skip to main content
research-article

Content-centric framework for Internet of Things

Published:01 April 2022Publication History
Skip Abstract Section

Abstract

Abstract

The Internet of Things (IoT) concentrates on content dissemination and retrieval, so it is significant to achieve efficient content delivery. However, the Internet focuses on end-to-end communications, which might degrade the content retrieval performance in mobile environments. By contrast, the content-centric mechanism might be an ideal method for achieving efficient content delivery although it suffers from flooding and reverse-path disruptions. Therefore, we are motivated to exploit the content-centric mechanism to achieve IoT-based content delivery, and employ the address-centric anycast to overcome the limitations of the content-centric mechanism. Inspired by the idea, we propose a content-centric framework for IoT. The experimental results show that the proposed framework reduces the content communication cost and improves the content acquisition success rate.

References

  1. 1. Ahmed EGharavi HCooperative vehicular networking: a surveyIEEE Trans Intell Transp Syst2018193996101410.1109/TITS.2018.2795381Google ScholarGoogle ScholarCross RefCross Ref
  2. 2. Ahmed SHBouk SHYaqub MAKim DSong HDIFS: distributed interest forwarder selection in vehicular named data networksIEEE Trans Intell Transp Syst20191993076308010.1109/TITS.2017.2768329Google ScholarGoogle Scholar
  3. 3. Bastos IVMoraes IMA diversity-based search-and-routing approach for named-data networkingComput Netw2019157112310.1016/j.comnet.2019.04.003Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. 4. Bouk SHAhmed SHPark KJEun YInterest broadcast suppression scheme for named data wireless sensor networksIEEE Access20197517995180910.1109/ACCESS.2019.2910281Google ScholarGoogle ScholarCross RefCross Ref
  5. 5. Cadger FCurran KSantos JMoffett SA survey of geographical routing in wireless ad-hoc networksCommun Surv Tutor IEEE201315262165310.1109/SURV.2012.062612.00109Google ScholarGoogle ScholarCross RefCross Ref
  6. 6. Carofiglio G, Gallo M, Muscariello L (2012) ICP: design and evaluation of an interest control protocol for content-centric networking. In: Computer Communications Workshops (INFOCOM WKSHPS), 2012 IEEE Conference on. IEEE, pp 304–309Google ScholarGoogle Scholar
  7. 7. Dou ZWang XLi YCoordinate-based addressing for MANETTelecommun Syst201971112113910.1007/s11235-018-0499-0Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. 8. Gao DLin HLiu XRouting protocol for k-anycast communication in rechargeable wireless sensor networksComput Standards Interfaces201643122010.1016/j.csi.2015.07.002Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. 9. Gao DZhang SZhang FHe TZhang JRowbee: a routing protocol based on cross-technology communication for energy-harvesting wireless sensor networksIEEE Access20197406634067310.1109/ACCESS.2019.2902902Google ScholarGoogle ScholarCross RefCross Ref
  10. 10. Han SYLee DAn adaptive hello messaging scheme for neighbor discovery in on-demand MANET routing protocolsIEEE Commun Lett201317510401043413785110.1109/LCOMM.2013.040213.130076Google ScholarGoogle ScholarCross RefCross Ref
  11. 11. IEEE 802.11 Working Group (2016) Part11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications. ANSI/IEEE Std. 802.11Google ScholarGoogle Scholar
  12. 12. Jacobson VSmetters DKThornton JDPlass MFBriggs NHBraynard RLNetworking named contentCommun ACM201255111712410.1145/2063176.2063204Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. 13. Khelifi HLuo SNour BMoungla HFaheem YHussain RKsentini ANamed data networking in vehicular Ad hoc networks: state-of-the-art and challengesIEEE Commun Surv Tutor202022132035110.1109/COMST.2019.2894816Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. 14. Kostin AEFanaeian YAl-Wattar HAnycast tree-based routing in mobile wireless sensor networks with multiple sinksWireless Netw201622257959810.1007/s11276-015-0975-3Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. 15. Li HOta KDong MThe content-centric mechanism: orchestration of edge-centric computing and content-centric networking in the 5G radio access networkIEEE Wirel Commun2018253889310.1109/MWC.2018.1700315Google ScholarGoogle ScholarCross RefCross Ref
  16. 16. McPherson D, Oran D, Thaler D, Osterweil E (2014) Architectural considerations of IP anycast. RFC 7094.Google ScholarGoogle Scholar
  17. 17. Ortega VBouchmal FMonserrat JFTrusted 5G vehicular networks: blockchains and content-centric networkingIEEE Veh Technol Mag201813212112710.1109/MVT.2018.2813422Google ScholarGoogle ScholarCross RefCross Ref
  18. 18. Rezaeifar ZWang JOh HLee SBHur JA reliable adaptive forwarding approach in named data networkingFutur Gener Comput Syst20199653855110.1016/j.future.2018.12.049Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. 19. Su ZXu QContent distribution over content centric mobile social networks in 5GIEEE Commun Mag2015536667210.1109/MCOM.2015.7120047Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. 20. Wang XContent-centric networking for mobile networksWirel Pers Commun201910918911010.1007/s11277-019-06552-2Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. 21. Wang DWang XContent-centric Framework over the Internet EnvironmentsWirel Pers Commun2020116213510.1007/s11277-020-07783-4Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. 22. Wang XZhu XAnycast-based content-centric MANETIEEE Syst J20181221679168710.1109/JSYST.2016.2619374Google ScholarGoogle ScholarCross RefCross Ref
  23. 23. Wu JDong MOta KLi JGuan ZFCSS: Fog computing based content-aware filtering for security services in information centric social networksIEEE Trans Emerg Top Comput20197455356310.1109/TETC.2017.2747158Google ScholarGoogle ScholarCross RefCross Ref
  24. 24. Xiaonan WHaili HHongbin CRong ZA scheme for connecting vehicular networks to the InternetTrans Emerg Telecommun Technol201526583685010.1002/ett.2743Google ScholarGoogle Scholar
  25. 25. Xu JOta KDong MFast networking for disaster recoveryIEEE Trans Emerg Top Comput20208384585410.1109/TETC.2017.2775798Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Content-centric framework for Internet of Things
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image Multimedia Tools and Applications
            Multimedia Tools and Applications  Volume 81, Issue 9
            Apr 2022
            1278 pages

            © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

            Publisher

            Kluwer Academic Publishers

            United States

            Publication History

            • Published: 1 April 2022
            • Accepted: 17 August 2021
            • Received: 8 August 2020

            Qualifiers

            • research-article
          • Article Metrics

            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0

            Other Metrics