInterface(Class)

True iff the class, Class, is an interface.

classIsNotFinal(Class)

True iff the class, Class, is not a final class.

classSuperClassName(Class, SuperClassName)

Extracts the name, SuperClassName, of the superclass of class Class.

classInterfaces(Class, Interfaces)

Extracts a list, Interfaces, of the direct superinterfaces of the class Class.

classMethods(Class, Methods)

Extracts a list, Methods, of the methods declared in the class Class.

classAttributes(Class, Attributes)

Extracts a list, Attributes, of the attributes of the class Class.

Each attribute is represented as a functor application of the form
attribute(AttributeName, AttributeContents), where AttributeName
is the name of the attribute. The format of the attribute's contents is unspecified.

classDefiningLoader(Class, Loader)

Extracts the defining class loader, Loader, of the class Class.

isBootstrapLoader(Loader)

True iff the class loader Loader is the bootstrap class loader.

loadedClass(Name, InitiatingLoader, ClassDefinition)

True iff there exists a class named Name whose representation (in accordance
with this specification) when loaded by the class loader InitiatingLoader is
ClassDefinition.
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methodName(Method, Name)

Extracts the name, Name, of the method Method.

methodAccessFlags(Method, AccessFlags)

Extracts the access flags, AccessFlags, of the method Method.

methodDescriptor(Method, Descriptor)

Extracts the descriptor, Descriptor, of the method Method.

methodAttributes(Method, Attributes)

Extracts a list, Attributes, of the attributes of the method Method.

isInit(Method)

True iff Method (regardless of class) is <init>.

isNotInit(Method)

True iff Method (regardless of class) is not <init>.

isNotFinal(Method, Class)

True iff Method in class Class is not final.

isStatic(Method, Class)

True iff Method in class Class is static.

isNotStatic(Method, Class)

True iff Method in class Class is not static.

isPrivate(Method, Class)

True iff Method in class Class is private.

isNotPrivate(Method, Class)

True iff Method in class Class is not private.

isProtected(MemberClass, MemberName, MemberDescriptor)

True iff there is a member named MemberName with descriptor
MemberDescriptor in the class MemberClass and it is protected.

isNotProtected(MemberClass, MemberName, MemberDescriptor)

True iff there is a member named MemberName with descriptor
MemberDescriptor in the class MemberClass and it is not protected.

parseFieldDescriptor(Descriptor, Type)

Converts a field descriptor, Descriptor, into the corresponding verification
type Type (§4.10.1.2).
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parseMethodDescriptor(Descriptor, ArgTypeList, ReturnType)

Converts a method descriptor, Descriptor, into a list of verification types,
ArgTypeList, corresponding to the method argument types, and a verification
type, ReturnType, corresponding to the return type.

parseCodeAttribute(Class, Method, FrameSize, MaxStack, ParsedCode,
Handlers, StackMap)

Extracts the instruction stream, ParsedCode, of the method Method in Class,
as well as the maximum operand stack size, MaxStack, the maximal number
of local variables, FrameSize, the exception handlers, Handlers, and the stack
map StackMap.

The representation of the instruction stream and stack map attribute must be as
specified in §4.10.1.3 and §4.10.1.4.

samePackageName(Class1, Class2)

True iff the package names of Class1 and Class2 are the same.

differentPackageName(Class1, Class2)

True iff the package names of Class1 and Class2 are different.

When type checking a method's body, it is convenient to access information about
the method. For this purpose, we define an environment, a six-tuple consisting of:

• a class

• a method

• the declared return type of the method

• the instructions in a method

• the maximal size of the operand stack

• a list of exception handlers

We specify accessors to extract information from the environment.
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allInstructions(Environment, Instructions) :-

    Environment = environment(_Class, _Method, _ReturnType,

                              Instructions, _, _).

exceptionHandlers(Environment, Handlers) :-

    Environment = environment(_Class, _Method, _ReturnType,

                              _Instructions, _, Handlers).

maxOperandStackLength(Environment, MaxStack) :-

    Environment = environment(_Class, _Method, _ReturnType,

                              _Instructions, MaxStack, _Handlers).

thisClass(Environment, class(ClassName, L)) :-

    Environment = environment(Class, _Method, _ReturnType,

                              _Instructions, _, _),

    classDefiningLoader(Class, L),

    classClassName(Class, ClassName).

thisMethodReturnType(Environment, ReturnType) :-

    Environment = environment(_Class, _Method, ReturnType,

                              _Instructions, _, _).

We specify additional predicates to extract higher-level information from the
environment.

offsetStackFrame(Environment, Offset, StackFrame) :-

    allInstructions(Environment, Instructions),

    member(stackMap(Offset, StackFrame), Instructions).

currentClassLoader(Environment, Loader) :-

    thisClass(Environment, class(_, Loader)).

Finally, we specify a general predicate used throughout the type rules:

notMember(_, []).

notMember(X, [A | More]) :- X \= A, notMember(X, More).

The principle guiding the determination as to which accessors are stipulated and which are
fully specified is that we do not want to over-specify the representation of the class file.
Providing specific accessors to the Class or Method term would force us to completely
specify the format for a Prolog term representing the class file.
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4.10.1.2 Verification Type System

The type checker enforces a type system based upon a hierarchy of verification
types, illustrated below.

Verification type hierarchy:

                             top

                 ____________/\____________

                /                          \

               /                            \

            oneWord                       twoWord

           /   |   \                     /       \

          /    |    \                   /         \

        int  float  reference        long        double

                     /     \

                    /       \_____________

                   /                      \

                  /                        \

           uninitialized                    +------------------+

            /         \                     |  Java reference  |

           /           \                    |  type hierarchy  |

uninitializedThis  uninitialized(Offset)    +------------------+  

                                                     |

                                                     |

                                                    null

Most verification types have a direct correspondence with the primitive and
reference types represented by field descriptors in Table 4.3-A:

• The primitive types double, float, int, and long (field descriptors D, F, I, J)
each correspond to the verification type of the same name.

• The primitive types byte, char, short, and boolean (field descriptors B, C, S, Z)
all correspond to the verification type int.

• Class and interface types (field descriptors beginning L) correspond to
verification types that use the functor class. The verification type class(N, L)
represents the class whose binary name is N as loaded by the loader L. Note that
L is an initiating loader (§5.3) of the class represented by class(N, L) and may,
or may not, be the class's defining loader.

For example, the class type Object would be represented as class('java/lang/
Object', BL), where BL is the bootstrap loader.
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• Array types (field descriptors beginning [) correspond to verification types that
use the functor arrayOf. Note that the primitive types byte, char, short, and
boolean do not correspond to verification types, but an array type whose element
type is byte, char, short, or boolean does correspond to a verification type;
such verification types support the baload, bastore, caload, castore, saload,
sastore, and newarray instructions.

– The verification type arrayOf(T) represents the array type whose component
type is the verification type T.

– The verification type arrayOf(byte) represents the array type whose element
type is byte.

– The verification type arrayOf(char) represents the array type whose element
type is char.

– The verification type arrayOf(short) represents the array type whose
element type is short.

– The verification type arrayOf(boolean) represents the array type whose
element type is boolean.

For example, the array types int[] and Object[] would be represented by
the verification types arrayOf(int) and arrayOf(class('java/lang/Object',
BL)) respectively. The array types byte[] and boolean[][] would be represented
by the verification types arrayOf(byte) and arrayOf(arrayOf(boolean))
respectively.

The remaining verification types are described as follows:

• The verification types top, oneWord, twoWord, and reference are represented
in Prolog as atoms whose name denotes the verification type in question.

• The verification type uninitialized(Offset) is represented by applying the
functor uninitialized to an argument representing the numerical value of the
Offset.

The subtyping rules for verification types are as follows.

Subtyping is reflexive.

isAssignable(X, X).

The verification types which are not reference types in the Java programming
language have subtype rules of the form:

isAssignable(v, X) :- isAssignable(the_direct_supertype_of_v, X).

That is, v is a subtype of X if the direct supertype of v is a subtype of X. The rules are:
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isAssignable(oneWord, top).

isAssignable(twoWord, top).

isAssignable(int, X)    :- isAssignable(oneWord, X).

isAssignable(float, X)  :- isAssignable(oneWord, X).

isAssignable(long, X)   :- isAssignable(twoWord, X).

isAssignable(double, X) :- isAssignable(twoWord, X).

isAssignable(reference, X)   :- isAssignable(oneWord, X).

isAssignable(class(_, _), X) :- isAssignable(reference, X).

isAssignable(arrayOf(_), X)  :- isAssignable(reference, X).

isAssignable(uninitialized, X)     :- isAssignable(reference, X).

isAssignable(uninitializedThis, X) :- isAssignable(uninitialized, X).

isAssignable(uninitialized(_), X)  :- isAssignable(uninitialized, X).

isAssignable(null, class(_, _)).

isAssignable(null, arrayOf(_)).

isAssignable(null, X) :- isAssignable(class('java/lang/Object', BL), X),

                         isBootstrapLoader(BL).

These subtype rules are not necessarily the most obvious formulation of subtyping. There is
a clear split between subtyping rules for reference types in the Java programming language,
and rules for the remaining verification types. The split allows us to state general subtyping
relations between Java programming language reference types and other verification types.
These relations hold independently of a Java reference type's position in the type hierarchy,
and help to prevent excessive class loading by a Java Virtual Machine implementation. For
example, we do not want to start climbing the Java superclass hierarchy in response to a
query of the form class(foo, L) <: twoWord.

We also have a rule that says subtyping is reflexive, so together these rules cover most
verification types that are not reference types in the Java programming language.

Subtype rules for the reference types in the Java programming language are
specified recursively with isJavaAssignable.

isAssignable(class(X, Lx), class(Y, Ly)) :-

    isJavaAssignable(class(X, Lx), class(Y, Ly)).

isAssignable(arrayOf(X), class(Y, L)) :-

    isJavaAssignable(arrayOf(X), class(Y, L)).

isAssignable(arrayOf(X), arrayOf(Y)) :-

    isJavaAssignable(arrayOf(X), arrayOf(Y)).

For assignments, interfaces are treated like Object.
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isJavaAssignable(class(_, _), class(To, L)) :-

    loadedClass(To, L, ToClass),

    classIsInterface(ToClass).

isJavaAssignable(From, To) :-

    isJavaSubclassOf(From, To).

Array types are subtypes of Object. The intent is also that array types are subtypes
of Cloneable and java.io.Serializable.

isJavaAssignable(arrayOf(_), class('java/lang/Object', BL)) :-

    isBootstrapLoader(BL).

isJavaAssignable(arrayOf(_), X) :-

    isArrayInterface(X).

isArrayInterface(class('java/lang/Cloneable', BL)) :-

    isBootstrapLoader(BL).

isArrayInterface(class('java/io/Serializable', BL)) :-

    isBootstrapLoader(BL).

Subtyping between arrays of primitive type is the identity relation.

isJavaAssignable(arrayOf(X), arrayOf(Y)) :-

    atom(X),

    atom(Y),

    X = Y.

Subtyping between arrays of reference type is covariant.

isJavaAssignable(arrayOf(X), arrayOf(Y)) :-

    compound(X), compound(Y), isJavaAssignable(X, Y).

Subclassing is reflexive.

isJavaSubclassOf(class(SubclassName, L), class(SubclassName, L)).
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isJavaSubclassOf(class(SubclassName, LSub), class(SuperclassName, LSuper)) :-

    superclassChain(SubclassName, LSub, Chain),

    member(class(SuperclassName, L), Chain),

    loadedClass(SuperclassName, L, Sup),

    loadedClass(SuperclassName, LSuper, Sup).

superclassChain(ClassName, L, [class(SuperclassName, Ls) | Rest]) :-

    loadedClass(ClassName, L, Class),

    classSuperClassName(Class, SuperclassName),

    classDefiningLoader(Class, Ls),

    superclassChain(SuperclassName, Ls, Rest).

superclassChain('java/lang/Object', L, []) :-

    loadedClass('java/lang/Object', L, Class),

    classDefiningLoader(Class, BL),

    isBootstrapLoader(BL).

4.10.1.3 Instruction Representation

Individual bytecode instructions are represented in Prolog as terms whose functor
is the name of the instruction and whose arguments are its parsed operands.

For example, an aload instruction is represented as the term aload(N), which includes the
index N that is the operand of the instruction.

The instructions as a whole are represented as a list of terms of the form:

instruction(Offset, AnInstruction)

For example, instruction(21, aload(1)).

The order of instructions in this list must be the same as in the class file.

Some instructions have operands that refer to entries in the constant_pool table
representing fields, methods, and dynamically-computed call sites. Such entries are
represented as functor applications of the form:

• field(FieldClassName, FieldName, FieldDescriptor) for a constant pool
entry that is a CONSTANT_Fieldref_info structure (§4.4.2).

FieldClassName is the name of the class referenced by the class_index item
in the structure. FieldName and FieldDescriptor correspond to the name and
field descriptor referenced by the name_and_type_index item of the structure.

• method(MethodClassName, MethodName, MethodDescriptor) for a constant
pool entry that is a CONSTANT_Methodref_info structure (§4.4.2).
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MethodClassName is the name of the class referenced by the class_index item
of the structure. MethodName and MethodDescriptor correspond to the name
and method descriptor referenced by the name_and_type_index item of the
structure.

• imethod(MethodIntfName, MethodName, MethodDescriptor) for a constant
pool entry that is a CONSTANT_InterfaceMethodref_info structure (§4.4.2).

MethodIntfName is the name of the interface referenced by the class_index
item of the structure. MethodName and MethodDescriptor correspond to the
name and method descriptor referenced by the name_and_type_index item of
the structure.

• dmethod(CallSiteName, MethodDescriptor) for a constant pool entry that is
a CONSTANT_InvokeDynamic_info structure (§4.4.10).

CallSiteName and MethodDescriptor correspond to the name and method
descriptor referenced by the name_and_type_index item of the structure. (The
bootstrap_method_attr_index item is irrelevant to verification.)

For clarity, we assume that field and method descriptors (§4.3.2, §4.3.3) are
mapped into more readable names: the leading L and trailing ; are dropped from
class names, and the BaseType characters used for primitive types are mapped to
the names of those types.

For example, a getfield instruction whose operand refers to a constant pool
entry representing a field foo of type F in class Bar would be represented as
getfield(field('Bar', 'foo', 'F')).

The ldc instruction, among others, has an operand that refers to a loadable entry
in the constant_pool table. There are nine kinds of loadable entry (see Table 4.4-
C), represented by functor applications of the following forms:

• int(Value) for a constant pool entry that is a CONSTANT_Integer_info structure
(§4.4.4).

Value is the int constant represented by the bytes item of the structure.

For example, an ldc instruction for loading the int constant 91 would be represented
as ldc(int(91)).

• float(Value) for a constant pool entry that is a CONSTANT_Float_info structure
(§4.4.4).

Value is the float constant represented by the bytes item of the structure.
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• long(Value) for a constant pool entry that is a CONSTANT_Long_info structure
(§4.4.5).

Value is the long constant represented by the high_bytes and low_bytes items
of the structure.

• double(Value) for a constant pool entry that is a CONSTANT_Double_info
structure (§4.4.5).

Value is the double constant represented by the high_bytes and low_bytes
items of the structure.

• class(ClassName) for a constant pool entry that is a CONSTANT_Class_info
structure (§4.4.1).

ClassName is the name of the class or interface referenced by the name_index
item in the structure.

• string(Value) for a constant pool entry that is a CONSTANT_String_info
structure (§4.4.3).

Value is the string referenced by the string_index item of the structure.

• methodHandle(Kind, Reference) for a constant pool entry that is a
CONSTANT_MethodHandle_info structure (§4.4.8).

Kind is the value of the reference_kind item of the structure. Reference is the
value of the reference_index item of the structure.

• methodType(MethodDescriptor) for a constant pool entry that is a
CONSTANT_MethodType_info structure (§4.4.9).

MethodDescriptor is the method descriptor referenced by the
descriptor_index item of the structure.

• dconstant(ConstantName, FieldDescriptor) for a constant pool entry that
is a CONSTANT_Dynamic_info structure (§4.4.10).

ConstantName and FieldDescriptor correspond to the name and field
descriptor referenced by the name_and_type_index item of the structure. (The
bootstrap_method_attr_index item is irrelevant to verification.)

4.10.1.4 Stack Map Frames and Type Transitions

Stack map frames are represented in Prolog as a list of terms of the form:

stackMap(Offset, TypeState)

where:
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• Offset is an integer indicating the bytecode offset at which the stack map frame
applies (§4.7.4).

The order of bytecode offsets in this list must be the same as in the class file.

• TypeState is the expected incoming type state for the instruction at Offset.

A type state is a mapping from locations in the operand stack and local variables
of a method to verification types. It has the form:

frame(Locals, OperandStack, Flags)

where:

• Locals is a list of verification types, such that the i'th element of the list (with
0-based indexing) represents the type of local variable i.

Types of size 2 (long and double) are represented by two local variables
(§2.6.1), with the first local variable being the type itself and the second local
variable being top (§4.10.1.7).

• OperandStack is a list of verification types, such that the first element of the list
represents the type of the top of the operand stack, and the types of stack entries
below the top follow in the list in the appropriate order.

Types of size 2 (long and double) are represented by two stack entries, with the
first entry being top and the second entry being the type itself.

For example, a stack with a double value, an int value, and a long value is represented
in a type state as a stack with five entries: top and double entries for the double
value, an int entry for the int value, and top and long entries for the long value.
Accordingly, OperandStack is the list [top, double, int, top, long].

• Flags is a list which may either be empty or have the single element
flagThisUninit.

If any local variable in Locals has the type uninitializedThis, then Flags has
the single element flagThisUninit, otherwise Flags is an empty list.

flagThisUninit is used in constructors to mark type states where initialization of this
has not yet been completed. In such type states, it is illegal to return from the method.

Subtyping of verification types is extended pointwise to type states. The
local variable array of a method has a fixed length by construction (see
methodInitialStackFrame in §4.10.1.6), but the operand stack grows and shrinks,
so we require an explicit check on the length of the operand stacks whose
assignability is desired for subtyping.
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frameIsAssignable(frame(Locals1, StackMap1, Flags1),

                  frame(Locals2, StackMap2, Flags2)) :-

    length(StackMap1, StackMapLength),

    length(StackMap2, StackMapLength),

    maplist(isAssignable, Locals1, Locals2),

    maplist(isAssignable, StackMap1, StackMap2),

    subset(Flags1, Flags2).

Most of the type rules for individual instructions (§4.10.1.9) depend on the notion
of a valid type transition. A type transition is valid if one can pop a list of expected
types off the incoming type state's operand stack and replace them with an expected
result type, resulting in a new type state where the length of the operand stack does
not exceed its declared maximum size.

validTypeTransition(Environment, ExpectedTypesOnStack, ResultType,

                    frame(Locals, InputOperandStack, Flags),

                    frame(Locals, NextOperandStack, Flags)) :-

    popMatchingList(InputOperandStack, ExpectedTypesOnStack,

                    InterimOperandStack),

    pushOperandStack(InterimOperandStack, ResultType, NextOperandStack),

    operandStackHasLegalLength(Environment, NextOperandStack).

Pop a list of types off the stack.

popMatchingList(OperandStack, [], OperandStack).

popMatchingList(OperandStack, [P | Rest], NewOperandStack) :-

    popMatchingType(OperandStack, P, TempOperandStack, _ActualType),

    popMatchingList(TempOperandStack, Rest, NewOperandStack).

Pop an individual type off the stack. The exact behavior depends on the stack
contents. If the logical top of the stack is some subtype of the specified type, Type,
then pop it. If a type occupies two stack entries, then the logical top of the stack is
really the type just below the top, and the top of the stack is the unusable type top.
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popMatchingType([ActualType | OperandStack],

                Type, OperandStack, ActualType) :-

    sizeOf(Type, 1),

    isAssignable(ActualType, Type).

popMatchingType([top, ActualType | OperandStack],

                Type, OperandStack, ActualType) :-

    sizeOf(Type, 2),

    isAssignable(ActualType, Type).

sizeOf(X, 2) :- isAssignable(X, twoWord).

sizeOf(X, 1) :- isAssignable(X, oneWord).

sizeOf(top, 1).

Push a logical type onto the stack. The exact behavior varies with the size of the
type. If the pushed type is of size 1, we just push it onto the stack. If the pushed
type is of size 2, we push it, and then push top.

pushOperandStack(OperandStack, 'void', OperandStack).

pushOperandStack(OperandStack, Type, [Type | OperandStack]) :-

    sizeOf(Type, 1).

pushOperandStack(OperandStack, Type, [top, Type | OperandStack]) :-

    sizeOf(Type, 2).

The length of the operand stack must not exceed the declared maximum size.

operandStackHasLegalLength(Environment, OperandStack) :-

    length(OperandStack, Length),

    maxOperandStackLength(Environment, MaxStack),

    Length =< MaxStack.

The dup instructions pop expected types off the incoming type state's operand
stack and replace them with predefined result types, resulting in a new type state.
However, these instructions are not defined in terms of type transitions because
there is no need to match types by means of the subtyping relation. Instead, the
dup instructions manipulate the operand stack entirely in terms of the category of
types on the stack (§2.11.1).

Category 1 types occupy a single stack entry. Popping a logical type of category
1, Type, off the stack is possible if the top of the stack is Type and Type is not top
(otherwise it could denote the upper half of a category 2 type). The result is the
incoming stack, with the top entry popped off.
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popCategory1([Type | Rest], Type, Rest) :-

    Type \= top,

    sizeOf(Type, 1).

Category 2 types occupy two stack entries. Popping a logical type of category 2,
Type, off the stack is possible if the top of the stack is type top, and the entry
directly below it is Type. The result is the incoming stack, with the top two entries
popped off.

popCategory2([top, Type | Rest], Type, Rest) :-

    sizeOf(Type, 2).

The dup instructions push a list of types onto the stack in essentially the same way
as when a type is pushed for a valid type transition.

canSafelyPush(Environment, InputOperandStack, Type, OutputOperandStack) :-

    pushOperandStack(InputOperandStack, Type, OutputOperandStack),

    operandStackHasLegalLength(Environment, OutputOperandStack).

canSafelyPushList(Environment, InputOperandStack, Types,

                  OutputOperandStack) :-

    canPushList(InputOperandStack, Types, OutputOperandStack),

    operandStackHasLegalLength(Environment, OutputOperandStack).

canPushList(InputOperandStack, [], InputOperandStack).

canPushList(InputOperandStack, [Type | Rest], OutputOperandStack) :-

    pushOperandStack(InputOperandStack, Type, InterimOperandStack),

    canPushList(InterimOperandStack, Rest, OutputOperandStack).

Many of the type rules for individual instructions use the following clause to easily
pop a list of types off the stack.

canPop(frame(Locals, OperandStack, Flags), Types,

       frame(Locals, PoppedOperandStack, Flags)) :-

    popMatchingList(OperandStack, Types, PoppedOperandStack).

Finally, certain array instructions (§aaload, §arraylength, §baload, §bastore) peek
at types on the operand stack in order to check they are array types. The following
clause accesses the i'th element of the operand stack from a type state.

nth1OperandStackIs(i, frame(_Locals, OperandStack, _Flags), Element) :-

    nth1(i, OperandStack, Element).
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4.10.1.5 Type Checking Abstract and Native Methods

abstract methods and native methods are considered to be type safe if they do
not override a final method.

methodIsTypeSafe(Class, Method) :-

    doesNotOverrideFinalMethod(Class, Method),

    methodAccessFlags(Method, AccessFlags),

    member(abstract, AccessFlags).

methodIsTypeSafe(Class, Method) :-

    doesNotOverrideFinalMethod(Class, Method),

    methodAccessFlags(Method, AccessFlags),

    member(native, AccessFlags).

private methods and static methods are orthogonal to dynamic method dispatch,
so they never override other methods (§5.4.5).

doesNotOverrideFinalMethod(class('java/lang/Object', L), Method) :-

    isBootstrapLoader(L).

doesNotOverrideFinalMethod(Class, Method) :-

    isPrivate(Method, Class).

doesNotOverrideFinalMethod(Class, Method) :-

    isStatic(Method, Class).

doesNotOverrideFinalMethod(Class, Method) :-

    isNotPrivate(Method, Class),

    isNotStatic(Method, Class),

    doesNotOverrideFinalMethodOfSuperclass(Class, Method).

doesNotOverrideFinalMethodOfSuperclass(Class, Method) :-

    classSuperClassName(Class, SuperclassName),

    classDefiningLoader(Class, L),

    loadedClass(SuperclassName, L, Superclass),

    classMethods(Superclass, SuperMethodList),

    finalMethodNotOverridden(Method, Superclass, SuperMethodList).
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final methods that are private and/or static are unusual, as private methods
and static methods cannot be overridden per se. Therefore, if a final private
method or a final static method is found, it was logically not overridden by
another method.

finalMethodNotOverridden(Method, Superclass, SuperMethodList) :-

    methodName(Method, Name),

    methodDescriptor(Method, Descriptor),

    member(method(_, Name, Descriptor), SuperMethodList),

    isFinal(Method, Superclass),

    isPrivate(Method, Superclass).

finalMethodNotOverridden(Method, Superclass, SuperMethodList) :-

    methodName(Method, Name),

    methodDescriptor(Method, Descriptor),

    member(method(_, Name, Descriptor), SuperMethodList),

    isFinal(Method, Superclass),

    isStatic(Method, Superclass).

If a non-final private method or a non-final static method is found, skip over
it because it is orthogonal to overriding.

finalMethodNotOverridden(Method, Superclass, SuperMethodList) :-

    methodName(Method, Name),

    methodDescriptor(Method, Descriptor),

    member(method(_, Name, Descriptor), SuperMethodList),

    isNotFinal(Method, Superclass),

    isPrivate(Method, Superclass),

    doesNotOverrideFinalMethodOfSuperclass(Superclass, Method).

finalMethodNotOverridden(Method, Superclass, SuperMethodList) :-

    methodName(Method, Name),

    methodDescriptor(Method, Descriptor),

    member(method(_, Name, Descriptor), SuperMethodList),

    isNotFinal(Method, Superclass),

    isStatic(Method, Superclass),

    doesNotOverrideFinalMethodOfSuperclass(Superclass, Method).
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If a non-final, non-private, non-static method is found, then indeed a final
method was not overridden. Otherwise, recurse upwards.

finalMethodNotOverridden(Method, Superclass, SuperMethodList) :-

    methodName(Method, Name),

    methodDescriptor(Method, Descriptor),

    member(method(_, Name, Descriptor), SuperMethodList),

    isNotFinal(Method, Superclass),

    isNotStatic(Method, Superclass),

    isNotPrivate(Method, Superclass).

finalMethodNotOverridden(Method, Superclass, SuperMethodList) :-

    methodName(Method, Name),

    methodDescriptor(Method, Descriptor),

    notMember(method(_, Name, Descriptor), SuperMethodList),

    doesNotOverrideFinalMethodOfSuperclass(Superclass, Method).
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4.10.1.6 Type Checking Methods with Code

Non-abstract, non-native methods are type correct if they have code and the
code is type correct.

methodIsTypeSafe(Class, Method) :-

    doesNotOverrideFinalMethod(Class, Method),

    methodAccessFlags(Method, AccessFlags),

    methodAttributes(Method, Attributes),

    notMember(native, AccessFlags),

    notMember(abstract, AccessFlags),

    member(attribute('Code', _), Attributes),

    methodWithCodeIsTypeSafe(Class, Method).

A method with code is type safe if it is possible to merge the code and the stack map
frames into a single stream such that each stack map frame precedes the instruction
it corresponds to, and the merged stream is type correct. The method's exception
handlers, if any, must also be legal.

methodWithCodeIsTypeSafe(Class, Method) :-

    parseCodeAttribute(Class, Method, FrameSize, MaxStack,

                       ParsedCode, Handlers, StackMap),

    mergeStackMapAndCode(StackMap, ParsedCode, MergedCode),

    methodInitialStackFrame(Class, Method, FrameSize, StackFrame, ReturnType),

    Environment = environment(Class, Method, ReturnType, MergedCode,

                              MaxStack, Handlers),

    handlersAreLegal(Environment),

    mergedCodeIsTypeSafe(Environment, MergedCode, StackFrame).
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Let us consider exception handlers first.

An exception handler is represented by a functor application of the form:

handler(Start, End, Target, ClassName)

whose arguments are, respectively, the start and end of the range of instructions
covered by the handler, the first instruction of the handler code, and the name of
the exception class that this handler is designed to handle.

An exception handler is legal if its start (Start) is less than its end (End), there
exists an instruction whose offset is equal to Start, there exists an instruction
whose offset equals End, and the handler's exception class is assignable to the class
Throwable. The exception class of a handler is Throwable if the handler's class
entry is 0, otherwise it is the class named in the handler.

An additional requirement exists for a handler inside an <init> method if one of
the instructions covered by the handler is invokespecial of an <init> method. In
this case, the fact that a handler is running means the object under construction is
likely broken, so it is important that the handler does not swallow the exception and
allow the enclosing <init> method to return normally to the caller. Accordingly,
the handler is required to either complete abruptly by throwing an exception to the
caller of the enclosing <init> method, or to loop forever.
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handlersAreLegal(Environment) :-

    exceptionHandlers(Environment, Handlers),

    checklist(handlerIsLegal(Environment), Handlers).

handlerIsLegal(Environment, Handler) :-

    Handler = handler(Start, End, Target, _),

    Start < End,

    allInstructions(Environment, Instructions),

    member(instruction(Start, _), Instructions),

    offsetStackFrame(Environment, Target, _),

    instructionsIncludeEnd(Instructions, End),

    currentClassLoader(Environment, CurrentLoader),

    handlerExceptionClass(Handler, ExceptionClass, CurrentLoader), 

    isBootstrapLoader(BL),

    isAssignable(ExceptionClass, class('java/lang/Throwable', BL)),

    initHandlerIsLegal(Environment, Handler).

instructionsIncludeEnd(Instructions, End) :-

    member(instruction(End, _), Instructions).

instructionsIncludeEnd(Instructions, End) :-

    member(endOfCode(End), Instructions).

handlerExceptionClass(handler(_, _, _, 0),

                      class('java/lang/Throwable', BL), _) :-

    isBootstrapLoader(BL).

handlerExceptionClass(handler(_, _, _, Name),

                      class(Name, L), L) :-

    Name \= 0.
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initHandlerIsLegal(Environment, Handler) :-

    notInitHandler(Environment, Handler).

notInitHandler(Environment, Handler) :-

    Environment = environment(_Class, Method, _, Instructions, _, _),

    isNotInit(Method).

notInitHandler(Environment, Handler) :-

    Environment = environment(_Class, Method, _, Instructions, _, _),

    isInit(Method),

    member(instruction(_, invokespecial(CP)), Instructions),

    CP = method(MethodClassName, MethodName, Descriptor),

    MethodName \= '<init>'. 

initHandlerIsLegal(Environment, Handler) :-

    isInitHandler(Environment, Handler),

    sublist(isApplicableInstruction(Target), Instructions,

            HandlerInstructions),

    noAttemptToReturnNormally(HandlerInstructions).

isInitHandler(Environment, Handler) :-

    Environment = environment(_Class, Method, _, Instructions, _, _),

    isInit(Method).

    member(instruction(_, invokespecial(CP)), Instructions),

    CP = method(MethodClassName, '<init>', Descriptor).

isApplicableInstruction(HandlerStart, instruction(Offset, _)) :-

    Offset >= HandlerStart.

noAttemptToReturnNormally(Instructions) :-

    notMember(instruction(_, return), Instructions).

noAttemptToReturnNormally(Instructions) :-

    member(instruction(_, athrow), Instructions).
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Let us now turn to the stream of instructions and stack map frames.

Merging instructions and stack map frames into a single stream involves four cases:

• Merging an empty StackMap and a list of instructions yields the original list of
instructions.

mergeStackMapAndCode([], CodeList, CodeList).

• Given a list of stack map frames beginning with the type state for the instruction
at Offset, and a list of instructions beginning at Offset, the merged list is the
head of the stack map frame list, followed by the head of the instruction list,
followed by the merge of the tails of the two lists.

mergeStackMapAndCode([stackMap(Offset, Map) | RestMap],

                     [instruction(Offset, Parse) | RestCode],

                     [stackMap(Offset, Map),

                       instruction(Offset, Parse) | RestMerge]) :-

    mergeStackMapAndCode(RestMap, RestCode, RestMerge).

• Otherwise, given a list of stack map frames beginning with the type state for the
instruction at OffsetM, and a list of instructions beginning at OffsetP, then, if
OffsetP < OffsetM, the merged list consists of the head of the instruction list,
followed by the merge of the stack map frame list and the tail of the instruction
list.

mergeStackMapAndCode([stackMap(OffsetM, Map) | RestMap],

                     [instruction(OffsetP, Parse) | RestCode],

                     [instruction(OffsetP, Parse) | RestMerge]) :-

    OffsetP < OffsetM,

    mergeStackMapAndCode([stackMap(OffsetM, Map) | RestMap],

                         RestCode, RestMerge).

• Otherwise, the merge of the two lists is undefined. Since the instruction list has
monotonically increasing offsets, the merge of the two lists is not defined unless
every stack map frame offset has a corresponding instruction offset and the stack
map frames are in monotonically increasing order.
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To determine if the merged stream for a method is type correct, we first infer the
method's initial type state.

The initial type state of a method consists of an empty operand stack and local
variable types derived from the type of this and the arguments, as well as the
appropriate flag, depending on whether this is an <init> method.

methodInitialStackFrame(Class, Method, FrameSize, frame(Locals, [], Flags),

                        ReturnType):-

    methodDescriptor(Method, Descriptor),

    parseMethodDescriptor(Descriptor, RawArgs, ReturnType),

    expandTypeList(RawArgs, Args),

    methodInitialThisType(Class, Method, ThisList),

    flags(ThisList, Flags),

    append(ThisList, Args, ThisArgs),

    expandToLength(ThisArgs, FrameSize, top, Locals).

Given a list of types, the following clause produces a list where every type of size
2 has been substituted by two entries: one for itself, and one top entry. The result
then corresponds to the representation of the list as 32-bit words in the Java Virtual
Machine.

expandTypeList([], []).

expandTypeList([Item | List], [Item | Result]) :-

    sizeOf(Item, 1),

    expandTypeList(List, Result).

expandTypeList([Item | List], [Item, top | Result]) :-

    sizeOf(Item, 2),

    expandTypeList(List, Result).

flags([uninitializedThis], [flagThisUninit]).

flags(X, []) :- X \= [uninitializedThis].

expandToLength(List, Size, _Filler, List) :-

    length(List, Size).

expandToLength(List, Size, Filler, Result) :-

    length(List, ListLength),

    ListLength < Size,

    Delta is Size - ListLength,

    length(Extra, Delta),

    checklist(=(Filler), Extra),

    append(List, Extra, Result).
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For the initial type state of an instance method, we compute the type of this and
put it in a list. The type of this in the <init> method of Object is Object; in
other <init> methods, the type of this is uninitializedThis; otherwise, the type
of this in an instance method is class(N, L) where N is the name of the class
containing the method and L is its defining class loader.

For the initial type state of a static method, this is irrelevant, so the list is empty.

methodInitialThisType(_Class, Method, []) :-

    methodAccessFlags(Method, AccessFlags),

    member(static, AccessFlags),

    methodName(Method, MethodName),

    MethodName \= '<init>'.

methodInitialThisType(Class, Method, [This]) :-

    methodAccessFlags(Method, AccessFlags),

    notMember(static, AccessFlags),

    instanceMethodInitialThisType(Class, Method, This).

instanceMethodInitialThisType(Class, Method, class('java/lang/Object', L)) :-

    methodName(Method, '<init>'), 

    classDefiningLoader(Class, L),

    isBootstrapLoader(L),

    classClassName(Class, 'java/lang/Object').

instanceMethodInitialThisType(Class, Method, uninitializedThis) :-

    methodName(Method, '<init>'), 

    classClassName(Class, ClassName),

    classDefiningLoader(Class, CurrentLoader),

    superclassChain(ClassName, CurrentLoader, Chain),

    Chain \= [].

instanceMethodInitialThisType(Class, Method, class(ClassName, L)) :-

    methodName(Method, MethodName),

    MethodName \= '<init>',

    classDefiningLoader(Class, L),

    classClassName(Class, ClassName).
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We now compute whether the merged stream for a method is type correct, using
the method's initial type state:

• If we have a stack map frame and an incoming type state, the type state must be
assignable to the one in the stack map frame. We may then proceed to type check
the rest of the stream with the type state given in the stack map frame.

mergedCodeIsTypeSafe(Environment, [stackMap(Offset, MapFrame) | MoreCode],

                     frame(Locals, OperandStack, Flags)) :-

    frameIsAssignable(frame(Locals, OperandStack, Flags), MapFrame),

    mergedCodeIsTypeSafe(Environment, MoreCode, MapFrame).

• A merged code stream is type safe relative to an incoming type state T if it begins
with an instruction I that is type safe relative to T, and I satisfies its exception
handlers (see below), and the tail of the stream is type safe given the type state
following that execution of I.

NextStackFrame indicates what falls through to the following instruction. For
an unconditional branch instruction, it will have the special value afterGoto.
ExceptionStackFrame indicates what is passed to exception handlers.

mergedCodeIsTypeSafe(Environment, [instruction(Offset, Parse) | MoreCode],

                     frame(Locals, OperandStack, Flags)) :-

    instructionIsTypeSafe(Parse, Environment, Offset,

                          frame(Locals, OperandStack, Flags),

                          NextStackFrame, ExceptionStackFrame),

    instructionSatisfiesHandlers(Environment, Offset, ExceptionStackFrame),

    mergedCodeIsTypeSafe(Environment, MoreCode, NextStackFrame).

• After an unconditional branch (indicated by an incoming type state of
afterGoto), if we have a stack map frame giving the type state for the following
instructions, we can proceed and type check them using the type state provided
by the stack map frame.

mergedCodeIsTypeSafe(Environment, [stackMap(Offset, MapFrame) | MoreCode],

                     afterGoto) :-

    mergedCodeIsTypeSafe(Environment, MoreCode, MapFrame).

• It is illegal to have code after an unconditional branch without a stack map frame
being provided for it.

mergedCodeIsTypeSafe(_Environment, [instruction(_, _) | _MoreCode],

                     afterGoto) :-

    write_ln('No stack frame after unconditional branch'),

    fail.

• If we have an unconditional branch at the end of the code, stop.
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mergedCodeIsTypeSafe(_Environment, [endOfCode(Offset)],

                     afterGoto).

Branching to a target is type safe if the target has an associated stack frame, Frame,
and the current stack frame, StackFrame, is assignable to Frame.

targetIsTypeSafe(Environment, StackFrame, Target) :-

    offsetStackFrame(Environment, Target, Frame),

    frameIsAssignable(StackFrame, Frame).

An instruction satisfies its exception handlers if it satisfies every exception handler
that is applicable to the instruction.

instructionSatisfiesHandlers(Environment, Offset, ExceptionStackFrame) :-

    exceptionHandlers(Environment, Handlers),

    sublist(isApplicableHandler(Offset), Handlers, ApplicableHandlers),

    checklist(instructionSatisfiesHandler(Environment, ExceptionStackFrame),

              ApplicableHandlers).

An exception handler is applicable to an instruction if the offset of the instruction
is greater or equal to the start of the handler's range and less than the end of the
handler's range.

isApplicableHandler(Offset, handler(Start, End, _Target, _ClassName)) :-

    Offset >= Start,

    Offset < End.

An instruction satisfies an exception handler if the instructions's outgoing type state
is ExcStackFrame, and the handler's target (the initial instruction of the handler
code) is type safe assuming an incoming type state T. The type state T is derived
from ExcStackFrame by replacing the operand stack with a stack whose sole
element is the handler's exception class.

instructionSatisfiesHandler(Environment, ExcStackFrame, Handler) :-

    Handler = handler(_, _, Target, _),

    currentClassLoader(Environment, CurrentLoader),

    handlerExceptionClass(Handler, ExceptionClass, CurrentLoader), 

    /* The stack consists of just the exception. */

    ExcStackFrame = frame(Locals, _, Flags),

    TrueExcStackFrame = frame(Locals, [ ExceptionClass ], Flags),

    operandStackHasLegalLength(Environment, TrueExcStackFrame),

    targetIsTypeSafe(Environment, TrueExcStackFrame, Target).
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4.10.1.7 Type Checking Load and Store Instructions

All load instructions are variations on a common pattern, varying the type of the
value that the instruction loads.

Loading a value of type Type from local variable Index is type safe, if the
type of that local variable is ActualType, ActualType is assignable to Type, and
pushing ActualType onto the incoming operand stack is a valid type transition
(§4.10.1.4) that yields a new type state NextStackFrame. After execution of the
load instruction, the type state will be NextStackFrame.

loadIsTypeSafe(Environment, Index, Type, StackFrame, NextStackFrame) :-

    StackFrame = frame(Locals, _OperandStack, _Flags),

    nth0(Index, Locals, ActualType),

    isAssignable(ActualType, Type),

    validTypeTransition(Environment, [], ActualType, StackFrame,

                        NextStackFrame).

All store instructions are variations on a common pattern, varying the type of the
value that the instruction stores.

In general, a store instruction is type safe if the local variable it references is of a
type that is a supertype of Type, and the top of the operand stack is of a subtype of
Type, where Type is the type the instruction is designed to store.

More precisely, the store is type safe if one can pop a type ActualType that
"matches" Type (that is, is a subtype of Type) off the operand stack (§4.10.1.4),
and then legally assign that type the local variable LIndex.

storeIsTypeSafe(_Environment, Index, Type,

                frame(Locals, OperandStack, Flags),

                frame(NextLocals, NextOperandStack, Flags)) :-

    popMatchingType(OperandStack, Type, NextOperandStack, ActualType),

    modifyLocalVariable(Index, ActualType, Locals, NextLocals).

Given local variables Locals, modifying Index to have type Type results in the
local variable list NewLocals. The modifications are somewhat involved, because
some values (and their corresponding types) occupy two local variables. Hence,
modifying LN may require modifying LN+1 (because the type will occupy both the
N and N+1 slots) or LN-1 (because local N used to be the upper half of the two word
value/type starting at local N-1, and so local N-1 must be invalidated), or both. This
is described further below. We start at L0 and count up.

modifyLocalVariable(Index, Type, Locals, NewLocals) :-

    modifyLocalVariable(0, Index, Type, Locals, NewLocals).
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Given LocalsRest, the suffix of the local variable list starting at index I, modifying
local variable Index to have type Type results in the local variable list suffix
NextLocalsRest.

If I < Index-1, just copy the input to the output and recurse forward. If I =
Index-1, the type of local I may change. This can occur if LI has a type of size 2.
Once we set LI+1 to the new type (and the corresponding value), the type/value of
LI will be invalidated, as its upper half will be trashed. Then we recurse forward.

modifyLocalVariable(I, Index, Type,

                    [Locals1 | LocalsRest],

                    [Locals1 | NextLocalsRest] ) :-

    I < Index - 1, 

    I1 is I + 1,

    modifyLocalVariable(I1, Index, Type, LocalsRest, NextLocalsRest).

modifyLocalVariable(I, Index, Type,

                    [Locals1 | LocalsRest],

                    [NextLocals1 | NextLocalsRest] ) :-

    I =:= Index - 1,

    modifyPreIndexVariable(Locals1, NextLocals1),

    modifyLocalVariable(Index, Index, Type, LocalsRest, NextLocalsRest).

When we find the variable, and it only occupies one word, we change it to Type
and we're done. When we find the variable, and it occupies two words, we change
its type to Type and the next word to top.

modifyLocalVariable(Index, Index, Type,

                    [_ | LocalsRest], [Type | LocalsRest]) :-

    sizeOf(Type, 1).

modifyLocalVariable(Index, Index, Type,

                    [_, _ | LocalsRest], [Type, top | LocalsRest]) :-

    sizeOf(Type, 2).

We refer to a local whose index immediately precedes a local whose type will be
modified as a pre-index variable. The future type of a pre-index variable of type
InputType is Result. If the type, Type, of the pre-index local is of size 1, it doesn't
change. If the type of the pre-index local, Type, is 2, we need to mark the lower
half of its two word value as unusable, by setting its type to top.

modifyPreIndexVariable(Type, Type) :- sizeOf(Type, 1).

modifyPreIndexVariable(Type, top) :- sizeOf(Type, 2).
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4.10.1.8 Type Checking for protected Members

All instructions that access members must contend with the rules concerning
protected members. This section describes the protected check that corresponds
to JLS §6.6.2.1.

The protected check applies only to protected members of superclasses of the
current class. protected members in other classes will be caught by the access
checking done at resolution (§5.4.4). There are four cases:

• If the name of a class is not the name of any superclass, it cannot be a superclass,
and so it can safely be ignored.

passesProtectedCheck(Environment, MemberClassName, MemberName,

                     MemberDescriptor, StackFrame) :-

    thisClass(Environment, class(CurrentClassName, CurrentLoader)),

    superclassChain(CurrentClassName, CurrentLoader, Chain),

    notMember(class(MemberClassName, _), Chain).

• If the MemberClassName is the same as the name of a superclass, the class
being resolved may indeed be a superclass. In this case, if no superclass named
MemberClassName in a different run-time package has a protected member
named MemberName with descriptor MemberDescriptor, the protected check
does not apply.

This is because the actual class being resolved will either be one of these superclasses,
in which case we know that it is either in the same run-time package, and the access is
legal; or the member in question is not protected and the check does not apply; or it
will be a subclass, in which case the check would succeed anyway; or it will be some
other class in the same run-time package, in which case the access is legal and the check
need not take place; or the verifier need not flag this as a problem, since it will be caught
anyway because resolution will per force fail.

passesProtectedCheck(Environment, MemberClassName, MemberName,

                     MemberDescriptor, StackFrame) :-

    thisClass(Environment, class(CurrentClassName, CurrentLoader)),

    superclassChain(CurrentClassName, CurrentLoader, Chain),

    member(class(MemberClassName, _), Chain),

    classesInOtherPkgWithProtectedMember(

      class(CurrentClassName, CurrentLoader),

      MemberName, MemberDescriptor, MemberClassName, Chain, []).

• If there does exist a protected superclass member in a different run-time
package, then load MemberClassName; if the member in question is not
protected, the check does not apply. (Using a superclass member that is not
protected is trivially correct.)
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passesProtectedCheck(Environment, MemberClassName, MemberName,

                     MemberDescriptor,

                     frame(_Locals, [Target | Rest], _Flags)) :-

    thisClass(Environment, class(CurrentClassName, CurrentLoader)),

    superclassChain(CurrentClassName, CurrentLoader, Chain),

    member(class(MemberClassName, _), Chain),

    classesInOtherPkgWithProtectedMember(

      class(CurrentClassName, CurrentLoader),

      MemberName, MemberDescriptor, MemberClassName, Chain, List),

    List \= [],

    loadedClass(MemberClassName, CurrentLoader, ReferencedClass),

    isNotProtected(ReferencedClass, MemberName, MemberDescriptor).

• Otherwise, use of a member of an object of type Target requires that Target be
assignable to the type of the current class.

passesProtectedCheck(Environment, MemberClassName, MemberName,

                     MemberDescriptor,

                     frame(_Locals, [Target | Rest], _Flags)) :-

    thisClass(Environment, class(CurrentClassName, CurrentLoader)),

    superclassChain(CurrentClassName, CurrentLoader, Chain),

    member(class(MemberClassName, _), Chain),

    classesInOtherPkgWithProtectedMember(

      class(CurrentClassName, CurrentLoader),

      MemberName, MemberDescriptor, MemberClassName, Chain, List),

    List \= [],

    loadedClass(MemberClassName, CurrentLoader, ReferencedClass),

    isProtected(ReferencedClass, MemberName, MemberDescriptor),

    isAssignable(Target, class(CurrentClassName, CurrentLoader)).

The predicate classesInOtherPkgWithProtectedMember(Class, MemberName,
MemberDescriptor, MemberClassName, Chain, List) is true if List is the set
of classes in Chain with name MemberClassName that are in a different run-time
package than Class which have a protected member named MemberName with
descriptor MemberDescriptor.
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classesInOtherPkgWithProtectedMember(_, _, _, _, [], []).

classesInOtherPkgWithProtectedMember(Class, MemberName,

                                     MemberDescriptor, MemberClassName,

                                     [class(MemberClassName, L) | Tail],

                                     [class(MemberClassName, L) | T]) :-

    differentRuntimePackage(Class, class(MemberClassName, L)),

    loadedClass(MemberClassName, L, Super),

    isProtected(Super, MemberName, MemberDescriptor),

    classesInOtherPkgWithProtectedMember(

      Class, MemberName, MemberDescriptor, MemberClassName, Tail, T).

classesInOtherPkgWithProtectedMember(Class, MemberName,

                                     MemberDescriptor, MemberClassName,

                                     [class(MemberClassName, L) | Tail],

                                     T) :-

    differentRuntimePackage(Class, class(MemberClassName, L)),

    loadedClass(MemberClassName, L, Super),

    isNotProtected(Super, MemberName, MemberDescriptor),

    classesInOtherPkgWithProtectedMember(

      Class, MemberName, MemberDescriptor, MemberClassName, Tail, T).

classesInOtherPkgWithProtectedMember(Class, MemberName,

                                     MemberDescriptor, MemberClassName,

                                     [class(MemberClassName, L) | Tail],

                                     T] :-

    sameRuntimePackage(Class, class(MemberClassName, L)),

    classesInOtherPkgWithProtectedMember(

      Class, MemberName, MemberDescriptor, MemberClassName, Tail, T).

sameRuntimePackage(Class1, Class2) :-

    classDefiningLoader(Class1, L),

    classDefiningLoader(Class2, L),

    samePackageName(Class1, Class2).

differentRuntimePackage(Class1, Class2) :-

    classDefiningLoader(Class1, L1),

    classDefiningLoader(Class2, L2),

    L1 \= L2.

differentRuntimePackage(Class1, Class2) :-

    differentPackageName(Class1, Class2).
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4.10.1.9 Type Checking Instructions

In general, the type rule for an instruction is given relative to an environment
Environment that defines the class and method in which the instruction occurs
(§4.10.1.1), and the offset Offset within the method at which the instruction
occurs. The rule states that if the incoming type state StackFrame fulfills certain
requirements, then:

• The instruction is type safe.

• It is provable that the type state after the instruction completes normally has
a particular form given by NextStackFrame, and that the type state after the
instruction completes abruptly is given by ExceptionStackFrame.

The type state after an instruction completes abruptly is the same as the incoming
type state, except that the operand stack is empty.

exceptionStackFrame(StackFrame, ExceptionStackFrame) :-

    StackFrame = frame(Locals, _OperandStack, Flags),

    ExceptionStackFrame = frame(Locals, [], Flags).

Many instructions have type rules that are completely isomorphic to the rules for
other instructions. If an instruction b1 is isomorphic to another instruction b2, then
the type rule for b1 is the same as the type rule for b2.

instructionIsTypeSafe(Instruction, Environment, Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :-

    instructionHasEquivalentTypeRule(Instruction, IsomorphicInstruction),

    instructionIsTypeSafe(IsomorphicInstruction, Environment, Offset,

                          StackFrame, NextStackFrame,

                          ExceptionStackFrame).

The English language description of each rule is intended to be readable,
intuitive, and concise. As such, the description avoids repeating all the contextual
assumptions given above. In particular:

• The description does not explicitly mention the environment.

• When the description speaks of the operand stack or local variables in the
following, it is referring to the operand stack and local variable components of
a type state: either the incoming type state or the outgoing one.

• The type state after the instruction completes abruptly is almost always identical
to the incoming type state. The description only discusses the type state after the
instruction completes abruptly when that is not the case.
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• The description speaks of popping and pushing types onto the operand stack, and
does not explicitly discuss issues of stack underflow or overflow. The description
assumes these operations can be completed successfully, but the Prolog clauses
for operand stack manipulation ensure that the necessary checks are made.

• The description discusses only the manipulation of logical types. In practice,
some types take more than one word. The description abstracts from these
representation details, but the Prolog clauses that manipulate data do not.

Any ambiguities can be resolved by referring to the formal Prolog clauses.
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aaload aaload

An aaload instruction is type safe iff one can validly replace types matching int
and an array type with component type ComponentType where ComponentType is
a subtype of Object, with ComponentType yielding the outgoing type state.

instructionIsTypeSafe(aaload, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    nth1OperandStackIs(2, StackFrame, ArrayType),

    arrayComponentType(ArrayType, ComponentType),

    isBootstrapLoader(BL),

    validTypeTransition(Environment,

                        [int, arrayOf(class('java/lang/Object', BL))],

                        ComponentType, StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

The component type of an array of X is X. We define the component type of null
to be null.

arrayComponentType(arrayOf(X), X).

arrayComponentType(null, null).
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aastore aastore

An aastore instruction is type safe iff one can validly pop types matching Object,
int, and an array of Object off the incoming operand stack yielding the outgoing
type state.

instructionIsTypeSafe(aastore, _Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    isBootstrapLoader(BL),

    canPop(StackFrame,

           [class('java/lang/Object', BL),

            int,

            arrayOf(class('java/lang/Object', BL))],

           NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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aconst_null aconst_null

An aconst_null instruction is type safe if one can validly push the type null onto
the incoming operand stack yielding the outgoing type state.

instructionIsTypeSafe(aconst_null, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [], null, StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).



THE CLASS FILE FORMAT Verification of class Files 4.10

229

aload, aload_<n> aload, aload_<n>

An aload instruction with operand Index is type safe and yields an outgoing
type state NextStackFrame, if a load instruction with operand Index and type
reference is type safe and yields an outgoing type state NextStackFrame.

instructionIsTypeSafe(aload(Index), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    loadIsTypeSafe(Environment, Index, reference, StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

The instructions aload_<n>, for 0 ≤ n ≤ 3, are type safe iff the equivalent aload
instruction is type safe.

instructionHasEquivalentTypeRule(aload_0, aload(0)).

instructionHasEquivalentTypeRule(aload_1, aload(1)).

instructionHasEquivalentTypeRule(aload_2, aload(2)).

instructionHasEquivalentTypeRule(aload_3, aload(3)).
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anewarray anewarray

An anewarray instruction with operand CP is type safe iff CP refers to a constant
pool entry denoting a class, interface, or array type, and one can legally replace a
type matching int on the incoming operand stack with an array with component
type CP yielding the outgoing type state.

instructionIsTypeSafe(anewarray(CP), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    (CP = class(_, _) ; CP = arrayOf(_)),

    validTypeTransition(Environment, [int], arrayOf(CP),

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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areturn areturn

An areturn instruction is type safe iff the enclosing method has a declared return
type, ReturnType, that is a reference type, and one can validly pop a type
matching ReturnType off the incoming operand stack.

instructionIsTypeSafe(areturn, Environment, _Offset, StackFrame,

                      afterGoto, ExceptionStackFrame) :- 

    thisMethodReturnType(Environment, ReturnType),

    isAssignable(ReturnType, reference),

    canPop(StackFrame, [ReturnType], _PoppedStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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arraylength arraylength

An arraylength instruction is type safe iff one can validly replace an array type on
the incoming operand stack with the type int yielding the outgoing type state.

instructionIsTypeSafe(arraylength, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    nth1OperandStackIs(1, StackFrame, ArrayType),

    arrayComponentType(ArrayType, _),

    validTypeTransition(Environment, [top], int, StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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astore, astore_<n> astore, astore_<n>

An astore instruction with operand Index is type safe and yields an outgoing
type state NextStackFrame, if a store instruction with operand Index and type
reference is type safe and yields an outgoing type state NextStackFrame.

instructionIsTypeSafe(astore(Index), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    storeIsTypeSafe(Environment, Index, reference, StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

The instructions astore_<n>, for 0 ≤ n ≤ 3, are type safe iff the equivalent astore
instruction is type safe.

instructionHasEquivalentTypeRule(astore_0, astore(0)).

instructionHasEquivalentTypeRule(astore_1, astore(1)).

instructionHasEquivalentTypeRule(astore_2, astore(2)).

instructionHasEquivalentTypeRule(astore_3, astore(3)).
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athrow athrow

An athrow instruction is type safe iff the top of the operand stack matches
Throwable.

instructionIsTypeSafe(athrow, _Environment, _Offset, StackFrame,

                      afterGoto, ExceptionStackFrame) :- 

    isBootstrapLoader(BL),

    canPop(StackFrame, [class('java/lang/Throwable', BL)], _PoppedStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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baload baload

A baload instruction is type safe iff one can validly replace types matching int and
a small array type on the incoming operand stack with int yielding the outgoing
type state.

instructionIsTypeSafe(baload, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :

    nth1OperandStackIs(2, StackFrame, ArrayType),

    isSmallArray(ArrayType),

    validTypeTransition(Environment, [int, top], int,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

An array type is a small array type if it is an array of byte, an array of boolean,
or a subtype thereof (null).

isSmallArray(arrayOf(byte)).

isSmallArray(arrayOf(boolean)).

isSmallArray(null).
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bastore bastore

A bastore instruction is type safe iff one can validly pop types matching int, int
and a small array type off the incoming operand stack yielding the outgoing type
state.

instructionIsTypeSafe(bastore, _Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    nth1OperandStackIs(3, StackFrame, ArrayType),

    isSmallArray(ArrayType),

    canPop(StackFrame, [int, int, top], NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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bipush bipush

A bipush instruction is type safe iff the equivalent sipush instruction is type safe.

instructionHasEquivalentTypeRule(bipush(Value), sipush(Value)).
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caload caload

A caload instruction is type safe iff one can validly replace types matching int
and array of char on the incoming operand stack with int yielding the outgoing
type state.

instructionIsTypeSafe(caload, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [int, arrayOf(char)], int,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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castore castore

A castore instruction is type safe iff one can validly pop types matching int, int
and array of char off the incoming operand stack yielding the outgoing type state.

instructionIsTypeSafe(castore, _Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    canPop(StackFrame, [int, int, arrayOf(char)], NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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checkcast checkcast

A checkcast instruction with operand CP is type safe iff CP refers to a constant
pool entry denoting either a class or an array, and one can validly replace the type
Object on top of the incoming operand stack with the type denoted by CP yielding
the outgoing type state.

instructionIsTypeSafe(checkcast(CP), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    (CP = class(_, _) ; CP = arrayOf(_)),

    isBootstrapLoader(BL),

    validTypeTransition(Environment, [class('java/lang/Object', BL)], CP,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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d2f, d2i, d2l d2f, d2i, d2l

A d2f instruction is type safe if one can validly pop double off the incoming
operand stack and replace it with float, yielding the outgoing type state.

instructionIsTypeSafe(d2f, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [double], float,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

A d2i instruction is type safe if one can validly pop double off the incoming
operand stack and replace it with int, yielding the outgoing type state.

instructionIsTypeSafe(d2i, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [double], int,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

A d2l instruction is type safe if one can validly pop double off the incoming
operand stack and replace it with long, yielding the outgoing type state.

instructionIsTypeSafe(d2l, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [double], long,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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dadd dadd

A dadd instruction is type safe iff one can validly replace types matching double
and double on the incoming operand stack with double yielding the outgoing type
state.

instructionIsTypeSafe(dadd, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :-

    validTypeTransition(Environment, [double, double], double,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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daload daload

A daload instruction is type safe iff one can validly replace types matching int and
array of double on the incoming operand stack with double yielding the outgoing
type state.

instructionIsTypeSafe(daload, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [int, arrayOf(double)], double,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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dastore dastore

A dastore instruction is type safe iff one can validly pop types matching double,
int and array of double off the incoming operand stack yielding the outgoing type
state.

instructionIsTypeSafe(dastore, _Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    canPop(StackFrame, [double, int, arrayOf(double)], NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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dcmp<op> dcmp<op>

A dcmpg instruction is type safe iff one can validly replace types matching double
and double on the incoming operand stack with int yielding the outgoing type
state.

instructionIsTypeSafe(dcmpg, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [double, double], int,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

A dcmpl instruction is type safe iff the equivalent dcmpg instruction is type safe.

instructionHasEquivalentTypeRule(dcmpl, dcmpg).
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dconst_<d> dconst_<d>

A dconst_0 instruction is type safe if one can validly push the type double onto
the incoming operand stack yielding the outgoing type state.

instructionIsTypeSafe(dconst_0, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [], double, StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

A dconst_1 instruction is type safe iff the equivalent dconst_0 instruction is type
safe.

instructionHasEquivalentTypeRule(dconst_1, dconst_0).
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ddiv ddiv

A ddiv instruction is type safe iff the equivalent dadd instruction is type safe.

instructionHasEquivalentTypeRule(ddiv, dadd).
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dload, dload_<n> dload, dload_<n>

A dload instruction with operand Index is type safe and yields an outgoing type
state NextStackFrame, if a load instruction with operand Index and type double
is type safe and yields an outgoing type state NextStackFrame.

instructionIsTypeSafe(dload(Index), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    loadIsTypeSafe(Environment, Index, double, StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

The instructions dload_<n>, for 0 ≤ n ≤ 3, are typesafe iff the equivalent dload
instruction is type safe.

instructionHasEquivalentTypeRule(dload_0, dload(0)).

instructionHasEquivalentTypeRule(dload_1, dload(1)).

instructionHasEquivalentTypeRule(dload_2, dload(2)).

instructionHasEquivalentTypeRule(dload_3, dload(3)).
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dmul dmul

A dmul instruction is type safe iff the equivalent dadd instruction is type safe.

instructionHasEquivalentTypeRule(dmul, dadd).
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dneg dneg

A dneg instruction is type safe iff there is a type matching double on the incoming
operand stack. The dneg instruction does not alter the type state.

instructionIsTypeSafe(dneg, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [double], double,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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drem drem

A drem instruction is type safe iff the equivalent dadd instruction is type safe.

instructionHasEquivalentTypeRule(drem, dadd).
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dreturn dreturn

A dreturn instruction is type safe if the enclosing method has a declared return
type of double, and one can validly pop a type matching double off the incoming
operand stack.

instructionIsTypeSafe(dreturn, Environment, _Offset, StackFrame,

                      afterGoto, ExceptionStackFrame) :- 

    thisMethodReturnType(Environment, double),

    canPop(StackFrame, [double], _PoppedStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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dstore, dstore_<n> dstore, dstore_<n>

A dstore instruction with operand Index is type safe and yields an outgoing type
state NextStackFrame, if a store instruction with operand Index and type double
is type safe and yields an outgoing type state NextStackFrame.

instructionIsTypeSafe(dstore(Index), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    storeIsTypeSafe(Environment, Index, double, StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

The instructions dstore_<n>, for 0 ≤ n ≤ 3, are type safe iff the equivalent dstore
instruction is type safe.

instructionHasEquivalentTypeRule(dstore_0, dstore(0)).

instructionHasEquivalentTypeRule(dstore_1, dstore(1)).

instructionHasEquivalentTypeRule(dstore_2, dstore(2)).

instructionHasEquivalentTypeRule(dstore_3, dstore(3)).
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dsub dsub

A dsub instruction is type safe iff the equivalent dadd instruction is type safe.

instructionHasEquivalentTypeRule(dsub, dadd).
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dup dup

A dup instruction is type safe iff one can validly replace a category 1 type, Type,
with the types Type, Type, yielding the outgoing type state.

instructionIsTypeSafe(dup, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :-

    StackFrame = frame(Locals, InputOperandStack, Flags),

    popCategory1(InputOperandStack, Type, _),

    canSafelyPush(Environment, InputOperandStack, Type, OutputOperandStack),

    NextStackFrame = frame(Locals, OutputOperandStack, Flags),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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dup_x1 dup_x1

A dup_x1 instruction is type safe iff one can validly replace two category 1 types,
Type1, and Type2, on the incoming operand stack with the types Type1, Type2,
Type1, yielding the outgoing type state.

instructionIsTypeSafe(dup_x1, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    StackFrame = frame(Locals, InputOperandStack, Flags),

    popCategory1(InputOperandStack, Type1, Stack1),

    popCategory1(Stack1, Type2, Rest),

    canSafelyPushList(Environment, Rest, [Type1, Type2, Type1],

                      OutputOperandStack),

    NextStackFrame = frame(Locals, OutputOperandStack, Flags),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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dup_x2 dup_x2

A dup_x2 instruction is type safe iff it is a type safe form of the dup_x2 instruction.

instructionIsTypeSafe(dup_x2, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    StackFrame = frame(Locals, InputOperandStack, Flags),

    dup_x2FormIsTypeSafe(Environment, InputOperandStack, OutputOperandStack),

    NextStackFrame = frame(Locals, OutputOperandStack, Flags),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

A dup_x2 instruction is a type safe form of the dup_x2 instruction iff it is a type
safe form 1 dup_x2 instruction or a type safe form 2 dup_x2 instruction.

dup_x2FormIsTypeSafe(Environment, InputOperandStack, OutputOperandStack) :-

    dup_x2Form1IsTypeSafe(Environment, InputOperandStack, OutputOperandStack).

dup_x2FormIsTypeSafe(Environment, InputOperandStack, OutputOperandStack) :-

    dup_x2Form2IsTypeSafe(Environment, InputOperandStack, OutputOperandStack).

A dup_x2 instruction is a type safe form 1 dup_x2 instruction iff one can validly
replace three category 1 types, Type1, Type2, Type3 on the incoming operand stack
with the types Type1, Type2, Type3, Type1, yielding the outgoing type state.

dup_x2Form1IsTypeSafe(Environment, InputOperandStack, OutputOperandStack) :-

    popCategory1(InputOperandStack, Type1, Stack1),

    popCategory1(Stack1, Type2, Stack2),

    popCategory1(Stack2, Type3, Rest),

    canSafelyPushList(Environment, Rest, [Type1, Type3, Type2, Type1],

                      OutputOperandStack).

A dup_x2 instruction is a type safe form 2 dup_x2 instruction iff one can validly
replace a category 1 type, Type1, and a category 2 type, Type2, on the incoming
operand stack with the types Type1, Type2, Type1, yielding the outgoing type state.

dup_x2Form2IsTypeSafe(Environment, InputOperandStack, OutputOperandStack) :-

    popCategory1(InputOperandStack, Type1, Stack1),

    popCategory2(Stack1, Type2, Rest),

    canSafelyPushList(Environment, Rest, [Type1, Type2, Type1],

                      OutputOperandStack).
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dup2 dup2

A dup2 instruction is type safe iff it is a type safe form of the dup2 instruction.

instructionIsTypeSafe(dup2, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :-

    StackFrame = frame(Locals, InputOperandStack, Flags),

    dup2FormIsTypeSafe(Environment,InputOperandStack, OutputOperandStack),

    NextStackFrame = frame(Locals, OutputOperandStack, Flags),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

A dup2 instruction is a type safe form of the dup2 instruction iff it is a type safe
form 1 dup2 instruction or a type safe form 2 dup2 instruction.

dup2FormIsTypeSafe(Environment, InputOperandStack, OutputOperandStack) :-

    dup2Form1IsTypeSafe(Environment,InputOperandStack, OutputOperandStack).

dup2FormIsTypeSafe(Environment, InputOperandStack, OutputOperandStack) :-

    dup2Form2IsTypeSafe(Environment,InputOperandStack, OutputOperandStack).

A dup2 instruction is a type safe form 1 dup2 instruction iff one can validly replace
two category 1 types, Type1 and Type2 on the incoming operand stack with the
types Type1, Type2, Type1, Type2, yielding the outgoing type state.

dup2Form1IsTypeSafe(Environment, InputOperandStack, OutputOperandStack):-

    popCategory1(InputOperandStack, Type1, TempStack),

    popCategory1(TempStack, Type2, _),

    canSafelyPushList(Environment, InputOperandStack, [Type2, Type1],

                      OutputOperandStack).

A dup2 instruction is a type safe form 2 dup2 instruction iff one can validly replace
a category 2 type, Type on the incoming operand stack with the types Type, Type,
yielding the outgoing type state.

dup2Form2IsTypeSafe(Environment, InputOperandStack, OutputOperandStack):-

    popCategory2(InputOperandStack, Type, _),

    canSafelyPush(Environment, InputOperandStack, Type, OutputOperandStack).
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dup2_x1 dup2_x1

A dup2_x1 instruction is type safe iff it is a type safe form of the dup2_x1
instruction.

instructionIsTypeSafe(dup2_x1, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    StackFrame = frame(Locals, InputOperandStack, Flags),

    dup2_x1FormIsTypeSafe(Environment, InputOperandStack, OutputOperandStack),

    NextStackFrame = frame(Locals, OutputOperandStack, Flags),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

A dup2_x1 instruction is a type safe form of the dup2_x1 instruction iff it is a type
safe form 1 dup2_x1 instruction or a type safe form 2 dup_x2 instruction.

dup2_x1FormIsTypeSafe(Environment, InputOperandStack, OutputOperandStack) :-

    dup2_x1Form1IsTypeSafe(Environment, InputOperandStack, OutputOperandStack).

dup2_x1FormIsTypeSafe(Environment, InputOperandStack, OutputOperandStack) :-

    dup2_x1Form2IsTypeSafe(Environment, InputOperandStack, OutputOperandStack).

A dup2_x1 instruction is a type safe form 1 dup2_x1 instruction iff one can validly
replace three category 1 types, Type1, Type2, Type3, on the incoming operand stack
with the types Type1, Type2, Type3, Type1, Type2, yielding the outgoing type state.

dup2_x1Form1IsTypeSafe(Environment, InputOperandStack, OutputOperandStack) :-

    popCategory1(InputOperandStack, Type1, Stack1),

    popCategory1(Stack1, Type2, Stack2),

    popCategory1(Stack2, Type3, Rest),

    canSafelyPushList(Environment, Rest, [Type2, Type1, Type3, Type2, Type1],

                      OutputOperandStack).

A dup2_x1 instruction is a type safe form 2 dup2_x1 instruction iff one can validly
replace a category 2 type, Type1, and a category 1 type, Type2, on the incoming
operand stack with the types Type1, Type2, Type1, yielding the outgoing type state.

dup2_x1Form2IsTypeSafe(Environment, InputOperandStack, OutputOperandStack) :-

    popCategory2(InputOperandStack, Type1, Stack1),

    popCategory1(Stack1, Type2, Rest),

    canSafelyPushList(Environment, Rest, [Type1, Type2, Type1],

                      OutputOperandStack).
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dup2_x2 dup2_x2

A dup2_x2 instruction is type safe iff it is a type safe form of the dup2_x2
instruction.

instructionIsTypeSafe(dup2_x2, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    StackFrame = frame(Locals, InputOperandStack, Flags),

    dup2_x2FormIsTypeSafe(Environment, InputOperandStack, OutputOperandStack),

    NextStackFrame = frame(Locals, OutputOperandStack, Flags),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

A dup2_x2 instruction is a type safe form of the dup2_x2 instruction iff one of the
following holds:

• it is a type safe form 1 dup2_x2 instruction.

• it is a type safe form 2 dup2_x2 instruction.

• it is a type safe form 3 dup2_x2 instruction.

• it is a type safe form 4 dup2_x2 instruction.

dup2_x2FormIsTypeSafe(Environment, InputOperandStack, OutputOperandStack) :-

    dup2_x2Form1IsTypeSafe(Environment, InputOperandStack, OutputOperandStack).

dup2_x2FormIsTypeSafe(Environment, InputOperandStack, OutputOperandStack) :-

    dup2_x2Form2IsTypeSafe(Environment, InputOperandStack, OutputOperandStack).

dup2_x2FormIsTypeSafe(Environment, InputOperandStack, OutputOperandStack) :-

    dup2_x2Form3IsTypeSafe(Environment, InputOperandStack, OutputOperandStack).

dup2_x2FormIsTypeSafe(Environment, InputOperandStack, OutputOperandStack) :-

    dup2_x2Form4IsTypeSafe(Environment, InputOperandStack, OutputOperandStack).

A dup2_x2 instruction is a type safe form 1 dup2_x2 instruction iff one can validly
replace four category 1 types, Type1, Type2, Type3, Type4, on the incoming
operand stack with the types Type1, Type2, Type3, Type4, Type1, Type2, yielding
the outgoing type state.
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dup2_x2Form1IsTypeSafe(Environment, InputOperandStack, OutputOperandStack) :-

    popCategory1(InputOperandStack, Type1, Stack1),

    popCategory1(Stack1, Type2, Stack2),

    popCategory1(Stack2, Type3, Stack3),

    popCategory1(Stack3, Type4, Rest),

    canSafelyPushList(Environment, Rest,

                      [Type2, Type1, Type4, Type3, Type2, Type1],

                      OutputOperandStack).

A dup2_x2 instruction is a type safe form 2 dup2_x2 instruction iff one can validly
replace a category 2 type, Type1, and two category 1 types, Type2, Type3, on the
incoming operand stack with the types Type1, Type2, Type3, Type1, yielding the
outgoing type state.

dup2_x2Form2IsTypeSafe(Environment, InputOperandStack, OutputOperandStack) :-

    popCategory2(InputOperandStack, Type1, Stack1),

    popCategory1(Stack1, Type2, Stack2),

    popCategory1(Stack2, Type3, Rest),

    canSafelyPushList(Environment, Rest,

                      [Type1, Type3, Type2, Type1],

                      OutputOperandStack).

A dup2_x2 instruction is a type safe form 3 dup2_x2 instruction iff one can validly
replace two category 1 types, Type1, Type2, and a category 2 type, Type3, on
the incoming operand stack with the types Type1, Type2, Type3, Type1, Type2,
yielding the outgoing type state.

dup2_x2Form3IsTypeSafe(Environment, InputOperandStack, OutputOperandStack) :-

    popCategory1(InputOperandStack, Type1, Stack1),

    popCategory1(Stack1, Type2, Stack2),

    popCategory2(Stack2, Type3, Rest),

    canSafelyPushList(Environment, Rest,

                      [Type2, Type1, Type3, Type2, Type1],

                      OutputOperandStack).

A dup2_x2 instruction is a type safe form 4 dup2_x2 instruction iff one can validly
replace two category 2 types, Type1, Type2, on the incoming operand stack with
the types Type1, Type2, Type1, yielding the outgoing type state.

dup2_x2Form4IsTypeSafe(Environment, InputOperandStack, OutputOperandStack) :-

    popCategory2(InputOperandStack, Type1, Stack1),

    popCategory2(Stack1, Type2, Rest),

    canSafelyPushList(Environment, Rest, [Type1, Type2, Type1],

                      OutputOperandStack).
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f2d, f2i, f2l f2d, f2i, f2l

An f2d instruction is type safe if one can validly pop float off the incoming
operand stack and replace it with double, yielding the outgoing type state.

instructionIsTypeSafe(f2d, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [float], double,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

An f2i instruction is type safe if one can validly pop float off the incoming operand
stack and replace it with int, yielding the outgoing type state.

instructionIsTypeSafe(f2i, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [float], int,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

An f2l instruction is type safe if one can validly pop float off the incoming operand
stack and replace it with long, yielding the outgoing type state.

instructionIsTypeSafe(f2l, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [float], long,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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fadd fadd

An fadd instruction is type safe iff one can validly replace types matching float
and float on the incoming operand stack with float yielding the outgoing type
state.

instructionIsTypeSafe(fadd, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [float, float], float,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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faload faload

An faload instruction is type safe iff one can validly replace types matching int
and array of float on the incoming operand stack with float yielding the outgoing
type state.

instructionIsTypeSafe(faload, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [int, arrayOf(float)], float,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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fastore fastore

An fastore instruction is type safe iff one can validly pop types matching float,
int and array of float off the incoming operand stack yielding the outgoing type
state.

instructionIsTypeSafe(fastore, _Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    canPop(StackFrame, [float, int, arrayOf(float)], NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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fcmp<op> fcmp<op>

An fcmpg instruction is type safe iff one can validly replace types matching float
and float on the incoming operand stack with int yielding the outgoing type state.

instructionIsTypeSafe(fcmpg, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [float, float], int,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

An fcmpl instruction is type safe iff the equivalent fcmpg instruction is type safe.

instructionHasEquivalentTypeRule(fcmpl, fcmpg).
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fconst_<f> fconst_<f>

An fconst_0 instruction is type safe if one can validly push the type float onto the
incoming operand stack yielding the outgoing type state.

instructionIsTypeSafe(fconst_0, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [], float, StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

The rules for the other variants of fconst are equivalent.

instructionHasEquivalentTypeRule(fconst_1, fconst_0).

instructionHasEquivalentTypeRule(fconst_2, fconst_0).
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fdiv fdiv

An fdiv instruction is type safe iff the equivalent fadd instruction is type safe.

instructionHasEquivalentTypeRule(fdiv, fadd).
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fload, fload_<n> fload, fload_<n>

An fload instruction with operand Index is type safe and yields an outgoing type
state NextStackFrame, if a load instruction with operand Index and type float is
type safe and yields an outgoing type state NextStackFrame.

instructionIsTypeSafe(fload(Index), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    loadIsTypeSafe(Environment, Index, float, StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

The instructions fload_<n>, for 0 ≤ n ≤ 3, are typesafe iff the equivalent fload
instruction is type safe.

instructionHasEquivalentTypeRule(fload_0, fload(0)).

instructionHasEquivalentTypeRule(fload_1, fload(1)).

instructionHasEquivalentTypeRule(fload_2, fload(2)).

instructionHasEquivalentTypeRule(fload_3, fload(3)).
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fmul fmul

An fmul instruction is type safe iff the equivalent fadd instruction is type safe.

instructionHasEquivalentTypeRule(fmul, fadd).
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fneg fneg

An fneg instruction is type safe iff there is a type matching float on the incoming
operand stack. The fneg instruction does not alter the type state.

instructionIsTypeSafe(fneg, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [float], float,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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frem frem

An frem instruction is type safe iff the equivalent fadd instruction is type safe.

instructionHasEquivalentTypeRule(frem, fadd).
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freturn freturn

An freturn instruction is type safe if the enclosing method has a declared return
type of float, and one can validly pop a type matching float off the incoming
operand stack.

instructionIsTypeSafe(freturn, Environment, _Offset, StackFrame,

                      afterGoto, ExceptionStackFrame) :- 

    thisMethodReturnType(Environment, float),

    canPop(StackFrame, [float], _PoppedStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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fstore, fstore_<n> fstore, fstore_<n>

An fstore instruction with operand Index is type safe and yields an outgoing type
state NextStackFrame, if a store instruction with operand Index and type float is
type safe and yields an outgoing type state NextStackFrame.

instructionIsTypeSafe(fstore(Index), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    storeIsTypeSafe(Environment, Index, float, StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

The instructions fstore_<n>, for 0 ≤ n ≤ 3, are typesafe iff the equivalent fstore
instruction is type safe.

instructionHasEquivalentTypeRule(fstore_0, fstore(0)).

instructionHasEquivalentTypeRule(fstore_1, fstore(1)).

instructionHasEquivalentTypeRule(fstore_2, fstore(2)).

instructionHasEquivalentTypeRule(fstore_3, fstore(3)).
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fsub fsub

An fsub instruction is type safe iff the equivalent fadd instruction is type safe.

instructionHasEquivalentTypeRule(fsub, fadd).
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getfield getfield

A getfield instruction with operand CP is type safe iff CP refers to a constant
pool entry denoting a field whose declared type is FieldType, declared in a class
FieldClassName, and one can validly replace a type matching FieldClassName
with type FieldType on the incoming operand stack yielding the outgoing type
state. FieldClassName must not be an array type. protected fields are subject to
additional checks (§4.10.1.8).

instructionIsTypeSafe(getfield(CP), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    CP = field(FieldClassName, FieldName, FieldDescriptor),

    parseFieldDescriptor(FieldDescriptor, FieldType),

    passesProtectedCheck(Environment, FieldClassName, FieldName,

                         FieldDescriptor, StackFrame),

    currentClassLoader(Environment, CurrentLoader),

    validTypeTransition(Environment,

                        [class(FieldClassName, CurrentLoader)], FieldType,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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getstatic getstatic

A getstatic instruction with operand CP is type safe iff CP refers to a constant pool
entry denoting a field whose declared type is FieldType, and one can validly push
FieldType on the incoming operand stack yielding the outgoing type state.

instructionIsTypeSafe(getstatic(CP), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    CP = field(_FieldClassName, _FieldName, FieldDescriptor),

    parseFieldDescriptor(FieldDescriptor, FieldType),

    validTypeTransition(Environment, [], FieldType,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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goto, goto_w goto, goto_w

A goto instruction is type safe iff its target operand is a valid branch target.

instructionIsTypeSafe(goto(Target), Environment, _Offset, StackFrame,

                      afterGoto, ExceptionStackFrame) :-

    targetIsTypeSafe(Environment, StackFrame, Target),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

A goto_w instruction is type safe iff the equivalent goto instruction is type safe.

instructionHasEquivalentTypeRule(goto_w(Target), goto(Target)).
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i2b, i2c, i2d, i2f, i2l, i2s i2b, i2c, i2d, i2f, i2l, i2s

An i2b instruction is type safe iff the equivalent ineg instruction is type safe.

instructionHasEquivalentTypeRule(i2b, ineg).

An i2c instruction is type safe iff the equivalent ineg instruction is type safe.

instructionHasEquivalentTypeRule(i2c, ineg).

An i2d instruction is type safe if one can validly pop int off the incoming operand
stack and replace it with double, yielding the outgoing type state.

instructionIsTypeSafe(i2d, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [int], double,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

An i2f instruction is type safe if one can validly pop int off the incoming operand
stack and replace it with float, yielding the outgoing type state.

instructionIsTypeSafe(i2f, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [int], float,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

An i2l instruction is type safe if one can validly pop int off the incoming operand
stack and replace it with long, yielding the outgoing type state.

instructionIsTypeSafe(i2l, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [int], long,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

An i2s instruction is type safe iff the equivalent ineg instruction is type safe.

instructionHasEquivalentTypeRule(i2s, ineg).
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iadd iadd

An iadd instruction is type safe iff one can validly replace types matching int and
int on the incoming operand stack with int yielding the outgoing type state.

instructionIsTypeSafe(iadd, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [int, int], int,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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iaload iaload

An iaload instruction is type safe iff one can validly replace types matching int
and array of int on the incoming operand stack with int yielding the outgoing
type state.

instructionIsTypeSafe(iaload, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [int, arrayOf(int)], int,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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iand iand

An iand instruction is type safe iff the equivalent iadd instruction is type safe.

instructionHasEquivalentTypeRule(iand, iadd).
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iastore iastore

An iastore instruction is type safe iff one can validly pop types matching int, int
and array of int off the incoming operand stack yielding the outgoing type state.

instructionIsTypeSafe(iastore, _Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    canPop(StackFrame, [int, int, arrayOf(int)], NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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iconst_<i> iconst_<i>

An iconst_m1 instruction is type safe if one can validly push the type int onto the
incoming operand stack yielding the outgoing type state.

instructionIsTypeSafe(iconst_m1, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [], int, StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

The rules for the other variants of iconst are equivalent.

instructionHasEquivalentTypeRule(iconst_0, iconst_m1).

instructionHasEquivalentTypeRule(iconst_1, iconst_m1).

instructionHasEquivalentTypeRule(iconst_2, iconst_m1).

instructionHasEquivalentTypeRule(iconst_3, iconst_m1).

instructionHasEquivalentTypeRule(iconst_4, iconst_m1).

instructionHasEquivalentTypeRule(iconst_5, iconst_m1).
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idiv idiv

An idiv instruction is type safe iff the equivalent iadd instruction is type safe.

instructionHasEquivalentTypeRule(idiv, iadd).
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if_acmp<cond> if_acmp<cond>

An if_acmpeq instruction is type safe iff one can validly pop types matching
reference and reference on the incoming operand stack yielding the outgoing
type state NextStackFrame, and the operand of the instruction, Target, is a valid
branch target assuming an incoming type state of NextStackFrame.

instructionIsTypeSafe(if_acmpeq(Target), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    canPop(StackFrame, [reference, reference], NextStackFrame),

    targetIsTypeSafe(Environment, NextStackFrame, Target),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

The rule for if_acmpne is identical.

instructionHasEquivalentTypeRule(if_acmpne(Target), if_acmpeq(Target)).
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if_icmp<cond> if_icmp<cond>

An if_icmpeq instruction is type safe iff one can validly pop types matching
int and int on the incoming operand stack yielding the outgoing type state
NextStackFrame, and the operand of the instruction, Target, is a valid branch
target assuming an incoming type state of NextStackFrame.

instructionIsTypeSafe(if_icmpeq(Target), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    canPop(StackFrame, [int, int], NextStackFrame),

    targetIsTypeSafe(Environment, NextStackFrame, Target),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

The rules for all other variants of the if_icmp<cond> instruction are identical.

instructionHasEquivalentTypeRule(if_icmpge(Target), if_icmpeq(Target)).

instructionHasEquivalentTypeRule(if_icmpgt(Target), if_icmpeq(Target)).

instructionHasEquivalentTypeRule(if_icmple(Target), if_icmpeq(Target)).

instructionHasEquivalentTypeRule(if_icmplt(Target), if_icmpeq(Target)).

instructionHasEquivalentTypeRule(if_icmpne(Target), if_icmpeq(Target)).
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if<cond> if<cond>

An ifeq instruction is type safe iff one can validly pop a type matching int off the
incoming operand stack yielding the outgoing type state NextStackFrame, and the
operand of the instruction, Target, is a valid branch target assuming an incoming
type state of NextStackFrame.

instructionIsTypeSafe(ifeq(Target), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :-

    canPop(StackFrame, [int], NextStackFrame), 

    targetIsTypeSafe(Environment, NextStackFrame, Target),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

The rules for all other variations of the if<cond> instruction are identical.

instructionHasEquivalentTypeRule(ifge(Target), ifeq(Target)).

instructionHasEquivalentTypeRule(ifgt(Target), ifeq(Target)).

instructionHasEquivalentTypeRule(ifle(Target), ifeq(Target)).

instructionHasEquivalentTypeRule(iflt(Target), ifeq(Target)).

instructionHasEquivalentTypeRule(ifne(Target), ifeq(Target)).
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ifnonnull, ifnull ifnonnull, ifnull

An ifnonnull instruction is type safe iff one can validly pop a type matching
reference off the incoming operand stack yielding the outgoing type state
NextStackFrame, and the operand of the instruction, Target, is a valid branch
target assuming an incoming type state of NextStackFrame.

instructionIsTypeSafe(ifnonnull(Target), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    canPop(StackFrame, [reference], NextStackFrame),

    targetIsTypeSafe(Environment, NextStackFrame, Target),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

An ifnull instruction is type safe iff the equivalent ifnonnull instruction is type safe.

instructionHasEquivalentTypeRule(ifnull(Target), ifnonnull(Target)).
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iinc iinc

An iinc instruction with first operand Index is type safe iff LIndex has type int. The
iinc instruction does not change the type state.

instructionIsTypeSafe(iinc(Index, _Value), _Environment, _Offset,

                      StackFrame, StackFrame, ExceptionStackFrame) :-

    StackFrame = frame(Locals, _OperandStack, _Flags),

    nth0(Index, Locals, int),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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iload, iload_<n> iload, iload_<n>

An iload instruction with operand Index is type safe and yields an outgoing type
state NextStackFrame, if a load instruction with operand Index and type int is
type safe and yields an outgoing type state NextStackFrame.

instructionIsTypeSafe(iload(Index), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    loadIsTypeSafe(Environment, Index, int, StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

The instructions iload_<n>, for 0 ≤ n ≤ 3, are typesafe iff the equivalent iload
instruction is type safe.

instructionHasEquivalentTypeRule(iload_0, iload(0)).

instructionHasEquivalentTypeRule(iload_1, iload(1)).

instructionHasEquivalentTypeRule(iload_2, iload(2)).

instructionHasEquivalentTypeRule(iload_3, iload(3)).
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imul imul

An imul instruction is type safe iff the equivalent iadd instruction is type safe.

instructionHasEquivalentTypeRule(imul, iadd).
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ineg ineg

An ineg instruction is type safe iff there is a type matching int on the incoming
operand stack. The ineg instruction does not alter the type state.

instructionIsTypeSafe(ineg, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [int], int, StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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instanceof instanceof

An instanceof instruction with operand CP is type safe iff CP refers to a constant
pool entry denoting either a class or an array, and one can validly replace the type
Object on top of the incoming operand stack with type int yielding the outgoing
type state.

instructionIsTypeSafe(instanceof(CP), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    (CP = class(_, _) ; CP = arrayOf(_)),

    isBootstrapLoader(BL),

    validTypeTransition(Environment, [class('java/lang/Object', BL)], int,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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invokedynamic invokedynamic

An invokedynamic instruction is type safe iff all of the following are true:

• Its first operand, CP, refers to a constant pool entry denoting an dynamic call site
with name CallSiteName with descriptor Descriptor.

• CallSiteName is not <init>.

• CallSiteName is not <clinit>.

• One can validly replace types matching the argument types given in Descriptor
on the incoming operand stack with the return type given in Descriptor,
yielding the outgoing type state.

instructionIsTypeSafe(invokedynamic(CP,0,0), Environment, _Offset,

                      StackFrame, NextStackFrame, ExceptionStackFrame) :- 

    CP = dmethod(CallSiteName, Descriptor),

    CallSiteName \= '<init>',

    CallSiteName \= '<clinit>',

    parseMethodDescriptor(Descriptor, OperandArgList, ReturnType),

    reverse(OperandArgList, StackArgList),

    validTypeTransition(Environment, StackArgList, ReturnType,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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invokeinterface invokeinterface

An invokeinterface instruction is type safe iff all of the following are true:

• Its first operand, CP, refers to a constant pool entry denoting an interface method
named MethodName with descriptor Descriptor that is a member of an interface
MethodIntfName.

• MethodName is not <init>.

• MethodName is not <clinit>.

• Its second operand, Count, is a valid count operand (see below).

• One can validly replace types matching the type MethodIntfName and the
argument types given in Descriptor on the incoming operand stack with the
return type given in Descriptor, yielding the outgoing type state.

instructionIsTypeSafe(invokeinterface(CP, Count, 0), Environment, _Offset,

                      StackFrame, NextStackFrame, ExceptionStackFrame) :- 

    CP = imethod(MethodIntfName, MethodName, Descriptor),

    MethodName \= '<init>',

    MethodName \= '<clinit>',

    parseMethodDescriptor(Descriptor, OperandArgList, ReturnType),

    currentClassLoader(Environment, CurrentLoader),

    reverse([class(MethodIntfName, CurrentLoader) | OperandArgList],

            StackArgList),

    canPop(StackFrame, StackArgList, TempFrame),

    validTypeTransition(Environment, [], ReturnType,

                        TempFrame, NextStackFrame),

    countIsValid(Count, StackFrame, TempFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

The Count operand of an invokeinterface instruction is valid if it equals the size of
the arguments to the instruction. This is equal to the difference between the size
of InputFrame and OutputFrame.

countIsValid(Count, InputFrame, OutputFrame) :-

    InputFrame = frame(_Locals1, OperandStack1, _Flags1),

    OutputFrame = frame(_Locals2, OperandStack2, _Flags2),

    length(OperandStack1, Length1),

    length(OperandStack2, Length2),

    Count =:= Length1 - Length2.
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invokespecial invokespecial

An invokespecial instruction is type safe iff all of the following are true:

• Its first operand, CP, refers to a constant pool entry denoting a method
named MethodName with descriptor Descriptor that is a member of a class
MethodClassName.

• Either:

– MethodName is not <init>.

– MethodName is not <clinit>.

– One can validly replace types matching the current class and the argument
types given in Descriptor on the incoming operand stack with the return type
given in Descriptor, yielding the outgoing type state.

– One can validly replace types matching the class MethodClassName and the
argument types given in Descriptor on the incoming operand stack with the
return type given in Descriptor.

instructionIsTypeSafe(invokespecial(CP), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    CP = method(MethodClassName, MethodName, Descriptor),

    MethodName \= '<init>',

    MethodName \= '<clinit>',

    parseMethodDescriptor(Descriptor, OperandArgList, ReturnType),

    thisClass(Environment, class(CurrentClassName, CurrentLoader)), 

    isAssignable(class(CurrentClassName, CurrentLoader),

                 class(MethodClassName,  CurrentLoader)),

    reverse([class(CurrentClassName, CurrentLoader) | OperandArgList],

            StackArgList),

    validTypeTransition(Environment, StackArgList, ReturnType,

                        StackFrame, NextStackFrame),

    reverse([class(MethodClassName, CurrentLoader) | OperandArgList],

            StackArgList2),

    validTypeTransition(Environment, StackArgList2, ReturnType,

                        StackFrame, _ResultStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

The isAssignable clause enforces the structural constraint that invokespecial, for other
than an instance initialization method, must name a method in the current class/interface
or a superclass/superinterface.
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The first validTypeTransition clause enforces the structural constraint that
invokespecial, for other than an instance initialization method, targets a receiver object of
the current class or deeper. To see why, consider that StackArgList simulates the list
of types on the operand stack expected by the method, starting with the current class (the
class performing invokespecial). The actual types on the operand stack are in StackFrame.
The effect of validTypeTransition is to pop the first type from the operand stack in
StackFrame and check it is a subtype of the first term of StackArgList, namely the
current class. Thus, the actual receiver type is compatible with the current class.

A sharp-eyed reader might notice that enforcing this structural constraint supercedes
the structural constraint pertaining to invokespecial of a protected method. Thus,
the Prolog code above makes no reference to passesProtectedCheck (§4.10.1.8),
whereas the Prolog code for invokespecial of an instance initialization method uses
passesProtectedCheck to ensure the actual receiver type is compatible with the current
class when certain protected instance initialization methods are named.

The second validTypeTransition clause enforces the structural constraint that any
method invocation instruction must target a receiver object whose type is compatible with
the type named by the instruction. To see why, consider that StackArgList2 simulates
the list of types on the operand stack expected by the method, starting with the type named
by the instruction. Again, the actual types on the operand stack are in StackFrame, and
the effect of validTypeTransition is to check the actual receiver type in StackFrame
is compatible with the type named by the instruction in StackArgList2.

• Or:

– MethodName is <init>.

– Descriptor specifies a void return type.

– One can validly pop types matching the argument types given in Descriptor
and an uninitialized type, UninitializedArg, off the incoming operand stack,
yielding OperandStack.

– The outgoing type state is derived from the incoming type state by first
replacing the incoming operand stack with OperandStack and then replacing
all instances of UninitializedArg with the type of instance being initialized.

– If the instruction calls an instance initialization method on a class instance
created by an earlier new instruction, and the method is protected, the
usage conforms to the special rules governing access to protected members
(§4.10.1.8).
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instructionIsTypeSafe(invokespecial(CP), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :-

    CP = method(MethodClassName, '<init>', Descriptor),

    parseMethodDescriptor(Descriptor, OperandArgList, void), 

    reverse(OperandArgList, StackArgList),

    canPop(StackFrame, StackArgList, TempFrame),

    TempFrame = frame(Locals, [uninitializedThis | OperandStack], Flags),

    currentClassLoader(Environment, CurrentLoader),

    rewrittenUninitializedType(uninitializedThis, Environment,

                               class(MethodClassName, CurrentLoader), This), 

    rewrittenInitializationFlags(uninitializedThis, Flags, NextFlags),

    substitute(uninitializedThis, This, OperandStack, NextOperandStack),

    substitute(uninitializedThis, This, Locals, NextLocals),

    NextStackFrame = frame(NextLocals, NextOperandStack, NextFlags),

    ExceptionStackFrame = frame(Locals, [], Flags).

instructionIsTypeSafe(invokespecial(CP), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :-

    CP = method(MethodClassName, '<init>', Descriptor),

    parseMethodDescriptor(Descriptor, OperandArgList, void), 

    reverse(OperandArgList, StackArgList),

    canPop(StackFrame, StackArgList, TempFrame),

    TempFrame = frame(Locals, [uninitialized(Address) | OperandStack], Flags),

    currentClassLoader(Environment, CurrentLoader),

    rewrittenUninitializedType(uninitialized(Address), Environment,

                               class(MethodClassName, CurrentLoader), This), 

    rewrittenInitializationFlags(uninitialized(Address), Flags, NextFlags),

    substitute(uninitialized(Address), This, OperandStack, NextOperandStack),

    substitute(uninitialized(Address), This, Locals, NextLocals),

    NextStackFrame = frame(NextLocals, NextOperandStack, NextFlags),

    ExceptionStackFrame = frame(Locals, [], Flags),

    passesProtectedCheck(Environment, MethodClassName, '<init>',

                         Descriptor, NextStackFrame).

To compute what type the uninitialized argument's type needs to be rewritten to,
there are two cases:

• If we are initializing an object within its constructor, its type is initially
uninitializedThis. This type will be rewritten to the type of the class of the
<init> method.
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• The second case arises from initialization of an object created by new. The
uninitialized arg type is rewritten to MethodClass, the type of the method holder
of <init>. We check whether there really is a new instruction at Address.

rewrittenUninitializedType(uninitializedThis, Environment,

                           MethodClass, MethodClass) :-

    MethodClass = class(MethodClassName, CurrentLoader),

    thisClass(Environment, MethodClass). 

rewrittenUninitializedType(uninitializedThis, Environment,

                           MethodClass, MethodClass) :-

    MethodClass = class(MethodClassName, CurrentLoader),

    thisClass(Environment, class(thisClassName, thisLoader)),

    superclassChain(thisClassName, thisLoader, [MethodClass | Rest]).

rewrittenUninitializedType(uninitialized(Address), Environment,

                           MethodClass, MethodClass) :-

    allInstructions(Environment, Instructions),

    member(instruction(Address, new(MethodClass)), Instructions).

rewrittenInitializationFlags(uninitializedThis, _Flags, []).

rewrittenInitializationFlags(uninitialized(_), Flags, Flags).

substitute(_Old, _New, [], []).

substitute(Old, New, [Old | FromRest], [New | ToRest]) :-

    substitute(Old, New, FromRest, ToRest).

substitute(Old, New, [From1 | FromRest], [From1 | ToRest]) :-

    From1 \= Old,

    substitute(Old, New, FromRest, ToRest).

The rule for invokespecial of an <init> method is the sole motivation for passing back
a distinct exception stack frame. The concern is that when initializing an object within its
constructor, invokespecial can cause a superclass <init> method to be invoked, and that
invocation could fail, leaving this uninitialized. This situation cannot be created using
source code in the Java programming language, but can be created by programming in
bytecode directly.

In this situation, the original frame holds an uninitialized object in local variable 0 and has
flag flagThisUninit. Normal termination of invokespecial initializes the uninitialized
object and turns off the flagThisUninit flag. But if the invocation of an <init> method
throws an exception, the uninitialized object might be left in a partially initialized state,
and needs to be made permanently unusable. This is represented by an exception frame
containing the broken object (the new value of the local) and the flagThisUninit
flag (the old flag). There is no way to get from an apparently-initialized object bearing
the flagThisUninit flag to a properly initialized object, so the object is permanently
unusable.
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If not for this situation, the flags of the exception stack frame would always be the same
as the flags of the input stack frame.
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invokestatic invokestatic

An invokestatic instruction is type safe iff all of the following are true:

• Its first operand, CP, refers to a constant pool entry denoting a method named
MethodName with descriptor Descriptor.

• MethodName is not <init>.

• MethodName is not <clinit>.

• One can validly replace types matching the argument types given in Descriptor
on the incoming operand stack with the return type given in Descriptor,
yielding the outgoing type state.

instructionIsTypeSafe(invokestatic(CP), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    CP = method(_MethodClassName, MethodName, Descriptor),

    MethodName \= '<init>',

    MethodName \= '<clinit>',

    parseMethodDescriptor(Descriptor, OperandArgList, ReturnType), 

    reverse(OperandArgList, StackArgList),

    validTypeTransition(Environment, StackArgList, ReturnType,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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invokevirtual invokevirtual

An invokevirtual instruction is type safe iff all of the following are true:

• Its first operand, CP, refers to a constant pool entry denoting a method
named MethodName with descriptor Descriptor that is a member of a class
MethodClassName.

• MethodName is not <init>.

• MethodName is not <clinit>.

• One can validly replace types matching the class MethodClassName and the
argument types given in Descriptor on the incoming operand stack with the
return type given in Descriptor, yielding the outgoing type state.

• If the method is protected, the usage conforms to the special rules governing
access to protected members (§4.10.1.8).

instructionIsTypeSafe(invokevirtual(CP), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    CP = method(MethodClassName, MethodName, Descriptor),

    MethodName \= '<init>',

    MethodName \= '<clinit>',

    parseMethodDescriptor(Descriptor, OperandArgList, ReturnType), 

    reverse(OperandArgList, ArgList),

    currentClassLoader(Environment, CurrentLoader),

    reverse([class(MethodClassName, CurrentLoader) | OperandArgList],

            StackArgList),

    validTypeTransition(Environment, StackArgList, ReturnType,

                        StackFrame, NextStackFrame),

    canPop(StackFrame, ArgList, PoppedFrame),

    passesProtectedCheck(Environment, MethodClassName, MethodName,

                         Descriptor, PoppedFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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ior, irem ior, irem

An ior instruction is type safe iff the equivalent iadd instruction is type safe.

instructionHasEquivalentTypeRule(ior, iadd).

An irem instruction is type safe iff the equivalent iadd instruction is type safe.

instructionHasEquivalentTypeRule(irem, iadd).
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ireturn ireturn

An ireturn instruction is type safe if the enclosing method has a declared return
type of int, and one can validly pop a type matching int off the incoming operand
stack.

instructionIsTypeSafe(ireturn, Environment, _Offset, StackFrame,

                      afterGoto, ExceptionStackFrame) :- 

    thisMethodReturnType(Environment, int),

    canPop(StackFrame, [int], _PoppedStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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ishl, ishr, iushr ishl, ishr, iushr

An ishl instruction is type safe iff the equivalent iadd instruction is type safe.

instructionHasEquivalentTypeRule(ishl, iadd).

An ishr instruction is type safe iff the equivalent iadd instruction is type safe.

instructionHasEquivalentTypeRule(ishr, iadd).

An iushr instruction is type safe iff the equivalent iadd instruction is type safe.

instructionHasEquivalentTypeRule(iushr, iadd).
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istore, istore_<n> istore, istore_<n>

An istore instruction with operand Index is type safe and yields an outgoing type
state NextStackFrame, if a store instruction with operand Index and type int is
type safe and yields an outgoing type state NextStackFrame.

instructionIsTypeSafe(istore(Index), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    storeIsTypeSafe(Environment, Index, int, StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

The instructions istore_<n>, for 0 ≤ n ≤ 3, are type safe iff the equivalent istore
instruction is type safe.

instructionHasEquivalentTypeRule(istore_0, istore(0)).

instructionHasEquivalentTypeRule(istore_1, istore(1)).

instructionHasEquivalentTypeRule(istore_2, istore(2)).

instructionHasEquivalentTypeRule(istore_3, istore(3)).
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isub, ixor isub, ixor

An isub instruction is type safe iff the equivalent iadd instruction is type safe.

instructionHasEquivalentTypeRule(isub, iadd).

An ixor instruction is type safe iff the equivalent iadd instruction is type safe.

instructionHasEquivalentTypeRule(ixor, iadd).
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l2d, l2f, l2i l2d, l2f, l2i

An l2d instruction is type safe if one can validly pop long off the incoming operand
stack and replace it with double, yielding the outgoing type state.

instructionIsTypeSafe(l2d, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [long], double,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

An l2f instruction is type safe if one can validly pop long off the incoming operand
stack and replace it with float, yielding the outgoing type state.

instructionIsTypeSafe(l2f, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [long], float,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

An l2i instruction is type safe if one can validly pop long off the incoming operand
stack and replace it with int, yielding the outgoing type state.

instructionIsTypeSafe(l2i, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [long], int,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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ladd ladd

An ladd instruction is type safe iff one can validly replace types matching long and
long on the incoming operand stack with long yielding the outgoing type state.

instructionIsTypeSafe(ladd, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [long, long], long,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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laload laload

An laload instruction is type safe iff one can validly replace types matching int
and array of long on the incoming operand stack with long yielding the outgoing
type state.

instructionIsTypeSafe(laload, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [int, arrayOf(long)], long,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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land land

An land instruction is type safe iff the equivalent ladd instruction is type safe.

instructionHasEquivalentTypeRule(land, ladd).
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lastore lastore

An lastore instruction is type safe iff one can validly pop types matching long, int
and array of long off the incoming operand stack yielding the outgoing type state.

instructionIsTypeSafe(lastore, _Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    canPop(StackFrame, [long, int, arrayOf(long)], NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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lcmp lcmp

A lcmp instruction is type safe iff one can validly replace types matching long and
long on the incoming operand stack with int yielding the outgoing type state.

instructionIsTypeSafe(lcmp, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [long, long], int,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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lconst_<l> lconst_<l>

An lconst_0 instruction is type safe if one can validly push the type long onto the
incoming operand stack yielding the outgoing type state.

instructionIsTypeSafe(lconst_0, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [], long, StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

An lconst_1 instruction is type safe iff the equivalent lconst_0 instruction is type
safe.

instructionHasEquivalentTypeRule(lconst_1, lconst_0).
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ldc, ldc_w, ldc2_w ldc, ldc_w, ldc2_w

An ldc instruction with operand CP is type safe iff CP refers to a constant pool entry
denoting an entity of type Type, where Type is loadable (§4.4), but not long or
double, and one can validly push Type onto the incoming operand stack yielding
the outgoing type state.

instructionIsTypeSafe(ldc(CP), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    loadableConstant(CP, Type),

    Type \= long,

    Type \= double,

    validTypeTransition(Environment, [], Type, StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

loadableConstant(CP, Type) :-

    member([CP, Type], [

        [int(_),    int],

        [float(_),  float],

        [long(_),   long],

        [double(_), double]

    ]).

loadableConstant(CP, Type) :-

    isBootstrapLoader(BL),

    member([CP, Type], [

        [class(_),          class('java/lang/Class', BL)],

        [string(_),         class('java/lang/String', BL)],

        [methodHandle(_,_), class('java/lang/invoke/MethodHandle', BL)],

        [methodType(_,_),   class('java/lang/invoke/MethodType', BL)]

    ]).

loadableConstant(CP, Type) :-

    CP = dconstant(_, FieldDescriptor),

    parseFieldDescriptor(FieldDescriptor, Type).

An ldc_w instruction is type safe iff the equivalent ldc instruction is type safe.

instructionHasEquivalentTypeRule(ldc_w(CP), ldc(CP))

An ldc2_w instruction with operand CP is type safe iff CP refers to a constant pool
entry denoting an entity of type Type, where Type is either long or double, and
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one can validly push Type onto the incoming operand stack yielding the outgoing
type state.

instructionIsTypeSafe(ldc2_w(CP), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    loadableConstant(CP, Type),

    (Type = long ; Type = double),

    validTypeTransition(Environment, [], Type, StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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ldiv ldiv

An ldiv instruction is type safe iff the equivalent ladd instruction is type safe.

instructionHasEquivalentTypeRule(ldiv, ladd).
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lload, lload_<n> lload, lload_<n>

An lload instruction with operand Index is type safe and yields an outgoing type
state NextStackFrame, if a load instruction with operand Index and type long is
type safe and yields an outgoing type state NextStackFrame.

instructionIsTypeSafe(lload(Index), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    loadIsTypeSafe(Environment, Index, long, StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

The instructions lload_<n>, for 0 ≤ n ≤ 3, are type safe iff the equivalent lload
instruction is type safe.

instructionHasEquivalentTypeRule(lload_0, lload(0)).

instructionHasEquivalentTypeRule(lload_1, lload(1)).

instructionHasEquivalentTypeRule(lload_2, lload(2)).

instructionHasEquivalentTypeRule(lload_3, lload(3)).
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lmul lmul

An lmul instruction is type safe iff the equivalent ladd instruction is type safe.

instructionHasEquivalentTypeRule(lmul, ladd).
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lneg lneg

An lneg instruction is type safe iff there is a type matching long on the incoming
operand stack. The lneg instruction does not alter the type state.

instructionIsTypeSafe(lneg, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [long], long,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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lookupswitch lookupswitch

A lookupswitch instruction is type safe if its keys are sorted, one can validly pop int
off the incoming operand stack yielding a new type state BranchStackFrame, and
all of the instruction's targets are valid branch targets assuming BranchStackFrame
as their incoming type state.

instructionIsTypeSafe(lookupswitch(Targets, Keys), Environment, _, StackFrame, 

                      afterGoto, ExceptionStackFrame) :-

    sort(Keys, Keys),

    canPop(StackFrame, [int], BranchStackFrame),

    checklist(targetIsTypeSafe(Environment, BranchStackFrame), Targets),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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lor, lrem lor, lrem

A lor instruction is type safe iff the equivalent ladd instruction is type safe.

instructionHasEquivalentTypeRule(lor, ladd).

An lrem instruction is type safe iff the equivalent ladd instruction is type safe.

instructionHasEquivalentTypeRule(lrem, ladd).
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lreturn lreturn

An lreturn instruction is type safe if the enclosing method has a declared return type
of long, and one can validly pop a type matching long off the incoming operand
stack.

instructionIsTypeSafe(lreturn, Environment, _Offset, StackFrame,

                      afterGoto, ExceptionStackFrame) :- 

    thisMethodReturnType(Environment, long),

    canPop(StackFrame, [long], _PoppedStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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lshl, lshr, lushr lshl, lshr, lushr

An lshl instruction is type safe if one can validly replace the types int and long on
the incoming operand stack with the type long yielding the outgoing type state.

instructionIsTypeSafe(lshl, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [int, long], long,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

An lshr instruction is type safe iff the equivalent lshl instruction is type safe.

instructionHasEquivalentTypeRule(lshr, lshl).

An lushr instruction is type safe iff the equivalent lshl instruction is type safe.

instructionHasEquivalentTypeRule(lushr, lshl).
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lstore, lstore_<n> lstore, lstore_<n>

An lstore instruction with operand Index is type safe and yields an outgoing type
state NextStackFrame, if a store instruction with operand Index and type long is
type safe and yields an outgoing type state NextStackFrame.

instructionIsTypeSafe(lstore(Index), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    storeIsTypeSafe(Environment, Index, long, StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

The instructions lstore_<n>, for 0 ≤ n ≤ 3, are type safe iff the equivalent lstore
instruction is type safe.

instructionHasEquivalentTypeRule(lstore_0, lstore(0)).

instructionHasEquivalentTypeRule(lstore_1, lstore(1)).

instructionHasEquivalentTypeRule(lstore_2, lstore(2)).

instructionHasEquivalentTypeRule(lstore_3, lstore(3)).
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lsub, lxor lsub, lxor

An lsub instruction is type safe iff the equivalent ladd instruction is type safe.

instructionHasEquivalentTypeRule(lsub, ladd).

An lxor instruction is type safe iff the equivalent ladd instruction is type safe.

instructionHasEquivalentTypeRule(lxor, ladd).
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monitorenter, monitorexit monitorenter, monitorexit

A monitorenter instruction is type safe iff one can validly pop a type matching
reference off the incoming operand stack yielding the outgoing type state.

instructionIsTypeSafe(monitorenter, _Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :-

    canPop(StackFrame, [reference], NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

A monitorexit instruction is type safe iff the equivalent monitorenter instruction
is type safe.

instructionHasEquivalentTypeRule(monitorexit, monitorenter).
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multianewarray multianewarray

A multianewarray instruction with operands CP and Dim is type safe iff CP refers to
a constant pool entry denoting an array type whose dimension is greater or equal
to Dim, Dim is strictly positive, and one can validly replace Dim int types on the
incoming operand stack with the type denoted by CP yielding the outgoing type
state.

instructionIsTypeSafe(multianewarray(CP, Dim), Environment, _Offset,

                      StackFrame, NextStackFrame, ExceptionStackFrame) :- 

    CP = arrayOf(_),

    classDimension(CP, Dimension),

    Dimension >= Dim,

    Dim > 0, 

    /* Make a list of Dim ints */

    findall(int, between(1, Dim, _), IntList),

    validTypeTransition(Environment, IntList, CP,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

The dimension of an array type whose component type is also an array type is one
more than the dimension of its component type.

classDimension(arrayOf(X), Dimension) :-

    classDimension(X, Dimension1), 

    Dimension is Dimension1 + 1. 

classDimension(_, Dimension) :-

    Dimension = 0.
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new new

A new instruction with operand CP at offset Offset is type safe iff CP
refers to a constant pool entry denoting a class or interface type, the type
uninitialized(Offset) does not appear in the incoming operand stack, and one
can validly push uninitialized(Offset) onto the incoming operand stack and
replace uninitialized(Offset) with top in the incoming local variables yielding
the outgoing type state.

instructionIsTypeSafe(new(CP), Environment, Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    StackFrame = frame(Locals, OperandStack, Flags), 

    CP = class(_, _), 

    NewItem = uninitialized(Offset),

    notMember(NewItem, OperandStack),

    substitute(NewItem, top, Locals, NewLocals),

    validTypeTransition(Environment, [], NewItem,

                        frame(NewLocals, OperandStack, Flags),

                        NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

The substitute predicate is defined in the rule for invokespecial (§invokespecial).
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newarray newarray

A newarray instruction with operand TypeCode is type safe iff TypeCode
corresponds to the primitive type ElementType, and one can validly replace the
type int on the incoming operand stack with the type 'array of ElementType',
yielding the outgoing type state.

instructionIsTypeSafe(newarray(TypeCode), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    primitiveArrayInfo(TypeCode, _TypeChar, ElementType, _VerifierType),

    validTypeTransition(Environment, [int], arrayOf(ElementType),

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

The correspondence between type codes and primitive types is specified by the
following predicate:

primitiveArrayInfo(4,  0'Z, boolean, int).

primitiveArrayInfo(5,  0'C, char,    int).

primitiveArrayInfo(6,  0'F, float,   float).

primitiveArrayInfo(7,  0'D, double,  double).

primitiveArrayInfo(8,  0'B, byte,    int).

primitiveArrayInfo(9,  0'S, short,   int).

primitiveArrayInfo(10, 0'I, int,     int). 

primitiveArrayInfo(11, 0'J, long,    long).
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nop nop

A nop instruction is always type safe. The nop instruction does not affect the type
state.

instructionIsTypeSafe(nop, _Environment, _Offset, StackFrame,

                      StackFrame, ExceptionStackFrame) :-

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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pop, pop2 pop, pop2

A pop instruction is type safe iff one can validly pop a category 1 type off the
incoming operand stack yielding the outgoing type state.

instructionIsTypeSafe(pop, _Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    StackFrame = frame(Locals, [Type | Rest], Flags),

    popCategory1([Type | Rest], Type, Rest),

    NextStackFrame = frame(Locals, Rest, Flags),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

A pop2 instruction is type safe iff it is a type safe form of the pop2 instruction.

instructionIsTypeSafe(pop2, _Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    StackFrame = frame(Locals, InputOperandStack, Flags),

    pop2SomeFormIsTypeSafe(InputOperandStack, OutputOperandStack),

    NextStackFrame = frame(Locals, OutputOperandStack, Flags),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

A pop2 instruction is a type safe form of the pop2 instruction iff it is a type safe
form 1 pop2 instruction or a type safe form 2 pop2 instruction.

pop2SomeFormIsTypeSafe(InputOperandStack, OutputOperandStack) :-

    pop2Form1IsTypeSafe(InputOperandStack, OutputOperandStack).

pop2SomeFormIsTypeSafe(InputOperandStack, OutputOperandStack) :-

    pop2Form2IsTypeSafe(InputOperandStack, OutputOperandStack).

A pop2 instruction is a type safe form 1 pop2 instruction iff one can validly pop
two types of size 1 off the incoming operand stack yielding the outgoing type state.

pop2Form1IsTypeSafe([Type1, Type2 | Rest], Rest) :-

    popCategory1([Type1 | Rest], Type1, Rest),

    popCategory1([Type2 | Rest], Type2, Rest).

A pop2 instruction is a type safe form 2 pop2 instruction iff one can validly pop a
type of size 2 off the incoming operand stack yielding the outgoing type state.

pop2Form2IsTypeSafe([top, Type | Rest], Rest) :-

    popCategory2([top, Type | Rest], Type, Rest).
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putfield putfield

A putfield instruction with operand CP is type safe iff all of the following are true:

• Its first operand, CP, refers to a constant pool entry denoting a field
whose declared type is FieldType, declared in a class FieldClassName.
FieldClassName must not be an array type.

• Either:

– One can validly pop types matching FieldType and FieldClassName off the
incoming operand stack yielding the outgoing type state.

– protected fields are subject to additional checks (§4.10.1.8).

instructionIsTypeSafe(putfield(CP), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    CP = field(FieldClassName, FieldName, FieldDescriptor),

    parseFieldDescriptor(FieldDescriptor, FieldType), 

    canPop(StackFrame, [FieldType], PoppedFrame),

    passesProtectedCheck(Environment, FieldClassName, FieldName,

                         FieldDescriptor, PoppedFrame),

    currentClassLoader(Environment, CurrentLoader),

    canPop(StackFrame, [FieldType, class(FieldClassName, CurrentLoader)],

           NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).

• Or:

– If the instruction occurs in an instance initialization method of the class
FieldClassName, then one can validly pop types matching FieldType and
uninitializedThis off the incoming operand stack yielding the outgoing
type state. This allows instance fields of this that are declared in the current
class to be assigned prior to complete initialization of this.

instructionIsTypeSafe(putfield(CP), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :-

    CP = field(FieldClassName, _FieldName, FieldDescriptor),

    parseFieldDescriptor(FieldDescriptor, FieldType),

    Environment = environment(CurrentClass, CurrentMethod, _, _, _, _),

    CurrentClass = class(FieldClassName, _),

    isInit(CurrentMethod),

    canPop(StackFrame, [FieldType, uninitializedThis], NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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putstatic putstatic

A putstatic instruction with operand CP is type safe iff CP refers to a constant pool
entry denoting a field whose declared type is FieldType, and one can validly pop
a type matching FieldType off the incoming operand stack yielding the outgoing
type state.

instructionIsTypeSafe(putstatic(CP), _Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    CP = field(_FieldClassName, _FieldName, FieldDescriptor),

    parseFieldDescriptor(FieldDescriptor, FieldType),

    canPop(StackFrame, [FieldType], NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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return return

A return instruction is type safe if the enclosing method declares a void return
type, and either:

• The enclosing method is not an <init> method, or

• this has already been completely initialized at the point where the instruction
occurs.

instructionIsTypeSafe(return, Environment, _Offset, StackFrame,

                      afterGoto, ExceptionStackFrame) :- 

    thisMethodReturnType(Environment, void),

    StackFrame = frame(_Locals, _OperandStack, Flags),

    notMember(flagThisUninit, Flags),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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saload saload

An saload instruction is type safe iff one can validly replace types matching int
and array of short on the incoming operand stack with int yielding the outgoing
type state.

instructionIsTypeSafe(saload, Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [int, arrayOf(short)], int,

                        StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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sastore sastore

An sastore instruction is type safe iff one can validly pop types matching int, int,
and array of short off the incoming operand stack yielding the outgoing type state.

instructionIsTypeSafe(sastore, _Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    canPop(StackFrame, [int, int, arrayOf(short)], NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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sipush sipush

An sipush instruction is type safe iff one can validly push the type int onto the
incoming operand stack yielding the outgoing type state.

instructionIsTypeSafe(sipush(_Value), Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    validTypeTransition(Environment, [], int, StackFrame, NextStackFrame),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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swap swap

A swap instruction is type safe iff one can validly replace two category 1 types,
Type1 and Type2, on the incoming operand stack with the types Type2 and Type1
yielding the outgoing type state.

instructionIsTypeSafe(swap, _Environment, _Offset, StackFrame,

                      NextStackFrame, ExceptionStackFrame) :- 

    StackFrame = frame(_Locals, [Type1, Type2 | Rest], _Flags),

    popCategory1([Type1 | Rest], Type1, Rest),

    popCategory1([Type2 | Rest], Type2, Rest),

    NextStackFrame = frame(_Locals, [Type2, Type1 | Rest], _Flags),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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tableswitch tableswitch

A tableswitch instruction is type safe if its keys are sorted, one can validly pop int
off the incoming operand stack yielding a new type state BranchStackFrame, and
all of the instruction's targets are valid branch targets assuming BranchStackFrame
as their incoming type state.

instructionIsTypeSafe(tableswitch(Targets, Keys), Environment, _Offset,

                      StackFrame, afterGoto, ExceptionStackFrame) :- 

    sort(Keys, Keys), 

    canPop(StackFrame, [int], BranchStackFrame),

    checklist(targetIsTypeSafe(Environment, BranchStackFrame), Targets),

    exceptionStackFrame(StackFrame, ExceptionStackFrame).
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wide wide

The wide instructions follow the same rules as the instructions they widen.

instructionHasEquivalentTypeRule(wide(WidenedInstruction),

                                 WidenedInstruction).
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4.10.2 Verification by Type Inference

A class file that does not contain a StackMapTable attribute (which necessarily
has a version number of 49.0 or below) must be verified using type inference.

4.10.2.1 The Process of Verification by Type Inference

During linking, the verifier checks the code array of the Code attribute for each
method of the class file by performing data-flow analysis on each method. The
verifier ensures that at any given point in the program, no matter what code path is
taken to reach that point, all of the following are true:

• The operand stack is always the same size and contains the same types of values.

• No local variable is accessed unless it is known to contain a value of an
appropriate type.

• Methods are invoked with the appropriate arguments.

• Fields are assigned only using values of appropriate types.

• All opcodes have appropriately typed arguments on the operand stack and in the
local variable array.

For efficiency reasons, certain tests that could in principle be performed by the
verifier are delayed until the first time the code for the method is actually invoked.
In so doing, the verifier avoids loading class files unless it has to.

For example, if a method invokes another method that returns an instance of class A, and
that instance is assigned only to a field of the same type, the verifier does not bother to
check if the class A actually exists. However, if it is assigned to a field of the type B, the
definitions of both A and B must be loaded in to ensure that A is a subclass of B.

4.10.2.2 The Bytecode Verifier

The code for each method is verified independently. First, the bytes that make up
the code are broken up into a sequence of instructions, and the index into the code
array of the start of each instruction is placed in an array. The verifier then goes
through the code a second time and parses the instructions. During this pass a data
structure is built to hold information about each Java Virtual Machine instruction
in the method. The operands, if any, of each instruction are checked to make sure
they are valid. For instance:

• Branches must be within the bounds of the code array for the method.

• The targets of all control-flow instructions are each the start of an instruction.
In the case of a wide instruction, the wide opcode is considered the start of the
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instruction, and the opcode giving the operation modified by that wide instruction
is not considered to start an instruction. Branches into the middle of an instruction
are disallowed.

• No instruction can access or modify a local variable at an index greater than or
equal to the number of local variables that its method indicates it allocates.

• All references to the constant pool must be to an entry of the appropriate type.
(For example, the instruction getfield must reference a field.)

• The code does not end in the middle of an instruction.

• Execution cannot fall off the end of the code.

• For each exception handler, the starting and ending point of code protected by
the handler must be at the beginning of an instruction or, in the case of the ending
point, immediately past the end of the code. The starting point must be before
the ending point. The exception handler code must start at a valid instruction,
and it must not start at an opcode being modified by the wide instruction.

For each instruction of the method, the verifier records the contents of the operand
stack and the contents of the local variable array prior to the execution of that
instruction. For the operand stack, it needs to know the stack height and the type
of each value on it. For each local variable, it needs to know either the type of the
contents of that local variable or that the local variable contains an unusable or
unknown value (it might be uninitialized). The bytecode verifier does not need to
distinguish between the integral types (e.g., byte, short, char) when determining
the value types on the operand stack.

Next, a data-flow analyzer is initialized. For the first instruction of the method,
the local variables that represent parameters initially contain values of the types
indicated by the method's type descriptor; the operand stack is empty. All other
local variables contain an illegal value. For the other instructions, which have not
been examined yet, no information is available regarding the operand stack or local
variables.

Finally, the data-flow analyzer is run. For each instruction, a "changed" bit
indicates whether this instruction needs to be looked at. Initially, the "changed" bit
is set only for the first instruction. The data-flow analyzer executes the following
loop:

1. Select a Java Virtual Machine instruction whose "changed" bit is set. If no
instruction remains whose "changed" bit is set, the method has successfully
been verified. Otherwise, turn off the "changed" bit of the selected instruction.
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2. Model the effect of the instruction on the operand stack and local variable array
by doing the following:

• If the instruction uses values from the operand stack, ensure that there are a
sufficient number of values on the stack and that the top values on the stack
are of an appropriate type. Otherwise, verification fails.

• If the instruction uses a local variable, ensure that the specified local variable
contains a value of the appropriate type. Otherwise, verification fails.

• If the instruction pushes values onto the operand stack, ensure that there is
sufficient room on the operand stack for the new values. Add the indicated
types to the top of the modeled operand stack.

• If the instruction modifies a local variable, record that the local variable now
contains the new type.

3. Determine the instructions that can follow the current instruction. Successor
instructions can be one of the following:

• The next instruction, if the current instruction is not an unconditional control
transfer instruction (for instance, goto, return, or athrow). Verification fails
if it is possible to "fall off" the last instruction of the method.

• The target(s) of a conditional or unconditional branch or switch.

• Any exception handlers for this instruction.

4. Merge the state of the operand stack and local variable array at the end of the
execution of the current instruction into each of the successor instructions, as
follows:

• If this is the first time the successor instruction has been visited, record that
the operand stack and local variable values calculated in step 2 are the state
of the operand stack and local variable array prior to executing the successor
instruction. Set the "changed" bit for the successor instruction.

• If the successor instruction has been seen before, merge the operand stack
and local variable values calculated in step 2 into the values already there.
Set the "changed" bit if there is any modification to the values.

In the special case of control transfer to an exception handler:

• Record that a single object, of the exception type indicated by the exception
handler, is the state of the operand stack prior to executing the successor
instruction. There must be sufficient room on the operand stack for this single
value, as if an instruction had pushed it.
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• Record that the local variable values from immediately before step 2 are the
state of the local variable array prior to executing the successor instruction.
The local variable values calculated in step 2 are irrelevant.

5. Continue at step 1.

To merge two operand stacks, the number of values on each stack must be identical.
Then, corresponding values on the two stacks are compared and the value on the
merged stack is computed, as follows:

• If one value is a primitive type, then the corresponding value must be the same
primitive type. The merged value is the primitive type.

• If one value is a non-array reference type, then the corresponding value must
be a reference type (array or non-array). The merged value is a reference to
an instance of the first common supertype of the two reference types. (Such a
reference type always exists because the type Object is a supertype of all class,
interface, and array types.)

For example, Object and String can be merged; the result is Object. Similarly,
Object and String[] can be merged; the result is again Object. Even Object and
int[] can be merged, or String and int[]; the result is Object for both.

• If corresponding values are both array reference types, then their dimensions are
examined. If the array types have the same dimensions, then the merged value
is a reference to an instance of an array type which is first common supertype
of both array types. (If either or both of the array types has a primitive element
type, then Object is used as the element type instead.) If the array types have
different dimensions, then the merged value is a reference to an instance of
an array type whose dimension is the smaller of the two; the element type is
Cloneable or java.io.Serializable if the smaller array type was Cloneable
or java.io.Serializable, and Object otherwise.

For example, Object[] and String[] can be merged; the result is Object[].
Cloneable[] and String[] can be merged, or java.io.Serializable[] and
String[]; the result is Cloneable[] and java.io.Serializable[] respectively.
Even int[] and String[] can be merged; the result is Object[], because Object is
used instead of int when computing the first common supertype.

Since the array types can have different dimensions, Object[] and String[][] can
be merged, or Object[][] and String[]; in both cases the result is Object[].
Cloneable[] and String[][] can be merged; the result is Cloneable[]. Finally,
Cloneable[][] and String[] can be merged; the result is Object[].

If the operand stacks cannot be merged, verification of the method fails.
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To merge two local variable array states, corresponding pairs of local variables
are compared. The value of the merged local variable is computed using the rules
above, except that the corresponding values are permitted to be different primitive
types. In that case, the verifier records that the merged local variable contains an
unusable value.

If the data-flow analyzer runs on a method without reporting a verification failure,
then the method has been successfully verified by the class file verifier.

Certain instructions and data types complicate the data-flow analyzer. We now
examine each of these in more detail.

4.10.2.3 Values of Types long and double

Values of the long and double types are treated specially by the verification
process.

Whenever a value of type long or double is moved into a local variable at index
n, index n+1 is specially marked to indicate that it has been reserved by the value
at index n and must not be used as a local variable index. Any value previously at
index n+1 becomes unusable.

Whenever a value is moved to a local variable at index n, the index n-1 is examined
to see if it is the index of a value of type long or double. If so, the local variable
at index n-1 is changed to indicate that it now contains an unusable value. Since
the local variable at index n has been overwritten, the local variable at index n-1
cannot represent a value of type long or double.

Dealing with values of types long or double on the operand stack is simpler; the
verifier treats them as single values on the stack. For example, the verification code
for the dadd opcode (add two double values) checks that the top two items on the
stack are both of type double. When calculating operand stack length, values of
type long and double have length two.

Untyped instructions that manipulate the operand stack must treat values of type
long and double as atomic (indivisible). For example, the verifier reports a failure
if the top value on the stack is a double and it encounters an instruction such as
pop or dup. The instructions pop2 or dup2 must be used instead.

4.10.2.4 Instance Initialization Methods and Newly Created Objects

Creating a new class instance is a multistep process. The statement:

...
new myClass(i, j, k);
...
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can be implemented by the following:

...
new #1            // Allocate uninitialized space for myClass
dup               // Duplicate object on the operand stack
iload_1           // Push i
iload_2           // Push j
iload_3           // Push k
invokespecial #5  // Invoke myClass.<init>
...

This instruction sequence leaves the newly created and initialized object on top of
the operand stack. (Additional examples of compilation to the instruction set of the
Java Virtual Machine are given in §3 (Compiling for the Java Virtual Machine).)

The instance initialization method (§2.9.1) for class myClass sees the new
uninitialized object as its this argument in local variable 0. Before that method
invokes another instance initialization method of myClass or its direct superclass
on this, the only operation the method can perform on this is assigning fields
declared within myClass.

When doing dataflow analysis on instance methods, the verifier initializes local
variable 0 to contain an object of the current class, or, for instance initialization
methods, local variable 0 contains a special type indicating an uninitialized object.
After an appropriate instance initialization method is invoked (from the current
class or its direct superclass) on this object, all occurrences of this special type
on the verifier's model of the operand stack and in the local variable array are
replaced by the current class type. The verifier rejects code that uses the new
object before it has been initialized or that initializes the object more than once. In
addition, it ensures that every normal return of the method has invoked an instance
initialization method either in the class of this method or in the direct superclass.

Similarly, a special type is created and pushed on the verifier's model of the operand
stack as the result of the Java Virtual Machine instruction new. The special type
indicates the instruction by which the class instance was created and the type of
the uninitialized class instance created. When an instance initialization method
declared in the class of the uninitialized class instance is invoked on that class
instance, all occurrences of the special type are replaced by the intended type of
the class instance. This change in type may propagate to subsequent instructions
as the dataflow analysis proceeds.

The instruction number needs to be stored as part of the special type, as there
may be multiple not-yet-initialized instances of a class in existence on the operand
stack at one time. For example, the Java Virtual Machine instruction sequence that
implements:
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new InputStream(new Foo(), new InputStream("foo"))

may have two uninitialized instances of InputStream on the operand stack at once.
When an instance initialization method is invoked on a class instance, only those
occurrences of the special type on the operand stack or in the local variable array
that are the same object as the class instance are replaced.

4.10.2.5 Exceptions and finally

To implement the try-finally construct, a compiler for the Java programming
language that generates class files with version number 50.0 or below may use
the exception-handling facilities together with two special instructions: jsr ("jump
to subroutine") and ret ("return from subroutine"). The finally clause is compiled
as a subroutine within the Java Virtual Machine code for its method, much like the
code for an exception handler. When a jsr instruction that invokes the subroutine is
executed, it pushes its return address, the address of the instruction after the jsr that
is being executed, onto the operand stack as a value of type returnAddress. The
code for the subroutine stores the return address in a local variable. At the end of
the subroutine, a ret instruction fetches the return address from the local variable
and transfers control to the instruction at the return address.

Control can be transferred to the finally clause (the finally subroutine can
be invoked) in several different ways. If the try clause completes normally, the
finally subroutine is invoked via a jsr instruction before evaluating the next
expression. A break or continue inside the try clause that transfers control outside
the try clause executes a jsr to the code for the finally clause first. If the try
clause executes a return, the compiled code does the following:

1. Saves the return value (if any) in a local variable.

2. Executes a jsr to the code for the finally clause.

3. Upon return from the finally clause, returns the value saved in the local
variable.

The compiler sets up a special exception handler, which catches any exception
thrown by the try clause. If an exception is thrown in the try clause, this exception
handler does the following:

1. Saves the exception in a local variable.

2. Executes a jsr to the finally clause.

3. Upon return from the finally clause, rethrows the exception.

For more information about the implementation of the try-finally construct, see §3.13.
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The code for the finally clause presents a special problem to the verifier. Usually,
if a particular instruction can be reached via multiple paths and a particular local
variable contains incompatible values through those multiple paths, then the local
variable becomes unusable. However, a finally clause might be called from
several different places, yielding several different circumstances:

• The invocation from the exception handler may have a certain local variable that
contains an exception.

• The invocation to implement return may have some local variable that contains
the return value.

• The invocation from the bottom of the try clause may have an indeterminate
value in that same local variable.

The code for the finally clause itself might pass verification, but after completing
the updating all the successors of the ret instruction, the verifier would note that the
local variable that the exception handler expects to hold an exception, or that the
return code expects to hold a return value, now contains an indeterminate value.

Verifying code that contains a finally clause is complicated. The basic idea is
the following:

• Each instruction keeps track of the list of jsr targets needed to reach that
instruction. For most code, this list is empty. For instructions inside code for the
finally clause, it is of length one. For multiply nested finally code (extremely
rare!), it may be longer than one.

• For each instruction and each jsr needed to reach that instruction, a bit vector
is maintained of all local variables accessed or modified since the execution of
the jsr instruction.

• When executing the ret instruction, which implements a return from a subroutine,
there must be only one possible subroutine from which the instruction can be
returning. Two different subroutines cannot "merge" their execution to a single
ret instruction.

• To perform the data-flow analysis on a ret instruction, a special procedure is
used. Since the verifier knows the subroutine from which the instruction must be
returning, it can find all the jsr instructions that call the subroutine and merge the
state of the operand stack and local variable array at the time of the ret instruction
into the operand stack and local variable array of the instructions following the
jsr. Merging uses a special set of values for local variables:
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– For any local variable that the bit vector (constructed above) indicates has been
accessed or modified by the subroutine, use the type of the local variable at
the time of the ret.

– For other local variables, use the type of the local variable before the jsr
instruction.

4.11 Limitations of the Java Virtual Machine

The following limitations of the Java Virtual Machine are implicit in the class
file format:

• The per-class or per-interface constant pool is limited to 65535 entries by the 16-
bit constant_pool_count field of the ClassFile structure (§4.1). This acts as
an internal limit on the total complexity of a single class or interface.

• The number of fields that may be declared by a class or interface is limited to
65535 by the size of the fields_count item of the ClassFile structure (§4.1).

Note that the value of the fields_count item of the ClassFile structure does
not include fields that are inherited from superclasses or superinterfaces.

• The number of methods that may be declared by a class or interface is limited to
65535 by the size of the methods_count item of the ClassFile structure (§4.1).

Note that the value of the methods_count item of the ClassFile structure does
not include methods that are inherited from superclasses or superinterfaces.

• The number of direct superinterfaces of a class or interface is limited to 65535
by the size of the interfaces_count item of the ClassFile structure (§4.1).

• The greatest number of local variables in the local variables array of a frame
created upon invocation of a method (§2.6) is limited to 65535 by the size of the
max_locals item of the Code attribute (§4.7.3) giving the code of the method,
and by the 16-bit local variable indexing of the Java Virtual Machine instruction
set.

Note that values of type long and double are each considered to reserve two
local variables and contribute two units toward the max_locals value, so use of
local variables of those types further reduces this limit.

• The size of an operand stack in a frame (§2.6) is limited to 65535 values by the
max_stack field of the Code attribute (§4.7.3).
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Note that values of type long and double are each considered to contribute two
units toward the max_stack value, so use of values of these types on the operand
stack further reduces this limit.

• The number of method parameters is limited to 255 by the definition of a method
descriptor (§4.3.3), where the limit includes one unit for this in the case of
instance or interface method invocations.

Note that a method descriptor is defined in terms of a notion of method parameter
length in which a parameter of type long or double contributes two units to the
length, so parameters of these types further reduce the limit.

• The length of field and method names, field and method descriptors, and other
constant string values (including those referenced by ConstantValue (§4.7.2)
attributes) is limited to 65535 characters by the 16-bit unsigned length item of
the CONSTANT_Utf8_info structure (§4.4.7).

Note that the limit is on the number of bytes in the encoding and not on
the number of encoded characters. UTF-8 encodes some characters using two
or three bytes. Thus, strings incorporating multibyte characters are further
constrained.

• The number of dimensions in an array is limited to 255 by the size of the
dimensions opcode of the multianewarray instruction and by the constraints
imposed on the multianewarray, anewarray, and newarray instructions (§4.9.1,
§4.9.2).
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C H A P T E R 5
Loading, Linking, and

Initializing

THE Java Virtual Machine dynamically loads, links and initializes classes and
interfaces. Loading is the process of finding the binary representation of a class
or interface type with a particular name and creating a class or interface from
that binary representation. Linking is the process of taking a class or interface and
combining it into the run-time state of the Java Virtual Machine so that it can be
executed. Initialization of a class or interface consists of executing the class or
interface initialization method <clinit> (§2.9.2).

In this chapter, §5.1 describes how the Java Virtual Machine derives symbolic
references from the binary representation of a class or interface. §5.2 explains
how the processes of loading, linking, and initialization are first initiated by the
Java Virtual Machine. §5.3 specifies how binary representations of classes and
interfaces are loaded by class loaders and how classes and interfaces are created.
Linking is described in §5.4. §5.5 details how classes and interfaces are initialized.
§5.6 introduces the notion of binding native methods. Finally, §5.7 describes when
a Java Virtual Machine exits.

5.1 The Run-Time Constant Pool

The Java Virtual Machine maintains a run-time constant pool for each class
and interface (§2.5.5). This data structure serves many of the purposes of the
symbol table of a conventional programming language implementation. The
constant_pool table in the binary representation of a class or interface (§4.4) is
used to construct the run-time constant pool upon class or interface creation (§5.3).
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There are two kinds of entry in the run-time constant pool: symbolic references,
which may later be resolved (§5.4.3), and static constants, which require no further
processing.

The symbolic references in the run-time constant pool are derived from entries in
the constant_pool table in accordance with the structure of each entry:

• A symbolic reference to a class or interface is derived from a
CONSTANT_Class_info structure (§4.4.1). Such a reference gives the name of
the class or interface in the following form:

– For a nonarray class or an interface, the name is the binary name (§4.2.1) of
the class or interface.

– For an array class of n dimensions, the name begins with n occurrences of the
ASCII [ character followed by a representation of the element type:

› If the element type is a primitive type, it is represented by the corresponding
field descriptor (§4.3.2).

› Otherwise, if the element type is a reference type, it is represented by the
ASCII L character followed by the binary name of the element type followed
by the ASCII ; character.

Whenever this chapter refers to the name of a class or interface, the name should
be understood to be in the form above. (This is also the form returned by the
Class.getName method.)

• A symbolic reference to a field of a class or an interface is derived from a
CONSTANT_Fieldref_info structure (§4.4.2). Such a reference gives the name
and descriptor of the field, as well as a symbolic reference to the class or interface
in which the field is to be found.

• A symbolic reference to a method of a class is derived from a
CONSTANT_Methodref_info structure (§4.4.2). Such a reference gives the name
and descriptor of the method, as well as a symbolic reference to the class in which
the method is to be found.

• A symbolic reference to a method of an interface is derived from a
CONSTANT_InterfaceMethodref_info structure (§4.4.2). Such a reference
gives the name and descriptor of the interface method, as well as a symbolic
reference to the interface in which the method is to be found.

• A symbolic reference to a method handle is derived from a
CONSTANT_MethodHandle_info structure (§4.4.8). Such a reference gives a
symbolic reference to a field of a class or interface, or a method of a class, or a
method of an interface, depending on the kind of the method handle.
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• A symbolic reference to a method type is derived from a
CONSTANT_MethodType_info structure (§4.4.9). Such a reference gives a method
descriptor (§4.3.3).

• A symbolic reference to a dynamically-computed constant is derived from a
CONSTANT_Dynamic_info structure (§4.4.10). Such a reference gives:

– a symbolic reference to a method handle, which will be invoked to compute
the constant's value;

– a sequence of symbolic references and static constants, which will serve as
static arguments when the method handle is invoked;

– an unqualified name and a field descriptor.

• A symbolic reference to a dynamically-computed call site is derived from a
CONSTANT_InvokeDynamic_info structure (§4.4.10). Such a reference gives:

– a symbolic reference to a method handle, which will be invoked in the course
of an invokedynamic instruction (§invokedynamic) to compute an instance of
java.lang.invoke.CallSite;

– a sequence of symbolic references and static constants, which will serve as
static arguments when the method handle is invoked;

– an unqualified name and a method descriptor.

The static constants in the run-time constant pool are also derived from entries in
the constant_pool table in accordance with the structure of each entry:

• A string constant is a reference to an instance of class String, and is derived
from a CONSTANT_String_info structure (§4.4.3). To derive a string constant,
the Java Virtual Machine examines the sequence of code points given by the
CONSTANT_String_info structure:

– If the method String.intern has previously been invoked on an instance of
class String containing a sequence of Unicode code points identical to that
given by the CONSTANT_String_info structure, then the string constant is a
reference to that same instance of class String.

– Otherwise, a new instance of class String is created containing the sequence
of Unicode code points given by the CONSTANT_String_info structure. The
string constant is a reference to the new instance. Finally, the method
String.intern is invoked on the new instance.

• Numeric constants are derived from CONSTANT_Integer_info,
CONSTANT_Float_info, CONSTANT_Long_info, and CONSTANT_Double_info
structures (§4.4.4, §4.4.5).
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Note that CONSTANT_Float_info structures represent values in IEEE 754 single
format and CONSTANT_Double_info structures represent values in IEEE 754
double format. The numeric constants derived from these structures must thus
be values that can be represented using IEEE 754 single and double formats,
respectively.

The remaining structures in the constant_pool table - the descriptive
structures CONSTANT_NameAndType_info, CONSTANT_Module_info, and
CONSTANT_Package_info, and the foundational structure CONSTANT_Utf8_info -
are only used indirectly when constructing the run-time constant pool. No entries
in the run-time constant pool correspond directly to these structures.

Some entries in the run-time constant pool are loadable, which means:

• They may be pushed onto the stack by the ldc family of instructions (§ldc,
§ldc_w, §ldc2_w).

• They may be static arguments to bootstrap methods for dynamically-computed
constants and call sites (§5.4.3.6).

An entry in the run-time constant pool is loadable if it is derived from an entry
in the constant_pool table that is loadable (see Table 4.4-C). Accordingly, the
following entries in the run-time constant pool are loadable:

• Symbolic references to classes and interfaces

• Symbolic references to method handles

• Symbolic references to method types

• Symbolic references to dynamically-computed constants

• Static constants

5.2 Java Virtual Machine Startup

The Java Virtual Machine starts up by creating an initial class or interface using
the bootstrap class loader (§5.3.1) or a user-defined class loader (§5.3.2). The Java
Virtual Machine then links the initial class or interface, initializes it, and invokes
the public static method void main(String[]). The invocation of this method
drives all further execution. Execution of the Java Virtual Machine instructions
constituting the main method may cause linking (and consequently creation) of
additional classes and interfaces, as well as invocation of additional methods.
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The initial class or interface is specified in an implementation-dependent manner.
For example, the initial class or interface could be provided as a command line
argument. Alternatively, the implementation of the Java Virtual Machine could
itself provide an initial class that sets up a class loader which in turn loads an
application. Other choices of the initial class or interface are possible so long as
they are consistent with the specification given in the previous paragraph.

5.3 Creation and Loading

Creation of a class or interface C denoted by the name N consists of the construction
in the method area of the Java Virtual Machine (§2.5.4) of an implementation-
specific internal representation of C. Class or interface creation is triggered by
another class or interface D, which references C through its run-time constant pool.
Class or interface creation may also be triggered by D invoking methods in certain
Java SE Platform class libraries (§2.12) such as reflection.

If C is not an array class, it is created by loading a binary representation of C (§4 (The
class File Format)) using a class loader. Array classes do not have an external
binary representation; they are created by the Java Virtual Machine rather than by
a class loader.

There are two kinds of class loaders: the bootstrap class loader supplied by the Java
Virtual Machine, and user-defined class loaders. Every user-defined class loader is
an instance of a subclass of the abstract class ClassLoader. Applications employ
user-defined class loaders in order to extend the manner in which the Java Virtual
Machine dynamically loads and thereby creates classes. User-defined class loaders
can be used to create classes that originate from user-defined sources. For example,
a class could be downloaded across a network, generated on the fly, or extracted
from an encrypted file.

A class loader L may create C by defining it directly or by delegating to another
class loader. If L creates C directly, we say that L defines C or, equivalently, that L
is the defining loader of C.

When one class loader delegates to another class loader, the loader that initiates the
loading is not necessarily the same loader that completes the loading and defines
the class. If L creates C, either by defining it directly or by delegation, we say that
L initiates loading of C or, equivalently, that L is an initiating loader of C.

At run time, a class or interface is determined not by its name alone, but by a pair:
its binary name (§4.2.1) and its defining class loader. Each such class or interface
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belongs to a single run-time package. The run-time package of a class or interface is
determined by the package name and defining class loader of the class or interface.

The Java Virtual Machine uses one of three procedures to create class or interface
C denoted by N:

• If N denotes a nonarray class or an interface, one of the two following methods
is used to load and thereby create C:

– If D was defined by the bootstrap class loader, then the bootstrap class loader
initiates loading of C (§5.3.1).

– If D was defined by a user-defined class loader, then that same user-defined
class loader initiates loading of C (§5.3.2).

• Otherwise N denotes an array class. An array class is created directly by the
Java Virtual Machine (§5.3.3), not by a class loader. However, the defining class
loader of D is used in the process of creating array class C.

If an error occurs during class loading, then an instance of a subclass of
LinkageError must be thrown at a point in the program that (directly or indirectly)
uses the class or interface being loaded.

If the Java Virtual Machine ever attempts to load a class C during verification
(§5.4.1) or resolution (§5.4.3) (but not initialization (§5.5)), and the class loader
that is used to initiate loading of C throws an instance of ClassNotFoundException,
then the Java Virtual Machine must throw an instance of NoClassDefFoundError
whose cause is the instance of ClassNotFoundException.

(A subtlety here is that recursive class loading to load superclasses is performed
as part of resolution (§5.3.5, step 3). Therefore, a ClassNotFoundException that
results from a class loader failing to load a superclass must be wrapped in a
NoClassDefFoundError.)

A well-behaved class loader should maintain three properties:

• Given the same name, a good class loader should always return the same Class object.

• If a class loader L1 delegates loading of a class C to another loader L2, then for any type
T that occurs as the direct superclass or a direct superinterface of C, or as the type of a
field in C, or as the type of a formal parameter of a method or constructor in C, or as a
return type of a method in C, L1 and L2 should return the same Class object.

• If a user-defined classloader prefetches binary representations of classes and interfaces,
or loads a group of related classes together, then it must reflect loading errors only at
points in the program where they could have arisen without prefetching or group loading.
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We will sometimes represent a class or interface using the notation <N, Ld>, where
N denotes the name of the class or interface and Ld denotes the defining loader of
the class or interface.

We will also represent a class or interface using the notation NLi, where N denotes
the name of the class or interface and Li denotes an initiating loader of the class
or interface.

5.3.1 Loading Using the Bootstrap Class Loader

The following steps are used to load and thereby create the nonarray class or
interface C denoted by N using the bootstrap class loader.

First, the Java Virtual Machine determines whether the bootstrap class loader has
already been recorded as an initiating loader of a class or interface denoted by N. If
so, this class or interface is C, and no class creation is necessary.

Otherwise, the Java Virtual Machine passes the argument N to an invocation of a
method on the bootstrap class loader to search for a purported representation of C
in a platform-dependent manner. Typically, a class or interface will be represented
using a file in a hierarchical file system, and the name of the class or interface will
be encoded in the pathname of the file.

Note that there is no guarantee that a purported representation found is valid or is
a representation of C. This phase of loading must detect the following error:

• If no purported representation of C is found, loading throws an instance of
ClassNotFoundException.

Then the Java Virtual Machine attempts to derive a class denoted by N using the
bootstrap class loader from the purported representation using the algorithm found
in §5.3.5. That class is C.

5.3.2 Loading Using a User-defined Class Loader

The following steps are used to load and thereby create the nonarray class or
interface C denoted by N using a user-defined class loader L.

First, the Java Virtual Machine determines whether L has already been recorded as
an initiating loader of a class or interface denoted by N. If so, this class or interface
is C, and no class creation is necessary.

Otherwise, the Java Virtual Machine invokes loadClass(N) on L. The value
returned by the invocation is the created class or interface C. The Java Virtual
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Machine then records that L is an initiating loader of C (§5.3.4). The remainder of
this section describes this process in more detail.

When the loadClass method of the class loader L is invoked with the name N of a
class or interface C to be loaded, L must perform one of the following two operations
in order to load C:

1. The class loader L can create an array of bytes representing C as the bytes of
a ClassFile structure (§4.1); it then must invoke the method defineClass of
class ClassLoader. Invoking defineClass causes the Java Virtual Machine
to derive a class or interface denoted by N using L from the array of bytes using
the algorithm found in §5.3.5.

2. The class loader L can delegate the loading of C to some other class loader L'.
This is accomplished by passing the argument N directly or indirectly to an
invocation of a method on L' (typically the loadClass method). The result of
the invocation is C.

In either (1) or (2), if the class loader L is unable to load a class or interface denoted
by N for any reason, it must throw an instance of ClassNotFoundException.

Since JDK release 1.1, Oracle’s Java Virtual Machine implementation has invoked the
loadClass method of a class loader in order to cause it to load a class or interface.
The argument to loadClass is the name of the class or interface to be loaded. There is
also a two-argument version of the loadClass method, where the second argument is a
boolean that indicates whether the class or interface is to be linked or not. Only the two-
argument version was supplied in JDK release 1.0.2, and Oracle’s Java Virtual Machine
implementation relied on it to link the loaded class or interface. From JDK release 1.1
onward, Oracle’s Java Virtual Machine implementation links the class or interface directly,
without relying on the class loader.

5.3.3 Creating Array Classes

The following steps are used to create the array class C denoted by N using class
loader L. Class loader L may be either the bootstrap class loader or a user-defined
class loader.

If L has already been recorded as an initiating loader of an array class with the same
component type as N, that class is C, and no array class creation is necessary.

Otherwise, the following steps are performed to create C:

1. If the component type is a reference type, the algorithm of this section (§5.3)
is applied recursively using class loader L in order to load and thereby create
the component type of C.
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2. The Java Virtual Machine creates a new array class with the indicated
component type and number of dimensions.

If the component type is a reference type, C is marked as having been defined
by the defining class loader of the component type. Otherwise, C is marked as
having been defined by the bootstrap class loader.

In any case, the Java Virtual Machine then records that L is an initiating loader
for C (§5.3.4).

If the component type is a reference type, the accessibility of the array class
is determined by the accessibility of its component type (§5.4.4). Otherwise,
the array class is accessible to all classes and interfaces.

5.3.4 Loading Constraints

Ensuring type safe linkage in the presence of class loaders requires special care. It is
possible that when two different class loaders initiate loading of a class or interface
denoted by N, the name N may denote a different class or interface in each loader.

When a class or interface C = <N1, L1> makes a symbolic reference to a field or
method of another class or interface D = <N2, L2>, the symbolic reference includes
a descriptor specifying the type of the field, or the return and argument types of
the method. It is essential that any type name N mentioned in the field or method
descriptor denote the same class or interface when loaded by L1 and when loaded
by L2.

To ensure this, the Java Virtual Machine imposes loading constraints of the form
N
L1 = NL2 during preparation (§5.4.2) and resolution (§5.4.3). To enforce these

constraints, the Java Virtual Machine will, at certain prescribed times (see §5.3.1,
§5.3.2, §5.3.3, and §5.3.5), record that a particular loader is an initiating loader of
a particular class. After recording that a loader is an initiating loader of a class,
the Java Virtual Machine must immediately check to see if any loading constraints
are violated. If so, the record is retracted, the Java Virtual Machine throws a
LinkageError, and the loading operation that caused the recording to take place
fails.

Similarly, after imposing a loading constraint (see §5.4.2, §5.4.3.2, §5.4.3.3, and
§5.4.3.4), the Java Virtual Machine must immediately check to see if any loading
constraints are violated. If so, the newly imposed loading constraint is retracted, the
Java Virtual Machine throws a LinkageError, and the operation that caused the
constraint to be imposed (either resolution or preparation, as the case may be) fails.



5.3 Creation and Loading LOADING, LINKING, AND INITIALIZING

362

The situations described here are the only times at which the Java Virtual Machine
checks whether any loading constraints have been violated. A loading constraint is
violated if, and only if, all the following four conditions hold:

• There exists a loader L such that L has been recorded by the Java Virtual Machine
as an initiating loader of a class C named N.

• There exists a loader L' such that L' has been recorded by the Java Virtual Machine
as an initiating loader of a class C ' named N.

• The equivalence relation defined by the (transitive closure of the) set of imposed
constraints implies NL = NL'.

• C ≠ C '.

A full discussion of class loaders and type safety is beyond the scope of this specification.
For a more comprehensive discussion, readers are referred to Dynamic Class Loading in
the Java Virtual Machine by Sheng Liang and Gilad Bracha (Proceedings of the 1998
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and
Applications).

5.3.5 Deriving a Class from a class File Representation

The following steps are used to derive a Class object for the nonarray class or
interface C denoted by N using loader L from a purported representation in class
file format.

1. First, the Java Virtual Machine determines whether it has already recorded that
L is an initiating loader of a class or interface denoted by N. If so, this creation
attempt is invalid and loading throws a LinkageError.

2. Otherwise, the Java Virtual Machine attempts to parse the purported
representation. However, the purported representation may not in fact be a
valid representation of C.

This phase of loading must detect the following errors:

• If the purported representation is not a ClassFile structure (§4.1, §4.8),
loading throws an instance of ClassFormatError.

• Otherwise, if the purported representation is not of a supported
major or minor version (§4.1), loading throws an instance of
UnsupportedClassVersionError.

UnsupportedClassVersionError, a subclass of ClassFormatError, was
introduced to enable easy identification of a ClassFormatError caused by
an attempt to load a class whose representation uses an unsupported version
of the class file format. In JDK release 1.1 and earlier, an instance of
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NoClassDefFoundError or ClassFormatError was thrown in case of an
unsupported version, depending on whether the class was being loaded by the
system class loader or a user-defined class loader.

• Otherwise, if the purported representation does not actually represent a
class named N, loading throws an instance of NoClassDefFoundError or an
instance of one of its subclasses.

This occurs when the purported representation has either a this_class item
which specifies a name other than N, or an access_flags item which has
the ACC_MODULE flag set.

3. If C has a direct superclass, the symbolic reference from C to its direct superclass
is resolved using the algorithm of §5.4.3.1. Note that if C is an interface it must
have Object as its direct superclass, which must already have been loaded.
Only Object has no direct superclass.

Any exceptions that can be thrown due to class or interface resolution can be
thrown as a result of this phase of loading. In addition, this phase of loading
must detect the following errors:

• If the class or interface named as the direct superclass of C is in fact an
interface, loading throws an IncompatibleClassChangeError.

• Otherwise, if any of the superclasses of C is C itself, loading throws a
ClassCircularityError.

4. If C has any direct superinterfaces, the symbolic references from C to its direct
superinterfaces are resolved using the algorithm of §5.4.3.1.

Any exceptions that can be thrown due to class or interface resolution can be
thrown as a result of this phase of loading. In addition, this phase of loading
must detect the following errors:

• If any of the classes or interfaces named as direct superinterfaces of C is not
in fact an interface, loading throws an IncompatibleClassChangeError.

• Otherwise, if any of the superinterfaces of C is C itself, loading throws a
ClassCircularityError.

5. The Java Virtual Machine marks C as having L as its defining class loader and
records that L is an initiating loader of C (§5.3.4).
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5.3.6 Modules and Layers

The Java Virtual Machine supports the organization of classes and interfaces into
modules. The membership of a class or interface C in a module M is used to control
access to C from classes and interfaces in modules other than M (§5.4.4).

Module membership is defined in terms of run-time packages (§5.3). A program
determines the names of the packages in each module, and the class loaders that
will create the classes and interfaces of the named packages; it then specifies the
packages and class loaders to an invocation of the defineModules method of the
class ModuleLayer. Invoking defineModules causes the Java Virtual Machine to
create new run-time modules that are associated with the run-time packages of the
class loaders.

Every run-time module indicates the run-time packages that it exports, which
influences access to the public classes and interfaces in those run-time packages.
Every run-time module also indicates the other run-time modules that it reads,
which influences access by its own code to the public types and interfaces in those
run-time modules.

We say that a class is in a run-time module iff the class's run-time package is
associated (or will be associated, if the class is actually created) with that run-time
module.

A class created by a class loader is in exactly one run-time package and therefore
exactly one run-time module, because the Java Virtual Machine does not support
a run-time package being associated with (or more evocatively, "split across")
multiple run-time modules.

A run-time module is implicitly bound to exactly one class loader, by the semantics
of defineModules. On the other hand, a class loader may create classes in more
than one run-time module, because the Java Virtual Machine does not require all
the run-time packages of a class loader to be associated with the same run-time
module.

In other words, the relationship between class loaders and run-time modules need not be
1:1. For a given set of modules to be loaded, if a program can determine that the names of
the packages in each module are found only in that module, then the program may specify
only one class loader to the invocation of defineModules. This class loader will create
classes across multiple run-time modules.

Every run-time module created by defineModules is part of a layer. A layer
represents a set of class loaders that jointly serve to create classes in a set of run-time
modules. There are two kinds of layers: the boot layer supplied by the Java Virtual
Machine, and user-defined layers. The boot layer is created at Java Virtual Machine
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startup in an implementation-dependent manner. It associates the standard run-time
module java.base with standard run-time packages defined by the bootstrap class
loader, such as java.lang. User-defined layers are created by programs in order to
construct sets of run-time modules that depend on java.base and other standard
run-time modules.

A run-time module is implicitly part of exactly one layer, by the semantics
of defineModules. However, a class loader may create classes in the run-time
modules of different layers, because the same class loader may be specified to
multiple invocations of defineModules. Access control is governed by a class's
run-time module, not by the class loader which created the class or by the layer(s)
which the class loader serves.

The set of class loaders specified for a layer, and the set of run-time modules
which are part of a layer, are immutable after the layer is created. However,
the ModuleLayer class affords programs a degree of dynamic control over the
relationships between the run-time modules in a user-defined layer.

If a user-defined layer contains more than one class loader, then any delegation
between the class loaders is the responsibility of the program that created the layer.
The Java Virtual Machine does not check that the layer's class loaders delegate to
each other in accordance with how the layer's run-time modules read each other.
Moreover, if the layer's run-time modules are modified via the ModuleLayer class
to read additional run-time modules, then the Java Virtual Machine does not check
that the layer's class loaders are modified by some out-of-band mechanism to
delegate in a corresponding fashion.

There are similarities and differences between class loaders and layers. On the one hand,
a layer is similar to a class loader in that each may delegate to, respectively, one or more
parent layers or class loaders that created, respectively, modules or classes at an earlier time.
That is, the set of modules specified to a layer may depend on modules not specified to the
layer, and instead specified previously to one or more parent layers. On the other hand, a
layer may be used to create new modules only once, whereas a class loader may be used to
create new classes or interfaces at any time via multiple invocations of the defineClass
method.

It is possible for a class loader to define a class or interface in a run-time package
that was not associated with a run-time module by any of the layers which the
class loader serves. This may occur if the run-time package embodies a named
package that was not specified to defineModules, or if the class or interface has
a simple binary name (§4.2.1) and thus is a member of a run-time package that
embodies an unnamed package (JLS §7.4.2). In either case, the class or interface is
treated as a member of a special run-time module which is implicitly bound to the
class loader. This special run-time module is known as the unnamed module of the
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class loader. The run-time package of the class or interface is associated with the
unnamed module of the class loader. There are special rules for unnamed modules,
designed to maximize their interoperation with other run-time modules, as follows:

• A class loader's unnamed module is distinct from all other run-time modules
bound to the same class loader.

• A class loader's unnamed module is distinct from all run-time modules (including
unnamed modules) bound to other class loaders.

• Every unnamed module reads every run-time module.

• Every unnamed module exports, to every run-time module, every run-time
package associated with itself.

5.4 Linking

Linking a class or interface involves verifying and preparing that class or interface,
its direct superclass, its direct superinterfaces, and its element type (if it is an array
type), if necessary. Linking also involves resolution of symbolic references in the
class or interface, though not necessarily at the same time as the class or interface
is verified and prepared.

This specification allows an implementation flexibility as to when linking activities
(and, because of recursion, loading) take place, provided that all of the following
properties are maintained:

• A class or interface is completely loaded before it is linked.

• A class or interface is completely verified and prepared before it is initialized.

• Errors detected during linkage are thrown at a point in the program where some
action is taken by the program that might, directly or indirectly, require linkage
to the class or interface involved in the error.

• A symbolic reference to a dynamically-computed constant is not resolved until
either (i) an ldc, ldc_w, or ldc2_w instruction that refers to it is executed, or (ii)
a bootstrap method that refers to it as a static argument is invoked.

A symbolic reference to a dynamically-computed call site is not resolved until a
bootstrap method that refers to it as a static argument is invoked.

For example, a Java Virtual Machine implementation may choose a "lazy" linkage
strategy, where each symbolic reference in a class or interface (other than the
symbolic references above) is resolved individually when it is used. Alternatively,
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an implementation may choose an "eager" linkage strategy, where all symbolic
references are resolved at once when the class or interface is being verified. This
means that the resolution process may continue, in some implementations, after a
class or interface has been initialized. Whichever strategy is followed, any error
detected during resolution must be thrown at a point in the program that (directly
or indirectly) uses a symbolic reference to the class or interface.

Because linking involves the allocation of new data structures, it may fail with an
OutOfMemoryError.

5.4.1 Verification

Verification (§4.10) ensures that the binary representation of a class or interface is
structurally correct (§4.9). Verification may cause additional classes and interfaces
to be loaded (§5.3) but need not cause them to be verified or prepared.

If the binary representation of a class or interface does not satisfy the static or
structural constraints listed in §4.9, then a VerifyError must be thrown at the point
in the program that caused the class or interface to be verified.

If an attempt by the Java Virtual Machine to verify a class or interface fails
because an error is thrown that is an instance of LinkageError (or a subclass), then
subsequent attempts to verify the class or interface always fail with the same error
that was thrown as a result of the initial verification attempt.

5.4.2 Preparation

Preparation involves creating the static fields for a class or interface and initializing
such fields to their default values (§2.3, §2.4). This does not require the execution
of any Java Virtual Machine code; explicit initializers for static fields are executed
as part of initialization (§5.5), not preparation.

During preparation of a class or interface C, the Java Virtual Machine also imposes
loading constraints (§5.3.4):

1. Let L1 be the defining loader of C. For each instance method m declared in
C that can override (§5.4.5) an instance method declared in a superclass or
superinterface <D, L2>, the Java Virtual Machine imposes loading constraints
as follows.

Given that the return type of m is Tr, and that the formal parameter types of m
are Tf1, ..., Tfn:

If Tr not an array type, let T0 be Tr; otherwise, let T0 be the element type of Tr.
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For i = 1 to n: If Tfi is not an array type, let Ti be Tfi; otherwise, let Ti be the
element type of Tfi.

Then Ti
L1 = Ti

L2 for i = 0 to n.

2. For each instance method m declared in a superinterface <I, L3> of C, if C does
not itself declare an instance method that can override m, then a method is
selected (§5.4.6) with respect to C and the method m in <I, L3>. Let <D, L2>
be the class or interface that declares the selected method. The Java Virtual
Machine imposes loading constraints as follows.

Given that the return type of m is Tr, and that the formal parameter types of m
are Tf1, ..., Tfn:

If Tr not an array type, let T0 be Tr; otherwise, let T0 be the element type of Tr.

For i = 1 to n: If Tfi is not an array type, let Ti be Tfi; otherwise, let Ti be the
element type of Tfi.

Then Ti
L2 = Ti

L3 for i = 0 to n.

Preparation may occur at any time following creation but must be completed prior
to initialization.

5.4.3 Resolution

Many Java Virtual Machine instructions - anewarray, checkcast, getfield,
getstatic, instanceof, invokedynamic, invokeinterface, invokespecial, invokestatic,
invokevirtual, ldc, ldc_w, ldc2_w, multianewarray, new, putfield, and putstatic -
rely on symbolic references in the run-time constant pool. Execution of any of these
instructions requires resolution of the symbolic reference.

Resolution is the process of dynamically determining one or more concrete values
from a symbolic reference in the run-time constant pool. Initially, all symbolic
references in the run-time constant pool are unresolved.

Resolution of an unresolved symbolic reference to (i) a class or interface, (ii) a
field, (iii) a method, (iv) a method type, (v) a method handle, or (vi) a dynamically-
computed constant, proceeds in accordance with the rules given in §5.4.3.1 through
§5.4.3.5. In the first three of those sections, the class or interface in whose run-time
constant pool the symbolic reference appears is labeled D. Then:

• If no error occurs during resolution of the symbolic reference, then resolution
succeeds.
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Subsequent attempts to resolve the symbolic reference always succeed trivially
and result in the same entity produced by the initial resolution. If the symbolic
reference is to a dynamically-computed constant, the bootstrap method is not re-
executed for these subsequent attempts.

• If an error occurs during resolution of the symbolic reference, then it is either (i)
an instance of IncompatibleClassChangeError (or a subclass); (ii) an instance
of Error (or a subclass) that arose from resolution or invocation of a bootstrap
method; or (iii) an instance of LinkageError (or a subclass) that arose because
class loading failed or a loader constraint was violated. The error must be thrown
at a point in the program that (directly or indirectly) uses the symbolic reference.

Subsequent attempts to resolve the symbolic reference always fail with the same
error that was thrown as a result of the initial resolution attempt. If the symbolic
reference is to a dynamically-computed constant, the bootstrap method is not re-
executed for these subsequent attempts.

Because errors occurring on an initial attempt at resolution are thrown again on subsequent
attempts, a class in one module that attempts to access, via resolution of a symbolic
reference in its run-time constant pool, an unexported public type in a different module
will always receive the same error indicating an inaccessible type (§5.4.4), even if the Java
SE Platform API is used to dynamically export the public type's package at some time
after the class's first attempt.

Resolution of an unresolved symbolic reference to a dynamically-computed call
site proceeds in accordance with the rules given in §5.4.3.6. Then:

• If no error occurs during resolution of the symbolic reference, then resolution
succeeds solely for the instruction in the class file that required resolution. This
instruction necessarily has an opcode of invokedynamic.

Subsequent attempts to resolve the symbolic reference by that instruction in the
class file always succeed trivially and result in the same entity produced by the
initial resolution. The bootstrap method is not re-executed for these subsequent
attempts.

The symbolic reference is still unresolved for all other instructions in the class
file, of any opcode, which indicate the same entry in the run-time constant pool
as the invokedynamic instruction above.

• If an error occurs during resolution of the symbolic reference, then it is either (i)
an instance of IncompatibleClassChangeError (or a subclass); (ii) an instance
of Error (or a subclass) that arose from resolution or invocation of a bootstrap
method; or (iii) an instance of LinkageError (or a subclass) that arose because
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class loading failed or a loader constraint was violated. The error must be thrown
at a point in the program that (directly or indirectly) uses the symbolic reference.

Subsequent attempts by the same instruction in the class file to resolve the
symbolic reference always fail with the same error that was thrown as a result of
the initial resolution attempt. The bootstrap method is not re-executed for these
subsequent attempts.

The symbolic reference is still unresolved for all other instructions in the class
file, of any opcode, which indicate the same entry in the run-time constant pool
as the invokedynamic instruction above.

Certain of the instructions above require additional linking checks when resolving
symbolic references. For instance, in order for a getfield instruction to successfully
resolve the symbolic reference to the field on which it operates, it must not only
complete the field resolution steps given in §5.4.3.2 but also check that the field is
not static. If it is a static field, a linking exception must be thrown.

Linking exceptions generated by checks that are specific to the execution of a
particular Java Virtual Machine instruction are given in the description of that
instruction and are not covered in this general discussion of resolution. Note
that such exceptions, although described as part of the execution of Java Virtual
Machine instructions rather than resolution, are still properly considered failures
of resolution.

5.4.3.1 Class and Interface Resolution

To resolve an unresolved symbolic reference from D to a class or interface C denoted
by N, the following steps are performed:

1. The defining class loader of D is used to create a class or interface denoted by
N. This class or interface is C. The details of the process are given in §5.3.

Any exception that can be thrown as a result of failure of class or interface
creation can thus be thrown as a result of failure of class and interface
resolution.

2. If C is an array class and its element type is a reference type, then a symbolic
reference to the class or interface representing the element type is resolved by
invoking the algorithm in §5.4.3.1 recursively.

3. Finally, access control is applied for the access from D to C (§5.4.4).

If steps 1 and 2 succeed but step 3 fails, C is still valid and usable. Nevertheless,
resolution fails, and D is prohibited from accessing C.
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5.4.3.2 Field Resolution

To resolve an unresolved symbolic reference from D to a field in a class or interface
C, the symbolic reference to C given by the field reference must first be resolved
(§5.4.3.1). Therefore, any exception that can be thrown as a result of failure of
resolution of a class or interface reference can be thrown as a result of failure of
field resolution. If the reference to C can be successfully resolved, an exception
relating to the failure of resolution of the field reference itself can be thrown.

When resolving a field reference, field resolution first attempts to look up the
referenced field in C and its superclasses:

1. If C declares a field with the name and descriptor specified by the field
reference, field lookup succeeds. The declared field is the result of the field
lookup.

2. Otherwise, field lookup is applied recursively to the direct superinterfaces of
the specified class or interface C.

3. Otherwise, if C has a superclass S, field lookup is applied recursively to S.

4. Otherwise, field lookup fails.

Then, the result of field resolution is determined:

• If field lookup failed, field resolution throws a NoSuchFieldError.

• Otherwise, field lookup succeeded. Access control is applied for the access from
D to the field which is the result of field lookup (§5.4.4). Then:

– If access control failed, field resolution fails for the same reason.

– Otherwise, access control succeeded. Loading constraints are imposed, as
follows.

Let <E, L1> be the class or interface in which the referenced field is actually
declared. Let L2 be the defining loader of D. Given that the type of the
referenced field is Tf: if Tf is not an array type, let T be Tf; otherwise, let T
be the element type of Tf.

The Java Virtual Machine imposes the loading constraint that TL1 = TL2.

If imposing this constraint results in any loading constraints being violated
(§5.3.4), then field resolution fails. Otherwise, field resolution succeeds.
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5.4.3.3 Method Resolution

To resolve an unresolved symbolic reference from D to a method in a class C, the
symbolic reference to C given by the method reference is first resolved (§5.4.3.1).
Therefore, any exception that can be thrown as a result of failure of resolution of
a class reference can be thrown as a result of failure of method resolution. If the
reference to C can be successfully resolved, exceptions relating to the resolution of
the method reference itself can be thrown.

When resolving a method reference:

1. If C is an interface, method resolution throws an
IncompatibleClassChangeError.

2. Otherwise, method resolution attempts to locate the referenced method in C
and its superclasses:

• If C declares exactly one method with the name specified by the method
reference, and the declaration is a signature polymorphic method (§2.9.3),
then method lookup succeeds. All the class names mentioned in the
descriptor are resolved (§5.4.3.1).

The resolved method is the signature polymorphic method declaration. It is
not necessary for C to declare a method with the descriptor specified by the
method reference.

• Otherwise, if C declares a method with the name and descriptor specified by
the method reference, method lookup succeeds.

• Otherwise, if C has a superclass, step 2 of method resolution is recursively
invoked on the direct superclass of C.

3. Otherwise, method resolution attempts to locate the referenced method in the
superinterfaces of the specified class C:

• If the maximally-specific superinterface methods of C for the name and
descriptor specified by the method reference include exactly one method that
does not have its ACC_ABSTRACT flag set, then this method is chosen and
method lookup succeeds.

• Otherwise, if any superinterface of C declares a method with the name and
descriptor specified by the method reference that has neither its ACC_PRIVATE
flag nor its ACC_STATIC flag set, one of these is arbitrarily chosen and method
lookup succeeds.

• Otherwise, method lookup fails.
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A maximally-specific superinterface method of a class or interface C for a particular
method name and descriptor is any method for which all of the following are true:

• The method is declared in a superinterface (direct or indirect) of C.

• The method is declared with the specified name and descriptor.

• The method has neither its ACC_PRIVATE flag nor its ACC_STATIC flag set.

• Where the method is declared in interface I, there exists no other maximally-
specific superinterface method of C with the specified name and descriptor that
is declared in a subinterface of I.

The result of method resolution is determined as follows:

• If method lookup failed, method resolution throws a NoSuchMethodError.

• Otherwise, method lookup succeeded. Access control is applied for the access
from D to the method which is the result of method lookup (§5.4.4). Then:

– If access control failed, method resolution fails for the same reason.

– Otherwise, access control succeeded. Loading constraints are imposed, as
follows.

Let <E, L1> be the class or interface in which the referenced method m is actually
declared. Let L2 be the defining loader of D. Given that the return type of m is
Tr, and that the formal parameter types of m are Tf1, ..., Tfn:

If Tr is not an array type, let T0 be Tr; otherwise, let T0 be the element type of Tr.

For i = 1 to n: If Tfi is not an array type, let Ti be Tfi; otherwise, let Ti be the
element type of Tfi.

The Java Virtual Machine imposes the loading constraints Ti
L1 = Ti

L2 for i
= 0 to n.

If imposing these constraints results in any loading constraints being violated
(§5.3.4), then method resolution fails. Otherwise, method resolution succeeds.

When resolution searches for a method in the class's superinterfaces, the best outcome is to
identify a maximally-specific non-abstract method. It is possible that this method will
be chosen by method selection, so it is desirable to add class loader constraints for it.

Otherwise, the result is nondeterministic. This is not new: The Java® Virtual Machine
Specification has never identified exactly which method is chosen, and how "ties" should
be broken. Prior to Java SE 8, this was mostly an unobservable distinction. However,
beginning with Java SE 8, the set of interface methods is more heterogenous, so care must
be taken to avoid problems with nondeterministic behavior. Thus:
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• Superinterface methods that are private and static are ignored by resolution. This is
consistent with the Java programming language, where such interface methods are not
inherited.

• Any behavior controlled by the resolved method should not depend on whether the
method is abstract or not.

Note that if the result of resolution is an abstract method, the referenced class C may
be non-abstract. Requiring C to be abstract would conflict with the nondeterministic
choice of superinterface methods. Instead, resolution assumes that the run time class of the
invoked object has a concrete implementation of the method.

5.4.3.4 Interface Method Resolution

To resolve an unresolved symbolic reference from D to an interface method in an
interface C, the symbolic reference to C given by the interface method reference is
first resolved (§5.4.3.1). Therefore, any exception that can be thrown as a result of
failure of resolution of an interface reference can be thrown as a result of failure
of interface method resolution. If the reference to C can be successfully resolved,
exceptions relating to the resolution of the interface method reference itself can be
thrown.

When resolving an interface method reference:

1. If C is not an interface, interface method resolution throws an
IncompatibleClassChangeError.

2. Otherwise, if C declares a method with the name and descriptor specified by
the interface method reference, method lookup succeeds.

3. Otherwise, if the class Object declares a method with the name and descriptor
specified by the interface method reference, which has its ACC_PUBLIC flag set
and does not have its ACC_STATIC flag set, method lookup succeeds.

4. Otherwise, if the maximally-specific superinterface methods (§5.4.3.3) of C
for the name and descriptor specified by the method reference include exactly
one method that does not have its ACC_ABSTRACT flag set, then this method is
chosen and method lookup succeeds.

5. Otherwise, if any superinterface of C declares a method with the name and
descriptor specified by the method reference that has neither its ACC_PRIVATE
flag nor its ACC_STATIC flag set, one of these is arbitrarily chosen and method
lookup succeeds.

6. Otherwise, method lookup fails.

The result of interface method resolution is determined as follows:
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• If method lookup failed, interface method resolution throws a
NoSuchMethodError.

• Otherwise, method lookup succeeded. Access control is applied for the access
from D to the method which is the result of method lookup (§5.4.4). Then:

– If access control failed, interface method resolution fails for the same reason.

– Otherwise, access control succeeded. Loading constraints are imposed, as
follows.

Let <E, L1> be the class or interface in which the referenced interface method
m is actually declared. Let L2 be the defining loader of D. Given that the return
type of m is Tr, and that the formal parameter types of m are Tf1, ..., Tfn:

If Tr is not an array type, let T0 be Tr; otherwise, let T0 be the element type of Tr.

For i = 1 to n: If Tfi is not an array type, let Ti be Tfi; otherwise, let Ti be the
element type of Tfi.

The Java Virtual Machine imposes the loading constraints Ti
L1 = Ti

L2 for i
= 0 to n.

If imposing these constraints results in any loading constraints being violated
(§5.3.4), then interface method resolution fails. Otherwise, interface method
resolution succeeds.

Access control is necessary because interface method resolution may pick a private
method of interface C. (Prior to Java SE 8, the result of interface method resolution could be
a non-public method of class Object or a static method of class Object; such results
were not consistent with the inheritance model of the Java programming language, and are
disallowed in Java SE 8 and above.)

5.4.3.5 Method Type and Method Handle Resolution

To resolve an unresolved symbolic reference to a method type, it is as if resolution
occurs of unresolved symbolic references to classes and interfaces (§5.4.3.1) whose
names correspond to the types given in the method descriptor (§4.3.3).

Any exception that can be thrown as a result of failure of resolution of a class
reference can thus be thrown as a result of failure of method type resolution.

The result of successful method type resolution is a reference to an instance of
java.lang.invoke.MethodType which represents the method descriptor.

Method type resolution occurs regardless of whether the run-time constant pool actually
contains symbolic references to classes and interfaces indicated in the method descriptor.
Also, the resolution is deemed to occur on unresolved symbolic references, so a failure
to resolve one method type will not necessarily lead to a later failure to resolve another
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method type with the same textual method descriptor, if suitable classes and interfaces can
be loaded by the later time.

Resolution of an unresolved symbolic reference to a method handle is more
complicated. Each method handle resolved by the Java Virtual Machine has an
equivalent instruction sequence called its bytecode behavior, indicated by the
method handle's kind. The integer values and descriptions of the nine kinds of
method handle are given in Table 5.4.3.5-A.

Symbolic references by an instruction sequence to fields or methods are indicated
by C.x:T, where x and T are the name and descriptor (§4.3.2, §4.3.3) of the field or
method, and C is the class or interface in which the field or method is to be found.

Table 5.4.3.5-A. Bytecode Behaviors for Method Handles

Kind Description Interpretation

1 REF_getField getfield C.f:T

2 REF_getStatic getstatic C.f:T

3 REF_putField putfield C.f:T

4 REF_putStatic putstatic C.f:T

5 REF_invokeVirtual invokevirtual C.m:(A*)T

6 REF_invokeStatic invokestatic C.m:(A*)T

7 REF_invokeSpecial invokespecial C.m:(A*)T

8 REF_newInvokeSpecial new C; dup; invokespecial

C.<init>:(A*)V

9 REF_invokeInterface invokeinterface C.m:(A*)T

Let MH be the symbolic reference to a method handle (§5.1) being resolved. Also:

• Let R be the symbolic reference to the field or method contained within MH.

R is derived from the CONSTANT_Fieldref, CONSTANT_Methodref, or
CONSTANT_InterfaceMethodref structure referred to by the reference_index
item of the CONSTANT_MethodHandle from which MH is derived.

For example, R is a symbolic reference to C . f for bytecode behavior of kind 1, and a
symbolic reference to C . <init> for bytecode behavior of kind 8.

If MH's bytecode behavior is kind 7 (REF_invokeSpecial), then C must be the
current class or interface, a superclass of the current class, a direct superinterface
of the current class or interface, or Object.
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• Let T be the type of the field referenced by R, or the return type of the method
referenced by R. Let A* be the sequence (perhaps empty) of parameter types of
the method referenced by R.

T and A* are derived from the CONSTANT_NameAndType structure referred to by the
name_and_type_index item in the CONSTANT_Fieldref, CONSTANT_Methodref,
or CONSTANT_InterfaceMethodref structure from which R is derived.

To resolve MH, all symbolic references to classes, interfaces, fields, and methods in
MH's bytecode behavior are resolved, using the following four steps:

1. R is resolved. This occurs as if by field resolution (§5.4.3.2) when MH's bytecode
behavior is kind 1, 2, 3, or 4, and as if by method resolution (§5.4.3.3) when MH's
bytecode behavior is kind 5, 6, 7, or 8, and as if by interface method resolution
(§5.4.3.4) when MH's bytecode behavior is kind 9.

2. The following constraints apply to the result of resolving R. These constraints
correspond to those that would be enforced during verification or execution of
the instruction sequence for the relevant bytecode behavior.

• If MH's bytecode behavior is kind 8 (REF_newInvokeSpecial), then R must
resolve to an instance initialization method declared in class C.

• If R resolves to a protected member, then the following rules apply
depending on the kind of MH's bytecode behavior:

– For kinds 1, 3, and 5 (REF_getField, REF_putField, and
REF_invokeVirtual): If C.f or C.m resolved to a protected field or
method, and C is in a different run-time package than the current class,
then C must be assignable to the current class.

– For kind 8 (REF_newInvokeSpecial): If C . <init> resolved to a
protected method, then C must be declared in the same run-time package
as the current class.

• R must resolve to a static or non-static member depending on the kind
of MH's bytecode behavior:

– For kinds 1, 3, 5, 7, and 9 (REF_getField, REF_putField,
REF_invokeVirtual, REF_invokeSpecial, and REF_invokeInterface):
C.f or C.m must resolve to a non-static field or method.

– For kinds 2, 4, and 6 (REF_getStatic, REF_putStatic, and
REF_invokeStatic): C.f or C.m must resolve to a static field or method.
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3. Resolution occurs as if of unresolved symbolic references to classes and
interfaces whose names correspond to each type in A*, and to the type T, in
that order.

4. A reference to an instance of java.lang.invoke.MethodType is obtained as
if by resolution of an unresolved symbolic reference to a method type that
contains the method descriptor specified in Table 5.4.3.5-B for the kind of MH.

It is as if the symbolic reference to a method handle contains a symbolic reference to
the method type that the resolved method handle will eventually have. The detailed
structure of the method type is obtained by inspecting Table 5.4.3.5-B.

Table 5.4.3.5-B. Method Descriptors for Method Handles

Kind Description Method descriptor

1 REF_getField (C)T

2 REF_getStatic ()T

3 REF_putField (C,T)V

4 REF_putStatic (T)V

5 REF_invokeVirtual (C,A*)T

6 REF_invokeStatic (A*)T

7 REF_invokeSpecial (C,A*)T

8 REF_newInvokeSpecial (A*)C

9 REF_invokeInterface (C,A*)T

In steps 1, 3, and 4, any exception that can be thrown as a result of failure of
resolution of a symbolic reference to a class, interface, field, or method can be
thrown as a result of failure of method handle resolution. In step 2, any failure due
to the specified constraints causes a failure of method handle resolution due to an
IllegalAccessError.

The intent is that resolving a method handle can be done in exactly the same circumstances
that the Java Virtual Machine would successfully verify and resolve the symbolic references
in the bytecode behavior. In particular, method handles to private, protected, and
static members can be created in exactly those classes for which the corresponding
normal accesses are legal.

The result of successful method handle resolution is a reference to an instance of
java.lang.invoke.MethodHandle which represents the method handle MH.
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The type descriptor of this java.lang.invoke.MethodHandle instance is the
java.lang.invoke.MethodType instance produced in the third step of method
handle resolution above.

The type descriptor of a method handle is such that a valid call to invokeExact in
java.lang.invoke.MethodHandle on the method handle has exactly the same stack
effects as the bytecode behavior. Calling this method handle on a valid set of arguments has
exactly the same effect and returns the same result (if any) as the corresponding bytecode
behavior.

If the method referenced by R has the ACC_VARARGS flag set (§4.6), then the
java.lang.invoke.MethodHandle instance is a variable arity method handle;
otherwise, it is a fixed arity method handle.

A variable arity method handle performs argument list boxing (JLS §15.12.4.2)
when invoked via invoke, while its behavior with respect to invokeExact is as if
the ACC_VARARGS flag were not set.

Method handle resolution throws an IncompatibleClassChangeError if the
method referenced by R has the ACC_VARARGS flag set and either A* is an empty
sequence or the last parameter type in A* is not an array type. That is, creation of
a variable arity method handle fails.

An implementation of the Java Virtual Machine is not required to intern
method types or method handles. That is, two distinct symbolic references
to method types or method handles which are structurally identical might
not resolve to the same instance of java.lang.invoke.MethodType or
java.lang.invoke.MethodHandle respectively.

The java.lang.invoke.MethodHandles class in the Java SE Platform API allows
creation of method handles with no bytecode behavior. Their behavior is defined by
the method of java.lang.invoke.MethodHandles that creates them. For example, a
method handle may, when invoked, first apply transformations to its argument values, then
supply the transformed values to the invocation of another method handle, then apply a
transformation to the value returned from that invocation, then return the transformed value
as its own result.

5.4.3.6 Dynamically-Computed Constant and Call Site Resolution

To resolve an unresolved symbolic reference R to a dynamically-computed constant
or call site, there are three tasks. First, R is examined to determine which code
will serve as its bootstrap method, and which arguments will be passed to that
code. Second, the arguments are packaged into an array and the bootstrap method
is invoked. Third, the result of the bootstrap method is validated, and used as the
result of resolution.
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The first task involves the following steps:

1. R gives a symbolic reference to a bootstrap method handle. The bootstrap
method handle is resolved (§5.4.3.5) to obtain a reference to an instance of
java.lang.invoke.MethodHandle.

Any exception that can be thrown as a result of failure of resolution of a
symbolic reference to a method handle can be thrown in this step.

If R is a symbolic reference to a dynamically-computed constant, then let D be
the type descriptor of the bootstrap method handle. (That is, D is a reference
to an instance of java.lang.invoke.MethodType.) The first parameter type
indicated by D must be java.lang.invoke.MethodHandles.Lookup, or else
resolution fails with a BootstrapMethodError. For historical reasons, the
bootstrap method handle for a dynamically-computed call site is not similarly
constrained.

2. If R is a symbolic reference to a dynamically-computed constant, then it gives
a field descriptor.

If the field descriptor indicates a primitive type, then a reference to the
pre-defined Class object representing that type is obtained (see the method
isPrimitive in class Class).

Otherwise, the field descriptor indicates a class or interface type, or an array
type. A reference to the Class object representing the type indicated by
the field descriptor is obtained, as if by resolution of an unresolved symbolic
reference to a class or interface (§5.4.3.1) whose name corresponds to the type
indicated by the field descriptor.

Any exception that can be thrown as a result of failure of resolution of a
symbolic reference to a class or interface can be thrown in this step.

3. If R is a symbolic reference to a dynamically-computed call site, then it gives
a method descriptor.

A reference to an instance of java.lang.invoke.MethodType is obtained, as
if by resolution of an unresolved symbolic reference to a method type (§5.4.3.5)
with the same parameter and return types as the method descriptor.

Any exception that can be thrown as a result of failure of resolution of a
symbolic reference to a method type can be thrown in this step.

4. R gives zero or more static arguments, which communicate application-specific
metadata to the bootstrap method. Each static argument A is resolved, in the
order given by R, as follows:
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• If A is a string constant, then a reference to its instance of class String is
obtained.

• If A is a numeric constant, then a reference to an instance of
java.lang.invoke.MethodHandle is obtained by the following procedure:

a. Let v be the value of the numeric constant, and let T be a field descriptor
which corresponds to the type of the numeric constant.

b. Let MH be a method handle produced as if by invocation of the
identity method of java.lang.invoke.MethodHandles with an
argument representing the class Object.

c. A reference to an instance of java.lang.invoke.MethodHandle is
obtained as if by the invocation MH.invoke(v) with method descriptor
(T)Ljava/lang/Object;.

• If A is a symbolic reference to a dynamically-computed constant with a
field descriptor indicating a primitive type T, then A is resolved, producing
a primitive value v. Given v and T, a reference is obtained to an instance
of java.lang.invoke.MethodHandle according to the procedure specified
above for numeric constants.

• If A is any other kind of symbolic reference, then the result is the result of
resolving A.

Among the symbolic references in the run-time constant pool, symbolic
references to dynamically-computed constants are special because they are
derived from constant_pool entries that can syntactically refer to themselves
via the BootstrapMethods attribute (§4.7.23). However, the Java Virtual
Machine does not support resolving a symbolic reference to a dynamically-
computed constant that depends on itself (that is, as a static argument to its own
bootstrap method). Accordingly, when both R and A are symbolic references
to dynamically-computed constants, if A is the same as R or A gives a static
argument that (directly or indirectly) references R, then resolution fails with a
StackOverflowError at the point where re-resolution of R would be required.

Unlike class initialization (§5.5), where cycles are allowed between uninitialized
classes, resolution does not allow cycles in symbolic references to dynamically-
computed constants. If an implementation of resolution makes recursive use of a
stack, then a StackOverflowError will occur naturally. If not, the implementation
is required to detect the cycle rather than, say, looping infinitely or returning a default
value for the dynamically-computed constant.

A similar cycle may arise if the body of a bootstrap method makes reference to
a dynamically-computed constant currently being resolved. This has always been
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possible for invokedynamic bootstraps, and does not require special treatment in
resolution; the recursive invokeWithArguments calls will naturally lead to a
StackOverflowError.

Any exception that can be thrown as a result of failure of resolution of a
symbolic reference can be thrown in this step.

The second task, to invoke the bootstrap method handle, involves the following
steps:

1. An array is allocated with component type Object and length n+3, where n is
the number of static arguments given by R (n ≥ 0).

The zeroth component of the array is set to a reference to an
instance of java.lang.invoke.MethodHandles.Lookup for the class in
which R occurs, produced as if by invocation of the lookup method of
java.lang.invoke.MethodHandles.

The first component of the array is set to a reference to an instance of String
that denotes N, the unqualified name given by R.

The second component of the array is set to the reference to an instance
of Class or java.lang.invoke.MethodType that was obtained earlier for the
field descriptor or method descriptor given by R.

Subsequent components of the array are set to the references that were
obtained earlier from resolving R's static arguments, if any. The references
appear in the array in the same order as the corresponding static arguments are
given by R.

A Java Virtual Machine implementation may be able to skip allocation of the array
and, without any change in observable behavior, pass the arguments directly to the
bootstrap method.

2. The bootstrap method handle is invoked, as if by the invocation
BMH.invokeWithArguments(args), where BMH is the bootstrap method handle
and args is the array allocated above.

Due to the behavior of the invokeWithArguments method of
java.lang.invoke.MethodHandle, the type descriptor of the bootstrap method
handle need not exactly match the run-time types of the arguments. For example,
the second parameter type of the bootstrap method handle (corresponding to the
unqualified name given in the first component of the array above) could be Object
instead of String. If the bootstrap method handle is variable arity, then some or all
of the arguments may be collected into a trailing array parameter.

The invocation occurs within a thread that is attempting resolution of this
symbolic reference. If there are several such threads, the bootstrap method
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handle may be invoked concurrently. Bootstrap methods which access global
application data should take the usual precautions against race conditions.

If the invocation fails by throwing an instance of Error or a subclass of Error,
resolution fails with that exception.

If the invocation fails by throwing an exception that is not an instance of Error
or a subclass of Error, resolution fails with a BootstrapMethodError whose
cause is the thrown exception.

If several threads concurrently invoke the bootstrap method handle for this
symbolic reference, the Java Virtual Machine chooses the result of one
invocation and installs it visibly to all threads. Any other bootstrap methods
executing for this symbolic reference are allowed to complete, but their results
are ignored.

The third task, to validate the reference, o, produced by invocation of the
bootstrap method handle, is as follows:

• If R is a symbolic reference to a dynamically-computed constant, then o is
converted to type T, the type indicated by the field descriptor given by R.

o's conversion occurs as if by the invocation MH.invoke(o) with method
descriptor (Ljava/lang/Object;)T, where MH is a method handle produced as if
by invocation of the identity method of java.lang.invoke.MethodHandles
with an argument representing the class Object.

The result of o's conversion is the result of resolution.

If the conversion fails by throwing a NullPointerException or a
ClassCastException, resolution fails with a BootstrapMethodError.

• If R is a symbolic reference to a dynamically-computed call site, then o is the
result of resolution if it has all of the following properties:

– o is not null.

– o is an instance of java.lang.invoke.CallSite or a subclass of
java.lang.invoke.CallSite.

– The type of the java.lang.invoke.CallSite is semantically equal to the
method descriptor given by R.

If o does not have these properties, resolution fails with a
BootstrapMethodError.

Many of the steps above perform computations "as if by invocation" of certain
methods. In each case, the invocation behavior is given in detail by the
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specifications for invokestatic and invokevirtual. The invocation occurs in the
thread and from the class that is attempting resolution of the symbolic reference R.
However, no corresponding method references are required to appear in the run-
time constant pool, no particular method's operand stack is necessarily used, and
the value of the max_stack item of any method's Code attribute is not enforced for
the invocation.

If several threads attempt resolution of R at the same time, the bootstrap method
may be invoked concurrently. Therefore, bootstrap methods which access global
application data must take precautions against race conditions.

5.4.4 Access Control

Access control is applied during resolution (§5.4.3) to ensure that a reference to a
class, interface, field, or method is permitted. Access control succeeds if a specified
class, interface, field, or method is accessible to the referring class or interface.

A class or interface C is accessible to a class or interface D if and only if one of
the following is true:

• C is public, and a member of the same run-time module as D (§5.3.6).

• C is public, and a member of a different run-time module than D, and C's run-
time module is read by D's run-time module, and C's run-time module exports C's
run-time package to D's run-time module.

• C is not public, and C and D are members of the same run-time package.

If C is not accessible to D, access control throws an IllegalAccessError.
Otherwise, access control succeeds.

A field or method R is accessible to a class or interface D if and only if any of the
following is true:

• R is public.

• R is protected and is declared in a class C, and D is either a subclass of C or
C itself.

Furthermore, if R is not static, then the symbolic reference to R must contain a
symbolic reference to a class T, such that T is either a subclass of D, a superclass
of D, or D itself.

During verification of D, it was required that, even if T is a superclass of D, the target
reference of a protected field access or method invocation must be an instance of D
or a subclass of D (§4.10.1.8).
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• R is either protected or has default access (that is, neither public nor protected
nor private), and is declared by a class in the same run-time package as D.

• R is private and is declared by a class or interface C that belongs to the same
nest as D, according to the nestmate test below.

If R is not accessible to D, then:

• If R is public, protected, or has default access, then access control throws an
IllegalAccessError.

• If R is private, then the nestmate test failed, and access control fails for the
same reason.

Otherwise, access control succeeds.

A nest is a set of classes and interfaces that allow mutual access to their private
members. One of the classes or interfaces is the nest host. It enumerates the classes
and interfaces which belong to the nest, using the NestMembers attribute (§4.7.29).
Each of them in turn designates it as the nest host, using the NestHost attribute
(§4.7.28). A class or interface which lacks a NestHost attribute belongs to the nest
hosted by itself; if it also lacks a NestMembers attribute, this nest is a singleton
consisting only of the class or interface itself.

To determine whether a class or interface C belongs to the same nest as a class or
interface D, the nestmate test is applied. C and D belong to the same nest if and only
if the nestmate test succeeds. The nestmate test is as follows:

• If C and D are the same class or interface, then the nestmate test succeeds.

• Otherwise, the following steps are performed, in order:

1. The nest host of D, H, is determined (below). If an exception is thrown, then
the nestmate test fails for the same reason.

2. The nest host of C, H', is determined (below). If an exception is thrown, then
the nestmate test fails for the same reason.

3. H and H' are compared. If H and H' are the same class or interface, then the
nestmate test succeeds. Otherwise, the nestmate test fails by throwing an
IllegalAccessError.

The nest host of a class or interface M is determined as follows:

• If M lacks a NestHost attribute, then M is its own nest host.

• Otherwise, M has a NestHost attribute, and its host_class_index item is used
as an index into the run-time constant pool of M. The symbolic reference at that
index is resolved to a class or interface H (§5.4.3.1).



5.4 Linking LOADING, LINKING, AND INITIALIZING

386

During resolution of this symbolic reference, any of the exceptions pertaining to
class or interface resolution can be thrown. Otherwise, resolution of H succeeds.

If any of the following is true, an IncompatibleClassChangeError is thrown:

– H is not in the same run-time package as M.

– H lacks a NestMembers attribute.

– H has a NestMembers attribute, but there is no entry in its classes array that
refers to a class or interface with the name N, where N is the name of M.

Otherwise, H is the nest host of M.

5.4.5 Method Overriding

An instance method mC can override another instance method mA iff all of the
following are true:

• mC has the same name and descriptor as mA.

• mC is not marked ACC_PRIVATE.

• One of the following is true:

– mA is marked ACC_PUBLIC.

– mA is marked ACC_PROTECTED.

– mA is marked neither ACC_PUBLIC nor ACC_PROTECTED nor ACC_PRIVATE, and
either (a) the declaration of mA appears in the same run-time package as the
declaration of mC, or (b) if mA is declared in a class A and mC is declared in a class
C, then there exists a method mB declared in a class B such that C is a subclass
of B and B is a subclass of A and mC can override mB and mB can override mA.

Part (b) of the final case allows for "transitive overriding" of methods with default access.
For example, given the following class declarations in a package P:

public class A           {        void m() {} }
public class B extends A { public void m() {} }
public class C extends B {        void m() {} }

and the following class declaration in a different package:

public class D extends P.C { void m() {} }

then:

• B.m can override A.m.
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• C.m can override B.m and A.m.

• D.m can override B.m and, transitively, A.m, but it cannot override C.m.

5.4.6 Method Selection

During execution of an invokeinterface or invokevirtual instruction, a method is
selected with respect to (i) the run-time type of the object on the stack, and (ii) a
method that was previously resolved by the instruction. The rules to select a method
with respect to a class or interface C and a method mR are as follows:

1. If mR is marked ACC_PRIVATE, then it is the selected method.

2. Otherwise, the selected method is determined by the following lookup
procedure:

• If C contains a declaration of an instance method m that can override mR
(§5.4.5), then m is the selected method.

• Otherwise, if C has a superclass, a search for a declaration of an instance
method that can override mR is performed, starting with the direct superclass
of C and continuing with the direct superclass of that class, and so forth, until
a method is found or no further superclasses exist. If a method is found, it
is the selected method.

• Otherwise, the maximally-specific superinterface methods of C are
determined (§5.4.3.3). If exactly one matches mR's name and descriptor and
is not abstract, then it is the selected method.

Any maximally-specific superinterface method selected in this step can override
mR; there is no need to check this explicitly.

While C will typically be a class, it may be an interface when these rules are applied during
preparation (§5.4.2).

5.5 Initialization

Initialization of a class or interface consists of executing its class or interface
initialization method (§2.9.2).

A class or interface C may be initialized only as a result of:

• The execution of any one of the Java Virtual Machine instructions new,
getstatic, putstatic, or invokestatic that references C (§new, §getstatic, §putstatic,
§invokestatic).
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Upon execution of a new instruction, the class to be initialized is the class
referenced by the instruction.

Upon execution of a getstatic, putstatic, or invokestatic instruction, the class or
interface to be initialized is the class or interface that declares the resolved field
or method.

• The first invocation of a java.lang.invoke.MethodHandle instance which
was the result of method handle resolution (§5.4.3.5) for a method handle
of kind 2 (REF_getStatic), 4 (REF_putStatic), 6 (REF_invokeStatic), or 8
(REF_newInvokeSpecial).

This implies that the class of a bootstrap method is initialized when the bootstrap method
is invoked for an invokedynamic instruction (§invokedynamic), as part of the continuing
resolution of the call site specifier.

• Invocation of certain reflective methods in the class library (§2.12), for example,
in class Class or in package java.lang.reflect.

• If C is a class, the initialization of one of its subclasses.

• If C is an interface that declares a non-abstract, non-static method, the
initialization of a class that implements C directly or indirectly.

• Its designation as the initial class or interface at Java Virtual Machine startup
(§5.2).

Prior to initialization, a class or interface must be linked, that is, verified, prepared,
and optionally resolved.

Because the Java Virtual Machine is multithreaded, initialization of a class or
interface requires careful synchronization, since some other thread may be trying
to initialize the same class or interface at the same time. There is also the possibility
that initialization of a class or interface may be requested recursively as part
of the initialization of that class or interface. The implementation of the Java
Virtual Machine is responsible for taking care of synchronization and recursive
initialization by using the following procedure. It assumes that the Class object
has already been verified and prepared, and that the Class object contains state
that indicates one of four situations:

• This Class object is verified and prepared but not initialized.

• This Class object is being initialized by some particular thread.

• This Class object is fully initialized and ready for use.
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• This Class object is in an erroneous state, perhaps because initialization was
attempted and failed.

For each class or interface C, there is a unique initialization lock LC. The mapping
from C to LC is left to the discretion of the Java Virtual Machine implementation.
For example, LC could be the Class object for C, or the monitor associated with
that Class object. The procedure for initializing C is then as follows:

1. Synchronize on the initialization lock, LC, for C. This involves waiting until the
current thread can acquire LC.

2. If the Class object for C indicates that initialization is in progress for C by some
other thread, then release LC and block the current thread until informed that the
in-progress initialization has completed, at which time repeat this procedure.

Thread interrupt status is unaffected by execution of the initialization
procedure.

3. If the Class object for C indicates that initialization is in progress for C by the
current thread, then this must be a recursive request for initialization. Release
LC and complete normally.

4. If the Class object for C indicates that C has already been initialized, then no
further action is required. Release LC and complete normally.

5. If the Class object for C is in an erroneous state, then initialization is not
possible. Release LC and throw a NoClassDefFoundError.

6. Otherwise, record the fact that initialization of the Class object for C is in
progress by the current thread, and release LC.

Then, initialize each final static field of C with the constant value in
its ConstantValue attribute (§4.7.2), in the order the fields appear in the
ClassFile structure.

7. Next, if C is a class rather than an interface, then let SC be its superclass and let
SI1, ..., SIn be all superinterfaces of C (whether direct or indirect) that declare
at least one non-abstract, non-static method. The order of superinterfaces
is given by a recursive enumeration over the superinterface hierarchy of each
interface directly implemented by C. For each interface I directly implemented
by C (in the order of the interfaces array of C), the enumeration recurs on I's
superinterfaces (in the order of the interfaces array of I) before returning I.

For each S in the list [ SC, SI1, ..., SIn ], if S has not yet been initialized, then
recursively perform this entire procedure for S. If necessary, verify and prepare
S first.
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If the initialization of S completes abruptly because of a thrown exception, then
acquire LC, label the Class object for C as erroneous, notify all waiting threads,
release LC, and complete abruptly, throwing the same exception that resulted
from initializing SC.

8. Next, determine whether assertions are enabled for C by querying its defining
class loader.

9. Next, execute the class or interface initialization method of C.

10. If the execution of the class or interface initialization method completes
normally, then acquire LC, label the Class object for C as fully initialized, notify
all waiting threads, release LC, and complete this procedure normally.

11. Otherwise, the class or interface initialization method must have
completed abruptly by throwing some exception E. If the class of E
is not Error or one of its subclasses, then create a new instance
of the class ExceptionInInitializerError with E as the argument,
and use this object in place of E in the following step. If a new
instance of ExceptionInInitializerError cannot be created because an
OutOfMemoryError occurs, then use an OutOfMemoryError object in place of
E in the following step.

12. Acquire LC, label the Class object for C as erroneous, notify all waiting
threads, release LC, and complete this procedure abruptly with reason E or its
replacement as determined in the previous step.

A Java Virtual Machine implementation may optimize this procedure by eliding
the lock acquisition in step 1 (and release in step 4/5) when it can determine that
the initialization of the class has already completed, provided that, in terms of the
Java memory model, all happens-before orderings (JLS §17.4.5) that would exist
if the lock were acquired, still exist when the optimization is performed.

5.6 Binding Native Method Implementations

Binding is the process by which a function written in a language other than the
Java programming language and implementing a native method is integrated into
the Java Virtual Machine so that it can be executed. Although this process is
traditionally referred to as linking, the term binding is used in the specification to
avoid confusion with linking of classes or interfaces by the Java Virtual Machine.
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5.7 Java Virtual Machine Exit

The Java Virtual Machine exits when some thread invokes the exit method of
class Runtime or class System, or the halt method of class Runtime, and the exit
or halt operation is permitted by the security manager.

In addition, the JNI (Java Native Interface) Specification describes termination of
the Java Virtual Machine when the JNI Invocation API is used to load and unload
the Java Virtual Machine.
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C H A P T E R 6
The Java Virtual Machine

Instruction Set

A Java Virtual Machine instruction consists of an opcode specifying the
operation to be performed, followed by zero or more operands embodying values to
be operated upon. This chapter gives details about the format of each Java Virtual
Machine instruction and the operation it performs.

6.1 Assumptions: The Meaning of "Must"

The description of each instruction is always given in the context of Java Virtual
Machine code that satisfies the static and structural constraints of §4 (The class
File Format). In the description of individual Java Virtual Machine instructions, we
frequently state that some situation "must" or "must not" be the case: "The value2
must be of type int." The constraints of §4 (The class File Format) guarantee
that all such expectations will in fact be met. If some constraint (a "must" or "must
not") in an instruction description is not satisfied at run time, the behavior of the
Java Virtual Machine is undefined.

The Java Virtual Machine checks that Java Virtual Machine code satisfies the static
and structural constraints at link time using a class file verifier (§4.10). Thus, a
Java Virtual Machine will only attempt to execute code from valid class files.
Performing verification at link time is attractive in that the checks are performed
just once, substantially reducing the amount of work that must be done at run time.
Other implementation strategies are possible, provided that they comply with The
Java Language Specification, Java SE 11 Edition and The Java Virtual Machine
Specification, Java SE 11 Edition.
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6.2 Reserved Opcodes

In addition to the opcodes of the instructions specified later in this chapter, which
are used in class files (§4 (The class File Format)), three opcodes are reserved
for internal use by a Java Virtual Machine implementation. If the instruction set
of the Java Virtual Machine is extended in the future, these reserved opcodes are
guaranteed not to be used.

Two of the reserved opcodes, numbers 254 (0xfe) and 255 (0xff), have
the mnemonics impdep1 and impdep2, respectively. These instructions are
intended to provide "back doors" or traps to implementation-specific functionality
implemented in software and hardware, respectively. The third reserved opcode,
number 202 (0xca), has the mnemonic breakpoint and is intended to be used by
debuggers to implement breakpoints.

Although these opcodes have been reserved, they may be used only inside a Java
Virtual Machine implementation. They cannot appear in valid class files. Tools
such as debuggers or JIT code generators (§2.13) that might directly interact
with Java Virtual Machine code that has been already loaded and executed may
encounter these opcodes. Such tools should attempt to behave gracefully if they
encounter any of these reserved instructions.

6.3 Virtual Machine Errors

A Java Virtual Machine implementation throws an object that is an instance of
a subclass of the class VirtualMachineError when an internal error or resource
limitation prevents it from implementing the semantics described in this chapter.
This specification cannot predict where internal errors or resource limitations may
be encountered and does not mandate precisely when they can be reported. Thus,
any of the VirtualMachineError subclasses defined below may be thrown at any
time during the operation of the Java Virtual Machine:

• InternalError: An internal error has occurred in the Java Virtual Machine
implementation because of a fault in the software implementing the virtual
machine, a fault in the underlying host system software, or a fault in the hardware.
This error is delivered asynchronously (§2.10) when it is detected and may occur
at any point in a program.

• OutOfMemoryError: The Java Virtual Machine implementation has run out of
either virtual or physical memory, and the automatic storage manager was unable
to reclaim enough memory to satisfy an object creation request.
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• StackOverflowError: The Java Virtual Machine implementation has run out
of stack space for a thread, typically because the thread is doing an unbounded
number of recursive invocations as a result of a fault in the executing program.

• UnknownError: An exception or error has occurred, but the Java Virtual Machine
implementation is unable to report the actual exception or error.

6.4 Format of Instruction Descriptions

Java Virtual Machine instructions are represented in this chapter by entries of the
form shown below, in alphabetical order and each beginning on a new page.
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mnemonic mnemonic

Operation Short description of the instruction

Format mnemonic

operand1

operand2

...

Forms mnemonic = opcode

Operand

Stack

..., value1, value2 →

..., value3

Description A longer description detailing constraints on operand stack
contents or constant pool entries, the operation performed, the type
of the results, etc.

Linking

Exceptions

If any linking exceptions may be thrown by the execution of this
instruction, they are set off one to a line, in the order in which they
must be thrown.

Run-time

Exceptions

If any run-time exceptions can be thrown by the execution of an
instruction, they are set off one to a line, in the order in which they
must be thrown.

Other than the linking and run-time exceptions, if any, listed
for an instruction, that instruction must not throw any run-time
exceptions except for instances of VirtualMachineError or its
subclasses.

Notes Comments not strictly part of the specification of an instruction
are set aside as notes at the end of the description.
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Each cell in the instruction format diagram represents a single 8-bit byte. The
instruction's mnemonic is its name. Its opcode is its numeric representation and is
given in both decimal and hexadecimal forms. Only the numeric representation is
actually present in the Java Virtual Machine code in a class file.

Keep in mind that there are "operands" generated at compile time and embedded
within Java Virtual Machine instructions, as well as "operands" calculated at run
time and supplied on the operand stack. Although they are supplied from several
different areas, all these operands represent the same thing: values to be operated
upon by the Java Virtual Machine instruction being executed. By implicitly
taking many of its operands from its operand stack, rather than representing them
explicitly in its compiled code as additional operand bytes, register numbers, etc.,
the Java Virtual Machine's code stays compact.

Some instructions are presented as members of a family of related instructions
sharing a single description, format, and operand stack diagram. As such, a family
of instructions includes several opcodes and opcode mnemonics; only the family
mnemonic appears in the instruction format diagram, and a separate forms line
lists all member mnemonics and opcodes. For example, the Forms line for the
lconst_<l> family of instructions, giving mnemonic and opcode information for
the two instructions in that family (lconst_0 and lconst_1), is

lconst_0 = 9 (0x9)

lconst_1 = 10 (0xa)

In the description of the Java Virtual Machine instructions, the effect of an
instruction's execution on the operand stack (§2.6.2) of the current frame (§2.6)
is represented textually, with the stack growing from left to right and each value
represented separately. Thus,

..., value1, value2 →

..., result

shows an operation that begins by having value2 on top of the operand stack with
value1 just beneath it. As a result of the execution of the instruction, value1 and
value2 are popped from the operand stack and replaced by result value, which has
been calculated by the instruction. The remainder of the operand stack, represented
by an ellipsis (...), is unaffected by the instruction's execution.

Values of types long and double are represented by a single entry on the operand
stack.

In the First Edition of The Java® Virtual Machine Specification, values on the operand stack
of types long and double were each represented in the stack diagram by two entries.
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6.5 Instructions
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aaload aaload

Operation Load reference from array

Format aaload

Forms aaload = 50 (0x32)

Operand

Stack

..., arrayref, index →

..., value

Description The arrayref must be of type reference and must refer to an array
whose components are of type reference. The index must be of
type int. Both arrayref and index are popped from the operand
stack. The reference value in the component of the array at index
is retrieved and pushed onto the operand stack.

Run-time

Exceptions

If arrayref is null, aaload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the aaload instruction throws an
ArrayIndexOutOfBoundsException.
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aastore aastore

Operation Store into reference array

Format aastore

Forms aastore = 83 (0x53)

Operand

Stack

..., arrayref, index, value →

...

Description The arrayref must be of type reference and must refer to an array
whose components are of type reference. The index must be of
type int, and value must be of type reference. The arrayref,
index, and value are popped from the operand stack.

If value is null, then value is stored as the component of the array
at index.

Otherwise, value is non-null. If the type of value is assignment
compatible with the type of the components of the array referenced
by arrayref, then value is stored as the component of the array at
index.

The following rules are used to determine whether a value that
is not null is assignment compatible with the array component
type. If S is the type of the object referred to by value, and T is the
reference type of the array components, then aastore determines
whether assignment is compatible as follows:

• If S is a class type, then:

– If T is a class type, then S must be the same class as T, or S
must be a subclass of T;

– If T is an interface type, then S must implement interface T.

• If S is an array type SC[], that is, an array of components of type
SC, then:

– If T is a class type, then T must be Object.
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– If T is an interface type, then T must be one of the interfaces
implemented by arrays (JLS §4.10.3).

– If T is an array type TC[], that is, an array of components of
type TC, then one of the following must be true:

› TC and SC are the same primitive type.

› TC and SC are reference types, and type SC is assignable to
TC by these run-time rules.

Run-time

Exceptions

If arrayref is null, aastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the aastore instruction throws an
ArrayIndexOutOfBoundsException.

Otherwise, if arrayref is not null and the actual type of
the non-null value is not assignment compatible with the
actual type of the components of the array, aastore throws an
ArrayStoreException.
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aconst_null aconst_null

Operation Push null

Format aconst_null

Forms aconst_null = 1 (0x1)

Operand

Stack

... →

..., null

Description Push the null object reference onto the operand stack.

Notes The Java Virtual Machine does not mandate a concrete value for
null.
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aload aload

Operation Load reference from local variable

Format aload

index

Forms aload = 25 (0x19)

Operand

Stack

... →

..., objectref

Description The index is an unsigned byte that must be an index into the local
variable array of the current frame (§2.6). The local variable at
index must contain a reference. The objectref in the local variable
at index is pushed onto the operand stack.

Notes The aload instruction cannot be used to load a value of type
returnAddress from a local variable onto the operand stack. This
asymmetry with the astore instruction (§astore) is intentional.

The aload opcode can be used in conjunction with the wide
instruction (§wide) to access a local variable using a two-byte
unsigned index.
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aload_<n> aload_<n>

Operation Load reference from local variable

Format aload_<n>

Forms aload_0 = 42 (0x2a)

aload_1 = 43 (0x2b)

aload_2 = 44 (0x2c)

aload_3 = 45 (0x2d)

Operand

Stack

... →

..., objectref

Description The <n> must be an index into the local variable array of the
current frame (§2.6). The local variable at <n> must contain a
reference. The objectref in the local variable at <n> is pushed
onto the operand stack.

Notes An aload_<n> instruction cannot be used to load a value of type
returnAddress from a local variable onto the operand stack.
This asymmetry with the corresponding astore_<n> instruction
(§astore_<n>) is intentional.

Each of the aload_<n> instructions is the same as aload with an
index of <n>, except that the operand <n> is implicit.
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anewarray anewarray

Operation Create new array of reference

Format anewarray

indexbyte1

indexbyte2

Forms anewarray = 189 (0xbd)

Operand

Stack

..., count →

..., arrayref

Description The count must be of type int. It is popped off the operand stack.
The count represents the number of components of the array to
be created. The unsigned indexbyte1 and indexbyte2 are used to
construct an index into the run-time constant pool of the current
class (§2.6), where the value of the index is (indexbyte1 << 8) |
indexbyte2. The run-time constant pool entry at the index must
be a symbolic reference to a class, array, or interface type. The
named class, array, or interface type is resolved (§5.4.3.1). A new
array with components of that type, of length count, is allocated
from the garbage-collected heap, and a reference arrayref to this
new array object is pushed onto the operand stack. All components
of the new array are initialized to null, the default value for
reference types (§2.4).

Linking

Exceptions

During resolution of the symbolic reference to the class, array, or
interface type, any of the exceptions documented in §5.4.3.1 can
be thrown.

Run-time

Exceptions

Otherwise, if count is less than zero, the anewarray instruction
throws a NegativeArraySizeException.

Notes The anewarray instruction is used to create a single dimension of
an array of object references or part of a multidimensional array.
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areturn areturn

Operation Return reference from method

Format areturn

Forms areturn = 176 (0xb0)

Operand

Stack

..., objectref →

[empty]

Description The objectref must be of type reference and must refer to an
object of a type that is assignment compatible (JLS §5.2) with the
type represented by the return descriptor (§4.3.3) of the current
method. If the current method is a synchronized method, the
monitor entered or reentered on invocation of the method is
updated and possibly exited as if by execution of a monitorexit
instruction (§monitorexit) in the current thread. If no exception is
thrown, objectref is popped from the operand stack of the current
frame (§2.6) and pushed onto the operand stack of the frame of
the invoker. Any other values on the operand stack of the current
method are discarded.

The interpreter then reinstates the frame of the invoker and returns
control to the invoker.

Run-time

Exceptions

If the Java Virtual Machine implementation does not enforce
the rules on structured locking described in §2.11.10, then if the
current method is a synchronized method and the current thread is
not the owner of the monitor entered or reentered on invocation of
the method, areturn throws an IllegalMonitorStateException.
This can happen, for example, if a synchronized method contains
a monitorexit instruction, but no monitorenter instruction, on the
object on which the method is synchronized.

Otherwise, if the Java Virtual Machine implementation enforces
the rules on structured locking described in §2.11.10 and if the first
of those rules is violated during invocation of the current method,
then areturn throws an IllegalMonitorStateException.
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arraylength arraylength

Operation Get length of array

Format arraylength

Forms arraylength = 190 (0xbe)

Operand

Stack

..., arrayref →

..., length

Description The arrayref must be of type reference and must refer to an array.
It is popped from the operand stack. The length of the array it
references is determined. That length is pushed onto the operand
stack as an int.

Run-time

Exceptions

If the arrayref is null, the arraylength instruction throws a
NullPointerException.
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astore astore

Operation Store reference into local variable

Format astore

index

Forms astore = 58 (0x3a)

Operand

Stack

..., objectref →

...

Description The index is an unsigned byte that must be an index into the local
variable array of the current frame (§2.6). The objectref on the top
of the operand stack must be of type returnAddress or of type
reference. It is popped from the operand stack, and the value of
the local variable at index is set to objectref.

Notes The astore instruction is used with an objectref of type
returnAddress when implementing the finally clause of the
Java programming language (§3.13).

The aload instruction (§aload) cannot be used to load a value of
type returnAddress from a local variable onto the operand stack.
This asymmetry with the astore instruction is intentional.

The astore opcode can be used in conjunction with the wide
instruction (§wide) to access a local variable using a two-byte
unsigned index.
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astore_<n> astore_<n>

Operation Store reference into local variable

Format astore_<n>

Forms astore_0 = 75 (0x4b)

astore_1 = 76 (0x4c)

astore_2 = 77 (0x4d)

astore_3 = 78 (0x4e)

Operand

Stack

..., objectref →

...

Description The <n> must be an index into the local variable array of the
current frame (§2.6). The objectref on the top of the operand stack
must be of type returnAddress or of type reference. It is popped
from the operand stack, and the value of the local variable at <n>
is set to objectref.

Notes An astore_<n> instruction is used with an objectref of type
returnAddress when implementing the finally clauses of the
Java programming language (§3.13).

An aload_<n> instruction (§aload_<n>) cannot be used to
load a value of type returnAddress from a local variable
onto the operand stack. This asymmetry with the corresponding
astore_<n> instruction is intentional.

Each of the astore_<n> instructions is the same as astore with an
index of <n>, except that the operand <n> is implicit.
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athrow athrow

Operation Throw exception or error

Format athrow

Forms athrow = 191 (0xbf)

Operand

Stack

..., objectref →

objectref

Description The objectref must be of type reference and must refer to an
object that is an instance of class Throwable or of a subclass of
Throwable. It is popped from the operand stack. The objectref is
then thrown by searching the current method (§2.6) for the first
exception handler that matches the class of objectref, as given by
the algorithm in §2.10.

If an exception handler that matches objectref is found, it contains
the location of the code intended to handle this exception. The pc
register is reset to that location, the operand stack of the current
frame is cleared, objectref is pushed back onto the operand stack,
and execution continues.

If no matching exception handler is found in the current frame,
that frame is popped. If the current frame represents an invocation
of a synchronized method, the monitor entered or reentered
on invocation of the method is exited as if by execution of a
monitorexit instruction (§monitorexit). Finally, the frame of its
invoker is reinstated, if such a frame exists, and the objectref is
rethrown. If no such frame exists, the current thread exits.

Run-time

Exceptions

If objectref is null, athrow throws a NullPointerException
instead of objectref.

Otherwise, if the Java Virtual Machine implementation does not
enforce the rules on structured locking described in §2.11.10,
then if the method of the current frame is a synchronized
method and the current thread is not the owner of the monitor
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entered or reentered on invocation of the method, athrow
throws an IllegalMonitorStateException instead of the object
previously being thrown. This can happen, for example, if an
abruptly completing synchronized method contains a monitorexit
instruction, but no monitorenter instruction, on the object on which
the method is synchronized.

Otherwise, if the Java Virtual Machine implementation enforces
the rules on structured locking described in §2.11.10 and if the first
of those rules is violated during invocation of the current method,
then athrow throws an IllegalMonitorStateException instead
of the object previously being thrown.

Notes The operand stack diagram for the athrow instruction may be
misleading: If a handler for this exception is matched in the current
method, the athrow instruction discards all the values on the
operand stack, then pushes the thrown object onto the operand
stack. However, if no handler is matched in the current method
and the exception is thrown farther up the method invocation
chain, then the operand stack of the method (if any) that handles
the exception is cleared and objectref is pushed onto that empty
operand stack. All intervening frames from the method that threw
the exception up to, but not including, the method that handles the
exception are discarded.
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baload baload

Operation Load byte or boolean from array

Format baload

Forms baload = 51 (0x33)

Operand

Stack

..., arrayref, index →

..., value

Description The arrayref must be of type reference and must refer to an array
whose components are of type byte or of type boolean. The index
must be of type int. Both arrayref and index are popped from the
operand stack. The byte value in the component of the array at
index is retrieved, sign-extended to an int value, and pushed onto
the top of the operand stack.

Run-time

Exceptions

If arrayref is null, baload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the baload instruction throws an
ArrayIndexOutOfBoundsException.

Notes The baload instruction is used to load values from both byte and
boolean arrays. In Oracle's Java Virtual Machine implementation,
boolean arrays - that is, arrays of type T_BOOLEAN (§2.2,
§newarray) - are implemented as arrays of 8-bit values. Other
implementations may implement packed boolean arrays; the
baload instruction of such implementations must be used to access
those arrays.
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bastore bastore

Operation Store into byte or boolean array

Format bastore

Forms bastore = 84 (0x54)

Operand

Stack

..., arrayref, index, value →

...

Description The arrayref must be of type reference and must refer to an array
whose components are of type byte or of type boolean. The index
and the value must both be of type int. The arrayref, index, and
value are popped from the operand stack.

If the arrayref refers to an array whose components are of type
byte, then the int value is truncated to a byte and stored as the
component of the array indexed by index.

If the arrayref refers to an array whose components are of type
boolean, then the int value is narrowed by taking the bitwise
AND of value and 1; the result is stored as the component of the
array indexed by index.

Run-time

Exceptions

If arrayref is null, bastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the bastore instruction throws an
ArrayIndexOutOfBoundsException.

Notes The bastore instruction is used to store values into both byte and
boolean arrays. In Oracle's Java Virtual Machine implementation,
boolean arrays - that is, arrays of type T_BOOLEAN (§2.2,
§newarray) - are implemented as arrays of 8-bit values. Other
implementations may implement packed boolean arrays; in such
implementations the bastore instruction must be able to store
boolean values into packed boolean arrays as well as byte values
into byte arrays.
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bipush bipush

Operation Push byte

Format bipush

byte

Forms bipush = 16 (0x10)

Operand

Stack

... →

..., value

Description The immediate byte is sign-extended to an int value. That value
is pushed onto the operand stack.
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caload caload

Operation Load char from array

Format caload

Forms caload = 52 (0x34)

Operand

Stack

..., arrayref, index →

..., value

Description The arrayref must be of type reference and must refer to an array
whose components are of type char. The index must be of type
int. Both arrayref and index are popped from the operand stack.
The component of the array at index is retrieved and zero-extended
to an int value. That value is pushed onto the operand stack.

Run-time

Exceptions

If arrayref is null, caload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the caload instruction throws an
ArrayIndexOutOfBoundsException.
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castore castore

Operation Store into char array

Format castore

Forms castore = 85 (0x55)

Operand

Stack

..., arrayref, index, value →

...

Description The arrayref must be of type reference and must refer to an array
whose components are of type char. The index and the value must
both be of type int. The arrayref, index, and value are popped
from the operand stack. The int value is truncated to a char and
stored as the component of the array indexed by index.

Run-time

Exceptions

If arrayref is null, castore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the castore instruction throws an
ArrayIndexOutOfBoundsException.



THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

417

checkcast checkcast

Operation Check whether object is of given type

Format checkcast

indexbyte1

indexbyte2

Forms checkcast = 192 (0xc0)

Operand

Stack

..., objectref →

..., objectref

Description The objectref must be of type reference. The unsigned
indexbyte1 and indexbyte2 are used to construct an index into
the run-time constant pool of the current class (§2.6), where the
value of the index is (indexbyte1 << 8) | indexbyte2. The run-time
constant pool entry at the index must be a symbolic reference to a
class, array, or interface type.

If objectref is null, then the operand stack is unchanged.

Otherwise, the named class, array, or interface type is resolved
(§5.4.3.1). If objectref can be cast to the resolved class, array,
or interface type, the operand stack is unchanged; otherwise, the
checkcast instruction throws a ClassCastException.

The following rules are used to determine whether an objectref that
is not null can be cast to the resolved type. If S is the type of the
object referred to by objectref, and T is the resolved class, array,
or interface type, then checkcast determines whether objectref can
be cast to type T as follows:

• If S is a class type, then:

– If T is a class type, then S must be the same class as T, or S
must be a subclass of T;

– If T is an interface type, then S must implement interface T.
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• If S is an array type SC[], that is, an array of components of type
SC, then:

– If T is a class type, then T must be Object.

– If T is an interface type, then T must be one of the interfaces
implemented by arrays (JLS §4.10.3).

– If T is an array type TC[], that is, an array of components of
type TC, then one of the following must be true:

› TC and SC are the same primitive type.

› TC and SC are reference types, and type SC can be cast to TC
by recursive application of these rules.

Linking

Exceptions

During resolution of the symbolic reference to the class, array, or
interface type, any of the exceptions documented in §5.4.3.1 can
be thrown.

Run-time

Exception

Otherwise, if objectref cannot be cast to the resolved class,
array, or interface type, the checkcast instruction throws a
ClassCastException.

Notes The checkcast instruction is very similar to the instanceof
instruction (§instanceof). It differs in its treatment of null, its
behavior when its test fails (checkcast throws an exception,
instanceof pushes a result code), and its effect on the operand
stack.
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d2f d2f

Operation Convert double to float

Format d2f

Forms d2f = 144 (0x90)

Operand

Stack

..., value →

..., result

Description The value on the top of the operand stack must be of type double.
It is popped from the operand stack and undergoes value set
conversion (§2.8.3) resulting in value'. Then value' is converted to
a float result using IEEE 754 round to nearest mode. The result
is pushed onto the operand stack.

Where an d2f instruction is FP-strict (§2.8.2), the result of the
conversion is always rounded to the nearest representable value in
the float value set (§2.3.2).

Where an d2f instruction is not FP-strict, the result of the
conversion may be taken from the float-extended-exponent
value set (§2.3.2); it is not necessarily rounded to the nearest
representable value in the float value set.

A finite value' too small to be represented as a float is converted
to a zero of the same sign; a finite value' too large to be represented
as a float is converted to an infinity of the same sign. A double
NaN is converted to a float NaN.

Notes The d2f instruction performs a narrowing primitive conversion
(JLS §5.1.3). It may lose information about the overall magnitude
of value' and may also lose precision.
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d2i d2i

Operation Convert double to int

Format d2i

Forms d2i = 142 (0x8e)

Operand

Stack

..., value →

..., result

Description The value on the top of the operand stack must be of type double.
It is popped from the operand stack and undergoes value set
conversion (§2.8.3) resulting in value'. Then value' is converted to
an int. The result is pushed onto the operand stack:

• If the value' is NaN, the result of the conversion is an int 0.

• Otherwise, if the value' is not an infinity, it is rounded to an
integer value V, rounding towards zero using IEEE 754 round
towards zero mode. If this integer value V can be represented as
an int, then the result is the int value V.

• Otherwise, either the value' must be too small (a negative value
of large magnitude or negative infinity), and the result is the
smallest representable value of type int, or the value' must
be too large (a positive value of large magnitude or positive
infinity), and the result is the largest representable value of type
int.

Notes The d2i instruction performs a narrowing primitive conversion
(JLS §5.1.3). It may lose information about the overall magnitude
of value' and may also lose precision.
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d2l d2l

Operation Convert double to long

Format d2l

Forms d2l = 143 (0x8f)

Operand

Stack

..., value →

..., result

Description The value on the top of the operand stack must be of type double.
It is popped from the operand stack and undergoes value set
conversion (§2.8.3) resulting in value'. Then value' is converted to
a long. The result is pushed onto the operand stack:

• If the value' is NaN, the result of the conversion is a long 0.

• Otherwise, if the value' is not an infinity, it is rounded to an
integer value V, rounding towards zero using IEEE 754 round
towards zero mode. If this integer value V can be represented as
a long, then the result is the long value V.

• Otherwise, either the value' must be too small (a negative value
of large magnitude or negative infinity), and the result is the
smallest representable value of type long, or the value' must
be too large (a positive value of large magnitude or positive
infinity), and the result is the largest representable value of type
long.

Notes The d2l instruction performs a narrowing primitive conversion
(JLS §5.1.3). It may lose information about the overall magnitude
of value' and may also lose precision.
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dadd dadd

Operation Add double

Format dadd

Forms dadd = 99 (0x63)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type double. The values are
popped from the operand stack and undergo value set conversion
(§2.8.3), resulting in value1' and value2'. The double result is
value1' + value2'. The result is pushed onto the operand stack.

The result of a dadd instruction is governed by the rules of IEEE
arithmetic:

• If either value1' or value2' is NaN, the result is NaN.

• The sum of two infinities of opposite sign is NaN.

• The sum of two infinities of the same sign is the infinity of that
sign.

• The sum of an infinity and any finite value is equal to the
infinity.

• The sum of two zeroes of opposite sign is positive zero.

• The sum of two zeroes of the same sign is the zero of that sign.

• The sum of a zero and a nonzero finite value is equal to the
nonzero value.

• The sum of two nonzero finite values of the same magnitude and
opposite sign is positive zero.

• In the remaining cases, where neither operand is an infinity, a
zero, or NaN and the values have the same sign or have different
magnitudes, the sum is computed and rounded to the nearest
representable value using IEEE 754 round to nearest mode. If
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the magnitude is too large to represent as a double, we say the
operation overflows; the result is then an infinity of appropriate
sign. If the magnitude is too small to represent as a double,
we say the operation underflows; the result is then a zero of
appropriate sign.

The Java Virtual Machine requires support of gradual underflow
as defined by IEEE 754. Despite the fact that overflow, underflow,
or loss of precision may occur, execution of a dadd instruction
never throws a run-time exception.
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daload daload

Operation Load double from array

Format daload

Forms daload = 49 (0x31)

Operand

Stack

..., arrayref, index →

..., value

Description The arrayref must be of type reference and must refer to an
array whose components are of type double. The index must be
of type int. Both arrayref and index are popped from the operand
stack. The double value in the component of the array at index is
retrieved and pushed onto the operand stack.

Run-time

Exceptions

If arrayref is null, daload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the daload instruction throws an
ArrayIndexOutOfBoundsException.
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dastore dastore

Operation Store into double array

Format dastore

Forms dastore = 82 (0x52)

Operand

Stack

..., arrayref, index, value →

...

Description The arrayref must be of type reference and must refer to an
array whose components are of type double. The index must be of
type int, and value must be of type double. The arrayref, index,
and value are popped from the operand stack. The double value
undergoes value set conversion (§2.8.3), resulting in value', which
is stored as the component of the array indexed by index.

Run-time

Exceptions

If arrayref is null, dastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the dastore instruction throws an
ArrayIndexOutOfBoundsException.
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dcmp<op> dcmp<op>

Operation Compare double

Format dcmp<op>

Forms dcmpg = 152 (0x98)

dcmpl = 151 (0x97)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type double. The values
are popped from the operand stack and undergo value set
conversion (§2.8.3), resulting in value1' and value2'. A floating-
point comparison is performed:

• If value1' is greater than value2', the int value 1 is pushed onto
the operand stack.

• Otherwise, if value1' is equal to value2', the int value 0 is
pushed onto the operand stack.

• Otherwise, if value1' is less than value2', the int value -1 is
pushed onto the operand stack.

• Otherwise, at least one of value1' or value2' is NaN. The dcmpg
instruction pushes the int value 1 onto the operand stack and
the dcmpl instruction pushes the int value -1 onto the operand
stack.

Floating-point comparison is performed in accordance with IEEE
754. All values other than NaN are ordered, with negative infinity
less than all finite values and positive infinity greater than all finite
values. Positive zero and negative zero are considered equal.

Notes The dcmpg and dcmpl instructions differ only in their treatment of
a comparison involving NaN. NaN is unordered, so any double
comparison fails if either or both of its operands are NaN. With
both dcmpg and dcmpl available, any double comparison may
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be compiled to push the same result onto the operand stack
whether the comparison fails on non-NaN values or fails because
it encountered a NaN. For more information, see §3.5.
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dconst_<d> dconst_<d>

Operation Push double

Format dconst_<d>

Forms dconst_0 = 14 (0xe)

dconst_1 = 15 (0xf)

Operand

Stack

... →

..., <d>

Description Push the double constant <d> (0.0 or 1.0) onto the operand stack.
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ddiv ddiv

Operation Divide double

Format ddiv

Forms ddiv = 111 (0x6f)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type double. The values are
popped from the operand stack and undergo value set conversion
(§2.8.3), resulting in value1' and value2'. The double result is
value1' / value2'. The result is pushed onto the operand stack.

The result of a ddiv instruction is governed by the rules of IEEE
arithmetic:

• If either value1' or value2' is NaN, the result is NaN.

• If neither value1' nor value2' is NaN, the sign of the result is
positive if both values have the same sign, negative if the values
have different signs.

• Division of an infinity by an infinity results in NaN.

• Division of an infinity by a finite value results in a signed
infinity, with the sign-producing rule just given.

• Division of a finite value by an infinity results in a signed zero,
with the sign-producing rule just given.

• Division of a zero by a zero results in NaN; division of zero
by any other finite value results in a signed zero, with the sign-
producing rule just given.

• Division of a nonzero finite value by a zero results in a signed
infinity, with the sign-producing rule just given.

• In the remaining cases, where neither operand is an infinity,
a zero, or NaN, the quotient is computed and rounded to the
nearest double using IEEE 754 round to nearest mode. If the
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magnitude is too large to represent as a double, we say the
operation overflows; the result is then an infinity of appropriate
sign. If the magnitude is too small to represent as a double,
we say the operation underflows; the result is then a zero of
appropriate sign.

The Java Virtual Machine requires support of gradual underflow
as defined by IEEE 754. Despite the fact that overflow, underflow,
division by zero, or loss of precision may occur, execution of a
ddiv instruction never throws a run-time exception.
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dload dload

Operation Load double from local variable

Format dload

index

Forms dload = 24 (0x18)

Operand

Stack

... →

..., value

Description The index is an unsigned byte. Both index and index+1 must be
indices into the local variable array of the current frame (§2.6).
The local variable at index must contain a double. The value of
the local variable at index is pushed onto the operand stack.

Notes The dload opcode can be used in conjunction with the wide
instruction (§wide) to access a local variable using a two-byte
unsigned index.
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dload_<n> dload_<n>

Operation Load double from local variable

Format dload_<n>

Forms dload_0 = 38 (0x26)

dload_1 = 39 (0x27)

dload_2 = 40 (0x28)

dload_3 = 41 (0x29)

Operand

Stack

... →

..., value

Description Both <n> and <n>+1 must be indices into the local variable array
of the current frame (§2.6). The local variable at <n> must contain
a double. The value of the local variable at <n> is pushed onto
the operand stack.

Notes Each of the dload_<n> instructions is the same as dload with an
index of <n>, except that the operand <n> is implicit.
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dmul dmul

Operation Multiply double

Format dmul

Forms dmul = 107 (0x6b)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type double. The values are
popped from the operand stack and undergo value set conversion
(§2.8.3), resulting in value1' and value2'. The double result is
value1' * value2'. The result is pushed onto the operand stack.

The result of a dmul instruction is governed by the rules of IEEE
arithmetic:

• If either value1' or value2' is NaN, the result is NaN.

• If neither value1' nor value2' is NaN, the sign of the result is
positive if both values have the same sign and negative if the
values have different signs.

• Multiplication of an infinity by a zero results in NaN.

• Multiplication of an infinity by a finite value results in a signed
infinity, with the sign-producing rule just given.

• In the remaining cases, where neither an infinity nor NaN is
involved, the product is computed and rounded to the nearest
representable value using IEEE 754 round to nearest mode. If
the magnitude is too large to represent as a double, we say the
operation overflows; the result is then an infinity of appropriate
sign. If the magnitude is too small to represent as a double,
we say the operation underflows; the result is then a zero of
appropriate sign.

The Java Virtual Machine requires support of gradual underflow
as defined by IEEE 754. Despite the fact that overflow, underflow,
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or loss of precision may occur, execution of a dmul instruction
never throws a run-time exception.
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dneg dneg

Operation Negate double

Format dneg

Forms dneg = 119 (0x77)

Operand

Stack

..., value →

..., result

Description The value must be of type double. It is popped from the operand
stack and undergoes value set conversion (§2.8.3), resulting in
value'. The double result is the arithmetic negation of value'. The
result is pushed onto the operand stack.

For double values, negation is not the same as subtraction from
zero. If x is +0.0, then 0.0-x equals +0.0, but -x equals -0.0.
Unary minus merely inverts the sign of a double.

Special cases of interest:

• If the operand is NaN, the result is NaN (recall that NaN has
no sign).

• If the operand is an infinity, the result is the infinity of opposite
sign.

• If the operand is a zero, the result is the zero of opposite sign.
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drem drem

Operation Remainder double

Format drem

Forms drem = 115 (0x73)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type double. The values are
popped from the operand stack and undergo value set conversion
(§2.8.3), resulting in value1' and value2'. The result is calculated
and pushed onto the operand stack as a double.

The result of a drem instruction is not the same as that of the so-
called remainder operation defined by IEEE 754. The IEEE 754
"remainder" operation computes the remainder from a rounding
division, not a truncating division, and so its behavior is not
analogous to that of the usual integer remainder operator. Instead,
the Java Virtual Machine defines drem to behave in a manner
analogous to that of the Java Virtual Machine integer remainder
instructions (irem and lrem); this may be compared with the C
library function fmod.

The result of a drem instruction is governed by these rules:

• If either value1' or value2' is NaN, the result is NaN.

• If neither value1' nor value2' is NaN, the sign of the result equals
the sign of the dividend.

• If the dividend is an infinity or the divisor is a zero or both, the
result is NaN.

• If the dividend is finite and the divisor is an infinity, the result
equals the dividend.

• If the dividend is a zero and the divisor is finite, the result equals
the dividend.
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• In the remaining cases, where neither operand is an infinity,
a zero, or NaN, the floating-point remainder result from
a dividend value1' and a divisor value2' is defined by the
mathematical relation result = value1' - (value2' * q), where
q is an integer that is negative only if value1' / value2' is
negative, and positive only if value1' / value2' is positive, and
whose magnitude is as large as possible without exceeding the
magnitude of the true mathematical quotient of value1' and
value2'.

Despite the fact that division by zero may occur, evaluation of
a drem instruction never throws a run-time exception. Overflow,
underflow, or loss of precision cannot occur.

Notes The IEEE 754 remainder operation may be computed by the
library routine Math.IEEEremainder.
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dreturn dreturn

Operation Return double from method

Format dreturn

Forms dreturn = 175 (0xaf)

Operand

Stack

..., value →

[empty]

Description The current method must have return type double. The value
must be of type double. If the current method is a synchronized
method, the monitor entered or reentered on invocation of the
method is updated and possibly exited as if by execution of a
monitorexit instruction (§monitorexit) in the current thread. If no
exception is thrown, value is popped from the operand stack of the
current frame (§2.6) and undergoes value set conversion (§2.8.3),
resulting in value'. The value' is pushed onto the operand stack of
the frame of the invoker. Any other values on the operand stack of
the current method are discarded.

The interpreter then returns control to the invoker of the method,
reinstating the frame of the invoker.

Run-time

Exceptions

If the Java Virtual Machine implementation does not enforce
the rules on structured locking described in §2.11.10, then if the
current method is a synchronized method and the current thread is
not the owner of the monitor entered or reentered on invocation of
the method, dreturn throws an IllegalMonitorStateException.
This can happen, for example, if a synchronized method contains
a monitorexit instruction, but no monitorenter instruction, on the
object on which the method is synchronized.

Otherwise, if the Java Virtual Machine implementation enforces
the rules on structured locking described in §2.11.10 and if the first
of those rules is violated during invocation of the current method,
then dreturn throws an IllegalMonitorStateException.
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dstore dstore

Operation Store double into local variable

Format dstore

index

Forms dstore = 57 (0x39)

Operand

Stack

..., value →

...

Description The index is an unsigned byte. Both index and index+1 must be
indices into the local variable array of the current frame (§2.6).
The value on the top of the operand stack must be of type double.
It is popped from the operand stack and undergoes value set
conversion (§2.8.3), resulting in value'. The local variables at index
and index+1 are set to value'.

Notes The dstore opcode can be used in conjunction with the wide
instruction (§wide) to access a local variable using a two-byte
unsigned index.
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dstore_<n> dstore_<n>

Operation Store double into local variable

Format dstore_<n>

Forms dstore_0 = 71 (0x47)

dstore_1 = 72 (0x48)

dstore_2 = 73 (0x49)

dstore_3 = 74 (0x4a)

Operand

Stack

..., value →

...

Description Both <n> and <n>+1 must be indices into the local variable array
of the current frame (§2.6). The value on the top of the operand
stack must be of type double. It is popped from the operand stack
and undergoes value set conversion (§2.8.3), resulting in value'.
The local variables at <n> and <n>+1 are set to value'.

Notes Each of the dstore_<n> instructions is the same as dstore with an
index of <n>, except that the operand <n> is implicit.
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dsub dsub

Operation Subtract double

Format dsub

Forms dsub = 103 (0x67)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type double. The values are
popped from the operand stack and undergo value set conversion
(§2.8.3), resulting in value1' and value2'. The double result is
value1' - value2'. The result is pushed onto the operand stack.

For double subtraction, it is always the case that a-b produces
the same result as a+(-b). However, for the dsub instruction,
subtraction from zero is not the same as negation, because if x is
+0.0, then 0.0-x equals +0.0, but -x equals -0.0.

The Java Virtual Machine requires support of gradual underflow as
defined by IEEE 754. Despite the fact that overflow, underflow, or
loss of precision may occur, execution of a dsub instruction never
throws a run-time exception.
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dup dup

Operation Duplicate the top operand stack value

Format dup

Forms dup = 89 (0x59)

Operand

Stack

..., value →

..., value, value

Description Duplicate the top value on the operand stack and push the
duplicated value onto the operand stack.

The dup instruction must not be used unless value is a value of a
category 1 computational type (§2.11.1).
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dup_x1 dup_x1

Operation Duplicate the top operand stack value and insert two values down

Format dup_x1

Forms dup_x1 = 90 (0x5a)

Operand

Stack

..., value2, value1 →

..., value1, value2, value1

Description Duplicate the top value on the operand stack and insert the
duplicated value two values down in the operand stack.

The dup_x1 instruction must not be used unless both value1 and
value2 are values of a category 1 computational type (§2.11.1).
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dup_x2 dup_x2

Operation Duplicate the top operand stack value and insert two or three
values down

Format dup_x2

Forms dup_x2 = 91 (0x5b)

Operand

Stack

Form 1:

..., value3, value2, value1 →

..., value1, value3, value2, value1

where value1, value2, and value3 are all values of a category 1
computational type (§2.11.1).

Form 2:

..., value2, value1 →

..., value1, value2, value1

where value1 is a value of a category 1 computational type and
value2 is a value of a category 2 computational type (§2.11.1).

Description Duplicate the top value on the operand stack and insert the
duplicated value two or three values down in the operand stack.
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dup2 dup2

Operation Duplicate the top one or two operand stack values

Format dup2

Forms dup2 = 92 (0x5c)

Operand

Stack

Form 1:

..., value2, value1 →

..., value2, value1, value2, value1

where both value1 and value2 are values of a category 1
computational type (§2.11.1).

Form 2:

..., value →

..., value, value

where value is a value of a category 2 computational type
(§2.11.1).

Description Duplicate the top one or two values on the operand stack and push
the duplicated value or values back onto the operand stack in the
original order.
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dup2_x1 dup2_x1

Operation Duplicate the top one or two operand stack values and insert two
or three values down

Format dup2_x1

Forms dup2_x1 = 93 (0x5d)

Operand

Stack

Form 1:

..., value3, value2, value1 →

..., value2, value1, value3, value2, value1

where value1, value2, and value3 are all values of a category 1
computational type (§2.11.1).

Form 2:

..., value2, value1 →

..., value1, value2, value1

where value1 is a value of a category 2 computational type and
value2 is a value of a category 1 computational type (§2.11.1).

Description Duplicate the top one or two values on the operand stack and insert
the duplicated values, in the original order, one value beneath the
original value or values in the operand stack.
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dup2_x2 dup2_x2

Operation Duplicate the top one or two operand stack values and insert two,
three, or four values down

Format dup2_x2

Forms dup2_x2 = 94 (0x5e)

Operand

Stack

Form 1:

..., value4, value3, value2, value1 →

..., value2, value1, value4, value3, value2, value1

where value1, value2, value3, and value4 are all values of a
category 1 computational type (§2.11.1).

Form 2:

..., value3, value2, value1 →

..., value1, value3, value2, value1

where value1 is a value of a category 2 computational type and
value2 and value3 are both values of a category 1 computational
type (§2.11.1).

Form 3:

..., value3, value2, value1 →

..., value2, value1, value3, value2, value1

where value1 and value2 are both values of a category 1
computational type and value3 is a value of a category 2
computational type (§2.11.1).

Form 4:

..., value2, value1 →

..., value1, value2, value1

where value1 and value2 are both values of a category 2
computational type (§2.11.1).
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Description Duplicate the top one or two values on the operand stack and insert
the duplicated values, in the original order, into the operand stack.
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f2d f2d

Operation Convert float to double

Format f2d

Forms f2d = 141 (0x8d)

Operand

Stack

..., value →

..., result

Description The value on the top of the operand stack must be of type float.
It is popped from the operand stack and undergoes value set
conversion (§2.8.3), resulting in value'. Then value' is converted
to a double result. This result is pushed onto the operand stack.

Notes Where an f2d instruction is FP-strict (§2.8.2) it performs a
widening primitive conversion (JLS §5.1.2). Because all values of
the float value set (§2.3.2) are exactly representable by values of
the double value set (§2.3.2), such a conversion is exact.

Where an f2d instruction is not FP-strict, the result of the
conversion may be taken from the double-extended-exponent
value set; it is not necessarily rounded to the nearest representable
value in the double value set. However, if the operand value is
taken from the float-extended-exponent value set and the target
result is constrained to the double value set, rounding of value may
be required.
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f2i f2i

Operation Convert float to int

Format f2i

Forms f2i = 139 (0x8b)

Operand

Stack

..., value →

..., result

Description The value on the top of the operand stack must be of type float.
It is popped from the operand stack and undergoes value set
conversion (§2.8.3), resulting in value'. Then value' is converted
to an int result. This result is pushed onto the operand stack:

• If the value' is NaN, the result of the conversion is an int 0.

• Otherwise, if the value' is not an infinity, it is rounded to an
integer value V, rounding towards zero using IEEE 754 round
towards zero mode. If this integer value V can be represented as
an int, then the result is the int value V.

• Otherwise, either the value' must be too small (a negative value
of large magnitude or negative infinity), and the result is the
smallest representable value of type int, or the value' must
be too large (a positive value of large magnitude or positive
infinity), and the result is the largest representable value of type
int.

Notes The f2i instruction performs a narrowing primitive conversion
(JLS §5.1.3). It may lose information about the overall magnitude
of value' and may also lose precision.
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f2l f2l

Operation Convert float to long

Format f2l

Forms f2l = 140 (0x8c)

Operand

Stack

..., value →

..., result

Description The value on the top of the operand stack must be of type float.
It is popped from the operand stack and undergoes value set
conversion (§2.8.3), resulting in value'. Then value' is converted
to a long result. This result is pushed onto the operand stack:

• If the value' is NaN, the result of the conversion is a long 0.

• Otherwise, if the value' is not an infinity, it is rounded to an
integer value V, rounding towards zero using IEEE 754 round
towards zero mode. If this integer value V can be represented as
a long, then the result is the long value V.

• Otherwise, either the value' must be too small (a negative value
of large magnitude or negative infinity), and the result is the
smallest representable value of type long, or the value' must
be too large (a positive value of large magnitude or positive
infinity), and the result is the largest representable value of type
long.

Notes The f2l instruction performs a narrowing primitive conversion
(JLS §5.1.3). It may lose information about the overall magnitude
of value' and may also lose precision.
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fadd fadd

Operation Add float

Format fadd

Forms fadd = 98 (0x62)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type float. The values are
popped from the operand stack and undergo value set conversion
(§2.8.3), resulting in value1' and value2'. The float result is
value1' + value2'. The result is pushed onto the operand stack.

The result of an fadd instruction is governed by the rules of IEEE
arithmetic:

• If either value1' or value2' is NaN, the result is NaN.

• The sum of two infinities of opposite sign is NaN.

• The sum of two infinities of the same sign is the infinity of that
sign.

• The sum of an infinity and any finite value is equal to the
infinity.

• The sum of two zeroes of opposite sign is positive zero.

• The sum of two zeroes of the same sign is the zero of that sign.

• The sum of a zero and a nonzero finite value is equal to the
nonzero value.

• The sum of two nonzero finite values of the same magnitude and
opposite sign is positive zero.

• In the remaining cases, where neither operand is an infinity, a
zero, or NaN and the values have the same sign or have different
magnitudes, the sum is computed and rounded to the nearest
representable value using IEEE 754 round to nearest mode. If
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the magnitude is too large to represent as a float, we say the
operation overflows; the result is then an infinity of appropriate
sign. If the magnitude is too small to represent as a float, we say
the operation underflows; the result is then a zero of appropriate
sign.

The Java Virtual Machine requires support of gradual underflow
as defined by IEEE 754. Despite the fact that overflow, underflow,
or loss of precision may occur, execution of an fadd instruction
never throws a run-time exception.
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faload faload

Operation Load float from array

Format faload

Forms faload = 48 (0x30)

Operand

Stack

..., arrayref, index →

..., value

Description The arrayref must be of type reference and must refer to an array
whose components are of type float. The index must be of type
int. Both arrayref and index are popped from the operand stack.
The float value in the component of the array at index is retrieved
and pushed onto the operand stack.

Run-time

Exceptions

If arrayref is null, faload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the faload instruction throws an
ArrayIndexOutOfBoundsException.
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fastore fastore

Operation Store into float array

Format fastore

Forms fastore = 81 (0x51)

Operand

Stack

..., arrayref, index, value →

...

Description The arrayref must be of type reference and must refer to an array
whose components are of type float. The index must be of type
int, and the value must be of type float. The arrayref, index,
and value are popped from the operand stack. The float value
undergoes value set conversion (§2.8.3), resulting in value', and
value' is stored as the component of the array indexed by index.

Run-time

Exceptions

If arrayref is null, fastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the fastore instruction throws an
ArrayIndexOutOfBoundsException.
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fcmp<op> fcmp<op>

Operation Compare float

Format fcmp<op>

Forms fcmpg = 150 (0x96)

fcmpl = 149 (0x95)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type float. The values
are popped from the operand stack and undergo value set
conversion (§2.8.3), resulting in value1' and value2'. A floating-
point comparison is performed:

• If value1' is greater than value2', the int value 1 is pushed onto
the operand stack.

• Otherwise, if value1' is equal to value2', the int value 0 is
pushed onto the operand stack.

• Otherwise, if value1' is less than value2', the int value -1 is
pushed onto the operand stack.

• Otherwise, at least one of value1' or value2' is NaN. The fcmpg
instruction pushes the int value 1 onto the operand stack and
the fcmpl instruction pushes the int value -1 onto the operand
stack.

Floating-point comparison is performed in accordance with IEEE
754. All values other than NaN are ordered, with negative infinity
less than all finite values and positive infinity greater than all finite
values. Positive zero and negative zero are considered equal.

Notes The fcmpg and fcmpl instructions differ only in their treatment of
a comparison involving NaN. NaN is unordered, so any float
comparison fails if either or both of its operands are NaN. With
both fcmpg and fcmpl available, any float comparison may
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be compiled to push the same result onto the operand stack
whether the comparison fails on non-NaN values or fails because
it encountered a NaN. For more information, see §3.5.
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fconst_<f> fconst_<f>

Operation Push float

Format fconst_<f>

Forms fconst_0 = 11 (0xb)

fconst_1 = 12 (0xc)

fconst_2 = 13 (0xd)

Operand

Stack

... →

..., <f>

Description Push the float constant <f> (0.0, 1.0, or 2.0) onto the operand
stack.
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fdiv fdiv

Operation Divide float

Format fdiv

Forms fdiv = 110 (0x6e)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type float. The values are
popped from the operand stack and undergo value set conversion
(§2.8.3), resulting in value1' and value2'. The float result is
value1' / value2'. The result is pushed onto the operand stack.

The result of an fdiv instruction is governed by the rules of IEEE
arithmetic:

• If either value1' or value2' is NaN, the result is NaN.

• If neither value1' nor value2' is NaN, the sign of the result is
positive if both values have the same sign, negative if the values
have different signs.

• Division of an infinity by an infinity results in NaN.

• Division of an infinity by a finite value results in a signed
infinity, with the sign-producing rule just given.

• Division of a finite value by an infinity results in a signed zero,
with the sign-producing rule just given.

• Division of a zero by a zero results in NaN; division of zero
by any other finite value results in a signed zero, with the sign-
producing rule just given.

• Division of a nonzero finite value by a zero results in a signed
infinity, with the sign-producing rule just given.

• In the remaining cases, where neither operand is an infinity,
a zero, or NaN, the quotient is computed and rounded to the
nearest float using IEEE 754 round to nearest mode. If the
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magnitude is too large to represent as a float, we say the
operation overflows; the result is then an infinity of appropriate
sign. If the magnitude is too small to represent as a float, we say
the operation underflows; the result is then a zero of appropriate
sign.

The Java Virtual Machine requires support of gradual underflow
as defined by IEEE 754. Despite the fact that overflow, underflow,
division by zero, or loss of precision may occur, execution of an
fdiv instruction never throws a run-time exception.
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fload fload

Operation Load float from local variable

Format fload

index

Forms fload = 23 (0x17)

Operand

Stack

... →

..., value

Description The index is an unsigned byte that must be an index into the local
variable array of the current frame (§2.6). The local variable at
index must contain a float. The value of the local variable at index
is pushed onto the operand stack.

Notes The fload opcode can be used in conjunction with the wide
instruction (§wide) to access a local variable using a two-byte
unsigned index.
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fload_<n> fload_<n>

Operation Load float from local variable

Format fload_<n>

Forms fload_0 = 34 (0x22)

fload_1 = 35 (0x23)

fload_2 = 36 (0x24)

fload_3 = 37 (0x25)

Operand

Stack

... →

..., value

Description The <n> must be an index into the local variable array of the
current frame (§2.6). The local variable at <n> must contain a
float. The value of the local variable at <n> is pushed onto the
operand stack.

Notes Each of the fload_<n> instructions is the same as fload with an
index of <n>, except that the operand <n> is implicit.
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fmul fmul

Operation Multiply float

Format fmul

Forms fmul = 106 (0x6a)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type float. The values are
popped from the operand stack and undergo value set conversion
(§2.8.3), resulting in value1' and value2'. The float result is
value1' * value2'. The result is pushed onto the operand stack.

The result of an fmul instruction is governed by the rules of IEEE
arithmetic:

• If either value1' or value2' is NaN, the result is NaN.

• If neither value1' nor value2' is NaN, the sign of the result is
positive if both values have the same sign, and negative if the
values have different signs.

• Multiplication of an infinity by a zero results in NaN.

• Multiplication of an infinity by a finite value results in a signed
infinity, with the sign-producing rule just given.

• In the remaining cases, where neither an infinity nor NaN is
involved, the product is computed and rounded to the nearest
representable value using IEEE 754 round to nearest mode. If
the magnitude is too large to represent as a float, we say the
operation overflows; the result is then an infinity of appropriate
sign. If the magnitude is too small to represent as a float, we say
the operation underflows; the result is then a zero of appropriate
sign.

The Java Virtual Machine requires support of gradual underflow
as defined by IEEE 754. Despite the fact that overflow, underflow,
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or loss of precision may occur, execution of an fmul instruction
never throws a run-time exception.
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fneg fneg

Operation Negate float

Format fneg

Forms fneg = 118 (0x76)

Operand

Stack

..., value →

..., result

Description The value must be of type float. It is popped from the operand
stack and undergoes value set conversion (§2.8.3), resulting in
value'. The float result is the arithmetic negation of value'. This
result is pushed onto the operand stack.

For float values, negation is not the same as subtraction from
zero. If x is +0.0, then 0.0-x equals +0.0, but -x equals -0.0.
Unary minus merely inverts the sign of a float.

Special cases of interest:

• If the operand is NaN, the result is NaN (recall that NaN has
no sign).

• If the operand is an infinity, the result is the infinity of opposite
sign.

• If the operand is a zero, the result is the zero of opposite sign.
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frem frem

Operation Remainder float

Format frem

Forms frem = 114 (0x72)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type float. The values are
popped from the operand stack and undergo value set conversion
(§2.8.3), resulting in value1' and value2'. The result is calculated
and pushed onto the operand stack as a float.

The result of an frem instruction is not the same as that of the so-
called remainder operation defined by IEEE 754. The IEEE 754
"remainder" operation computes the remainder from a rounding
division, not a truncating division, and so its behavior is not
analogous to that of the usual integer remainder operator. Instead,
the Java Virtual Machine defines frem to behave in a manner
analogous to that of the Java Virtual Machine integer remainder
instructions (irem and lrem); this may be compared with the C
library function fmod.

The result of an frem instruction is governed by these rules:

• If either value1' or value2' is NaN, the result is NaN.

• If neither value1' nor value2' is NaN, the sign of the result equals
the sign of the dividend.

• If the dividend is an infinity or the divisor is a zero or both, the
result is NaN.

• If the dividend is finite and the divisor is an infinity, the result
equals the dividend.

• If the dividend is a zero and the divisor is finite, the result equals
the dividend.
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• In the remaining cases, where neither operand is an infinity,
a zero, or NaN, the floating-point remainder result from
a dividend value1' and a divisor value2' is defined by the
mathematical relation result = value1' - (value2' * q), where
q is an integer that is negative only if value1' / value2' is
negative and positive only if value1' / value2' is positive, and
whose magnitude is as large as possible without exceeding the
magnitude of the true mathematical quotient of value1' and
value2'.

Despite the fact that division by zero may occur, evaluation of
an frem instruction never throws a run-time exception. Overflow,
underflow, or loss of precision cannot occur.

Notes The IEEE 754 remainder operation may be computed by the
library routine Math.IEEEremainder.
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freturn freturn

Operation Return float from method

Format freturn

Forms freturn = 174 (0xae)

Operand

Stack

..., value →

[empty]

Description The current method must have return type float. The value
must be of type float. If the current method is a synchronized
method, the monitor entered or reentered on invocation of the
method is updated and possibly exited as if by execution of a
monitorexit instruction (§monitorexit) in the current thread. If no
exception is thrown, value is popped from the operand stack of the
current frame (§2.6) and undergoes value set conversion (§2.8.3),
resulting in value'. The value' is pushed onto the operand stack of
the frame of the invoker. Any other values on the operand stack of
the current method are discarded.

The interpreter then returns control to the invoker of the method,
reinstating the frame of the invoker.

Run-time

Exceptions

If the Java Virtual Machine implementation does not enforce
the rules on structured locking described in §2.11.10, then if the
current method is a synchronized method and the current thread is
not the owner of the monitor entered or reentered on invocation of
the method, freturn throws an IllegalMonitorStateException.
This can happen, for example, if a synchronized method contains
a monitorexit instruction, but no monitorenter instruction, on the
object on which the method is synchronized.

Otherwise, if the Java Virtual Machine implementation enforces
the rules on structured locking described in §2.11.10 and if the first
of those rules is violated during invocation of the current method,
then freturn throws an IllegalMonitorStateException.
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fstore fstore

Operation Store float into local variable

Format fstore

index

Forms fstore = 56 (0x38)

Operand

Stack

..., value →

...

Description The index is an unsigned byte that must be an index into the local
variable array of the current frame (§2.6). The value on the top
of the operand stack must be of type float. It is popped from
the operand stack and undergoes value set conversion (§2.8.3),
resulting in value'. The value of the local variable at index is set
to value'.

Notes The fstore opcode can be used in conjunction with the wide
instruction (§wide) to access a local variable using a two-byte
unsigned index.
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fstore_<n> fstore_<n>

Operation Store float into local variable

Format fstore_<n>

Forms fstore_0 = 67 (0x43)

fstore_1 = 68 (0x44)

fstore_2 = 69 (0x45)

fstore_3 = 70 (0x46)

Operand

Stack

..., value →

...

Description The <n> must be an index into the local variable array of the
current frame (§2.6). The value on the top of the operand stack
must be of type float. It is popped from the operand stack and
undergoes value set conversion (§2.8.3), resulting in value'. The
value of the local variable at <n> is set to value'.

Notes Each of the fstore_<n> instructions is the same as fstore with an
index of <n>, except that the operand <n> is implicit.



THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

471

fsub fsub

Operation Subtract float

Format fsub

Forms fsub = 102 (0x66)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type float. The values are
popped from the operand stack and undergo value set conversion
(§2.8.3), resulting in value1' and value2'. The float result is
value1' - value2'. The result is pushed onto the operand stack.

For float subtraction, it is always the case that a-b produces
the same result as a+(-b). However, for the fsub instruction,
subtraction from zero is not the same as negation, because if x is
+0.0, then 0.0-x equals +0.0, but -x equals -0.0.

The Java Virtual Machine requires support of gradual underflow
as defined by IEEE 754. Despite the fact that overflow, underflow,
or loss of precision may occur, execution of an fsub instruction
never throws a run-time exception.
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getfield getfield

Operation Fetch field from object

Format getfield

indexbyte1

indexbyte2

Forms getfield = 180 (0xb4)

Operand

Stack

..., objectref →

..., value

Description The unsigned indexbyte1 and indexbyte2 are used to construct an
index into the run-time constant pool of the current class (§2.6),
where the value of the index is (indexbyte1 << 8) | indexbyte2.
The run-time constant pool entry at the index must be a symbolic
reference to a field (§5.1), which gives the name and descriptor of
the field as well as a symbolic reference to the class in which the
field is to be found. The referenced field is resolved (§5.4.3.2).

The objectref, which must be of type reference but not an array
type, is popped from the operand stack. The value of the referenced
field in objectref is fetched and pushed onto the operand stack.

Linking

Exceptions

During resolution of the symbolic reference to the field, any of the
errors pertaining to field resolution (§5.4.3.2) can be thrown.

Otherwise, if the resolved field is a static field, getfield throws
an IncompatibleClassChangeError.

Run-time

Exception

Otherwise, if objectref is null, the getfield instruction throws a
NullPointerException.

Notes The getfield instruction cannot be used to access the length field
of an array. The arraylength instruction (§arraylength) is used
instead.
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getstatic getstatic

Operation Get static field from class

Format getstatic

indexbyte1

indexbyte2

Forms getstatic = 178 (0xb2)

Operand

Stack

..., →

..., value

Description The unsigned indexbyte1 and indexbyte2 are used to construct an
index into the run-time constant pool of the current class (§2.6),
where the value of the index is (indexbyte1 << 8) | indexbyte2.
The run-time constant pool entry at the index must be a symbolic
reference to a field (§5.1), which gives the name and descriptor of
the field as well as a symbolic reference to the class or interface
in which the field is to be found. The referenced field is resolved
(§5.4.3.2).

On successful resolution of the field, the class or interface that
declared the resolved field is initialized if that class or interface
has not already been initialized (§5.5).

The value of the class or interface field is fetched and pushed onto
the operand stack.

Linking

Exceptions

During resolution of the symbolic reference to the class or
interface field, any of the exceptions pertaining to field resolution
(§5.4.3.2) can be thrown.

Otherwise, if the resolved field is not a static

(class) field or an interface field, getstatic throws an
IncompatibleClassChangeError.



6.5 Instructions THE JAVA VIRTUAL MACHINE INSTRUCTION SET

474

Run-time

Exception

Otherwise, if execution of this getstatic instruction causes
initialization of the referenced class or interface, getstatic may
throw an Error as detailed in §5.5.
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goto goto

Operation Branch always

Format goto

branchbyte1

branchbyte2

Forms goto = 167 (0xa7)

Operand

Stack

No change

Description The unsigned bytes branchbyte1 and branchbyte2 are used to
construct a signed 16-bit branchoffset, where branchoffset is
(branchbyte1 << 8) | branchbyte2. Execution proceeds at that
offset from the address of the opcode of this goto instruction. The
target address must be that of an opcode of an instruction within
the method that contains this goto instruction.
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goto_w goto_w

Operation Branch always (wide index)

Format goto_w

branchbyte1

branchbyte2

branchbyte3

branchbyte4

Forms goto_w = 200 (0xc8)

Operand

Stack

No change

Description The unsigned bytes branchbyte1, branchbyte2, branchbyte3, and
branchbyte4 are used to construct a signed 32-bit branchoffset,
where branchoffset is (branchbyte1 << 24) | (branchbyte2 << 16)
| (branchbyte3 << 8) | branchbyte4. Execution proceeds at that
offset from the address of the opcode of this goto_w instruction.
The target address must be that of an opcode of an instruction
within the method that contains this goto_w instruction.

Notes Although the goto_w instruction takes a 4-byte branch offset, other
factors limit the size of a method to 65535 bytes (§4.11). This limit
may be raised in a future release of the Java Virtual Machine.
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i2b i2b

Operation Convert int to byte

Format i2b

Forms i2b = 145 (0x91)

Operand

Stack

..., value →

..., result

Description The value on the top of the operand stack must be of type int. It
is popped from the operand stack, truncated to a byte, then sign-
extended to an int result. That result is pushed onto the operand
stack.

Notes The i2b instruction performs a narrowing primitive conversion
(JLS §5.1.3). It may lose information about the overall magnitude
of value. The result may also not have the same sign as value.
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i2c i2c

Operation Convert int to char

Format i2c

Forms i2c = 146 (0x92)

Operand

Stack

..., value →

..., result

Description The value on the top of the operand stack must be of type int. It
is popped from the operand stack, truncated to char, then zero-
extended to an int result. That result is pushed onto the operand
stack.

Notes The i2c instruction performs a narrowing primitive conversion
(JLS §5.1.3). It may lose information about the overall magnitude
of value. The result (which is always positive) may also not have
the same sign as value.
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i2d i2d

Operation Convert int to double

Format i2d

Forms i2d = 135 (0x87)

Operand

Stack

..., value →

..., result

Description The value on the top of the operand stack must be of type int. It is
popped from the operand stack and converted to a double result.
The result is pushed onto the operand stack.

Notes The i2d instruction performs a widening primitive conversion (JLS
§5.1.2). Because all values of type int are exactly representable
by type double, the conversion is exact.
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i2f i2f

Operation Convert int to float

Format i2f

Forms i2f = 134 (0x86)

Operand

Stack

..., value →

..., result

Description The value on the top of the operand stack must be of type int. It is
popped from the operand stack and converted to the float result
using IEEE 754 round to nearest mode. The result is pushed onto
the operand stack.

Notes The i2f instruction performs a widening primitive conversion (JLS
§5.1.2), but may result in a loss of precision because values of type
float have only 24 significand bits.
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i2l i2l

Operation Convert int to long

Format i2l

Forms i2l = 133 (0x85)

Operand

Stack

..., value →

..., result

Description The value on the top of the operand stack must be of type int. It is
popped from the operand stack and sign-extended to a long result.
That result is pushed onto the operand stack.

Notes The i2l instruction performs a widening primitive conversion (JLS
§5.1.2). Because all values of type int are exactly representable
by type long, the conversion is exact.
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i2s i2s

Operation Convert int to short

Format i2s

Forms i2s = 147 (0x93)

Operand

Stack

..., value →

..., result

Description The value on the top of the operand stack must be of type int. It
is popped from the operand stack, truncated to a short, then sign-
extended to an int result. That result is pushed onto the operand
stack.

Notes The i2s instruction performs a narrowing primitive conversion
(JLS §5.1.3). It may lose information about the overall magnitude
of value. The result may also not have the same sign as value.
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iadd iadd

Operation Add int

Format iadd

Forms iadd = 96 (0x60)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type int. The values are popped
from the operand stack. The int result is value1 + value2. The
result is pushed onto the operand stack.

The result is the 32 low-order bits of the true mathematical result
in a sufficiently wide two's-complement format, represented as a
value of type int. If overflow occurs, then the sign of the result
may not be the same as the sign of the mathematical sum of the
two values.

Despite the fact that overflow may occur, execution of an iadd
instruction never throws a run-time exception.
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iaload iaload

Operation Load int from array

Format iaload

Forms iaload = 46 (0x2e)

Operand

Stack

..., arrayref, index →

..., value

Description The arrayref must be of type reference and must refer to an array
whose components are of type int. The index must be of type int.
Both arrayref and index are popped from the operand stack. The
int value in the component of the array at index is retrieved and
pushed onto the operand stack.

Run-time

Exceptions

If arrayref is null, iaload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the iaload instruction throws an
ArrayIndexOutOfBoundsException.
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iand iand

Operation Boolean AND int

Format iand

Forms iand = 126 (0x7e)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type int. They are popped
from the operand stack. An int result is calculated by taking the
bitwise AND (conjunction) of value1 and value2. The result is
pushed onto the operand stack.
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iastore iastore

Operation Store into int array

Format iastore

Forms iastore = 79 (0x4f)

Operand

Stack

..., arrayref, index, value →

...

Description The arrayref must be of type reference and must refer to an array
whose components are of type int. Both index and value must be
of type int. The arrayref, index, and value are popped from the
operand stack. The int value is stored as the component of the
array indexed by index.

Run-time

Exceptions

If arrayref is null, iastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the iastore instruction throws an
ArrayIndexOutOfBoundsException.
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iconst_<i> iconst_<i>

Operation Push int constant

Format iconst_<i>

Forms iconst_m1 = 2 (0x2)

iconst_0 = 3 (0x3)

iconst_1 = 4 (0x4)

iconst_2 = 5 (0x5)

iconst_3 = 6 (0x6)

iconst_4 = 7 (0x7)

iconst_5 = 8 (0x8)

Operand

Stack

... →

..., <i>

Description Push the int constant <i> (-1, 0, 1, 2, 3, 4 or 5) onto the operand
stack.

Notes Each of this family of instructions is equivalent to bipush <i> for
the respective value of <i>, except that the operand <i> is implicit.
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idiv idiv

Operation Divide int

Format idiv

Forms idiv = 108 (0x6c)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type int. The values are popped
from the operand stack. The int result is the value of the Java
programming language expression value1 / value2. The result is
pushed onto the operand stack.

An int division rounds towards 0; that is, the quotient produced
for int values in n/d is an int value q whose magnitude is as large
as possible while satisfying |d ⋅ q| ≤ |n|. Moreover, q is positive
when |n| ≥ |d| and n and d have the same sign, but q is negative
when |n| ≥ |d| and n and d have opposite signs.

There is one special case that does not satisfy this rule: if the
dividend is the negative integer of largest possible magnitude for
the int type, and the divisor is -1, then overflow occurs, and the
result is equal to the dividend. Despite the overflow, no exception
is thrown in this case.

Run-time

Exception

If the value of the divisor in an int division is 0, idiv throws an
ArithmeticException.
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if_acmp<cond> if_acmp<cond>

Operation Branch if reference comparison succeeds

Format if_acmp<cond>

branchbyte1

branchbyte2

Forms if_acmpeq = 165 (0xa5)

if_acmpne = 166 (0xa6)

Operand

Stack

..., value1, value2 →

...

Description Both value1 and value2 must be of type reference. They are both
popped from the operand stack and compared. The results of the
comparison are as follows:

• if_acmpeq succeeds if and only if value1 = value2

• if_acmpne succeeds if and only if value1 ≠ value2

If the comparison succeeds, the unsigned branchbyte1 and
branchbyte2 are used to construct a signed 16-bit offset, where
the offset is calculated to be (branchbyte1 << 8) | branchbyte2.
Execution then proceeds at that offset from the address of the
opcode of this if_acmp<cond> instruction. The target address
must be that of an opcode of an instruction within the method that
contains this if_acmp<cond> instruction.

Otherwise, if the comparison fails, execution proceeds at
the address of the instruction following this if_acmp<cond>
instruction.
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if_icmp<cond> if_icmp<cond>

Operation Branch if int comparison succeeds

Format if_icmp<cond>

branchbyte1

branchbyte2

Forms if_icmpeq = 159 (0x9f)

if_icmpne = 160 (0xa0)

if_icmplt = 161 (0xa1)

if_icmpge = 162 (0xa2)

if_icmpgt = 163 (0xa3)

if_icmple = 164 (0xa4)

Operand

Stack

..., value1, value2 →

...

Description Both value1 and value2 must be of type int. They are both popped
from the operand stack and compared. All comparisons are signed.
The results of the comparison are as follows:

• if_icmpeq succeeds if and only if value1 = value2

• if_icmpne succeeds if and only if value1 ≠ value2

• if_icmplt succeeds if and only if value1 < value2

• if_icmple succeeds if and only if value1 ≤ value2

• if_icmpgt succeeds if and only if value1 > value2

• if_icmpge succeeds if and only if value1 ≥ value2

If the comparison succeeds, the unsigned branchbyte1 and
branchbyte2 are used to construct a signed 16-bit offset, where
the offset is calculated to be (branchbyte1 << 8) | branchbyte2.
Execution then proceeds at that offset from the address of the
opcode of this if_icmp<cond> instruction. The target address must
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be that of an opcode of an instruction within the method that
contains this if_icmp<cond> instruction.

Otherwise, execution proceeds at the address of the instruction
following this if_icmp<cond> instruction.
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if<cond> if<cond>

Operation Branch if int comparison with zero succeeds

Format if<cond>

branchbyte1

branchbyte2

Forms ifeq = 153 (0x99)

ifne = 154 (0x9a)

iflt = 155 (0x9b)

ifge = 156 (0x9c)

ifgt = 157 (0x9d)

ifle = 158 (0x9e)

Operand

Stack

..., value →

...

Description The value must be of type int. It is popped from the operand
stack and compared against zero. All comparisons are signed. The
results of the comparisons are as follows:

• ifeq succeeds if and only if value = 0

• ifne succeeds if and only if value ≠ 0

• iflt succeeds if and only if value < 0

• ifle succeeds if and only if value ≤ 0

• ifgt succeeds if and only if value > 0

• ifge succeeds if and only if value ≥ 0

If the comparison succeeds, the unsigned branchbyte1 and
branchbyte2 are used to construct a signed 16-bit offset, where
the offset is calculated to be (branchbyte1 << 8) | branchbyte2.
Execution then proceeds at that offset from the address of the
opcode of this if<cond> instruction. The target address must be
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that of an opcode of an instruction within the method that contains
this if<cond> instruction.

Otherwise, execution proceeds at the address of the instruction
following this if<cond> instruction.
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ifnonnull ifnonnull

Operation Branch if reference not null

Format ifnonnull

branchbyte1

branchbyte2

Forms ifnonnull = 199 (0xc7)

Operand

Stack

..., value →

...

Description The value must be of type reference. It is popped from the
operand stack. If value is not null, the unsigned branchbyte1 and
branchbyte2 are used to construct a signed 16-bit offset, where
the offset is calculated to be (branchbyte1 << 8) | branchbyte2.
Execution then proceeds at that offset from the address of the
opcode of this ifnonnull instruction. The target address must be
that of an opcode of an instruction within the method that contains
this ifnonnull instruction.

Otherwise, execution proceeds at the address of the instruction
following this ifnonnull instruction.
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ifnull ifnull

Operation Branch if reference is null

Format ifnull

branchbyte1

branchbyte2

Forms ifnull = 198 (0xc6)

Operand

Stack

..., value →

...

Description The value must of type reference. It is popped from the operand
stack. If value is null, the unsigned branchbyte1 and branchbyte2
are used to construct a signed 16-bit offset, where the offset is
calculated to be (branchbyte1 << 8) | branchbyte2. Execution then
proceeds at that offset from the address of the opcode of this ifnull
instruction. The target address must be that of an opcode of an
instruction within the method that contains this ifnull instruction.

Otherwise, execution proceeds at the address of the instruction
following this ifnull instruction.
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iinc iinc

Operation Increment local variable by constant

Format iinc

index

const

Forms iinc = 132 (0x84)

Operand

Stack

No change

Description The index is an unsigned byte that must be an index into the
local variable array of the current frame (§2.6). The const is an
immediate signed byte. The local variable at index must contain
an int. The value const is first sign-extended to an int, and then
the local variable at index is incremented by that amount.

Notes The iinc opcode can be used in conjunction with the wide
instruction (§wide) to access a local variable using a two-byte
unsigned index and to increment it by a two-byte immediate signed
value.
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iload iload

Operation Load int from local variable

Format iload

index

Forms iload = 21 (0x15)

Operand

Stack

... →

..., value

Description The index is an unsigned byte that must be an index into the local
variable array of the current frame (§2.6). The local variable at
index must contain an int. The value of the local variable at index
is pushed onto the operand stack.

Notes The iload opcode can be used in conjunction with the wide
instruction (§wide) to access a local variable using a two-byte
unsigned index.
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iload_<n> iload_<n>

Operation Load int from local variable

Format iload_<n>

Forms iload_0 = 26 (0x1a)

iload_1 = 27 (0x1b)

iload_2 = 28 (0x1c)

iload_3 = 29 (0x1d)

Operand

Stack

... →

..., value

Description The <n> must be an index into the local variable array of the
current frame (§2.6). The local variable at <n> must contain an
int. The value of the local variable at <n> is pushed onto the
operand stack.

Notes Each of the iload_<n> instructions is the same as iload with an
index of <n>, except that the operand <n> is implicit.
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imul imul

Operation Multiply int

Format imul

Forms imul = 104 (0x68)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type int. The values are popped
from the operand stack. The int result is value1 * value2. The
result is pushed onto the operand stack.

The result is the 32 low-order bits of the true mathematical result
in a sufficiently wide two's-complement format, represented as a
value of type int. If overflow occurs, then the sign of the result
may not be the same as the sign of the mathematical multiplication
of the two values.

Despite the fact that overflow may occur, execution of an imul
instruction never throws a run-time exception.
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ineg ineg

Operation Negate int

Format ineg

Forms ineg = 116 (0x74)

Operand

Stack

..., value →

..., result

Description The value must be of type int. It is popped from the operand
stack. The int result is the arithmetic negation of value, -value.
The result is pushed onto the operand stack.

For int values, negation is the same as subtraction from
zero. Because the Java Virtual Machine uses two's-complement
representation for integers and the range of two's-complement
values is not symmetric, the negation of the maximum negative
int results in that same maximum negative number. Despite the
fact that overflow has occurred, no exception is thrown.

For all int values x, -x equals (~x)+1.
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instanceof instanceof

Operation Determine if object is of given type

Format instanceof

indexbyte1

indexbyte2

Forms instanceof = 193 (0xc1)

Operand

Stack

..., objectref →

..., result

Description The objectref, which must be of type reference, is popped from
the operand stack. The unsigned indexbyte1 and indexbyte2 are
used to construct an index into the run-time constant pool of the
current class (§2.6), where the value of the index is (indexbyte1 <<
8) | indexbyte2. The run-time constant pool entry at the index must
be a symbolic reference to a class, array, or interface type.

If objectref is null, the instanceof instruction pushes an int result
of 0 as an int onto the operand stack.

Otherwise, the named class, array, or interface type is resolved
(§5.4.3.1). If objectref is an instance of the resolved class or
array type, or implements the resolved interface, the instanceof
instruction pushes an int result of 1 as an int onto the operand
stack; otherwise, it pushes an int result of 0.

The following rules are used to determine whether an objectref that
is not null is an instance of the resolved type. If S is the type of the
object referred to by objectref, and T is the resolved class, array,
or interface type, then instanceof determines whether objectref is
an instance of T as follows:

• If S is a class type, then:

– If T is a class type, then S must be the same class as T, or S
must be a subclass of T;

– If T is an interface type, then S must implement interface T.
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• If S is an array type SC[], that is, an array of components of type
SC, then:

– If T is a class type, then T must be Object.

– If T is an interface type, then T must be one of the interfaces
implemented by arrays (JLS §4.10.3).

– If T is an array type TC[], that is, an array of components of
type TC, then one of the following must be true:

› TC and SC are the same primitive type.

› TC and SC are reference types, and type SC can be cast to TC
by these run-time rules.

Linking

Exceptions

During resolution of the symbolic reference to the class, array, or
interface type, any of the exceptions documented in §5.4.3.1 can
be thrown.

Notes The instanceof instruction is very similar to the checkcast
instruction (§checkcast). It differs in its treatment of null, its
behavior when its test fails (checkcast throws an exception,
instanceof pushes a result code), and its effect on the operand
stack.
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invokedynamic invokedynamic

Operation Invoke a dynamically-computed call site

Format invokedynamic

indexbyte1

indexbyte2

0

0

Forms invokedynamic = 186 (0xba)

Operand

Stack

..., [arg1, [arg2 ...]] →

...

Description First, the unsigned indexbyte1 and indexbyte2 are used to construct
an index into the run-time constant pool of the current class (§2.6),
where the value of the index is (indexbyte1 << 8) | indexbyte2.
The run-time constant pool entry at the index must be a symbolic
reference to a dynamically-computed call site (§5.1). The values
of the third and fourth operand bytes must always be zero.

The symbolic reference is resolved (§5.4.3.6) for this specific
invokedynamic instruction to obtain a reference to an
instance of java.lang.invoke.CallSite. The instance of
java.lang.invoke.CallSite is considered "bound" to this
specific invokedynamic instruction.

The instance of java.lang.invoke.CallSite indicates a target
method handle. The nargs argument values are popped from the
operand stack, and the target method handle is invoked. The
invocation occurs as if by execution of an invokevirtual instruction
that indicates a run-time constant pool index to a symbolic
reference R where:

• R is a symbolic reference to a method of a class;

• for the symbolic reference to the class in which the method is to
be found, R specifies java.lang.invoke.MethodHandle;
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• for the name of the method, R specifies invokeExact;

• for the descriptor of the method, R specifies the method
descriptor in the dynamically-computed call site.

and where it is as if the following items were pushed, in order,
onto the operand stack:

• a reference to the target method handle;

• the nargs argument values, where the number, type, and order
of the values must be consistent with the method descriptor in
the dynamically-computed call site.

Linking

Exceptions

During resolution of the symbolic reference to a dynamically-
computed call site, any of the exceptions pertaining to
dynamically-computed call site resolution can be thrown.

Notes If the symbolic reference to the dynamically-computed call
site can be resolved, it implies that a non-null reference to
an instance of java.lang.invoke.CallSite is bound to the
invokedynamic instruction. Therefore, the target method handle,
indicated by the instance of java.lang.invoke.CallSite, is
non-null.

Similarly, successful resolution implies that the method descriptor
in the symbolic reference is semantically equal to the type
descriptor of the target method handle.

Together, these invariants mean that an invokedynamic instruction
which is bound to an instance of java.lang.invoke.CallSite
never throws a NullPointerException or a
java.lang.invoke.WrongMethodTypeException.
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invokeinterface invokeinterface

Operation Invoke interface method

Format invokeinterface

indexbyte1

indexbyte2

count

0

Forms invokeinterface = 185 (0xb9)

Operand

Stack

..., objectref, [arg1, [arg2 ...]] →

...

Description The unsigned indexbyte1 and indexbyte2 are used to construct an
index into the run-time constant pool of the current class (§2.6),
where the value of the index is (indexbyte1 << 8) | indexbyte2.
The run-time constant pool entry at the index must be a symbolic
reference to an interface method (§5.1), which gives the name and
descriptor (§4.3.3) of the interface method as well as a symbolic
reference to the interface in which the interface method is to be
found. The named interface method is resolved (§5.4.3.4).

The resolved interface method must not be an instance
initialization method, or the class or interface initialization method
(§2.9.1, §2.9.2).

The count operand is an unsigned byte that must not be zero. The
objectref must be of type reference and must be followed on the
operand stack by nargs argument values, where the number, type,
and order of the values must be consistent with the descriptor of the
resolved interface method. The value of the fourth operand byte
must always be zero.

Let C be the class of objectref. A method is selected with respect
to C and the resolved method (§5.4.6). This is the method to be
invoked.
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If the method to be invoked is synchronized, the monitor
associated with objectref is entered or reentered as if by execution
of a monitorenter instruction (§monitorenter) in the current thread.

If the method to be invoked is not native, the nargs argument
values and objectref are popped from the operand stack. A new
frame is created on the Java Virtual Machine stack for the
method being invoked. The objectref and the argument values are
consecutively made the values of local variables of the new frame,
with objectref in local variable 0, arg1 in local variable 1 (or,
if arg1 is of type long or double, in local variables 1 and 2),
and so on. Any argument value that is of a floating-point type
undergoes value set conversion (§2.8.3) prior to being stored in a
local variable. The new frame is then made current, and the Java
Virtual Machine pc is set to the opcode of the first instruction
of the method to be invoked. Execution continues with the first
instruction of the method.

If the method to be invoked is native and the platform-dependent
code that implements it has not yet been bound (§5.6) into the
Java Virtual Machine, then that is done. The nargs argument
values and objectref are popped from the operand stack and are
passed as parameters to the code that implements the method.
Any argument value that is of a floating-point type undergoes
value set conversion (§2.8.3) prior to being passed as a parameter.
The parameters are passed and the code is invoked in an
implementation-dependent manner. When the platform-dependent
code returns:

• If the native method is synchronized, the monitor associated
with objectref is updated and possibly exited as if by execution
of a monitorexit instruction (§monitorexit) in the current thread.

• If the native method returns a value, the return value of the
platform-dependent code is converted in an implementation-
dependent way to the return type of the native method and
pushed onto the operand stack.

Linking

Exceptions

During resolution of the symbolic reference to the interface
method, any of the exceptions pertaining to interface method
resolution (§5.4.3.4) can be thrown.
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Otherwise, if the resolved method is static, the invokeinterface
instruction throws an IncompatibleClassChangeError.

Note that invokeinterface may refer to private methods declared in
interfaces, including nestmate interfaces.

Run-time

Exceptions

Otherwise, if objectref is null, the invokeinterface instruction
throws a NullPointerException.

Otherwise, if the class of objectref does not
implement the resolved interface, invokeinterface throws an
IncompatibleClassChangeError.

Otherwise, if the selected method is neither public nor private,
invokeinterface throws an IllegalAccessError.

Otherwise, if the selected method is abstract, invokeinterface
throws an AbstractMethodError.

Otherwise, if the selected method is native and the code that
implements the method cannot be bound, invokeinterface throws
an UnsatisfiedLinkError.

Otherwise, if no method is selected, and there are multiple
maximally-specific superinterface methods of C that match the
resolved method's name and descriptor and are not abstract,
invokeinterface throws an IncompatibleClassChangeError

Otherwise, if no method is selected, and there are no
maximally-specific superinterface methods of C that match the
resolved method's name and descriptor and are not abstract,
invokeinterface throws an AbstractMethodError.

Notes The count operand of the invokeinterface instruction records a
measure of the number of argument values, where an argument
value of type long or type double contributes two units to the
count value and an argument of any other type contributes one
unit. This information can also be derived from the descriptor of
the selected method. The redundancy is historical.

The fourth operand byte exists to reserve space for an additional
operand used in certain of Oracle's Java Virtual Machine
implementations, which replace the invokeinterface instruction by
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a specialized pseudo-instruction at run time. It must be retained
for backwards compatibility.

The nargs argument values and objectref are not one-to-one with
the first nargs+1 local variables. Argument values of types long
and double must be stored in two consecutive local variables, thus
more than nargs local variables may be required to pass nargs
argument values to the invoked method.

The selection logic allows a non-abstract method declared in
a superinterface to be selected. Methods in interfaces are only
considered if there is no matching method in the class hierarchy.
In the event that there are two non-abstract methods in the
superinterface hierarchy, with neither more specific than the other,
an error occurs; there is no attempt to disambiguate (for example,
one may be the referenced method and one may be unrelated, but
we do not prefer the referenced method). On the other hand, if there
are many abstract methods but only one non-abstract method,
the non-abstract method is selected (unless an abstract method
is more specific).
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invokespecial invokespecial

Operation Invoke instance method; direct invocation of instance initialization
methods and methods of the current class and its supertypes

Format invokespecial

indexbyte1

indexbyte2

Forms invokespecial = 183 (0xb7)

Operand

Stack

..., objectref, [arg1, [arg2 ...]] →

...

Description The unsigned indexbyte1 and indexbyte2 are used to construct an
index into the run-time constant pool of the current class (§2.6),
where the value of the index is (indexbyte1 << 8) | indexbyte2.
The run-time constant pool entry at the index must be a symbolic
reference to a method or an interface method (§5.1), which gives
the name and descriptor (§4.3.3) of the method or interface method
as well as a symbolic reference to the class or interface in which
the method or interface method is to be found. The named method
is resolved (§5.4.3.3, §5.4.3.4).

If all of the following are true, let C be the direct superclass of the
current class:

• The resolved method is not an instance initialization method
(§2.9.1).

• If the symbolic reference names a class (not an interface), then
that class is a superclass of the current class.

• The ACC_SUPER flag is set for the class file (§4.1).

Otherwise, let C be the class or interface named by the symbolic
reference.

The actual method to be invoked is selected by the following
lookup procedure:
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1. If C contains a declaration for an instance method with the
same name and descriptor as the resolved method, then it is
the method to be invoked.

2. Otherwise, if C is a class and has a superclass, a search for
a declaration of an instance method with the same name
and descriptor as the resolved method is performed, starting
with the direct superclass of C and continuing with the direct
superclass of that class, and so forth, until a match is found or
no further superclasses exist. If a match is found, then it is the
method to be invoked.

3. Otherwise, if C is an interface and the class Object contains a
declaration of a public instance method with the same name
and descriptor as the resolved method, then it is the method
to be invoked.

4. Otherwise, if there is exactly one maximally-specific method
(§5.4.3.3) in the superinterfaces of C that matches the resolved
method's name and descriptor and is not abstract, then it is
the method to be invoked.

The objectref must be of type reference and must be followed on
the operand stack by nargs argument values, where the number,
type, and order of the values must be consistent with the descriptor
of the selected instance method.

If the method is synchronized, the monitor associated with
objectref is entered or reentered as if by execution of a
monitorenter instruction (§monitorenter) in the current thread.

If the method is not native, the nargs argument values and
objectref are popped from the operand stack. A new frame is
created on the Java Virtual Machine stack for the method being
invoked. The objectref and the argument values are consecutively
made the values of local variables of the new frame, with objectref
in local variable 0, arg1 in local variable 1 (or, if arg1 is of
type long or double, in local variables 1 and 2), and so on. Any
argument value that is of a floating-point type undergoes value
set conversion (§2.8.3) prior to being stored in a local variable.
The new frame is then made current, and the Java Virtual Machine
pc is set to the opcode of the first instruction of the method to
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be invoked. Execution continues with the first instruction of the
method.

If the method is native and the platform-dependent code that
implements it has not yet been bound (§5.6) into the Java Virtual
Machine, that is done. The nargs argument values and objectref are
popped from the operand stack and are passed as parameters to the
code that implements the method. Any argument value that is of a
floating-point type undergoes value set conversion (§2.8.3) prior
to being passed as a parameter. The parameters are passed and the
code is invoked in an implementation-dependent manner. When
the platform-dependent code returns, the following take place:

• If the native method is synchronized, the monitor associated
with objectref is updated and possibly exited as if by execution
of a monitorexit instruction (§monitorexit) in the current thread.

• If the native method returns a value, the return value of the
platform-dependent code is converted in an implementation-
dependent way to the return type of the native method and
pushed onto the operand stack.

Linking

Exceptions

During resolution of the symbolic reference to the method, any of
the exceptions pertaining to method resolution (§5.4.3.3) can be
thrown.

Otherwise, if the resolved method is an instance initialization
method, and the class in which it is declared is not the class
symbolically referenced by the instruction, a NoSuchMethodError
is thrown.

Otherwise, if the resolved method is a class
(static) method, the invokespecial instruction throws an
IncompatibleClassChangeError.

Run-time

Exceptions

Otherwise, if objectref is null, the invokespecial instruction
throws a NullPointerException.

Otherwise, if step 1, step 2, or step 3 of the lookup
procedure selects an abstract method, invokespecial throws an
AbstractMethodError.

Otherwise, if step 1, step 2, or step 3 of the lookup
procedure selects a native method and the code that
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implements the method cannot be bound, invokespecial throws an
UnsatisfiedLinkError.

Otherwise, if step 4 of the lookup procedure determines
there are multiple maximally-specific superinterface methods
of C that match the resolved method's name and
descriptor and are not abstract, invokespecial throws an
IncompatibleClassChangeError

Otherwise, if step 4 of the lookup procedure determines there
are no maximally-specific superinterface methods of C that match
the resolved method's name and descriptor and are not abstract,
invokespecial throws an AbstractMethodError.

Notes The difference between the invokespecial instruction and the
invokevirtual instruction (§invokevirtual) is that invokevirtual
invokes a method based on the class of the object. The
invokespecial instruction is used to directly invoke instance
initialization methods (§2.9.1) as well as methods of the current
class and its supertypes.

The invokespecial instruction was named invokenonvirtual prior
to JDK release 1.0.2.

The nargs argument values and objectref are not one-to-one with
the first nargs+1 local variables. Argument values of types long
and double must be stored in two consecutive local variables, thus
more than nargs local variables may be required to pass nargs
argument values to the invoked method.

The invokespecial instruction handles invocation of a non-
abstract interface method, referenced either via a direct
superinterface or via a superclass. In these cases, the rules for
selection are essentially the same as those for invokeinterface
(except that the search starts from a different class).



THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

513

invokestatic invokestatic

Operation Invoke a class (static) method

Format invokestatic

indexbyte1

indexbyte2

Forms invokestatic = 184 (0xb8)

Operand

Stack

..., [arg1, [arg2 ...]] →

...

Description The unsigned indexbyte1 and indexbyte2 are used to construct an
index into the run-time constant pool of the current class (§2.6),
where the value of the index is (indexbyte1 << 8) | indexbyte2.
The run-time constant pool entry at the index must be a symbolic
reference to a method or an interface method (§5.1), which gives
the name and descriptor (§4.3.3) of the method or interface method
as well as a symbolic reference to the class or interface in which
the method or interface method is to be found. The named method
is resolved (§5.4.3.3, §5.4.3.4).

The resolved method must not be an instance initialization method,
or the class or interface initialization method (§2.9.1, §2.9.2).

The resolved method must be static, and therefore cannot be
abstract.

On successful resolution of the method, the class or interface that
declared the resolved method is initialized if that class or interface
has not already been initialized (§5.5).

The operand stack must contain nargs argument values, where the
number, type, and order of the values must be consistent with the
descriptor of the resolved method.

If the method is synchronized, the monitor associated with the
resolved Class object is entered or reentered as if by execution of
a monitorenter instruction (§monitorenter) in the current thread.
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If the method is not native, the nargs argument values are popped
from the operand stack. A new frame is created on the Java Virtual
Machine stack for the method being invoked. The nargs argument
values are consecutively made the values of local variables of
the new frame, with arg1 in local variable 0 (or, if arg1 is of
type long or double, in local variables 0 and 1) and so on. Any
argument value that is of a floating-point type undergoes value
set conversion (§2.8.3) prior to being stored in a local variable.
The new frame is then made current, and the Java Virtual Machine
pc is set to the opcode of the first instruction of the method to
be invoked. Execution continues with the first instruction of the
method.

If the method is native and the platform-dependent code that
implements it has not yet been bound (§5.6) into the Java Virtual
Machine, that is done. The nargs argument values are popped from
the operand stack and are passed as parameters to the code that
implements the method. Any argument value that is of a floating-
point type undergoes value set conversion (§2.8.3) prior to being
passed as a parameter. The parameters are passed and the code
is invoked in an implementation-dependent manner. When the
platform-dependent code returns, the following take place:

• If the native method is synchronized, the monitor associated
with the resolved Class object is updated and possibly exited
as if by execution of a monitorexit instruction (§monitorexit) in
the current thread.

• If the native method returns a value, the return value of the
platform-dependent code is converted in an implementation-
dependent way to the return type of the native method and
pushed onto the operand stack.

Linking

Exceptions

During resolution of the symbolic reference to the method, any of
the exceptions pertaining to method resolution (§5.4.3.3) can be
thrown.

Otherwise, if the resolved method is an instance
method, the invokestatic instruction throws an
IncompatibleClassChangeError.
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Run-time

Exceptions

Otherwise, if execution of this invokestatic instruction causes
initialization of the referenced class or interface, invokestatic may
throw an Error as detailed in §5.5.

Otherwise, if the resolved method is native and the code that
implements the method cannot be bound, invokestatic throws an
UnsatisfiedLinkError.

Notes The nargs argument values are not one-to-one with the first nargs
local variables. Argument values of types long and double must
be stored in two consecutive local variables, thus more than nargs
local variables may be required to pass nargs argument values to
the invoked method.
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invokevirtual invokevirtual

Operation Invoke instance method; dispatch based on class

Format invokevirtual

indexbyte1

indexbyte2

Forms invokevirtual = 182 (0xb6)

Operand

Stack

..., objectref, [arg1, [arg2 ...]] →

...

Description The unsigned indexbyte1 and indexbyte2 are used to construct an
index into the run-time constant pool of the current class (§2.6),
where the value of the index is (indexbyte1 << 8) | indexbyte2.
The run-time constant pool entry at the index must be a symbolic
reference to a method (§5.1), which gives the name and descriptor
(§4.3.3) of the method as well as a symbolic reference to the class
in which the method is to be found. The named method is resolved
(§5.4.3.3).

If the resolved method is not signature polymorphic (§2.9.3), then
the invokevirtual instruction proceeds as follows.

Let C be the class of objectref. A method is selected with respect
to C and the resolved method (§5.4.6). This is the method to be
invoked.

The objectref must be followed on the operand stack by nargs
argument values, where the number, type, and order of the values
must be consistent with the descriptor of the selected instance
method.

If the method to be invoked is synchronized, the monitor
associated with objectref is entered or reentered as if by execution
of a monitorenter instruction (§monitorenter) in the current thread.

If the method to be invoked is not native, the nargs argument
values and objectref are popped from the operand stack. A new



THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

517

frame is created on the Java Virtual Machine stack for the
method being invoked. The objectref and the argument values are
consecutively made the values of local variables of the new frame,
with objectref in local variable 0, arg1 in local variable 1 (or,
if arg1 is of type long or double, in local variables 1 and 2),
and so on. Any argument value that is of a floating-point type
undergoes value set conversion (§2.8.3) prior to being stored in a
local variable. The new frame is then made current, and the Java
Virtual Machine pc is set to the opcode of the first instruction
of the method to be invoked. Execution continues with the first
instruction of the method.

If the method to be invoked is native and the platform-dependent
code that implements it has not yet been bound (§5.6) into the
Java Virtual Machine, that is done. The nargs argument values
and objectref are popped from the operand stack and are passed
as parameters to the code that implements the method. Any
argument value that is of a floating-point type undergoes value
set conversion (§2.8.3) prior to being passed as a parameter.
The parameters are passed and the code is invoked in an
implementation-dependent manner. When the platform-dependent
code returns, the following take place:

• If the native method is synchronized, the monitor associated
with objectref is updated and possibly exited as if by execution
of a monitorexit instruction (§monitorexit) in the current thread.

• If the native method returns a value, the return value of the
platform-dependent code is converted in an implementation-
dependent way to the return type of the native method and
pushed onto the operand stack.

If the resolved method is signature polymorphic (§2.9.3), and
declared in the java.lang.invoke.MethodHandle class, then
the invokevirtual instruction proceeds as follows, where D is
the descriptor of the method symbolically referenced by the
instruction.

First, a reference to an instance of
java.lang.invoke.MethodType is obtained as if by resolution of
a symbolic reference to a method type (§5.4.3.5) with the same
parameter and return types as D.
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• If the named method is invokeExact, the instance of
java.lang.invoke.MethodType must be semantically equal to
the type descriptor of the receiving method handle objectref. The
method handle to be invoked is objectref.

• If the named method is invoke, and the instance of
java.lang.invoke.MethodType is semantically equal to the
type descriptor of the receiving method handle objectref, then
the method handle to be invoked is objectref.

• If the named method is invoke, and the instance of
java.lang.invoke.MethodType is not semantically equal to
the type descriptor of the receiving method handle objectref,
then the Java Virtual Machine attempts to adjust the type
descriptor of the receiving method handle, as if by invocation
of the asType method of java.lang.invoke.MethodHandle,
to obtain an exactly invokable method handle m. The method
handle to be invoked is m.

The objectref must be followed on the operand stack by nargs
argument values, where the number, type, and order of the values
must be consistent with the type descriptor of the method handle
to be invoked. (This type descriptor will correspond to the method
descriptor appropriate for the kind of the method handle to be
invoked, as specified in §5.4.3.5.)

Then, if the method handle to be invoked has bytecode
behavior, the Java Virtual Machine invokes the method
handle as if by execution of the bytecode behavior
associated with the method handle's kind. If the kind
is 5 (REF_invokeVirtual), 6 (REF_invokeStatic), 7
(REF_invokeSpecial), 8 (REF_newInvokeSpecial), or 9
(REF_invokeInterface), then a frame will be created and made
current in the course of executing the bytecode behavior; however,
this frame is not visible, and when the method invoked by the
bytecode behavior completes (normally or abruptly), the frame of
its invoker is considered to be the frame for the method containing
this invokevirtual instruction.

Otherwise, if the method handle to be invoked has no
bytecode behavior, the Java Virtual Machine invokes it in an
implementation-dependent manner.
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If the resolved method is signature polymorphic and declared in
the java.lang.invoke.VarHandle class, then the invokevirtual
instruction proceeds as follows, where N and D are the name
and descriptor of the method symbolically referenced by the
instruction.

First, a reference to an instance of
java.lang.invoke.VarHandle.AccessMode is obtained as if
by invocation of the valueFromMethodName method of
java.lang.invoke.VarHandle.AccessMode with a String

argument denoting N.

Second, a reference to an instance of
java.lang.invoke.MethodType is obtained as if by invocation of
the accessModeType method of java.lang.invoke.VarHandle
on the instance objectref, with the instance of
java.lang.invoke.VarHandle.AccessMode as the argument.

Third, a reference to an instance of
java.lang.invoke.MethodHandle is obtained as if by
invocation of the varHandleExactInvoker method of
java.lang.invoke.MethodHandles with the instance of
java.lang.invoke.VarHandle.AccessMode as the first
argument and the instance of java.lang.invoke.MethodType as
the second argument. The resulting instance is called the invoker
method handle.

Finally, the nargs argument values and objectref are popped from
the operand stack, and the invoker method handle is invoked.
The invocation occurs as if by execution of an invokevirtual
instruction that indicates a run-time constant pool index to a
symbolic reference R where:

• R is a symbolic reference to a method of a class;

• for the symbolic reference to the class in which the method is to
be found, R specifies java.lang.invoke.MethodHandle;

• for the name of the method, R specifies invoke;

• for the descriptor of the method, R specifies a return type
indicated by the return descriptor of D, and specifies a first
parameter type of java.lang.invoke.VarHandle followed by
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the parameter types indicated by the parameter descriptors of D
(if any) in order.

and where it is as if the following items were pushed, in order,
onto the operand stack:

• a reference to the instance of
java.lang.invoke.MethodHandle (the invoker method
handle);

• objectref;

• the nargs argument values, where the number, type, and order
of the values must be consistent with the type descriptor of the
invoker method handle.

Linking

Exceptions

During resolution of the symbolic reference to the method, any of
the exceptions pertaining to method resolution (§5.4.3.3) can be
thrown.

Otherwise, if the resolved method is a class
(static) method, the invokevirtual instruction throws an
IncompatibleClassChangeError.

Otherwise, if the resolved method is signature polymorphic and
declared in the java.lang.invoke.MethodHandle class, then
during resolution of the method type derived from the descriptor
in the symbolic reference to the method, any of the exceptions
pertaining to method type resolution (§5.4.3.5) can be thrown.

Otherwise, if the resolved method is signature polymorphic and
declared in the java.lang.invoke.VarHandle class, then any
linking exception that may arise from invocation of the invoker
method handle can be thrown. No linking exceptions are thrown
from invocation of the valueFromMethodName, accessModeType,
and varHandleExactInvoker methods.

Run-time

Exceptions

Otherwise, if objectref is null, the invokevirtual instruction
throws a NullPointerException.

Otherwise, if the resolved method is not signature polymorphic:

• If the selected method is abstract, invokevirtual throws an
AbstractMethodError.
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• Otherwise, if the selected method is native and the code that
implements the method cannot be bound, invokevirtual throws
an UnsatisfiedLinkError.

• Otherwise, if no method is selected, and there are multiple
maximally-specific superinterface methods of C that match the
resolved method's name and descriptor and are not abstract,
invokevirtual throws an IncompatibleClassChangeError

• Otherwise, if no method is selected, and there are no
maximally-specific superinterface methods of C that match the
resolved method's name and descriptor and are not abstract,
invokevirtual throws an AbstractMethodError.

Otherwise, if the resolved method is signature polymorphic and
declared in the java.lang.invoke.MethodHandle class, then:

• If the method name is invokeExact, and the obtained
instance of java.lang.invoke.MethodType is not semantically
equal to the type descriptor of the receiving method
handle objectref, the invokevirtual instruction throws a
java.lang.invoke.WrongMethodTypeException.

• If the method name is invoke, and the obtained
instance of java.lang.invoke.MethodType is not
a valid argument to the asType method of
java.lang.invoke.MethodHandle invoked on the receiving
method handle objectref, the invokevirtual instruction throws a
java.lang.invoke.WrongMethodTypeException.

Otherwise, if the resolved method is signature polymorphic
and declared in the java.lang.invoke.VarHandle class, then
any run-time exception that may arise from invocation of the
invoker method handle can be thrown. No run-time exceptions
are thrown from invocation of the valueFromMethodName,
accessModeType, and varHandleExactInvoker methods, except
NullPointerException if objectref is null.

Notes The nargs argument values and objectref are not one-to-one with
the first nargs+1 local variables. Argument values of types long
and double must be stored in two consecutive local variables, thus
more than nargs local variables may be required to pass nargs
argument values to the invoked method.
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It is possible that the symbolic reference of an invokevirtual
instruction resolves to an interface method. In this case, it is
possible that there is no overriding method in the class hierarchy,
but that a non-abstract interface method matches the resolved
method's descriptor. The selection logic matches such a method,
using the same rules as for invokeinterface.
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ior ior

Operation Boolean OR int

Format ior

Forms ior = 128 (0x80)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type int. They are popped from
the operand stack. An int result is calculated by taking the bitwise
inclusive OR of value1 and value2. The result is pushed onto the
operand stack.
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irem irem

Operation Remainder int

Format irem

Forms irem = 112 (0x70)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type int. The values are popped
from the operand stack. The int result is value1 - (value1 / value2)
* value2. The result is pushed onto the operand stack.

The result of the irem instruction is such that (a/b)*b + (a%b) is
equal to a. This identity holds even in the special case in which the
dividend is the negative int of largest possible magnitude for its
type and the divisor is -1 (the remainder is 0). It follows from this
rule that the result of the remainder operation can be negative only
if the dividend is negative and can be positive only if the dividend
is positive. Moreover, the magnitude of the result is always less
than the magnitude of the divisor.

Run-time

Exception

If the value of the divisor for an int remainder operator is 0, irem
throws an ArithmeticException.
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ireturn ireturn

Operation Return int from method

Format ireturn

Forms ireturn = 172 (0xac)

Operand

Stack

..., value →

[empty]

Description The current method must have return type boolean, byte, char,
short, or int. The value must be of type int. If the current method
is a synchronized method, the monitor entered or reentered on
invocation of the method is updated and possibly exited as if by
execution of a monitorexit instruction (§monitorexit) in the current
thread. If no exception is thrown, value is popped from the operand
stack of the current frame (§2.6) and pushed onto the operand stack
of the frame of the invoker. Any other values on the operand stack
of the current method are discarded.

Prior to pushing value onto the operand stack of the frame of the
invoker, it may have to be converted. If the return type of the
invoked method was byte, char, or short, then value is converted
from int to the return type as if by execution of i2b, i2c, or
i2s, respectively. If the return type of the invoked method was
boolean, then value is narrowed from int to boolean by taking
the bitwise AND of value and 1.

The interpreter then returns control to the invoker of the method,
reinstating the frame of the invoker.

Run-time

Exceptions

If the Java Virtual Machine implementation does not enforce
the rules on structured locking described in §2.11.10, then if the
current method is a synchronized method and the current thread is
not the owner of the monitor entered or reentered on invocation of
the method, ireturn throws an IllegalMonitorStateException.
This can happen, for example, if a synchronized method contains
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a monitorexit instruction, but no monitorenter instruction, on the
object on which the method is synchronized.

Otherwise, if the Java Virtual Machine implementation enforces
the rules on structured locking described in §2.11.10 and if the first
of those rules is violated during invocation of the current method,
then ireturn throws an IllegalMonitorStateException.
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ishl ishl

Operation Shift left int

Format ishl

Forms ishl = 120 (0x78)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type int. The values are popped
from the operand stack. An int result is calculated by shifting
value1 left by s bit positions, where s is the value of the low 5 bits
of value2. The result is pushed onto the operand stack.

Notes This is equivalent (even if overflow occurs) to multiplication by
2 to the power s. The shift distance actually used is always in the
range 0 to 31, inclusive, as if value2 were subjected to a bitwise
logical AND with the mask value 0x1f.
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ishr ishr

Operation Arithmetic shift right int

Format ishr

Forms ishr = 122 (0x7a)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type int. The values are popped
from the operand stack. An int result is calculated by shifting
value1 right by s bit positions, with sign extension, where s is the
value of the low 5 bits of value2. The result is pushed onto the
operand stack.

Notes The resulting value is floor(value1 / 2s), where s is value2 &
0x1f. For non-negative value1, this is equivalent to truncating int
division by 2 to the power s. The shift distance actually used is
always in the range 0 to 31, inclusive, as if value2 were subjected
to a bitwise logical AND with the mask value 0x1f.
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istore istore

Operation Store int into local variable

Format istore

index

Forms istore = 54 (0x36)

Operand

Stack

..., value →

...

Description The index is an unsigned byte that must be an index into the local
variable array of the current frame (§2.6). The value on the top
of the operand stack must be of type int. It is popped from the
operand stack, and the value of the local variable at index is set
to value.

Notes The istore opcode can be used in conjunction with the wide
instruction (§wide) to access a local variable using a two-byte
unsigned index.
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istore_<n> istore_<n>

Operation Store int into local variable

Format istore_<n>

Forms istore_0 = 59 (0x3b)

istore_1 = 60 (0x3c)

istore_2 = 61 (0x3d)

istore_3 = 62 (0x3e)

Operand

Stack

..., value →

...

Description The <n> must be an index into the local variable array of the
current frame (§2.6). The value on the top of the operand stack
must be of type int. It is popped from the operand stack, and the
value of the local variable at <n> is set to value.

Notes Each of the istore_<n> instructions is the same as istore with an
index of <n>, except that the operand <n> is implicit.
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isub isub

Operation Subtract int

Format isub

Forms isub = 100 (0x64)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type int. The values are popped
from the operand stack. The int result is value1 - value2. The
result is pushed onto the operand stack.

For int subtraction, a-b produces the same result as a+(-b). For
int values, subtraction from zero is the same as negation.

The result is the 32 low-order bits of the true mathematical result
in a sufficiently wide two's-complement format, represented as a
value of type int. If overflow occurs, then the sign of the result
may not be the same as the sign of the mathematical difference of
the two values.

Despite the fact that overflow may occur, execution of an isub
instruction never throws a run-time exception.
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iushr iushr

Operation Logical shift right int

Format iushr

Forms iushr = 124 (0x7c)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type int. The values are popped
from the operand stack. An int result is calculated by shifting
value1 right by s bit positions, with zero extension, where s is the
value of the low 5 bits of value2. The result is pushed onto the
operand stack.

Notes If value1 is positive and s is value2 & 0x1f, the result is the same
as that of value1 >> s; if value1 is negative, the result is equal to
the value of the expression (value1 >> s) + (2 << ~s). The addition
of the (2 << ~s) term cancels out the propagated sign bit. The shift
distance actually used is always in the range 0 to 31, inclusive.
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ixor ixor

Operation Boolean XOR int

Format ixor

Forms ixor = 130 (0x82)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type int. They are popped from
the operand stack. An int result is calculated by taking the bitwise
exclusive OR of value1 and value2. The result is pushed onto the
operand stack.
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jsr jsr

Operation Jump subroutine

Format jsr

branchbyte1

branchbyte2

Forms jsr = 168 (0xa8)

Operand

Stack

... →

..., address

Description The address of the opcode of the instruction immediately
following this jsr instruction is pushed onto the operand stack as
a value of type returnAddress. The unsigned branchbyte1 and
branchbyte2 are used to construct a signed 16-bit offset, where
the offset is (branchbyte1 << 8) | branchbyte2. Execution proceeds
at that offset from the address of this jsr instruction. The target
address must be that of an opcode of an instruction within the
method that contains this jsr instruction.

Notes Note that jsr pushes the address onto the operand stack and ret
(§ret) gets it out of a local variable. This asymmetry is intentional.

In Oracle's implementation of a compiler for the Java
programming language prior to Java SE 6, the jsr instruction was
used with the ret instruction in the implementation of the finally
clause (§3.13, §4.10.2.5).
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jsr_w jsr_w

Operation Jump subroutine (wide index)

Format jsr_w

branchbyte1

branchbyte2

branchbyte3

branchbyte4

Forms jsr_w = 201 (0xc9)

Operand

Stack

... →

..., address

Description The address of the opcode of the instruction immediately
following this jsr_w instruction is pushed onto the operand stack
as a value of type returnAddress. The unsigned branchbyte1,
branchbyte2, branchbyte3, and branchbyte4 are used to construct
a signed 32-bit offset, where the offset is (branchbyte1 << 24) |
(branchbyte2 << 16) | (branchbyte3 << 8) | branchbyte4. Execution
proceeds at that offset from the address of this jsr_w instruction.
The target address must be that of an opcode of an instruction
within the method that contains this jsr_w instruction.

Notes Note that jsr_w pushes the address onto the operand stack and ret
(§ret) gets it out of a local variable. This asymmetry is intentional.

In Oracle's implementation of a compiler for the Java
programming language prior to Java SE 6, the jsr_w instruction
was used with the ret instruction in the implementation of the
finally clause (§3.13, §4.10.2.5).

Although the jsr_w instruction takes a 4-byte branch offset, other
factors limit the size of a method to 65535 bytes (§4.11). This limit
may be raised in a future release of the Java Virtual Machine.
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l2d l2d

Operation Convert long to double

Format l2d

Forms l2d = 138 (0x8a)

Operand

Stack

..., value →

..., result

Description The value on the top of the operand stack must be of type long. It
is popped from the operand stack and converted to a double result
using IEEE 754 round to nearest mode. The result is pushed onto
the operand stack.

Notes The l2d instruction performs a widening primitive conversion (JLS
§5.1.2) that may lose precision because values of type double have
only 53 significand bits.
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l2f l2f

Operation Convert long to float

Format l2f

Forms l2f = 137 (0x89)

Operand

Stack

..., value →

..., result

Description The value on the top of the operand stack must be of type long. It
is popped from the operand stack and converted to a float result
using IEEE 754 round to nearest mode. The result is pushed onto
the operand stack.

Notes The l2f instruction performs a widening primitive conversion (JLS
§5.1.2) that may lose precision because values of type float have
only 24 significand bits.
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l2i l2i

Operation Convert long to int

Format l2i

Forms l2i = 136 (0x88)

Operand

Stack

..., value →

..., result

Description The value on the top of the operand stack must be of type long. It
is popped from the operand stack and converted to an int result
by taking the low-order 32 bits of the long value and discarding
the high-order 32 bits. The result is pushed onto the operand stack.

Notes The l2i instruction performs a narrowing primitive conversion
(JLS §5.1.3). It may lose information about the overall magnitude
of value. The result may also not have the same sign as value.
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ladd ladd

Operation Add long

Format ladd

Forms ladd = 97 (0x61)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type long. The values are
popped from the operand stack. The long result is value1 + value2.
The result is pushed onto the operand stack.

The result is the 64 low-order bits of the true mathematical result
in a sufficiently wide two's-complement format, represented as a
value of type long. If overflow occurs, the sign of the result may
not be the same as the sign of the mathematical sum of the two
values.

Despite the fact that overflow may occur, execution of an ladd
instruction never throws a run-time exception.
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laload laload

Operation Load long from array

Format laload

Forms laload = 47 (0x2f)

Operand

Stack

..., arrayref, index →

..., value

Description The arrayref must be of type reference and must refer to an array
whose components are of type long. The index must be of type
int. Both arrayref and index are popped from the operand stack.
The long value in the component of the array at index is retrieved
and pushed onto the operand stack.

Run-time

Exceptions

If arrayref is null, laload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the laload instruction throws an
ArrayIndexOutOfBoundsException.
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land land

Operation Boolean AND long

Format land

Forms land = 127 (0x7f)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type long. They are popped
from the operand stack. A long result is calculated by taking the
bitwise AND of value1 and value2. The result is pushed onto the
operand stack.
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lastore lastore

Operation Store into long array

Format lastore

Forms lastore = 80 (0x50)

Operand

Stack

..., arrayref, index, value →

...

Description The arrayref must be of type reference and must refer to an array
whose components are of type long. The index must be of type
int, and value must be of type long. The arrayref, index, and value
are popped from the operand stack. The long value is stored as the
component of the array indexed by index.

Run-time

Exceptions

If arrayref is null, lastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the lastore instruction throws an
ArrayIndexOutOfBoundsException.
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lcmp lcmp

Operation Compare long

Format lcmp

Forms lcmp = 148 (0x94)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type long. They are both
popped from the operand stack, and a signed integer comparison
is performed. If value1 is greater than value2, the int value 1 is
pushed onto the operand stack. If value1 is equal to value2, the
int value 0 is pushed onto the operand stack. If value1 is less than
value2, the int value -1 is pushed onto the operand stack.
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lconst_<l> lconst_<l>

Operation Push long constant

Format lconst_<l>

Forms lconst_0 = 9 (0x9)

lconst_1 = 10 (0xa)

Operand

Stack

... →

..., <l>

Description Push the long constant <l> (0 or 1) onto the operand stack.
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ldc ldc

Operation Push item from run-time constant pool

Format ldc

index

Forms ldc = 18 (0x12)

Operand

Stack

... →

..., value

Description The index is an unsigned byte that must be a valid index into the
run-time constant pool of the current class (§2.5.5). The run-time
constant pool entry at index must be loadable (§5.1), and not any
of the following:

• A numeric constant of type long or double.

• A symbolic reference to a dynamically-computed constant
whose field descriptor is J (denoting long) or D (denoting
double).

If the run-time constant pool entry is a numeric constant of type
int or float, then the value of that numeric constant is pushed
onto the operand stack as an int or float, respectively.

Otherwise, if the run-time constant pool entry is a string constant,
that is, a reference to an instance of class String, then value, a
reference to that instance, is pushed onto the operand stack.

Otherwise, if the run-time constant pool entry is a symbolic
reference to a class or interface, then the named class or interface
is resolved (§5.4.3.1) and value, a reference to the Class object
representing that class or interface, is pushed onto the operand
stack.

Otherwise, the run-time constant pool entry is a symbolic
reference to a method type, a method handle, or a dynamically-
computed constant. The symbolic reference is resolved (§5.4.3.5,
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§5.4.3.6) and value, the result of resolution, is pushed onto the
operand stack.

Linking

Exceptions

During resolution of a symbolic reference, any of the exceptions
pertaining to resolution of that kind of symbolic reference can be
thrown.

Notes The ldc instruction can only be used to push a value of type float
taken from the float value set (§2.3.2) because a constant of type
float in the constant pool (§4.4.4) must be taken from the float
value set.
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ldc_w ldc_w

Operation Push item from run-time constant pool (wide index)

Format ldc_w

indexbyte1

indexbyte2

Forms ldc_w = 19 (0x13)

Operand

Stack

... →

..., value

Description The unsigned indexbyte1 and indexbyte2 are assembled into an
unsigned 16-bit index into the run-time constant pool of the
current class (§2.5.5), where the value of the index is calculated
as (indexbyte1 << 8) | indexbyte2. The index must be a valid index
into the run-time constant pool of the current class. The run-time
constant pool entry at the index must be loadable (§5.1), and not
any of the following:

• A numeric constant of type long or double.

• A symbolic reference to a dynamically-computed constant
whose field descriptor is J (denoting long) or D (denoting
double).

If the run-time constant pool entry is a numeric constant of type
int or float, or a string constant, then value is determined and
pushed onto the operand stack according to the rules given for the
ldc instruction.

Otherwise, the run-time constant pool entry is a symbolic
reference to a class, interface, method type, method handle,
or dynamically-computed constant. It is resolved and value is
determined and pushed onto the operand stack according to the
rules given for the ldc instruction.
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Linking

Exceptions

During resolution of a symbolic reference, any of the exceptions
pertaining to resolution of that kind of symbolic reference can be
thrown.

Notes The ldc_w instruction is identical to the ldc instruction (§ldc)
except for its wider run-time constant pool index.

The ldc_w instruction can only be used to push a value of type
float taken from the float value set (§2.3.2) because a constant
of type float in the constant pool (§4.4.4) must be taken from the
float value set.
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ldc2_w ldc2_w

Operation Push long or double from run-time constant pool (wide index)

Format ldc2_w

indexbyte1

indexbyte2

Forms ldc2_w = 20 (0x14)

Operand

Stack

... →

..., value

Description The unsigned indexbyte1 and indexbyte2 are assembled into an
unsigned 16-bit index into the run-time constant pool of the
current class (§2.5.5), where the value of the index is calculated
as (indexbyte1 << 8) | indexbyte2. The index must be a valid index
into the run-time constant pool of the current class. The run-time
constant pool entry at the index must be loadable (§5.1), and in
particular one of the following:

• A numeric constant of type long or double.

• A symbolic reference to a dynamically-computed constant
whose field descriptor is J (denoting long) or D (denoting
double).

If the run-time constant pool entry is a numeric constant of type
long or double, then the value of that numeric constant is pushed
onto the operand stack as a long or double, respectively.

Otherwise, the run-time constant pool entry is a symbolic
reference to a dynamically-computed constant. The symbolic
reference is resolved (§5.4.3.6) and value, the result of resolution,
is pushed onto the operand stack.

Linking

Exceptions

During resolution of a symbolic reference to a dynamically-
computed constant, any of the exceptions pertaining to
dynamically-computed constant resolution can be thrown.
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Notes Only a wide-index version of the ldc2_w instruction exists; there
is no ldc2 instruction that pushes a long or double with a single-
byte index.

The ldc2_w instruction can only be used to push a value of type
double taken from the double value set (§2.3.2) because a constant
of type double in the constant pool (§4.4.5) must be taken from
the double value set.
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ldiv ldiv

Operation Divide long

Format ldiv

Forms ldiv = 109 (0x6d)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type long. The values are
popped from the operand stack. The long result is the value of
the Java programming language expression value1 / value2. The
result is pushed onto the operand stack.

A long division rounds towards 0; that is, the quotient produced
for long values in n / d is a long value q whose magnitude is
as large as possible while satisfying |d ⋅ q| ≤ |n|. Moreover, q is
positive when |n| ≥ |d| and n and d have the same sign, but q is
negative when |n| ≥ |d| and n and d have opposite signs.

There is one special case that does not satisfy this rule: if the
dividend is the negative integer of largest possible magnitude for
the long type and the divisor is -1, then overflow occurs and the
result is equal to the dividend; despite the overflow, no exception
is thrown in this case.

Run-time

Exception

If the value of the divisor in a long division is 0, ldiv throws an
ArithmeticException.
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lload lload

Operation Load long from local variable

Format lload

index

Forms lload = 22 (0x16)

Operand

Stack

... →

..., value

Description The index is an unsigned byte. Both index and index+1 must be
indices into the local variable array of the current frame (§2.6).
The local variable at index must contain a long. The value of the
local variable at index is pushed onto the operand stack.

Notes The lload opcode can be used in conjunction with the wide
instruction (§wide) to access a local variable using a two-byte
unsigned index.
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lload_<n> lload_<n>

Operation Load long from local variable

Format lload_<n>

Forms lload_0 = 30 (0x1e)

lload_1 = 31 (0x1f)

lload_2 = 32 (0x20)

lload_3 = 33 (0x21)

Operand

Stack

... →

..., value

Description Both <n> and <n>+1 must be indices into the local variable array
of the current frame (§2.6). The local variable at <n> must contain
a long. The value of the local variable at <n> is pushed onto the
operand stack.

Notes Each of the lload_<n> instructions is the same as lload with an
index of <n>, except that the operand <n> is implicit.
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lmul lmul

Operation Multiply long

Format lmul

Forms lmul = 105 (0x69)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type long. The values are
popped from the operand stack. The long result is value1 * value2.
The result is pushed onto the operand stack.

The result is the 64 low-order bits of the true mathematical result
in a sufficiently wide two's-complement format, represented as a
value of type long. If overflow occurs, the sign of the result may
not be the same as the sign of the mathematical multiplication of
the two values.

Despite the fact that overflow may occur, execution of an lmul
instruction never throws a run-time exception.
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lneg lneg

Operation Negate long

Format lneg

Forms lneg = 117 (0x75)

Operand

Stack

..., value →

..., result

Description The value must be of type long. It is popped from the operand
stack. The long result is the arithmetic negation of value, -value.
The result is pushed onto the operand stack.

For long values, negation is the same as subtraction from
zero. Because the Java Virtual Machine uses two's-complement
representation for integers and the range of two's-complement
values is not symmetric, the negation of the maximum negative
long results in that same maximum negative number. Despite the
fact that overflow has occurred, no exception is thrown.

For all long values x, -x equals (~x)+1.
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lookupswitch lookupswitch

Operation Access jump table by key match and jump

Format lookupswitch

<0-3 byte pad>

defaultbyte1

defaultbyte2

defaultbyte3

defaultbyte4

npairs1

npairs2

npairs3

npairs4

match-offset pairs...

Forms lookupswitch = 171 (0xab)

Operand

Stack

..., key →

...

Description A lookupswitch is a variable-length instruction. Immediately after
the lookupswitch opcode, between zero and three bytes must act
as padding, such that defaultbyte1 begins at an address that is
a multiple of four bytes from the start of the current method
(the opcode of its first instruction). Immediately after the padding
follow a series of signed 32-bit values: default, npairs, and then
npairs pairs of signed 32-bit values. The npairs must be greater
than or equal to 0. Each of the npairs pairs consists of an int match
and a signed 32-bit offset. Each of these signed 32-bit values is
constructed from four unsigned bytes as (byte1 << 24) | (byte2 <<
16) | (byte3 << 8) | byte4.

The table match-offset pairs of the lookupswitch instruction must
be sorted in increasing numerical order by match.
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The key must be of type int and is popped from the operand
stack. The key is compared against the match values. If it is equal
to one of them, then a target address is calculated by adding
the corresponding offset to the address of the opcode of this
lookupswitch instruction. If the key does not match any of the
match values, the target address is calculated by adding default
to the address of the opcode of this lookupswitch instruction.
Execution then continues at the target address.

The target address that can be calculated from the offset of each
match-offset pair, as well as the one calculated from default, must
be the address of an opcode of an instruction within the method
that contains this lookupswitch instruction.

Notes The alignment required of the 4-byte operands of the lookupswitch
instruction guarantees 4-byte alignment of those operands if and
only if the method that contains the lookupswitch is positioned on
a 4-byte boundary.

The match-offset pairs are sorted to support lookup routines that
are quicker than linear search.
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lor lor

Operation Boolean OR long

Format lor

Forms lor = 129 (0x81)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type long. They are popped
from the operand stack. A long result is calculated by taking the
bitwise inclusive OR of value1 and value2. The result is pushed
onto the operand stack.



THE JAVA VIRTUAL MACHINE INSTRUCTION SET Instructions 6.5

559

lrem lrem

Operation Remainder long

Format lrem

Forms lrem = 113 (0x71)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type long. The values are
popped from the operand stack. The long result is value1 - (value1
/ value2) * value2. The result is pushed onto the operand stack.

The result of the lrem instruction is such that (a/b)*b + (a%b) is
equal to a. This identity holds even in the special case in which the
dividend is the negative long of largest possible magnitude for its
type and the divisor is -1 (the remainder is 0). It follows from this
rule that the result of the remainder operation can be negative only
if the dividend is negative and can be positive only if the dividend
is positive; moreover, the magnitude of the result is always less
than the magnitude of the divisor.

Run-time

Exception

If the value of the divisor for a long remainder operator is 0, lrem
throws an ArithmeticException.
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lreturn lreturn

Operation Return long from method

Format lreturn

Forms lreturn = 173 (0xad)

Operand

Stack

..., value →

[empty]

Description The current method must have return type long. The value must
be of type long. If the current method is a synchronized method,
the monitor entered or reentered on invocation of the method is
updated and possibly exited as if by execution of a monitorexit
instruction (§monitorexit) in the current thread. If no exception
is thrown, value is popped from the operand stack of the current
frame (§2.6) and pushed onto the operand stack of the frame of
the invoker. Any other values on the operand stack of the current
method are discarded.

The interpreter then returns control to the invoker of the method,
reinstating the frame of the invoker.

Run-time

Exceptions

If the Java Virtual Machine implementation does not enforce
the rules on structured locking described in §2.11.10, then if the
current method is a synchronized method and the current thread is
not the owner of the monitor entered or reentered on invocation of
the method, lreturn throws an IllegalMonitorStateException.
This can happen, for example, if a synchronized method contains
a monitorexit instruction, but no monitorenter instruction, on the
object on which the method is synchronized.

Otherwise, if the Java Virtual Machine implementation enforces
the rules on structured locking described in §2.11.10 and if the first
of those rules is violated during invocation of the current method,
then lreturn throws an IllegalMonitorStateException.
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lshl lshl

Operation Shift left long

Format lshl

Forms lshl = 121 (0x79)

Operand

Stack

..., value1, value2 →

..., result

Description The value1 must be of type long, and value2 must be of type int.
The values are popped from the operand stack. A long result is
calculated by shifting value1 left by s bit positions, where s is the
low 6 bits of value2. The result is pushed onto the operand stack.

Notes This is equivalent (even if overflow occurs) to multiplication by 2
to the power s. The shift distance actually used is therefore always
in the range 0 to 63, inclusive, as if value2 were subjected to a
bitwise logical AND with the mask value 0x3f.
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lshr lshr

Operation Arithmetic shift right long

Format lshr

Forms lshr = 123 (0x7b)

Operand

Stack

..., value1, value2 →

..., result

Description The value1 must be of type long, and value2 must be of type int.
The values are popped from the operand stack. A long result is
calculated by shifting value1 right by s bit positions, with sign
extension, where s is the value of the low 6 bits of value2. The
result is pushed onto the operand stack.

Notes The resulting value is floor(value1 / 2s), where s is value2 & 0x3f.
For non-negative value1, this is equivalent to truncating long
division by 2 to the power s. The shift distance actually used is
therefore always in the range 0 to 63, inclusive, as if value2 were
subjected to a bitwise logical AND with the mask value 0x3f.
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lstore lstore

Operation Store long into local variable

Format lstore

index

Forms lstore = 55 (0x37)

Operand

Stack

..., value →

...

Description The index is an unsigned byte. Both index and index+1 must be
indices into the local variable array of the current frame (§2.6).
The value on the top of the operand stack must be of type long. It
is popped from the operand stack, and the local variables at index
and index+1 are set to value.

Notes The lstore opcode can be used in conjunction with the wide
instruction (§wide) to access a local variable using a two-byte
unsigned index.
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lstore_<n> lstore_<n>

Operation Store long into local variable

Format lstore_<n>

Forms lstore_0 = 63 (0x3f)

lstore_1 = 64 (0x40)

lstore_2 = 65 (0x41)

lstore_3 = 66 (0x42)

Operand

Stack

..., value →

...

Description Both <n> and <n>+1 must be indices into the local variable array
of the current frame (§2.6). The value on the top of the operand
stack must be of type long. It is popped from the operand stack,
and the local variables at <n> and <n>+1 are set to value.

Notes Each of the lstore_<n> instructions is the same as lstore with an
index of <n>, except that the operand <n> is implicit.
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lsub lsub

Operation Subtract long

Format lsub

Forms lsub = 101 (0x65)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type long. The values are
popped from the operand stack. The long result is value1 - value2.
The result is pushed onto the operand stack.

For long subtraction, a-b produces the same result as a+(-b). For
long values, subtraction from zero is the same as negation.

The result is the 64 low-order bits of the true mathematical result
in a sufficiently wide two's-complement format, represented as a
value of type long. If overflow occurs, then the sign of the result
may not be the same as the sign of the mathematical difference of
the two values.

Despite the fact that overflow may occur, execution of an lsub
instruction never throws a run-time exception.
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lushr lushr

Operation Logical shift right long

Format lushr

Forms lushr = 125 (0x7d)

Operand

Stack

..., value1, value2 →

..., result

Description The value1 must be of type long, and value2 must be of type int.
The values are popped from the operand stack. A long result is
calculated by shifting value1 right logically by s bit positions, with
zero extension, where s is the value of the low 6 bits of value2.
The result is pushed onto the operand stack.

Notes If value1 is positive and s is value2 & 0x3f, the result is the same
as that of value1 >> s; if value1 is negative, the result is equal to the
value of the expression (value1 >> s) + (2L << ~s). The addition of
the (2L << ~s) term cancels out the propagated sign bit. The shift
distance actually used is always in the range 0 to 63, inclusive.
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lxor lxor

Operation Boolean XOR long

Format lxor

Forms lxor = 131 (0x83)

Operand

Stack

..., value1, value2 →

..., result

Description Both value1 and value2 must be of type long. They are popped
from the operand stack. A long result is calculated by taking the
bitwise exclusive OR of value1 and value2. The result is pushed
onto the operand stack.
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monitorenter monitorenter

Operation Enter monitor for object

Format monitorenter

Forms monitorenter = 194 (0xc2)

Operand

Stack

..., objectref →

...

Description The objectref must be of type reference.

Each object is associated with a monitor. A monitor is locked if
and only if it has an owner. The thread that executes monitorenter
attempts to gain ownership of the monitor associated with
objectref, as follows:

• If the entry count of the monitor associated with objectref is
zero, the thread enters the monitor and sets its entry count to
one. The thread is then the owner of the monitor.

• If the thread already owns the monitor associated with objectref,
it reenters the monitor, incrementing its entry count.

• If another thread already owns the monitor associated with
objectref, the thread blocks until the monitor's entry count is
zero, then tries again to gain ownership.

Run-time

Exception

If objectref is null, monitorenter throws a
NullPointerException.

Notes A monitorenter instruction may be used with one or
more monitorexit instructions (§monitorexit) to implement a
synchronized statement in the Java programming language
(§3.14). The monitorenter and monitorexit instructions are not
used in the implementation of synchronized methods, although
they can be used to provide equivalent locking semantics. Monitor
entry on invocation of a synchronized method, and monitor exit
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on its return, are handled implicitly by the Java Virtual Machine's
method invocation and return instructions, as if monitorenter and
monitorexit were used.

The association of a monitor with an object may be managed in
various ways that are beyond the scope of this specification. For
instance, the monitor may be allocated and deallocated at the same
time as the object. Alternatively, it may be dynamically allocated
at the time when a thread attempts to gain exclusive access to the
object and freed at some later time when no thread remains in the
monitor for the object.

The synchronization constructs of the Java programming language
require support for operations on monitors besides entry and exit.
These include waiting on a monitor (Object.wait) and notifying
other threads waiting on a monitor (Object.notifyAll and
Object.notify). These operations are supported in the standard
package java.lang supplied with the Java Virtual Machine. No
explicit support for these operations appears in the instruction set
of the Java Virtual Machine.
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monitorexit monitorexit

Operation Exit monitor for object

Format monitorexit

Forms monitorexit = 195 (0xc3)

Operand

Stack

..., objectref →

...

Description The objectref must be of type reference.

The thread that executes monitorexit must be the owner of the
monitor associated with the instance referenced by objectref.

The thread decrements the entry count of the monitor associated
with objectref. If as a result the value of the entry count is zero, the
thread exits the monitor and is no longer its owner. Other threads
that are blocking to enter the monitor are allowed to attempt to do
so.

Run-time

Exceptions

If objectref is null, monitorexit throws a NullPointerException.

Otherwise, if the thread that executes monitorexit is not the owner
of the monitor associated with the instance referenced by objectref,
monitorexit throws an IllegalMonitorStateException.

Otherwise, if the Java Virtual Machine implementation enforces
the rules on structured locking described in §2.11.10 and
if the second of those rules is violated by the execution
of this monitorexit instruction, then monitorexit throws an
IllegalMonitorStateException.

Notes One or more monitorexit instructions may be used with
a monitorenter instruction (§monitorenter) to implement a
synchronized statement in the Java programming language
(§3.14). The monitorenter and monitorexit instructions are not
used in the implementation of synchronized methods, although
they can be used to provide equivalent locking semantics.
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The Java Virtual Machine supports exceptions thrown within
synchronized methods and synchronized statements differently:

• Monitor exit on normal synchronized method completion
is handled by the Java Virtual Machine's return instructions.
Monitor exit on abrupt synchronized method completion
is handled implicitly by the Java Virtual Machine's athrow
instruction.

• When an exception is thrown from within a synchronized
statement, exit from the monitor entered prior to the execution of
the synchronized statement is achieved using the Java Virtual
Machine's exception handling mechanism (§3.14).
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multianewarray multianewarray

Operation Create new multidimensional array

Format multianewarray

indexbyte1

indexbyte2

dimensions

Forms multianewarray = 197 (0xc5)

Operand

Stack

..., count1, [count2, ...] →

..., arrayref

Description The dimensions operand is an unsigned byte that must be greater
than or equal to 1. It represents the number of dimensions of the
array to be created. The operand stack must contain dimensions
values. Each such value represents the number of components in
a dimension of the array to be created, must be of type int, and
must be non-negative. The count1 is the desired length in the first
dimension, count2 in the second, etc.

All of the count values are popped off the operand stack. The
unsigned indexbyte1 and indexbyte2 are used to construct an index
into the run-time constant pool of the current class (§2.6), where
the value of the index is (indexbyte1 << 8) | indexbyte2. The run-
time constant pool entry at the index must be a symbolic reference
to a class, array, or interface type. The named class, array, or
interface type is resolved (§5.4.3.1). The resulting entry must be
an array class type of dimensionality greater than or equal to
dimensions.

A new multidimensional array of the array type is allocated
from the garbage-collected heap. If any count value is zero, no
subsequent dimensions are allocated. The components of the array
in the first dimension are initialized to subarrays of the type of the
second dimension, and so on. The components of the last allocated
dimension of the array are initialized to the default initial value
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(§2.3, §2.4) for the element type of the array type. A reference
arrayref to the new array is pushed onto the operand stack.

Linking

Exceptions

During resolution of the symbolic reference to the class, array, or
interface type, any of the exceptions documented in §5.4.3.1 can
be thrown.

Otherwise, if the current class does not have permission to access
the element type of the resolved array class, multianewarray
throws an IllegalAccessError.

Run-time

Exception

Otherwise, if any of the dimensions values on the operand
stack are less than zero, the multianewarray instruction throws a
NegativeArraySizeException.

Notes It may be more efficient to use newarray or anewarray
(§newarray, §anewarray) when creating an array of a single
dimension.

The array class referenced via the run-time constant pool may
have more dimensions than the dimensions operand of the
multianewarray instruction. In that case, only the first dimensions
of the dimensions of the array are created.
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new new

Operation Create new object

Format new

indexbyte1

indexbyte2

Forms new = 187 (0xbb)

Operand

Stack

... →

..., objectref

Description The unsigned indexbyte1 and indexbyte2 are used to construct an
index into the run-time constant pool of the current class (§2.6),
where the value of the index is (indexbyte1 << 8) | indexbyte2.
The run-time constant pool entry at the index must be a symbolic
reference to a class or interface type. The named class or interface
type is resolved (§5.4.3.1) and should result in a class type.
Memory for a new instance of that class is allocated from the
garbage-collected heap, and the instance variables of the new
object are initialized to their default initial values (§2.3, §2.4). The
objectref, a reference to the instance, is pushed onto the operand
stack.

On successful resolution of the class, it is initialized if it has not
already been initialized (§5.5).

Linking

Exceptions

During resolution of the symbolic reference to the class or
interface type, any of the exceptions documented in §5.4.3.1 can
be thrown.

Otherwise, if the symbolic reference to the class or interface type
resolves to an interface or an abstract class, new throws an
InstantiationError.
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Run-time

Exception

Otherwise, if execution of this new instruction causes initialization
of the referenced class, new may throw an Error as detailed in JLS
§15.9.4.

Notes The new instruction does not completely create a new instance;
instance creation is not completed until an instance initialization
method (§2.9.1) has been invoked on the uninitialized instance.
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newarray newarray

Operation Create new array

Format newarray

atype

Forms newarray = 188 (0xbc)

Operand

Stack

..., count →

..., arrayref

Description The count must be of type int. It is popped off the operand stack.
The count represents the number of elements in the array to be
created.

The atype is a code that indicates the type of array to create. It must
take one of the following values:

Table 6.5.newarray-A. Array type codes

Array Type atype

T_BOOLEAN 4

T_CHAR 5

T_FLOAT 6

T_DOUBLE 7

T_BYTE 8

T_SHORT 9

T_INT 10

T_LONG 11

A new array whose components are of type atype and of length
count is allocated from the garbage-collected heap. A reference
arrayref to this new array object is pushed into the operand stack.
Each of the elements of the new array is initialized to the default
initial value (§2.3, §2.4) for the element type of the array type.
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Run-time

Exception

If count is less than zero, newarray throws a
NegativeArraySizeException.

Notes In Oracle's Java Virtual Machine implementation, arrays of type
boolean (atype is T_BOOLEAN) are stored as arrays of 8-bit values
and are manipulated using the baload and bastore instructions
(§baload, §bastore) which also access arrays of type byte. Other
implementations may implement packed boolean arrays; the
baload and bastore instructions must still be used to access those
arrays.
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nop nop

Operation Do nothing

Format nop

Forms nop = 0 (0x0)

Operand

Stack

No change

Description Do nothing.
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pop pop

Operation Pop the top operand stack value

Format pop

Forms pop = 87 (0x57)

Operand

Stack

..., value →

...

Description Pop the top value from the operand stack.

The pop instruction must not be used unless value is a value of a
category 1 computational type (§2.11.1).
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pop2 pop2

Operation Pop the top one or two operand stack values

Format pop2

Forms pop2 = 88 (0x58)

Operand

Stack

Form 1:

..., value2, value1 →

...

where each of value1 and value2 is a value of a category 1
computational type (§2.11.1).

Form 2:

..., value →

...

where value is a value of a category 2 computational type
(§2.11.1).

Description Pop the top one or two values from the operand stack.
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putfield putfield

Operation Set field in object

Format putfield

indexbyte1

indexbyte2

Forms putfield = 181 (0xb5)

Operand

Stack

..., objectref, value →

...

Description The unsigned indexbyte1 and indexbyte2 are used to construct an
index into the run-time constant pool of the current class (§2.6),
where the value of the index is (indexbyte1 << 8) | indexbyte2.
The run-time constant pool entry at the index must be a symbolic
reference to a field (§5.1), which gives the name and descriptor of
the field as well as a symbolic reference to the class in which the
field is to be found. The referenced field is resolved (§5.4.3.2).

The type of a value stored by a putfield instruction must be
compatible with the descriptor of the referenced field (§4.3.2). If
the field descriptor type is boolean, byte, char, short, or int,
then the value must be an int. If the field descriptor type is float,
long, or double, then the value must be a float, long, or double,
respectively. If the field descriptor type is a reference type, then
the value must be of a type that is assignment compatible (JLS
§5.2) with the field descriptor type. If the field is final, it must be
declared in the current class, and the instruction must occur in an
instance initialization method of the current class (§2.9.1).

The value and objectref are popped from the operand stack.

The objectref must be of type reference but not an array type.

If the value is of type int and the field descriptor type is boolean,
then the int value is narrowed by taking the bitwise AND of value
and 1, resulting in value'. Otherwise, the value undergoes value set
conversion (§2.8.3), resulting in value'.
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The referenced field in objectref is set to value'.

Linking

Exceptions

During resolution of the symbolic reference to the field, any of the
exceptions pertaining to field resolution (§5.4.3.2) can be thrown.

Otherwise, if the resolved field is a static field, putfield throws
an IncompatibleClassChangeError.

Otherwise, if the resolved field is final, it must be declared
in the current class, and the instruction must occur in an
instance initialization method of the current class. Otherwise, an
IllegalAccessError is thrown.

Run-time

Exception

Otherwise, if objectref is null, the putfield instruction throws a
NullPointerException.
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putstatic putstatic

Operation Set static field in class

Format putstatic

indexbyte1

indexbyte2

Forms putstatic = 179 (0xb3)

Operand

Stack

..., value →

...

Description The unsigned indexbyte1 and indexbyte2 are used to construct an
index into the run-time constant pool of the current class (§2.6),
where the value of the index is (indexbyte1 << 8) | indexbyte2.
The run-time constant pool entry at the index must be a symbolic
reference to a field (§5.1), which gives the name and descriptor of
the field as well as a symbolic reference to the class or interface
in which the field is to be found. The referenced field is resolved
(§5.4.3.2).

On successful resolution of the field, the class or interface that
declared the resolved field is initialized if that class or interface
has not already been initialized (§5.5).

The type of a value stored by a putstatic instruction must be
compatible with the descriptor of the referenced field (§4.3.2). If
the field descriptor type is boolean, byte, char, short, or int,
then the value must be an int. If the field descriptor type is float,
long, or double, then the value must be a float, long, or double,
respectively. If the field descriptor type is a reference type, then
the value must be of a type that is assignment compatible (JLS
§5.2) with the field descriptor type. If the field is final, it must be
declared in the current class or interface, and the instruction must
occur in the class or interface initialization method of the current
class or interface (§2.9.2).

The value is popped from the operand stack.
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If the value is of type int and the field descriptor type is boolean,
then the int value is narrowed by taking the bitwise AND of value
and 1, resulting in value'. Otherwise, the value undergoes value set
conversion (§2.8.3), resulting in value'.

The referenced field in the class or interface is set to value'.

Linking

Exceptions

During resolution of the symbolic reference to the class or
interface field, any of the exceptions pertaining to field resolution
(§5.4.3.2) can be thrown.

Otherwise, if the resolved field is not a static

(class) field or an interface field, putstatic throws an
IncompatibleClassChangeError.

Otherwise, if the resolved field is final, it must be declared in
the current class or interface, and the instruction must occur in
the class or interface initialization method of the current class or
interface. Otherwise, an IllegalAccessError is thrown.

Run-time

Exception

Otherwise, if execution of this putstatic instruction causes
initialization of the referenced class or interface, putstatic may
throw an Error as detailed in §5.5.

Notes A putstatic instruction may be used only to set the value of an
interface field on the initialization of that field. Interface fields
may be assigned to only once, on execution of an interface variable
initialization expression when the interface is initialized (§5.5, JLS
§9.3.1).
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ret ret

Operation Return from subroutine

Format ret

index

Forms ret = 169 (0xa9)

Operand

Stack

No change

Description The index is an unsigned byte between 0 and 255, inclusive.
The local variable at index in the current frame (§2.6) must
contain a value of type returnAddress. The contents of the local
variable are written into the Java Virtual Machine's pc register,
and execution continues there.

Notes Note that jsr (§jsr) pushes the address onto the operand stack and
ret gets it out of a local variable. This asymmetry is intentional.

In Oracle's implementation of a compiler for the Java
programming language prior to Java SE 6, the ret instruction
was used with the jsr and jsr_w instructions (§jsr, §jsr_w) in the
implementation of the finally clause (§3.13, §4.10.2.5).

The ret instruction should not be confused with the return
instruction (§return). A return instruction returns control from
a method to its invoker, without passing any value back to the
invoker.

The ret opcode can be used in conjunction with the wide
instruction (§wide) to access a local variable using a two-byte
unsigned index.
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return return

Operation Return void from method

Format return

Forms return = 177 (0xb1)

Operand

Stack

... →

[empty]

Description The current method must have return type void. If the
current method is a synchronized method, the monitor entered
or reentered on invocation of the method is updated and
possibly exited as if by execution of a monitorexit instruction
(§monitorexit) in the current thread. If no exception is thrown,
any values on the operand stack of the current frame (§2.6) are
discarded.

The interpreter then returns control to the invoker of the method,
reinstating the frame of the invoker.

Run-time

Exceptions

If the Java Virtual Machine implementation does not enforce
the rules on structured locking described in §2.11.10, then if the
current method is a synchronized method and the current thread is
not the owner of the monitor entered or reentered on invocation of
the method, return throws an IllegalMonitorStateException.
This can happen, for example, if a synchronized method contains
a monitorexit instruction, but no monitorenter instruction, on the
object on which the method is synchronized.

Otherwise, if the Java Virtual Machine implementation enforces
the rules on structured locking described in §2.11.10 and if the first
of those rules is violated during invocation of the current method,
then return throws an IllegalMonitorStateException.
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saload saload

Operation Load short from array

Format saload

Forms saload = 53 (0x35)

Operand

Stack

..., arrayref, index →

..., value

Description The arrayref must be of type reference and must refer to an array
whose components are of type short. The index must be of type
int. Both arrayref and index are popped from the operand stack.
The component of the array at index is retrieved and sign-extended
to an int value. That value is pushed onto the operand stack.

Run-time

Exceptions

If arrayref is null, saload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the saload instruction throws an
ArrayIndexOutOfBoundsException.
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sastore sastore

Operation Store into short array

Format sastore

Forms sastore = 86 (0x56)

Operand

Stack

..., arrayref, index, value →

...

Description The arrayref must be of type reference and must refer to an array
whose components are of type short. Both index and value must
be of type int. The arrayref, index, and value are popped from the
operand stack. The int value is truncated to a short and stored as
the component of the array indexed by index.

Run-time

Exceptions

If arrayref is null, sastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array
referenced by arrayref, the sastore instruction throws an
ArrayIndexOutOfBoundsException.
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sipush sipush

Operation Push short

Format sipush

byte1

byte2

Forms sipush = 17 (0x11)

Operand

Stack

... →

..., value

Description The immediate unsigned byte1 and byte2 values are assembled into
an intermediate short, where the value of the short is (byte1 <<
8) | byte2. The intermediate value is then sign-extended to an int
value. That value is pushed onto the operand stack.
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swap swap

Operation Swap the top two operand stack values

Format swap

Forms swap = 95 (0x5f)

Operand

Stack

..., value2, value1 →

..., value1, value2

Description Swap the top two values on the operand stack.

The swap instruction must not be used unless value1 and value2
are both values of a category 1 computational type (§2.11.1).

Notes The Java Virtual Machine does not provide an instruction
implementing a swap on operands of category 2 computational
types.
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tableswitch tableswitch

Operation Access jump table by index and jump

Format tableswitch

<0-3 byte pad>

defaultbyte1

defaultbyte2

defaultbyte3

defaultbyte4

lowbyte1

lowbyte2

lowbyte3

lowbyte4

highbyte1

highbyte2

highbyte3

highbyte4

jump offsets...

Forms tableswitch = 170 (0xaa)

Operand

Stack

..., index →

...

Description A tableswitch is a variable-length instruction. Immediately after
the tableswitch opcode, between zero and three bytes must act
as padding, such that defaultbyte1 begins at an address that is a
multiple of four bytes from the start of the current method (the
opcode of its first instruction). Immediately after the padding are
bytes constituting three signed 32-bit values: default, low, and
high. Immediately following are bytes constituting a series of high
- low + 1 signed 32-bit offsets. The value low must be less than or
equal to high. The high - low + 1 signed 32-bit offsets are treated
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as a 0-based jump table. Each of these signed 32-bit values is
constructed as (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4.

The index must be of type int and is popped from the operand
stack. If index is less than low or index is greater than high, then
a target address is calculated by adding default to the address of
the opcode of this tableswitch instruction. Otherwise, the offset
at position index - low of the jump table is extracted. The target
address is calculated by adding that offset to the address of the
opcode of this tableswitch instruction. Execution then continues
at the target address.

The target address that can be calculated from each jump table
offset, as well as the one that can be calculated from default, must
be the address of an opcode of an instruction within the method
that contains this tableswitch instruction.

Notes The alignment required of the 4-byte operands of the tableswitch
instruction guarantees 4-byte alignment of those operands if and
only if the method that contains the tableswitch starts on a 4-byte
boundary.
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wide wide

Operation Extend local variable index by additional bytes

Format 1 wide

<opcode>

indexbyte1

indexbyte2

where <opcode> is one of iload, fload, aload, lload, dload, istore,
fstore, astore, lstore, dstore, or ret

Format 2 wide

iinc

indexbyte1

indexbyte2

constbyte1

constbyte2

Forms wide = 196 (0xc4)

Operand

Stack

Same as modified instruction

Description The wide instruction modifies the behavior of another instruction.
It takes one of two formats, depending on the instruction being
modified. The first form of the wide instruction modifies one of the
instructions iload, fload, aload, lload, dload, istore, fstore, astore,
lstore, dstore, or ret (§iload, §fload, §aload, §lload, §dload,
§istore, §fstore, §astore, §lstore, §dstore, §ret). The second form
applies only to the iinc instruction (§iinc).

In either case, the wide opcode itself is followed in the compiled
code by the opcode of the instruction wide modifies. In either
form, two unsigned bytes indexbyte1 and indexbyte2 follow the
modified opcode and are assembled into a 16-bit unsigned index
to a local variable in the current frame (§2.6), where the value
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of the index is (indexbyte1 << 8) | indexbyte2. The calculated
index must be an index into the local variable array of the current
frame. Where the wide instruction modifies an lload, dload, lstore,
or dstore instruction, the index following the calculated index
(index + 1) must also be an index into the local variable array. In
the second form, two immediate unsigned bytes constbyte1 and
constbyte2 follow indexbyte1 and indexbyte2 in the code stream.
Those bytes are also assembled into a signed 16-bit constant,
where the constant is (constbyte1 << 8) | constbyte2.

The widened bytecode operates as normal, except for the use of
the wider index and, in the case of the second form, the larger
increment range.

Notes Although we say that wide "modifies the behavior of another
instruction," the wide instruction effectively treats the bytes
constituting the modified instruction as operands, denaturing the
embedded instruction in the process. In the case of a modified iinc
instruction, one of the logical operands of the iinc is not even at
the normal offset from the opcode. The embedded instruction must
never be executed directly; its opcode must never be the target of
any control transfer instruction.
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C H A P T E R 7
Opcode Mnemonics by

Opcode

THIS chapter gives the mapping from Java Virtual Machine instruction opcodes,
including the reserved opcodes (§6.2), to the mnemonics for the instructions
represented by those opcodes.

Opcode value 186 was not used prior to Java SE 7.
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Constants Loads Stores

00 (0x00)    nop

01 (0x01)    aconst_null

02 (0x02)    iconst_m1

03 (0x03)    iconst_0

04 (0x04)    iconst_1

05 (0x05)    iconst_2

06 (0x06)    iconst_3

07 (0x07)    iconst_4

08 (0x08)    iconst_5

09 (0x09)    lconst_0

10 (0x0a)    lconst_1

11 (0x0b)    fconst_0

12 (0x0c)    fconst_1

13 (0x0d)    fconst_2

14 (0x0e)    dconst_0

15 (0x0f)    dconst_1

16 (0x10)    bipush

17 (0x11)    sipush

18 (0x12)    ldc

19 (0x13)    ldc_w

20 (0x14)    ldc2_w

21 (0x15)    iload

22 (0x16)    lload

23 (0x17)    fload

24 (0x18)    dload

25 (0x19)    aload

26 (0x1a)    iload_0

27 (0x1b)    iload_1

28 (0x1c)    iload_2

29 (0x1d)    iload_3

30 (0x1e)    lload_0

31 (0x1f)    lload_1

32 (0x20)    lload_2

33 (0x21)    lload_3

34 (0x22)    fload_0

35 (0x23)    fload_1

36 (0x24)    fload_2

37 (0x25)    fload_3

38 (0x26)    dload_0

39 (0x27)    dload_1

40 (0x28)    dload_2

41 (0x29)    dload_3

42 (0x2a)    aload_0

43 (0x2b)    aload_1

44 (0x2c)    aload_2

45 (0x2d)    aload_3

46 (0x2e)    iaload

47 (0x2f)    laload

48 (0x30)    faload

49 (0x31)    daload

50 (0x32)    aaload

51 (0x33)    baload

52 (0x34)    caload

53 (0x35)    saload

54 (0x36)    istore

55 (0x37)    lstore

56 (0x38)    fstore

57 (0x39)    dstore

58 (0x3a)    astore

59 (0x3b)    istore_0

60 (0x3c)    istore_1

61 (0x3d)    istore_2

62 (0x3e)    istore_3

63 (0x3f)    lstore_0

64 (0x40)    lstore_1

65 (0x41)    lstore_2

66 (0x42)    lstore_3

67 (0x43)    fstore_0

68 (0x44)    fstore_1

69 (0x45)    fstore_2

70 (0x46)    fstore_3

71 (0x47)    dstore_0

72 (0x48)    dstore_1

73 (0x49)    dstore_2

74 (0x4a)    dstore_3

75 (0x4b)    astore_0

76 (0x4c)    astore_1

77 (0x4d)    astore_2

78 (0x4e)    astore_3

79 (0x4f)    iastore

80 (0x50)    lastore

81 (0x51)    fastore

82 (0x52)    dastore

83 (0x53)    aastore

84 (0x54)    bastore

85 (0x55)    castore

86 (0x56)    sastore
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Stack Math Conversions

87 (0x57)    pop

88 (0x58)    pop2

89 (0x59)    dup

90 (0x5a)    dup_x1

91 (0x5b)    dup_x2

92 (0x5c)    dup2

93 (0x5d)    dup2_x1

94 (0x5e)    dup2_x2

95 (0x5f)    swap

 96 (0x60)    iadd

 97 (0x61)    ladd

 98 (0x62)    fadd

 99 (0x63)    dadd

100 (0x64)    isub

101 (0x65)    lsub

102 (0x66)    fsub

103 (0x67)    dsub

104 (0x68)    imul

105 (0x69)    lmul

106 (0x6a)    fmul

107 (0x6b)    dmul

108 (0x6c)    idiv

109 (0x6d)    ldiv

110 (0x6e)    fdiv

111 (0x6f)    ddiv

112 (0x70)    irem

113 (0x71)    lrem

114 (0x72)    frem

115 (0x73)    drem

116 (0x74)    ineg

117 (0x75)    lneg

118 (0x76)    fneg

119 (0x77)    dneg

120 (0x78)    ishl

121 (0x79)    lshl

122 (0x7a)    ishr

123 (0x7b)    lshr

124 (0x7c)    iushr

125 (0x7d)    lushr

126 (0x7e)    iand

127 (0x7f)    land

128 (0x80)    ior

129 (0x81)    lor

130 (0x82)    ixor

131 (0x83)    lxor

132 (0x84)    iinc

133 (0x85)    i2l

134 (0x86)    i2f

135 (0x87)    i2d

136 (0x88)    l2i

137 (0x89)    l2f

138 (0x8a)    l2d

139 (0x8b)    f2i

140 (0x8c)    f2l

141 (0x8d)    f2d

142 (0x8e)    d2i

143 (0x8f)    d2l

144 (0x90)    d2f

145 (0x91)    i2b

146 (0x92)    i2c

147 (0x93)    i2s
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Comparisons

148 (0x94)    lcmp

149 (0x95)    fcmpl

150 (0x96)    fcmpg

151 (0x97)    dcmpl

152 (0x98)    dcmpg

153 (0x99)    ifeq

154 (0x9a)    ifne

155 (0x9b)    iflt

156 (0x9c)    ifge

157 (0x9d)    ifgt

158 (0x9e)    ifle

159 (0x9f)    if_icmpeq

160 (0xa0)    if_icmpne

161 (0xa1)    if_icmplt

162 (0xa2)    if_icmpge

163 (0xa3)    if_icmpgt

164 (0xa4)    if_icmple

165 (0xa5)    if_acmpeq

166 (0xa6)    if_acmpne

Control

167 (0xa7)    goto

168 (0xa8)    jsr

169 (0xa9)    ret

170 (0xaa)    tableswitch

171 (0xab)    lookupswitch

172 (0xac)    ireturn

173 (0xad)    lreturn

174 (0xae)    freturn

175 (0xaf)    dreturn

176 (0xb0)    areturn

177 (0xb1)    return

References

178 (0xb2)    getstatic

179 (0xb3)    putstatic

180 (0xb4)    getfield

181 (0xb5)    putfield

182 (0xb6)    invokevirtual

183 (0xb7)    invokespecial

184 (0xb8)    invokestatic

185 (0xb9)    invokeinterface

186 (0xba)    invokedynamic

187 (0xbb)    new

188 (0xbc)    newarray

189 (0xbd)    anewarray

190 (0xbe)    arraylength

191 (0xbf)    athrow

192 (0xc0)    checkcast

193 (0xc1)    instanceof

194 (0xc2)    monitorenter

195 (0xc3)    monitorexit

Extended

196 (0xc4)    wide

197 (0xc5)    multianewarray

198 (0xc6)    ifnull

199 (0xc7)    ifnonnull

200 (0xc8)    goto_w

201 (0xc9)    jsr_w

Reserved

202 (0xca)    breakpoint

254 (0xfe)    impdep1

255 (0xff)    impdep2
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Appendix A. Limited License Grant

ORACLE AMERICA, INC. IS WILLING TO LICENSE THIS SPECIFICATION
TO YOU ONLY UPON THE CONDITION THAT YOU ACCEPT ALL
OF THE TERMS CONTAINED IN THIS AGREEMENT ("AGREEMENT").
PLEASE READ THE TERMS AND CONDITIONS OF THIS AGREEMENT
CAREFULLY.

Specification: JSR-384 Java SE 11 (18.9) ("Specification")
Version: 11
Status: Final Release
Specification Lead: Oracle America, Inc. ("Specification Lead")
Release: September 2018

Copyright © 1997, 2018, Oracle America, Inc.
All rights reserved.

LIMITED LICENSE GRANTS

1. License for Evaluation Purposes. Specification Lead hereby grants you a fully-
paid, non-exclusive, nontransferable, worldwide, limited license (without the right
to sublicense), under Specification Lead's applicable intellectual property rights
to view, download, use and reproduce the Specification only for the purpose
of internal evaluation. This includes (i) developing applications intended to run
on an implementation of the Specification, provided that such applications do
not themselves implement any portion(s) of the Specification, and (ii) discussing
the Specification with any third party; and (iii) excerpting brief portions of the
Specification in oral or written communications which discuss the Specification
provided that such excerpts do not in the aggregate constitute a significant portion
of the Specification.

2. License for the Distribution of Compliant Implementations. Specification Lead
also grants you a perpetual, non-exclusive, non-transferable, worldwide, fully
paid-up, royalty free, limited license (without the right to sublicense) under
any applicable copyrights or, subject to the provisions of subsection 4 below,
patent rights it may have covering the Specification to create and/or distribute an
Independent Implementation of the Specification that: (a) fully implements the
Specification including all its required interfaces and functionality; (b) does not
modify, subset, superset or otherwise extend the Licensor Name Space, or include
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any public or protected packages, classes, Java interfaces, fields or methods within
the Licensor Name Space other than those required/authorized by the Specification
or Specifications being implemented; and (c) passes the Technology Compatibility
Kit (including satisfying the requirements of the applicable TCK Users Guide)
for such Specification ("Compliant Implementation"). In addition, the foregoing
license is expressly conditioned on your not acting outside its scope. No license
is granted hereunder for any other purpose (including, for example, modifying
the Specification, other than to the extent of your fair use rights, or distributing
the Specification to third parties). Also, no right, title, or interest in or to any
trademarks, service marks, or trade names of Specification Lead or Specification
Lead's licensors is granted hereunder. Java, and Java-related logos, marks and
names are trademarks or registered trademarks of Oracle America, Inc. in the U.S.
and other countries.

3. Pass-through Conditions. You need not include limitations (a)-(c) from the
previous paragraph or any other particular "pass through" requirements in any
license You grant concerning the use of your Independent Implementation
or products derived from it. However, except with respect to Independent
Implementations (and products derived from them) that satisfy limitations (a)-(c)
from the previous paragraph, You may neither: (a) grant or otherwise pass through
to your licensees any licenses under Specification Lead's applicable intellectual
property rights; nor (b) authorize your licensees to make any claims concerning
their implementation's compliance with the Specification in question.

4. Reciprocity Concerning Patent Licenses.

a. With respect to any patent claims covered by the license granted under
subparagraph 2 above that would be infringed by all technically feasible
implementations of the Specification, such license is conditioned upon your
offering on fair, reasonable and non-discriminatory terms, to any party seeking it
from You, a perpetual, non-exclusive, non-transferable, worldwide license under
Your patent rights which are or would be infringed by all technically feasible
implementations of the Specification to develop, distribute and use a Compliant
Implementation.

b. With respect to any patent claims owned by Specification Lead and covered by
the license granted under subparagraph 2, whether or not their infringement can
be avoided in a technically feasible manner when implementing the Specification,
such license shall terminate with respect to such claims if You initiate a claim
against Specification Lead that it has, in the course of performing its responsibilities
as the Specification Lead, induced any other entity to infringe Your patent rights.
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c. Also with respect to any patent claims owned by Specification Lead and covered
by the license granted under subparagraph 2 above, where the infringement of
such claims can be avoided in a technically feasible manner when implementing
the Specification such license, with respect to such claims, shall terminate if You
initiate a claim against Specification Lead that its making, having made, using,
offering to sell, selling or importing a Compliant Implementation infringes Your
patent rights.

5. Definitions. For the purposes of this Agreement: "Independent Implementation"
shall mean an implementation of the Specification that neither derives from any
of Specification Lead's source code or binary code materials nor, except with
an appropriate and separate license from Specification Lead, includes any of
Specification Lead's source code or binary code materials; "Licensor Name Space"
shall mean the public class or interface declarations whose names begin with
"java", "javax", "com.oracle”, “com.sun” or their equivalents in any subsequent
naming convention adopted by Oracle America, Inc. through the Java Community
Process, or any recognized successors or replacements thereof; and "Technology
Compatibility Kit" or "TCK" shall mean the test suite and accompanying
TCK User's Guide provided by Specification Lead which corresponds to the
Specification and that was available either (i) from Specification Lead 120 days
before the first release of Your Independent Implementation that allows its use for
commercial purposes, or (ii) more recently than 120 days from such release but
against which You elect to test Your implementation of the Specification.

This Agreement will terminate immediately without notice from Specification
Lead if you breach the Agreement or act outside the scope of the licenses granted
above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SPECIFICATION LEAD
MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NON-INFRINGEMENT (INCLUDING AS A CONSEQUENCE OF ANY
PRACTICE OR IMPLEMENTATION OF THE SPECIFICATION), OR THAT
THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY
PURPOSE. This document does not represent any commitment to release or
implement any portion of the Specification in any product. In addition, the
Specification could include technical inaccuracies or typographical errors.

LIMITATION OF LIABILITY
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TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL
SPECIFICATION LEAD OR ITS LICENSORS BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE,
PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF
OR RELATED IN ANY WAY TO YOUR HAVING, IMPLEMENTING OR
OTHERWISE USING THE SPECIFICATION, EVEN IF SPECIFICATION
LEAD AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Specification Lead and its licensors
from any claims arising or resulting from: (i) your use of the Specification; (ii) the
use or distribution of your Java application, applet and/or implementation; and/or
(iii) any claims that later versions or releases of any Specification furnished to you
are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the
U.S. Government or by a U.S. Government prime contractor or subcontractor
(at any tier), then the Government's rights in the Software and accompanying
documentation shall be only as set forth in this license; this is in accordance
with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD)
acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

If you provide Specification Lead with any comments or suggestions concerning
the Specification ("Feedback"), you hereby: (i) agree that such Feedback
is provided on a non-proprietary and nonconfidential basis, and (ii) grant
Specification Lead a perpetual, non-exclusive, worldwide, fully paid-up,
irrevocable license, with the right to sublicense through multiple levels of
sublicensees, to incorporate, disclose, and use without limitation the Feedback for
any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and
controlling U.S. federal law. The U.N. Convention for the International Sale of
Goods and the choice of law rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export
or import regulations in other countries. Licensee agrees to comply strictly with all
such laws and regulations and acknowledges that it has the responsibility to obtain
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such licenses to export, re-export or import as may be required after delivery to
Licensee.

This Agreement is the parties' entire agreement relating to its subject matter.
It supersedes all prior or contemporaneous oral or written communications,
proposals, conditions, representations and warranties and prevails over any
conflicting or additional terms of any quote, order, acknowledgment, or other
communication between the parties relating to its subject matter during the term
of this Agreement. No modification to this Agreement will be binding, unless in
writing and signed by an authorized representative of each party.
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	lsub
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	lxor
	monitorenter
	monitorexit
	multianewarray
	new
	newarray
	nop
	pop
	pop2
	putfield
	putstatic
	ret
	return
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