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Abstract

Garbage collection is an important feature of the Smalltalk programming en-
vironment. This thesis presents a multiprocessor garbage collection algorithm
used in Actra, our multiprocessor Smalltalk system. The algorithm uses Entry
Tables to determine interprocessor object reachability. The use of tables reduces
interprocessor synchronization requirements allowing processors to garbage col-
lect independently. This technique differs from other multiprocessor algorithms
which require that all processors stop during garbage collection. A prototype of
this collector has been implemented and is described in this thesis.
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1 INTRODUCTION i

Chapter One

1 Introduction

In this thesis we exarnine garbage collection algorithms. Specifically, the problem
of garbage collection on a multiprocessor Smalltalk system is studied. We begin
with a discussion of the motivation for this study — the reasons for garbage col-
lecting in both uniprocessor and multiprocessor systems. An emphasis is placed
on describing garbage collection in a multiprocessor Smalltalk system, however,
the results are applicable to other garbage collected systems. We present an
overview of various existing garbage collection strategies, their advantages and
disadvantages and use this analysis to justify our design choices for the garbage
collection algorithm presented. A prototype implementation is described in this

thesis.

1.1 Garbage Collection

In modern programming systems, dynamic memory allocation and deallocation
is provided through the use of system primitives such as malloc or new when
allocating memory and the corresponding deailocaticn routine free for dealloca-
tion. The responsibility for the use of these memory management primitives is
left wholly up to the programmer. In order to ease this burden, some systems

such as Smalltalk [1], Lisp [2], and Mesa and Cedar [3] provide automatic stor-
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age reclamation mechanisms called garbage collection. Early garbage coilection
algorithms were slow and as such considered a major bottleneck in an interactive
environment such as a Lisp or Smalltalk system. More recently Baker [4], and
Ungar [5] have presented fast garbage collection algorithms suitable for use in

these exploratory programming environments.

1.1.1 Here Come Muliiprocessors

As the cost of microprocessor technology goes down, it becomes more and more
attractive to build multiprocessor systems. The literature contains many multi-
processor designs which claim mainframe performance from inexpensive micro-
processors in multiprocessor configurations. Systems such as the BBN Butterfly,
IBM RP3, Intel iSPC hypercubes, Motorola HYPERmodule, INMOS Transputer,
the Connection Machine [6] have already been built. The reader is referred to [7]
for a review of some commercially available parallel nrocessor systems. Corre-
spondingly, there has been a large increase in demand for languages to program
these advanced computers.

The first efforts attempted to use parallel versions of standard languages,
such as Fortran, and have had limited success in specialized applications [8]. Lan-
guages such as Lisp, (Connection Machine CMLisp (6], Multi-Lisp [9] and Scheme,
(Multi-Scheme [10]) have all been implemented complete with garbage collectors.
Current parallel Smalltalk projects like Actra [11], and Multiprocessor-Smalltalk
[13] require high performance multiprocessor garbage collection strategies opti-

mized for Smalltalk.

1.2 Garbage Collection: Some Definitions

In a garbage collecting system, memory is divided into objects. Objects may vary
in size and contain either uninterpreted data or pointers to other objects. Objects

winch are still in use are called live objects, similarly, objects not in use are termed



1 INTRODUCTION 3

Root Set

\ AN

\ N\

Live Objects (@) Dead Objects

Figure 1: Live/Dead Objects and Root set

dead. The recovery of these dead objects is called garbage collection (GC). Live
objects are only those objects which are reachable, via some path, from a root
set of objects, all other objects are dead. The root set is an external, well known
collection of objects such as the run time stack which is used to trace out the set
of live objects. The set of live objects may be represented as a directed graph with
the objects as nodes and pointers to other objects as the directed edges in the
graph. A mutator modifies the graph of live objects as it performs computations
thus making some objects unreachable by its actions (i.e. the dead objects that

must be recovered by the garbage collector).
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1.3 The Garbage Collection Problem

The activity of garbage collection can be divided into three simple activities:

[

. Finding live/dead objects;
2. Reclaiming the dead objects; and

. Updating pointers to objects moved due to compaction or object movement.

(R

Winding the graph of live objects involves tracing the reachable objects in the
system from the root set. It is clear that to find such a graph, each live ob-
ject must be inspected. This operation can be time consuming due to the large
number of live objects in a typical system. Much of the research has focused on re-
ducing the amount of work involved in determining reachability [14] [15] [16] [17].
Techniques such as reference counting attempt to reduce the disruptive pauses,
common in some systems during garbage collection, by incrementally determining
reachability using ‘accounting techniques’. Other techniques, such as generation
scavenging, combine statistical knowledge of memory usage with assistance from
the mutator to reduce the amount of work required to determine the change in
the reachability graph and thus the dead objects. ! Other researchers propose
method which use language specific knowledge to determine garbage collection
requirements at compile-time instead of run-time [18].

Reclaiming dead objects is typically performed using a linear scan of memory
to link all dead objects in a free memory list. Alternatively, a region of memory
can be declared dead and completely reclaimed by removing all live objects from
the region.

The issue of object movement and updating pointers occurs due to the possi-

bility that memory may require compaction due to fragmentation. A compaction

' Reference counting and generation scavenging are discussed more fully in chapter two.
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phase effectively ‘renames’ all the objects in the system and requires that all

referencing objects be informed about the name change.

1.3.1 Finalization

When a live object is no longer referenced by the sysiem it may be desirable to
be notified of the ‘death’ of the object, or more accurately, the imminent death
of the object. Notification that an object is about to die is called finalszation.
A simple use of finalization can be found in Smalltalk systems with Object Ta-
bles (OT). When an object is no longer needed its OT entry can be reclaimed.
This can be easily accomplished with finalization by reclaiming the OT entry of
each of the objects which appear in the finalization queue. This feature can also
be useful in systemns which mix garbage collection and explicit memory alloca-
tion/deallocation. The garbage collector upon locating a dead ‘to be finalized’
object can perform any explicit deallocation required by the non-garbage collect-
ing system. An example of this would be automatic file closing by the system
if the programmer forgets to close a file. We are especially interested in this
technique due to the application of finalization to distributed systems. Finaliza-
tion could allow the garbage collector to inform other processors/machines about
changes in the state of an object’s reachability. For example, a processor can use
finalization to inform other processors about the non-reachability of a particular
object from that processor. A simple implementation {does not handle cycles) of

finalization can be found in Multi-Scheme.

1.3.2 Forwarders

A forwarderis an object which is a proxy for an object stored elsewhere in memory.
Forwarders can be used to efficiently implement language features such as active
objects and object mutation. Forwarders are important in garbage collection

systems in that they provide a fast mechanism to update references to moved
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objects without requiring the usual scan of memory. This is called a lazy update
mechanism because updates are performed ouly when required and possibly not
at all if the object being forwarded becomes garbage. A description of forwarders

and their implementation can be found in [19].

1.4 The Multiprocessor Garbage Collection Problem

‘1 he basic problem of multiprocessor garbage collection is finding live objects in
the systemn and reclaiming dead objects. The additional complications introduced

by multiprocessor systems are:
e Synchronization of cooperative work among processors;
o Information sharing between processors; and

e Division of resources (memory, shared devices).

In a uniprocessor system, the garbage collector may assume that the graph of
live objects will remain constant during a garbage collection. In a multiprocessor
system, this may not be true, requiring that processors synchronize their activities
so that a processor does not interfere with the work of another.

Independent processors must share information. Information flow between
processors and data validity must be maintained. A processor P1 must be aware
that decisions based on the state of another processor P2 may be invalid due to
a. v actions by P2 which change that state. A large portion of time may be spent
insuring that all processors have consistent information. For example, a processor
may trace the reachability of an object that P2 claims is reachable but before the
trace is finished the object dies and the traced path may not be alive. More
serious problems can occur when processors move objects and other processors
try to use the object at the old location.

Memory is often divided between processors in multiprocessor systems. Deter-

mining the interspacial reachability of an object is more complicated since there
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is a possibility that the path to that object may change while the determination

is being made.

1.5 Motivation

A major motivating factor in the design of the multiprocessor garbage collection
algorithm presented here has been the Actra project [11].

The goal of the Actra project is to design a multiprocessor Smalltalk system.
An Actra multiprocessor workstation consists of one to ten MC68020 [33] pro-
cessors connected on a VME bus. Interprocessor communication is via shared
memory. These workstations are connected to other Actra workstations via Eth-
ernet. The resulting system provides a local parallel computation environment,
as well as a co-operative distributed object oriented systemn. Additionally, the
system must be able to interact with the outside world via interprocess commu-
nication primitives. Multiprocessor communication between Smalltalk processors
is done using the Actor model [41]. A powerful aspect of this design is that it
allows Smalltalk Actors to communicate with other tasks in the system (even
non-Smalltalk tasks), an important consideration in our design.

One of the requirements of Actra is that it have a simple, fast and reliable
multiprocessor garbage collector. The Actra garbage collector must allow proces-
sors to be able to garhage collect independently of each other, as it is expected
that some processors may be creating much more garbage than other processors.
Specifically, a processor which is creating lots of garbage should not cause the

rest of the system to pause while it garbage collects.

1.6 Contribution

In this thesis we present a garbage collector which allows processors to garbage
collect independently of each other. The use of Entry Tables for highly mobile

objects removes many of the synchronization proble.s associated with copying
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types of garbage collectors. Additionally, we have reduced the costs for accessing
objects which are not being shared. The garbage collector is designed as a shared
memory collector but has the attribute that it can be used as a non-shared
memory collector as weil. The idea that collecting remote references based on
information provided by the remote garbage collector is important. We allow
prccessors to garbage collect at any time and use incremental reachability rules to
allow local garbage collectors to reciaim table entries using information provided
by remote garbage collectors.

In summary, the major issues addressed by our garbage collector include:

e Processors must be able to garbage collect independently;
e Garbage collections should be fast;

Synchronization costs should be low if sharing not used;

¢ Processor coupling strength should be defined by the user, not the garbage
collector implementer; and

o External interfaces to other languages must be allowed.

1.7 Related Work

There have been many multiprocessor systems and garbage collector algorithms
designed and implemented {13] [9] [10] {42]. A survey of these systems and oth-
ers are described in this thesis. It is interesting to note that all these systems
share one similarity in their approach to multiprocessing — they each attempt
to make all the processors cooperate as a single monolithic (hopefully faster)
unit. As such, much effort is placed in load balancing, work distribution, and fair
resource sharing but little effort is made in improving the programming model
for multiprocessor applications. For example, in Millers Multi-Scheme [10], every
processor polls a global work queue in an attempt to help the system finish the
‘current’ computation sooner. Similarly, when the system garbage collects, all

the processors stop and help.
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In contrast, the Actra system has been designed to help cooperating processors
accomplish specific tasks by division of the application into modular communi-
cating entities (Actors). The communication patterns between these Actors are
used to divide processor resources in an application specific manner. For this
reason, it is a requirement that all processors need not participate in garbage
collection so that slower garbage creating processors may continue processing

without interference.

1.8 Thesis Overview

The thesis is organized as follows. Chapter 2 reviews the background material and
classical garbage collection techniques. Chapter 3 presents an in depth study of
the various multiprocessor algorithms. Chapters 4 presents our garbage collection
algorithm. Chapter 5 describes the implementation of the algorithm and an
extension to it which allows its use in non-shared memory systems. The final
chapter presents the conclusions of this thesis, an overview of the contribution,

as well as suggestions for future work.
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Chapter Two

2 Uniprocessor Garbage Collection

This chapter presents a review of some uniprocessor garbage collection algo-
rithms. Specifically, we discuss the basic issues in the design of the varicus
uniprocessor algorithms. A discussion of various important collection techniques
is presented with an emphasis placed on informing the reader of the application

of these techniques to multiprocessor garbage collection.

2.1 Mark/Sweep

The classical mark /sweep algorithm first described by McCarthy |2} is named for

its two major steps:

1. The mark phase performs an exhaustive search, marking all reachable ob-

jects from the root set.

2. The sweep phase finds all the unmarked (dead) objects by a linear scan of

all memory and returns these object to the free memory pool.

Since memory is reclaimed on a per object basis, memory fragmentation can
occur, possibly requiring memory compaction. Memory compaction could be re-

quired in order to satisfy a memory request when enough memory is available but
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is divided among smaller free objects. A separate memory sweep is required to
update addresses and copy the objects when compacting memory. The simplest
implementations of the algorithm require that the mutator be stopped during
garbage collection while more sophisticated implementations allow garbage col-
lection to be interleaved with the mutator in an incremental manner.

The time/space requirements of mark/sweep vury from O{1) extra space and
O(n?) time to O(n) extra space and O(n) time where n is the number of chjects
in the system. This is dependent on the marking technique used. (A review
of the various marking techniques can be found in Knuth volume Il {25]). For
example, there are marking algorithms which require no extra space, such as the
reverse pointer technique. This technique results in the mark phase temporarily
destroying the object structure and thus makes the reverse pointer technique
particularly unsuitable for parallel garbage collection algorithms as many objects
are made temporarily unusable by the collector.

An advantage of mark/sweep is that by walking every object in the system,
dead objects can be identified easily, thus allowing for finalization. This, cou-
pled with the fact that the implementation is very straightforward, makes this
technique attractive. The disadvantage of mark and sweep is that it is slow, and
a compaction phase requires an extra memory scan. This poor performance is
due to the fact that the collector walks all live objects in memory during the
mark phase, and all objects (both live and dead) during the sweep. Extra merm-
ory may be needed to implement ihe mark phase efficiently. Another problem
is that virtuval memory systems perform poorly under mark/sweep because the
sweep phase accesses every object in the system (both dead and live) causing the
paging system to read in all paged out memory. Many Smalltalk systems use a

2

mark /sweep garbage collection phase to compact the image ? as it is the only

garbage collection algorithm which will collect all garbage in the system.

2The image is a snapshot of a running Smalltalk system saved on disk.



2 UNIPROCESSOR GARBAGE COLLECTION 12

Many variations in marking mechanisms exist. For an overview of the various

mark /sweep algorithms see Cohen [20)].

2.2 Reference Counting

In a reference counting system, every object contains a counter, representing the
number of objects pointing to it, and is referred to as its reference count (RC).
The reference count is mantained by the mutator as follows. Every time the
mutator stores an object pointer into another object it must increment the RC of
the stored object and decrtement the RC of the displaced@ object due to the lost
reference. When the reference count of an object reaches 0, the object can be
reclaimed. Reclaiming an object requires that all of the objects references must
also have their respective RCs decremented. This continues recursively until all
zero RC objects are reclaimed. This recursive freeing is a costly operation if a
large linked structure becomes garbage.

The reference counting strategy requires log N bits where N is the maximum
number of objects that may point Lo an object. This requirement can be reduced
by using a sticky overflow technique. For sticky overflow, once the RC of an
object exceeds the maximum reference count, the count may not be decremented
causing these objects to become permanent. In order to reclaim these sticky
objects another technique such as mark/sweep must be used. The use of these
sticky counts ~an be shown to be feasible in systems such as Smalltalk in which
most objects have a reference count of less than eight [29].

An advantage of reference counting is that objects are reclaimed incrementally
when they become garbage so that the garbage collection is non-intrusive, and
thus suitable for interactive environments. The system also reclaims each object
individually allowing the system to easily implement finalization. This allows the
system to easily reclaim object table entries (OTE’s) and is important since the

first Smalltalk systems used Object Tables.
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Figure 2: Reference Counting Misses Circular Structures

A major problem with reference counting is that it cannot reclaim circular
structures (See figure 2). This is an unfortunate problem as it results in ‘orphan’
structures that must be reclaimed using other techniques such as mark/sweep. In
systems that use this technique, the circular garbage probiem can be minimized
by the programmer explicitly unlinking the circular references 3,

The performance of reference counting systems is poor due to the high ac-
counting costs in maintaining the RC. Techniques for reducing the costs of main-
taining the RC have been developed [15], which reduces the overall cost of refer-
ence counting but they do not reduce the expensive cost of recursive freeing of

objects incurred when a processor wastes time walking ‘garbage objects’ rather

than live objects.

3This type of code can be found as a historical artifact in the Smalltalk-80 Virtual Image.
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Figure 3: Scavenging a Memory Region
2.3 Copying Collectors / Scavengers

A broad range of collectors use copying to reclaim objects. In this technique,
live objects are copied from the source space to the destination space and a
Jorwarding object is left in the source object so other referents can find the copy.
The destination space is scanned for references to objects in the source space
which are then copied to the destination space. This technique is commonly

referred to as scavenging.

Scavenging is the process of copying live objects out ¢f a memory region. A
scavenge begins by copying the root set of the source region into the destination
region. The destination region is walked using a breadth first traversal (BFT).
The BFT is accomplished by linearly scanning the destination space from low to
high address. Objects are copied to the end of this destination region and thus
are walked later. The scavenge is completed when the linear walk reaches the

end of the destination region (See figure 3).

2.3.1 Copying Collection Requirements

The use of copying requires a memory space large enough to hold all the iive

objects in the source space. In the worst case, a memory region equal in size
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io the source is required. When all live objects have been evacuated from the
source regio:, the whole source region can be reclaimed. Ncte that the BFT can
be accomplished without the use of additional memory, because the destination
region is used as the unwalked object stack.

Copying can be done in a stop and copy manner or by interleaving scavenging
with object allocation. In a stop and copy system, the mutator is halted while the
garbage collector executes and then control is passed back to the mutator. An
interleaving mechanism would copy a few objects every time an cbject is allocated
thus resulting in an incremental behaviour. A forwarder is left behind so that all
mutator references can find objects which have been forwarded. This interleaved
collection/creation strategy can be made real-time by bounding the time allowed
for object copying.

The major advantages of this type of algerithm are that memory compaction
is automatic, circular structures are reclaimed and only live objects are walked.
Unfortunately, scavengers have additional hidden housekeeping costs which are
incurred by the mutator. These costs are in addition to the costs of copying and
include indirection through forwarding pointers, and maintaining remembered
sets r entry-exit tables. Memory usage is not optimal as a proportion of memcry
must be left unused to allow room for copying live objects. For example, in the
following section we discuss the Baker Semi-Space algorithm which leaves unused
at all times one half of total memory.

A review of the important scavenger algorithms is presented here. For an

additional discussion of these algorithms see {23].

2.4 Baker Real Time SemiSpace

The Baker Semi-Space coilector is a copying type collector. The memory is
divided into two semispaces called oldSpace and newSpace. newSpace is further

subdivided into three regions which are coloured black, gray, and white. Objects
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Figure 4: Baker’s Real-Time Algorithm

in newSpace derive their colour from the space in which they reside, objects in
oldSpace are uncoloured. All objects are allocated in newSpace with the following

invariants maintained:

o Black objects may contain references to objects in the black, gray or white

region. That is, black objects may only point to objects in newSpace;
» Gray objects may point anywhere (newSpace or oldSpace); and
¢ The white region contains newly allocated objects.
The algorithm works as follows. A gray object is made black by insuring all its

references are into newSpace (gray, black, or white). This work is performed by

a scavenger which walks from the low end to the top of newSpace converting the
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fetchField (Object,index)
* fetch the field of the object at index "
IF IS_BLACK(Object) THEN

return (Object Lindex]); "return directly "
ENDIF
" must test and see if the object should be updated "
IF IS_IN_NEW_SPACE(Object [index]) THEN

return (Object [index]):
ELSE

" copy the object to newSpace OR return

the forwarded (already copied) object "

return (COPY_OR_RETURN_FORWARD(Object [index])}:
ENDIF

Figure 5: Object Access Wiin Baker’s Algorithm

gray objects into black objects by copying any oldSpace references into newSpace.
Once all the references have been copied then the scavenger colours the object
black and moves on to the next gray object. Objects that are copied into newSpace
leave behind a forwarding pointer so that other referencers may find the copy.

Figure 4 shows the memory layout of Baker’s algorithm.

Due to the presence of forwarding objects, the mutator must test whether ihe
object has been forwarded and fetch memory from the correct location. External
pointers may only reference into newSpace. Thus, every memory fetch from a
gray object may require that the object referenced be copied from oldSpace into
newSpace. It is copied to the end of the gray region for scanning later as it may
itself contain references into oldSpace. Figure 5 shows the tests required when
fetching from heap memory. Object ac~2ss is an expensive operation hence hard-
ware may be required for acceptable speed (This nperation has been microcoded
in some Lisp Machines).

When all oldSpace objects are copied to newSpace and newSpace is full a flip

is performed. A flip exchanges newSpace with oldSpace and copies the root set
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(mnachine registers and stack references) into newSpace. Additional objects are
copied to newSpace by scavenging and by the fetchField operation shown above.
If the root set of objects is large (for example an external stack), then the flip
can be relatively expensive compared to an object allocation. Note that the old
space was automatically compacted as it was copied to newSpace.

The Baker algorithm interleaves garbage collection with object creation. By
bounding how much work the scavenger is allowed to do per object collection (eg.
10 microseconds time) the algorithm achieves real-time performance. The limita-
tion to this real-time claim is that a flip may take a long time (much longer than a
memory allocation). Large objects also pose a performance problem because the
collector may not be able to copy the whole object in less than the bounded time.
It should be pointed out that this algorithm was really designed for Lisp where
large objects are rare and as such ad-hoc solutions are feasible (large objects can

be kept in a separate space). Solutions to the large object copy problem include:

1. A split object representation that allows an object to be partially copied;

and

2. A separate space for large objects, this space being garbage collected less

often.

Both solutions are complicated and result in additional performance penalties.
Another issue encountered with this algorithm is the selection of the amount of
time allocated to the scavenger during each allocation. If this time is too small
then the object allocation space may collide with the gray region. This would
leave no memory in newSpace to copy the rest of the objects in oldSpace and
an ‘out of memory’ condition would occur. If the time given is too large, then

real-time performance bounds will be correspondingly lower.
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2.6 Vax-Smalltalk GC (Ballard)

The Vax-Smalltalk [22] garbage collector is based on Baker’s algorithm. The

basic ideas exploited in this collector are:

e the majority of newly created objects die soon after creation (for example,

Points); and

e the majority of objects which survive past the high ‘infant’ mortality phase

are static (semi-permanent) for long periods of time (for example, Com-

piledMethods).

Based on these assumptions, memory is divided into two spaces. A large
separate space known as the Static Region is reserved for long lived objects and a
smaller space known as the Baker space is used for object creation. The smaller
space is garbage collected using Baker’s algorithm. If an object survives more
than sixty-three flips then it is tenured and moved to the Static Region. The
advantage of this algorithm is that the long lived objects in the system are not
repeatedly copied back and forth between the two flip spaces. Instead only the
smaller region is garbage collected frequently. The fact that most newly created
objects die soon after creation helps reduce the number of objects that must be

copied every filip.

2.5.1 Exit Tables

Additional information is needed by the Ballard collector to insure that all refer-
ences from the Static Region into the Baker space have been traversed when the
flip occurs. To accomplish this an ezit table of references from the Static Region
to the Baker spaces is kept by the mutator as a root for garbage collection. This
is required because the whole Static Region is not scanned for references into the

Baker spaces due to time limitations. Instead, the mutator must perform some
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‘bookkeeping’ at runtime and keep track of all the objects in the Static Region
which point into the Baker space. This is accomplished by checking every object
store; every time a new space object is stored into a Static Region object, the
Static Region object is saved in an Exit Table which is scanned every flip to insure

that all new space pointers are updated.

2.5.2 Object Table Entries (OTE) Recovery

Since Ballard’s Vax-Smalltalk is an object table based system, the update of
moved objects is fast, testing of forwarding bits is not required when referencing
objects. However, the use of an object table requires the additional complexity
that the OT itself must be garbage collected. Ballard’s system has incremental
collection of the OT entries and uses bits maintained by the scavenger to deter-
mine change of reachability from one scavenge to the next. For this purpose,
the garbage collector flips are called odd or even. Each entry in the OT has an
extra two bits (odd/even). Newly created objects are given the same colour as
the current flip. Whenever the scavenger copies an object it sets the bit in that
object for its current colour. Thus, all new objects and copied objects have the
current flip bit set. During each flip, the OT is scanned and the opposite bit
fiom the current flip colour is cleared. After two flips, an OT which is garbage
will have both bits clear, and can be reclaimed. This requires a scan of the whole
object table to be performed every flip, making flips very expensive (long pause
during a collection). If a full scan is not completed by flip time it must either be
finished or no OT entries can be reclaimed until two complete successive sweeps
have been made. The solution to the problem of a potentially large pause during
flips was to interleave object creation with the scanning of the OT so that the

full OT is scanned by the time a flip is required.
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2.6 Ungar’s Generation Scavenger

Generation Scavenging [5] is based on the ideas presented in Ballard’s Vax-
Smalltalk and by Leiberman and Hewitt [40]. The major differences in Ungar’s
scavenger are that all pointers are direct, there is no object table, and the scav-
enges are performed in a stop and copy fashion. This means that forwarding
is not required resulting in a 30 percent gain in sysiem speed over OT based
systems. The collector is fast; pauses are only a fraction of a second and re-
quire no hardware support. Other advantages include the reclamation of circular
structures and efficient performance on systems with virtual memory. The per-
formance claims are impressive, it uses approximately 3 percent of the CPU time
in the Berkeley Smalltalk-80 implementation.

Ungar’s and Ballard’s algorithms are based on the same assumption that
many objects are long lived and should not be copied every flip. Unger uses
remembered sets (Ballard calls them exit tables) to keep track of all the objects
in old space that contain references to objects in newSpace. This remembered
set is used as a root set and also to update pointers during scavenges. There is
the same hidden cost as in Ballard’s algorithm in maintaining remembered sets.
Every store into an oldSpace object must test whether the object being stored
is in newSpace. In order to minimize the number of tests required when storing
objects, a large effort has been made to reduce this cost. Ore such optimization
is to create the execution contexts in newSpace so that storing into method locals

does not require testing.

2.7 Leiberman-Hewitt Lifetime Collector

The Leiberman-Hewitt {40} garbage collector is also a copying collector which uses
statistical knowledge to reduce the amount of memory scanned by the garbage
collector. The algorithm attempts to reduce the amount of memory wasted in

Baker’s algorithm by dividing the memory spaces into generations based on age.
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The age of a generation is an indicator of the youngest object in that generation.
The youngest generations are scavenged most often due to the high mortality rate
of newly created objects, and correspondingly older generations are scavenged
less frequently. Older generations which are found to be partially empty can be
merged into a single generation with the age being that of the youngest generation
of the merged group.

Objects in one space may only point directly to objects in spaces with the
same age or older. Objects that point from an older space to a younger space
must go through an Entry Table. This Entry Table pointer is an indirection
pointer into a space. Entry Tables are used to reduce the number of objects that
must be walked when scavenging.

Memory reclamation proceeds as follows. When space is needed, a2 young
region is condemned and the objects in this memory region are evacuated out of
the space thus freeing the space. Evacuation is performed by scavenging all the
regions younger than the condemned space. These younger regions are the only
regions which may point directly into the condemned region. The entry tables
are used to find any older objects that reference into the region without having
to scavenge that older regions themselves. Once all live objects in a space have
been copied out, the region is empty. Forwarding pointers are left behind so that
execution can continue during a scavenge. Hardware forwarding is essential here

for performance (same requirement as the Baker Scavenger).

2.7.1 Assumptions for Leibermann-Hewitt

The basic assumption in the Leibermann-Hewitt algorithm is that most new
objects point to older objects. This is true for functional languages, such as Lisp
(for which this garbage collector was designed) because the destructive operations
like set-car!, (at:put: in Smalltalk) are not used very often. When objects are

created in Lisp (cons a b) the parameters to cons must exist before the cons cell
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Figure 6: Object Creation In Lisp Has Age Polarity

can be created. Figure 6 show four objects A,B,C, and D. Objects B and C may
point directly at A because they are older. Object D is restricted from pointing
to object C because C is younger. Thus, if space 1988 were to be evacuated,
space 1989 and any entry table into 1988 must be scanned to find all references.

In Smalltalk, the assumption that new objects point mostly to older objects
is invalid due to the pervasive use of destructive operations, such as assignment.

As a result, objects often contain a mix of both older and younger objects.

2.8 Dijkstra Parallel Mark/Sweep

The Dijkstra parallel collector [12] uses a two processor model, a mutator and
a collector. All objects are marked either black, gray, or white representing the

following states.

¢ Black objects are reachable and have been walked,;
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e Gray objects are reachable but have not been walked; and

o White objects are reachable from gray objects or are garbage.

The mutator shades objects that it uses. Shading turns white objects into
gray notifying the garbage collector that it must walk that object. The collector
sweeps memory repeatedly: when no gray objects are found during a sweep (this
means that no additional objects need to be scanned) all the white objects are
garbage. The advantage in this collector is that synchronization needed between
the mutator and the collector is minimized. No explicit synchronization is needed
between the collector and the mutator for garbage collection actions however,
synchronization is needed for memory allocation.

Unfortunately, the algorithm is very difficult to implement and prove correct.
The worst case behavior of this algorithm is very poor because marking ‘on the fly’
allows garbage objects to remain uncollected until two sweep phases later. This
results in very poor performance to systems where garbage is created very quickly
or the garbage collection processor is slower than the mutator. Smalltalk systems
often use intermediate results and then throw them away immediately. These
intermediate results must be protected by the interpreter by shading, preventing
that object from being collected during the next sweep because it was reachable
at some time during the mark phase. During the next phase, it will be collected.

Performance analysis of this algorithm has shows this type of cyclic behaviour.

2.9 Summary

In this chapter we have presented a survey of many common garbage collection
techniques. The approaches presented range from the brute force techniques
such as mark/sweep, to incremental collectors such as reference counting and the
copying collectors.

The traditional garbage collection techniques such as mark/sweep and refer-
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ence counting suffer in that the algorithms process all objects, both live and dead,
in the system. In systems which create large amounts of garbage quickly this has
been shown to be inefficient. For this reason, these techniques are not considered
the most appropriate for Smalltalk garbage collection.

A more suitable approach has been found in the copying collectors which
improve performance because only live objects are processed. We believe that
the copying algorithms are more promising for multiprocessor Smalltalk garbage
collection designs. Other researchers have thought so also, and some of these
algorithms have been extended to work on multiprocessor systems. In the follow-
ing chapter we describe these extended algorithms and review their suitability

for garbage collecting Smalltalk systems.
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Chapter Three

3 Multiprocessor Garbage Collection

This chapter reviews several current multiprocessor algorithms which have influ-
enced the design and implementation of our Entry Table algorithm. The algo-
rithms are discussed in depth, so it is assumed that the reader is familiar with
the algorithms presented in Chapter two. The applicability of each algorithm to
Smalltalk systems is explored.*

We first present the multiprocessor garbage collection model and the various

definitions used in describing the algorithms.

3.1 Model and Definitions

Consider a Muliiple Instruction Multiple Data (MIMD) multiprocessor system
containing two or more processor elements (PE). These PEs share one large ad-
dress space. This memory is divided into smaller segments which are assigned
to the processors. The assigned memory is termed loca! ic that processor and
implies ownership (even though other processors may access it directly). Usually
this local memory is truly local in the sense tl.at it is on the same physical circuit

board as the processor and may have a faster access time or preferred access

‘Caveat; Many of the problems described in this chapter are not problems with the GC
algurithms themselves but on how they interact with the mutator.
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rights. Remote memory refers to any memory which is not local to a particular
processor (i.e. some other processor’s local memory). Each of the processors
may have one or more mutators (interpreters) and a garbage collector running on
them. The term mutator refers to any process which is performing computation
on the objects in memory. Interpreter is used to refer specifically to the Smalltatk
interpreter. Scavenger is the term used to describe the scavenging collector for
local garbage collection (LG C). A synchronized Global Garbage Collection (GGC)
will be used to describe a mark/sweep global collector with all processors partic-
ipating as a unit. For our purposes, the difference between a LGC and GGC is
that the global garbage collection requires all processors to synchronize during

the complete collection phase.

3.2 Multiprocessor Issues

Before presenting the multiprocessor algorithms, we review some of the additional
requirements of a multiprocessor garbage collection algorithm versus a unipro-
cessor algorithm. As the problems are described, simple solutions are presented.
Further solutions and their ramifications are discussed in the context of the var-

ious algorithms described in this chapter.

3.2.1 Object Movement

Many of the techniques discussed in chapter two use object copying in their
garbage collection strategy. A multiprocessor algorithm using these techniques
(Baker’s Real-Time, Ungar’s Generation Scavenger) must insure that the object
movement is atomic and that all processors are informed about objects which have
moved. Preserving atomicity is important since the garbage collection process
must be transparent to the user. Updating pointer information across all the
other processors is essential for system integrity. If the system uses an object

table, then updating pointers is unnecessary (they don’t change) however atomic
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object movement is still a problem (a processor cannot access an object while
it is being moved). Potential solutions to the atomic object movement problem

include:

1. Stopping all processors every garbage collect;
2. Locking the object on every access; and

3. Pure message sending.

The first option is the simplest solution, however potential concurrency gains
are reduced. Stopping all processors trades concurrency speedup versus simplic-
ity of the implementation, and reduced runtime synchronization costs. Many
systems [13] [10] use this approach because it is a straight forward conversion
from uniprocessor to multiprocessor implementations. This approach would be
suitable if al! processors have the same garbage creation rate and need to garbzge
collect at approximately the same time.

The second option offers a finer grained solution, every object access must lock
out other processors. Object locking is an expensive choice because the system
pays the price for sharing even when sharing is not used. A processor which
accesses an object which may never be shared, will still require that object to be
locked when accessed. Locking can be performed on a larger scale (i.e. memory
region) to reduce the overall cost of locking; this could allow unresiricted access
to a group of objects after acquiring the memory region thus removing the need
for locks being used on objects inside this region.

The third alternative, pure message sending, is a mechanism which restricts
other processors from directly accessing objects on other processors. To access an
object, a message must be sent from the remote processor to the processor which
owns the object. Total control over object access is given to the owning processor,

thus removing the possibility of interference from other processors. This option
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reduces some of the advantages of shared memory systems but has the advantage
that object access and computation follow a well defined protocol and thus are

easier to understand.

3.2.2 Synchronization

Multiple access by several processors requires some form of serialization or mutual
exclusion (MUTEX). A review of mutual exclusion algorithms can be found in
[31]. The frequency and type of access required determine the mechanism that
can be used to synchronize processors. Operations that require MUTEX access
of short duration can use simple spin locks. Spin locks waste processor cycles
but may be faster in some cases where access time is short. Using spin locks
may cause memory contention problems, as discussed below. Mutual exclusion

of longer duration can use process based techniques like semaphores.

3.2.3 Garbage Collector/Mutator Interaction

A major concern in Actra is the synchronization due to the interaction between
the garbage collectors and mutators (on separate processors}. This synchroniza-
tion is encountered when a processor is garbage collecting and requires access to
another processor’s resources. It is important that the scavenger not interfere
with the effects of the remote interpreter. As an example, a garbage collector
which is updating a field in object (because of an object movement) at the same
time as a interpreter is using that object must not cause any work done by the
interpreter to be undone. This is related to the atomic object movement require-

ment discussed above.

3.2.4 Memory Contention

Shared resources which require mutual exclusive access are potential performance

bottlenecks. For example a single ‘memory free’ pointer could cause most object
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allocations to wait for exclusive access to the pointer. One solution is to divide
memory into chunks so that mutual exclusive access is not required as often. A
processor acquire a chunk and then may freely allocate objects in that chunk.
Memory can become fragmented using this approach depending on the chunk
size. Memory usage may not be optimal because some processors may use less of

their allocated chunks than others.

3.2.5 Language Issues

The interaction of the language with the memory system is also very important.
The language for which the garbage collector is designed can make a large dif-
ference in performance. An example of this is object size. Languages like Lisp
create many small sized objects, usually cons cells, which contain two pointeis
(eight bytes).

In a system like Smalltalk, the objects are larger, averaging fifty bytes. What
this means in terms of the garbage collector is that moving objects in a Sme.lltalk
system takes longer on average than in a Lisp ® system. The result may be that
when moving objects, the wait for object access would be longer in S:nalltalk
leading to a less efficient system if for example a spin lock mechanism was used

when waiting for an object to be copied.

3.2.6 Smalltalk Language Issues

The Smalltalk interpreter does not have concurrency at the bytecode level. Mul-
tiprocessing in Smalltalk still requires the use of traditional mutual exclusion
techniques. Two Smalltalk processes (on different processors) may conflict when
using a shared object. It is important, as discussed above, that the garbage col-
lector not violate the bytecode atomicity. This is a difficult problem if multiple

scavengers are allowed to update objects in Smalltalk space without stopping the

®Production Lisp systems have similar problems because they provide vectors and strings.
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Smailta'k interpreter.

3.3 The Multi-Lisp Baker Scavenger

The first algorithm presented is Halstead’s Multi-Lisp [9] scavenger running on
the Concert multiprocessor system. The Concert multiprocessor system consists
of 4-8 processor (MC68000) clusters sharing a sixteen megabyte address space.
Up to eight clusters may be connected together using a ‘RingBus’ arbitrator
thus allowing a maximum of 32-64 processors. Interprocessor communications is
performed through shared memory. Local memory access times are two to four
times faster than access to remote memory. Additionally, each processor may
also have some private local memory (shadow memory), which is not addressable
from other processors in the system. This allows more than sixteen megabytes

in the total system with up to sixteen megabyte shared.

3.3.1 The Algorithm

The Multi-Lisp parallel garbage collection algorithm uses simple extensions to
Baker’s semi-space algorithm. Each processor has its local space divided into two
equal halves and runs a Baker scavenger on those spaces. Recall the invariants

for Baker’s algorithm presented in chapter 2.
e Black objects may only point into new space;
¢ Gray objects may point anywhere; and
¢ White objects are new.

With multiple processors and multiple spaces, the invariants have been ex-

tended as follows.

o Black objects may only point to new space. This new space may be on any

processor; and
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¢ Gray objects may point to any space on any processor.

Each processor interleaves object creation with scavenging and must perform
a flip when its new space is full. Scavenging on the processors can be done
independently of the other processors but space flips must be synchronized across
all processors. Object access by the mutators must test the forward bit as well
as an additional lock bit which indicates that an object is being moved. When
any particular processor wants to do a flip it must wait until the other processors
agree to do the flip. This guarantees that none of the other processor’s gray
regions contain pointers into that processor’s old space. In the worst case, a
processor may be required to furiously blacken all of its new region (by removing

the gray objects) so that it is prepared to flip.

3 2.2 Flip Synchronization

The main disadvantage of Halstead’s algorithm is that all processors must perform
their flips at the same time. This requires that they synchronize every flip. In
fairness, flips are performed fairly infrequently (relative to the object creation
rate) so the actual synchronization costs are actually not excessive. The real cost
is that a garbage collect flip is expensive. Real time performance may be lost
during a space flip. A flip involves copying all external references to the new space
(this includes the run time stack, all external registers, and tables). Forcing all
the other processors to undergo flips more frequently than necessary or waiting
until they are ready to flip is both inelegant as well as inefficient. A processor
which is creating lots of garbage will cause the other processors, which may not

be creating as much garbage, to undergo flips too frequently.

3.4 Synchronization Issues

We examine the synchronization issues for this GC. We first describe the muta-

tor/gc interaction in terms of a Lisp mutator. We then present the requirements
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if this algorithm is used in a Smalltalk system. The interaction between multiple

scavengers is also described.

3.4.1 Object Movement

When the Lisp interpreter accesses an object, it must be sure that the object wiil
not move during that access. Halstead solves this problem by using a lock bit in
every object. This is used to lock the object during access to prevent a scavenger
from trying to copy the object to newSpace. The scavenger must test and set the

bit before every object move.

3.4.2 Object Access

When accessing a field of an object, the Lisp interpreter must test if the object
has been forwarded or is being copied. In addition, the mutator must set a bit
indicating that the object is being accessed so that the garbage collector does not
overwrite a field in that object. This would occur when a garbage collector is
blackening a gray ohj2ct. Any pointers into old space are updated to be intc new
space. It is possible for a mutator which is only reading a field of an object to not
require this synchronization. This is because any scavengers updating that field
may only write the new forwarded address into that field. Whether the mutator
fetches the old reference or the new forwarded reference is unimportant since they
are really the same object. Synchronization is only really needed when a mutator
is writing into an object. This results in a race condition where the last writer
wins (i.e. last update is the one that stays). This can be used to advantage in
Lisp systems, because destructive operations are used less frequently and thus
the costs may be reduced if MUTEX access is only used during writing. This is

not the case in Smalltalk as assignment is a frequent operation.
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3.4.3 Scaveager/Scavenger Interaction

When a scavenger is blackening an object which contains a remote reference, it

has a few options.

1. copy an object to the remote processor’s space;
2. request the remote processor to copy the object; or

3. copy the remote object to local space

The first choice, copying the remote object to the other processors space,
would be the logical thing to do assuming the garbage collector is not responsible
for object placement or ‘load balancing’. Using this strategy, twc processors must
synchronize with each other so that both do not cupy to the same space. This
would require MUTEX access to the destination pointer and could result in a
memory hot spot with multiple proce:sors in contention for that pointer. A major
problem with this strategy is that allocating local objects require MUTEX access
to the memory free pointer thus slowing down every local memory allocation.
In addition to this, the processors would have to run some sort of termination
detection protocol so that another processor does not ‘sneak’ another gray object
into a processors space after that processor thinks it has finished. This adds cost
to every flip when the processors are waiting for everyone to agree to perform the
flip. This type of termination agreement is not difficv't and may be implemented
using a simple shared memory location.

Using second option, if a processor is not allowed to copy into another pro-
cessors space (to avoid the problems detailed above) then it must wait until the
other processor copies an object to its new space. This may take much too long
and invalidate the real time advantages provided by this collector.

The third option which is in fact the one used by the implementers is that
each processor copies the object to its own space. The justification for this is

that the ‘locality of reference’ will result in a performance gain due to faster
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local references. This is not really true. The processor on which the object v ill
reside most often is the processor that has the reference ‘earliest’ in its memory
(lowest in physical address space), not the processor which uses the object the
most. This also could lead to the behaviour that an object is ‘thrashed’ by
repeatedly being copied between competing processors. This strategy may also
conflict with any load balancing which the system may perform. Another more
serious problem is that the local processor may over-allocate its local memory
by virtue of referencing too many remote objects. The implementers attempt to
solve this problem by using an extra global memory space in which a processor
may temporarily borrow some memory until the next flip. This extra memory
must be available at all times and is unusable by the system except when a
memory overflow occurs. This is particularly unattractive as the system already
has a memory usage of less than fifty percent due to the use of Baker semi-
spaces. If we were to apply this strategy to a Smalltalk system, a processor could
conceivably become home to a large majority of the objects in the system. For
example by referencing the Smalltalk system dicticnary, a processor may copy

the whole image to its local memory.

3.5 Jew’s Multi-Generation Scavenging

Multi-Generation Scavenging {23] is an algorithm based on Ungar’s Generation
Scavenger extended for use on multiprocessor systems. This algorithm was de-
signed for the Actra multiprocessor Smalltalk system but was never implemented.
The Multi-Generation Algorithm was designed for the same hardware as our En-
try Table algorithm and thus is of considerable interest here. The basic approach
is to extend Ungar’s Generation Scavenger to handle multiple processors by hav-
ing additional remembered sets (RS) keep track of interprocessor space references.
One remembered set is used to keep track of the interprocessor references between

every pair of processors.
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3.5.1 An Overview of Jew’s Algorithm

The key idea in this algorithm is the use of external Remembered Sets. When a
processor performs a local scavenge it must walk the external remembered sets
and update any references into its space. These RS are used as both a root set
as well as an update list. The other processors need not be concerned that a
scavenge is occurring and in effect can keep processing. This design was chosen
because it seems to require little external processor intervention when a processor
performs a local GC. We first present a more detailed description of this algorithm
and then analyse the synchronization requirements of this algorithm when used

in a Smalltalk system.

3.5.2 Using Remembered Sets

In the Multi-Scavenger, a Remembered Set is kept between every pair of proces-
sors (see Figure 7). RS(X,Y) is used to denote the RS on processor X which
-ontains the objects pointing into Y’s new space. Remembered Sets must be kept
for Old to New references as well as for New to New references. Elements are
added to this set as fnllows. When the mutator on processcr A performs a store
into O, of a non-local object R which is in processor’s B new space, it adds O
into RS(A, B). A scavenger on processor B will walk RS(A, B) when scavenging.
This walk will find object O in RS(A, B) and update the new address of R. If
Il is tenured and object O does not contain any other references to B then the

scavenger may remove O from RS(A, B).

3.6 Smalltalk Synchronization Requirements

The multi-scavenger was designed for use in a multiprocessor environment. We
discuss the synchronization required by this garbage collector in terms of its

interaction with the Smalltalk interpreter.
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3.6.1 Object Movement: New Space Object Access Restrictions

The multi-scavenger algorithm allows other processors to continue execution while
a processor garbage collects. Due to object movement in new space however,
access to this space must be in a mutual exclusive fashion. Two types of cases

ocCccur:

e the local scavenger requires MUTEX access to all objects in new space

during a fiip; and

® Cross processor new space access must prevent the accessed processor from

scavenging.

The first case occurs when a local processor is scavenging. Other processor’s
may not access any obiects in the scavenging processor’s new space while that
scavenger is copying objects.

The second case occurs when a processor is accessing another processor’s
new space. The accessing processor must lock the accessed new space against a
garbage collection while it is accessing the object. This unfortunately requires a
MUTEX operation for every new space access when performing cross processor
references.

Let us examine the synchronization requirements of these cases. It is clear
that the local processor need only lock the new space when it starts to scavenge.
Thus, any other processor wishing to access that new space must check the state
of the scavenger lock every object access. Additionally, the scavenger must
wait for any processor currently accessing its new space to finish. This means
that when any external processor references into a processor’s local memory it
prevents the local processor from garbage collecting, but not other processors
tha. are just accessing. This can easily be implemented using a lock for processor

pair. To lock out all new space accesses, the scavenger need only acquire all the
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locks into its space. This type of synchronization is closely related to the multiple
reader/single writer problem and can be called the multiple reader/single mover
problem. Unfortunately, with this type of synchronization other processors may
lock out the local collector for long periods of time. (Sometimes longer that it
takes to scavenge). During a remote garbage collect, a processor could use special
accessing techniques which are ‘scavenger aware’ however this solution requires

additional synchronization between the interpreter and the garbage collector.

3.6.2 Locking Requirement of Remembered Set Object Accese

A garbage collect cannot occur during the execution of a bytecode if it can affect
it’s execution. In the multi-scavenger, a remote processor garbage ccllect may
update a field of an object that is currently being used by some other processor.
For example, processor A contains shared object S. Field 2 of object S contains
a reference to a new object in B’s new space. Thus, S is the RS(A, B). The

following steps occur.

1. Processor B is scavenging and is scanning RS(A, B). The scavenger in
processor B finds the reference in object S (field 2) and starts to copy it to

the future survivor space.

2. Processor A performs storelnstVar 2 into object S. It stores an object (local

to A).

3. Processor B has finished the copy and updates the field in S. (overwriting

the previously stored local object from step 2). ©

The ab-ove sequence of events demonstrate a mutator/garbage collector inter-
action resulting in a conflict. Note that this is different than two mutators both

sharing object S and storing into the same field. This case is solvable by language

®Note that storing the future address before copying does not avoid this problem because the
mutator must still wait for the copy to finish before using the object.
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synchronization constructs such as semaphores and is independent of the garbage
collection strategy. The mutator/gc conflict can only be solved by locking access
to any Remembered Set objects while any processor is scavenging. This is the
major problem with the algorithm. Essentially, the current working set of objects
(all object in newSpace and the oldSpace remembered set) become inaccessible
during any other processor’s scavenge. This has the effect of halting work on any
processor with objects containing external references when the owner of one of
the external rcferences scavenges.

As noted above, the multi-scavenger may update a field incorrectly if syn-
chronization is not used to access Remembered Set Objects. This is because
bytecodes are specified as atomic and that unless synchronization is provided
by a reinote scavenger the atomicity of the bytecode execution may be violated.
This could cause a store to be ‘undone’ by another processor which is garbage
collecting. Additional synchronization is needed when accessing the RS itself.

This is described in the next section.

3.6.3 Remembered Set Accessing: Removal and Addition of Elements

As a processor continues execution, it may add elements to its Remembered Set.
If a remote processor is scavenging when elements are added to the local RS, then
the remote processor will have to be informed since it may have already walked
that particular RS and thus may miss updating that object. Clearly some form of
synchronization is required between the scavenger and any processor that adds to
its RS. One solution to this could be to lock all the RS sets on all the processors
and thus block any access to new objects. As each RS is walked, access to it may
be given. Note that all the Remembered Sets into the scavenging processor’s
space must be locked at first. This is to prevent the possibility of a processor
fetching a pointer that has not been updated from an unlocked RS object and

storing into an space in which the RS has been walked. This communication
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requirement reduces the potential performance of the remote interpreter since it
must inform a remote scavenger (if any are active) when adding elements to its
RS. Careful design of the RS update protocol can alleviate this problem but a

synchronization step is needed regardless.

3.7 Multi-Trash, The Multi-Scheme Garbage Collector

The Multi-Trash [26] garbage collector is a parallel garbage collector designed
for Multi-Scheme. Multi-Scheme is a parallel version of MIT Scheme running on

the Butterfly multiprocessor 7

. The Butterfly multiprocessor consists of nodes
with MC68000 microprocessors and one megabyte of memory. The processors
are connected via an omega network otherwise known as a butterfly network.

The Multi-Scherne system consists of a Scheme interpreter running on each
of the processors. Each of the interpreters polls a global work queue for tasks to
perform. The interpreters have access to one global heap which is further divided
into sub-heaps. The sub-heaps aie divided among the processors allowing each
processor to allocate storage without having to gain exclusive access to a global
free memory pointer. This reduces memory contention and potential memory ‘hot
spots’. The sub-heaps are fixed regions of memory which are further divided into
partitions which are used to equalize memory distriby i*on among the processors
as described below.

The garbage collection technique is a stop and copy version of the Baker
algorithm. When memory is exhausted on a processor all mutators are stopped.
The processor which has run out of memory becomes the master. The master first
scans all external roots. Each processor then scans their local stacks and their
portion of the Constant Space. Constant Space is a region of memory containing
objects which are permanent or very long lived. The portion of Constant Space

scanned is determined at initialization and is modified every time Constant Space

"Butterfly is a registered trademark of Bolt, Beranek, and Newman Laboratories.




3 MULTIPROCESSOR GARBAGE COLLECTION 42

grows. The heap is then scanned by each processor. In order to equalize the
amount of work done by each of the processors, the heap is divided into equal
partitions. When a processor is scanning one of these partitions, it stores the
copied objects into a free partition (there will always be a free partition since
memory is divided in half). When a scan fills a partition it is placed in the
ToBeScanned list for other processors to possibly scan. All processors watch
the ToBeScanned list until there are no longer any partitions left and garbage
coliection is done.

One of the requirements of this collector is that it balance the memory in
each of the processor’s sub-heaps so that after a flip a processor does not find
its sub-heap full and trigger another GC. The technique used is a card dealing
algorithm. When a processor requires another sub-heap vartition to copy objects
into, the partition it receives is from the next sub-heap that would receive a card
if dealing a deck of cards amongst the processors. This insures that the number
of partitions allocated from each processor’s sub-heap differs by at most one.

A problem with this memory division is that memory may be wasted due to
fragmentation in each of the sub-heap partitions. When copying to a partition, if
an object does not fit into a partition, another partition must be allocated. The
amount of fragmentation is dependant on the sub-heap size and largest object size.
Due to the heap style allocation used, any holes in the partitions are unusable.
Sec figure 8 for the memory division used in Multi-Trash.

One of the interesting things about this algorithm is how it avoids the atomic
object movement prcblem as well as object access by stopping all mutators dur-
ing a GC. This strategy is an example of a difference in philosophy in designing
multiprocessor algorithms. The strategy here is to use all processors as efficiently
as possible to quickly finish an unpleasant task, (garbage collection). Our algo-
rithms allows independent garbage collection on any processor without affecting

the other processors. The difference can be traced to the use to which we are
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Sub-Heap Division among Processors Partitions of Sub-Heaps

Numbers indicate order of allocation during a flip
Figure 8: Memory Division In Multi-Trash

putting our processors. The MIT machine is to be used as a monolithic Scheme
engine used to run Scheme on every processor as quickly as possible. Our im-
plementation is geared to permit each processor to be used for different types of
tasks (including non-Actra processes) and allow independent processing as much
as possible, allowing the user to decide interprocessor communication patterns.
There ars some problems with the implementation. The first is that by using
a stop and copy version of Baker the zollector has major pauses (2-60 seconds)
during collection. This would be unsuitable for a Smalltalk environment. Ad-
ditionally, the technique of sub-heap splitting into partitions incurs additional
memory costs due to memory fragmentation. The requirement that all proces-
sors stop during a garbage collect has been shown to be inefficient when some
processors are greedy. This is clearly demonstrated from the example that Read-

Eval-Print ® has a ninety percent memory usage on the processor which is running

8Read-Eval-Print is the main Lisp evaluaticn function.
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it and fifteen percent memory usage on the rest of the processors. Due to the
implementation of the MUTEX handling, memory is limited to twenty four bits
of the address (top byte of a thirty-two bi¢ address is used for Broken Heart
MUTEX marker®).

3.8 The Firefly Multiprocessor Garbage Collector

The real-time concurrent algorithm presented by Ellis, Li, and Appel [42] is an
implementation of Baker’s real-time algorithm. The implementation uses the
memory management unit (MMU) hardware to implement synchronization. For
an overview of current MMU technology the reader is directed to [34] [32]. The
primary idea is to use the MMU to prevent access to regions of memory that
have not been updated by the garbage collector. The advantage of this method
is that the mutators need not concern themselves about synchronizing with the
garbage collector, the hardware insures synchronization. Whenever a mutator
attempts to access an object which has not been updated, the hardware prevents
access. The offending mutator is halied until the object becomes accessible (after
being updated). The mutator can then be restarted at the fault address. Memory

access is restricted as follows.
e The mutator sees only new space pointers in its registers;
¢ White objects contain only new space pointers (White, Gray, or Black);
¢ Gray objects reside in locked memory pages; and

o Black objects are freely accessible.

When access is attempted on a locked page (i.e. old space or a gray object),
a processor trap occurs. The trap handiing code scans the locked page insuring

that all the pointers in that space point into new space (ihe page is made black).

oA Broken Heart is an invalid pointer
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The process which caused the trap can then be restarted. Since the mutator can
only access black or white objects, it will only have new space pointers in its
registers. A separate process scans the new space from low to high and converts
gray pages to black pages. This is equivalent to the interleaving mechanism in
the uniprocessor garbage collector.

As with the Multi-Scheme garbage collector, all mutator processes must be
stopped during a flip. Since a flip may be expensive, the authors claim to have
developed techniques for reducing the latency of flips. Mutator stacks can be con-
sidered as part of heap space and thus processed incrementally by the scavenger.
Eacl stopped mutator must also have its registers updated. A lazy update mech-
anism is described. The authors state that the program counter of each stopped
thread can be modified io point to a special routine which will update the regis-
ters when that mutator thread is resumed. The authors neglect to mention that
if this technique is used then every process must run before the next mutator flip.
If this does not occur then the forwarding pointers for the objects will be lost on
the next flip. Using this trick will only defer the update of any pointers until the
next flip (for threads that don’t run as often as memory flips).

Memory usaye is also not optimal. For example, consider an unscanned page
(gray) with only 1 object in it. If the mutator accesses this object, the trap
will scan this one object and unlock the page. This makes this page unusable
as memory for copying old space objects since access is unrestricted. Thus, the
extra memory in that page would be left unused or added to a free buffer pool
for allocation as new objects. This unfortunately is slower than heap style allo-
cation used by the Baker algorithm in the first place. Theoretically, the amount
of wasted space due to fragmentation sould be NumberOfPages * (PageSize -

MinObjectSize).

101t is tempting to call this a credit card optimization



3 MULTIPROCESSOR GARBAGE COLLECTION 47

The handling of derived pointers by this mutator is also inefficient. Dersved
pointers are pointers which reference into an object. Many compilers generate
~ode which involves the use of derivative pointers for speed. For example, a loop
referencing every object in a contiguous memory block may be more efficient if
a derived pointer is used to sequence through the object instead of a base-offset
addressing mode. When a pointer of this type causes a trap, the trap handling
code must determine to which page the object belongs. A reverse linear scan of
the page descriptors is required to determine which page starts with an object
and then a forward scan to determine to which object the pointer belongs. While
being sufficiently fast for small page sizes and small objecis, large page sizes
and large object sizes would make this linear scan too slow. The scavenging of
active processes allows the garbage collector to falsely keep garbage objects alive.
The scanning of stack frames may scavenge a stack frame after the process has
returned from that frame. This only delays the reclaimation of these objects by

one scavenge and thus is not overly inefficient.

3.9 Multiprocessor Smalltalk

The Multiprocessor Smalltalk described by Pallas [13] is actually a description of
how to convert a uniprocessor system to a multiprocessor system. Many of the
ideas presented in this design have been described previously in [11]. Most of the
multiprocessor issues are ignored or trivially solved using locks. Garbage collec-
tion in this system is handle’ - halting all processors and proceeding norinally
using Ungar’s uniprocessor ulgorithm. Even memory allocation is handled by
MUTEX access to a single memory free pointer. This project is in its early stages
and thus has not had the time to address any multiprocessor garbage collection
issues. The results presented focus on the changes required in the Smalltalk-80
virtual image when running with true multiprocessors. An example of such a

change would be the different implementation of semaphores for multiprocessors
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Versus uniprocessors.

3.10 Summary

We have presented a review of the multiprocessor garbage collection algorithms
found in the literature. In summary the existing algorithms are unsuitable.

The various implementations of Baker’s algorithm waste too much space, and
require additional hardware for performance. The multi-scavenger is too com-
plicated to be feasibly implemented due to its many synchronization points. In
all of the above algorithms, the extra costs for multiprocessors are paid even
when shared memory objects are not being used. We refer to this as paranoid
behaviour (the mutators are constantly looking over their shoulders in case a Igc
is in progress). Problems with using an MMU include the extra costs for the page
mapping tables and address translatior. times.

The algorithms preseuted also do not provided support for shadowed memory
systems. These are systems in which for various reasons (such as performance or
address space limitations) have part of their memory private to the local processor

and unreachable to other processors.



4 ENTRY TABLE GARBAGE COLLECTOR 49

Chapter Four

4 Entry Table Garbage Collector

This chapter describes our shared memory multiprocessor garbage collection al-
gorithm based on using Entry Tables. First we introduce the terminology used to
describe this algorithm. We then describe the Entry Table (ET) algorithm and
how to garbage collect using an ET. The mechanisms for converting between ET
cells and real pointers is presented along with detailed descriptions for maintain-
ing the ET. Criteria for ET cell creation and reclamation are described, as well as
strategies for ET recovery with and without extra memory. Finally, correctness

arguments and concurrency issues are discussed.

4.1 Overview: Our Entry Table Garbage Collector

Our algorithin uses Entry Tables to keep track of interprocessor references. The
use of tables for interprocessor references removes the need to update remote
pointers during a scavenge. This allows a processor to scavenge without stopping
any other processors. Cross processor new pointer references must use Entry Ta-
bles req.iring pointer conversion to be performed during interprocessor message
sends. This requires fast conversion between ET cells and real pointers. To this
end, we exploit the lo.al scavengers use of memory to implement a techrique for

fast two way conversion between ET cells without additional memory cost.
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A simple mechanism for ET recovery using reference and marking information
allows the garbage collection of the ET cells themselves, this is an important
consideration when using tables. The approach for reclaiming tables is a major
contribution of this thesis. The idea that collecting remote references based on
information provided by the remote garbage collector is important. We believe
that it is not necessary for a local garbage collector to scan other processor’s
memory in search for these references. In allowing processors to garbage collect
at any time, any scanning performed by the local garbage collector would most
likely be scanning a large portion of garbage. The alternative is to make the
remote garbage collector share this information when it is most up to date (i.e.
immediately after a remote scavenge) and for the local scavenger to use this
information when it next needs it (i.e. its next lgc).

A major advantage of our algorithm is the reduction in synchronization re-
quired between garbage collectors and mutators. Reduced synchronization allows
a local garbage collection to proceed without stopping any of the other proces-
sors. This is especially desirable if the processors have markedly differing memory
usage patterns. Allowing independent garbage collection reduces thz penalty for
having greedy processors [26] which are creating much more garbage than other
processors in the system. The key idea in our collector is that highly mobile
objects, like new space objects in a generation scavenging system, should not be
referenced directly. As was seen in Chapter 3, it is very expensive to update all
the remote references when moving objects. This is due to the synchronization
overhead as well as the need to scan potential referencing objects in other pro-
cessor’s spaces. Instead of direct pointers, we use entry table cells and a message
sending protocol to access objects in another processor’s new space. This guar-
antees that other processors will not be able to interfere with a garbage collector

running on a particular processor and vice versa.
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4.2 Why Entry Tables ?

The idea behind this algorithm is that updating the references on other processors

is expensive due to the synchronization requirements for remote updates.

4.2.1 Remote Object Updates Are Expensive

The analysis of the multiprocessor scavenger showed that allowing the remote
update of pointers, local to a processor’s space, can cause a multitude of syn-
chronization problems. We propose an algorithm using entry tables to reference
objects that reside in highly mobile memory spaces while allowing direct access
to spaces in which objects are fixed. The use of tables between oid space (objects
move infrequently) and new space (high mobility) removes the requirement of re-
mote updates when objects move. A tenuring policy is used to allow ET objects
that survive for a period of time to be promoted to old space thus resulting in
faster direct access {non-message sending access). The local garbage collection
strategy is a form of generation scavenging due to its excellent performance in

Smalltalk systems.

4.2.2 Reduced Synchronization

Entry Tables eliminate the need to update remote references. The garbage collec-
tor will never write directly into a remote processors memory thus reducing the
synchronization required between processors. Updates are atomic because only
the entry table cells must be updated and access must be performed by the local
processor. All remote access to objects pointed to by these cells must be made
by message passing. In effect, the ET cells are acting as forwarders. A technique

for efficient implementations of forwarder type objects is presented in [19].
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4.3 Definitions

Processors in the system are numbered 1 .. N. The memory space M,, of a
processor 1, refers to both old and new spaces for this processor. MO{d, and
M New; are used to differentiate the two subspaces. ET, refers to the Entry
Table referencing objects in M New,. When referring to the entry table cell for
a particular object O the denotation ET;(O) is used. Entry Table cells may also
be generally referred to as handles. The Remembered Set RS(MOIld,, M New,)
contains cross space references from MOid, to MNew; for 1 < ¢ < N and

1 € 7 € N. Scavenger(s) is the local garbage collector running on processor 1.

4.3.1 Message Passing

Message passing is used to describe the mechanism of communication between
two processors. Message passing in this system has been implemented in two
ways. The first mechanism requires a Smalltalk message send be invoked on
the owner processor. A transfer of control between processors takes place, and
execution continues on the processor to which the object belongs. This type
of message passing can be implemented as Actors [11] where the receiver Actor
resides on the target processor. The other message passing mechanism is an
optimized version of the above. The local processor does not relinquish control
when executing a method on a remote object. Any access to the cbjects fields
invoives communication with the owner processor. This type of message sending
can be implemented using high speed reader/writer tasks that are used as object
accessers thus allowing a processor to fetch fields without invoking a full remote
Smalltalk interpreter. It is important to realize that message passing requires the

participation of both processors.
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4.4 The Scavenging Algorithm

The Entry Table algorithm is a simple extersion of the generation scavenging

algorithm. The algorithm steps are

1. Local processing stops;

2. The scavenging processor first scans its Entry Table for all externally reach-

able objects. Unreferenced handles are reclaimed;
3. The local root set is scanned by the local scavenger;

4. The destination flip space is scavenged for all references into the previous

new space;
5. The scavenger recreates the Entry Table shadow space; and

6. Local processing resumes.

4.5 Entry Tables and Remembered Sets

Recall that Jew’s multiprocessor scavenger algorithm requires that processor i
maintain RS(MOId,, MNew,) which contains all oldSpace to newSpace refer-
mnces. Our algorithm retains this requirement and extends the membership cri-
teria such that RS(MOld,, ET;) for 1 # j is also maintained by processor i. This
information can be maintained in two separate remembered sets or combined as
one. RS(MOIld,, ET;) allows processor i to quickly find all its external references
from MOld,. This information is used to garbage collect the Entry Tables thern-
selves and thus is a requirement in our algorithm. Unlike the multi-scavenger,
RS(M New,, M New;) need not be maintained because external references origi-
nating from M New, are found during a scavenge. This has the benefit that the

additional work is not required by the mutator during local new space access.



4 ENTRY TABLE GARBAGE COLLECTOR 55

IF IS_IN_MY_OLD_SPACE(destinationObject) AND
IS_NOT_IN_ANY_OLD_SPACE (storedObject)
THEN

add_to_remembered_set (destinationObject)
ENDIF

Figure 11: Criteria For Adding To A Remembered Set

Local scavenging is very simple — the local scavenger scans the same root set
as in the uniprocessor algorithm with the Entry Table as an additional root set
member. This keeps objects, which are not referenced locally, alive, by virtue of
being in that processors Entry Table. This approach has been called prevention
[43]. When a local scavenger encounters a remote eniry table reference it marks

the ET as reachable but no other processing is performed.

4.6 The Trade Offs Involved

We have removed some of the complexity of local garbage collection by disallowing

remote memory references. The trade offs involved in using Entry Tables arec:

e Entry Table maintenance must be performed (this includes creation and

reclamation of the entry table cells); and

e remote new space objects are accessed using message passing, direct access

is not allowed.

Before describing the maintenance of these tables we will describe the re-
strictions placed on memory access. The major requirement of our entry table
algorithm is that processors may only directly access objects in their own new
space or any old space. For other objects, a message send to the processor own-
ing that new object is necessary. While this may seem expensive, the alternative

involves using locks during object access. Note the assumption that a lightweight
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process /message sending kernel is available!!. Examples of such are Thoth [51],
Harmony [49], and the V kernel [51]. In effect, we are trading speed of remote
reference (direct pointers) with an indirect reference {a message send). This is in

fact the synchronization point.

4.7 Fast Entry Table Conversion

The use of entry tables requires fast conversion between object address and entry
tables.

This conversion is required when executing:

e a message send to an object in another processor’s new space; and

e message result returned from another processor.

Every interprocessor message send would require that the receiver object and
its parameters go through this conversion process. The message sending mecha-
nism must convert the receiver of the Smalltalk message and its parameters into
entry table cells (if necessary) and any handles that reside on the receiving pro-
cessor be converted back into real addresses. Upon return, the result must also

be converted into an ET or local reference if it resides on the sending processor.

4.7.1 Lazy Conversion

There exists methods for reducing the creation rate cf Entry Table cells. For
example, Smalltalk may return results which are discarded immediately. If the
receiving process is informed that the return result is not required then the return
value need not be converted into an entry table. This strategy of lazy conversion

could be used to reduce unnecessary ET creation.

P'when referring to processes, lightweight means that the process shares the same address space
aa other procesaesa.



4 ENTRY TABLE GARBAGE COLLECTOR 57

. _ Entry Table Cell .
Entry Table Pointer ~a /Rcal Pointer

Entry Table to Real Pointer Is Direct Lookup

Figure 12: Entry Table To Real Pointer Conversion

4.7.2 Converting Between Entry Tables and Real Pointers

The forward conversion from ET to a real address is simple and straightforward.

The address is simply found by de-referencing the entry table.

This is the same cost as an object table lookup that is used in many Smalltalk-
80 systems. This process could be assisted by hardware (similar to Baker or

Lieberman-Hewitt) implementations on some Lisp machines.

4.7.3 Converting between RPs and ETs

The conversion between real addresses and handles requires that it be determined
whether or not an T exists and if so return it, otherwise create a new ET. The
simplest way of determining whether an ET exists is to increase an object’s size
and store the object’s entry table with the object. Unfortunately this increases
the object size of every object in the system. This growth in the size of an image
is unacceptable because the expected number of ET’s is small. The number of
ET cells is expected to be small due to the tenuring policy.

Another possible solution used in other Smalltalk systems such as LOOM [29]
are hash tables. Hash tables are feasible if the number of interprocessor references

is low.

A third solution and the one chosen expioits the extra unused new space to
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Figure 13: Shadow Space Used For Entry Table Conversion

shadow the active new space (see Figure 13). The ET slot for an object will be
stored in the unused memory space at the same offset from the base of that space
as the object is from the base of its space. The advantage is that this space is
currently unused. In effect we get the extra space for free. A bit in each new

space object is used to determine whether an Entry Table exists for this object.

4.7.4 Maintaining the Shadow Space

The additional work in this garbage collector is the maintenance of the entry
tables. The first housekeeping task that the scavenger must perform is to rebuild
the shadow space after a scavenge. This is necessary because the old shadow
space is overwritten by the copied objects as the scavenger runs. Fortunately,
the shadow space is easily recreated by scanning ithe ET after a scavenge and

writing each object’s ET value to thc correct shadow locations. This scan can be
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accomplished quickly and is dependent on the ET size for that processor.

4.8 Premature and Incorrect Tenuring

It is clear that by entering an object into the ET it will be tenured. This pre-
mature tenuring can cause the old space to fill too quickly and force the system
to global garbage collect more often than necessary. This is undesirable because
glcbal garbage collects are time consuming and require the participation of all
processors. The same problem is encountered when using Remembered Sets -

storing a new object into a tenured object guarantees the tenuring of the new ob-
ject, even if the old object becomes garbage. Similarly, creation of an Entry Table
cell woula guarantee tenuring if the Entry Table itself was not garbage collected.
A technique for reclaiming ET cells is needed to ha dle the rapid turnover of KT

cells expected because of the short lifetimes of newly created objects.

4.8.1 Reclaiming ET Cells

Entry Table cells must also be garbage collected. This is similar to the OT
recovery necessary in Object Table systems. An example of this was <escribed
in Ballards algorithm. We allow Entry Table cells to be reclaimed using two
different techniques. One technique made use of the simrle observation that
tenured objects do not need Entry Tables. A second technique uses additional
memory to keep interprocessor referencing information to reclaim entry table cells

more efficiently.

4.8.2 Entry Table Reclamation Without Extra Space

The Entry Table for an object is not required after the object to which it points
has been tenured. Tenuring of the objects will fill the ET cell with an old space
address. When every processor that references that particular ET cell has scav-

enged then the local .cavenger can reclaim that entry table. This is described in
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detaii below.

4.8.3 Object Tenuring and Removal Of Objects From The Entry Table

As the objects age in the new space some of them will be tenured into old space.
As this happens their ETs will become unnecessary since we allow direct old
space referencing. When the remote scavengers run they will update the ETs to
be the old pointer.

How do we know that an ET can be reclaimed? After an object has een
tenured, it is clear that if every cther processor has scavenged then the ET is not
needed any longer and can be reciaimed. This is due to the fact that the other
scavengers will have updated their pointers to point to old space and thus, have
no need for that handle since old space is directly addressable. Thus, after every
other processor has scavenged at least once the ET may be swept and cleared of
old space references. This can be considered a form of synchronization but with
very loose conditions. Every other processor must scavenge at least orce since
that elemer. in the ET had been tenured. This requirement can be satisfied by

designing a mechanism to request a scavenge from a remote processor.

4.8.4 The ‘Has_Scaveunged’ Flags

Kvery processor contains a it pattern Has Scavenged (HS) which is used for
indicating which processors have scavenged. Has_Scavenged, is set to 1 when
processor 1 has scavenged in the period of time since the local processor last
cieared the flags. These flags are maintained by each processor as it scavenges.
A remote scavenger will set a bit in each of the other processors Has_Scavenged
fields notifying that it has completed a scavenge and is not currently scavenging.

During remote scavenges, this bit is cleared to inform the local processors that
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a scavenge is in progress. '? The Has_Scavenged bit pattern is set to zero by
the owner processor and thus can be used to determine if a remote processor
has scavenged during some period of time. The setting and clearing of these bits

must be performed under MUTEX access.

4.8.5 Reclaiming ET Cells To Old objects

" he Has_Scavenged flags can be used to determine when all the other proces-
sors have scavenged. Every time a processor locally scavenges, it determines
which processors have scavenged since it previously checked. After using the
Has_Scavenged field, the field can be cleared. It is not known which proces-
sors contain references to the ET, and thus the processor must wait for ali
the other processors to scavenge before it can reclaim the ET. A local vari-
able Who Has Scavenged is maintained for each processor to be able to clear out
tenured Entry Tables cells. Figure 14 shows an example of this mechanism for

ET cell recovery.

4.8.86 FEntry Table Reclamation Using Extra Space

As we nave seen, a processor cannot reclaim ET cells without some extra in-
formation. If every ET contained information on external referencers as well as
reachability bits then a processor could reclaim ET cells containing newSpace
objects during local scavenges.

In order to accoinplish this, every entry table cell contains the following.

Real Pointer This field of an ET contains the real object pointed to by the
ET cell. This ic used and maintained by the loca! processor for use in

scavenging and for ET to real address conversion.

121t is urimportant that a remote scavenger may zet and clear the Haa Scavenged bit of all
the other processora many times before the local processor uses the bit field The flag 18 set 1f a
processor scavenged at least once and is pot currentiy scavenging.
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IF REFERENCED_BY (ET processor_number) AND
Ht _SCAVENGED (processor_number) AND
NOT_MARKED_BY (ET, processor_number)

THEN

CLEAR_REFERENCE_BY (ET, processor_number);
ENDIF

Figure 15: Clearing Reterenced. By Flags of Unreferenced ET Cells

Referenced_By (RB) The RB flags are stored in a bitfield of size N where N
is the number of processors in the system. RB{ET,(O), P) bit is set to 1
when processor P references ET,{O). Due to arbitrary object deaths, this

field only indicates which processors referenced ET,(0) at some time in the

past.

Marked By (MB) The MB flags is a bitfield of size N indicating that an KT
cell was marked by a processor. M B{ET,(O), P) is set. whenever processor
P encounters that ET,(O) during a scavenge. This ficld represenis the state
of reachability from each processor at the time of each processers last local

garbaae collect. This couid be considered a ‘Delayed Marking Bit’.

The scavenger on processor P uses the Has Scavenged flags to determine which
processors have completed scavenges and thus have marked all reachable KT}
cells.

When the local scavenger on processor P walks the ET, 1t can determine that
ETp(O) is reachable by the following ruie. If a processor X has scavenged, and

RB(ETp(0).X) is set to 1 then two cases are possible.

1. MB(ETp(0),X) is set. The object was reachable and is still reachable, so

ETp(Oj is not garbage.

2. MB(ETp(0), X) is not set. The object was reachable and is not now
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reachable, so processor P can clear RB(ETp{0), X). (The object is not

reachable from X)

It is clear that an ET inay be reclaimed when all the Referenced By flags are
clear, thus, when processor P clears the RB bit such that RB(ETp(0),s) = 0 for
1 <1t < N then £Tp(O) can ve reclaimed. The criteria for clearing RB bits is
presented in Figure 15.

An ET cell that has a Marked _By flag set and not a Referenced_By ilag is an
error (a processor cannot mark an object which it does not refcrence). Also note
that if the Marked_By flag of an ET celi is set but the Has_Scavenged flag is not
set, then this indicates that a remote processor is in the middle of a scavenge.
In this case the Marked_By fiag mnay not be cleared by the local scavenger. The
Marked By flag may be cleared enly sf the Has_Scavenged flag had been set by
the same processor and the processor is not currently scavenging. We cover both
cases with the Has_Scavenged flags because the flags are cleared during a remote
processors scavenging. Any scavenger which has updated all references to an
ET referencing old space will set the Mark_By flags because the ET is no longer
reachable from that processor. Any time that two processors exchange an ET,
the Marked.By must be set if the Has_Scavenged bit is set so that the ET lives

until the next local scavenge.

4.9 Marked By and Reached By Bit Maintenance Rules

The following section describes the invariants which must be maintained so that
the scavenger can reclaim ET cells correctly. A later section will use these invari-

ants in correctness arguments.

Invariant 1 An entry table unll exist for a new space object if it is referenced

remotely. (New Space objects cannot be referenced otherwise).
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Invariant 1 insures that all objects externally referenced will stay alive by

prevention.

Invariant 2 Referencea_By(F) of objeci O must be set sf the ET,(O) cell is di-
rectly reachable from processor P. If not reachable from a processor and Refer-

enced_By (P), then Scavenger(P) must clear the bit in the nert scavenge.

The definition of Referenced By is intended to insure that the Referenced By
bit is clezred in finite time after the ET,(O) object becomes garbage. Note that

the bit will be cleared by the next scavenge on processor P.

Invariant 3 Marked By(P) for object C must be set if Has Scavenged(F) is set

and O is reachable from P.

Invariant 3 insures that every scavenge by processor P will mark every object
reachable from its space. This allows the local processor to determine when an
otject has beceme unreachable and thus ciear the Referenced By{P) bit of O.

These three invariants result in the following rules for returning newly crcated

ET cells from message sends. This is the only way new ET cells can be created.

1. Returning a newly created ET object from a message send must set the RB

bit of the processor that is receiving the ET pointer (Invariant 2).

2. Returning a handle ET,(O) to processor P must set the M B(ET,(0), P)
bit tc true to maintain invariant 3. Thus, if the Has _Scavenged bit is se!
from the processor receiving the object then the Marked By bit must be set,

(Invariant 3).

4.10 Cross Processcor Object Access

The other case for ET creation occurs when storing and fetching objects from old

objects in other processor’s spaces. New object storing and fetching operations
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are by message send only and thus are covered by the rules presented in the above

section.

1. Every cross processor store of a new object must create a new ET cell to

satisfy Invariant 1. This case is handied as a side effect of the Remembered

Set membership test.

2. When a processor stores an ET cell into an object on anocther processor
it must maintain the reachability bits, thus, when transferring an ET cell
(by a store) the storing processor must set the Reached_By bit and the

Marked_By bit if the Has_Scavenged bit is set for that processor.

w

Every cross processor fetch which return another processor’s new object
must create an ET. This case requires a message send to the owner processor

to create the ET cell.

4 14 Concurrency During Scavenging

Access to a particular object in new space can be given as soon as the scavenger
finishes walking that object. As the scavenger walks memory, its position in new
space represents a ‘high water mark’ of allowable accessing. If the scavenger
copies the ET references first, then Read/Write access to the ET objects can
be given before the scavenger finishes. Access to the new space can be granted
on an incremental basis allowing access up to the scavenge high water mark.
Mutator execution on the scavenging processor however musi be delayed until
the scavenger finishes. Any ET cells created during a scavenge (due to a remote
request) must have its shadow entry created with the rest of the Entry Table

cells.
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4.12 Tightly Coupled Processors

Some applications in multiprocessor systems require that two or more processors
work closely together and share many objects. In this case, the costs of message
sending for new space access via Entry Tables could be too high. In such situ-
ations, it is possible to maintain only one Entry Table for the group processors,
requiring that all processors garbage coliect together as a unit. This type of
processor coupling can be performed dynamically allowing groups of processors
to be tied together as a logical unit with one allocated processor number for the
group. Processors external to the group must use the message passing protocol
for remote access while processors internal to the group can use direct object
access. This type cf system could allow differing configurations to be created

depending on the applications running in the system.

4.13 Correctness Arguments

This section contains the correctness arguments for ithe Entry Table garbage
collector. We will show that the invariants above are necessary and sufficient to
insure that ET cells are not prematurely garbage coliected. In showing that KT
cells are not prematurely garbage collected, it follows that the new space object

will not be reclaimed prematurely.
Claim 1 Objects referenced through Entry Tables are not reclatmed.

It is clear that locally refereinced objects are safe from garbage collection. E'T
cells provide a iocal reference protecting externally referenced objects. Thus, as

long as an ET cell exists for an object it cannot be reciaimed.
Claim 2 EntryTable, will only be reclasmed when not referenced externally.

By Invariant 1, ET, exists. It is straighiforward to note an ET is orly re-

claimed when its Referenced_ By bits are cleared. By Invariant 2, an E'T wili have
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the Referenced By bits set if it is at all referenced externally. It directly follows
that if the Referenced By bits are clear the ET cell is not referenced externally

and can be reclaimed.

4.14 Summary

in this chapter we described an algorithm which uses Entry Tables thus reduc-
ing many of the synchronization requirements of other algorithms. Somne of the
advantages in using Entry Tables include:

e processors can garbage collect independently of the other processors;

e synchronization costs are paid only when shared objects are used;

e accessing local objects requires no synchronization;

e external languages, such as C, can be interfaced with the garbage collector;
and

o tightly coupled processors may garbage collect together if a large number
of objects are shared.



5 ACTRA: THE IMPLEMENTATION 69

Chapter Five

5 Actra: The Implementation

This chapter provides a description of the implementation of our Entry Table
garbage collector described in the previous chapters. We have divided this chap-
ter into three major sections. The first section describes Harmony and the test
bed Lardware used in our implementation. Secondly, we present an overview of
the implementation of the garbage collector, extensions required to the general
uniprocessor generation scavenger and the task structure used in our algorithm.
The final section covers the vehicle for testing this garbage collector, our multi-

processor Smailtalk system, Actra.

5.1 The Actra-Harmony System

The following sections describe the Actra hardware and Harmony realtime kernel.

5.1.1 Hardware

Actra is implemented on a VME bus multiprocessor using commercially avail-
able MC680XX microprocessors and peripherals. The current hardware consists
of 12.5 Mhz MC68020 processor cards each with 1 megabyte of memory [44].

Additional memory is provided over VME bus on memory-orly peripheral cards.
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The Harmony kernel is ROM based and requires 16K per processor. The host
interface is implemented on an IBM AT with a VME bus interface card. The host
is used to provide mouse and keyboard 10 as well as a file system and graphics

screen.

5.2 Harmony

Harmony is a multitasking, muitiprocessor operating kernel for real-time control
using lightweight tasks. Harmony provides a set of interprocess communication
primitives (_.Send, Receive, Reply), as well a process creation (_Create),
and deletion (_Suicide, Destroy) primitives. The ruessage passing primitives
are blocking meaning that a message .Send between processes blocks the sending
process untii the receiving process executes a . Reply. We present a brief descrip-
tion of each of the major Harmony primitives for reference when the reader is

studying Appendix A. For an overview of Harmony see [50].

5.2.1 Task Creation

Task creation in Harraony is performed by the _Create function. .Create rec-
quires that a globai task index be passed as a parameter. This index 1s used
to search the task _tempiates of each processor and an instance of the process is

created on the processor on which the task template is defined.

5.2.2 Sending and Receiving Messages

Message sending in Harmony is performed by the _Send functicn. _Send takes a
message and process id and transfers the message buffer to the receiving processor.
The message send blocks until the receiving processor performs a _Reply. The
receiving processor must have executed a Receive to receive the message. The
important fact about Harmony messaging is that message sending and receiving

are synchronous.
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5.3 The Entry Table Garbage Collector

The Entry Table Garbage coellector can be subdivided into the following subsec-

tions:

The Ertry Table scavenger.

The Entry Table Manager (ET creation/deletion).

Interprocessor message sending between tasks.

Multiprocessor interpreter.

5.4 The Entry Table Scavenger

The entry table scavenger can be divided into two major steps, the scanning of
the entry table and the generation scavenger aigorithm as in {5]. First, the scan-
ning of the Entry fable is performed during which any Entry Table cells which
are unreferenced can be reclaimed. The second step is to execute the standard
uniprocessor algorithm which has been extended to perform the additional work
required when interprocessor references are reached. The ET Scavenger is de-
scribed as two separate steps because the ET scan can be performed without
scavenging. This capability and its uses are described later in this section. We

first describe the actual scavenger.

The scavenger begins with the root set which consists of the Rernembered-
Set and the FixedObjects (Registry) !3. Each object in newSpace reachable
from this root set is copied to the flip space. The objects in the flip space are then
scanned in the scavenge operation. The function copy and update object will
copy the object to the flip space if necessary and update the pointer to the new
position. Objects which qualify for tenure are copied to oldSpace instead of flip

space and thus must be scanned as well. This is interleaved with every object

13The Registry is a set of well known objects like the Sinalltalk system dictionary
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TO scavenge DO
FOREACH et IN EntryTable DO
isReferenced = ET_REFERENCES(et)
hasScavenged HAS_SCAVENGED_FLAGS
no_referencera = NOT MARKED(et) AND
igReferenced AND

[

hasScavenged
IF no_raferencers THEN
freeET(et);
ELSE
copy_and_update _object (et->real_pointer)
ENDIF

END FGREACH
FOREACH object IN RootSet DO
copy_and_update_object (object)
END FOREACH
FOREACH object IN flip_space DO
FOREACH field IN object DO
copy_and_update_cbject (field)
END FOREACH
FOREACH tenured IN old_space DO
FOREACH field IN tenured DO
copy_and_update_object (field)
END FOREACH
END FOREACH
END FOREACH
FOREACH et IN EntryTable DO
create_shadow_entry (et)
END FOREACH

Figure 16: The Entry Table Scavenger

72
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processed by the scavenger. The tenuring policy is currently designed to minimize
scavenge time by reducing the amount of memory copied per flip (this tenures
garbage faster than we would like but makes flips really fast). It is our belief
that a better tenuring policy would discriminate between locally-only referenced
objects and remotely referenced objects.

The main difference from the uniprocessor scavenger and the new entry table
scavenger is that the Entry Table must be scanned. The object referenced by
an ET cell is not copied unless it is found that the ET cell is still referenced
externally. Thus, the object referenced will become garbage unless referenced
locally via some other path in the root set. The deter1. ination of reachability is
dene using the criteria described in Chapter 4.

An interesting feature of the Entry Table scanning step is that it can be
performed independently of the scavenger (ie the scavenge need not be called
after such a scan). The step executes as if the scavenge were in progress except
that the copying of the referenced objects is not performed. This feature allows
garbage collection of the Entry Table Memory without having to scavenge.
This is a powerful feature of our collector because this it can be called every time
a remote processor scavenges which will result in more efficient reclamation of
ET ceils.

The final step must recreate the shadow space because the previous shadow
space was overwritten by the destination flip space. The pseudocode for the
Entry Table Scavenger is show in Figure 16. See Aprendix A for the C source

code for the Entry Table scavenger.

5.5 Entry Table Manager: ET Creation and Deletion

The Entry Table management system provides ET creation and deletion primi-
tives for use by the interprocess communication system.

The major function provided for ET creation is ET for (anObject) (Figure
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To ET_for (anObject) NI

Y- IS_IN_DOLD_SPACE (anObject) THEN
return anObject;
ENDIF
IF HAS_ET (anGbject) THEN
return ET_FROM_SHADOW (anObject);
ENDIF
et = allocateET ();
ET_REAL_PGINTER (et) = anObject;
ET_MARKERS {et) = myProcessorld ();
ET_REFERENCES (et) = myProcessorld ():
return et:

Figure 17: Creating an Entry Table Cell

17}. This will create an Entry Table cell if necessary or return an existing cell.
The markers and references flags are set to be the lo-al processor’s Id. This will
protect the ET cell from garbage collection until after the next local flip. Any
storing of this ET cell into remote memoryv must set the references bit for that
object.

Entry Table cells are managed as a linked free list. This is acceptable because
all Entry Table cells are the same size. Currently, a number of Entry Tables are
statically allocated. This does not preclude the us? of dynamic allocation for
oT" cells, the sole requirement being that ET cells dvnamically aliocated must
be located in a non-mobile space. The technique we use is to statically allocate
a cache of ET cells, any overflow can be handled with dynamic allocation of any
extra cells required at runtime. In this case the ET cells must be stored in the
RememberedSet for the local processor. These extra entry tabie cells can te

compacted (moved to the cache) during a global garbage callect.
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5.5.1 Scanning the Entry Tables

The current implementation scans Entry Tables linearly. For sysiems which pre-
allocate large numbers of entry tables cells, we have devised a faster scanning
mechartisin. The unallocated entry table cells are used to describe which Entry
Tabtles are in use. This allows us to scan the ET without having to scan alil the
unused cells. Unused cells are marked as follows. The first unused celi in every
unused group of celis contains a link to the next unused Entry Table cell. The
scavenger scanning the table can skip over unused blocks. When recovering un-
used cells, the scavenger maintains these links. This is currently not implemented

but is expected to be added to the system later in its development.

5.5.2 Choosging Unique or Duplicate Cells

A system can decide to use unique cells or multiple cells allowed per object.
Unique Entry Tablie cells, (ie each remote reference will use the same entry table
to access that object) aliow optimization of some operations locaily. For example,
identity (===) can be determined without a remote ressage send. Unfortunately,
unique cells can take longer to create because the system must first determine
whether an entrv table cell already exists for the object.

Conversely, allowing many handles per external object reference simplifies the
creation of these ET entries, as previously assigned handles need not be found.
The disadvantage with this approach is that a large number of entry tables can
be created for a particular object. This type of entry table is closely related
with reference counts {23] [40; . The number of ETs pointing to an object is
it’s external reference couat and allows a simplified mechanism for reclamation
of entry tables cells. When the externzal reference disappears it is clear th-.t the
handle can be reclaimed.

A third alternative is to use semi-unique entry table cells. This system wouid
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use a unique entry table for each pair of procer-urs. The advantage of this system
is that it can be determined when an ex’ .nal reference is not required and thus
reclaim entry table cells when a pr.. zgsor no ionger references the ET.

Multiple Entry Table cells » _r object (i* cluding semi-unique ET cells) can
be very useful in a distributed «nvironment. A processor which gives out a non-
unique Entry Table cell for each local abject can use this information to determine
the origin of the ET cell (eg. the processor for which the handle was originally
created).

Our entry table system uses unique tables and bit flags to determine when
an entry table cell is garbage. The unique tables allow us to optimize some
operations locally and the bil encoding is used to determine reachability. The
use of the unused scavenge memory allows an efficient implementation of the

location of existing ET cells.

5.6 The Multiprocessor Interpreter

The multiprocessor interpreter consists of only scme minor changes from the

uniprocessor interpreter. The major areas of change include:
e object references (at:) will create an ET cell if required;
e ET cell methods are forwarded via the local master Acior; and

¢ some primitives will fail and are impiemented in Smalltalk to allow param-

oters to cross machine boundaries.

Recall that when storing a new object into an old object, the old object must
be placed in the Remembered Set. The additiona! requirement when performing
a remote store is that the storing processor may have to conver! the stored object
into an ET before storing it. Similaily, remote fetches, (fetches from remote o!d
space objects) may reguire the loca! processor to ask the remote processor to

create an ET cell if the fetch retrieves a new space objert.



5 ACTRA: THE IMPLEMENTATION k|

Two such functions support these requirements Cross Boundary Store and
Cross _Boundary Fetch. Cross_ Boundary Store must be called when storing a
new space object into a remote old space object. This is the same criteria as
remember (when adding to the Remembered Set) and thus is performed as a
side effect along with the Remembered Set code. Cross Boundary Fetch must be
called on fetches from another processor’s old space and rmay result in the remote
processor creaiing an Entry Table. In this case, the newiy created Entrv Table
cell is returned with the correct Referenced By bits set in the ET. These bits

are set according to the local siate of the creation processor Has Scavenged flags.

5.6.1 Interprocessor Message Sending

Interprocessor messaging is encapsulated in class Actor which is used to manage
a processor’s memory access and message forwarding. There is one Actor for each
processor performing any remote ET access or remote message requests. When a
r~inote message send is required, the iocai Actor sends a perform request to the
remote Actor. The receiving Actor queues the message on its processoi. When

the work is done, the Actor replies to the requester.

5.6.2 Tacsk Siructure

Fach processor runs the following tasks -— a global garbage colicctor, a Read-
erWriter, and a Smalltalk interpreter. The global garbage collector is a parallei
mark and sweep in which all processors must synchronize. The global garbage col-
lector runs at the highest priority and thus cannot be disturbed during execution.
This type of collector was described ir {23]. Additionally, every processor runs
Reader and Writer (RW) tasks for high speed remote processor access. These
processes are ‘scavenger aware’ and allow remote access to objects even when &
scavenge is in progress. The RW tasks run at a higher priority than the local

scavenger while the scavenger and the interpreter each run at the same prior-
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ity. Fach processor may also run many Smalltalk Actors as created by the user.
These tasks must run at the same or Jower priority than the Smalltalk interpreter
if they require use of Smalltalk objects. The reason for this requirement is that

we use process priorities to provide MUTEX synchronization between the tasks.

5.7 Reader and Writer Tasks

Low level, interprocessor access to the new space is performed via a reader and
a writer task. These tasks are mainly used by primitives which require synchro-
nized access to two or more objects in separate new spaces. The reader task is
responsible for accessing new space objects for remote clients. Correspondingly.
the writer task is used to write into new space obiects. Additionally, these tasks
are used to perform housekeeping requaests such as remote scavenge and GGC
requestis,

A prcblem arises when a processor is not creating garbage and thus not
scavenging. This could cause the ET of other processors not to be cleared of
old references as well as new objects to be tencred even when not referenced
remotely. A solution to this is to provide a mechanismn to request a scavenge
(‘request’ means that the request is refusable). This request is serviced by the
interprocessor Reader/Writer tasks. These requests for scavenges are refusable
but if a scavenge request is refused too often then it is possible that a larger
number of new objects wiil be tenured than necessary. A processor receiving a
scavenge request can decide to mark reachable ET cells withcut performing the
copy phase of the scavenge. In this case, ithe remote processor can be informed
that the remotely refererced ET cells have been marked and the unmarked cells

can be reclaimed.
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5.8 Concurrency During Scavenges

Additional concurrency is possible during scavenges. Access to the new space
may be given to processes on an incremental basis. The reader and write tasks
may access any object in new space (in the destination space side of the flip)
which has been scanned. These processors need only check the scavengers ‘high
water mark’ to determine whether it may access the new space object Accesses
which must be denied are processed after the scavenge is completed. At this
point, the scavenger must send a message to the reader writer task stating that

it may complete any queued read or write requests.

5.9 Tape and Glue: ‘Putting It All Together’

The final section describes the Smalltaik class support for Actra. Actra s cur-
rently implemented as a customized version of Sinalltalk VME/V, a VME based
version of Smalltalk/V % [28]. The impiementation of this prototype system,
required immplementation of many supporting pieces. The full description of these
pieces is beyond the scope of this thesis. We present a brief description of each

and describe how they fit together in the prototype system.

5.9.1 Actors

Actors are currently implemented as a Smnalltalk class with Harmony primitives
used to talk between Actors. This implementation was chosen for simplicity as
it allowed us to write the Actor code in Smalltalk. Future implementation plans
include moving parts of the Actor implementation into the virtual machine to
allow more rapid interprocessor message forwarding.

Actor messages are converted into Harmony messages and forwarded to the
remote processor. 1he Smalltalk state of the local Actor is stored into itself for use

when locally restarting the Actor. This is very similar to the implementation used

~~1Téma!!t;\.lk/\/ is a trademark of Digitalk Inc.
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irn {11). Any new space parameters are converted into Entry Table objects. The
receiver Actor converts any local Entry Table parameters into real pointers and
then sends the message. Actors execule a receive-perform-reply loop repeatedly

when waiting for a request.

5.9.2 Implementing Entry Table Cells as Forwarders

Entry Table cells are implemented as Smalltalk objects similar to Proxy Objects
[43]. 8. The major difference in our implementation is doesNotUnderstand:
is not used to fcrward messages, instead we have implemented each of the object
primitives specially (ie. Either as redirections of message sends or local optimiza-
tions). This is in effect a ‘by hand’ implementation of the forwarding mechanism
described in [19]. The advantage of this mechanism is “2at debugging such a
system is simplified. It is intended that this mechanism will be implemented in

the virtual machine in future versions of Acira.

'®An interesting note about ithis approach is that it allows visibulity of garbage collection struc-
tures from the language.
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Chapter Six

6 Conclusions
6.1 Overview

We have presented a multiprocessor garbage ccllection algorithm based cn Entry

Tables. The Entry Table algorithm has the following advantages;

e Processors can garbage collect independently allowing time critical tasks on
other processors to proceed while ~ther parts of the system garbage collect;

¢ Local mutator performance is not reduced by extra synchronization require-
ments;

e Processors can be tightly coupled allowing direct interprocessor access on
a logical processor level;

¢ The tenuring policy allows faster direct shared memcry object access; and

e The garbage collector can be interfaced to external lariguages.

We believe that the above features can be directly attributed to the use of a
hybrid system using a combination of direct pointers and tables. The use of previ-
ously unused generation scavenging memory allowed an efficient implementation
of address translation across memory boundaries. Reducing synchronization re-
quirements allows more efficient garbage collection/mutator interaction because

the two processes do not step on each other’s toes. Multiple processors can be
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treated as a single processor demain with a single Entry Table for all of the new
spaces in the processors space. This allows us to configure the garbage collection

strategy best suited for coupling of processors.

6.2 New Directions, Future Research

Many questions remain to be answered !*. Some of these questions have answers
suggested by the work performed during the course of this thesis. However, the

answers are incomplete and thus remain as future work.

e Object migration in multiprocessor OOPS is not a well understood feature.
e Is real time possible in multiprocessor garbage collection?
e Can fault tolerance be built into the garbage collector?

e Is memory usage in a multiprocessor the same as in uniprocessor? Some
points to consider are:

~ Do interprocessor referenced objects have the same lifetimes as in
uniprocessor systems?

~ Are uniprocessor tenuring policies sufficient for multiprocessor sys-
tems?

— Can we use interprocessor reachability to determine suitability for
tenuring?

- Do we need better multiprocessor memory architectures?

Much is known about memory usage patterns in uniprocessor Smalitalk sys-

7 It remains an open question whether or not a multiprocessor system

tems
will show these same types of usage patterns. Different memory usage could re-
quire new, more adaptive tenuring policies, less aggressive scavenging of shared
spaces {due to the possibility that shared objects may live longer) and better
memory architectures for sharing objects more efficiently. Additional complexity
is introduced when processor coupling is dynamically changed.

%This is a trasm.

"In general there are many typical memory usage patterns depending on the application.
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6.2.1 Hardware Solutions

it is the dream of many programmers and system designers that their problems
will be solved by newer, faster, bigger and better hardware. We are glad to be a
member of that group and as such preseni a small list that represents some of the
hardware features we think will assist in not only better multiprocessor garbage

collection algorithms but better muitiprocessor object-oriented systems.

¢ MM?] support for multiprocessors.
e Programiner controlled tag bits.

e Object level processor such as the REKURSIV [48].

The use of an MMU for garbage collection has been shown to be feasible in the
Firefiy garbage collector. The possitle applications of an MMU to our algorithm
are in the arecas of address translation and memoty region cwnership enforcement.
An MMU could be used to perferm the pointer indirection required to reference
an Entry Table cell. The access permission bits associated with object pointers
can be used to restrict memory access during synchronized activity as well as to
memory regions not owned by the processor.

Microprocessor tag bits are often cited as a desirable feature for efficient im-
plementations of object-oriented languages. The use of such tag bits would allow
type informaticn to be stored with every pointer in the system. The garbage
collector could use these tag bits to provide assistance in detecting cross pro-
cessor stores, skipping well known objects (nil) *® during garbage collections,
implementing synchronization, and determining processor ownership of pointers.

Processor architecture features, suzh as TAG bits, were investigated by the
SOAR project at Berkeley {21]. While successful, the SOAR project did not.
result in a processor running Smalltalk substantially faster than high performance

implementations on stock hardware.

1830 percent of all Array contents are nil in the Actra image.
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The above, suggest the need for object level processors. An object level proces-
sor works with objects, not with bits and bytes. An example of such a processor
is the REKURSIV. In this processor memory pointers do not exist, objects are
referenced by typed ids, and the concept f address is unknown (eg. referenc-
ing (id+1) is impossible). It is unknown if object level processors will provide

performance significantly greater than commercial processors.

6.3 The Last Word

The design and implementation of a multiprocessor algorithm is both difficult,
frustrating, and time consuming while at the same time being very rewarding.
Thankfully, there is always an end, even when there is more to be done, so we

stop here.
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Local_Request MSC_SIZE = sizeof (Local_Request),
seader = _Receive (RLocal_Request, 0),

DMESSAGE ("\nRequest from Ix*, seader),

IF Local _Request MBG_TYPE I= RENMOTE_EIECUTION_REQUEST THEX
FAIL,
ENDIF

V_objectitPut (SELF ,ACTOR_SELECTOR,

Remote_To_Local (Local _Request PARANETERS [0])).
V_objectAtPut (SELF ,ACTOR_I2TUMENTS,

Remote_To_Local (Local_Request PARIMETERS (1])).
V_objectAtPut (SELF ,ACTOR_SENDER, T0_Smalllategsr (sender))},

SUCCEED (SELF),
ENDBODY

/% Actor mand
* Send a message from self to the Actor on the remote processor
» Succeed the primitive with the result returaed in the reply
=/
DEFINE_USER_PRIMITIVE(actorPrimitiveSend}
BODY
SmalltaikRequest Local_Request,
SmalltalkReply iocal Reply,
int §,
uint_32 result, 14,

DMESSAGE ("In actorPrimitiveSend®, 0),

Local Request MSG_SIZE = sizeof {Local_Request),
Local_Request MSG_TYPE = RENMOTE_EIECUTION_REQUEST,

Local_Request PARAMETERS (0] = LOCAL_TO_REMOTE (PARAN (1)},
IF 10BJECY_IS_POINTERS(PARAM (2)) THEN 7aIL (1), ENDIF
Local_Request PARAMETERS [1] = LOCAL_TO_RENOTE_ARRAY(PARAM (2)),

DMESSAGE ("\nSendirg selector ¥x", Local_Request PARAMETERS [0]),
DNESSAGE (®"\nand arguments Xx®, Local_Request PARIMETERS [1]),

id = V_objectit (SELF,ACTOR_PROCESSOR_ID),
AS_long (id),

DMESSAGE ("\nSending to process Ix", id),

/* Convert processor id to the process id for the exscution
¢ Actor serving on that process
./

i@ = processor_ids [id],
DMESSAGE ("Task 1d Xx*, 1d),

resalt = _Send (&Local_ Request,&local Reply, id),

DMESSAGE ("Reply received resalt Ix*, result),
IF result THEX
SUCCEED (Remote_To_Local (Local_Reply PARAMETER5(0])),
ELSE
FAIL;
EXDIF
ENDBODY



A ENTRY TABLE SCURCE CODE

LECORD
wint_16 MBGC_SIZE.
int_18 MBG_TYPE.
wint_332 PARAMETERS [M# X IMUM_ACTRA_PARAMETERS],

ENDRECORD tmalltalkRequest,

typedef struct SmalltalkReplyBtract

RECORD
uint_18 NSC_SIZE,
uint _32 RESULT,
vint_32 PARAMETERS [MATINUM_ACTRA_PARAMETERS],

ENCRECORD SmalltalkRaply,

void VtaskRequest (request.id, count, pl, p2, p3)
uint_32 request,
aint_32 i4,
uint_32 count,
aint_32 p1,p2,p3.
BCONY
/+ Send & messcge for a specific functioa from the Viask
* Thic allows you to start & task o3 & processor
* initielize it, do some of the initisl:izaticn and customize
¢ the V task
»/
SmalltalkRequest Local_Reguest,
SmalltalkReply Local_ Reply,
Local_Request NSG_SIZE = sixeof (Local_ Request),
Locai_Reguest MSG_TYPE = reqaest,
IF count-- THEN Local Request PARAMETERS (01 = p:, ENDIF
IF count-- THEN Local_Reguest PARAMETERS [!] = p2, ENDIF
IF count-- THEN Local_Request PARAMEYERS [2] = p3, ENDIF
_Send (&Locsl_Requeet &Local Reply, 14},
ENDBODY

#define (X o]
#define BAD_REQULSY 1

/+ Process V task Reguasts

* This is the Readsar/Writer task

* 1 Copy of this task runs on esach Smalltalk processor

¢ This allows & process to iritialize t” -~ nawly created Vtaak

* The rootines called by this task are processor spacific

* For convenisnce, soms extra functionality was dsposited on this task
./

void Vtask ()
BODY
SmalltalxRequest Local Requaest,
SmalltalkReply Local_Reply,
int 1,
uint_32 sender, result, command,

WHILE 1 DO
Local Request NSG_SIZE = sixeof (Local_Requast),
sarder = _Receive (RLocal_Request.O),
comoand = Local_Request MSG_TYPE,
result = 0K, /+ Defuult is ao error +/
CASE command OF
CHOICE initialiseMainV
iaitialize_processor_ids(),
initialize_020_‘~tertace (),
initislize_graphice (),
laitialize_filaio(),
initislize_memory (),
break,

95
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A Entry Table Source Code

A.1 Entry Table Scavenger

I

* File LT REF

* Entry Tabls External references

¢ Contents Mu’ti-Processor Entry Table External references

¢ Version 1

* Revision O

* Created 830301

* Comments

* This file contains the the scavenger externals of ths eatry

* table GC The corresponding globals are ir ET DEF The 1nclude sequence
*» ie GC REF ET REF, ET DEF, GC DEF.

* Note This file and the ET * files associated with it acsume that
* somes IPC primitives Tkese need not be Harmony primitives

*/

#define EFTRY_TABLE_SIZE 1024

I
¢ MAGIC Entry Table Class ;lash This number is from the ACTHA image
*/
f#define H_EY 82
/e
* Ap Entry Yable Cell
*/
typedef struct Entry_Table_Cell_Structure
{
O0BJECT_HEADER /+ Generate the odject fields */
Object sieal_Pointer, /+ The actual object pointer «/
ubit32 Beferences, /* Which processors references me */
ubit32 Markers; /* Have I Been Narked ou Last LGC «/

} Entry_Table_Cell, +ET_Pointer,

T4
* Entry Table Beferencing Macros
*f

#define ET_REAL_POINTER(anET) \
(((Entry_Table_Cell=*)(ET_PTR(anET)))->Real_Pointer)

#define ET_REFERENCES(anET) (((Entry_Yable_Cell=*)(ET_PTR{anET)))->Raferancses)

#define ET_MARKERS(anET) (((Entry_Table_Cells)(ET_PTR(anET))})->Markers)

/*
* Determine wiether the handle is refsrenced by the pro.essorID
of

#define ET_REFERENCED _BY(anET,processorID) \
(ET_REFERENCES (ankT)} & (! << processorlD))

#define ET_NARKED BY(anET, processoriD) \
(ET_MARKERS (anET) & (1 << processorID))

#ifdef RLNGE_IMPLENENTATION

/* This implementatior uses a specific raunge of addresses for ET cells and
* masks off the axtra bits to reach the ET Qther altarnat:ives are to cse
* & bit in the ET iteelf This requires a memory reference when testang
4
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/+ ADDRESS MASK =/
#define EY_NASK (OxOFFFFFFF)
/+ MAX BRITS IN ADDRESS s/
#define PID_SHIFT (28)
#define IE_ET{anObject) \
(((long) (anObject)) > 0) A2 (((ubit32) (anObject)) > ET_MASK)

#$define ET_PTR(anET) (((long)wnET) & ET_NASK)
#define ET_PID_MAP(arET) ((((long)anET) & "ET_MASK) >> PID_SHIFT)

felse

/* This versior uses a field 1m the EI :hat is guaranteed to be
* set only for ET cells.
*/

#define IS_ET(anObject) CLASS_HASH_¥FOR(anDbject) == B_ET

tdefine ET_PIR(anET) anEl
$define ET_PID_MAP(anET) OBJECT_CBJECT_HASE(anObject)

#endaf

#define HAS_SCAVENGED(pID) (HAS_SCAVENGED_FLAGS & (1 << pID))
extern Entry_Table_Cell Entry Table [ENTRY_TABLE_SIZE],

#define SEADOW_PUINTER(et) SHADOVW ET(etd

#define ET_FROM_SHADO¥(o) {(»(Objects+)SHADOW_POINTER(s))
#define HAS_ET{o) (IS_IN_NEWSPACE(c) && OBJECT_1S_REMEMBERED (o))
extern Object *ET_for(), /+ name change to LOCAL_TC_REMOTE </

extern Objact sLOCAL_TO_REMOTE(),
exterz Object ¢REMOTE_TD_LOCAL(),

/*

* File ET DEF

* Entry Table Global Variables

* Contents Multi-Processor Eatry Table Giobale

* Version. 1

* Revision. 0

* Created: 380301

* Modified-

* Copmentm

* Note that the global variables ares global to sach procassors
= scavenger This does not include variables which are shared by all
*

the processors Each processor maintains Lhis own copies of these
variables

Y

*/

/+ Hes_Scavenged flags
* The address of this flag is passed to all the other processors when
* the nev processcr is initialized and stored in REMOTE_HAS_SCAVENGED_FLAGS
=/

ubit32 HAS_SCAVENGED_FLAGS,
ubit32 «REMOTE_HAS_SCAVENGED FLAGS [33],

/* Exch processor has an entry table */
Entry_Table_Cell Entry_Table [ENYRY_YABLE_SIZE],

/=
« File ET C
* Contentas Nulti-Prccassor Entry Table Garbags Collector
* Version
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Revision O
Created 880301
Modified-
Comments

ET garbage collector. These additional functions are called from the
wniprocessor scavenger as well as the atandard fonctions

s 3 & & & & ® @

~

[

s Bcavenging the ET is the same as all scavenges

* Bcan the ET and COPY_AKD_FORWARD sach of the refersaced objects
+ IF any of the Handles erc zot referenced then give them back

=/

scavenge ertry_table (destinationNawSpace)
Mamoryirray *dsstinationKewSpace,
BODY

register int 1,

Estry_Table_Cell set,

cbit32 ref_and_secavenge, no _raferencers, markers,

FOR & = 0,4 < ENTRY_TABLE_SIZE, i<+ DO
st = BEntry_Table [il),
IF ET_REAL_POINTER (et) != R_nil THEN
COPY_AND_FORWARD (ET_REAL_POINTER(et),
EY_REIL_POINTER (ot),
destinationNewSpacs),
/+ get the processors who have marked this cell =/
markers = ET_MAREERS (eot),

/+ 1F REFERENCED_BY(et ,PID) && HAS_SCAVENGED (P.D) =/

This file coatains the addivionsl acavenging functions needed for the

ref_and_scavenge = ET_REFERENCES(et) & HAS_SCAVENGED_FLAGS_COPY,

/+ IF not marked and his referencers have scavenged, collect it =/

no_referencers = 'markers & ref_and_scavsnge,
IF no_refsrencers THEN freeET(et), ENDIF
ENDIF
ENDFOR
ENDBODY

/* Return the SHADOY ADDRESS whers the st for the new object
* can be found
./
ubit32 sehadow_addrass_for_object (anBbject)
char sanObject,
BODY
ubit32 sshadowkddress,

shadoviddresa = (ubit32¢) (anObject - (chars) (&InactiveNawSpace)).
return shadoviddress,
ENDBODY

/* Set the shadow address of the object to be an ET »/
set_shadow_for_object{st, object)
Entry_Table_Call set,
Object sobject,
BODY
wbit33 ep,

p = shadow_address_for_object (object),
op = (udit32) et
ENDBODY

/* ¥alk the antry table and fix the SHADOW POINTERS stored in the ET +/
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fix_shadov _pointers ()
BODY
register int i;
Eatry_Table_Cell =et;

FOR 1 = 0,1 < ENFTRY_TABLE_SIZE, 1++ DO
et = kEatry_Table [i],
IF EY_REAL _POINTER (et) '= R_nil THEN
set_skadow_for_object (et, ET_REAL _PCINTER (et)),
EF¥DIF
ERDFOR
ENDBODY

* Special Cross Processor store of a NOF-ET into an 01d Object

s If the store is out of your memory space ard you are storing a new objsct

*+ then you muet store an ET cell instead

Cross_Boundary Store (destinationObject,sonrcelbject,index)
Objert =deatinatiocalbject,

Object »sounrcelbject,

Smalllnteger index,

BODY

IF {IS_IN_MEMORY(destinationObject) &k IS_IN_NEW_SPACE(sourcelbject) THEK

V_objectitPut( desvinationObject ET_for (sourceObject), index),

ELSE
V. objectitPut{destinationObject sonrcelbject,index),
ENDIF
ENDBODY

/'
* Cross_Processor_Fetch
* Attempt a fetch from a ramots cld object and if it is a new apace
* object from ancther precessor then invcke & remote message send
=/
Object *Cross_Boundary Fetch (sourcelbject,index)
Object *sourcelbject,
Smalllnteger index,
BODY
Object sresult,
resuit = (Objects) V_objectit(acnrcelbject, index),
IF IS_Smalllnteger (result) THEK returz result, ENDIF

IF 'IS_IN_MEMORY(result) && 'IS_ET(result) THEK
result = V_Remotedt(sourcelbject,index, myProcessorlid ()),
ENDIF
return result,
ENDBODY
static Entry_Table_Cell sET_Free,
/* Initialize the free list of ET cells in the processor
¢ this is c2"led at ET creation time
s/
1nitializeET()
BODY
int 4,
Eatry _Tabla_Cell =at,

priat? ("\nlnitializing the EI for *),
info ().

/* set all the et celle to link with the next free cell »/
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FOR 1 = 0,4 < EATRY_TABLE BIZE, 1++ DO
ot = &kEntry_Table [i],
EY_REAL _POINTER (et) = R_ail,
ot->Markers = 1 ¢+ 1,

ENDroR

/% The last ET has -1 in the marked fiasld »/

et = REntry_Table [EFTRY_TABLN_SIZE-1],

et->Markers = -1,

/v The first fr«e is set to

ET_Free = &Entry_Table [0],

ENDBODY

Entry_Table_Cell sallocateET()
BODY
int nextFrse,
Eztry_Tabla Cell set,

nextFrew = ET_Free->Markers,

IF nextFree > ENTRY_TABLE SIZE THEN
fatal (“Cut of entry cells®),

ENDIF

ot = ET_Fres,

ET_Fres = &Entry_Table [nextFree],

/* Make it look like an cbject ¢/
et->sizelnBytes = siseof{Entry_Table_Cell),
et->flags = OBJECT_IS_POINTERS_FLAG,
st->classHush = H_ET,
et->numberUfNumedInstancaVariables = (ubitié) 3,
et->gcField = OxABCD,

et->objectHash = myProceasorld(),

return et,
ENDBODY
froeET(et)
Entry_Table_Call set,
BODY

int curreatFreeET,

currentFreeET = ET_Free - &Entry_Table [0],
et->Markers = currentFreeET,
EY_Free = ot,

ENDBODY

/+ Convert any object in new spece to ET cells
s/

Object *LOCAL_TO_RENOTE_ARAY (anhrray)
Object +sanhrray,
BODY

Object »*sinstancs_pointer,

long 1,

¥ALY_OBJECY (instance_pointer, anirray, i)
IF IS_IN_NEW_SPACE (*instance_pointer) THEN
*instance_pointer = LOCAL_TO_REMOTE (+instaace_pointer),
ENDIF
E¥D_WALK_OBJECT
return LOCAL_TO_REMOTE (snArray).
ENDBODY

Objact ¢REMOTE_YO_LOCAL _ARRAY (anirray)

Object vanirray,
BODY
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Object *eiaptance_pointer,
long 1;

¥ALK OBJECT (isstamce_pcicter, ankrray, 1)
IF IS_IN_FEV_SPACE (-'ips.ance_pointer) THEN
*instanco_pointer * AFMOTE_TO_LOCAL (e*instance_po.anter),
EEDIF
END_WALK_OBJECT
revurp REMUTE_TC_LOCAL (anirray),
ERDBODY

/+ Return a new ET representing tis Object
* See if it hae one already If s, then return the
* existing ET stored in the shados location
*f
Object *LOCAL_TOU_RENOTE (anObject)
Cbject sanObject,
BODY
Entry_Tabie_Cell sat,

IF IS_IN_OLD_SPACE (anlbject) THEN
rettrn anlbject;

ERDIF

IF GAS_ET (enlbject) THEN
return ET_FROM_SHADOY (anObjsct),

ELSE
ot = allocsteEt ();
ET_REAL_POINTER (et) = anObject,
ET_NARKERS (et) = myProcsssorld (),
ET_REFERENCES (et) = myProcessorld ().

ENDIF

return (Objects) et,

ENDEODY

Dbjact *REMOTE_TO_LOCAL {anObject)
Object =an0Object,
BIDY
Ectry_Table_Cell sat,
IF IS_NT_ET (anObject) THEN
return ET_REAL_POINTER (anObject),
ELSE
return anlbject,
ERDIF
ENDBODY

A.2 Reader/Writer Task

/*
* dctra Messaging Interface
*

* Initializatior mequence (Non-Image Loading Proceussors)

1) Inatialize Mesory
2) Initialixze Registry
3) Patcn R_startUp -> initislixeHarmony symbsl
4) Start Processors helper tasks -> Reader/Writer
6) Btart Interpreter
- Interpreter Joes into a waitForFirstMessagm state
and then you fly from there

& B % T 2 A B & #

~

#define MAIIMUM_iCTRA_PARAMETERS 4
typedef struct SmalltalkRecnestStruct
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RECORD
aiat_16 MBG_SIZE.
1at_18 MBC_TTPE,
niat_32 PARAMETERS [M#XIMUM_ACYRA_PARAMETERS],

ENDAECORD fmalltalkReguest,

typede! strzct SealltalkReplyBtract

RECORD
uint_18@ NSC_SIZE,
uint_33 RESULT,
uvint_32 PARAMETERS [MAZIMUM_ACYRA_PARANETERS),

ENDCRECORD SmalltalkRaply,

void VtaskReguest (requeat,id, count, pl, p2, p3)
wint_32 request,
uint_32 16,
uint_32 couont,
wint_32 pi,p2.p3,
BODY
/* Sené & meascge for a specific functics from the Vtask
* This allows you to start a task 02 a processor
» initialize it, do some of the iritislizaticn and customaze
¢ the V task
*/
SmalltalkRequest Local_Keguest,
SmalltalkReply Local_Reply,
Local_Request MSG_SIZE = sizeof (Local_Request),
Local_Reguest MSG_TYPE = reqaest,
IF count-- THEN Local Request PARAMETERS [0 = p3, ENDIF
IF count-- THEN Local_Reqcest PARAMETERS (1] = p2, EKDIF
IF count-- THEN Local_Eequest PARAMETERS [2] = p3, ENDIF
_Send (&Local _Requeet &Local_Reply, ié},
ENDBODY

#define UK o}
#define BAD_RERULST 1

/* Process V task Requests

* This is the Reader/¥Writer task

* 1 Copy of this task runs on sach Smalltalk processor

* This allows & process to iritialize t' - newly created Vtask

* The routines called dy this task are processor specific

* For convenience, some extra functionality was depcsited on this task

void Vtask ()
BODY
SmalltalkReqoest Local Reguest,
SoalltalkReply Local_Reply,
int 1,
nint_32 sender, result, command,

VWHILE 1 DO
Local Reguest MSC_SIZE = eizeof (Local_Requaat),
sender = _Receive (kLocal_Request, 0),
comsand = Local_Request NSG_TYPE,
result = DK, /¢ Defanlt is no error */
CASE command OF
CHOICE initializeMainV
initialixe_processor_ids{),
initialsise_020_‘~terface (),
initislize_graphice(),
lnitinlize _filaio(),
initialise _memory (),
break,
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CHOICE iritializeSlaveV
/+ Copy the Registry aad change the R_startUp ¢/
initialize_processor_ids(),
ieitialize_029_interface (),
initislize_grephics (),
initielize _fileie(),
initialize_memory (),
initialize_registry (Locsl_Request PARAMETERS {0]),
initializeET (),
break,
CHOICE startV-
/+ Mfter this poiat you cannot send this task more messages+/
/* ¥Will executs the startup of H_startup s/
Loca’_Reply MSG_SIZE = sizeof (Local_Reply),
Loce)l_Reply RESULT = result,
Reply (klocal_Reply, sender),
interpreter(j,
break;
CHOICE loadImageV
load_image (VImageFileName (/).
initializeET (),
break,
CHOICE verifylmageV
verify_space(V01ldSpace(), "Image Loaded”),
sreak,
CEOICE memoryInfoV
semory_info (),
break,
CEQOICE taskInfoV
info (),
print_pro~agsor_ids(),
break,
CHO... .emotedtV
result = LOCAL_TO_REMOTE (
V_objectit (
Local_Request PARAMETERS[0]1,
Local_Regquest PARAMETLRS[1])),

break,
CHOICE remotedtPutV
result = LOCAL_TO_REMOTE ¢
V_objectdtPut (

Local_Request PARAMETERS[0]],
Local_Request PARAMETERS[1],
Local_Request PARAMETERS[32])},
break,
CHOICE setIDV
info (),

processor_ids [Local Request PARAKETERS([0]] =
Local_Request PARAMETERS{1],

break,
OTHERWISE
result = BAD REQUEST,
break,
EKDCASE

Local_Reply MSG_SIZE = sizec? (Local_

Local Reply RESULT = resuit,
_Reply {(&Local_Reply.sender),
EYDWEILE
E¥DBODY

/¢ Processor translation IDs o/
uint_32 processor_ids[33],

void ipitislize_processor_ide(}

Reply},
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BCDY
ist 1,
FOR 1=0,1<32,41++ DO
processor_ide[1] = O,
ENDrOR
ENDBODY

/* Initislization task requeste

* The initialized V taske first geo izto a infant state

9 in which every tesk muet be told which of the ipitializticn

* regtines they shouid call The reascr for this is so that

* every processor runs the sams code

* ¥OTE
Gome of these requests are uniprocessor versions of the
the actual routines Yov mey not send the Vtask interface
soms of these mussages *after* You have started the main
task 1e verify ‘mage is non parallel vers:ion that blindly
sacars all memory

o/
/+ The V main processes start &t 70 + procezscr[D s/

#define V_BASE_TASK_INDEI 70

fdefine Vi_TASK_IKDEIX V_TASK_IFDEX (1)

#define V2_TASK_INDEX Y_TISE_IKDEI(2)

#define V_TASK_INDEX(processorID} (V_BASE_TASK_INDEX+processorID)

YA
dn ACTNR Object contains
procesesrld - contains process ID of melf
sealector - selector to execute
arguments - array of parameters
process - Smalltalk contextas
sender - process to reply to
*/

/+ Offets into Actors for instance variables

#define ACTOR_PROCESSOR_ID O
#define ACTCR_SELECTOR bt
#define ACTDOR_ARCUMENTS 2
#dafine ACTOR_PROCESS 3
#define ACTOR_SENDER 4

#define RENOTE _EXECUTION_REQUEST 0

/+ File actors ¢
* This file defines the Actor Send Receive Reply primitives
* used by the class dctor
of

/* Actor Receive
¢ Place the Actor in Receive wstate
* Yhen a massege is accepted, store the parametsrs into self
* and succead the primitive
*/
DEFINE_USER_PRINITIVE(actorPrimitiveRsceive)
BODY
SmalltalkRequest Local_Request,
SaalltalkReply Local Reply,
sint_32 sender, result, command, id,
iat 4,

DMESSAGE("1ln actorPrimitiveReceive", 0),
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Local_Request NSC_SIZE = aizeof (Local_Request),
seader = _Receive (8local_Request 0),

DMESEACE (*"\nRegnest from 1x®, seader).

IF Local ReqiLest MEG_TYPE != REWOTE_EIECUTION_REQUEST THEN
FAIL,
ENDIF

V_objectAtPut (SELF ACTOR_SELECTOR,

Remote_To_Local (Local_Request PARAMETERS {0]))
V_objectAtPut (SELF,ACTOR_Z2TOUMENTS,

Ramote_To_Local {lLocal_Request PARAMETERS [1])),
V_objectAtPut (SELF  ACTOR _SENDER, TO_Smalllnteger (sander)).

SUCCEED (SELF),
ENDEODY

/+ Actor send
¢ Send a message from self to the Actor on the remocte processor
* Succoed the primitive with the resclt returned 12 the reply
=/
DEFINE_USER_PRIMITIVE (actorPrimitiveSend;}
BODY
SmalltaikRequest Local Regusst,
SmalltalkReply Local_Reply,
int 4,
vint_32 result, id,

DMESSAGE ("In actorPrimativeSend®, 0),

Local Request MSC_SIZE =~ sizeof (Local Roguest),
Local_Request MSG_TYPE = REMOTE_EIECUTION_REQUEST,

Local_Request PARAMETERS [0] = LOCAL_TO_REMOTE (PARAM (1)),
IF !'0BJECY_IS_POINTERS (PARAM (2)) THEN r.IL (1), ENDIF

Local _Request PARAMETERS [1] = LOCAL_TO_RENOTE_ARRAY(PARAM (2)),

DMESSAGE (*\nSendirg sslector Xx", Local_Reguest PARAMETERS [0]).

DMESSAGE (®\nand arguments %x", Loral_Request PARIMETERS [1]).

id = V_objectAt (SELF, ACTOR_PROCESSOR_ID),
AS_long (id),

DMESSAGE ("\nSending to process Ix* id),

/* Convert processor id to the process id for the sxecution
« Actor serving on that process

*/

id = processor_ids [id],
DMESSAGE ("Task id Xx", id),

Tesult = _Send (BLocal_ Request,dlocal_Reply, id},

DMESSAGE ("Reply received resalt Ix*, resolt),
IF resslt THEN
SUCCEFD (Remote_Yo_Local (Local_Reply PARAMETERS[C])),
ELSE
FAIL,
ENDIF
ENDBODY
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/* Actar reply
e Reply to your sender the resnlt from the local exscutiosn Actor
¢ Buccead the primitive with the result returaed in the reply

o/

DEFINE_USER_PRIMITIVE(actorPrimitivaReply)
BUDY
SmalltalkRegquest Local_Request,
SmalltalkReply Local Reply,
int 1,
wiant_32 sender, result, id,

DMESSAGE {°\nip actorPrimitiveReply®),
sender = TC_long (V_objectat (SELF, ACTOR_SENDER)),

Local_Reply MSG_SIZE = sizsof (Local_Reply),
Local_Reply RESULT = LOCAL_TO_REMOTE (PARAM (1)).

result = _Reply (&local Reply,sender),

/* Succeed if reply 0K s/
IF result THEN
SUCCEED (SELF),
ELSE
FAIL,
ERDIF
ENCBODY

veerPrimitiveTableEntry UserPrimitiveTable[] = {

*actorPrimitiveRaceive®, actorPrimitiveReceive,
“actorPrimitiveSend®, actorPrimitiveSend,
"actorPrimitiveReply”, actorPrimitiveReply,
0.0

A.3 Examples From Class Actor

Object aubclass @®ictor
instanceVariatleNamaes
‘processorld selector parameters process sendsr
classVariableNames '
poeellictionaries ' ° !

'Actor claes methods !

run
* & art the actor on its processor *
Actor ~ew initialixe waitForRequest! !

tActor methods !

id anlnteger
* ast tde processor id of the actor to bs anlnteger *
procassorld = anlntager!
initialize
* MAGIC CODE HERE *
® Initialise a3 acter for processor 8 (Hsrmony Processor Kumber)
snd set him waiting "
processorld = 8
selector = #waitForRequest
paramaters = ()
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© selfl
primitiveleceive
® Receive a request from any processor, the selector and parametars
will be passed to you Any interrrocessor conversion #ill be performed
by the primitive *
¢primitive actorPrimitiveReceive>
© self primitiveFailed'
primitiveReply reeult
" Perform & reply to tne seader processor, Result conversion will be
performed by the primitive *“
<pripitive actorPrimitiveReply>
° self primitiveFailed!

pramitiveSend maessage vithirgumeats andrray

* send the messags and arguments to the processor represented by self *
<primitive actorPrimitiveSend>
“ self primativeFailed!

waitForRequest
® loop forever receiving requests, performing the request and reply with
the answar *
| result |

[ true ] whilaTrue [
self primitiveRecsive
result = self perform selector withirguments parametsrs
self primitiveReply resuolt]! !

A.4 Example From Class Entry Table

Object subclass #EntryTable
instanceVariableNamas
‘reallbject references markers '
classVariableNemss ‘Localictor’
poolDictionaries *' !

iEatryTable class methods !
initialixe
Localhdctor =Actor aew ipitialize ! !

‘EntryTable methods |

= an0bject
“Local optimizstion sxample®
© anObject = reallbject!

at anlnteger
“Forward messags oxample £sk the local actor to forward message”
| m |
» = MNestage new
& selector #st
m arguments (Array with self with anlnteger)
" Localhctor mend = to self processorlD for sslf!
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P! P2

\\ //

P3 \

Figure 18: Entry Table Recovery Example: Initial State

B Entry Table Recovery Example
B.1 Example: Reclaiming an Extry Table cell

The following is an example of the ET cell reclamation algorithm.

We have three processors P1, P2, P3. An entry table cell ET,3(A) exists on
P3 pointing for object A which is in M Newpy. P1 and P2 contain references to
A. The initial configuration is shown in Figure 18.

Note: RB = Referenced By, MB = Marked_By, and HS = Has_Scavenged.

The initial state is:

Processor
Flags 123
RB 110
MB 000
HS 000
The follov-ing steps occur.
RBi110Q
1. P2 scavenges. MB 010
HS {010

A is reachable from P2 and so P2 sets MB and HS bits on A.
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RB[110]
2. P3 scavenges. MB {000
HS |[000

P3 notices that P2 has scavenged but that MB bit is set on A so nothing is
done to the RB flags. The ET cell is not collectable since is still referenced.

After P3 finishes it’s scavenge the bits are set as follows.

3. P1, P2 lose reference to A. This has no effect on any of the flags of A.

IRB[110
4. P3 scavenges. MB |000
' HS {000

Neither P1 nor P2 has scavenged so P3 cannot make reachability determi-

nations.
RB|110
5. P2 scavenges. MB (000
HS |010
Note that the HS and MB bits show that A is not reachable from P2.
RB|[100]
6. P3 scavenges. MB | 000
HS ;0 O_Q_
P3 determines that A is not reachable from P2 and clears the RB for P2.
RB[160
7. P1 scavenges. MB | 000
HS 100
The HS and MB show that A is not reachable fromn P1.
RB|000
8. P3 scavenges| MB | 000
HS 100

After this scavenge, P3 may reclaim the ET cell for object A since it is not
reachable from any other processor. Object A is now free to be reclaimed if

it is not locally referenced.







