The Javae Language
Specification
Java SE 13 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley
Daniel Smith

2019-08-21

Specification: JSR-388 Java SE 13
Version: 13

Status: Final Release

Release: September 2019

Copyright © 1997, 2019, Oracle America, Inc.
All rights reserved.

The Specification provided hereinis provided to you only under the Limited License Grant
included herein as Appendix A. Please see Appendix A, Limited License Grant.

Table of Contents

I ntroduction 1

1.1 Organization of the Specification 2

1.2 Example Programs 6

1.3 Notation 6

1.4 Relationship to Predefined Classes and Interfaces 7
15 Preview Features 7

16 Feedback 8

17 References 8

Grammars 11

2.1 Context-Free Grammars 11
2.2 The Lexical Grammar 11
2.3 The Syntactic Grammar 12
2.4 Grammar Notation 12

Lexical Structure 17

31 Unicode 17

3.2 Lexica Trandations 18

3.3 Unicode Escapes 19

34 LineTerminators 21

3.5 Input Elementsand Tokens 21

3.6 White Space 22

3.7 Comments 23

3.8 Identifiers 24

3.9 Keywords 26

3.10 Literals 27
3.10.1 Integer Literals 27
3.10.2 Floating-Point Literals 34
3.10.3 Boolean Literals 37
3.10.4 Character Literals 37
3.10.5 String Literals 38
3.10.6 Escape Sequences for Character and String Literals 40
3.10.7 TheNull Litera 41

311 Separators 42

3.12 Operators 42

Types, Values, and Variables 43

41 TheKindsof Typesand Values 43
4.2 Primitive Typesand Values 44

The Java® Language Specification

4.3

4.4
4.5

4.6
4.8

4.9
4.10

411
412

421
422
4.2.3
424
4.2.5

Integral Typesand Values 45

Integer Operations 45

Floating-Point Types, Formats, and Values 47
Floating-Point Operations 50

Thebool ean Type and boolean Values 53

Reference Typesand Values 54

431
432
433
434

Objects 55

The Class vj ect 58

TheClassstring 58

When Reference Types Are the Same 59

Type Variables 59
Parameterized Types 61

451
452

Type Arguments of Parameterized Types 62
Members and Constructors of Parameterized Types 65

Type Erasure 66
Reifiable Types 67
Raw Types 68
Intersection Types 72
Subtyping 73

4.10.1
4.10.2
4.10.3
4.10.4
4.10.5

Subtyping among Primitive Types 73
Subtyping among Class and Interface Types 74
Subtyping among Array Types 75

Least Upper Bound 75

Type Projections 78

Where Types Are Used 80
Variables 85

4121
412.2
4.12.3
4.12.4
4.12.5
4.12.6

Variables of Primitive Type 85
Variables of Reference Type 85
Kinds of Variables 87

final Variables 89

Initial Valuesof Variables 91
Types, Classes, and Interfaces 93

5 Conversionsand Contexts 97

51

Kinds of Conversion 100

511
512
513
514
515
516

517
518

Identity Conversion 100

Widening Primitive Conversion 100

Narrowing Primitive Conversion 102

Widening and Narrowing Primitive Conversion 105

Widening Reference Conversion 105

Narrowing Reference Conversion 105

516.1 Allowed Narrowing Reference Conversion 106

5.16.2 Checked and Unchecked Narrowing Reference
Conversions 107

5.1.6.3 Narrowing Reference Conversions at Run Time 107

Boxing Conversion 109

Unboxing Conversion 111

The Java® Language Specification

5.1.9 Unchecked Conversion 112
5.1.10 Capture Conversion 113
5.1.11 String Conversion 115
5.1.12 Forbidden Conversions 116
5.1.13 Value Set Conversion 116

52 Assignment Contexts 117
5.3 Invocation Contexts 122
54 String Contexts 124
5,5 Casting Contexts 124
56 Numeric Contexts 130
56.1 Unary Numeric Promotion 131
5.6.2 Binary Numeric Promotion 132
Names 135
6.1 Declarations 136
6.2 Namesand Identifiers 143
6.3 Scopeof aDeclaration 145
6.4 Shadowing and Obscuring 149
6.4.1 Shadowing 151
6.4.2 Obscuring 154
6.5 Determining the Meaning of aName 155
6.5.1 Syntactic Classification of a Name According to Context 156
6.5.2 Reclassification of Contextually Ambiguous Names 159
6.5.3 Meaning of Module Names and Package Names 162
6.5.31 Simple Package Names 162
6.5.3.2 Qualified Package Names 162
6.54 Meaning of PackageOrTypeNames 162
6.5.4.1 Simple PackageOrTypeNames 162
6.5.4.2 Quadlified PackageOrTypeNames 162
6.5.5 Meaning of Type Names 163
6.5.5.1 Simple Type Names 163
6.5.5.2 Qualified Type Names 163
6.5.6 Meaning of Expression Names 164
6.5.6.1 Simple Expression Names 164
6.5.6.2 Qualified Expression Names 165
6.5.7 Meaning of Method Names 167
6.5.71 Simple Method Names 167
6.6 AccessControl 168
6.6.1 Determining Accessibility 170
6.6.2 Detailson protected Access 174
6.6.2.1 Accesstoaprotected Member 174
6.6.2.2 Accesstoaprotect ed Constructor 175
6.7 Fully Qualified Names and Canonical Names 176

Packages and Modules 179

7.1
7.2

Package Members 180
Host Support for Modules and Packages 181

Vi

The Java® Language Specification

7.3 Compilation Units 184
7.4 Package Declarations 186
74.1 Named Packages 186
7.4.2 Unnamed Packages 187
74.3 Package Observability and Visibility 187
7.5 Import Declarations 188
751 Single-Type-Import Declarations 189
75.2 TypeImport-on-Demand Declarations 191
75.3 Single-Static-Import Declarations 192
754 Static-lmport-on-Demand Declarations 193
7.6 TopLevel TypeDeclarations 194
7.7 Module Declarations 197
7.7.1 Dependences 199
7.7.2 Exported and Opened Packages 202
7.7.3 Service Consumption 203
7.74 Service Provision 203
7.75 Unnamed Modules 204
7.76 Observability of aModule 205
8 Classes 207
8.1 ClassDeclarations 209
811 ClassModifiers 209
8.1.1.1 abstract Classes 210
8.1.1.2 final Classes 212
8.1.13 strictfp Classes 212
8.1.2 Generic Classes and Type Parameters 212
8.1.3 Inner Classes and Enclosing Instances 215
8.1.4 Superclasses and Subclasses 218
8.1.5 Superinterfaces 220
8.16 ClassBody and Member Declarations 224
8.2 ClassMembers 224
8.3 Field Declarations 229
83.1 FedModifiers 234
83.11 static Fields 234
83.1.2 final Fieds 237
8.3.1.3 transient Fields 237
8.3.14 volatileFields 238
8.3.2 FiddInitidization 239
8.3.3 Redtrictionson Field Referencesin Initializers 241
84 Method Declarations 244

8.4.1 Forma Parameters 245

84.2 Method Signature 249

8.4.3 Method Modifiers 250
84.3.1 abstract Methods 250
8.4.3.2 static Methods 252
84.33 final Methods 252
84.34 native Methods 253

8.5
8.6

8.7
8.8

8.9

The Java® Language Specification

8.4.35 strictfp Methods 254
8.4.3.6 synchroni zed Methods 254

8.4.4 Generic Methods 255

845 Method Result 256

84.6 Method Throws 257

8.4.7 Method Body 258

8.4.8 Inheritance, Overriding, and Hiding 259
8.4.8.1 Overriding (by Instance Methods) 260
8.4.8.2 Hiding (by Class Methods) 264
8.4.8.3 Requirementsin Overriding and Hiding 265
8.4.84 Inheriting Methods with Override-Equivalent

Signatures 269

84.9 Overloading 270

Member Type Declarations 273

85.1 Static Member Type Declarations 274

Instance Initializers 274

Static Initializers 274

Constructor Declarations 275

8.8.1 Formal Parameters 276

8.8.2 Constructor Signature 277

8.8.3 Constructor Modifiers 277

8.8.4 Generic Congtructors 278

8.8.5 Constructor Throws 278

8.8.6 TheType of aConstructor 279

8.8.7 Constructor Body 279
8.8.7.1 Explicit Constructor Invocations 280

8.8.8 Constructor Overloading 284

8.89 Default Constructor 284

8.8.10 Preventing Instantiation of aClass 286

Enum Types 286

8.9.1 Enum Constants 287

8.9.2 Enum Body Declarations 288

89.3 Enum Members 290

Interfaces 297

9.1

9.2
9.3

9.4

Interface Declarations 298
9.1.1 Interface Modifiers 298
9.1.1.1 abstract Interfaces 299
9.1.1.2 strictfp Interfaces 299
9.1.2 Generic Interfaces and Type Parameters 299
9.1.3 Superinterfaces and Subinterfaces 300
9.1.4 Interface Body and Member Declarations 302
Interface Members 302
Field (Constant) Declarations 303
9.3.1 Initialization of Fieldsin Interfaces 305
Method Declarations 306
9.4.1 Inheritance and Overriding 307

Vii

viii

The Java® Language Specification

10

11

9.4.1.1 Overriding (by Instance Methods) 309
9.4.1.2 Requirementsin Overriding 309
9.4.1.3 Inheriting Methods with Override-Equivalent
Signatures 310
9.4.2 Overloading 311
9.4.3 Interface Method Body 311

9.5 Member Type Declarations 312
9.6 Annotation Types 313
9.6.1 Annotation Type Elements 314
9.6.2 Defaultsfor Annotation Type Elements 317
9.6.3 Repeatable Annotation Types 318
9.6.4 Predefined Annotation Types 322
9.6.4.1 @rarget 322
9.6.42 @retention 324
9.6.43 @nherited 325
9.6.44 @verride 325
9.6.45 @uppressWarnings 326
9.6.4.6 @eprecated 327
9.6.4.7 @saf evarargs 329
9.6.4.8 @repeatable 330
9.6.49 @unctional Interface 330
9.7 Annotations 330
9.71 Normal Annotations 331
9.7.2 Marker Annotations 333
9.7.3 Single-Element Annotations 334
9.74 Where Annotations May Appear 335
9.75 Multiple Annotations of the Same Type 340
9.8 Functiona Interfaces 341
9.9 Function Types 345
Arrays 351
10.1 Array Types 352
10.2 Array Variables 352
10.3 Array Creation 355
104 Array Access 355
105 Array Store Exception 356
10.6 Array Initializers 357
10.7 Array Members 359
10.8 d ass Objectsfor Arrays 360
10.9 AnArray of CharactersIsNotastring 362

Exceptions 363

111

11.2

The Kinds and Causes of Exceptions 364
11.1.1 TheKinds of Exceptions 364
11.1.2 The Causes of Exceptions 365
11.1.3 Asynchronous Exceptions 366
Compile-Time Checking of Exceptions 367

12

13

11.3

The Java® Language Specification

11.21 Exception Analysis of Expressions 368
11.2.2 Exception Analysis of Statements 369
11.2.3 Exception Checking 370

Run-Time Handling of an Exception 372

Execution 377

121

122

12.3

124

125
12.6

12.7
12.8

Java Virtua Machine Startup 377

12.1.1 LoadtheClassTest 378

12.1.2 Link Test : Verify, Prepare, (Optionally) Resolve 378
12.1.3 Initialize Test: Execute Initializers 379
12.1.4 Invoke Test. main 380

Loading of Classes and Interfaces 380

12.21 ThelLoading Process 381

Linking of Classes and Interfaces 382

12.3.1 Veification of the Binary Representation 382
12.3.2 Preparation of aClass or Interface Type 383
12.3.3 Resolution of Symbolic References 383
Initialization of Classes and Interfaces 385

12.4.1 When Initialization Occurs 385

12.4.2 Detailed Initialization Procedure 388
Creation of New Class Instances 390

Finalization of Class Instances 393

12.6.1 Implementing Finalization 395

12.6.2 Interaction with the Memory Model 396
Unloading of Classes and Interfaces 398

Program Exit 399

Binary Compatibility 401

131
13.2
13.3
134

The Form of aBinary 402

What Binary Compatibility Isand IsNot 408

Evolution of Packages and Modules 409

Evolution of Classes 410

13.4.1 abstract Classes 410

13.4.2 final Classes 411

13.4.3 public Classes 411

13.4.4 Superclasses and Superinterfaces 411

1345 Class Type Parameters 413

13.4.6 ClassBody and Member Declarations 413
13.4.7 Accessto Members and Constructors 415
13.4.8 Field Declarations 416

1349 final Fidldsandstatic Constant Variables 418
13.4.10 static Fields 419

13.4.11 transient Fields 419

13.4.12 Method and Constructor Declarations 419
13.4.13 Method and Constructor Type Parameters 420
13.4.14 Method and Constructor Formal Parameters 421
13.4.15 Method Result Type 422

The Java® Language Specification

14

135

13.4.16 abstract Methods 422

13.4.17 final Methods 423

13.4.18 native Methods 423

13.4.19 static Methods 424

13.4.20 synchroni zed Methods 424

13.4.21 Method and Constructor Throws 424
13.4.22 Method and Constructor Body 424
13.4.23 Method and Constructor Overloading 424
13.4.24 Method Overriding 426

13.4.25 Static Initidlizers 426

13.4.26 Evolution of Enums 426

Evolution of Interfaces 426

13.5.1 public Interfaces 426

13.5.2 Superinterfaces 427

13.5.3 Interface Members 427

13.5.4 Interface Type Parameters 427
13,55 Field Declarations 428

13.5.6 Interface Method Declarations 428
13.5.7 Evolution of Annotation Types 429

Blocks and Statements 431

141
14.2
14.3
14.4

145
14.6
14.7
14.8
14.9

14.10
1411
14.12
14.13

14.14

14.15

Normal and Abrupt Completion of Statements 431

Blocks 433

Local Class Declarations 433

Local Variable Declaration Statements 434

1441 Loca Variable Declarators and Types 436

14.4.2 Execution of Local Variable Declarations 437

Statements 438

The Empty Statement 440

Labeled Statements 440

Expression Statements 441

Thei f Statement 442

14.9.1 Thei f -t hen Statement 443

149.2 Theif-t hen-el se Statement 443

Theassert Statement 444

Theswi t ch Statement 447

Thewhi | e Statement 451

14.12.1 Abrupt Completion of whi | e Statement 451

The do Statement 452

14.13.1 Abrupt Completion of do Statement 453

Thefor Statement 454

14.14.1 Thebasicfor Statement 454
14.14.1.1 Initialization of f or Statement 455
14.14.1.2 lteration of f or Statement 455
14.14.1.3 Abrupt Completion of f or Statement 456

14.14.2 Theenhanced f or statement 457

Thebr eak Statement 460

15

14.16
14.17
14.18
14.19
14.20

14.21

The Java® Language Specification

Theconti nue Statement 462
Ther et urn Statement 464
Thet hr ow Statement 466
Thesynchroni zed Statement 468
Thetry statement 469
14.20.1 Execution of try-catch 472
14.20.2 Executionof try-finally andtry-catch-finally 473
14.20.3 try-with-resources 475
14.20.3.1 Basictry-with-resources 478
14.20.3.2 Extended t r y-with-resources 481
Unreachable Statements 481

Expressions 489

151
152
153
154
155
156
15.7

15.8

159

15.10

1511

Evaluation, Denotation, and Result 489
Forms of Expressions 490
Type of an Expression 491
FP-strict Expressions 492
Expressions and Run-Time Checks 492
Normal and Abrupt Completion of Evaluation 494
Evaluation Order 496
15.7.1 Evaluate Left-Hand Operand First 496
15.7.2 Evaluate Operands before Operation 498
15.7.3 Evaluation Respects Parentheses and Precedence 499
15.7.4 Argument Lists are Evaluated Left-to-Right 500
15.7.5 Evaluation Order for Other Expressions 501
Primary Expressions 501
15.8.1 Lexical Literals 502
15.8.2 ClassLiterals 503
158.3 this 504
1584 Qualifiedthis 505
15.8.,5 Parenthesized Expressions 505
Class Instance Creation Expressions 506
15.9.1 Determining the Class being Instantiated 508
15.9.2 Determining Enclosing Instances 509
15.9.3 Choosing the Constructor and its Arguments 511
15.9.4 Run-Time Evaluation of Class Instance Creation
Expressions 515
15.9.5 Anonymous Class Declarations 516
15.95.1 Anonymous Constructors 517
Array Creation and Access Expressions 518
15.10.1 Array Creation Expressions 518
15.10.2 Run-Time Evaluation of Array Creation Expressions 519
15.10.3 Array Access Expressions 523
15.10.4 Run-Time Evaluation of Array Access Expressions 523
Field Access Expressions 526
15.11.1 Field Access Using aPrimary 526
15.11.2 Accessing Superclass Members using super 529

Xi

Xii

The Java® Language Specification

15.12

15.13

15.14

15.15

15.16

15.17

15.18

15.19
15.20

1521

Method Invocation Expressions 531
15.12.1 Compile-Time Step 1: Determine Class or Interface to
Search 532
15.12.2 Compile-Time Step 2: Determine Method Signature 534
15.12.2.1 Identify Potentialy Applicable Methods 540
15.12.2.2 Phase 1: Identify Matching Arity Methods Applicable
by Strict Invocation 543
15.12.2.3 Phase 2: Identify Matching Arity Methods Applicable
by Loose Invocation 544
15.12.2.4 Phase 3: Identify Methods Applicable by Variable Arity
Invocation 545
15.12.2.5 Choosing the Most Specific Method 545
15.12.2.6 Method Invocation Type 549
15.12.3 Compile-Time Step 3: Is the Chosen Method Appropriate? 550
15.12.4 Run-Time Evaluation of Method Invocation 553
15.12.4.1 Compute Target Reference (If Necessary) 553
15.12.4.2 Evauate Arguments 555
15.12.4.3 Check Accessibility of Type and Method 556
15.12.4.4 Locate Method to Invoke 557
15.12.4.5 Create Frame, Synchronize, Transfer Control 561
Method Reference Expressions 563
15.13.1 Compile-Time Declaration of a Method Reference 566
15.13.2 Type of aMethod Reference 571
15.13.3 Run-Time Evaluation of Method References 573
Postfix Expressions 576
15.14.1 Expression Names 577
15.14.2 Postfix Increment Operator ++ 577
15.14.3 Postfix Decrement Operator - - 577
Unary Operators 578
15.15.1 Prefix Increment Operator ++ 580
15.15.2 Prefix Decrement Operator - - 580
15.15.3 Unary Plus Operator + 581
15.15.4 Unary Minus Operator - 581
15.15.5 Bitwise Complement Operator ~ 582
15.15.6 Logical Complement Operator! 582
Cast Expressions 582
Multiplicative Operators 584
15.17.1 Multiplication Operator * 585
15.17.2 Division Operator/ 586
15.17.3 Remainder Operator % 587
Additive Operators 590
15.18.1 String Concatenation Operator + 590
15.18.2 Additive Operators (+ and -) for Numeric Types 593
Shift Operators 595
Relational Operators 596
15.20.1 Numerical Comparison Operators <, <=, >, and >= 596
15.20.2 Type Comparison Operator i nst anceof 598
Equality Operators 599

16

15.22

15.23
15.24
15.25

15.26

15.27

15.28

The Java® Language Specification

15.21.1 Numerical Equality Operators==and!= 599
15.21.2 Boolean Equality Operators== and! = 600
15.21.3 Reference Equality Operators==and!= 601
Bitwise and Logical Operators 601

15.22.1 Integer Bitwise Operators &, ~, and| 602
15.22.2 Boolean Logical Operators &, ~, and| 603
Conditional-And Operator && 603

Conditional-Or Operator | | 604

Conditional Operator ? : 605

15.25.1 Boolean Conditional Expressions 612
15.25.2 Numeric Conditional Expressions 612
15.25.3 Reference Conditional Expressions 613
Assignment Operators 614

15.26.1 Simple Assignment Operator = 615

15.26.2 Compound Assignment Operators 621
Lambda Expressions 627

15.27.1 Lambda Parameters 629

15.27.2 LambdaBody 633

15.27.3 Type of aLambda Expression 636

15.27.4 Run-Time Evaluation of Lambda Expressions 638
Constant Expressions 639

Definite Assignment 641

16.1

16.2

Definite Assignment and Expressions 647

16.1.1 Boolean Constant Expressions 647
16.1.2 Conditiona-And Operator && 647
16.1.3 Conditional-Or Operator | | 648

16.1.4 Logical Complement Operator! 648
16.1.5 Conditional Operator ? : 648

16.1.6 Conditional Operator ? : 649

16.1.7 Other Expressions of Typebool ean 649
16.1.8 Assignment Expressions 649

16.1.9 Operators++and-- 650

16.1.10 Other Expressions 650

Definite Assignment and Statements 652

16.21 Empty Statements 652

16.2.2 Blocks 652

16.2.3 Loca Class Declaration Statements 653
16.24 Loca Variable Declaration Statements 653
16.2.5 Labeled Statements 654

16.2.6 Expression Statements 654

16.2.7 if Statements 654

16.2.8 assert Statements 655

16.2.9 switch Statements 655

16.2.10 whi | e Statements 656

16.2.11 do Statements 656

16.2.12 for Statements 656

Xiii

Xiv

The Java® Language Specification

17

18

16.3
16.4
16.5
16.6
16.7
16.8
16.9

16.2.12.1 Initialization Part of f or Statement 657
16.2.12.2 Incrementation Part of f or Statement 658
16.2.13 break, conti nue, ret urn, and t hr ow Statements 658
16.2.14 synchroni zed Statements 658
16.2.15 try Statements 659
Definite Assignment and Parameters 660
Definite Assignment and Array Initializers 660
Definite Assignment and Enum Constants 661
Definite Assignment and Anonymous Classes 661
Definite Assignment and Member Types 662
Definite Assignment and Static Initializers 662
Definite Assignment, Constructors, and Instance Initializers 663

Threadsand Locks 665

171
17.2

17.3
174

175

17.6
17.7

Synchronization 666

Wait Sets and Notification 666

17.2.1 Wait 667

17.2.2 Notification 668

17.2.3 Interruptions 669

17.2.4 Interactions of Waits, Notification, and Interruption 669
Sleepand Yield 670

Memory Model 671

17.4.1 Shared Variables 674

17.4.2 Actions 674

17.4.3 Programsand Program Order 675

17.4.4 Synchronization Order 676

17.45 Happens-before Order 677

17.4.6 Executions 680

17.4.7 Well-Formed Executions 681

17.4.8 Executions and Causality Requirements 681
17.4.9 Observable Behavior and Nonterminating Executions 684
final Field Semantics 686

1751 Semanticsof final Fields 688

17.5.2 Readingfinal Fields During Construction 688
17.5.3 Subsequent Modification of fi nal Fields 689
1754 Write-Protected Fields 690

Word Tearing 691

Non-Atomic Treatment of doubl e and | ong 692

TypeInference 693

18.1

18.2

Concepts and Notation 694

18.1.1 Inference Variables 694

18.1.2 Constraint Formulas 695

18.1.3 Bounds 695

Reduction 697

18.2.1 Expression Compatibility Constraints 697
18.2.2 Type Compatibility Constraints 702

The Java® Language Specification

18.2.3 Subtyping Constraints 703
18.2.4 Type Equality Constraints 704
18.25 Checked Exception Constraints 706
18.3 Incorporation 708
18.3.1 Complementary Pairs of Bounds 709
18.3.2 Bounds Involving Capture Conversion 709
184 Resolution 710
185 Usesof Inference 712
18.5.1 Invocation Applicability Inference 712
18.5.2 Invocation Type Inference 714
18.5.2.1 Poly Method Invocation Compatibility 714
18.5.2.2 Additional Argument Constraints 717
18.5.3 Functional Interface Parameterization Inference 721
18.5.4 More Specific Method Inference 722

19 Syntax 725
A Limited License Grant 753

XV

CHAPTER 1

| ntroduction

T HE Javee programming language is a general-purpose, concurrent, class
based, object-oriented language. It is designed to be simple enough that many
programmers can achieve fluency inthelanguage. The Javaprogramming language
isrelated to C and C++ but isorganized rather differently, with anumber of aspects
of C and C++ omitted and afew ideas from other languagesincluded. It isintended
to be a production language, not a research language, and so, as C. A. R. Hoare
suggested in his classic paper on language design, the design has avoided including
new and untested features.

The Javaprogramming languageis strongly and statically typed. This specification
clearly distinguishes between the compile-time errorsthat can and must be detected
at compile time, and those that occur at run time. Compile time normally consists
of translating programs into a machine-independent byte code representation.
Run-time activities include loading and linking of the classes needed to execute
a program, optional machine code generation and dynamic optimization of the
program, and actual program execution.

The Java programming language is arelatively high-level language, in that details
of the machine representation are not available through the language. It includes
automatic storage management, typically using a garbage collector, to avoid
the safety problems of explicit dealocation (as in C's free or C++'s del et e).
High-performance garbage-collected implementations can have bounded pausesto
support systems programming and real-time applications. The language does not
include any unsafe constructs, such asarray accesseswithout index checking, since
such unsafe constructs would cause a program to behave in an unspecified way.

The Java programming language is normally compiled to the bytecode instruction
set and binary format defined in The Java Virtual Machine Specification, Java SE
13 Edition.

11

Organization of the Specification INTRODUCTION

1.1 Organization of the Specification

Chapter 2 describes grammars and the notation used to present the lexical and
syntactic grammars for the language.

Chapter 3 describesthe lexical structure of the Java programming language, which
is based on C and C++. The language is written in the Unicode character set. It
supports the writing of Unicode characters on systems that support only ASCII.

Chapter 4 describes types, values, and variables. Types are subdivided into
primitive types and reference types.

The primitive types are defined to be the same on all machines and in al
implementations, and are various sizes of two's-complement integers, single- and
double-precision |EEE 754 standard floating-point numbers, abool ean type, and
a Unicode character char type. Vaues of the primitive types do not share state.

Reference types are the class types, the interface types, and the array types. The
reference types are implemented by dynamicaly created objects that are either
instances of classes or arrays. Many referencesto each object can exist. All objects
(including arrays) support the methods of the class j ect , which is the (single)
root of the class hierarchy. A predefined st ri ng class supports Unicode character
strings. Classes exist for wrapping primitive values inside of objects. In many
cases, wrapping and unwrapping is performed automatically by the compiler (in
which case, wrapping is called boxing, and unwrapping is called unboxing). Class
and interface declarations may be generic, that is, they may be parameterized by
other reference types. Such declarations may then be invoked with specific type
arguments.

Variables are typed storage locations. A variable of a primitive type holds avalue
of that exact primitive type. A variable of aclass type can hold a null reference or
areference to an object whose type is that class type or any subclass of that class
type. A variable of an interface type can hold a null reference or areferenceto an
instance of any classthat implements theinterface. A variable of an array type can
hold anull reference or areferenceto an array. A variable of classtype Obj ect can
hold a null reference or areference to any object, whether class instance or array.

Chapter 5 describes conversions and numeric promotions. Conversions change the
compile-time type and, sometimes, the value of an expression. These conversions
include the boxing and unboxing conversions between primitive types and
reference types. Numeric promotions are used to convert the operands of anumeric
operator to a common type where an operation can be performed. There are no

INTRODUCTION Organization of the Specification

loopholesinthelanguage; castson referencetypesare checked at runtimeto ensure
type safety.

Chapter 6 describes declarations and names, and how to determine what names
mean (that is, which declaration a name denotes). The Java programming language
does not require classes and interfaces, or their members, to be declared before
they are used. Declaration order issignificant only for local variables, local classes,
and the order of field initializers in a class or interface. Recommended naming
conventions that make for more readable programs are described here.

Chapter 7 describes the structure of a program, which is organized into packages.
The members of a package are classes, interfaces, and subpackages. Packages,
and consequently their members, have names in a hierarchical name space; the
Internet domain name system can usually be used to form unique package names.
Compilation units contain declarations of the classes and interfaces that are
members of a given package, and may import classes and interfaces from other
packages to give them short names.

Packages may be grouped into modules that serve as building blocks in the
construction of very large programs. The declaration of a module specifies which
other modules (and thus packages, and thus classes and interfaces) arerequired in
order to compile and run code in its own packages.

The Java programming language supports limitations on external access to the
members of packages, classes, and interfaces. The members of a package may be
accessible solely by other members in the same package, or by members in other
packages of the same module, or by members of packages in different modules.
Similar constraints apply to the members of classes and interfaces.

Chapter 8 describes classes. The members of classes are classes, interfaces, fields
(variables) and methods. Classvariablesexist once per class. Class methods operate
without reference to a specific object. Instance variables are dynamically created
in objects that are instances of classes. Instance methods are invoked on instances
of classes; such instances become the current object t hi s during their execution,
supporting the object-oriented programming style.

Classes support singleinheritance, in which each classhasasingle superclass. Each
class inherits members from its superclass, and ultimately from the class j ect .
Variablesof aclasstype can reference an instance of that class or of any subclass of
that class, allowing new types to be used with existing methods, polymorphically.

Classes support concurrent programming with synchr oni zed methods. Methods
declare the checked exceptions that can arise from their execution, which allows
compile-time checking to ensure that exceptiona conditions are handled. Objects

11

11

Organization of the Specification INTRODUCTION

candeclareaf i nal i ze method that will beinvoked beforethe objectsarediscarded
by the garbage collector, allowing the objects to clean up their state.

For simplicity, the language has neither declaration "headers' separate from the
implementation of a class nor separate type and class hierarchies.

A special form of classes, enums, support the definition of small sets of valuesand
their manipulation in atype safe manner. Unlike enumerations in other languages,
enums are objects and may have their own methods.

Chapter 9 describes interfaces. The members of interfaces are classes, interfaces,
constant fields, and methods. Classes that are otherwise unrelated can implement
the same interface. A variable of an interface type can contain a reference to any
object that implements the interface.

Classes and interfaces support multiple inheritance from interfaces. A class that
implements one or more interfaces may inherit instance methods from both its
superclass and its superinterfaces.

Annotation types are speciaized interfaces used to annotate declarations. Such
annotations are not permitted to affect the semantics of programs in the Java
programming language in any way. However, they provide useful input to various
tools.

Chapter 10 describes arrays. Array accesses include bounds checking. Arrays are
dynamically created objects and may be assigned to variables of type j ect . The
language supports arrays of arrays, rather than multidimensional arrays.

Chapter 11 describes exceptions, which are nonresuming and fully integrated with
the language semantics and concurrency mechanisms. There are three kinds of
exceptions: checked exceptions, run-time exceptions, and errors. The compiler
ensures that checked exceptions are properly handled by requiring that a method
or constructor can result in a checked exception only if the method or constructor
declaresit. This provides compile-time checking that exception handlers exist, and
aids programming in the large. Most user-defined exceptions should be checked
exceptions. Invalid operationsin the program detected by the JavaVirtual Machine
result in run-time exceptions, such as Nul | Poi nt er Except i on. Errorsresult from
failures detected by the Java Virtua Machine, such as cut Of Meror yEr r or . Most
simple programs do not try to handle errors.

Chapter 12 describes activities that occur during execution of a program. A
program is normaly stored as binary files representing compiled classes and
interfaces. These binary files can be loaded into a Java Virtual Machine, linked to
other classes and interfaces, and initialized.

INTRODUCTION Organization of the Specification

After initialization, class methods and class variables may be used. Some classes
may be instantiated to create new objects of the class type. Objects that are class
instances also contain an instance of each superclass of the class, and object
creation involves recursive creation of these superclass instances.

When an object is no longer referenced, it may be reclaimed by the garbage
collector. If an object declaresafinalizer, thefinalizer is executed before the object
is reclaimed to give the object a last chance to clean up resources that would not
otherwise be released. When a classis no longer needed, it may be unloaded.

Chapter 13 describes binary compatibility, specifying the impact of changes to
typeson other typesthat use the changed types but have not been recompiled. These
considerationsare of interest to devel opers of typesthat areto bewidely distributed,
in a continuing series of versions, often through the Internet. Good program
development environments automatically recompile dependent code whenever a
type is changed, so most programmers need not be concerned about these details.

Chapter 14 describes blocks and statements, which are based on C and C++.
The language has no got o statement, but includes labeled br eak and cont i nue
statements. Unlike C, the Java programming language requires bool ean (Or
Bool ean) expressions in control-flow statements, and does not convert types to
bool ean implicitly (except through unboxing), in the hope of catching more errors
at compile time. A synchroni zed statement provides basic object-level monitor
locking. A t ry statement canincludecat ch and f i nal I y clausesto protect against
non-local control transfers.

Chapter 15 describes expressions. This document fully specifies the (apparent)
order of evaluation of expressions, for increased determinism and portability.
Overloaded methods and constructors are resolved at compile time by picking the
most specific method or constructor from those which are applicable.

Chapter 16 describes the precise way in which the language ensures that
local variables are definitely set before use. While all other variables are
automatically initialized to a default value, the Java programming language does
not automatically initialize local variablesin order to avoid masking programming
errors.

Chapter 17 describes the semantics of threads and locks, which are based on
the monitor-based concurrency originally introduced with the Mesa programming
language. The Java programming language specifies a memory model for shared-
memory multiprocessors that supports high-performance implementations.

Chapter 18 describesavariety of typeinference algorithms used to test applicability
of generic methods and to infer types in a generic method invocation.

11

1.2

Example Programs INTRODUCTION

Chapter 19 presents a syntactic grammar for the language.

1.2 Example Programs

Most of the example programs given in the text are ready to be executed and are
similar in form to:

cl ass Test {
public static void main(String[] args) {
for (int i =0; i < args.length; i++)
Systemout.print(i == 0 ? args[i] : " " + args[i]);
Systemout. printlin();

}

Onamachinewith the Oracle JDK installed, thisclass, storedinthefileTest . j ava,
can be compiled and executed by giving the commands:

javac Test.java
java Test Hello, world.

producing the output:

Hel | o, worl d.

1.3 Notation

Throughout this specification we refer to classes and interfaces drawn from the
Java SE Platform API. Whenever we refer to aclass or interface (other than those
declared in an example) using asingle identifier N, the intended reference isto the
class or interface named N in the packagej ava. | ang. We use the canonical name
(86.7) for classes or interfaces from packages other than j ava. I ang.

Non-normative information, designed to clarify the specification, is given in
smaller, indented text.

Thisis non-normative information. It provides intuition, rationale, advice, examples, etc.

The type system of the Java programming language occasionally relies on the
notion of a substitution. The notation [F1: =T, .. ., Fn: =Tn] denotes substitution
of FF byT forl<i<n.

INTRODUCTION Relationship to Predefined Classes and Interfaces

1.4 Relationship to Predefined Classes and I nterfaces

As noted above, this specification often refers to classes of the Java SE
Platform API. In particular, some classes have a specia relationship with
the Java programming language. Examples include classes such as bj ect,
C ass, d asslLoader, String, Thread, and the classes and interfaces in package
java. |l ang. refl ect , among others. This specification constrains the behavior of
such classes and interfaces, but does not provide acompl ete specification for them.
The reader is referred to the Java SE Platform API documentation.

Consequently, this specification does not describe reflection in any detail.
Many linguistic constructs have analogs in the Core Reflection API
(java.l ang.refl ect) and the Language Moddl APl (j avax. | ang. nodel), but
these are generally not discussed here. For example, whenwelist thewaysinwhich
an object can be created, we generally do not include the ways in which the Core
Reflection API can accomplish this. Readers should be aware of these additional
mechanisms even though they are not mentioned in the text.

1.5 Preview Features

A preview feature is a new feature of the Java programming language that
is fully specified, fully implemented, and yet impermanent. It is available in
implementations of a given release of the Java SE Platform to provoke developer
feedback based on real world use; this may lead to it becoming permanent in a
future release of the Java SE Platform.

Implementations must disable, at both compile time and run time, the preview
features defined by agiven release of the Java SE Platform, unlessthe user indicates
via the host system, at both compile time and run time, that preview features are
to be enabled.

The preview features defined by a given release of the Java SE Platform are
specified in standalone documents that indicate changes ("diffs') to The Javae
Language Specification for that release. The specifications of preview features are
incorporated into The Javae Language Specification by reference, and made a part
thereof, if and only if preview features are enabled at compile time.

Java SE 13 defines two preview features in the Java programming language:
Switch Expressions and Text Blocks. The standalone documents which specify
these preview features are available at the Oracle web site which hosts The Java®
Language Specification: ht t ps: // docs. or acl e. cont j avase/ specs/ .

14

https://docs.oracle.com/javase/specs/

16

Feedback INTRODUCTION

1.6 Feedback

Readers are invited to report technical errors and ambiguities in The Javae
Language Specificationtoj | s-j vms- spec- coment s@penj dk. j ava. net .

Questions concerning the behavior of j avac (the reference compiler for the Java
programming language), and in particular its conformance to this specification,
may be sent to conpi | er - dev@penj dk. j ava. net .

1.7 References

Apple Computer. Dylan Reference Manual. Apple Computer Inc., Cupertino, California.
September 29, 1995.

Bobrow, Daniel G., LindaG. DeMichidl, Richard P. Gabriel, Sonya E. Keene, Gregor Kiczales,
and David A. Moon. Common Lisp Object System Specification, X3J13 Document
88-002R, June 1988; appears as Chapter 28 of Steele, Guy. Common Lisp: The Language,
2nd ed. Digital Press, 1990, ISBN 1-55558-041-6, 770-864.

Ellis, Margaret A., and Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison-
Wesley, Reading, Massachusetts, 1990, reprinted with corrections October 1992, ISBN
0-201-51459-1.

Goldberg, Adele and Robson, David. Smalltalk-80: The Language. Addison-Wesley, Reading,
M assachusetts, 1989, ISBN 0-201-13688-0.

Harbison, Samuel. Modula-3. Prentice Hall, Englewood Cliffs, New Jersey, 1992, ISBN
0-13-596396.

Hoare, C. A. R. Hints on Programming Language Design. Stanford University Computer
Science Department Technical Report No. CS-73-403, December 1973. Reprinted in
SIGACT/SIGPLAN Symposium on Principles of Programming Languages. Association
for Computing Machinery, New Y ork, October 1973.

|IEEE Sandard for Binary Floating-Point Arithmetic. ANSI/IEEE Std. 754-1985. Available
from Globa Engineering Documents, 15 Inverness Way East, Englewood, Colorado
80112-5704 USA; 800-854-7179.

Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language, 2nd ed. Prentice
Hall, Englewood Cliffs, New Jersey, 1988, ISBN 0-13-110362-8.

Madsen, Ole Lehrmann, Birger Mgller-Pedersen, and Kristen Nygaard. Object-Oriented
Programming in the Beta Programming Language. Addison-Wesley, Reading,
Massachusetts, 1993, ISBN 0-201-62430-3.

Mitchell, James G., William Maybury, and Richard Sweet. The Mesa Programming Language,
Version 5.0. Xerox PARC, Palo Alto, California, CSL 79-3, April 1979.

INTRODUCTION References

Stroustrup, Bjarne. The C++ Progamming Language, 2nd ed. Addison-Wesley, Reading,
Massachusetts, 1991, reprinted with corrections January 1994, ISBN 0-201-53992-6.

Unicode Consortium, The. The Unicode Sandard, Version 12.1.0. Mountain View, California,
2019, ISBN 978-1-936213-25-2.

1.7

CHAPTER2

Grammars

THIS chapter describes the context-free grammars used in this specification to
define the lexical and syntactic structure of a program.

2.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has
an abstract symbol called a nonterminal as its left-hand side, and a sequence of
one or more nonterminal and terminal symbols as its right-hand side. For each
grammar, the terminal symbols are drawn from a specified al phabet.

Starting from a sentence consisting of asingledistinguished nonterminal, called the
goal symbol, a given context-free grammar specifies alanguage, namely, the set of
possible sequences of terminal symbols that can result from repeatedly replacing
any nonterminal in the sequence with aright-hand side of a production for which
the nonterminal isthe left-hand side.

2.2 ThelLexical Grammar

A lexical grammar for the Java programming language is given in 83 (Lexical
Structure). Thisgrammar has asitsterminal symbolsthe characters of the Unicode
character set. It defines a set of productions, starting from the goal symbol Input
(83.5), that describe how sequences of Unicode characters (83.1) aretrandated into
a sequence of input elements (83.5).

These input elements, with white space (83.6) and comments (83.7) discarded,
form the terminal symbols for the syntactic grammar for the Java programming
language and are called tokens (83.5). These tokens are the identifiers (83.8),

11

2.3

12

The Syntactic Grammar GRAMMARS

keywords (83.9), literals (83.10), separators (83.11), and operators (83.12) of the
Java programming language.

2.3 The Syntactic Grammar

The syntactic grammar for the Java programming language is given in Chapters
4, 6-10, 14, and 15. This grammar has as its terminal symbols the tokens defined
by the lexical grammar. It defines a set of productions, starting from the goal
symbol CompilationUnit (87.3), that describe how sequences of tokens can form
syntactically correct programs.

For convenience, the syntactic grammar is presented all together in Chapter 19.

2.4 Grammar Notation

Termina symbolsare showninfixed wi dt h font in the productions of the lexical
and syntactic grammars, and throughout this specification whenever the text is
directly referring to such a terminal symbol. These are to appear in a program
exactly aswritten.

Nonterminal symbols are shown in italic type. The definition of a nonterminal is
introduced by the name of the nonterminal being defined, followed by acolon. One
or more aternative definitionsfor the nonterminal then follow on succeeding lines.

For example, the syntactic production:

IfThenStatement:
i f (Expression) Statement

states that the nonterminal IfThenStatement represents the token i f, followed by a left
parenthesis token, followed by an Expression, followed by a right parenthesis token,
followed by a Statement.

The syntax {x} on the right-hand side of a production denotes zero or more
occurrences of X.

For example, the syntactic production:

ArgumentList:
Argument {, Argument}

GRAMMARS Grammar Notation

states that an ArgumentL.ist consists of an Argument, followed by zero or more occurrences
of acommaand an Argument. The result isthat an ArgumentList may contain any positive
number of arguments.

The syntax [X] on the right-hand side of a production denotes zero or one
occurrences of x. That is, x is an optional symbol. The alternative which contains
the optional symbol actually defines two alternatives: one that omits the optional
symbol and one that includesiit.

This means that:

BreakStatement:
br eak [Identifier] ;

is aconvenient abbreviation for:

BreakStatement:
break ;
br eak ldentifier ;

As another example, it means that:

BasicFor Satement:
for ([Forlnit] ; [Expression] ; [ForUpdate]) Satement

is aconvenient abbreviation for:

BasicFor Satement:
for (; [Expression] ; [ForUpdate]) Satement
for (Forlnit; [Expression] ; [ForUpdate]) Satement

which in turn is an abbreviation for:

BasicFor Statement:
for (;; [ForUpdate]) Satement
for (; Expression; [ForUpdate]) Satement
for (Forlnit; ; [ForUpdate]) Satement
for (Forlnit; Expression; [ForUpdate]) Satement

which in turn is an abbreviation for:

24

13

2.4 Grammar Notation GRAMMARS

BasicFor Satement:
for (; ;) Satement
for (; ; ForUpdate) Satement
for (; Expression;) Satement
for (; Expression; ForUpdate) Satement
for (Forlnit; ;) Satement
for (Forlnit; ; ForUpdate) Satement
for (Forlnit; Expression;) Satement
for (Forlnit; Expression; ForUpdate) Statement

so the nonterminal BasicFor Statement actually has eight alternative right-hand sides.

A very long right-hand side may be continued on asecond line by clearly indenting
the second line.

For example, the syntactic grammar contains this production:

Normal ClassDeclaration:
{ClassModifier} cl ass Typeldentifier [TypeParameters]
[Superclass] [Superinterfaces] ClassBody

which defines one right-hand side for the nonterminal Normal ClassDeclaration.

The phrase (one of) on the right-hand side of a production signifiesthat each of the
symbols on the following line or linesis an aternative definition.

For example, the lexical grammar contains the production:

ZeroToThree:
(one of)
0123
which is merely a convenient abbreviation for:

ZeroToThree:
0

1
2
3
When an alternativein aproduction appearsto be atoken, it representsthe sequence
of characters that would make up such atoken.
Thus, the production:

BooleanLiteral:
(one of)
truefal se

14

GRAMMARS Grammar Notation

is shorthand for:

BooleanLiteral:
true
fal se

The right-hand side of a production may specify that certain expansions are not
permitted by using the phrase "but not" and then indicating the expansions to be
excluded.

For example:

Identifier:
IdentifierChars but not a Keyword or BooleanLiteral or NullLiteral

Finally, afew nonterminals are defined by a narrative phrase in roman type where
it would be impractical to list al the alternatives.

For example:

RawlnputCharacter:
any Unicode character

24

15

CHAPTER3

Lexical Structure

T HIS chapter specifies the lexical structure of the Java programming language.

Programs are written in Unicode (83.1), but lexical translations are provided (83.2)
so that Unicode escapes (83.3) can be used to include any Unicode character using
only ASCII characters. Line terminators are defined (83.4) to support the different
conventions of existing host systems while maintaining consistent line numbers.

The Unicode characters resulting from the lexical trandations are reduced to a
seguence of input elements (83.5), which are white space (83.6), comments (83.7),
and tokens. The tokens are the identifiers (83.8), keywords (83.9), literals (§83.10),
separators (83.11), and operators (83.12) of the syntactic grammar.

3.1 Unicode

Programs are written using the Unicode character set. Information about this
character set and its associated character encodings may be found at https://
www. uni code. org/ .

The Java SE Platform tracks the Unicode Standard as it evolves. The precise
version of Unicode used by a given release is specified in the documentation of
the class Char act er.

Versionsof the Javaprogramming language prior to JDK 1.1 used Unicode 1.1.5. Upgrades
to newer versions of the Unicode Standard occurred in JDK 1.1 (to Unicode 2.0), JDK 1.1.7
(to Unicode 2.1), Java SE 1.4 (to Unicode 3.0), Java SE 5.0 (to Unicode 4.0), Java SE 7
(to Unicode 6.0), Java SE 8 (to Unicode 6.2), Java SE 9 (to Unicode 8.0), Java SE 11 (to
Unicode 10.0), Java SE 12 (to Unicode 11.0), and Java SE 13 (to Unicode 12.1).

The Unicode standard was originally designed as a fixed-width 16-bit character
encoding. It has since been changed to alow for characters whose representation
requires more than 16 bits. The range of legal code points is now U+0000

17

https://www.unicode.org/
https://www.unicode.org/

3.2

18

Lexical Translations LEXICAL STRUCTURE

to U+10FFFF, using the hexadecimal U+n notation. Characters whose code
points are greater than U+FFFF are called supplementary characters. To represent
the complete range of characters using only 16-bit units, the Unicode standard
defines an encoding called UTF-16. In thisencoding, supplementary charactersare
represented as pairs of 16-bit code units, the first from the high-surrogates range,
(U+D800 to U+DBFF), the second from the low-surrogates range (U+DC00 to U
+DFFF). For charactersin the range U+0000 to U+FFFF, the values of code points
and UTF-16 code units are the same.

The Java programming language represents text in sequences of 16-bit code units,
using the UTF-16 encoding.

Some APIs of the Java SE Platform, primarily in the Char act er class, use 32-hit integers
to represent code points as individual entities. The Java SE Platform provides methods to
convert between 16-bit and 32-bit representations.

This specification uses the terms code point and UTF-16 code unit where the
representation isrelevant, and the generic term character where the representation
isirrelevant to the discussion.

Except for comments (83.7), identifiers, and the contents of character and string
literals (83.10.4, 8§3.10.5), all input elements (83.5) in a program are formed
only from ASCII characters (or Unicode escapes (83.3) which result in ASCII
characters).

ASCII (ANSI X3.4) isthe American Standard Code for Information Interchange. Thefirst
128 characters of the Unicode UTF-16 encoding are the ASCI| characters.

3.2 Lexical Trandations

A raw Unicode character stream is trandated into a sequence of tokens, using the
following three lexical trangation steps, which are applied in turn:

1. Atrandation of Unicodeescapes(83.3) intheraw stream of Unicode characters
to the corresponding Unicode character. A Unicode escape of theform\ uxxxx,
where xxxx is a hexadecimal value, represents the UTF-16 code unit whose
encoding is xxxx. This trandation step allows any program to be expressed
using only ASCII characters.

2. A trandation of the Unicode stream resulting from step 1 into a stream of input
characters and line terminators (83.4).

LEXICAL STRUCTURE Unicode Escapes

3. A trandation of the stream of input characters and line terminators resulting
from step 2 into a sequence of input elements (83.5) which, after white space
(83.6) and comments (83.7) are discarded, comprise the tokens (§3.5) that are
the terminal symbols of the syntactic grammar (82.3).

The longest possible trandation is used at each step, even if the result does not
ultimately make a correct program while ancther lexical trandation would. There
is one exception: if lexical trandation occurs in a type context (84.11) and the
input stream has two or more consecutive > charactersthat are followed by anon->
character, then each > character must be translated to the token for the numerical
comparison operator >.

The input characters a--b are tokenized (83.5) as a, --, b, which is not part of any
grammatically correct program, even though the tokenization a, -, - , b could be part of a
grammatically correct program.

Without the rule for > characters, two consecutive > brackets in a type such as
Li st <Li st <Stri ng>> would be tokenized as the signed right shift operator >>, while
three consecutive > brackets in a type such as Li st <Li st <Li st <St ri ng>>> would be
tokenized as the unsigned right shift operator >>>. Worse, the tokenization of four or more
consecutive > bracketsin atype such asLi st <Li st <Li st <Li st <St ri ng>>>> would be
ambiguous, as various combinations of >, >>, and >>> tokens could represent the >>>>
characters.

3.3 Unicode Escapes

A compiler for the Java programming language (" Java compiler") first recognizes
Unicode escapes in itsinput, trand ating the ASCII characters\ u followed by four
hexadecimal digits to the UTF-16 code unit (83.1) for the indicated hexadecimal
value, and passing al other characters unchanged. Representing supplementary
characters requires two consecutive Unicode escapes. This translation step results
in asequence of Unicode input characters.

Unicodel nputCharacter:
UnicodeEscape
Rawl nputCharacter

UnicodeEscape:
\ UnicodeMarker HexDigit HexDigit HexDigit HexDigit

UnicodeMarker:

u {u}

3.3

19

3.3

20

Unicode Escapes LEXICAL STRUCTURE

HexDigit:
(one of)
0123456789abcdef ABCDEF

RawlnputCharacter:
any Unicode character

The\, u, and hexadecimal digits here are all ASCII characters.

In addition to the processing implied by the grammar, for each raw input character
that isabackslash\ , input processing must consider how many other \ characters
contiguously precedeit, separating it fromanon-\ character or the start of theinput
stream. If this number is even, then the\ is eligible to begin a Unicode escape; if
the number is odd, then the\ is not eligible to begin a Unicode escape.

For example, theraw input "\ \ u2122=\ u2122" resultsinthe eleven characters” \ \ u
2 122 =™"(\u2122 isthe Unicode encoding of the character ™.

If an eligible\ isnot followed by u, then it istreated as a Rawl nputCharacter and
remains part of the escaped Unicode stream.

If an eligible\ isfollowed by u, or more than one u, and the last u is not followed
by four hexadecimal digits, then a compile-time error occurs.

Thecharacter produced by aUnicode escape does not participatein further Unicode
€SCapes.

For example, the raw input \ u005cu005a results in the six characters\ u 0 0 5 a,
because 005c¢ is the Unicode value for \ . It does not result in the character Z, which is
Unicode character 005a, because the\ that resulted from the\ u005c is not interpreted as
the start of afurther Unicode escape.

The Java programming language specifies a standard way of transforming a
program written in Unicode into ASCII that changes a program into a form that
can be processed by ASCII-based tools. The transformation involves converting
any Unicode escapesin the source text of the program to ASCII by adding an extra
u - for example, \ uxxxx becomes\ uuxxxx - while simultaneously converting non-
ASCII charactersin the source text to Unicode escapes containing asingle u each.

This transformed version is equally acceptable to a Java compiler and represents
the exact same program. The exact Unicode source can later be restored from this
ASCII form by converting each escape sequence where multipleu's are present to a
sequence of Unicode characterswith onefewer u, while simultaneously converting
each escape sequencewith asingleu to the corresponding single Unicode character.

LEXICAL STRUCTURE Line Terminators 34

A Java compiler should use the \ uxxxx notation as an output format to display Unicode
characters when a suitable font is not available.

3.4 LineTerminators

A Java compiler next divides the sequence of Unicode input charactersinto lines
by recognizing line terminators.

LineTerminator:
the ASCII LF character, also known as "newline"
the ASCII CR character, also known as "return”
the ASCII CR character followed by the ASCII LF character

InputCharacter:
Unicodel nputCharacter but not CR or LF

Lines are terminated by the ASCII characters CR, or LF, or CR LF. The two
characters CR immediately followed by LF are counted as one line terminator, not
two.

A line terminator specifies the termination of the// form of acomment (83.7).

The lines defined by line terminators may determine the line numbers produced by a Java
compiler.

The result is a sequence of line terminators and input characters, which are the
terminal symbols for the third step in the tokenization process.

3.5 Input Elementsand Tokens

Theinput characters and line terminators that result from escape processing (83.3)
and then input line recognition (83.4) are reduced to a sequence of input elements.

Input:
{InputElement} [Sub]

InputElement:
WhiteSpace
Comment
Token

21

3.6 White Space LEXICAL STRUCTURE

Token:
|dentifier
Keyword
Literal

Separator

Operator

Sub:
the ASCII SUB character, also known as "control-Z"

Those input elements that are not white space or comments are tokens. The tokens
are the terminal symbols of the syntactic grammar (82.3).

White space (83.6) and comments (83.7) can serve to separate tokens that, if
adjacent, might be tokenized in another manner. For example, the ASCII characters
- and = in the input can form the operator token - = (83.12) only if there is no
intervening white space or comment.

Asaspecia concession for compatibility with certain operating systems, the ASCI|
SUB character (\ uo01a, or control-Z) is ignored if it is the last character in the
escaped input stream.

Consider two tokensx andy in the resulting input stream. If x precedesy, then we
say that x isto theleft of y and that y isto theright of x.

For example, in this simple piece of code:

class Empty {

we say that the} token isto the right of the { token, even though it appears, in this two-
dimensional representation, downward and to theleft of the{ token. This convention about
the use of thewords|eft and right all ows usto speak, for example, of the right-hand operand
of abinary operator or of the |left-hand side of an assignment.

3.6 White Space

White spaceisdefined asthe ASCII space character, horizontal tab character, form
feed character, and line terminator characters (83.4).

22

LEXICAL STRUCTURE Comments 3.7

WhiteSpace:
the ASCII SP character, also known as " space”
the ASCII HT character, also known as "horizontal tab"
the ASCII FF character, also known as "form feed"
LineTerminator

3.7 Comments

There are two kinds of comments:
o /* text*/

A traditional comment: al the text from the ASCI| characters/ * to the ASCII
characters*/ isignored (asin C and C++).

e // text

An end-of-line comment: all the text from the ASCI| characters// to the end of
thelineisignored (asin C++).

Comment:
Traditional Comment
EndOfLineComment

Traditional Comment:
/ * CommentTail

CommentTail:
* CommentTailSar
NotSar CommentTail

CommentTailSar:
/
* CommentTail Star
NotSarNotSash CommentTail

NotSar:

InputCharacter but not *
LineTerminator

23

3.8 Identifiers LEXICAL STRUCTURE

NotStarNotSash:
InputCharacter but not * or /
LineTerminator

EndOfLineComment:
/1 {InputCharacter}

These productionsimply all of the following properties:
» Comments do not nest.
» /* and*/ have no special meaning in comments that begin with// .

* // hasno special meaning in comments that begin with/* or /**.

As aresult, the following text is a single compl ete comment:
/* this comment /* // /** ends here: */

The lexical grammar implies that comments do not occur within character literals
(83.10.4) or string literals (§3.10.5).

3.8 Ildentifiers

An identifier is an unlimited-length sequence of Java letters and Java digits, the
first of which must be a Java letter.

Identifier:
| dentifierChars but not a Keyword or BooleanLiteral or NullLiteral

IdentifierChars:
Javal etter {Javal etter OrDigit}

Javal etter:
any Unicode character that isa"Javaletter”

Javal etter OrDigit:
any Unicode character that is a"Javaletter-or-digit”

A "Java letter" is a character for which the method
Character.isJavaldentifierStart(int) returnstrue.

24

LEXICAL STRUCTURE Identifiers

A "Java letter-or-digit® is a character for which the method
Character.isJaval dentifierPart(int) returnstrue.

The "Java letters' include uppercase and lowercase ASCII Latin letters A-Z (\ u0041-
\ u005a), and a- z (\ u0061-\ u007a), and, for historical reasons, the ASCII dollar sign
($, or \ u0024) and underscore (_, or \ u005f). The dollar sign should be used only in
mechanically generated source code or, rarely, to access pre-existing names on legacy
systems. The underscore may be used in identifiers formed of two or more characters, but
it cannot be used as a one-character identifier due to being a keyword.

The "Javadigits' include the ASCII digits0- 9 (\ u0030-\ u0039).

Letters and digits may be drawn from the entire Unicode character set, which
supports most writing scripts in use in the world today, including the large sets for
Chinese, Japanese, and Korean. Thisallows programmersto useidentifiersin their
programs that are written in their native languages.

An identifier cannot have the same spelling (Unicode character sequence) as a
keyword (83.9), boolean literal (§83.10.3), or the null literal (83.10.7), or acompile-
time error occurs.

Two identifiers are the same only if, after ignoring characters that are
ignorable, the identifiers have the same Unicode character for each letter
or digit. An ignorable character is a character for which the method
Character.isldentifierlgnorabl e(int) returnstrue. ldentifiers that have the
same external appearance may yet be different.

For example, the identifiers consisting of the single letters LATIN CAPITAL LETTER
A (A, \u0041), LATIN SMALL LETTER A (a, \u0061), GREEK CAPITAL
LETTER ALPHA (A, \u0391), CYRILLIC SMALL LETTER A (a, \u0430) and
MATHEMATICAL BOLD ITALIC SMALL A (a,\ ud835\ udc82) are al different.

Unicode composite characters are different from their canonical equivalent decomposed
characters. For example, aLATIN CAPITAL LETTERA ACUTE (A,\ u00c1) isdifferent
from a LATIN CAPITAL LETTER A (A, \ u0041) immediately followed by a NON-
SPACING ACUTE (", \u0301) in identifiers. See The Unicode Standard, Section 3.11
"Normalization Forms'.

Examples of identifiers are:
e String
* i3

* apetn
o MAX_VALUE
e isLetterODigit

3.8

25

3.9 Keywords LEXICAL STRUCTURE

A typeidentifier isan identifier that is not the character sequence var .

Typeldentifier:
|dentifier but not var

Type identifiers are used in certain contexts involving the declaration or use of types. For
example, the name of a class must be a Typel dentifier, so it isillegal to declare a class
named var (88.1).

3.9 Keywords

51 character sequences, formed from ASCII letters, are reserved for use as
keywords and cannot be used as identifiers (83.8).

Keyword:
(one of)
abstract continue for new switch
assert def aul t if package synchroni zed
bool ean do got o private this
br eak doubl e i mpl emrent s pr ot ected t hr ow
byt e el se i mport public t hr ows
case enum i nst anceof return transi ent
catch ext ends i nt short try
char final interface static voi d
cl ass finally | ong strictfp vol atile
const fl oat native super whil e

_ (underscore)

The keywords const and got o are reserved, even though they are not currently used.
This may allow a Java compiler to produce better error messages if these C++ keywords
incorrectly appear in programs.

A variety of character sequences are sometimes assumed, incorrectly, to be keywords:

e true andfal se are not keywords, but rather boolean literals (§3.10.3).
e nul | isnot akeyword, but rather the null literal (§83.10.7).

e var isnot a keyword, but rather an identifier with special meaning as the type of a
local variable declaration (§14.4, §14.14.1, §14.14.2, §14.20.3) and the type of alambda
formal parameter (§15.27.1).

26

LEXICAL STRUCTURE Literals

A further ten character sequences are restricted keywords: open, nodul e,
requires, transitive, exports, opens, to, uses, provi des, and wi th. These
character sequences are tokenized as keywords solely where they appear as
terminals in the ModuleDeclaration, ModuleDirective, and RequiresModifier
productions (87.7). They are tokenized as identifiers everywhere else, for
compatibility with programswritten before theintroduction of restricted keywords.
There is one exception: immediately to the right of the character sequence
requi r es in the ModuleDirective production, the character sequencetransi ti ve
is tokenized as a keyword unless it is followed by a separator, in which caseit is
tokenized as an identifier.

3.10 Literals

A literal isthe source code representation of avalue of aprimitive type (84.2), the
String type (84.3.3), or the null type (84.1).

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanL.iteral
CharacterLiteral
SringLiteral
NullLiteral

3.10.1 Integer Literals

Aninteger literal may be expressed in decimal (base 10), hexadecimal (base 16),
octal (base 8), or binary (base 2).

IntegerLiteral:
DecimallntegerLiteral
HexIntegerLiteral
OctallntegerLiteral
BinarylntegerLiteral

DecimallntegerLiteral:
DecimalNumeral [Integer TypeSuffix]

HexintegerLiteral:
HexNumeral [Integer TypeSuffix]

3.10

27

3.10

28

Literals LEXICAL STRUCTURE

OctallntegerLiteral:
OctalNumeral [Integer TypeSuffix]

BinarylntegerLiteral:
BinaryNumeral [Integer TypeSuffix]

Integer TypeSuffix:
(one of)
I L

An integer literal is of typel ong if it is suffixed with an ASCI|I letter L or 1 (ell);
otherwiseit is of typei nt (84.2.1).

The suffix L ispreferred, becausetheletter | (ell) is often hard to distinguish from the digit
1 (one).

Underscores are allowed as separators between digits that denote the integer.

In a hexadecimal or binary literal, the integer is only denoted by the digits after
the ox or ob characters and before any type suffix. Therefore, underscores may not
appear immediately after ox or ob, or after the last digit in the numeral.

In adecimal or octa literal, the integer is denoted by all the digits in the literal
before any type suffix. Therefore, underscores may not appear before thefirst digit
or after the last digit in the numeral. Underscores may appear after theinitial 0 in
an octal numeral (since 0 is a digit that denotes part of the integer) and after the
initial non-zero digit in anon-zero decimal literal.

LEXICAL STRUCTURE Literals

A decimal numeral iseither the single ASCII digit 0, representing the integer zero,
or consistsof an ASCII digit from 1 to 9 optionally followed by one or more ASCI|
digitsfrom 0 to 9 interspersed with underscores, representing a positive integer.

DecimalNumeral:
0
NonZeroDigit [Digits]
NonZeroDigit Underscores Digits

NonZeroDigit:
(one of)
123456789

Digits:

Digit

Digit [DigitsAndUnder scores] Digit
Digit:

0

NonZeroDigit

DigitsAndUnderscores:
DigitOrUnderscore {DigitOrUnderscore}

DigitOrUnderscore:
Digit

Underscores:

{3

3.10

29

3.10

30

Literals LEXICAL STRUCTURE

A hexadecimal numeral consists of theleading ASCII charactersox or 0x followed
by one or more ASCII hexadecimal digits interspersed with underscores, and can
represent a positive, zero, or negative integer.

Hexadecimal digitswith values 10 through 15 are represented by the ASCI| letters
a through f or A through F, respectively; each letter used as a hexadecimal digit
may be uppercase or lowercase.

HexNumeral:
0 x HexDigits
0 X HexDigits

HexDigits:
HexDigit
HexDigit [HexDigitsAndUnder scores] HexDigit

HexDigit:
(one of)
0123456789abcdef ABCDEF

HexDigitsAndUnder scores:
HexDigitOrUnder score {HexDigitOrUnder scor e}

HexDigitOrUnderscore:
HexDigit

The HexDigit production above comes from §3.3.

LEXICAL STRUCTURE Literals

Anocta numeral consistsof an ASCII digit o followed by one or more of the ASCI|
digitso through 7 interspersed with underscores, and can represent a positive, zero,
or negative integer.

OctalNumeral:
0 OctalDigits
0 Underscores OctalDigits

OctalDigits:
OctalDigit
OctalDigit [Octal DigitsAndUnder scores] Octal Digit

OctalDigit:
(one of)
01234567

Octal DigitsAndUnder scores:
Octal DigitOrUnderscore {Octal DigitOrUnder score}

Octal DigitOrUnderscore:
OctalDigit

Note that octal numerals always consist of two or more digits, as 0 aone is aways
considered to be a decimal numeral - not that it matters much in practice, for the numerals
0, 00, and 0x0 al represent exactly the same integer value.

3.10

31

3.10 Literals LEXICAL STRUCTURE

A binary numeral consists of theleading ASCII charactersob or 0B followed by one
or more of the ASCII digitso or 1 interspersed with underscores, and can represent
apositive, zero, or negative integer.

BinaryNumeral:
0 b BinaryDigits
0 B BinaryDigits

BinaryDigits:

BinaryDigit

BinaryDigit [BinaryDigitsAndUnderscores] BinaryDigit
BinaryDigit:

(one of)
01

BinaryDigitsAndUnder scores:
BinaryDigitOrUnderscore {BinaryDigitOrUnderscore}

BinaryDigitOrUnderscore:
BinaryDigit

32

LEXICAL STRUCTURE Literals

The largest decimal literal of typei nt is 2147483648 (2°%).

All decimal literalsfrom 0 t0 2147483647 may appear anywhereani nt literal may
appear. The decimal literal 2147483648 may appear only as the operand of the
unary minus operator - (815.15.4).

Itisacompile-timeerror if thedecimal literal 2147483648 appears anywhere other
than as the operand of the unary minus operator; or if adecimal literal of typei nt
islarger than 2147483648 (2°Y).

The largest positive hexadecimal, octal, and binary literals of typei nt - each of
which represents the decimal value 2147483647 (2 l-1) - arerespectively:

o OX7fff ffff,
e 0177_7777_7777,and
e 0b0111_1111 1111 1111 1111 1111 1111 1111

The most negative hexadecimal, octal, and binary literals of type i nt - each of
which represents the decimal value - 2147483648 (-231) - are respectively:

* 0x8000_0000,
e 0200_0000_0000, and
* 0b1000_0000_0000_0000_0000_0000_0000_0000

The following hexadecimal, octal, and binary literals represent the decimal value
-1

o Oxffff _ffff,
e 0377_7777_7777,and
e O0b1111_ 1111 1111 1111 1111 1111 1111 1111

It isa compile-time error if a hexadecimal, octal, or binary i nt literal does not fit
in 32 bits.

The largest decimal literal of type| ong is 9223372036854775808L (2%).

All decima literals from oL to 9223372036854775807L may appear anywhere a
I ong literal may appear. The decimal literal 9223372036854775808L may appear
only as the operand of the unary minus operator - (815.15.4).

It is a compile-time error if the decimal literal 9223372036854775808L appears
anywhere other than as the operand of the unary minus operator; or if a decimal
literal of type! ong islarger than 9223372036854775808L (2%).

3.10

33

3.10

Literals LEXICAL STRUCTURE

The largest positive hexadecimal, octal, and binary literals of type | ong - each
of which represents the decimal value 9223372036854775807L (2%-1) - are
respectively:

o OX7fff fFFff fFFF _FFFFL,
e 07_7777_7777_7777_7777_7777L, and

e Ob0O111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111L

The most negative hexadecimal, octal, and binary literals of type | ong - each
of which represents the decimal value - 9223372036854775808L (-2%%) - are
respectively:

* 0x8000_0000_0000_0000L, and
* 010_0000_0000_0000_0000_0000L, and

e 0b1000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000L

The following hexadecimal, octal, and binary literals represent the decimal value
-1L:

o OXFfff fff fEff fEEFL,

e 017_7777_7777_7777_7777_7777L, and

o Ob1111 1111 1111 1111 1111 1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111L

It is a compile-time error if a hexadecimal, octal, or binary | ong literal does not
fit in 64 bits.

Examplesof i nt literals:
0 2 0372 OxDada_Caf e 1996 0x00_FF__00_FF
Examplesof | ong literals:

ol 0777L 0x100000000L 2_147_483_648L 0xC0BOL

3.10.2 Floating-Point Literals

A floating-point literal has the following parts: awhole-number part, adecimal or
hexadecimal point (represented by an ASCII period character), a fraction part, an
exponent, and a type suffix.

A floating-point literal may be expressed in decimal (base 10) or hexadecimal (base
16).

LEXICAL STRUCTURE Literals

For decimal floating-point literals, at least one digit (in either the whole number or
the fraction part) and either a decimal point, an exponent, or afloat type suffix are
required. All other parts are optional. The exponent, if present, isindicated by the
ASCII letter e or E followed by an optionally signed integer.

For hexadecimal floating-point literals, at least one digit is required (in either the
whole number or the fraction part), and the exponent is mandatory, and the float
type suffix isoptional. The exponent isindicated by the ASCI| letter p or Pfollowed
by an optionally signed integer.

Underscoresare allowed as separators between digitsthat denote the whole-number
part, and between digitsthat denote the fraction part, and between digitsthat denote
the exponent.

FloatingPointLiteral:
Decimal FloatingPointLiteral
Hexadecimal FloatingPointLiteral

Decimal FloatingPointLiteral:
Digits. [Digits] [ExponentPart] [FloatTypeSuffix]
. Digits [ExponentPart] [FloatTypeSuffix]
Digits ExponentPart [Float TypeSuffix]
Digits [ExponentPart] FloatTypeSuffix

ExponentPart:
ExponentIndicator Sgnedinteger

Exponentlndicator:
(one of)
e E

Sgnedinteger:
[Sgn] Digits

Sgn:
(one of)
+ -

FloatTypeSuffix:
(one of)
f FdD

3.10

35

3.10

36

Literals LEXICAL STRUCTURE

Hexadecimal FloatingPointLiteral:
HexS gnificand BinaryExponent [Float TypeSuffix]

HexSgnificand:
HexNumeral [.]
0 x [HexDigits] . HexDigits
0 X[HexDigits] . HexDigits

BinaryExponent:
BinaryExponentindicator Signedinteger

BinaryExponentI ndicator:
(one of)
p P

A floating-point literal isof typef | oat if it issuffixed with an ASCII letter For f ;
otherwise itstypeisdoubl e and it can optionally be suffixed with an ASCI| |etter
Dord (84.2.3).

The elements of the types float and doubl e are those values that can be
represented using the |EEE 754 32-bit single-precision and 64-bit double-precision
binary floating-point formats, respectively.

The details of proper input conversion from a Unicode string representation of a floating-
point number to the internal |EEE 754 binary floating-point representation are described
for the methods val ueCf of classFl oat and class Doubl e of the packagej ava. | ang.

The largest positive finite literal of typef oat iS3. 4028235e38f .

The smallest positive finite non-zero literal of typef ! oat iS1. 40e- 45f .

The largest positive finite literal of type doubl e iS1. 7976931348623157e308.
The smallest positive finite non-zero literal of type doubl e is4. 9e- 324.

It isacompile-time error if anon-zero floating-point literal istoo large, so that on
rounded conversion to itsinternal representation, it becomes an IEEE 754 infinity.

A program can represent infinitieswithout producing acompile-timeerror by using
constant expressions such as1f / 0f or - 1d/ 0d or by using the predefined constants
PCSI TI VE_I NFI NI TY and NEGATI VE_I NFI NI TY of the classes Fl oat and Doubl e.

Itisacompile-time error if anon-zero floating-point literal istoo small, so that, on
rounded conversion to its internal representation, it becomes a zero.

LEXICAL STRUCTURE Literals

A compile-time error does not occur if anon-zero floating-point literal has a small
value that, on rounded conversion to its internal representation, becomes a non-
zero denormalized number.

Predefined constants representing Not-a-Number values are defined in the classes
Fl oat and Doubl e asFl oat . NaN and Doubl e. NaN.

Examplesof f | oat literas:
lelf 2. f . 3f of 3. 14f 6.022137e+23f
Examples of doubl e literals:

lel 2. .3 0.0 3.14 le-9d 1lel37

3.10.3 Boolean Literals

The bool ean type has two values, represented by the boolean literals t rue and
fal se, formed from ASCI|I letters.

BooleanLiteral:
(one of)
true fal se

A boolean literal is aways of type bool ean (84.2.5).

3.10.4 Character Literals

A character literal is expressed as a character or an escape sequence (83.10.6),
enclosed in ASCII single quotes. (The single-quote, or apostrophe, character is
\ u0027.)

CharacterLiteral:
' SngleCharacter '
' EscapeSequence’

SngleCharacter:
InputCharacter but not* or\

See §3.10.6 for the definition of EscapeSequence.

Character literals can only represent UTF-16 code units (83.1), i.e., they arelimited
to values from \ u0000 to \ uf f f f . Supplementary characters must be represented

3.10

37

3.10

38

Literals LEXICAL STRUCTURE

either as a surrogate pair within achar sequence, or as an integer, depending on
the API they are used with.

A character litera isaways of type char (84.2.1).

It is a compile-time error for the character following the SngleCharacter or
EscapeSequence to be other than a* .

It is a compile-time error for a line terminator (83.4) to appear after the opening
' and before the closing ' .

As specified in 83.4, the characters CR and LF are never an InputCharacter; each is
recognized as constituting a LineTerminator.

The following are examples of char literals:

e 'gQ'

.« "%
o\t
ANY

o T\

+ '\ u03a9'
o '\ UFFFF
. \177'

o ' TM

Because Unicode escapes are processed very early, it is not correct to write ' \ u0o00a’
for a character litera whose value is linefeed (LF); the Unicode escape \ u000a is
transformed into an actua linefeed in trandation step 1 (83.3) and the linefeed becomes a
LineTerminator in step 2 (§83.4), and so the character literal is not valid in step 3. Instead,
one should use the escape sequence ' \ n' (83.10.6). Similarly, it is not correct to write
"\u000d' for acharacter literal whose valueis carriage return (CR). Instead, use' \r" .

In C and C++, a character literal may contain representations of more than one character,
but thevalue of such acharacter litera isimplementation-defined. In the Java programming
language, a character literal always represents exactly one character.

3.10.5 StringLiterals

A dtring literal consists of zero or more characters enclosed in double quotes.
Characters may be represented by escape sequences (83.10.6) - one escape
sequence for characters in the range U+0000 to U+FFFF, two escape sequences
for the UTF-16 surrogate code units of characters in the range U+010000 to U
+10FFFF.

LEXICAL STRUCTURE Literals 3.10

SringLiteral:
* {SringCharacter} "

SringCharacter:
InputCharacter but not * or\
EscapeSequence

See §3.10.6 for the definition of EscapeSequence.

A string literal is aways of type st ri ng (84.3.3).

It is a compile-time error for a line terminator to appear after the opening " and
before the closing matching " .

As specified in 83.4, the characters CR and LF are never an InputCharacter; each is
recognized as constituting a LineTerminator.

A long string literal can always be broken up into shorter pieces and written as a (possibly
parenthesized) expression using the string concatenation operator + (§15.18.1).

The following are examples of string literals:

/1 the enpty string

A /1 a string containing " al one

"This is a string" /'l a string containing 16 characters

"This is a" + // actually a string-valued constant expression,
"two-line string" /1 formed fromtwo string literals

Because Unicode escapes are processed very early, it is not correct to write "\ uo00a"
for a string literal containing a single linefeed (LF); the Unicode escape \ u000a is
transformed into an actual linefeed in trandlation step 1 (83.3) and the linefeed becomes
aLineTerminator in step 2 (§83.4), and so the string literal is not valid in step 3. Instead,
one should write"\ n" (83.10.6). Similarly, it is not correct to write"\ u000d" for astring
literal containing asingle carriage return (CR). Instead, use™\ r " . Finally, itisnot possible
to write"\ u0022" for astring literal containing a double quotation mark (").

A string literal is areference to an instance of class St ri ng (84.3.1, §4.3.3).

Moreover, astring literal always refers to the same instance of classstri ng. This
isbecause string literals - or, more generally, stringsthat are the values of constant
expressions (815.28) - are "interned”" so as to share unique instances, using the
method St ri ng. i ntern (812.5).

Example 3.10.5-1. String Literals
The program consisting of the compilation unit (87.3):

package test Package;

39

3.10

40

Literals

class Test {

LEXICAL STRUCTURE

public static void main(String[] args) {
String hello = "Hello", |

0o="lo":

Systemout.println(hello == "Hello");
Systemout.println(CGher.hello == hello);
Systemout. println(other.ther.hello == hello);
Systemout.println(hello == ("Hel"+"10"));
Systemout.printin(hello == ("Hel "+l 0));
Systemout.printin(hello == ("Hel"+lo).intern());
}
class Oher { static String hello = "Hello"; }

and the compilation unit:

package ot her;

public class Gther { public static String hello = "Hello"; }

produces the output:

true
true
true
true
fal se
true

This example illustrates six points:

e String literals in the same class and package represent references to the same St ri ng

object (§4.3.1).

e String literals in different classes in the same package represent references to the same

St ri ng object.

« String literals in different classes in different packages likewise represent references to

thesame St ri ng object.

» Strings concatenated from constant expressions (815.28) are computed at compile time
and then treated as if they were literals.

« Strings computed by concatenation at run time are newly created and therefore distinct.

e The result of explicitly interning a computed string is the same St ri ng object as any
pre-existing string literal with the same contents.

3.10.6 Escape Sequencesfor Character and String Literals

The character and string escape sequences allow for the representation of some
nongraphic characters without using Unicode escapes, as well as the single quote,
double quote, and backslash characters, in character literals (83.10.4) and string

literals (§3.10.5).

LEXICAL STRUCTURE Literals 3.10

EscapeSequence:
\ b (backspace BS, Unicode\ uo008)
\ t (horizontal tab HT, Unicode\ u0009)
\ n (linefeed LF, Unicode\ uoooa)
\ f (formfeed FF, Unicode\ uoooc)
\ r (carriagereturn CR, Unicode\ uo0o0d)
\ " (doublequote", Unicode\ uoo22)
\ * (singlequote' , Unicode\ u0027)

\ \ (backslash\, Unicode\ uoo5c)
OctalEscape (octa value, Unicode\ u0000 to\ uoof f)

Octal Escape:
\ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit Octal Digit

OctalDigit:
(one of)
01234567

ZeroToThree:
(one of)
0123

The OctalDigit production above comes from §3.10.1.

It is a compile-time error if the character following a backslash in an escape
sequenceisnot an ASClHl b, t,n,f,r,",',\,0,1,2,3,4,5,6, 0r 7. The Unicode
escape\ u is processed earlier (83.3).

Octal escapes are provided for compatibility with C, but can express only Unicode values
\ u0000 through \ u0OFF, so Unicode escapes are usually preferred.

3.10.7 TheNull Literal

The null type has one value, the null reference, represented by the null literal nul |,
which isformed from ASCII characters.

NullLiteral:
nul |

A null literal is aways of the null type (84.1).

41

311 Separators LEXICAL STRUCTURE

3.11 Separators

Twelve tokens, formed from ASCII characters, are the separators (punctuators).

Separator:

(one of)
¢y <y v r @

3.12 Operators

38 tokens, formed from ASCI| characters, are the operators.

Operator:
(one of)
= > < | ~ ? ->
= >= <= l= && || ++ - -
+ - * / & | N << > S>>
t= -= *= [= & |= M= U <<= >>= >>>=

42

CHAPTER |

Types, Values, and Variables

T HE Java programming language is a statically typed language, which means
that every variable and every expression has atype that is known at compile time.

The Java programming language is also a strongly typed language, because types
limit the values that a variable (84.12) can hold or that an expression can produce,
limit the operations supported on those values, and determine the meaning of the
operations. Strong static typing helps detect errors at compile time.

The types of the Java programming language are divided into two categories:
primitive types and reference types. The primitive types (84.2) are the bool ean
type and the numeric types. The numeric types are the integral typesbyt e, short,
i nt, | ong, and char , and thefloating-point typesf | oat and doubl e. Thereference
types (84.3) are classtypes, interface types, and array types. Thereis also aspecial
null type. An object (84.3.1) isadynamically created instance of aclass type or a
dynamically created array. The values of areference type are references to objects.
All objects, including arrays, support the methods of class tvj ect (84.3.2). String
literals are represented by St ri ng objects (84.3.3).

4.1 TheKindsof Typesand Values

There are two kinds of types in the Java programming language: primitive types
(84.2) and reference types (84.3). There are, correspondingly, two kinds of data
values that can be stored in variables, passed as arguments, returned by methods,
and operated on: primitive values (84.2) and reference values (84.3).

Type:
PrimitiveType
ReferenceType

43

4.2

Primitive Types and Values TYPES VALUES AND VARIABLES

Thereisalso aspecial null type, thetype of the expressionnul | (83.10.7, §15.8.1),
which has no name.

Because the null type has no name, it isimpossible to declare a variabl e of the null
type or to cast to the null type.

The null reference is the only possible value of an expression of null type.

Thenull reference can always be assigned or cast to any referencetype (85.2, §85.3,
85.5).

In practice, the programmer can ignore the null type and just pretend that nul | is merely
aspeciad literal that can be of any reference type.

4.2 Primitive Typesand Values

A primitive type is predefined by the Java programming language and named by
its reserved keyword (§3.9):

PrimitiveType:
{Annotation} NumericType
{Annotation} bool ean

NumericType:
Integral Type
FloatingPointType

Integral Type:
(one of)
byt e short int | ong char

FloatingPointType:
(one of)
fl oat doubl e

Primitive values do not share state with other primitive values.
The numeric types are the integral types and the floating-point types.

Theintegral typesarebyt e, short,int, and | ong, whose values are 8-bit, 16-bit,
32-bit and 64-bit signed two's-complement integers, respectively, and char , whose
values are 16-bit unsigned integers representing UTF-16 code units (83.1).

TYPES, VALUES, AND VARIABLES Primitive Types and Values

The floating-point types are f1 oat , whose values include the 32-bit |IEEE 754
floating-point numbers, and doubl e, whose values include the 64-bit IEEE 754
floating-point numbers.

Thebool ean type has exactly two values: true and f al se.

421 Integral Typesand Values

The values of the integral types are integersin the following ranges:

» For byt e, from-128to 127, inclusive

» For short, from -32768 to 32767, inclusive

» Forint, from -2147483648 to 2147483647, inclusive

 For I ong, from -9223372036854775808 to 9223372036854 775807, inclusive
» For char, from'\u0000' to'\uffff' inclusive, thatis, from O to 65535

4.2.2 Integer Operations

The Java programming language providesanumber of operatorsthat act onintegral
values:

» The comparison operators, which result in avalue of type bool ean:
— The numerical comparison operators <, <=, >, and >= (815.20.1)
— The numerical equality operators== and ! = (§15.21.1)
» The numerical operators, which result in avalue of typei nt or | ong:
— The unary plus and minus operators + and - (815.15.3, §15.15.4)
— The multiplicative operators*, / , and %(815.17)
— The additive operators + and - (815.18)
— The increment operator ++, both prefix (815.15.1) and postfix (815.14.2)
— The decrement operator - -, both prefix (815.15.2) and postfix (815.14.3)
— The signed and unsigned shift operators <<, >>, and >>> (815.19)
— The bitwise complement operator ~ (§15.15.5)
— Theinteger bitwise operators &, ~, and | (815.22.1)
» The conditional operator ? : (815.25)

4.2

45

4.2

46

Primitive Types and Values TYPES VALUES AND VARIABLES

» The cast operator (815.16), which can convert from an integral value to avalue
of any specified numeric type

* The string concatenation operator + (815.18.1), which, when given a String
operand and an integral operand, will convert the integral operandto a stri ng
(the decimal form of a byte, short, i nt, or | ong operand, or the character
of a char operand), and then produce a newly created String that is the
concatenation of the two strings

Other useful constructors, methods, and constants are predefined in the classes
Byt e, Short, | nt eger, Long, and Char act er.

If an integer operator other than a shift operator has at least one operand of type
| ong, then the operation is carried out using 64-bit precision, and the result of
the numerical operator is of type | ong. If the other operand is not | ong, it isfirst
widened (85.1.5) to type | ong by numeric promotion (85.6).

Otherwise, the operation is carried out using 32-bit precision, and the result of the
numerical operator isof typei nt . If either operandisnot ani nt, it isfirst widened
totypei nt by numeric promotion.

Any value of any integral type may be cast to or from any numeric type. There are
no casts between integral types and the type bool ean.

See 84.2.5 for an idiom to convert integer expressionsto bool ean.

The integer operators do not indicate overflow or underflow in any way.

An integer operator can throw an exception (811 (Exceptions)) for the following
reasons:

* Any integer operator can throw a Null Poi nter Exception if unboxing
conversion (85.1.8) of anull referenceis required.

» The integer divide operator / (815.17.2) and the integer remainder operator %
(815.17.3) canthrow an Ari t hret i cExcept i on if theright-hand operand iszero.

e The increment and decrement operators ++ (815.14.2, 815.15.1) and --
(815.14.3, 815.15.2) can throw an Qut Of Meror yEr ror if boxing conversion
(85.1.7) isrequired and there is not sufficient memory available to perform the
conversion.

Example 4.2.2-1. Integer Operations

class Test {
public static void main(String[] args) {
int i = 1000000;
Systemout.printin(i * i);

TYPES, VALUES, AND VARIABLES Primitive Types and Values

long I =1i;
Systemout.printin(l * 1);
Systemout.printin(20296 / (I - i));

}
This program produces the outpult:

- 727379968
1000000000000

and then encounters an Ari t hmet i cExcepti on in the divison by | - i, because |
- i iszero. Thefirst multiplication is performed in 32-bit precision, whereas the second
multiplicationisal ong multiplication. The value - 727379968 isthe decimal value of the
low 32 hits of the mathematical result, 1000000000000, which is a value too large for
typei nt .

4.2.3 Floating-Point Types, Formats, and Values

The floating-point typesaref | oat and doubl e, which are conceptually associated
with the single-precision 32-bit and double-precision 64-bit format IEEE 754
values and operations as specified in IEEE Sandard for Binary Floating-Point
Arithmetic, ANSI/IEEE Standard 754-1985 (IEEE, New Y ork).

Thel EEE 754 standard includes not only positive and negative numbersthat consist
of asign and magnitude, but also positive and negative zeros, positive and negative
infinities, and special Not-a-Number values (hereafter abbreviated NaN). A NaN
value is used to represent the result of certain invalid operations such as dividing
zero by zero. NaN constants of both 1 oat and doubl e type are predefined as
Fl oat . NaN and Doubl e. NaN.

Every implementation of the Java programming languageisrequired to support two
standard sets of floating-point values, called the float value set and the double value
set. In addition, an implementation of the Java programming language may support
either or both of two extended-exponent floating-point value sets, called the float-
extended-exponent value set and the double-extended-exponent value set. These
extended-exponent value sets may, under certain circumstances, be used instead
of the standard value sets to represent the values of expressions of type 1 oat or
doubl e (85.1.13, §15.4).

The finite nonzero values of any floating-point value set can all be expressed in
the form s Om [(2©"N* Y where sis +1 or -1, mis a positive integer less than
2V and eis an integer between Epip = -(2°-2) and Epux = 2€°-1, inclusive, and
where N and K are parameters that depend on the value set. Some values can
be represented in this form in more than one way; for example, supposing that a

4.2

47

4.2

48

Primitive Types and Values TYPES VALUES AND VARIABLES

value v in a value set might be represented in this form using certain values for
s, m, and e, then if it happened that m were even and e were less than 2%, one
could halve mand increase e by 1 to produce a second representation for the same
value v. A representation in this form is called normalized if m > 2V otherwise
the representation is said to be denormalized. If a value in a value set cannot be
represented in such away that m= 2", then the valueis said to be adenormalized
value, because it has no normalized representation.

The constraints on the parameters N and K (and on the derived parameters Ein
and Engy) for the two required and two optiona floating-point value sets are
summarized in Table 4.2.3-A.

Table 4.2.3-A. Floating-point value set parameters

Parameter float float-extended- double double-extended-
exponent exponent
24 24 53 53
8 >11 1 215
Emax +127 > +1023 +1023 > +16383
Enin -126 <-1022 -1022 <-16382

Where one or both extended-exponent value sets are supported by an
implementation, then for each supported extended-exponent value set there is
a specific implementation-dependent constant K, whose value is constrained by
Table 4.2.3-A; thisvalue K in turn dictates the values for Eqin and Epax.

Each of the four value sets includes not only the finite nonzero values that are
ascribed to it above, but also NaN values and the four values positive zero, negative
zero, positive infinity, and negative infinity.

Note that the constraintsin Table 4.2.3-A are designed so that every element of the
float value set is necessarily also an element of the float-extended-exponent value
set, the double value set, and the double-extended-exponent value set. Likewise,
each element of the double value set is necessarily also an element of the double-
extended-exponent value set. Each extended-exponent value set has alarger range
of exponent values than the corresponding standard value set, but does not have
more precision.

The elements of the float value set are exactly the values that can be represented
using the single floating-point format defined in the IEEE 754 standard. The
elements of the double value set are exactly the valuesthat can be represented using
the doubl e floating-point format defined in the |EEE 754 standard. Note, however,

TYPES, VALUES, AND VARIABLES Primitive Types and Values

that the elements of the float-extended-exponent and double-extended-exponent
value sets defined here do not correspond to the values that can be represented
using |EEE 754 single extended and double extended formats, respectively.

The float, float-extended-exponent, double, and double-extended-exponent value
sets are not types. It is always correct for an implementation of the Java
programming language to use an element of the float value set to represent avalue
of type f I oat ; however, it may be permissible in certain regions of code for an
implementation to use an element of the float-extended-exponent val ue set instead.
Similarly, itisaways correct for an implementation to use an element of the double
value set to represent a value of type doubl e; however, it may be permissible in
certain regions of code for an implementation to use an element of the double-
extended-exponent value set instead.

Except for NaN, floating-point values are ordered; arranged from smallest to
largest, they are negative infinity, negative finite nonzero values, positive and
negative zero, positive finite nonzero values, and positive infinity.

IEEE 754 alows multiple distinct NaN values for each of its single and double
floating-point formats. While each hardware architecture returns a particular bit
pattern for NaN when a new NaN is generated, a programmer can also create
NaNs with different bit patterns to encode, for example, retrospective diagnostic
information.

For the most part, the Java SE Platform treats NaN values of agiven type asthough
collapsed into asingle canonical value, and hence this specification normally refers
to an arbitrary NaN as though to a canonical value.

However, verson 1.3 of the Java SE Platform introduced methods enabling the
programmer to distinguish between NaN values: the Fl oat . f | oat ToRawl nt Bi t s and
Doubl e. doubl eToRawLongBi t s methods. The interested reader is referred to the
specifications for the Fl oat and Doubl e classes for more information.

Positive zero and negative zero compare equal; thus the result of the expression
0.0==-0. 0 istrue and the result of 0. 0>-0. 0 is false. But other operations can
distinguish positive and negative zero; for example, 1. 0/ 0. 0 hasthe value positive
infinity, while the value of 1. 0/ - 0. 0 is negative infinity.

NaN is unordered, so:

» The numerical comparison operators <, <=, >, and >= return f al se if either or
both operands are NaN (815.20.1).

In particular, (x<y) == ! (x>=y) will befal seif x ory isNaN.

» The equality operator == returnsf al se if either operand is NaN.

4.2

49

4.2

50

Primitive Types and Values TYPES VALUES AND VARIABLES

» Theinequality operator ! = returnst r ue if either operand is NaN (§15.21.1).
In particular, x! =x istrue if and only if x is NaN.

4.2.4 Floating-Point Operations

The Java programming language provides a number of operators that act on
floating-point values:

» The comparison operators, which result in avalue of type bool ean:
— The numerical comparison operators <, <=, >, and >= (815.20.1)
— The numerical equality operators== and ! = (§15.21.1)
e The numerical operators, which result in avalue of typef 1 oat or doubl e:
— The unary plus and minus operators + and - (815.15.3, §15.15.4)
— The multiplicative operators*, / , and %(815.17)
— The additive operators + and - (§15.18.2)
— The increment operator ++, both prefix (815.15.1) and postfix (815.14.2)
— The decrement operator - -, both prefix (815.15.2) and postfix (815.14.3)
» The conditional operator ? : (815.25)

» The cast operator (815.16), which can convert from a floating-point value to a
value of any specified numeric type

» The string concatenation operator + (815.18.1), which, when given a String
operand and afloating-point operand, will convert the floating-point operand to
astring representing its value in decimal form (without information loss), and
then produce a newly created St ri ng by concatenating the two strings

Other useful constructors, methods, and constants are predefined in the classes
Fl oat , Doubl e, and Mat h.

If at least one of the operands to a binary operator is of floating-point type, then
the operation is a floating-point operation, even if the other isintegral.

If at least one of the operands to a numerical operator is of type doubl e, then the
operation is carried out using 64-bit floating-point arithmetic, and the result of the
numerical operator isavaue of type doubl e. If the other operand isnot adoubl e,
it isfirst widened (85.1.5) to type doubl e by numeric promotion (85.6).

TYPES, VALUES, AND VARIABLES Primitive Types and Values

Otherwise, the operation is carried out using 32-bit floating-point arithmetic, and
the result of the numerical operator isavalue of typefl oat . (If the other operand
isnot afl oat, itisfirst widened to typef 1 oat by numeric promotion.)

Any value of afloating-point type may be cast to or from any numeric type. There
are no casts between floating-point types and the type bool ean.

See 8§4.2.5 for an idiom to convert floating-point expressions to bool ean.

Operators on floating-point numbers behave as specified by IEEE 754 (with
the exception of the remainder operator (815.17.3)). In particular, the Java
programming language requires support of |EEE 754 denor malized floating-point
numbers and gradual underflow, which make it easier to prove desirable properties
of particular numerical algorithms. Floating-point operations do not "flush to zero"
if the calculated result is a denormalized number.

The Java programming language requires that floating-point arithmetic behave
as if every floating-point operator rounded its floating-point result to the result
precision. Inexact results must be rounded to the representable value nearest to the
infinitely precise result; if the two nearest representable values are equally near,
the one with its least significant bit zero is chosen. Thisisthe IEEE 754 standard's
default rounding mode known as round to nearest.

The Java programming language uses round toward zero when converting a
floating value to an integer (85.1.3), which acts, in this case, as though the number
were truncated, discarding the mantissa bits. Rounding toward zero chooses as its
result the format's value closest to and no greater in magnitude than the infinitely
precise result.

A floating-point operation that overflows produces a signed infinity.

A floating-point operation that underflows produces a denormalized value or a
signed zero.

A floating-point operation that hasno mathematically definite result producesNaN.
All numeric operations with NaN as an operand produce NaN as a result.

A floating-point operator can throw an exception (811 (Exceptions)) for the
following reasons:

» Any floating-point operator can throw a Nul | Poi nt er Excepti on if unboxing
conversion (85.1.8) of anull referenceis required.

e The increment and decrement operators ++ (815.14.2, 815.15.1) and --
(815.14.3, 815.15.2) can throw an Qut Of Meror yEr ror if boxing conversion

4.2

51

4.2 Primitive Types and Values TYPES VALUES AND VARIABLES

(85.1.7) isrequired and there is not sufficient memory available to perform the

conversion.

Example 4.2.4-1. Floating-point Operations

class Test {

}

public static void main(String[] args) {

/1 An exanple of overflow
double d = 1e308;
System out. print("overflow produces infinity: ");
Systemout.println(d + "*10==" + d*10);
/1 An exanpl e of gradual underfl ow
d = 1e-305 * Math.PIl;
System out. print("gradual underflow " + d + "\n ")
for (int i =0; i < 4; i++)
Systemout.print(" " + (d /= 100000));
Systemout. println();
/1 An exanpl e of NaN:
Systemout.print("0.0/0.0 is Not-a-Nunber: ");
d = 0.0/0.0;
System out. println(d);
/1 An exanpl e of inexact results and roundi ng:
Systemout.print("inexact results with float:");

for (int i =0; i < 100; i++) {
float z = 1.0f / i;
if (z*i !=1.0f)
Systemout.print(" " + i);
}

Systemout. println();
/1 Anot her exampl e of inexact results and roundi ng:
Systemout. print("inexact results with double:");

for (int i =0; i < 100; i++) {
double z = 1.0/ i;
if (z*i !'=1.0)
Systemout.print(" " + i);
}

Systemout. println();

/1 An exanple of cast to integer rounding:
Systemout.print("cast to int rounds toward 0: ");
d = 12345. 6;

Systemout.printin((int)d +" " + (int)(-d));

This program produces the outpuit:

52

TYPES, VALUES, AND VARIABLES Primitive Types and Values

overfl ow produces infinity: 1.0E308*10==Infinity
gradual underflow 3.141592653589793E- 305

3. 1415926535898E- 310 3. 141592653E- 315 3. 142E-320 0.0
0.0/0.0 is Not-a-Nunmber: NaN
inexact results with float: 0 41 47 55 61 82 83 94 97
inexact results with double: 0 49 98
cast to int rounds toward 0: 12345 -12345

This example demonstrates, among other things, that gradua underflow can result in a
gradual loss of precision.

The resultswhen i is0 involve division by zero, so that z becomes positive infinity, and
z * 0isNaN, whichisnot equa to1. 0.

4.25 Thebool ean Type and boolean Values

Thebool ean type represents alogical quantity with two possible values, indicated
by theliteralstrue andf al se (83.10.3).

The boolean operators are:

» Therelational operators==and! = (815.21.2)

» Thelogical complement operator ! (8§15.15.6)

» Thelogical operators &, ~, and | (815.22.2)

» The conditional-and and conditional-or operators && (815.23) and | | (§15.24)
» The conditional operator ? : (815.25)

» The string concatenation operator + (815.18.1), which, when given a String
operand and abool ean operand, will convert the bool ean operandtoastri ng
(either "t rue" or"fal se"), and then produce anewly created St ri ng that isthe
concatenation of the two strings

Boolean expressions determine the control flow in several kinds of statements:
* Theif statement (814.9)

» Thewhi | e statement (§14.12)

* The do statement (8§14.13)

e Thefor statement (814.14)

A bool ean expression also determines which subexpression is evaluated in the
conditional ? : operator (815.25).

Only bool ean and Bool ean expressions can be used in control flow statements and
asthefirst operand of the conditional operator ? : .

4.2

53

4.3

Reference Types and Values TYPES, VALUES AND VARIABLES

An integer or floating-point expression x can be converted to a bool ean value,
following the C language convention that any nonzero value is true, by the
expression x! =0.

An object reference obj can be converted to a bool ean value, following the C
language convention that any reference other than nul | ist r ue, by the expression
obj ! =nul | .

A bool ean value can be converted to a st ri ng by string conversion (85.4).

A bool ean value may be cast totypebool ean, Bool ean, or Obj ect (85.5). No other
casts on type bool ean are alowed.

4.3 Reference Typesand Values

There are four kinds of reference types: class types (88.1), interface types (89.1),
type variables (84.4), and array types (810.1).

ReferenceType:
ClassOrlInterfaceType
TypeVariable
ArrayType

ClassOr|nterfaceType:
ClassType
InterfaceType

ClassType:
{Annotation} Typeldentifier [TypeArguments]
PackageName . {Annotation} Typeldentifier [TypeArguments]
ClassOrlInterfaceType. {Annotation} Typeldentifier [TypeArguments]

InterfaceType:
ClassType

TypeVariable:
{Annotation} Typeldentifier

ArrayType:
PrimitiveType Dims
ClassOrInterfaceType Dims
TypeVariable Dims

TYPES, VALUES, AND VARIABLES Reference Types and Values

Dims:
{Annotation} [] {{Annotation} []}

The sample code:

class Point { int[] metrics; }
interface Move { void nove(int deltax, int deltay); }

declaresaclasstypePoi nt , aninterfacetype Move, and usesan array typei nt [] (anarray
of i nt) to declarethefield met ri cs of the class Poi nt .

A classor interface type consists of anidentifier or adotted sequence of identifiers,
where each identifier is optionally followed by type arguments (84.5.1). If type
arguments appear anywhere in a class or interface type, it is a parameterized type
(84.5).

Eachidentifier in aclass or interface typeis classified as a package name or atype
name (86.5.1). Identifierswhich are classified astype names may be annotated. If a
classor interface type hastheform T. i d (optionally followed by type arguments),
then i d must be the simple name of an accessible member type of T (86.6, §8.5,
§89.5), or a compile-time error occurs. The class or interface type denotes that
member type.

4.3.1 Objects

An object isaclassinstance or an array.

The reference values (often just references) are pointers to these objects, and a
specia null reference, which refers to no object.

A classinstanceisexplicitly created by aclassinstance creation expression (815.9).
An array isexplicitly created by an array creation expression (§15.10.1).

Other expressionsmay implicitly createaclassinstance (812.5) or an array (810.6).

Example 4.3.1-1. Object Creation

class Point {
int x, vy;
Point() { Systemout.println("default"); }
Point(int x, int y) { this.x =x; this.y =vy; }

/* A Point instance is explicitly created at
class initialization time: */
static Point origin = new Point(0,0);

4.3

55

4.3 Reference Types and Values TYPES, VALUES AND VARIABLES

/* A String can be inplicitly created
by a + operator: */
public String toString() { return "(" + x +"," +y +")"; }

}

class Test {
public static void main(String[] args) {
/* A Point is explicitly created
usi ng new nstance: */
Point p = null;
try {
p = (Point)C ass. forNanme("Point").new nstance();
} catch (Exception e) {
Systemout.printlin(e);

}

/* An array is inplicitly created
by an array initializer: */
Point a[] = { new Point(0,0), new Point(1,1) };

/* Strings are inplicitly created
by + operators: */
Systemout.printin("p: " + p);
Systemout.printin("a: { " + a[0] + ", " + a[1] + " }");
/* An array is explicitly created
by an array creation expression: */
String sa[] = new String[?2];
sa[0] = "he"; sa[1] = "llo";
Systemout.printin(sa[0] + sa[1l]);

}
This program produces the output:

def aul t

p: (0,0)

a: { (0,0), (1,1 }
hell o

The operators on references to objects are:

» Field access, using either a qualified name (86.6) or a field access expression
(815.11)

* Method invocation (8§15.12)
» The cast operator (85.5, §15.16)

» The string concatenation operator + (815.18.1), which, when given a Stri ng
operand and areference, will convert the referenceto a st ri ng by invoking the
t oSt ri ng method of the referenced object (using “nul | * if either the reference

56

TYPES, VALUES, AND VARIABLES Reference Types and Values

or the result of tosString is a null reference), and then will produce a newly
created St ri ng that is the concatenation of the two strings

* Thei nst anceof operator (815.20.2)
» Thereference equality operators==and ! = (815.21.3)
 The conditional operator ? : (815.25).

There may be many references to the same object. Most objects have state, stored
in the fields of abjects that are instances of classes or in the variables that are the
components of an array object. If two variables contain references to the same
object, the state of the object can be modified using one variable's reference to the
object, and then the altered state can be observed through the referencein the other
variable.

Example 4.3.1-2. Primitive and Reference | dentity
class Value { int val; }

class Test {

public static void main(String[] args) {
int il =3;
int i2=1i1;
i2 = 4
Systemout.print("il==" + i1)
Systemout.println(" but i2==" +i2);
Val ue vl = new Val ue()

vli.val =5

Val ue v2 = vl

v2.val = 6

Systemout. print("vl. val ==" + vl.val)
Systemout.println(" and v2.val ==" + v2.val);

}
This program produces the output:

i 1==3 but i2==4
vl.val ==6 and v2.val ==6

because v1. val and v2. val reference the same instance variable (84.12.3) in the one
Val ue object created by the only new expression, whilei 1 andi 2 are different variables.

Each object is associated with a monitor (817.1), which is used by synchr oni zed
methods (88.4.3) and thesynchr oni zed statement (§814.19) to provide control over
concurrent access to state by multiple threads (817 (Threads and Locks)).

4.3

57

4.3

58

Reference Types and Values TYPES, VALUES AND VARIABLES

4.3.2 The Class j ect

The class j ect isasuperclass (88.1.4) of all other classes.

All class and array types inherit (88.4.8) the methods of class j ect , which are
summarized as follows:

» The method cl one is used to make a duplicate of an object.

» Themethod equal s defines anotion of object equality, which is based on value,
not reference, comparison.

» Themethod fi nal i ze isrun just before an object is destroyed (812.6).

» The method get d ass returns the C ass object that represents the class of the
object.

A d ass object exists for each reference type. It can be used, for example,
to discover the fully qualified name of a class, its members, its immediate
superclass, and any interfaces that it implements.

The type of a method invocation expression of get C ass IS O ass<? ext ends
[T]>, where T is the class or interface that was searched for get d ass (815.12.1)
and |T| denotes the erasure of T (84.6).

A class method that is declared synchroni zed (88.4.3.6) synchronizes on the
monitor associated with the d ass object of the class.

» The method hashCode is very useful, together with the method equal s, in
hashtables such asj ava. uti | . HashMap.

» Themethodswai t, notify,andnoti fyAl | areusedin concurrent programming
using threads (817.2).

» Themethodt oSt ri ng returnsa st ri ng representation of the object.

433 TheClassstring

Instances of class St ri ng represent sequences of Unicode code points.
A string object has aconstant (unchanging) value.
String literals (83.10.5) are references to instances of class St ri ng.

The string concatenation operator + (815.18.1) implicitly creates a new String
object when the result is not a constant expression (8§15.28).

TYPES, VALUES AND VARIABLES Type Variables

4.3.4 When Reference Types Arethe Same

Two reference types are the same compile-time type if they are declared in
compilation units associated with the same module (87.3), and they have the same
binary name (§13.1), and their type arguments, if any, are the same, applying this
definition recursively.

When two reference types are the same, they are sometimes said to be the same
class or the same interface.

At run time, severa reference types with the same binary name may be loaded
simultaneously by different class loaders. These types may or may not represent
the same type declaration. Even if two such types do represent the same type
declaration, they are considered distinct.

Two reference types are the same run-time type if:

» They are both class or both interface types, are defined by the same class |oader,
and have the same binary name (813.1), in which case they are sometimes said
to be the same run-time class or the same run-time interface.

» They are both array types, and their component types are the same run-time type
(810 (Arrays)).

4.4 TypeVariables

A typevariableisanunqualified identifier used asatypein class, interface, method,
and constructor bodies.

A type variable is introduced by the declaration of atype parameter of a generic
class, interface, method, or constructor (88.1.2, 89.1.2, 88.4.4, §8.8.4).

TypeParameter:
{TypeParameter Modifier} Typeldentifier [TypeBound)]

TypeParameterModifier:
Annotation

TypeBound:
ext ends TypeVariable
ext ends ClassOrlnterfaceType { Additional Bound}

4.4

59

4.4

60

Type Variables TYPES VALUES, AND VARIABLES

Additional Bound:
& InterfaceType

The scope of atype variable declared as atype parameter is specified in 8§6.3.

Every type variable declared as a type parameter has a bound. If no bound is
declared for atype variable, aoj ect isassumed. If abound is declared, it consists
of either:

e asingletypevariableT, or
» aclassor interface type T possibly followed by interfacetypesi ; & ... &1 y.
Itisacompile-timeerror if any of thetypesi ; ... I , isaclasstype or type variable.

The erasures (84.6) of all constituent types of a bound must be pairwise different,
or acompile-time error occurs.

A typevariable must not at the same time be a subtype of two interface typeswhich
are different parameterizations of the same generic interface, or a compile-time
€rror occurs.

Theorder of typesinaboundisonly significant in that the erasure of atypevariable
is determined by the first type in its bound, and that a class type or type variable
may only appear in the first position.

The members of atype variable x withbound T &1 ; & ... & I ,, are the members of
the intersection type (84.9) T &1 & ... & | , appearing at the point where the type
variable is declared.

Example 4.4-1. Members of a Type Variable
package TypeVar Menbers;

class C{
public voi d mCPublic() {}
protected void nCProtected() {}
voi d mCPackage() {}
private voi d mCPrivate() {}

}

interface I {
void m();
}

class CT extends Cinplenents | {
public void m () {}
}

class Test {

TYPES VALUES AND VARIABLES Parameterized Types

<T extends C & | > void test(T t) {

t.m(); /11 K
t. mCPublic(); /Il K
t.mCProtected(); // XK
t. mCPackage() ; /Il K
t.nCPrivate(); /1 Conpile-time error

}

The type variable T has the same members as the intersection type C & |, which in turn
has the same members as the empty class CT, defined in the same scope with equivalent
supertypes. Themembersof aninterfaceareawayspubl i ¢, and thereforealwaysinherited
(unless overridden). Hence m is a member of CT and of T. Among the members of C, all
but nCPr i vat e areinherited by CT, and are therefore members of both CT and T.

If C had been declared in a different package than T, then the call to nCPackage would
giveriseto acompile-timeerror, asthat member would not be accessible at the point where
T isdeclared.

4.5 Parameterized Types

A class or interface declaration that is generic (88.1.2, 89.1.2) defines a set of
parameterized types.

A parameterized type is a class or interface type of the form c<Ty,...,T,>, where C
is the name of a generic type and <Ty,...,T,> isalist of type arguments that denote
aparticular parameterization of the generic type.

A generic type has type parameters Fy,...,F, with corresponding bounds Bq,...,B;.
Each type argument T, of a parameterized type ranges over all types that are
subtypes of all types listed in the corresponding bound. That is, for each bound
typesing;, T; isasubtypeof S[Fi: =Ty, .. ., Fn: =Tp] (84.10).

A parameterized type C<Ty,...,To> iswell-formed if al of the following are true:
* Ccisthe name of ageneric type.

» The number of type arguments is the same as the number of type parametersin
the generic declaration of C.

» When subjected to capture conversion (85.1.10) resulting in thetype C<Xy,...,Xn>,
each type argument X; is a subtype of S[F;: =Xy, ..., Fq: =X,] for each bound
typesinsg;.

Itisacompile-time error if a parameterized type is not well-formed.

4.5

61

4.5

62

Parameterized Types TYPES, VALUES AND VARIABLES

In this specification, whenever we speak of aclassor interface type, weincludethe
generic version as well, unless explicitly excluded.

Two parameterized types are provably distinct if either of the following istrue:

» They are parameterizations of distinct generic type declarations.

» Any of their type arguments are provably distinct.

Giventhegenerictypesinthe examplesof §8.1.2, here are somewell-formed parameterized
types:

Seq<Stri ng>
Seq<Seq<Stri ng>>
Seq<Stri ng>. Zi pper <I nt eger >

Pai r<String, | nteger>

Here are some incorrect parameterizations of those generic types:

Seq<i nt > isillegal, as primitive types cannot be type arguments.
Pai r<Stri ng> isillegal, asthere are not enough type arguments.

Pai r<String, String, String>isillegal, asthere are too many type arguments.

A parameterized type may be an parameterization of a generic class or interface which
is nested. For example, if a hon-generic class C has a generic member class D<T>, then
C. D<bj ect > is a parameterized type. And if a generic class C<T> has a non-generic
member class D, then the member type C<St r i ng>. Disaparameterized type, even though
the class Dis hot generic.

45.1 TypeArgumentsof Parameterized Types

Type arguments may be either reference types or wildcards. Wildcards are useful
in situations where only partial knowledge about the type parameter is required.

TypeArguments.

< TypeArgumentList >

TypeArgumentList:

TypeArgument {, TypeArgument}

TypeArgument:

ReferenceType
Wildcard

TYPES VALUES AND VARIABLES Parameterized Types

Wildcard:
{Annotation} ? [WildcardBounds]

WildcardBounds:
ext ends ReferenceType
super ReferenceType

Wildcards may be given explicit bounds, just like regular type variable
declarations. An upper bound is signified by the following syntax, where B is the
bound:

? extends B

Unlike ordinary type variables declared in a method signature, no type inference
isrequired when using awildcard. Consequently, it is permissible to declare lower
bounds on awildcard, using the following syntax, where B is alower bound:

? super B

The wildcard ? ext ends Qbj ect is equivaent to the unbounded wildcard ~.
Two type arguments are provably distinct if one of the following istrue:

» Neither argument is atype variable or wildcard, and the two arguments are not
the same type.

» One type argument is a type variable or wildcard, with an upper bound (from
capture conversion (85.1.10), if necessary) of S; and the other type argument T
isnot atype variable or wildcard; and neither |s| <: |T| nor |T| <: || (84.8, §84.10).

» Each type argument is a type variable or wildcard, with upper bounds (from
capture conversion, if necessary) of s and T; and neither [s| <: [T| nor [T] <: [S].

A type argument T, is said to contain another type argument T,, written T, <= Ty,
if the set of types denoted by T, is provably a subset of the set of types denoted
by T1 under the reflexive and transitive closure of the following rules (where <:
denotes subtyping (84.10)):

e ?extends T<=?extends SifT<: S
* ?extends T<=?

e ?super T<=?super SifS<: T

* ?super T<=7?

* ? super T <=? extends bj ect

4.5

63

4.5 Parameterized Types TYPES, VALUES AND VARIABLES

e T<=T
e T<=?extends T

e T<=?super T

The relationship of wildcards to established type theory is an interesting one, which we
briefly alude to here. Wildcards are a restricted form of existential types. Given a generic
type declaration G<T ext ends B>, G<?> isroughly analogousto Sone X <: B. G<X>.

Historically, wildcards are a direct descendant of the work by Atsushi Igarashi and Mirko
Viroli. Readersinterested in amore comprehensive discussion should refer to On Variance-
Based Subtyping for Parametric Types by Atsushi Igarashi and Mirko Viroli, in the
Proceedings of the 16th European Conference on Object Oriented Programming (ECOOP
2002). This work itself builds upon earlier work by Kresten Thorup and Mads Torgersen
(Unifying Genericity, ECOOP 99), aswell asalong tradition of work on declaration based
variance that goes back to Pierre America's work on POOL (OOPSLA 89).

Wildcards differ in certain details from the constructs described in the aforementioned
paper, in particular in the use of capture conversion (85.1.10) rather than the cl ose
operation described by Igarashi and Viroli. For a formal account of wildcards, see Wild
FJ by Mads Torgersen, Erik Ernst and Christian Plesner Hansen, in the 12th workshop on
Foundations of Object Oriented Programming (FOOL 2005).

Example 4.5.1-1. Unbounded Wildcards

inmport java.util.Collection;
inmport java.util.Arraylist;

class Test {
static void printCollection(Collection<?>c) {
/1 a wildcard collection
for (Qbject o: c) {
System out. println(o);
}
}

public static void main(String[] args) {
Col l ection<String> cs = new ArrayList<String>();
cs.add("hel 1l 0");
cs.add("worl d");
printCollection(cs);

}

Note that using Col | ect i on<Obj ect > as the type of the incoming parameter, c, would
not be nearly as useful; the method could only be used with an argument expression that
had type Col | ect i on<bj ect >, which would be quite rare. In contrast, the use of an
unbounded wildcard allows any kind of collection to be passed as an argument.

Here is an example where the element type of an array is parameterized by awildcard:

TYPES VALUES AND VARIABLES Parameterized Types

public Method get Met hod(d ass<?>[] paraneterTypes) { ... }

Example 4.5.1-2. Bounded Wildcards

bool ean addAl | (Col | ecti on<? extends E> c)

Here, the method is declared within the interface Col | ect i on<E>, and is designed to add
all the elements of its incoming argument to the collection upon which it is invoked. A
natural tendency would beto useCol | ect i on<E> asthetypeof ¢, but thisisunnecessarily
restrictive. An alternative would be to declare the method itself to be generic:

<T> bool ean addAl | (Col | ecti on<T> c¢)

Thisversionissufficiently flexible, but note that the type parameter isused only onceinthe
signature. Thisreflectsthe fact that the type parameter is not being used to express any kind
of interdependency between the type(s) of the argument(s), the return type and/or throws
type. In the absence of such interdependency, generic methods are considered bad style,
and wildcards are preferred.

Ref erence(T referent, ReferenceQueue<? super T> queue)

Here, the referent can be inserted into any queue whose element type is a supertype of the
type T of the referent; T is the lower bound for the wildcard.

452 Membersand Constructors of Parameterized Types

Let c be ageneric class or interface declaration with type parameters A4,...,A,, and
let c<Ty,...,To> be a parameterization of c where, for 1 <i < n, T; isatype (rather
than awildcard). Then:

» Let mbe a member or constructor declaration in C, whose type as declared is T
(88.2, 88.8.6).

Thetype of min C<Ty,...,To> IST[A1: =Ty, . . ., A =Th] .

» Letmbeamember or constructor declarationin b, whereDisaclassextended by C
or aninterfaceimplemented by C. Let D<uy,...,Uc> be the supertype of C<Ty,...,Tp>
that corresponds to D.

Thetype of min C<Ty,...,Ty> isthe type of min D<Uy,...,U>.
If any of the type arguments in the parameterization of C are wildcards, then:

» The types of the fields, methods, and constructors in c<Ty,...,T,> are the types
of the fields, methods, and constructors in the capture conversion of C<Ty,...,T,>
(85.1.10).

4.5

65

4.6

66

Type Erasure TYPES, VALUES, AND VARIABLES

* Let D be a (possibly generic) class or interface declaration in C. Then the type
of Din C<Ty,...,T,> isDwhere, if Dis generic, all type arguments are unbounded
wildcards.

Thisis of no consequence, asit isimpossible to access a member of a parameterized type
without performing capture conversion, and it is impossible to use a wildcard after the
keyword newin aclass instance creation expression (§15.9).

The sole exception to the previous paragraph is when a nested parameterized type is used
asthe expressionin ani nst anceof operator (§15.20.2), where capture conversion is not
applied.

A stati c member that is declared in a generic type declaration must be referred
to using the non-generic type that corresponds to the generic type (86.1, 86.5.5.2,
86.5.6.2), or a compile-time error occurs.

In other words, it is illega to refer to a stati c member declared in a generic type
declaration by using a parameterized type.

46 TypeErasure

Type erasureis a mapping from types (possibly including parameterized types and
type variables) to types (that are never parameterized types or type variables). We
write |T| for the erasure of type T. The erasure mapping is defined as follows:

» The erasure of a parameterized type (84.5) G<Ty,...,Tn> iS|G.

» The erasure of anested type T. Cis|T|.C.

» Theerasure of an array type T[] iS|T|[].

» Theerasure of atype variable (84.4) isthe erasure of its leftmost bound.
» The erasure of every other typeis the type itself.

Type erasure aso maps the signature (88.4.2) of a constructor or method to a
signature that has no parameterized types or type variables. The erasure of a
constructor or method signature s is a signature consisting of the same name as s
and the erasures of all the formal parameter typesgivenins.

The return type of a method (88.4.5) and the type parameters of a generic method
or constructor (88.4.4, §8.8.4) also undergo erasure if the method or constructor's
signature is erased.

The erasure of the signature of a generic method has no type parameters.

TYPES, VALUES AND VARIABLES Reifiable Types

4.7 Reifiable Types

Because some type information is erased during compilation, not al types are
available at run time. Types that are completely available at run time are known
asreifiable types.

A typeisreifiableif and only if one of the following holds:

It refers to a non-generic class or interface type declaration.

It is a parameterized type in which al type arguments are unbounded wildcards
(84.5.2).

Itisaraw type (84.8).

It isaprimitive type (84.2).

It isan array type (810.1) whose element type isreifiable.

It isanested type where, for each type T separated by a". ", T itself isreifiable.

For example, if a generic class X<T> has a generic member class Y<U>, then the
type X<?>. Y<?> is reifiable because X<?> isreifiable and Y<?> isreifiable. The type
X<?>. Y<Cbj ect > isnot reifiable because Y<bj ect > is not reifiable.

An intersection typeis not reifiable.

The decision not to make all generic types reifiable is one of the most crucial, and
controversial design decisions involving the type system of the Java programming
language.

Ultimately, the most important motivation for this decision is compatibility with existing
code. In anaive sense, the addition of new constructs such as generics has no implications
for pre-existing code. The Java programming language, per se, is compatible with earlier
versions as long as every program written in the previous versions retains its meaning in
the new version. However, this notion, which may be termed language compatibility, is
of purely theoretical interest. Real programs (even trivial ones, such as "Hello World")
are composed of several compilation units, some of which are provided by the Java SE
Platform (such aselementsof j ava. | ang orj ava. uti |). In practice, then, the minimum
requirement is platform compatibility - that any program written for the prior version of the
Java SE Platform continues to function unchanged in the new version.

One way to provide platform compatibility is to leave existing platform functionality
unchanged, only adding new functionality. For example, rather than modify the existing
Collections hierarchy inj ava. uti | , one might introduce a new library utilizing generics.

The disadvantages of such a schemeisthat it is extremely difficult for pre-existing clients
of the Callection library to migrate to the new library. Collections are used to exchange
data between independently developed modules; if a vendor decides to switch to the new,
generic, library, that vendor must also distribute two versionsof their code, to be compatible

4.7

67

4.8

68

Raw Types TYPES, VALUES AND VARIABLES

with their clients. Librariesthat are dependent on other vendors code cannot be modified to
use generics until the supplier'slibrary is updated. If two modules are mutually dependent,
the changes must be made simultaneously.

Clearly, platform compatibility, as outlined above, does not provide a realistic path for
adoption of a pervasive new feature such as generics. Therefore, the design of the generic
type system seeks to support migration compatibility. Migration compatibility allows the
evolution of existing code to take advantage of generics without imposing dependencies
between independently developed software modules.

The price of migration compatibility isthat afull and sound reification of the generic type
system is not possible, at least while the migration is taking place.

4.8 Raw Types

Tofacilitateinterfacing with non-generic legacy code, it ispossibleto use asatype
the erasure (84.6) of a parameterized type (84.5) or the erasure of an array type
(810.1) whose element type is a parameterized type. Such a type is called a raw

type.
More precisely, araw typeis defined to be one of:

» Thereferencetypethat isformed by taking the name of ageneric typedeclaration
without an accompanying type argument list.

» An array type whose element type isaraw type.

* A non-stati c member typeof araw typeRthat isnot inherited from asuperclass
or superinterface of R.

A non-generic class or interface type is not araw type.

To see why a nhon-st ati ¢ type member of a raw type is considered raw, consider the
following example:

class Quter<T>{
Tt,;
class | nner {
T setQuterT(T t1) { t =t1; returnt; }
}
}

The type of the member(s) of | nner depends on the type parameter of Qut er . If Qut er is
raw, | nner must be treated as raw as well, asthereisno valid binding for T.

TYPES, VALUES AND VARIABLES Raw Types

Thisrule applies only to type members that are not inherited. Inherited type members that
depend on type variables will be inherited as raw types as a consequence of the rule that
the supertypes of araw type are erased, described later in this section.

Another implication of the rules above is that a generic inner class of araw type can itself
only be used as araw type:

class Quter<T>{
class I nner<S> {
S's;
}
}

It isnot possibleto access| nner asapartialy raw type (a"rare" type):

Quter.|nner<Double> x = null; // illegal
Double d = x.s;

because Qut er itself israw, hence so are al itsinner classesincluding | nner, and soitis
not possible to pass any type arguments to Inner.

The superclasses (respectively, superinterfaces) of araw type arethe erasuresof the
superclasses (superinterfaces) of any of the parameterizations of the generic type.

Thetype of aconstructor (88.8), instance method (88.4, §9.4), or non-st at i ¢ field
(88.3) of araw type Ccthat is not inherited from its superclasses or superinterfaces
isthe raw type that corresponds to the erasure of itstype in the generic declaration
corresponding to C.

Thetypeof ast ati ¢ method or st at i ¢ field of araw type cisthe sameasitstype
in the generic declaration corresponding to C.

It isacompile-time error to pass type arguments to anon-st at i ¢ type member of
araw typethat is not inherited from its superclasses or superinterfaces.

It isacompile-time error to attempt to use atype member of a parameterized type
asaraw type.

This means that the ban on "rare" types extends to the case where the qualifying type is
parameterized, but we attempt to use the inner class as araw type:

Quter<integer>.lnner x = null; // illegal

Thisis the opposite of the case discussed above. Thereis no practical justification for this
half-baked type. Inlegacy code, no type arguments are used. In non-legacy code, we should
use the generic types correctly and pass al the required type arguments.

4.8

69

4.8

70

Raw Types TYPES, VALUES AND VARIABLES

The supertype of a class may be a raw type. Member accesses for the class are
treated as normal, and member accesses for the supertype are treated as for raw
types. In the constructor of the class, calsto super aretreated as method calls on
araw type.

The use of raw types is alowed only as a concession to compatibility of legacy
code. The use of raw types in code written after the introduction of genericsinto
the Java programming language is strongly discouraged. It is possible that future
versions of the Java programming language will disallow the use of raw types.

To make sure that potential violations of the typing rules are aways flagged, some
accessesto members of araw typewill result in compile-time unchecked warnings.
The rules for compile-time unchecked warnings when accessing members or
constructors of raw types are asfollows:

* At an assignment to a field: if the type of the Primary in the field access
expression (815.11) isaraw type, then acompile-time unchecked warning occurs
if erasure changes the field's type.

» Ataninvocation of amethod or constructor: if thetype of the classor interfaceto
search (815.12.1) isaraw type, then acompile-time unchecked warning occursif
erasure changes any of the formal parameter types of the method or constructor.

* No compile-time unchecked warning occurs for a method call when the formal
parameter types do not change under erasure (even if the return type and/or
t hr ows clause changes), for reading from afield, or for a class instance creation
of araw type.

Note that the unchecked warnings above are distinct from the unchecked warnings possible
from narrowing reference conversion (85.1.6), unchecked conversion (85.1.9), method
declarations (88.4.1, 88.4.8.3), and certain expressions (815.12.4.2, §15.13.2, §15.27.3).

The warnings here cover the case where alegacy consumer uses a generified library. For
example, the library declares ageneric class Foo<T ext ends String> that hasafield f
of type Vect or <T>, but the consumer assigns a vector of integersto e. f where e has the
raw type Foo. The legacy consumer receives a warning because it may have caused heap
pollution (84.12.2) for generified consumers of the generified library.

(Note that the legacy consumer can assign a Vect or <St r i ng> from the library to its own
Vect or variable without receiving awarning. That is, the subtyping rules (§4.10.2) of the
Java programming language make it possible for a variable of araw type to be assigned a
value of any of the type's parameterized instances.)

Thewarningsfrom unchecked conversion cover the dual case, whereagenerified consumer
uses a legacy library. For example, a method of the library has the raw return type
Vect or , but the consumer assigns the result of the method invocation to avariable of type
Vect or <St ri ng>. Thisisunsafe, since the raw vector might have had a different element
type than St ri ng, but is still permitted using unchecked conversion in order to enable

TYPES, VALUES AND VARIABLES Raw Types

interfacing with legacy code. The warning from unchecked conversion indicates that the
generified consumer may experience problems from heap pollution at other points in the
program.

Example 4.8-1. Raw Types

class Cell <E> {

E val ue;
Cel |l (E v) { value =v; }
E get () { return value; }

void set(E v) { value = v; }

public static void main(String[] args) {
Cell x = new Cel I <String>("abc");
Systemout.println(x.value); // OK has type Object
Systemout.println(x.get()); // OK has type Object
x.set("def"); /1 unchecked war ni ng

Example 4.8-2. Raw Types and I nheritance

inmport java.util.*;
cl ass NonGeneric {

Col | ecti on<Nunber> nyNunbers() { return null; }
}

abstract class Rawvenbers<T> extends NonGeneric
i mpl ements Col |l ection<String> {
static Coll ection<NonGeneric> cng =
new ArrayLi st <NonGeneric>();

public static void main(String[] args) {

RawMenbers rw = nul | ;

Col | ecti on<Nunmber> cn = rw. myNunbers();

I K
Iterator<String>is = rwiterator();
/1 Unchecked war ni ng
Col | ecti on<NonGeneri c> cnn = rw. cng;
/1 OK, static menber

}
In this program (which is not meant to be run), Rawivenber s<T> inherits the method:
Iterator<String> iterator()

from the Col | ecti on<String> superinterface. The raw type RawMenbers inherits
i terator() fromcCol | ecti on,theerasureof Col | ecti on<St ri ng>, which meansthat
thereturn type of i t erat or () in RawMenbers islterator. Asaresult, the attempt to

4.8

71

4.9

72

Intersection Types TYPES, VALUES AND VARIABLES

assignrw.iterator() tolterator<String> requires an unchecked conversion, so a
compile-time unchecked warning is issued.

In contrast, Rawm\enber s inherits nyNunbers() from the NonGeneric class whose
erasureisalso NonGener i c. Thus, thereturn type of myNunber s() in RawMenber s isnot
erased, and the attempt to assign r w. myNunber s() to Col | ect i on<Nunber > requiresno
unchecked conversion, so no compile-time unchecked warning is issued.

Similarly, the st ati ¢ member cng retains its parameterized type even when accessed
through a object of raw type. Note that accessto ast at i ¢ member through an instance is
considered bad style and is discouraged.

This example reveals that certain members of a raw type are not erased, namely st ati c
members whose types are parameterized, and members inherited from a non-generic
supertype.

Raw types are closely related to wildcards. Both are based on existential types. Raw types
can be thought of as wildcards whose type rules are deliberately unsound, to accommodate
interaction with legacy code. Historically, raw types preceded wildcards; they were first
introduced in GJ, and described in the paper Making the future safe for the past: Adding
Genericity to the Java Programming Language by Gilad Bracha, Martin Odersky, David
Stoutamire, and Philip Wadler, in Proceedings of the ACM Conference on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA 98), October 1998.

4.9 Intersection Types

Anintersectiontypetakestheform T, &... & T, (n>0), whereT; (1<i<n)aretypes.

Intersection types can be derived from type parameter bounds (84.4) and cast
expressions (815.16); they also arise in the processes of capture conversion
(85.1.10) and least upper bound computation (84.10.4).

The values of an intersection type are those objects that are values of all of the
typesT; for1<i<n.

Every intersection type T; & ... & T, induces a notional class or interface for the
purpose of identifying the members of the intersection type, as follows:

e ForeachT; (1<i<n), let ¢ bethe most specific class or array type such that
Ti <: G . Then there must be some G, such that G, <: G foranyi (1<i<n),or
a compile-time error occurs.

* For1<j<n,if T; isatypevariable, then let T; ' be an interface whose members
are the same as the publ i ¢ members of T;; otherwise, if T; isan interface, then
let Tj 'be Tj .

TYPES, VALUES, AND VARIABLES Subtyping

» If G is vject, a notional interface is induced; otherwise, a notional class
is induced with direct superclass . This class or interface has direct
superinterfacesT,', ..., T, and isdeclared in the package in which the intersection
type appears.

The members of an intersection type are the members of the class or interface it

induces.

Itisworth dwelling upon the distinction between intersection types and the bounds of type
variables. Every type variable bound induces an intersection type. Thisintersection typeis
often trivial, consisting of a single type. The form of a bound is restricted (only the first
element may be a class or type variable, and only one type variable may appear in the
bound) to preclude certain awkward situations coming into existence. However, capture
conversion can lead to the creation of type variables whose bounds are more general, such
as array types).

4.10 Subtyping

The subtype and supertype relations are binary relations on types.

The supertypes of atype are obtained by reflexive and transitive closure over the
direct supertype relation, written s >; T, which is defined by rules given later in
this section. Wewrite s : > T to indicate that the supertype relation holds between
SsandT.

Sisaproper supertypeof T, writtens>T,if S:>TandS#T.

The subtypes of atype T are al types U such that T is a supertype of U, and the
null type. We write T <: S to indicate that that the subtype relation holds between
typesT and s.

T isaproper subtype of s, written T< S, if T<: SandS#T.
Tisadirect subtype of s, written T<; S, if S>; T.

Subtyping does not extend through parameterized types. T <: S does not imply that
C<T><: C<S>.

4.10.1 Subtyping among Primitive Types
Thefollowing rules define the direct supertype relation among the primitive types:

* doubl e >; fl oat

e float >;1o0ng

4.10

73

4.10

74

Subtyping TYPES, VALUES AND VARIABLES

* long>;int
* int > char
* int > short

* short >; byte

4.10.2 Subtyping among Class and Interface Types

Given a non-generic type declaration c, the direct supertypes of the type c are al
of the following:

 Thedirect superclass of C (88.1.4).
» Thedirect superinterfaces of C (88.1.5).
» Thetype vj ect, if cisan interface type with no direct superinterfaces (§9.1.3).

Given a generic type declaration C<F,...,F,> (n > 0), the direct supertypes of the
raw type c (84.8) are al of the following:

» The direct superclass of the raw type C.
» The direct superinterfaces of the raw type C.

» The type bj ect, if C<Fy,...,F> iS a generic interface type with no direct
superinterfaces (89.1.2).

Given a generic type declaration C<F4,...,F,> (n > 0), the direct supertypes of the
generic type C<Fy,...,F,> are dl of the following:

» Thedirect superclass of C<Fy,...,Fn>.
» Thedirect superinterfaces of C<Fy,...,Fp>.

» The type bj ect, if C<Fy,...,Fn> iS a generic interface type with no direct
superinterfaces.

* Theraw typecC.

Given a generic type declaration C<Fy,...,F,> (n > 0), the direct supertypes of
the parameterized type C<Ty,...,To>, Where T; (1 <i < n) isatype, are al of the
following:

e DU B,...,Uc 6>, where D<uy,...,U> is a generic type which is a direct supertype
of the generic type C<Fy,...,Fn> and 0 isthe substitution [Fy: =T, . . ., Fn: =Th] .

* C<Sy,..,Sy>, Where s containsT; (1<i<n)(84.5.1).

TYPES, VALUES, AND VARIABLES Subtyping 4.10

* The type bj ect, if C<Fy,...,F,> is a generic interface type with no direct
superinterfaces.

» Theraw typecC.

Given a generic type declaration C<Fy,...,F,> (n > 0), the direct supertypes of the
parameterized type C<Ry,...,R,> Where at least one of theR (1 <i <n)isawildcard
type argument, are the direct supertypes of the parameterized type C<Xi,...,Xn>
which isthe result of applying capture conversion to C<Ry,...,R,> (85.1.10).

The direct supertypes of an intersectiontypeT; & ... & Ty areT; (1<i<n).
The direct supertypes of atype variable are the typeslisted in its bound.
A type variableis adirect supertype of its lower bound.

The direct supertypes of the null type are all reference types other than the null
typeitself.

4.10.3 Subtyping among Array Types
The following rules define the direct supertype relation among array types:
» If sand T are both reference types, then 5[] >, T[] iff S>; T.
* (bj ect >3 vj ect[]
* Cl oneabl e >; Obj ect][]
* java.io. Serializable>; Object][]
* If Pisaprimitive type, then:
— hj ect > P[]
— Cl oneabl e > P[]

—java.io.Serializable> P[]

4.10.4 Least Upper Bound

Theleast upper bound, or "lub", of aset of referencetypesisashared supertypethat
ismore specific than any other shared supertype (that is, no other shared supertype
is a subtype of the least upper bound). This type, lub(Ui, ..., Us), is determined as
follows.

If k=1, then the lub isthe type itself: lub(U) = u.

Otherwise:

75

4.10 Subtyping TYPES, VALUES, AND VARIABLES

e Foreachu (1<i<KkK):
Let ST(U) be the set of supertypes of U .
Let EST(u), the set of erased supertypes of U, be:
EST(U) ={ W |win ST(U) } where |Wisthe erasure of w

The reason for computing the set of erased supertypes is to deal with situations where
the set of typesincludes several distinct parameterizations of a generic type.

For example, given List<String> and Li st <Obj ect>, simply intersecting the
sets ST(Li st <String>) ={ Li st<String>, Col | ecti on<String>, Object } and
ST(Li st <Obj ect >) = { Li st <bj ect >, Col | ecti on<Cbj ect >, Obj ect } would
yield aset { Obj ect }, and we would have lost track of the fact that the upper bound
can safely be assumed to be alLi st .

In contrast, intersecting EST(Li st <Stri ng>) ={ Li st, Col | ecti on, Obj ect } and
EST(Li st <Obj ect >) ={ Li st, Col | ecti on, Obj ect } yields{ Li st, Col | ecti on,
bj ect }, which will eventually enable usto produce Li st <?>.

e Let EC, the erased candidate set for u; ... Uy, be the intersection of al the sets
EST(U) (1<i<K).

* Let MEC, the minimal erased candidate set for u; ... Uy, be:
MEC ={ v|vinEC, and for al w# vin EC, it is not the case that w<: v}

Because we are seeking to infer more precise types, we wish to filter out any candidates
that are supertypes of other candidates. Thisis what computing MEC accomplishes. In
our running example, we had EC = { Li st, Col | ect i on, Obj ect }, SOMEC ={ Li st
}. The next step isto recover type arguments for the erased typesin MEC.

 For any element G of MEC that is a generic type:
Let the "relevant" parameterizations of G, Relevant(g), be:
Relevant(g) ={ v|1l<i<k vinST(y)andv=G<..>}

In our running example, the only generic element of MEC isLi st , and Relevant(Li st)
={ Li st<String>, Li st <bj ect >}. We will now seek to find a type argument for
Li st that contains (84.5.1) both St ri ng and Qbj ect .

This is done by means of the least containing parameterization (Icp) operation defined
below. Thefirst line defines lcp() on a set, such as Relevant(Li st), asan operation on a
list consisting of the elements of the set. The next line definesthe operation on such alist
as a pairwise reduction on the elements of thelist. Thethird lineisthe definition of Icp()
on pairs of parameterized types, which in turn relies on the notion of least containing
type argument (Icta). Icta() is defined for all possible cases.

76

TYPES, VALUES, AND VARIABLES Subtyping

Let the "candidate' parameterization of G, Candidate(G), be the most
specific parameterization of the generic type G that contains all the relevant
parameterizations of G

Candidate(c) = Icp(Relevant(g))
where lcp(), the least containing parameterization, is:
— lep(s) = lcp(ey, ..., en) Wheree; (1<i<n)ins
— lep(ey, -.., en) = lcp(lcp(es, e2), €3, -, €n)
— lep(GXq, «vy X0>, <Y1, ...y Yp>) = GRlCta(Xy, Y1), ..., ICta(Xq, Yn)>
— lep(GeXy, ..., Xp>) = Glcta(Xxy), ..., Icta(Xy)>
and where Icta(), the least containing type argument, is. (assuming U and V are
types)
— leta(u, v) = uif u=v, otherwise ? ext ends lub(u, V)
— lcta(y, ? ext ends V) = ? ext ends lub(u, V)
— Icta(u, ? super V) =2 super glb(y, V)
— Icta(? ext ends U, ? ext ends V) = ? ext ends [ub(y, V)
— Icta(? ext ends U, ? super V) =?
— lcta(? super U, ? super V) =2 super glb(u, V)
— lcta(u) = 2 if Us upper bound is Obj ect , otherwise ? ext ends lub(U,bj ect)
and where glb() is as defined in §85.1.10.
e Letlub(u; ... k) be:
Best(W) & ... & Best(w)

wherew (1 <i <r) are the elements of MEC, the minimal erased candidate set
of Uy ... Ug;

and where, if any of these elements are generic, we use the candidate
parameterization (so as to recover type arguments):

Best(X) = Candidate(X) if X is generic; X otherwise.

Strictly speaking, this lub() function only approximates a least upper bound.
Formally, there may exist some other typeT suchthat all of u; ... U, aresubtypesof T
and T isasubtype of lub(uy, ..., U). However, acompiler for the Java programming
language must implement lub() as specified above.

4.10

77

4.10

78

Subtyping TYPES, VALUES AND VARIABLES

It is possible that the lub() function yields an infinite type. Thisis permissible, and
acompiler for the Java programming language must recognize such situations and
represent them appropriately using cyclic data structures.

The possibility of aninfinite type stems from the recursive calls to lub(). Readers familiar
with recursive types should note that an infinite type is not the same as arecursive type.

4.10.5 TypeProjections

A synthetic type variable is a type variable introduced by the compiler during
capture conversion (85.1.10) or inference variable resolution (818.4).

It is sometimes necessary to find a close supertype of atype, where that supertype
does not mention certain synthetic type variables. Thisis achieved with an upward
projection applied to the type.

Similarly, adownward projection may be applied to find a close subtype of atype,
where that subtype does not mention certain synthetic type variables. Because such
atype does not always exist, downward projection is a partial function.

These operations take as input a set of type variables that should no longer
be referenced, referred to as the restricted type variables. When the operations
recur, the set of restricted type variables is implicitly passed on to the recursive
application.

The upward projection of atype T with respect to a set of restricted type variables
is defined asfollows:

« If T does not mention any restricted type variable, then theresult isT.

» If T isarestricted type variable, then the result is the upward projection of the
upper bound of T.

 If Tisaparameterized class type or a parameterized interface type, GeA,...,An>,
then the result is GeA',...,Ay'>, where, for 1 <i < n, A'is derived from A as
follows:

— If A, does not mention any restricted type variable, then A ' = A .

— If Ay isatypethat mentions arestricted type variable, then let U be the upward
projection of A . A" isawildcard, defined by three cases:

> If Uisnot tbj ect, and if either the declared bound of the ith parameter of
G, B, mentions atype parameter of G, or B; is not asubtype of U, then A" is
an upper-bounded wildcard, ? ext ends U.

TYPES, VALUES, AND VARIABLES Subtyping 4.10

> Otherwise, if thedownward projection of A isL, then A "isalower-bounded
wildcard, ? super L.

> Otherwise, the downward projection of A is undefined and A" is an
unbounded wildcard, ».

— If A is an upper-bounded wildcard that mentions a restricted type variable,
then let U be the upward projection of the wildcard bound. A ' is an upper-
bounded wildcard, ? ext ends U.

— If A isalower-bounded wildcard that mentions arestricted type variable, then
if the downward projection of the wildcard bound is L, then A" is a lower-
bounded wildcard, ? super L; if the downward projection of the wildcard
bound is undefined, then A ' is an unbounded wildcard, ?.

» If Tisanarray type, [1, then theresult is an array type whose component type
isthe upward projection of s.

* If T is an intersection type, then the result is an intersection type. For each
element, s, of T, the result has as an element the upward projection of s.

Thedownward projection of atype T with respect to aset of restricted typevariables
isapartial function, defined as follows:

« If T does not mention any restricted type variable, then theresult isT.

» If Tisarestricted typevariable, thenif T hasalower bound, and if the downward
projection of that bound is L, the result isL; if T has no lower bound, or if the
downward projection of that bound is undefined, then the result is undefined.

 If Tisaparameterized class type or a parameterized interface type, GeA,...,An>,
thentheresultisG<A;',...,.A,'>, if, for L <i < n, atype argument A ' can be derived
from A, asfollows; if not, the result is undefined:

— If A, isdoes not mention arestricted type variable, then A ' = A .
— If A/ isatype that mentions arestricted type variable, then A ' is undefined.

— If A/ is an upper-bounded wildcard that mentions a restricted type variable,
thenif the downward projection of thewildcard boundisu, then A; ' isan upper-
bounded wildcard, ? ext ends U; if the downward projection of the wildcard
bound is undefined, then A ' is undefined.

— If A, isalower-bounded wildcard that mentions arestricted type variable, then
let L be the upward projection of the wildcard bound. A" is a lower-bounded
wildcard, 2 super L.

79

411

80

Where Types Are Used TYPES, VALUES AND VARIABLES

» If Tisan array type, 5[], then if the downward projection of sis s', theresult is
ST1; if the downward projection of s isundefined, then the result is undefined.

* If Tisanintersection type, then if the downward projection is defined for each
element of T, the result is an intersection type whose el ements are the downward
projections of the elements of T; if the downward projection is undefined for any
element of T, then the result is undefined.

Like lub (84.10.4), upward projection and downward projection may produce
infinite types, due to the recursion on type variable bounds.

4.11 Where TypesAre Used

Types are used in most kinds of declaration and in certain kinds of expression.
Specificaly, there are 16 type contexts where types are used:

* |ndeclarations:

1

8.
0.

A typeinthe ext ends or i npl enent s clause of a class declaration (88.1.4,
88.1.5, 88.5, §9.5)

A typein theext ends clause of an interface declaration (89.1.3, §8.5, 89.5)

The return type of a method (including the type of an element of an
annotation type) (88.4.5, §9.4, §9.6.1)

A typeinthet hr ows clause of amethod or constructor (§8.4.6, §8.8.5, §9.4)

A typein the ext ends clause of atype parameter declaration of a generic
class, interface, method, or constructor (88.1.2, 89.1.2, 88.4.4, §88.8.4)

The type in a field declaration of a class or interface (including an enum
constant) (88.3, §9.3, 88.9.1)

The type in a formal parameter declaration of a method, constructor, or
lambda expression (88.4.1, §8.8.1, §9.4, §15.27.1)

The type of the receiver parameter of amethod (88.4)
Thetypeinalocal variabledeclaration (814.4, 814.14.1, §14.14.2, 814.20.3)

10. Thetypein an exception parameter declaration (§814.20)

* Inexpressions:

TYPES VALUES AND VARIABLES Where Types Are Used

11. A typeintheexplicit type argument list to an explicit constructor invocation
statement or class instance creation expression or method invocation
expression (88.8.7.1, §15.9, §15.12)

12. In an unquaified class instance creation expression, as the class type to be
instantiated (815.9) or as the direct superclass or direct superinterface of an
anonymous class to be instantiated (§15.9.5)

13. The element typein an array creation expression (8§15.10.1)
14. The typein the cast operator of a cast expression (815.16)
15. Thetypethat followsthei nst anceof relational operator (§15.20.2)

16. In a method reference expression (815.13), as the reference type to search
for amember method or as the class type or array type to construct.

Also, types are used as.
» The element type of an array type in any of the above contexts; and

* A non-wildcard type argument, or a bound of a wildcard type argument, of a
parameterized type in any of the above contexts.

Finally, there are three specia terms in the Java programming language which
denote the use of atype:

» An unbounded wildcard (84.5.1)
* The. .. inthetypeof avariablearity parameter (88.4.1), toindicate an array type

* The simple name of atype in a constructor declaration (88.8), to indicate the
class of the constructed object

The meaning of typesin type contextsis given by:
* 84.2, for primitive types
» 84.4, for type parameters

» 845, for classand interface typesthat are parameterized, or appear either astype
arguments in a parameterized type or as bounds of wildcard type argumentsin
a parameterized type

» 84.8, for class and interface types that are raw
» 84.9, for intersection typesin the bounds of type parameters

» 86.5, for class and interface types in contexts where genericity is unimportant
(86.1)

411

81

411 Where Types Are Used TYPES, VALUES AND VARIABLES

» 810.1, for array types
Some type contexts restrict how a reference type may be parameterized:

» The following type contexts require that if atype is a parameterized reference
type, it has no wildcard type arguments:

— Inanext ends or i npl enent s clause of aclass declaration (88.1.4, §8.1.5)
— In an ext ends clause of an interface declaration (89.1.3)

— In an unqualified class instance creation expression, as the class type to be
instantiated (815.9) or as the direct superclass or direct superinterface of an
anonymous class to be instantiated (815.9.5)

— In amethod reference expression (815.13), as the reference type to search for
amember method or as the class type or array type to construct.

In addition, no wildcard type arguments are permitted in the explicit type
argument list to an explicit constructor invocation statement or class instance
creation expression or method invocation expression or method reference
expression (88.8.7.1, §15.9, §15.12, §15.13).

» The following type contexts require that if atype is a parameterized reference
type, it has only unbounded wildcard type arguments (i.e. it isareifiable type) :

— Asthe element typein an array creation expression (815.10.1)
— Asthetype that followsthei nst anceof relational operator (815.20.2)

» Thefollowing type contexts disallow a parameterized reference type altogether,
because they involve exceptions and the type of an exception is non-generic
(86.1):

— As the type of an exception that can be thrown by a method or constructor
(88.4.6, 88.8.5, 89.4)

— In an exception parameter declaration (814.20)

In any type context where atype is used, it is possible to annotate the keyword denoting
a primitive type or the Identifier denoting the simple name of a reference type. It is also
possible to annotate an array type by writing an annotation to the left of the[at the desired
level of nesting in the array type. Annotationsin these locations are called type annotations,
and are specified in §9.7.4. Here are some examples:
e @oo0 int[] f; annotatesthe primitivetypei nt
e int @oo [] f; annotatesthearray typeint[]

e int @oo [][] f; annotatesthearray typeint[][]

82

TYPES VALUES AND VARIABLES Where Types Are Used 411

e int[] @oo [] f; annotatesthe array typei nt[] which isthe component type of
thearray typei nt[]1[]

Five of the type contexts which appear in declarations occupy the same syntactic real estate
as anumber of declaration contexts (89.6.4.1):

¢ Thereturn type of amethod (including the type of an element of an annotation type)
« Thetypein afield declaration of aclass or interface (including an enum constant)

e The type in a formal parameter declaration of a method, constructor, or lambda
expression

e Thetypein aloca variable declaration

* Thetypein an exception parameter declaration

The fact that the same syntactic location in a program can be both a type context and a
declaration context arises because the modifiers for a declaration immediately precede the
type of the declared entity. §9.7.4 explains how an annotation in such alocation is deemed
to appear in atype context or a declaration context or both.

Example 4.11-1. Usage of a Type

import java.util.Random
inmport java.util.Collection;
inmport java.util.Arraylist;

class M scMat h<T extends Nunmber> {
int divisor;
M scMat h(int divisor) { this.divisor = divisor; }
float ratio(long I) {
try {
| /= divisor;
} catch (Exception e) {
if (e instanceof ArithmeticException)
| = Long. MAX_VALUE;
el se
I =0;

return (float)l;

}

doubl e gausser() {

Random r = new Randon{);
doubl e[] val = new doubl e[2];
val [0] = r.next Gaussi an();
val [1] = r.next Gaussian();
return (val[0] + val[1]) / 2;

}

Col | ecti on<Nunber> fromArray(Nunber[] na) {
Col | ecti on<Nunmber> cn = new Arrayli st <Nurmber>();
for (Number n : na) cn.add(n);
return cn;

83

411

Where Types Are Used TYPES, VALUES AND VARIABLES

<S> void |l oop(S s) { this.<S>loop(s); }
}

In this example, types are used in declarations of the following:

e Imported types (87.5); here the type Random imported from the type
java. util . Randomof the packagej ava. uti |, isdeclared

« Fields, which are the class variables and instance variables of classes (88.3), and
constants of interfaces (89.3); herethefield di vi sor intheclassM scMat h isdeclared
to be of typei nt

* Method parameters (88.4.1); here the parameter | of the method r at i o is declared to
be of typel ong

e Method results (88.4); here the result of the method r ati o is declared to be of type
f 1 oat , and the result of the method gausser isdeclared to be of typedoubl e

» Constructor parameters (88.8.1); here the parameter of the constructor for M scMat h is
declared to be of typei nt

e Local variables (§814.4, 814.14); the local variablesr and val of the method gausser
are declared to be of types Randomand doubl e[] (array of doubl e)

* Exception parameters (§14.20); here the exception parameter e of the cat ch clauseis
declared to be of type Except i on

* Type parameters (§84.4); here the type parameter of M scMat h isatype variable T with
the type Nunber asits declared bound

« Inany declaration that uses a parameterized type; herethe type Nunber isused asatype
argument (84.5.1) in the parameterized type Col | ect i on<Nunber >.

and in expressions of the following kinds:
» Classinstance creations (815.9); herealocal variabler of method gausser isinitialized

by a class instance creation expression that uses the type Random

« Genericclass(88.1.2) instance creations (815.9); here Nunber isused asatypeargument
in the expression new ArrayLi st <Number >()

» Array creations (815.10.1); herethelocal variableval of method gausser isinitiaized
by an array creation expression that creates an array of doubl e with size 2

» Generic method (§8.4.4) or constructor (88.8.4) invocations (815.12); here the method
| oop callsitself with an explicit type argument S

¢ Casts (815.16); here ther et ur n statement of the method r at i o usesthe f| oat type
inacast

e Thei nst anceof operator (815.20.2); herethei nst anceof operator testswhether e is
assignment-compatible with thetype Ari t hnmet i cExcept i on

TYPES, VALUES, AND VARIABLES Variables

412 Variables

A variable is a storage location and has an associated type, sometimes called its
compile-time type, that is either a primitive type (84.2) or areference type (84.3).

A variable's value is changed by an assignment (815.26) or by aprefix or postfix +
+ (increment) or - - (decrement) operator (815.14.2, §15.14.3, §15.15.1, §15.15.2).

Compatibility of the value of avariablewith itstypeis guaranteed by the design of
the Java programming language, aslong asaprogram does not giveriseto compile-
timeunchecked warnings (84.12.2). Default values (84.12.5) are compatibleand al
assignments to a variable are checked for assignment compatibility (85.2), usually
at compile time, but, in a single case involving arrays, a run-time check is made
(810.5).

4.12.1 Variablesof Primitive Type

A variable of aprimitivetype always holds aprimitive value of that exact primitive
type.

4.12.2 Variablesof Reference Type

A variable of aclasstype T can hold anull reference or areference to an instance
of class T or of any classthat is a subclass of T.

A variable of an interface type can hold a null reference or a reference to any
instance of any class that implements the interface.

Note that a variable is not guaranteed to always refer to a subtype of its declared type, but
only to subclasses or subinterfaces of the declared type. This is due to the possibility of
heap pollution discussed below.

If Tisaprimitivetype, then avariable of type"array of T" can hold anull reference
or areference to any array of type "array of T".

If Tisareferencetype, then avariable of type "array of T" can hold anull reference
or areference to any array of type "array of S" such that type s is a subclass or
subinterface of type T.

A variable of type tbj ect[] can hold areferenceto an array of any reference type.

A variable of type mj ect can hold a null reference or areference to any object,
whether it is an instance of aclass or an array.

412

85

412

86

Variables TYPES, VALUES, AND VARIABLES

It is possible that a variable of a parameterized type will refer to an object that is
not of that parameterized type. This situation is known as heap pollution.

Heap pollution can only occur if the program performed some operation involving
araw typethat would give rise to a compile-time unchecked warning (84.8, 85.1.6,
85.1.9, 88.4.1,88.4.8.3,88.4.8.4,89.4.1.2, 815.12.4.2), or if the program aliases an
array variable of non-reifiable element typethrough an array variable of asupertype
which is either raw or non-generic.

For example, the code:

List | = new ArrayLi st <Nunber>();
List<String>Is =1; [/ Unchecked warning

gives rise to a compile-time unchecked warning, because it is not possible to ascertain,
either at compile time (within the limits of the compile-time type checking rules) or at run
time, whether the variable | doesindeed refer toali st <Stri ng>.

If the code above is executed, heap pollution arises, as the variable | s, declared to be a
Li st <String>, refersto avaluethat isnot in fact aLi st <Stri ng>.

The problem cannot be identified at run time because type variables are not reified, and
thus instances do not carry any information at run time regarding the type arguments used
to create them.

In a simple example as given above, it may appear that it should be straightforward to
identify the situation at compiletimeand givean error. However, in thegeneral (and typical)
case, the value of the variablel may bethe result of an invocation of a separately compiled
method, or its value may depend upon arbitrary control flow. The code above is therefore
very atypical, and indeed very bad style.

Furthermore, the fact that Qbj ect [] is a supertype of all array types means that unsafe
aliasing can occur which leadsto heap pollution. For example, the following code compiles
becauseit is statically type-correct:

static void m(List<String> .. stringLists) {
Obj ect[] array = stringLists;
Li st<Integer> tnpList = Arrays. asLi st(42);
array[0] = tnpList; 11 (1)
String s = stringLists[0].get(0); [/ (2)
}

Heap pollution occurs at (1) because a component inthe st ri ngLi st s array that should
refer toaLi st <Stri ng> now refersto aLi st <I nt eger >. There is no way to detect this
pollutionin the presence of both auniversal supertype (Obj ect []) and anon-reifiabletype
(the declared type of the formal parameter, Li st <St ri ng>[]). No unchecked warning is
justified at (1); nevertheless, at runtime, aCl assCast Except i on will occur at (2).

TYPES, VALUES, AND VARIABLES Variables 412

A compile-time unchecked warning will be given at any invocation of the method above
because an invocation is considered by the Java programming language's static type system
to create an array whose element type, Li st <St ri ng>, isnon-reifiable (§15.12.4.2). If and
only if the body of the method was type-safe with respect to the variable arity parameter,
then the programmer could use the Saf evarargs annotation to silence warnings at
invocations (89.6.4.7). Sincethe body of the method aswritten above causes heap pollution,
it would be completely inappropriate to use the annotation to disable warnings for callers.

Finaly, notethat thest ri ngLi st s array could be aliased through variables of types other
than Qbj ect [], and heap pollution could still occur. For example, the type of the ar r ay
variable could bej ava. util . Col | ection[] - araw element type - and the body of the
method above would compilewithout warnings or errorsand still cause heap pollution. And
if the Java SE Platform defined, say, Sequence as a hon-generic supertype of Li st <T>,
then using Sequence asthetype of ar r ay would also cause heap pollution.

The variable will always refer to an object that is an instance of a class that
represents the parameterized type.

The value of | s in the example above is always an instance of a class that provides a
representation of aLi st .

Assignment from an expression of araw typeto avariable of a parameterized type should
only be used when combining legacy code which does not make use of parameterized types
with more modern code that does.

If no operation that requires a compile-time unchecked warning to be issued takes place,
and no unsafe aliasing occurs of array variables with non-reifiable element types, then
heap pollution cannot occur. Note that this does not imply that heap pollution only occurs
if a compile-time unchecked warning actually occurred. It is possible to run a program
where some of the binaries were produced by a compiler for an older version of the Java
programming language, or from sources that explicitly suppressed unchecked warnings.
This practice is unhealthy at best.

Conversely, it is possible that despite executing code that could (and perhaps did)
give rise to a compile-time unchecked warning, no heap pollution takes place. Indeed,
good programming practice requires that the programmer satisfy herself that despite any
unchecked warning, the code is correct and heap pollution will not occur.

4.12.3 Kindsof Variables

There are eight kinds of variables:

1. A classvariableis afield declared using the keyword st at i ¢ within a class
declaration (88.3.1.1), or with or without the keyword static within an
interface declaration (89.3).

A classvariableis created when its class or interfaceis prepared (812.3.2) and
isinitialized to a default value (84.12.5). The class variable effectively ceases
to exist when its class or interface is unloaded (§12.7).

87

412

88

Variables TYPES, VALUES, AND VARIABLES

Aninstancevariableisafield declared within aclass declaration without using
the keyword st at i ¢ (88.3.1.1).

If aclassT hasafield a that isan instance variable, then anew instance variable
a is created and initialized to a default value (84.12.5) as part of each newly
created object of class T or of any class that is a subclass of T (88.1.4). The
instancevariabl e effectively ceasesto exist when the object of whichitisafield
is no longer referenced, after any necessary finalization of the object (812.6)
has been compl eted.

Array components are unnamed variables that are created and initialized to
default values (84.12.5) whenever anew object that isan array is created (810
(Arrays), §15.10.2). The array components effectively cease to exist when the
array is no longer referenced.

Method parameters (88.4.1) name argument values passed to a method.

For every parameter declared in amethod declaration, anew parameter variable
is created each time that method is invoked (815.12). The new variable is
initialized with the corresponding argument value from the method invocation.
The method parameter effectively ceases to exist when the execution of the
body of the method is complete.

Constructor parameters (88.8.1) name argument values passed to a
constructor.

For every parameter declared in a constructor declaration, a new parameter
variable is created each time a class instance creation expression (815.9) or
explicit constructor invocation (88.8.7) invokes that constructor. The new
variableisinitialized with the corresponding argument value from the creation
expression or constructor invocation. The constructor parameter effectively
ceases to exist when the execution of the body of the constructor is complete.

Lambda parameters (815.27.1) name argument values passed to a lambda
expression body (815.27.2).

For every parameter declared in alambda expression, anew parameter variable
is created each time a method implemented by the lambda body is invoked
(815.12). The new variable is initialized with the corresponding argument
value from the method invocation. The lambda parameter effectively ceasesto
exist when the execution of the lambda expression body is complete.

An exception parameter is created each time an exception is caught by acat ch
clause of atry statement (§14.20).

TYPES, VALUES, AND VARIABLES Variables

The new variable is initialized with the actual object associated with the
exception (811.3, 814.18). The exception parameter effectively ceasesto exist
when execution of the block associated with the cat ch clause is complete.

8. Local variables are declared by local variable declaration statements (814.4).

Whenever the flow of control enters a block (814.2) or for statement
(814.14), anew variable is created for each local variable declared in a local
variable declaration statement immediately contained within that block or f or
statement.

A local variable declaration statement may contain an expression which
initializesthe variable. Thelocal variable with an initializing expression is not
initialized, however, until thelocal variable declaration statement that declares
it is executed. (The rules of definite assignment (816 (Definite Assignment))
prevent the value of a local variable from being used before it has been
initialized or otherwise assigned avalue.) The local variable effectively ceases
to exist when the execution of the block or for statement is complete.

Were it not for one exceptiona situation, a local variable could always be regarded
as being created when its local variable declaration statement is executed. The
exceptional situation involvesthe swi t ch statement (814.11), whereit is possible for
control to enter ablock but bypass execution of alocal variable declaration statement.
Because of the restrictionsimposed by the rules of definite assignment (816 (Definite
Assignment)), however, the local variable declared by such a bypassed local variable
declaration statement cannot be used before it has been definitely assigned avalue by
an assignment expression (815.26).

Example 4.12.3-1. Different Kinds of Variables

class Point {

static int nunmPoints; /1 nunPoints is a class variable
int x, vy; /1 x and y are instance vari abl es
int[] w=newint[10]; // wWO] is an array conponent

int setX(int x) { /1 x is a nethod paraneter

int oldx = this.x; // oldx is a local variable
this.x = x;
return ol dx;

4124 final Variables

A variable can bedeclared fi nal . A fi nal variable may only be assigned to once.
It is a compile-time error if afinal variable is assigned to unlessit is definitely
unassigned immediately prior to the assignment (816 (Definite Assignment)).

412

89

412

90

Variables TYPES, VALUES, AND VARIABLES

Once afinal variable has been assigned, it aways contains the same value. If a
final variable holds areference to an object, then the state of the object may be
changed by operations on the object, but the variable will always refer to the same
object. This applies also to arrays, because arrays are objects; if afinal variable
holds areference to an array, then the components of the array may be changed by
operations on the array, but the variable will always refer to the same array.

A blankfinal isafinal variable whose declaration lacks aninitializer.

A constant variable is afinal variable of primitive type or type Stri ng that is
initialized with a constant expression (815.28). Whether a variable is a constant
variable or not may have implications with respect to classinitialization (812.4.1),
binary compatibility (813.1), reachability (814.21), and definite assignment
(816.1.2).

Three kinds of variable are implicitly declared final : a field of an interface
(89.3), alocal variable declared as a resource of at ry-with-resources statement
(814.20.3), and an exception parameter of a multi-cat ch clause (814.20). An
exception parameter of auni-cat ch clause is never implicitly declared fi nal , but
may be effectively final.

Example 4.12.4-1. Final Variables

Declaringavariablef i nal canserveasuseful documentation that its valuewill not change
and can help avoid programming errors. In this program:

class Point {
int x, vy;
int useCount;
Point(int x, int y) { this.x =x; this.y =vy; }
static final Point origin = new Point(0, 0);

}

the class Poi nt declares afinal class variable ori gi n. The ori gi n variable holds a
reference to an object that is an instance of class Poi nt whose coordinates are (0, 0). The
value of the variable Poi nt . ori gi n can never change, so it always refers to the same
Poi nt object, the one created by itsinitializer. However, an operation on this Poi nt object
might change its state - for example, modifying itsuseCount or even, misleadingly, itsx
ory coordinate.

Certain variables that are not declared final are instead considered effectively
final:

» A local variable whose declarator has an initializer (814.4.2) is effectively final
if all of the following are true:

— Itisnot declared f i nal .

TYPES, VALUES, AND VARIABLES Variables

— It never occurs as the left hand side in an assignment expression (§15.26).
(Note that the local variable declarator containing the initializer is not an
assignment expression.)

— It never occurs as the operand of a prefix or postfix increment or decrement
operator (815.14, §15.15).

» A local variable whose declarator lacks an initializer is effectively final if al of
the following are true:

— Itisnot declared fi nal .

— Whenever it occurs as the left hand side in an assignment expression, it is
definitely unassigned and not definitely assigned before the assignment; that
is, it is definitely unassigned and not definitely assigned after the right hand
side of the assignment expression (816 (Definite Assignment)).

— It never occurs as the operand of a prefix or postfix increment or decrement
operator.

» A method, constructor, lambda, or exception parameter (§88.4.1, §8.8.1, §9.4,
§15.27.1, 814.20) is treated, for the purpose of determining whether it is
effectively final, as alocal variable whose declarator has an initializer.

If avariable is effectively final, adding the fi nal modifier to its declaration will
not introduce any compile-time errors. Conversely, a local variable or parameter
that is declared fi nal in avalid program becomes effectively final if the fi nal
modifier is removed.

4125 Initial Valuesof Variables

Every variable in a program must have a value before its value is used:

» Each class variable, instance variable, or array component is initialized with a
default value when it is created (815.9, §15.10.2):

— For type byt e, the default value is zero, that is, the value of (byt e) 0.

— For typeshort, the default valueis zero, that is, the value of (short) 0.
— For typei nt, the default value is zero, that is, 0.

— For typel ong, the default value is zero, that is, oL.

— For typefl oat , the default valueis positive zero, that is, 0. 0f .

— For type doubl e, the default value is positive zero, that is, 0. 0d.

412

91

412

92

Variables TYPES, VALUES, AND VARIABLES

— For type char , the default value is the null character, that is, ' \ uo000' .
— For type bool ean, the default valueisf al se.
— For all reference types (84.3), the default valueisnul | .

» Each method parameter (88.4.1) is initialized to the corresponding argument
value provided by the invoker of the method (815.12).

» Each constructor parameter (88.8.1) isinitialized to the corresponding argument
value provided by a class instance creation expression (815.9) or explicit
constructor invocation (88.8.7).

» An exception parameter (814.20) isinitialized to the thrown object representing
the exception (811.3, §14.18).

* A locd variable (814.4, 814.14) must be explicitly given a value before it is
used, by either initialization (814.4) or assignment (815.26), in away that can be
verified using the rules for definite assignment (816 (Definite Assignment)).

Example 4.12.5-1. Initial Values of Variables

class Point {
static int npoints;
int x, vy;
Poi nt root;

}

class Test {
public static void main(String[] args) {
System out. println("npoints=" + Point.npoints);
Point p = new Point();
Systemout.println("p.x=" + p.x + ", p.y=" + p.y);
Systemout.printin("p.root=" + p.root);

}
This program prints:

npoi nt s=0
p.x=0, p.y=0
p. root =nul |

illustrating the default initialization of npoi nt s, which occurs when the class Poi nt is
prepared (812.3.2), and thedefault initialization of x, y, andr oot , which occurswhen anew
Poi nt isinstantiated. See §12 (Execution) for afull description of al aspects of loading,
linking, and initialization of classes and interfaces, plus a description of the instantiation
of classes to make new class instances.

TYPES, VALUES, AND VARIABLES Variables

4.12.6 Types, Classes, and Interfaces

In the Java programming language, every variable and every expression has atype
that can be determined at compile time. The type may be a primitive type or a
reference type. Reference typesinclude class types and interface types. Reference
types are introduced by type declarations, which include class declarations (88.1)
and interface declarations (89.1). We often use the term type to refer to either a
class or an interface.

Inthe JavaVirtual Machine, every object belongsto some particular class: theclass
that was mentioned in the creation expression that produced the object (§15.9), or
the classwhose d ass object was used to invoke areflective method to producethe
object, or the st ri ng classfor objectsimplicitly created by the string concatenation
operator + (815.18.1). Thisclassis caled the class of the object. An object issaid
to be an instance of its class and of all superclasses of its class.

Every array aso has a class. The method get O ass, when invoked for an array
object, will return a class object (of class d ass) that represents the class of the
array (810.8).

The compile-time type of avariable isaways declared, and the compile-time type
of an expression can be deduced at compile time. The compile-time type limitsthe
possible valuesthat the variable can hold at run time or the expression can produce
a runtime. If arun-time vaueisareference that isnot nul |, it refersto an object
or array that has a class, and that class will necessarily be compatible with the
compile-time type.

Even though a variable or expression may have a compile-time type that is an
interface type, there are no instances of interfaces. A variable or expression whose
typeisan interface type can reference any object whose class implements (88.1.5)
that interface.

Sometimes a variable or expression is said to have a "run-time type". This refers
to the class of the object referred to by the value of the variable or expression at
run time, assuming that the valueisnot nul | .

The correspondence between compile-time types and run-time types isincomplete
for two reasons:

1. Atruntime, classesand interfacesareloaded by the JavaVirtual Machine using
class loaders. Each class loader defines its own set of classes and interfaces.
Asaresult, it is possible for two loaders to load an identical class or interface
definition but produce distinct classes or interfaces at run time. Consequently,
code that compiled correctly may fail at link timeif the class |oaders that load
it areinconsistent.

412

93

4.12 Variables TYPES, VALUES, AND VARIABLES

See the paper Dynamic Class Loading in the Java Virtual Machine, by Sheng Liang
and Gilad Bracha, in Proceedings of OOPSLA '98, published as ACM SIGPLAN
Notices, Volume 33, Number 10, October 1998, pages 36-44, and The Java Virtual
Machine Specification, Java SE 13 Edition for more details.

2. Type variables (84.4) and type arguments (84.5.1) are not reified at run
time. As aresult, the same class or interface at run time represents multiple
parameterized types (84.5) from compile time. Specifically, all compile-time
parameterizations of a given generic type (88.1.2, 89.1.2) share a single run-
time representation.

Under certain conditions, it is possible that a variable of a parameterized type refers
to an object that is not of that parameterized type. This situation is known as heap
pollution (84.12.2). The variable will always refer to an object that is an instance of
aclass that represents the parameterized type.

Example 4.12.6-1. Type of a Variable ver sus Class of an Object

interface Col orable {
voi d setCol or(byte r, byte g, byte b);
}

class Point { int x, y; }

cl ass Col oredPoi nt extends Point inplenments Col orable {
byte r, g, b;
public void setColor(byte rv, byte gv, byte bv) {
r =rv; g =gv; b= bv;
}
}

class Test {
public static void main(String[] args) {
Point p = new Point();
Col oredPoi nt cp = new Col oredPoi nt ();
p =cp;
Col orable ¢ = cp;

}
In this example:
e Thelocal variable p of the method mai n of class Test hastype Poi nt and isinitialy

assigned a reference to a new instance of class Poi nt .

e Theloca variable cp similarly has asits type Col or edPoi nt , and isinitialy assigned
areference to a new instance of class Col or edPoi nt .

e The assignment of the value of cp to the variable p causes p to hold a reference
to a Col or edPoi nt object. This is permitted because Col or edPoi nt is a subclass
of Poi nt, so the class Col or edPoi nt is assignment-compatible (85.2) with the type

94

TYPES, VALUES, AND VARIABLES Variables 412

Poi nt . A Col or edPoi nt object includes support for all the methods of a Poi nt . In
additiontoitsparticular fieldsr , g, and b, it hasthefields of classPoi nt , namely x andy .

e The local variable ¢ has as its type the interface type Col or abl e, so it can hold a
reference to any object whose class implements Col or abl e; specificaly, it can hold a
reference to a Col or edPoi nt .

Note that an expression such as new Col or abl e() isnot valid because it is not possible
to create an instance of an interface, only of a class. However, the expression new
Colorable() { public void setColor... } isvalid because it declares an
anonymous class (815.9.5) that implements the Col or abl e interface.

95

CHAPTER5

Conversions and Contexts

EVERY expression written in the Java programming language either produces no
result (815.1) or has atype that can be deduced at compile time (815.3). When an
expression appears in most contexts, it must be compatible with atype expected in
that context; this type is called the target type. For convenience, compatibility of
an expression with its surrounding context is facilitated in two ways.

 Firgt, for some expressions, termed poly expressions (815.2), the deduced type
can be influenced by the target type. The same expression can have different
typesin different contexts.

 Second, after thetype of the expression has been deduced, animplicit conversion
from the type of the expression to the target type can sometimes be performed.

If neither strategy is able to produce the appropriate type, a compile-time error
OCCUrs.

The rulesdetermining whether an expressionisapoly expression, and if so, itstype
and compatibility in aparticular context, vary depending on the kind of context and
the form of the expression. In addition to influencing the type of the expression,
the target type may in some cases influence the run time behavior of the expression
in order to produce a value of the appropriate type.

Similarly, the rules determining whether atarget type allowsanimplicit conversion
vary depending onthekind of context, thetype of the expression, and, in one specia
case, the value of a constant expression (815.28). A conversion from type s to type
T allows an expression of type s to be treated at compile time as if it had type T
instead. In some cases thiswill require a corresponding action at run time to check
the validity of the conversion or to translate the run-time value of the expression
into aform appropriate for the new type T.

97

98

CONVERSIONS AND CONTEXTS

Example 5.0-1. Conversions at Compile Timeand Run Time

« A conversion from type Obj ect totype Thr ead requires arun-time check to make sure
that the run-time value is actually an instance of class Thr ead or one of its subclasses,
if itisnot, an exception is thrown.

* A conversion from type Thr ead to type Obj ect requires no run-time action; Thr ead
isasubclass of Qbj ect , so any reference produced by an expression of type Thr ead is
avalid reference value of type oj ect .

« A conversion from typei nt to typel ong requires run-time sign-extension of a 32-bit
integer value to the 64-hit | ong representation. No information is lost.

¢ A conversion from type doubl e to type | ong requires a non-trivial translation from a
64-bit floating-point value to the 64-bit integer representation. Depending on the actual
run-time value, information may be lost.

The conversions possible in the Java programming language are grouped into
several broad categories:

| dentity conversions

Widening primitive conversions
Narrowing primitive conversions
Widening reference conversions
Narrowing reference conversions
Boxing conversions

Unboxing conversions
Unchecked conversions

Capture conversions

String conversions

Vaue set conversions

There are six kinds of conversion contexts in which poly expressions may be
influenced by context or implicit conversions may occur. Each kind of context has
different rules for poly expression typing and allows conversions in some of the
categories above but not others. The contexts are:

Assignment contexts (85.2, 815.26), in which an expression's value is bound to
anamed variable. Primitive and reference types are subject to widening, values
may be boxed or unboxed, and some primitive constant expressions may be
subject to narrowing. An unchecked conversion may also occur.

CONVERSIONS AND CONTEXTS

 Strict invocation contexts (85.3, §15.9, 815.12), in which an argument is bound
to aformal parameter of aconstructor or method. Widening primitive, widening
reference, and unchecked conversions may occur.

* Loose invocation contexts (85.3, 815.9, §15.12), in which, like strict invocation
contexts, an argument is bound to a formal parameter. Method or constructor
invocations may provide this context if no applicable declaration can be found
using only strict invocation contexts. In addition to widening and unchecked
conversions, this context allows boxing and unboxing conversions to occur.

* String contexts (85.4, 815.18.1), in which avalue of any typeis converted to an
object of type stri ng.

 Casting contexts (85.5), in which an expression's value is converted to a type
explicitly specified by a cast operator (815.16). Casting contexts are more
inclusive than assignment or loose invocation contexts, allowing any specific
conversion other than a string conversion, but certain casts to a reference type
are checked for correctness at run time.

» Numeric contexts (85.6), in which the operands of a numeric operator may be
widened to a common type so that an operation can be performed.

The term "conversion” is also used to describe, without being specific, any
conversionsallowed in aparticular context. For example, we say that an expression
that is the initializer of a local variable is subject to "assignment conversion”,
meaning that a specific conversion will be implicitly chosen for that expression
according to the rules for the assignment context.

Example 5.0-2. ConversionsIn Various Contexts

class Test {
public static void main(String[] args) {
/1 Casting conversion (5.4) of a float literal to
/1 type int. Wthout the cast operator, this would
/1l be a conpile-time error, because this is a
/1 narrow ng conversion (5.1.3):
int i = (int)12.5f;

/1 String conversion (5.4) of i's int value:
Systemout.printin("(int)l12. 5f==" + i);

/'l Assignnent conversion (5.2) of i's value to type
/1 float. This is a wi dening conversion (5.1.2):
float f = 1i;

/1 String conversion of f's float val ue:
Systemout.println("after float widening: " + f);

/1 Numeric pronotion (5.6) of i's value to type

99

51

100

Kinds of Conversion CONVERS ONS AND CONTEXTS

/1 float. This is a binary numeric pronotion.

// After pronotion, the operation is float*float:

Systemout. print(f);
f=1f*i;

/1l Two string conversions of i and f:
Systemout.println("*" + i + "==" + f);

/'l lnvocation conversion (5.3) of f's value

/'l to type doubl e, needed because the nmethod Math.sin

/'l accepts only a doubl e argunent:
double d = Math.sin(f);

/1 Two string conversions of f and d:

Systemout.printin("Math.sin(" + f + ")==" + d);

}

This program produces the outpult:
(int)12.5f==12
after float w dening: 12.0

12.0*12==144.0
Mat h. si n(144. 0) ==-0. 49102159389846934

5.1 Kindsof Conversion

Specific type conversions in the Java programming language are divided into 13

categories.

5.1.1 Identity Conversion

A conversion from atype to that same typeis permitted for any type.

This may seem trivial, but it has two practical consequences. First, it is aways permitted
for an expression to have the desired type to begin with, thus allowing the simply stated rule
that every expression is subject to conversion, if only atrivial identity conversion. Second,
itimpliesthat it is permitted for a program to include redundant cast operators for the sake

of clarity.

5.1.2 Widening Primitive Conversion

19 specific conversions on primitive types are called the widening primitive

conversions:

* bytetoshort,int,long,float, Or doubl e

CONVERS ONS AND CONTEXTS Kinds of Conversion

e short toint,I|ong,float, Or doubl e
e char toint,long,fl oat, Or doubl e
* int tolong, fl oat, Or doubl e

* longtofl oat Or doubl e

* fl oat todoubl e

A widening primitive conversion does not lose information about the overal
magnitude of a numeric value in the following cases, where the numeric value is
preserved exactly:

» from an integral type to another integral type

» frombyt e, short, or char to afloating point type

» fromint todoubl e

e fromfl oat todoubl e inastrictfp expression (§15.4)

A widening primitive conversion fromf | oat to doubl e that isnot stri ct f p may
lose information about the overall magnitude of the converted value.

A widening primitive conversion fromint to float, or from | ong to fI oat, or
from |1 ong to doubl e, may result in loss of precision - that is, the result may lose
some of the least significant bits of the value. In this case, the resulting floating-
point value will be a correctly rounded version of the integer value, using |[EEE
754 round-to-nearest mode (84.2.4).

A widening conversion of asigned integer value to an integral type T simply sign-
extends the twao's-complement representation of the integer value to fill the wider
format.

A widening conversion of a char to an integra type T zero-extends the
representation of the char valueto fill the wider format.

Despite the fact that loss of precision may occur, awidening primitive conversion
never resultsin arun-time exception (811.1.1).

Example 5.1.2-1. Widening Primitive Conversion

class Test {
public static void main(String[] args) {
int big = 1234567890;
float approx = big;
Systemout. println(big - (int)approx);

51

101

51

102

Kinds of Conversion CONVERS ONS AND CONTEXTS

This program prints:
-46

thusindicating that information waslost during the conversion fromtypei nt totypef | oat
because values of typef | oat are not precise to nine significant digits.

5.1.3 Narrowing Primitive Conversion

22 specific conversions on primitive types are called the narrowing primitive
conversions:

e short tobyte Or char

e char tObyte Or short

* int tobyte, short, Or char

* |ong tobyte, short, char, Orint

e float tobyte, short,char,int,Orlong

* doubl e to byt e, short, char,int,long, O fl oat

A narrowing primitive conversion may lose information about the overal
magnitude of a numeric value and may also lase precision and range.

A narrowing primitive conversion from doubl e to f 1 oat isgoverned by the IEEE
754 rounding rules (84.2.4). Thisconversion can lose precision, but al'so loserange,
resultingin af | oat zerofrom anonzero doubl e and afl oat infinity from afinite
doubl e. A doubl e NaN is converted to afloat NaN and a doubl e infinity is
converted to the same-signed f | oat infinity.

A narrowing conversion of a signed integer to an integral type T simply discards
all but the n lowest order bits, where n is the number of bits used to represent type
T. In addition to a possible loss of information about the magnitude of the numeric
value, this may cause the sign of the resulting value to differ from the sign of the
input value.

A narrowing conversion of achar to an integral type T likewise simply discards
all but the n lowest order bits, where n is the number of bits used to represent type
T. In addition to a possible loss of information about the magnitude of the numeric
value, this may cause the resulting value to be a negative number, even though
chars represent 16-bit unsigned integer values.

A narrowing conversion of afloating-point number to an integral type T takes two
steps:

CONVERSIONS AND CONTEXTS Kinds of Conversion 51

1. Inthefirst step, the floating-point number is converted either to al ong, if Tis
long,ortoanint,if Tisbyte, short, char, orint, asfollows:

* If thefloating-point number isNaN (84.2.3), the result of thefirst step of the
conversionisanint orlong 0.

» Otherwise, if the floating-point number is not an infinity, the floating-point
valueisrounded to an integer value v, rounding toward zero using | EEE 754
round-toward-zero mode (84.2.3). Then there are two cases:

a IfTisl ong, and thisinteger value can be represented asal ong, thenthe
result of the first step isthel ong value v.

b. Otherwise, if this integer value can be represented as an i nt, then the
result of the first stepisthei nt valuev.

» Otherwise, one of the following two cases must be true:

a. The value must be too small (a negative value of large magnitude
or negative infinity), and the result of the first step is the smallest
representable value of typei nt or | ong.

b. The value must be too large (a positive value of large magnitude
or positive infinity), and the result of the first step is the largest
representable value of typei nt or | ong.

2. Inthe second step:
» If Tisint orl ong, theresult of the conversion isthe result of the first step.

e If Tisbyte, char, or short, the result of the conversion is the result of a
narrowing conversion to type T (85.1.3) of the result of the first step.

Despite the fact that overflow, underflow, or other loss of information may occur,
aharrowing primitive conversion never results in arun-time exception (§11.1.1).

Example 5.1.3-1. Narrowing Primitive Conversion

class Test {
public static void main(String[] args) {
float fmn = Fl oat. NEGATI VE_| NFI NI TY;
float fmax = Fl oat. PCSI TI VE_I NFI NI TY;

Systemout.printin("long: " + (long)fmn +
".." + (long)fmax);
Systemout.println("int: " + (int)fmn +
"o+ (int) fmax);
Systemout.printlin("short: " + (short)fmn +
".." + (short)fnmax);
Systemout.printin("char: " + (int)(char)fmn +

" + (int)(char)fnmax);

103

51

104

Kinds of Conversion CONVERS ONS AND CONTEXTS

Systemout.println("byte: " + (byte)fmn +
+ (byte)fmx);

}

This program produces the output:

I ong: -9223372036854775808. . 9223372036854775807
int: -2147483648..2147483647

short: 0..-1

char: 0..65535

byte: 0..-1

The results for char, int, and | ong are unsurprising, producing the minimum and
maximum representabl e values of the type.

The results for byt e and short lose information about the sign and magnitude of the
numeric values and also lose precision. The results can be understood by examining the
low order bits of the minimum and maximum i nt . The minimum i nt is, in hexadecimal,
0x80000000, andthemaximumintisox7f f f f f f f . Thisexplainstheshor t results, which
arethelow 16 bits of these values, namely, 0x0000 and 0xf f f f ; it explainsthe char results,
which aso are the low 16 bits of these values, namely, ' \ u0000' and ' \uffff'; andit
explains the byte results, which are the low 8 bits of these values, namely, 0x00 and Oxf f .

Example 5.1.3-2. Narrowing Primitive Conversions that lose information

class Test {
public static void main(String[] args) {
/1 A narrowing of int to short |oses high bits:
Systemout. println("(short)0x12345678==0x" +
I nt eger. toHexString((short)0x12345678));
/1 An int value too big for byte changes sign and magnitude:

Systemout. println("(byte)255==" + (byte)255);
/1 A float value too big to fit gives largest int val ue:
Systemout.println("(int)le20f==" + (int)1le20f);

/1 A NaN converted to int yields zero:
Systemout.println("(int)NaN==" + (int)Float.NaN);

/1 A double value too large for float yields infinity:
Systemout.println("(float)-1e100==" + (float)-1el100);

/1 A double value too snall for float underflows to zero:
Systemout.println("(float)le-50==" + (float)le-50);

}

This program produces the output:

CONVERS ONS AND CONTEXTS Kinds of Conversion

(short)0x12345678==0x5678

(byte) 255==-1
(int)1le20f==2147483647
(i nt) NaN==0

(float)-1el00==-Infinity
(float)le-50==0.0

5.1.4 Widening and Narrowing Primitive Conversion

The following conversion combines both widening and narrowing primitive
conversions:

* bytetochar

First, the byt e is converted to ani nt viawidening primitive conversion (85.1.2),
and thentheresultingi nt isconvertedtoachar by narrowing primitive conversion
(85.1.3).

5.1.5 Widening Reference Conversion

A widening reference conversion exists from any reference type s to any reference
type T, provided s is a subtype of T (84.10).

Widening reference conversions never require a special action at run time and
therefore never throw an exception at run time. They consist simply in regarding
a reference as having some other type in a manner that can be proved correct at
compiletime.

Thenull typeisnot areferencetype (84.1), and so awidening reference conversion does not
exist from the null type to areference type. However, many conversion contexts explicitly
allow the null type to be converted to areference type.

5.1.6 Narrowing Reference Conversion

A narrowing reference conversion treats expressions of a reference type s as
expressions of a different reference type T, where S is not a subtype of T.
The supported pairs of types are defined in 85.1.6.1. Unlike widening reference
conversion, the types need not be directly related. However, there are restrictions
that prohibit conversion between certain pairs of types when it can be statically
proven that no value can be of both types.

A narrowing reference conversion may require a test at run time to validate
that a value of type s is a legitimate value of type T. However, due to the
lack of parameterized type information at run time, some conversions cannot be
fully validated by a run time test; they are flagged at compile time (85.1.6.2).

51

105

51

106

Kinds of Conversion CONVERS ONS AND CONTEXTS

For conversions that can be fully validated by a run time test, and for certain
conversions that involve parameterized type information but