skip to main content
research-article

An integrated model of traffic, geography and economy in the internet

Published:01 July 2008Publication History
Skip Abstract Section

Abstract

Modeling Internet growth is important both for understanding the current network and to predict and improve its future. To date, Internet models have typically attempted to explain a subset of the following characteristics: network structure, traffic flow, geography, and economy. In this paper we present a discrete, agent-based model, that integrates all of them. We show that the model generates networks with topologies, dynamics, and more speculatively spatial distributions that are similar to the Internet.

References

  1. J. I. Alvarez-Hamelin and N. Schabanel. An Internet graph model based on trade-off optimization. Eur. Phys. J. B, 38:231--237, 2004.]]Google ScholarGoogle ScholarCross RefCross Ref
  2. S. Bar, M. Gonena, and A. Wool. A geographic directed preferential Internet topology model. Computer Networks, 51:4174--4188, 2007.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286:509--512, 1999.]]Google ScholarGoogle ScholarCross RefCross Ref
  4. E. Bonabeau. Agent-based modeling: Methods and techniques for simulating human systems. Proc Natl Acad Sci, 99:7280--7287, 2002.]]Google ScholarGoogle ScholarCross RefCross Ref
  5. F. Cairncross. The death of distance. Harvard Business School Press, Boston, MA, 1997.]]Google ScholarGoogle Scholar
  6. J. M. Carlson and J. Doyle. Highly optimized tolerance: a mechanism for power laws in designed systems. Phys. Rev. E, 60:1412--1427, August 1999.]]Google ScholarGoogle ScholarCross RefCross Ref
  7. H. Chang, S. Jamin, and W. Willinger. Internet connectivity at the AS-level: an optimization-driven modeling approach. In MoMeTools '03: Proceedings of the ACM SIGCOMM workshop on Models, methods and tools for reproducible network research, pages 33--46, New York, NY, USA, 2003. ACM.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. H. Chang, S. Jamin, and W. Willinger. To peer or not to peer: Modeling the evolution of the Internet's AS-level topology. In Proc. IEEE INFOCOM, 2006.]]Google ScholarGoogle ScholarCross RefCross Ref
  9. A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions in empirical data. e-print arXiv:0706.1062, 2007.]]Google ScholarGoogle Scholar
  10. R. Cohen, K. Erez, D. ben Avraham, and S. Havlin. Resilience of the Internet to random breakdowns. Phys. Rev. Lett., 85:4626--4628, 2000.]]Google ScholarGoogle ScholarCross RefCross Ref
  11. I. Daubechies, K. Drakakis, and T. Khovanova. A detailed study of the attachment strategies of new autonomous systems in the AS connectivity graph. Internet Mathematics, 2:185--246, 2006.]]Google ScholarGoogle ScholarCross RefCross Ref
  12. P. Echenique, J. Gómez-Gardẽnes, and Y. Moreno. Dynamics of jamming transitions in complex networks. Europhys. Lett., 71:325--331, 2005.]]Google ScholarGoogle ScholarCross RefCross Ref
  13. A. Fabrikant, E. Koutsoupias, and C. H. Papadimitriou. Heuristically optimized trade-offs: A new paradigm for power laws in the Internet. In Proceedings of the 29th International Conference on Automata, Languages, and Programming, volume 2380 of Lecture notes in Computer science, pages 110--122, Heidelberg, 2002. Springer.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the Internet topology. Comput. Commun. Rev., 29:251--262, 1999.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. L. Gao. On inferring autonomous system relationships in the Internet. IEEE / ACM Transactions on Networking, 9:733--745, 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. L. Gao and F. Wang. The extent of AS path ination by routing policies. In Proceedings of GLOBECOM'02, volume 3, pages 2180--2184, 2002.]]Google ScholarGoogle Scholar
  17. K.-I. Goh, E. Oh, H. Jeong, B. Kahng, and D. Kim. Classification of scale-free networks. Proc. Natl. Acad. Sci. USA, 99:12583--12588, 2002.]]Google ScholarGoogle ScholarCross RefCross Ref
  18. P. Holme. Congestion and centrality in traffic flow on complex networks. Advances in Complex Systems, 6:163--176, 2003.]]Google ScholarGoogle ScholarCross RefCross Ref
  19. P. Holme, J. Karlin, and S. Forrest. Radial structure of the Internet. Proc. R. Soc. A, 463:1231--1246, 2007.]]Google ScholarGoogle ScholarCross RefCross Ref
  20. W. Isard. Location and space economy. MIT Press, Cambridge MA, 1956.]]Google ScholarGoogle Scholar
  21. P. L. Krapivsky, S. Redner, and F. Leyvraz. Connectivity of growing random networks. Phys. Rev. Lett., 85:4629 -- 4632, 2000.]]Google ScholarGoogle Scholar
  22. A. Lakhina, J. W. Byers, M. Crovella, and I. Matta. On the geographic location of Internet resources. Technical Report BUCS-TR-2002-015, Boston University, 2002.]]Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. R. Pastor-Santorras and A. Vespignani. Evolution and structure of the Internet: a statistical physics approach. Cambridge Univeristy Press, Cambridge, 2004.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Y. Rekhter and T. Li. A Border Gateway Protocol 4 (BGP-4). RFC 1771 (Draft Standard), Mar. 1995. Obsoleted by RFC 4271.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. Shakkottai, T. Vest, D. Krioukov, and K. C. Claffy. Economic evolution of the Internet AS-level ecosystem. e-print arxiv:cs.NI/0608058, 2006.]]Google ScholarGoogle Scholar
  26. V. Sood and P. Grassberger. Localization transition of biased random walks on random networks. Phys. Rev. Lett., 99:098701, 2007.]]Google ScholarGoogle ScholarCross RefCross Ref
  27. N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring ISP topologies with Rocketfuel. IEEE / ACM Transactions of Networking, 12:2--16, 2004.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. L. Subramanian, S. Agarwal, J. Rexford, and R. H. Katz. Characterizing the Internet hierarchy from multiple vantage points. In INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, volume 2, pages 618--627, 2002.]]Google ScholarGoogle ScholarCross RefCross Ref
  29. S.-H. Yook, H. Jeong, and A.-L. Barabási. Modeling the Internet's large-scale topology. Proc. Natl. Acad. Sci. USA, 99:13382--13386, 2002.]]Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. An integrated model of traffic, geography and economy in the internet

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader