
SCHC Working Group G. Papadopoulos
Internet-Draft A. Bruniaux
Intended status: Standards Track IMT Atlantique
Expires: 26 September 2024 25 March 2024

 Forward Error Correction (FEC) for SCHC framework
 draft-papadopoulos-schc-fec-00

Abstract

 This document describes a Forward Error Correction (FEC) method that
 is applied over the SCHC framework to improve the network performance
 under certain range of loss/error rates.

About This Document

 This note is to be removed before publishing as an RFC.

 The latest revision of this draft can be found at
 https://example.com/LATEST. Status information for this document may
 be found at https://datatracker.ietf.org/doc/draft-todo-yourname-
 protocol/.

 Discussion of this document takes place on the WG Working Group
 mailing list (mailto:WG@example.com), which is archived at
 https://example.com/WG.

 Source for this draft and an issue tracker can be found at
 https://github.com/USER/REPO.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 26 September 2024.

Papadopoulos & Bruniaux Expires 26 September 2024 [Page 1]

Internet-Draft TODO - Abbreviation March 2024

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2
 2. Conventions and Definitions 3
 3. Terminology . 3
 4. FEC in SCHC . 3
 4.1. XORFEC Algorithm . 4
 4.1.1. The XOR Operator 4
 4.1.2. XORFEC Operation Example in LPWAN 5
 5. Security Considerations 7
 6. IANA Considerations . 7
 7. References . 7
 7.1. Normative References 7
 7.2. Informative References 7
 Acknowledgments . 8
 Authors’ Addresses . 8

1. Introduction

 In Low-Power Wide Area Network (LPWAN) technologies, the L2 MTU
 typically ranges from tens to hundreds of bytes.

 The RFC 8724 standard defines the Static Context Header Compression
 and fragmentation (SCHC) framework, which provides header compression
 and optional fragmentation mechanisms to enable LPWAN technologies,
 that do not come with internal fragmentation/reassembly
 functionalities, to comply with the IPv6 MTU requirement of 1280
 bytes [RFC8200].

 However, this standardized framework struggles in low link-quality
 scenarios. This document describes a Forward Error Correction (FEC)
 method that is applied over the SCHC framework to improve the network
 performance under certain range of loss/error rates.

Papadopoulos & Bruniaux Expires 26 September 2024 [Page 2]

Internet-Draft TODO - Abbreviation March 2024

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Terminology

4. FEC in SCHC

 FEC is a method employed to control errors in packet transmission by
 embedding additional redundant information within transmitted
 fragments, thereby reducing the chances for the destination node to
 request retransmission of missing fragments. Employed in satellite
 communications and mobile networks, FEC mechanisms use encoding
 algorithms that allow the destination node to detect errors and often
 to recover missing components (i.e., to correct the errors).

 FEC can be classified into intra-frame, where error correction codes
 add redundancy inside a packet to correct errors on individual
 packets, and inter-frame (or inter-fragment), where additional
 redundant frames are transmitted. LoRa technology employed the
 intra-frame FEC. Indeed, the intra-frame FEC of LoRa uses Coding
 Rates (CR) 4/5 to 4/8. In this document, a generic inter-frame FEC
 mechanism is presented in order to obtain higher Data Delivery Rate
 (DDR).

 SCHC framework can be applied over lossy radio links such as LPWAN
 where some of the fragments of a SCHC packet can be lost, which may
 lead to the failure of the reception of the whole SCHC packet
 (notably in the case of No-ACK mode). Therefore, incorporating FEC
 into SCHC allows the destination node to increase the chances for the
 destination node to recover the missing SCHC fragments without the
 need for the sender to retransmit the missing SCHC fragments.

 While FEC mechanisms increase network reliability in lossy networks,
 they also introduce additional costs. This is because sending
 additional fragments demands energy and bandwidth. Furthermore, the
 increase in traffic can ultimately lead to overflow in the
 transmission queues of relay nodes when such nodes exist.
 Consequently, the implementation of FEC schemes in networks with
 constrained resources warrants careful consideration.

Papadopoulos & Bruniaux Expires 26 September 2024 [Page 3]

Internet-Draft TODO - Abbreviation March 2024

4.1. XORFEC Algorithm

 XORFEC employs the Exclusive OR (XOR) operator () within its FEC
 mechanism to produce an extra fragment for a fragmented IPv6 SCHC
 packet. This supplementary fragment contains the redundant
 information. This additional fragment is sent after the original
 fragments of the SCHC packet and allows the destination node to
 detect a potential loss of an original fragment and to recover it,
 mitigating thus the scenario where the loss of one fragment leads to
 the entire packet being lost and/or to reduce the number of fragment
 retries required to avoid the entire packet being lost.

4.1.1. The XOR Operator

 XOR is a logical operator employed in encoding mechanisms, blending
 information from multiple fragments during encoding and subsequently
 decoding the encoded fragments upon reception. XOR is a binary
 operator, and when applied to fragments that consist of series of
 bits, is applied bitwise. The key property of XOR utilized in XORFEC
 for fragment recovery is that applying XOR to the result of an
 initial XOR operation and one of its input values (i.e., of the first
 XOR) yields the other input value, see an eample below:

 B = A (A B)
 A = B (A B)

 Indeed, if a SCHC packet is fragmented into two fragments A and B,
 the additional fragment C generated by the source node will be:

 C = A B

 In this case, if the destination node receives the A and C fragments
 but does not receive the B fragment, it can recover B fragment by
 applying the XOR operator to the successfully received fragments.

 Note that this function can be generalised to SCHC packets that
 consists of more than two fragments. Indeed, with k original
 fragments (F1, F2, F3, ..., Fk), the additional fragment F_additional
 will be:

 F_additional = F1 F2 F3 ... Fk

 In a scenario where the destination node receives successfully all
 fragments except Fi, then it can recover the latter by applying the
 XOR operator to the successfully received fragments, as it is shown
 below:

 Fi = (F1 ... Fi1 Fi+1 ... Fm) F_additional

Papadopoulos & Bruniaux Expires 26 September 2024 [Page 4]

Internet-Draft TODO - Abbreviation March 2024

 The main limitation of the XORFEC algorithm is that the loss
 tolerance is one missing fragment. Indeed, in the previous example
 of k fragments, the recovery of Fi is only possible if no more than
 one fragment is lost.

4.1.2. XORFEC Operation Example in LPWAN

4.1.2.1. XORFEC over No-ACK mode

 In No-ACK mode, a SCHC Packet is first fragmented into k original
 fragments and the additional fragment (i.e., F_additional) is
 generated by applying the XOR operator to these k fragments.

 In Figure 1, the example (i.e., Figure 29) from [RFC8724] of No-ACK
 mode of a SCHC Packet that needs 5 SCHC Fragments (and where FCN is 1
 bit wide) is adapted when XORFEC is applied to all 5 SCHC Fragments.

 Sender Receiver
 |-----FCN=0----->| 1st Fragment (received)
 |-----FCN=0----->| 2nd Fragment (received)
 |-----FCN=0--X-->| 3rd Fragment (not received)
 |-----FCN=0----->| 4th Fragment (received)
 |-----FCN=0----->| 5th Fragment (received)
 |---FCN=1 + RCS->| The XOR Fragment with Integrity check: success
 (End)

 Figure 1: Successful transmission of a fragmented SCHC Packet
 with XORFEC over No-ACK mode: even though one fragment was lost
 (i.e., 3rd Fragment), it is recovered thanks to the additional
 XOR fragment.

 Thus, even if with No-ACK mode there is no feedback from the
 receiver, by employing XORFEC, the receiver may successfully
 reassemble the original SCHC Packet. As a result, both the network
 reliability and the spectrum/bandwidth utlization efficiency are
 increased for a certain range of loss/error rates.

4.1.2.2. XORFEC over ACK-on-Error mode

 In ACK-on-Error mode, the XOR is applied per Window. In case, when
 there is one Tile per Fragment, then one additional fragment is
 introduced per Window.

 In Figure 2, the example (i.e., Figure 31) from [RFC8724] of ACK-on-
 Error mode of a SCHC Packet fragmented in 11 tiles is adapted when
 XORFEC is applied on ACK-on-Error mode is illustrated. A SCHC Packet
 is fragmented in 11 Tiles, with one Tile per SCHC Fragment, N=3,
 WINDOW_SIZE=7, and two lost SCHC Fragments.

Papadopoulos & Bruniaux Expires 26 September 2024 [Page 5]

Internet-Draft TODO - Abbreviation March 2024

Sender Receiver
 |-----W=0, FCN=6----->| 1st Tile/Fragment (received)
 |-----W=0, FCN=5----->| 2nd Tile/Fragment (received)
 |-----W=0, FCN=4----->| 3rd Tile/Fragment (received)
 |-----W=0, FCN=3----->| 4th Tile/Fragment (received)
 |-----W=0, FCN=2--X-->| 5th Tile/Fragment (not received)
 |-----W=0, FCN=1----->| 6th Tile/Fragment (received)
 |-----W=0, FCN=0----->| The additional (XOR) Fragment
(no ACK)
 |-----W=1, FCN=6----->| 7th Tile/Fragment (received)
 |-----W=1, FCN=5----->| 8th Tile/Fragment (received)
 |-----W=1, FCN=4--X-->| 9th Tile/Fragment (not received)
 |-----W=1, FCN=3----->| 10th Tile/Fragment (received)
 |-----W=1, FCN=2----->| 11th Tile/Fragment (received)
 |- W=1, FCN=7 + RCS ->| The XOR Fragment with Integrity check: success
 |<-- ACK, W=1, C=1 ---| C=1
(End)

 Figure 2: Successful transmission of a fragmented SCHC Packet
 with XORFEC over ACK-on-Error mode (11 Tiles, One Tile per SCHC
 Fragment, Two Lost SCHC Fragments): even though 2 fragments were
 lost (i.e., 5th and 9th Fragments), they were recovered thanks to
 the additional XOR fragments.

 As it can be calculated, in the original example, there were in total
 16 transmissions with two fragment losses, i.e., 11 original
 transmissions from the Sender, two retransmissions from the Sender,
 and three acknowledgments from the Receiver. In this XORFEC based
 approach, there are in total 14 transmissions, i.e., 11 original
 fragment transmissions from the Sender, two additional XOR
 transmissions from the Sender, and the ACK at the end from the
 Receiver. As a result, thanks to the XORFEC, the communication was
 reduced by two transmissions. Indeed, the ACK transmissions with the
 Bitmap of the missing fragments was not transmitted, and consequently
 the retransmissions of the missing fragments.

4.1.2.3. XORFEC over ACK-Always mode

 Similar to ACK-on-Error mode, in ACK-Always, the XOR is applied per
 Window. In case, when there is one Tile per Fragment, then one
 additional fragment is introduced per Window.

 In Figure 3, the example (i.e., Figure 34) from [RFC8724] when XORFEC
 is applied on ACK-Always is illustrated. A SCHC Packet fragmented in
 11 tiles, with one tile per SCHC Fragment, N=3, WINDOW_SIZE=7 and two
 lost SCHC Fragments.

Papadopoulos & Bruniaux Expires 26 September 2024 [Page 6]

Internet-Draft TODO - Abbreviation March 2024

Sender Receiver
 |-----W=0, FCN=6----->| 1st Tile/Fragment (received)
 |-----W=0, FCN=5----->| 2nd Tile/Fragment (received)
 |-----W=0, FCN=4----->| 3rd Tile/Fragment (received)
 |-----W=0, FCN=3----->| 4th Tile/Fragment (received)
 |-----W=0, FCN=2--X-->| 5th Tile/Fragment (not received)
 |-----W=0, FCN=1----->| 6th Tile/Fragment (received)
 |-----W=0, FCN=0----->| The additional (XOR) Fragment - 6543210
 |<-- ACK, W=0, C=0 ---| Bitmap: 1111111

 |-----W=1, FCN=6----->| 7th Tile/Fragment (received)
 |-----W=1, FCN=5----->| 8th Tile/Fragment (received)
 |-----W=1, FCN=4--X-->| 9th Tile/Fragment (not received)
 |-----W=1, FCN=3----->| 10th Tile/Fragment (received)
 |-----W=1, FCN=2----->| 11th Tile/Fragment (received)
 |- W=1, FCN=7 + RCS ->| The XOR Fragment with Integrity check: success
 |<-- ACK, W=1, C=1 ---| C=1
(End)

 Figure 3: Successful transmission of a fragmented SCHC Packet
 with XORFEC over ACK-Always mode (11 Tiles, One Tile per SCHC
 Fragment, Two Lost SCHC Fragments): even though 2 fragments were
 lost (i.e., 5th and 9th Fragments), they were recovered thanks to
 the additional XOR fragments.

5. Security Considerations

 TODO Security

6. IANA Considerations

 This document has no IANA actions.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

7.2. Informative References

Papadopoulos & Bruniaux Expires 26 September 2024 [Page 7]

Internet-Draft TODO - Abbreviation March 2024

 [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", STD 86, RFC 8200,
 DOI 10.17487/RFC8200, July 2017,
 <https://www.rfc-editor.org/info/rfc8200>.

 [RFC8724] Minaburo, A., Toutain, L., Gomez, C., Barthel, D., and JC.
 Zuniga, "SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation", RFC 8724,
 DOI 10.17487/RFC8724, April 2020,
 <https://www.rfc-editor.org/info/rfc8724>.

Acknowledgments

 Thanks to Carles Gomez for useful design considerations, reviews and
 comments.

Authors’ Addresses

 Georgios Papadopoulos
 IMT Atlantique
 Email: georgios.papadopoulos@imt-atlantique.fr

 Amaury Bruniaux
 IMT Atlantique
 Email: amaury.bruniaux@imt-atlantique.fr

Papadopoulos & Bruniaux Expires 26 September 2024 [Page 8]

	draft-papadopoulos-schc-fec-00

