Learning Considerations
in User Interface Design:
The Room Model

Patrick P. Chan
Software Portability Laboratory

CS-84-16

July 1984

LEARNING CONSIDERATIONS IN USER INTERFACE DESIGN:
THE ROOM MODEILt

Patrick P. Chan

Software Portability Laboratory
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

ABSTRACT

Reom is an environment in which users organize and issue com-
puter system commands. Metaphorically, Room is based on the con-
cept of a room, in contrast to systems incorporating the currently
popular desktop model. Both the room and desktop models embody
design principles that address the issues of reducing the overhead of
learning an application. However, Room demonstrates techniques
that improve an expert’s productivity without compromising the prin-
ciples embodied in the deskiop model. We describe Room’s user
interface, design, and implementation as well as the fundamental
differences between the room and desktop models.

An approach is proposed for developing a framework wherein
user interface design principles can be meaningfully analyzed, classi-
fied, and, most importantly, derived. We begin the specification of
the framework with precepts from learning psychology and from it
derive several design principles, many of which are popular in the
literature. Each principle is presented with strategies that prescribe
ways in which the principle can be implemented.

+This report was originally submitted as a Master’s thesis to the Department of Computer Science,
Faculty of Mathematics, at the University of Waterloo by the author.

Acknowledgements

I would like to thank my supervisor, Prof. Michacl A. Malcolm, whose
encouragement and support were crucial to the development of this work. His fine
editing skills greatly improved the readability of this report.

I would like to thank my thesis readers, Prof. Doug Dyment and Prof. Randy
G. Goebel, for their valuable suggestions.

Several people have contributed to this work with their helpful comments,
They are: Paul Bernard, Bert Bonkowski, Claes Harvenberg, Rosanna Lee, Ann Lo,
Mark Maxted, Quentin Miller, Gary Stafford, lan Telford, and R. Vasudevan.

T am also grateful for the financial support of the Department of Computer
Science at the University of Waterloo.

Table of Contents

Lo INtroduction ... s
1.1 Motivation and Objectives

1.2 OTZAMIZALION ooeiiiiiieitieisete ettt et es et es e se et enseben et s eneaas

2. Background
2.1 Unix

Pipes
Concurrency
The Shell as a Language
The History Command
Text SubStIULION ..ot e e

2.2 Xerox Star
Principles ...
Property Sheets

The Command Interpreter
The Browser

2.4 Summary ...,

2.5 References

3. The Room Interface: Rooms and Icons .
3.1 Manipulating Tcons
3.2 ROOM OPCIALIONS ooviviieieriiiits ettt ettt ee e e st eaessenese e ssesenssnenaes
3.3 Toon ALIIDULES oottt e
3.4 100N PATAMELETS ..ot
3.5 Modifying Parameter and Attribute Fields ..o

3.6 A World Based on ROOINSoivoiiieiiieiiceeee e vevsca s snon e
The Office ..coovreerennn.
The Lobby and Entrance ..
The Supply ROOM ..ottt
The TIUCK ..ot e

X 0 NN N BB bR W W W

The ROOM MAKET 1viiviiiiiiiniiiiniinn s sieeeeses e sicibeee s saensssenaens i3

4. Learning Considerations in User Interface Design 16
4.1 Information ACQUISILION ..coveiiiiiiee e 16
The S-R Contiguity Principle ..o 16
Immediate Feedback17

Councept Learning ... 18

Trial Space Reduction 18

4.2 Information Transfer 20
General Transfer ... 20

) The Null Application 21
Specific Transfer 22
Consistency 23

Stimulus Differentiation 24

Analogy 26

4.3 SUIMIMATY oottt s e e st s e s s bbb bR e 27
4.4 RefRrenCes oo s s asse et 27
5. Anatomy of the Room ERVITONMENtccoovioviiviiininieiani i 29
5.1 The Port Process Model .o 29
5.2 Data Structures and Files of the Room Environmentoocovvvevinnnnnnns 30
The 1con DESCTIPLOT ..ottt e s 30

The Users Tree 31

Room Files and the Rooms Subtree 31

Icon Pictures and the [cons Subtree .. 32

The parameters File 34

5.3 The Room Process 34
The Room Descriptor and Room List 34

The Picture List .
The Room Stack36

Room Process Requests 36
5.4 The Examiner 36
The Field Descriptor 37
5.5 The WOrKer PTOCESScovoiiiieeicriciicenieis et s 37
Worker Process REeqUESLS ...oooecvriiveeiniieniiiise st scee e 37
5.6 The Help ACLIVILY .oooiiiiiei it seticrest e s s 38
5.7 The Room Maker Activity 38
The Room Maker Helper Processes 38
5.8 The EXit PrOCESScocciiiriiiiiicienic ettt st 38
5.9 The Entrance ACUVILYoooiiiiniiririioreiiire s sasssie 39

5.10 REEIENCES ooiiiiiiiiieeriiie bbbt s en bbb aen e es e 39

6. Summary and Further Research

6.1 The Desktop Versus the Room Model
Activity Switching
Organization
Tailoring
The Room Maker

6.2 Using the Design Principles Framework .

6.3 Room Enhancements ...
Removing Rooms
A Higher Level for Manipulating Rooms ..
ADPIYINE COSMELICS ..vvemeeeeiiiiiitee ettt ee s
Stimulus Differentiation for Icons and Rooms .
Eliminating the Entrance ACHVILY ...ccoocoiinvcinircnmeerceneeecens
Eliminating Attributes
Accommodating Network Services
Integrating Room into the System .

6.4 Current Status of Room ..c.ococeeveveviiceicin,

Figure 2-1:
Figure 2-2:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:

Figure 5-7:

List of Figures

Port Windows ..o 7
The Port Commands Editor ..., 8
The Room Display oo 11
Attributes of an Icon 12
Parameters of an TCON .o.ivviviriiie e 13
Process Structure of the Roont Environmentccooovevcerevcninnns 30
The send/receive/reply Interaction ... 31
The Users and System Trees ... 32
The Room File Contents for JSmith’s Studio ..o 33
The parameters File for Figure 3-3 .o, 34
Data Structures in the Room Process ..., 35
Table and Field Descriptors 37

vi

Table of Principles

Immediate FeedDACK ...ttt 17
Trial Space Reductioncocoviovieiiiirieies e s 19
Trial Space Reduction by Immediate Negative Feedback w19
Trial Space Reduction by VisiBility ..o 19
Trial Space Reduction by Organization ..., 20
The Null Applicationoovvririiini et 21
Consistency 24
Consistency by Universal Operations .. 24
Censistency by Hardware Transparency ... 24
Stimulus Differentiation ... 25
Consistency by Dimensional EXpansion ... 25
Analogy 26
Bounded Analogies 27

vii

1

Introduction

“If we intend a science of human-computer interaction, it is essential that we
have principles from which to derive the manner of the interaction between
person and computer. It is easy to devise experiments to test this idea or
that, to compare and contrast alternatives, or to evaluate the quality of the
latest technological offering. But we must aspire to more than responsive-
ness to the current need. The technology upon which the human-computer
interface is built changes rapidly relative to the time with which psychologi-
cal experimentation yields answers. If we do not take care, today’s answers
apply only to yesterday's concerns.”

— Donald Normant

1.1 Motivation and Objectives

The literature lists many principles for designing user interfaces. The
approach for producing such principles has generally been based on retrospection
and reflection during development; ideas that work in practice are generalized as
much as possible and enunciated as principles. However, as Norman’s observations
convey, principles driven by current concerns suffer the consequences of being
dated. Moreover, the excessive number of factors that influence a design makes it
uncertain whether a set of principles evolved from one circumstance can be readily
applied to another. The lack of a universal framework with which principles can be
analyzed makes it impossible to relate principles not only between sets, but also
within a set,

Our approach for producing a set of design principles is to examine the more
stable side of the human-computer interface — human behavior. We have taken
prevalent theories from the field of psychology and interpreted them in the context
of user interface design. The result is a set of principles that is calculated to
improve a user’s productivity; phenomena that enhance performance are
encouraged, while those that degrade performance are discouraged. The fundamen-
tal tenet of this approach is that as technology changes, the comparatively stable
foundation of psychological precepts can always be reinterpreted to yield applicable

t “Design Principles for Human-Computer Interfaces”, CHI'83 Proceedings.
December 1983, pp. 1.

2 Motivation and Objectives

ideas. This approach also suggests a methodology for constructing a much needed
framework in which to analyze, classify and derive user interface principles.

Of course, principles cannot approach their beneficial potential without exam-
ples of their application, We have incorporated these principles in the design of
Room, an environment wherein a user organizes and issues his commands to the
computer system. The user interface of Room and other popular command inter-
preters are analyzed to illustrate our set of principles.

Unfortunately, the scope of this report precludes a comprehensive develop-
ment of a framework. We only demonstrate the methodology and potential for con-
structing such a framework. Also, we do not cover psychology at a depth it
deserves. We focus only on the learning aspects of human behavior and not, for
example, on personality or motivational aspects. Even within this restricted
domain, we can only account for those psychological precepts that are immediately
applicable to the design of productive interfaces,

At the very least, our interpretation of the theorics of learning can be taken
as plausible explanations for the phenomena we observe as user interface designers.
By relating our observations to those of psychology, we can minimize the amount of
redundant work and perhaps contribute to the development of psychology. We
hope that the collaboration of these two disciplines — psychology and computer sci-
ence — will form a synergistic relationship that inspires in each the grace of
accelerated growth.

1.2 Organization

Chapter 2 provides a brief overview of a few popular command interpreters
that are referred to in the ensuing chapters. The overview concentrates on the
prominent characteristics of their user interfaces and on underlying principles
which were applied in their design.

Chapter 3 presents the user interface of the Room environment in detail.
This presentation concentrates on how to use Room, not on any design decisions or
implementation details.

What methods can the designer employ to accelerate a novice’s understanding
of his system? Chapter 4 examines some theoretical models of mental processes
which occur during learning. Qur goal is not only to find ways to ease the mental
effort that accompanies learning, but also to capitalize on this knowledge, once
learned.

Chapter 5 presents the implementation design of the Room environment on
Port. We first briefly describe the Port process model and then discuss Room’s
process structure and the duties of each process.

In Chapter 6, we summarize the contributions of this report by (1) pointing
out the fundamental differences between the desktop and room models, by (2) sug-
gesting the immediate directions for pursuing and using the design principles
framework and by (3) prescribing various enhancements that can be made to
Room.

2

Background

This chapter provides a brief overview of three popular operating systems —
Unix1, Xerox Star and Waterloo Porttt, We concentrate on the prominent charac-
teristics of their user interfaces, especially those of their command interpreters, as
this topic is used by the discussions in Chapter 4.

Unix was chosen because it represents the most sophisticated system in its
class — the class of command line interpreters. Star offers one of the most innova-
tive designs; its principles demonstrate the power of software integration and user-
fricndlingss. Many contemporary operating systems have incorporated its design
principles into their user interface. Port represents an interesting hybrid of the
capability of Unix and the friendly qualities of Star.

As the discussions are very brief, the interested reader is directed to the refer-
ence list at the end of this chapter for detailed information about the systems.

2.1 Unix

Unix was developed starting in 1969 by Bell laboratories and has since
become one of the most popular operating systems available. The early versions of
Unix ran on DEC’s PDP mini-computers series with teletypes as the main display
devices.

Unix supports a very powerful command interpreter called the shell. The fact
that teletype-like devices were the main display devices (and still are) strongly
influenced the design of the shell throughout its evolution. Even in its latest, most
advanced form, the csh [Joy 1979], all that is required to use it is a simple tele-
type. Consequently, almost any ASCII terminal will function with Unix. We will
briefly describe the main features of the shell,

2.1.1 Pipes

Output from a command can be input to another command with the use of a
pipe. A pipeline consists of two or more commands connected by pipes. A com-
mand within a pipeline acts like a filter whose output is a transformation of its
input. Many complex commands can be formed with a pipeline of simple com-
mands.

1Unix is a trademark of Bell Laboratories.
ttWaterloo Port and Port are trademarks of the University of Waterloo.

4 Unix

2.1.2 Concurrency

When a command is executed, the shell is no longer available until the com-
mand is completed. Commands which may take a long time can be made to exc-
cutc in the background, freeing the shell to accept other commands. Several com-
mands can cxecute in the background simultancously. Unfortunately, if several
commands produce output, the results on the display may be unintelligible. The
user may stop or destroy any background command at any time. A command exe-
cuting in the background can be brought to the foreground if, for cxample, it
requires input frem the user.

2.1.3 The Shell as a Language

One of the most powerful features of the shell is that it can function as an
interpreter. The shell supports iterative and conditional control flow constructs
which can be used to build quite elaboraic commands. The shell also supports vari-
ables, expression evaluation and even recursion. Programming with ordinary pro-
gramming languages can often be avoided by writing a shell program. This feature
allows non-programmers and users without access to system code to tailor system
commands to a certain degree.

2.1.4 The History Command

The shell’s history command produces a numbered list of the most recently
executed commands available for easy re-execution, The desired command can
then be retrieved by either number or pattern. This is one of the shell’s features
which atlempts to reduce the amount of typing necessary to exccute commands.

The shell also permits a previous command to be changed before it is exe-
cuted. First, a command is selected as if it were to be re-executed; then, on the
same line, changes to the command are specified using an editor-like syntax.

2.1.5 Text Substitution
There are three more ways you can reduce your typing load in the shell.

. Alias Substitution enables a command to be renamed, or parts of a com-
mand line to be reduced to a single word. This feature is useful to shorten fre-
quently used command lines or to rename command names to something more
easily remembered. Aliasing alse applies to commands within pipelines.

+ Variable Substitution enables you to use the value of a predefined variable
in constructing commands. Variables can be changed at any time and retain their
values for the duration of the session.

+ Filename Substitution enables you to specify a file or a set of files with a
pattern. If the pattern does not uniquely identify a file but rather a set of files,
then the pattern will be substituted by the entire set. Hence the command will
operate on each file in the set.

Unix 5

2.2 Xerox Star

Xerox introduced its 8010 Star Information System personal computer in
1981. 1t was designed for usec in an office environment, supporting capabilities
such as document preparation (complete with graphics), data processing, electronic
filing, mailing and printing. Each workstation has networking capability, facilitat-
ing such services as remote file storage and mail. Two notable hardware features
are its high resolution bit-mapped display and its mouse. The display can render
high quality graphical objects, ¢nabling documents with graphical and mathemati-
cal content to be viewed and edited without the need to first phototypeset it. The
use of the graphics capability extensively pervades Star’s user interface. The
mouse is an essential component of the system in that the user interface relies on it
heavily to reduce the amount of typing required of the user.

2.2.1 Principles
Eight principles guided the design of Star’s user interface.

» Familiar user’s conceptual model

+ Seeing and pointing versus remembering and typing
* What you see is what you get

» Universal commands

= Consistency

« Simplicity

« Modeless interaction

» User tailorability

The most prominent of the principles are the first three. With the first,
designers have creatively transformed many common computer operations into
natural procedures that novice users easily understand. They have achieved this by
taking advantage of knowledge a person possesses before encountering the system.
The objects in the system closely resemble, in both form and behavior, familiar
physical cbjects in the office. For example, there are folders, file cabinets, mail
boxes, printers and note pads; the graphics help generate convincing reproductions,
These objects are also manipulated in ways similar to their physical counterparts.
For example, to mail a document, you pick up the document and move it into an
outgoing mailbox.

The model of familiar objects is unified by a desktop metaphor. The objects
appear as small icons on the desk and can be opened from the desk. An icon opens
into a larger form called a window which ¢nables its contents to be displayed and
modified.

With the second and third principles, Star attempts to reduce many common
commands into sequences of mouse movements. Many tasks are possible simply by
moving icons about with the mouse. Tn this way, you feel that you are accomplish-
ing the task yourself instead of trying to give a command to the computer. This
eliminates one level of control and many problems which arise because of it. There
are no special keywords to remember and type, only the application of natural pro-
cedures using the mouse. Also, Star reduces the amount of information a user
must remember by making objects and commands visible. There is always a list of
possible commands in a window. Not only does this make the system casier to

6 Xerox Star

learn, it makes it easier to start commands. You need only point to the place
where the command is displayed and press a button on the mousc. Again, there
are no keywords to remember and type.

2.2.2 Property Sheets

Most objects in Star have properties which determine how they look or
behave. For example, the properties of a character include its font, size, and face
(bold, italics, underline). The properties of an object are examined by selecting the
object and pressing the SHOW PROPERTIES key. A property sheet window appears
which displays all the available properties the object can assume and the properties
currently in effect. The property sheet also permits the propertics to be changed.

Property sheets prevent a user from being overwhelmed with the numerous
possibilities of the system. Information is provided only when requested. But more
importantly, the source for information is always known once the properties concept
is understood.

2.3 Port

The development of Port began in 1980 as an ongoing research project to
examine various aspects of network operating systems and user interface design.
Port’s networking capability permits resource sharing and communication between
workstations. Port currently runs on various machines, the most popular being the
IBM personal computer with a character-oriented display.

The Port user interface is designed to be used with or without a mouse. A
mouse can greatly reduce the amount of typing, making Port especially productive
for non-touch typists. However, there arc several convenient mechanisms in the
user interface which make most interactions on a mouseless workstation just as fast
as on a mouse-endowed workstation.

2.3.1 Windows

The Port user interface supports multiple windows and concurrency, enabling
several programs to be executing simultaneously, and viewed simultaneously. Each
window occupies the full width of the sereen. Windows can grow and shrink verti-
cally but cannot overlap. There can be many windows; the screen displays as many
as will fit. Those that are hidden can easily be brought into view. Figure 2-1
shows a Port display with four windows. Edit and Browse are visible while Room
and Message are hidden. Room or Message can be made visible by selecting its
respective activity name.

Collectively, windows behave like 2 stack. Whenever a hidden or new win-
dow is brought into view, the visible windows are forced “down” far enough 1o
accommodate the hidden or new window. Windows at the “bottom of the stack”
which no longer fit on the display are hidden. A partially hidden window is not
allowed; a window disappears if it cannot be entirely displayed. The maximum
window size is constrained by the size of the display.

An application makes its services available through a window by displaying a
set of operations near the window’s banner (see Figure 2-1). The desired operation
can be selected with either a mouse or a function key on the keyboard. Operations
typically operate on objects contained in the window. This type of interaction

Port 7

activity nanies
. window banner
\Room Message Edit Browse /

Browse_0jusers/JSmith
Bmwser/EDl! 'CLIMB [DESCEND| [MAKE] [REMOVE] [COPY TO| MOVE TO[[QUIT]

operations

Browser's window
window banner

dit 0 mith/calendar

. Ut
Editor
operations/

Editor’s window

blank area

Figure 2-1: Port Windows

greatly reduces the need for typing as both objects and operations can be specificd
by merely pointing to them and pressing a button on the mouse or keyboard.

2.3.2 The Command Interpreter

Port allows Unix-like commands, as well as pipes and redirection of standard
input and standard output.

Commands are typed and executed from within the Editor. There are several
advantages with this design. The power of the screen editor to edit text is available
for command editing. By keeping files of commands in strategic locations in the
file system, commands seldom need to be typed. This obviates Unix’s history, alias-
ing and command correction features. A command is executed by selecting the
line containing the desired command and selecting the INVOKE operation in the
Editor (see Figure 2-2). A window then appears which executes the command. A
group of consecutive commands can be executed in sequence by selecting the set of
lines containing the commands and then selecting INVOKE.

Commands may also be executed from Room. Room and aspects of Port’s
user interface are discussed in greater detail in the following chapter.

2.3.3 The Browser

The Browser is an application program that provides file system services
which allow files to be conveniently examined, copied, moved and removed. It also
enables you to easily “move around” either a local or remote file system tree, main-
taining an up-to-date display of the files below the current file, The display is
immediately updated if a file is created or removed under the current file. Several

window banner operations

Edit 0/users/JSmith/commands

IRUIT Z5AVE 3PICK UF 4pUT DOWN S[NVOKH 6EPL[I| EARCH 9PUT PATH

“compile debugger” compile 0/users/JSmith/source/Debugger
compile 0/users/JSmith/source/Debugger_helper

“edil tree” files O/users/JSmith/source/Debugger | cu {edit #1}
“print” files 0/ users/JSmith/source/Debugger | sort | listing | print

editing area

Figure 2-2: The Port Commands Editor

Browsers may be active, enabling a user to view parts of one or more file systems
simultancously.

Only those Browser operations that use a new filename require typing. In
addition, the Browser makes the name of a selected file available to other applica-
tions,

2.4 Summary

We have discussed the user interfaces of three popular operating systems.
All three have been designed for different hardware confligurations. Unix runs with
simple teletype-like devices, Port with character-oriented displays and Star with
high-resolution bit-mapped displays.

The Unix shell is functionally superior to the Port and Star command inter-
preters mainly because of its interpretive programming capabilitics. It provides
many convenient features which make interaction with a simple teletype both bear-
able and productive.

The major contributions of Star arc design principles exploiting concepts of
familiarity and visibility which decrease the amount of training a user needs in
order to become proficient with a system.

Port captures most of the functionality of Unix and tempers it with qualities
of Star., With extra capability in the display device, it is able to transform many of
the convenient Unix features into an even more productive environment.

2.5 References

[Dolotta and Mashey 1979]
T.A. Dolotta and J.R. Mashey, “Using a Command Language as the Primary
Programming Tool”, Command Language Directions, Proceedings of the
IFIP TC2.7 Working Conference on Command Languages, Berchtesgaden,
West Germany (Sept. 1979), pp. 35-49.

References 9

[Joy 1979]

W. Joy, “An Introduction to the C shell”, Unix Time-Sharing System: Unix
Programmer’s Manual, Seventh Edition, Volume 2B (Jan. 1979).

[Malcolm et al 1983]

M.A. Malcolm, P.A. Didur and P.A. McWeeny, Waterloo Port User's Guide,
Software Portability Group, University of Waterloo, Dec, 1 1983,

[Malcolm and Dyment 1983]
M.A. Malcolm and D. Dyment, “Experience Designing the Waterloo Port

User Interface”, Proc. of Small Computers, San Diego, CA (Dec. 1983), pp.
168-175.

[Ritchie and Thompson 1974]

D.M. Ritchie and K. Thompson, “The Unix Time-sharing System”, Comm.
ACM, Vol. 17, No. 7 (July 1974), pp. 365-375.

[Seybold 1981]

J. Seybold, “Xerox’s Star”, The Seybold Report, Scybold Publications, Vol.
10, No. 16 {April 1981).

[Seybold 1981]

J. Seybold, “The Xerox Star”, The Seybold Report on Word Processing, Sey-
bold Publications, Vol. 4, No, 5 (May 1981).

[Smith et al 1982}

D.C. Smith, C. Irby, R. Kimball, B. Verplank and E. Harslem, “Designing
the Star user interface”, Byte, Vol. 7, No. 4 {Apr. 1982), pp. 242-282.

3

The Room Interface: Rooms and Icons

Room is a special window in which a user organizes and issues commands to
the computer system. The user’s environment is conceptually modeled as a single-
story building that houses many rooms. In each room there are icons that are used
for various tasks. Travel to another room is done by passing through a door,
represented by an icon. Figure 3-1 illustrates the visual representations of these
objects. The bottom of the display shows the name of the room and the name of
the user using the computer. The depicted room is JSmith’s Studio.

Four icons occupy JSmith’s Studio — two door ifeons and two activity icons.
The name of a door icon indicates the room to which it leads. One door icon leads
to JSmith’s Gallery and the other to his Office. An activity icon is used to start an
application. The name and picture on an activity icon describe the application it
represents. The activity icon named “Paint” starts a paint application while the
icon named “Mail” sends and retrieves mail.

3.1 Manipulating Icons

Room provides several operations that can be used on icons. Before an icon
can be used in an operation, it must first be selected to distinguish it from other
icons. An icon can be selected by pointing to it with the cursor and then pressing
the SELECT key; the selected icon is highlighted. Pointing can be done with either
the CURSOR KEYS or the mouse.

The TAB key can also be used to select an icon. Successively pressing TAB
causes each icon to be selected in succession from left to right, top to bottom.
Shifting the TAB key, teverses the order of selection. This selection method is
preferable to manipulating the cursor if the workstation is not equipped with a
mouse.

Icons can be rearranged in a room. Repositioning the selected icon is
achieved by pointing to the desired vacant location and pressing the POSITION key.
The selected icon moves to the new position. Moving the sclected icon to another
room is achieved by pointing to a door and pressing POSITION. This causes the
selected icon to move through the door, into the adjoining room.

10

Manipulating icons

CITOr message arca —H—

activity name |

[STARY ACTRTTT T GO [0 e ey

activity icons -
4 Paint

O

l

11

Room
operations

e room name

door icons

i

== Studio

JSmith =

room name ~

3.2 Room Operations

Figure 3-1: The Room Display

\ user name

Room operations are invoked by first sclecting an icon and then selecting an
operation. There are two ways to select an vperation. The first is to point to and
SELECT it on the display. The second is to use a FUNCTION KEY on the keyboard.
A FUNCTION KEY is associated with cach operation. The numbering of the opera-
tions corresponds to the numbering of the FUNCTION KEYs so that pressing I3, for
example, starts the COPY operation in Room (see Figure 3-1). An operation
“blinks” when selected, indicating that the computer has received the command
and that the operation is underway. Room supports five operations:

1. START ACTIVITY/ENTER ROOM - If the selected icon is a door icon, the
operation reads ENTER ROOM; if selected, you move into the room to
which the door leads. If the sclected icon is an activity icon, the opera-
tion reads START ACTIVITY; if selected, the activity represented by the

icon is started.

2. HELP - The HELP operation starts an activity which describes the
selected icon. If the selected icon is an activity icon, the Help activity
explains how to use the activity. If the selected icon is a door icon, the

Help activity explains where it leads.

12

Room Operations

copY The COPY operation replicates the selected icon if there is enough
space in the room. This operation is useful for distributing icons to
other rooms. For example, copying door icons and moving them to
other rooms enables direct travel between any two rooms.

REMOVE The REMOVE operation crases the selected icon.

EXAMINE An icon has properties that determine how the icon behaves
within Room and how its activity behaves. Selecting the EXAMINE
operation allows you te examine the sclected icon and alter any of these
properties. Once altered, these propertics remain unchanged until they
are explicitly changed again. In general, an icon has two types of pro-
perties: atzributes and parameters, All icons have attributes, but not all
icons have parameters.

3.3 Icon Attributes

An icon’s atiributes determine how it behaves within Room and what activity

is started by the icon. Figure 3-2 shows the attributes of an icon.

=1[DONE]- 2[PARAMETERS |-3[_ ATTRIBUTES }

name | Printer

contents | printer
help | 0/system/documentation/print
activity | 0/system/activities/printer
removable | yes
copyable no
movable | [yes no

Printer

Figure 3-2: Attributes of an Icon

Every icon has seven attributes associated with it.

name— specifies what name appears on the icon. Any name which does
not fit on an icon is truncated when displayed.

contents— specifics what picture appears within the icon’s borders.
Room has a predefined set of icon pictures. A partial list follows.

calculator clock document door
floppy hanoi hardisk life
mail network paint garbage
terminal graft printer ledger

If one of these names is specified as the contents attribute, a picture is
displayed. Otherwise, the text in this field appears within the displayed

Icon Attributes 13

icon.

help— specifies the pathname of a file containing instructional informa-
tion about the icon. The Help activity is given this pathname when the
HELP operation is invoked.

activity— specifies the filename of the activity that is to be invoked
when the icon is started.

removable— allows an icon to be removed using the REMOVE operation.
copyable— allows an icon to be copied using the COPY operation.

movable— allows an icon to be moved about in the room or to other
rooms.

3.4 Icon Parameters

An icon’s parameters determine how an activity behaves. Seclecting the
PARAMETERS operation displays an icon’s parameters, if any. Figure 3-3 shows the
parameters of a printer icon; the printer icon has three parameters.

1|DONE ll PARAMETERS ,]l ATTRIBUTES i_

file | flyer
orientation | portrait

number of copies | 02

Printer

Figure 3-3; Parameters of an Icon

The name of the parameter provides a brief description of the parameter. For
example, any number of copies (from 1 to 99) of the file “flyer” can be printed by
altering the number of copies parameter. Moreover, the copies can be produced in
either of two orientations by altering the orientation parameter.

3.5 Modifying Parameter and Attribute Fields

There are three field types for describing parameters and attributes; each
field type is manipulated differently.

1.

Options field — displays a selection of possible values for a parameter or
attribute. The orientation parameter in Figure 3-3 is an example of an
options field that has two options — portrait and landscape.

Only one of the displayed options can be in effect at any time; the
selected option is highlighted.

Numeric field — has a numerical value. This type of field appears as
one or more digits. The number of copies parameter in Figure 3-3 is an
example of a numeric ficld, Each digit in a numeric field behaves like
a thumbwheel; selecting a digit increments it by one.

14 Modifying Parameter and Attribute Fields

3, Text field — must be filled by typing; this field is used whenever it is
impossible to use a number or a selection of values. Screen editing
features are available in text ficlds.

3.6 A World Based on Rooms

The discussion so far has dealt with operations that are available in Room.
We have not discussed the environment in which Room is used. This environment
solves problems which are not addressed by Room: How do users share a worksta-
tion? What about security? Where does one acquire icons? How are icons distri-
buted? This section develops the room metaphor as an environment to address
these problems.

3.6.1 The Office

Every user authorized to use a workstation has a personal office. As a new
user to the system, you are provided with an office with some general icons. Your
office is an essential room as it is the only entry point to your portion of the build-
ing.

3.6.2 The Lobby and Entrance

When a workstation is switched on, you find yourself in the Lobby. The
Lobby contains a door labeled Entrance that leads to your Office. Similarly, in
your Office there is a door labeled Exir which leads back to the Lobby. When you
have finished working, you should always return to the Lobby. This voids your
privileges on the system and protects your resources {rom other users of the works-
tation.

Unlike most doors, the Entrance does not immediately lead to another room;
instead, it establishes a security barrier which prevents unauthorized access to the
workstation. It requires authorized users to identify themselves to the system
because different users have different privileges and individually tailored environ-
ments. The Entrance displays a list of names of users who are authorized to use
the system. You must select your user name and type your password on the key-
board. TF your password is accepted, you will enter your Office; otherwise, you will
return to the Lobby. The Entrance also allows you to change your password. You
must Tirst provide your current password before the new password is accepted.

3.6.3 The Supply Room

The Supply Room provides a facility for acquiring new icons. Since the Sup-
ply Room is shared by everyone, the icons within it can be neither ¢xamined nor
repositioned. The desired icons must first be copied and then moved out of the
Supply room via the Exit. In the Supply Room, the door labeled Exit leads back
to the room from which you entered the Supply Room, usually your Office.

3.6.4 The Truck

A Truck is a room residing on a floppy diskette. The floppy disk must be in
the diskette drive before the Truck can be entered. As with the Supply Room, you
can return to the room from which the Truck was entered via the Exit.

Trucks are used for transporting icons among workstations. Trucks are used

A World Based on Rooms 15

to distribute new software and to perform updates to existing software. In a Truck,

there may be icons for copying files from the floppy diskette onto a hard disk or a
file server,

3.6.5 The Room Maker

The Room Maker is an activity that constructs various kinds of rooms. It is
started using 2 “make room” icon. The Room Maker has blueprints of rooms for
many of the tasks that Port supports; there is a Port program development room, a
document creation room, an arcade, and even an ¢mpty store room. The Room
Maker requires the name of the new room and its type. It then prompts for details
necessary for the construction of the specified type of room. An empty store room,
for example, requires no further questions; but a document creation room requires
the name and location of the document and the document type (memo, thesis,
paper, help file, etc.). With this information, the Room Maker builds a custom
room which is tailored specifically to the task.

With a general purpose print icon, for example, at least tweo steps are
required to print a document, first finding the document and then sending it to the
printer. However, because the Room Maker knows which document you are work-
ing on, it can create an icon which starts an activity to print the document, In
short, a Room Maker not only finds the right tools for a given task, but also adapts
them to provide more efficient interaction.

4

Learning Considerations in User Interface Design

What methods can the designer employ to accelerate a novice’s understanding
of his system? This chapter examines the theoretical models of mental processcs
which oceur during learning. Our goal is not only to find ways to ease the mental
effort that accompanies learning, but also to capitalize on this knowledge, once
learned.

The format of our presentation is as follows. First, we briefly describe a
well-studied learning phenomenont, concentrating on those aspects that either deter
or promote learning. Then, following each discussion, we present several general
user interface design principles that either encourage or discourage the conditions
which promote or deter learning, respectively. Each principle is accompanied by
design strategies that prescribe a number of ways in which the principle can be
exploited. These strategies are illustrated with examples of their usage by the sys-
tems we have described in previous chapters.

4.1 Information Acquisition

Learning considerations are divided into two categories: information
acquisition and information transfer. Acquisition refers to the processes and events
that occur as knowledge is encoded and stored into memory. Transfer refers to the
effects of prior experiences on acquiring information.

4.1.1 The S-R Contiguity Principle

A prominent theory in the psychology of learning states that learning occurs
by the formation of primitive associations between szimuli and responses. The
strength of an S-R association, as it is called, is revealed by the probability of a
response oceurring in a stimulus situation. The strength of an S-R association is
influenced by the outcome of the response or reinforcement, which may be positive
or negative. Positive reinforcement strengthens the bond while negative
reinforcement weakens the bond. There arc active and passive aspects of the
theory.

« Classical Conditioning. In the passive aspect, called classical condi-
tioning, the subject is conditioned to react to a stimulus which does not

} The material on learning psychology is taken from several introductory
texts, [Houston 1981, Marx and Bunch 1977, Price et al. 1982, Tarpy and
Mayer 1978].

16

Information Acquisition 17

normally elicit the desired response. This is done by pairing the conditioned
stimulus (CS) with an unconditioned stimulus (UCS) that unconditionally
causes the reaction. Soon the UCS can be removed with the result that only
the CS is needed to cause the response. There are various factors that affect
the permanence of this association which we do not detail here. For example,
by withholding the UCS, the conditioned response will eventually be
extinguished.

* Operant Conditioning. The active aspect of S-R association theory,
called operant conditioning, is more applicable to the study of the novice
user. Unlike classical conditioning, operant conditioning does not directly
involve a stimulus that unconditionally elicits a response; the subject may or
may not respond when presented with the stimulus. Learning comes by
responding (or not responding) to a stimulus and noting the effects. If there
is reinforcement, a bond will form between the stimulus and the response.

Many learning theorists believe that learning will not occur if the response
and reinforcement are not temporally contiguous — that is, they must occur very
close in time. The necessity of temporal contiguity has not been proven, although it
is one of the oldest assumptions in the field. Most demonstrations of non-
contiguous learning have been countered by arguments asserting that memory was
the medium that bridged time, providing the necessary temporal contiguity. These
arguments have been hard to disspell.

There is much evidence indicating that temporal contiguity is not sufficient
for learning to occur, Some experiments demonstrate varying degrees of learning
when factors such as reinforcement, practice, intent, motivation, and the type of
stimulus are modified. For e¢xample, if the CS occurs with or without the UCS
with equal probability, then learning does not occur. Although the results indicate
that these factors must be taken into account, they lie beyond the scope of our dis-
cussion.

4.1.1.1 Immediate Feedback

For our purposes, it is enough to simply accept the indisputable influence of
temporal continuity on Jearning. This phenomenon clearly translates into one of the
most frequently cited design principles:

Reinforcement should occur very soon after a user’s action.

This principle does not suggest that applications must be made as fast as the
user is able to respond; inherent computational complexities may make this impossi-
ble. Rather, stimulus should be given simply to show the user that his actions have
been accepted or ignored. For example, some systems with graphics capabilities
change their cursor’s shape into an hourglass or bee to signify busyness.

Besides deterring learning, lack of immediate feedback is responsible for
other adverse effects. Norman (1983) attributes the lack of adequate feedback to
mode errors which occur when the user presumes to be in one state but is actually
in another. Actions are made out of context and hence have unknown and possibly
disastrous effects. For example, in a heavily loaded system that buffers input

18 Information Acquisition

without adequate feedback, a user may retry an operation because he is unsure of
whether or not it was accepted the first time. If the operation deletes a line, one
can imagine the user’s dismay when his text slowly disappears when his “uninten-
tional” operations arc finally executed.

4.1.2 Concept Learning

A concept represents a group of objects that share common properties. A
concept is characterized by a set of atiributes and rules that relate the attributes.
Hence, concept learning involves two stages of learning: first, there is artribute
learning where the learner must identify the relevant dimensions of the stimulus;
then there is rule learning where the learner must deduce the appropriate rule
which relates the attributes.

There are two popular theories that attempt to describe the process of acquir-
ing concepts.

+ The Continuity Theory views concept learning as an extension of the
S-R model of learning. In this theory, a concept is learned by tallying the tri-
als that result in positive reinforcement. After a few trials, the learner will
have accrued a mental table of strong possibilities for the relevant attributes
and rules of the concept. In this way, a concept is gradually acquired.

« The Noncontinuity Theory views concept learning as a process of
inducing and testing hypotheses. The experimenting learner constructs a
hypothesis and adheres to it until it fails, Learners can adopt different
hypothesis testing strategies for different learning situations. Learning, in
this theory, comes in discrete steps.

The results of experiments suggest that concept learning involves both
theorics. However, adults and verbal children tend to hypothesize rather than form
rote associations. For the remainder of this section we concentrate on the
hypothesis tesiing model of concept formation.

There are many factors that influence a concept learning effort. For exam-
ple, attributes are known to have different discriminable levels. A concept with
salient attributes is easier to learn than one comprised of nondescript characteris-
tics. Similarly, there arc rules which are easier to deduce than others. For exam-
ple, it has been observed that a conjunctive concept takes less time to master that a
disjunctive concept. A conjunctive concept is one where the correct hypothesis is a
conjunction of features {e.g. red and box). Similarly, a disjunctive concept is one
where the correct hypothesis is a disjunction of features (e.g. green or round). For
our discussion, we concentrate on a less involved property of the hypothesis testing
model — simply, the fewer hypotheses there are to try, the faster a concept can be
learned.

4.1.2.1 Trial Space Reduction

In both attribute and rule learning, the acquisition time can be decreased by
reducing the number of dimensions or ¢liminating irrelevant dimensions of the
stimulus. By restricting the pool of hypotheses or trial space, there is less chance
the learner will choose an incorrect hypothesis and waste time testing it.

Information Acquisition 19

The pool of hypotheses should be reduced as much as possible.

There are numerous ways to trim the trial space. We shall mention only a few gen-
eral strategices,

Trial Space Reduction by Immediate Negative Feedback

We have discussed the necessity of immediate feedback for learning. But
simply acknowledging every action that is made yields a space of possible actions
too large to explore in a reasonable amount of time. Not every action is meaning-
ful; it depends on preceding actions. A mechanism is needed to restrict the trial
space, permitting meaningful actions and disallowing others.

Negative reinforcement should occur soon after an incorrect action.

Thus actions must be interpreted as well as acknowledged. For example, to make a
file in Unix, the user types the appropriate command followed by the file name.
Not until he presses RETURN does he discover whether the file name is valid. By
experimenting, the user would need many trials (and possibly many file removals)
to determing, for example, the maximum length of a file name. The space of possi-
ble file names is large. In Port, however, the “make file” activity does not accept a
character which is not allowed in a file name or which extends the file name past
its maximum length. By pressing different keys the user can quickly discover the
legal characters and the maximum length of a file name. The space of possible file
names is greatly reduced. When the user finally makes the file (by selecting the
MAKE FILE operation), the file name is guaranteed to be a legitimate one.

Trial Space Reduction by Visibility

When one is confronted with an unfamiliar system, there are two levels of
understanding which take place — syntactic and semantic information acquisition.
Syntactic information refers to the names of available objects, operations and
options and how to manipulate them. Semantic information refers to the effects or
behaviour of these entities when they are used.

Objects, operations and options should be made visible.

The application of the visibility principle eliminates the need to experiment to
determine the names of entitics. TIn Unix, there is a barrier that prevents an experi-
menting novice from progressing past the syntactic acquisition stage. For example,
to determine the options of a command, the user must try every letter of the alpha-
bet. In such a case, consulting documentation is faster and Jess tedious. Port and
Star have facilities (icon examination and property sheets, respectively) which
display the available options. The user can simply try the various options and note
their effects. It is typically faster to try an option rather than consult a manual.

However, the user should be made aware of which objects on the screen
represent operations. Star combines the visibility and immediate negative feedback
principles into a variant cursor whose shape changes depending on the type of
object it is pointing to. Hence, by simply pointing to an object on the screen and
noting the cursor’s shape, one can determine if it is an operation.

20 Information Acquisition

Port also combines the negative feedback and visibility principles by indicat-
ing whether or not an operation is meaningful —~ meaningful operations are
displayed in reverse-video while unmeaningful operations are displayed in bold. In
this way, the user is informed whether an operation is applicable even before he
tries it. For example, in the Examiner’s window, if parameters are being examined,
the PARAMETERS operation is bold and hence, cannot be selected.

Trial Space Reduction by Organization

Grouping together logical objects narrows the search space for a desired
object. Moreover, it quickly excludes irrelevant objects in units of groups rather
than on an individual basis.

Similar objects should be grouped together.

Room’s Room Maker observes this principle of organization by trimming the space
of potentially useful tools for a given task.

4.2 Information Transfer

Information transfer is the influence of prior experiences on the acquisition of
new material. Prior experiences may facilitate learning or they may hinder it. The
transfer phenomenon makes it possible to exploit existing mental structures and
considerably reduce the effort in learning similar concepts. Hence, transfer effects
are of enormous importance in the design of user interfaces. We are interested in
design strategies that promote positive transfer and mitigate negative transfer.

Transfer experiments involve two stages of learning. The experimental group
must learn an initial task followed by the fransfer task. The control group is either
not taught an initial task or taught one that is entirely unrelated to the transfer
task. The objective of such an experiment is to compare the performance of the
two groups on learning the transfer task. There are three possible outcomes: if the
experimental group performs better than the control, positive transfer has cccurred;
if their performance is worse, negative transfer has occurred. There is also the pos-
sibility of zero transfer where either the effects of prior learning are insignificant or
the effects of negative and positive transfer cancel. For example, a user would
experience negative transfer if the position of a familiar key on the keyboard were
changed. A user learning an editor would experience positive transfer if he had
used a similar one before; if he had never used an editor before, zero transfer
should result..

Another distinction separates transfer effects into two other classes. Specific
transfer refers to the influence of the specific information in the initial task on
learning the information in the transfer task. General transfer refers to the effects
of learning the task itself, such as the development of stratcgies, and not to the
specific information provided by the task.

4.2.1 General Transfer

There are basically two kinds of general transfer.

* Learning-to-learn. As a subject is presented with tasks to learn, he
develops strategies, habits and skills that subsequently help in learning similar

information Transter 21

tasks. This phenomenon is referred to as learning-to-learn and is character-
ized by the progressive improvement at performing a particular task.

Learning-to-learn transfer is relatively permanent, Studies show that
retention of the specific information in the tasks degenerates, but the effects
of learning-to-learn remain stable over test intervals. For example, if a user is
versed in one or more programming languages, learning-to-learn transfer
would help him learn another programming language.

* Warm-up, Warm-up is the physical and mental adjustments that
accompany a switch in activities; such adjustments include attentional, sen-
sory, postural and attitudinal changes. Warm-up effects are also character-
ized by an improvement in performance over time. However, warm-up
transfer is less permanent; once the task ceases, the effects of warm-up
rapidly dissipate. For example, warm-up transfer occurs as a user reads a
program written in one language after having read programs written in
another language. In order to understand the program, he must adjust to the
differences between the two languages (i.c. programming rules, style and
techniques).

General transfer is positive, provided learning proceeds in the same manner
between tasks. If unaccounted for, a transfer experiment will yield either overes-
timated positive transfer or underestimated negative transfer. For example, if the
control group were not taught an initial task, they would be at a slight disadvantage
since the experimental group will benefit from general transfer by learning their ini-
tial task. Although its effects cannot be eliminated, they can be compensated for
by having the control group learn an initial task which is entirely unrelated to the
transfer task. Both groups then have equal opportunity to benefit from general
transfer.

4.2.1.1 The Null Application

The effects of learning-to-learn and the trial space reduction principle suggest
that a learner’s introduction to a system can be eased if he is first taught a aull
application.

An application should be provided which demonstrates the interaction
mechanisms of the system,

A null application demonstrates all the important concepts that are necessary for
interaction with the system. Tt should not necessarily perform anything useful
because there should be minimal distraction understanding what the application
does. This property observes the principle of trial space reduction. By the effects
of learning-to-learn, the information acquired from interacting with the null applica-
tion should transfer when confronted with a useful application.

In Unix, there is little need for a null application because the only interaction
mechanism available is typing with the keyboard, and because there is little con-
sistency concerning how applications are operated.

Although Port and Star may be ultimately easier to use than Unix, they may
require a larger initial learning effort. In Unix, the user need only type a few

22 Information Transfer

characters to run his first command. In Porl and Star, there are many precondi-
tions which must be learned and understood before any meaningful interaction is
possible. Concepts such as icon, window, active window, activity, activity name,
selection, positioning, operations, hiding, growing, shrinking, ete. are needed for
even the simplest applications. Port provides some simple games, such as a check-
ers activity, which serve as null applications.

4.2.2 Specific Transfer

A task in a transfer experiment is typically learning a list of paired words,
called paired-associate lists. Performance on the transfer task is based on the abil-
ity to recall one term of the pair when presented with the other. A paired-associate
list is symbolized as X-Y where X represents the stimuli (S) or cues and Y
represents the responses (R). This notation is used to indicate the degree of simi-
larity between the initial and transfer tasks. For example, a transfer experiment
where the stimulus terms are identical and the response terms are unrelated, is
known as the A-B,A-C paradigm.

It should be noted that transfer research has predominantly involved the
learning of paired-associate lists. Some theorists feel that it is dangerous or impos-
sible to generalize some of the findings of verbal transfer research to more complex
task domains. Only those findings which we feel can be readily applied to design-
ing user interfaces are discussed. In fact, computer interaction is currently closer
to the methodology of verbal learning than many everyday activities since its mode
of communication is primarily verbal.

Specific transfer involves at least four subprocesses. A prediction of overall
transfer must consider the separate effects of each subprocess. The overall transfer
is, in a sense, a sum of the various positive and negative influences of these sub-
processes. Following the description of the subprocesses, we present various
transfer paradigms that illustrate how the effects of these subprocesses affect the
outcome of the resultant transfer.

1. Response learning simply refers to the process of learning the
response terms of a paired-associate list. Tt predicts positive transfer if some
response terms of the initial list occur in the transfer list.

2. Stimulus Differentiation, like response learning, refers to the process
of learning the stimulus terms of a paired-associate list. Additionally, in
learning a list, subjects must also discriminate between the stimulus terms.
The greater the similarity between the stimuli, the greater the difficulty in
learning the list.

3. Forward Associations refers to the association of a response with a
stimulus so that the response is elicited whenever the stimulus is presented.
The effects of forward association predicts positive transfer if some S-R asso-
ciations in the initial list oceur in the transfer list.

4. Backward Associations can also form during paired-associate learn-

ing. Hence, negative transfer can occur if response terms common in both
the initial and transfer list are associated with different stimuli.

Information Transfer 23

Transfer Paradigms

A subject can be made to experience either positive or negative transfer by
varying such factors as the similarity and meaningfulness of the stimulus and
response terms. The effects of the following basic transfer paradigms depend on
how these factors affect each of the four subprocesses described above.

* A-B,C-D Paradigm. There is no similarity between either the
stimulus or the response terms. This paradigm produces zero transfer. It is
the basic control paradigm used to compensate for the effects of general
transfer. Having the subject learn two completely different commands (c.g.
print a file, send a mail message) is an example of an A-B,C-D paradigm.

* A-B,C-B Paradigm. The effects of response learning induces positive
transfer but the effects of backward associations induces negative transfer.
The overall effects of this paradigm depend on the meaningfulness of the
responses. If the meaningfulness of the response terms is low, positive
transfer results. This is because more time is spent in response learning,
allowing less time for backward associations to form. Similarly, negative
transfer results if the terms are highly meaningful. Changing the names of a
familiar set of commands is an example of an A-B,C-B paradigm,

* A-B,A-C Paradigm. This paradigm causes negative transfer due to
the formation of forward associations in learning A-B. The B terms compete
with the C terms, interfering with the establishment of A-C associations. If
the meaningfulness of the stimulus terms is low, then the positive transfer
cffects from stimulus learning can surpass the negative transfer effects from
competing associations. This is because more time is spent in stimulus dif-
ferentiation allowing less time for forward associations to form. An example
of an A-B,A-C paradigm would be if the names of a familiar set of com-
mands in one application were assigned to different commands in another
application,

* A-B,A-B, Paradigm. In this paradigm, the stimuli and responses are
identical but the response terms in the transfer list are re-paired (i.e. the
associations between the stimulus and response terms are different). This
paradigm causes massive negative transfer because the forward associations
formed from the initial task interfere with the formation of new associations.
The negative transfer effects can be mitigated if the terms are low in mean-
ingfulness because more time is spent learning the terms than in forming
strong forward associations. Changing the name-to-command assignments
within a familiar set of commands is an example of an A-B,A-B, paradigm.

* A-B,A-B’ Paradigm. The stimuli in this paradigm are identical while
the response terms in the initial list are similar to those in the transfer list. If
the similarity is strong enough, positive transfer will occur from the effects of
both forward associations and stimulus learning.

4.2.2.1 Consistency

Strong similarity between the responses in the initial and transfer tasks (the
A-B,A-B’ paradigm) promotes positive transfer. This fact readily translates into
one of the more popular design strategies:

24 Information Transfer

Similar entities should behave in similar ways wherever they occur.

This principle suggests, for example, that an operation such as deletion should be
invoked by the same mechanism across all contexts whether it refers to a mail mes-
sage, a line of text or an entire document.

Although consistency is desirable, it is not always casy to achicve. There are
many (sometimes conflicting) dimensions along which a design decision can be con-
sistent. Smith et al. (1982) relatc one such design dilemma in Star - what happens
to a document icon after it is printed? The icon can be deleted, returned to its ini-
tial location, or left in the printer. All three alternatives are consistent with dif-
ferent models. The first is consistent with the MOVE command. Whengver an icon
is moved to the file cabinet, mailbox or garbage, it is deleted (after it is filed or
mailed, of course). The third is consistent with a user’s model of a physical printer.
However, the second was chosen for various pragmatic reasons and alsc because it
saves the user a step {removing the icon from the printer). Hence, other considera-
tions may nullify the consistency principle.

Consistency by Universal Operations

The design should strive toward a small set of powerful, universal opera-
tions.

A powerfu! and universal operation applics in many or all applications in the sys-
tem. For example, Star’s MOVE command can be used to move text, move docu-
ments, print documents and mail documents; the PRINT and MAIL commands are
thus absorbed by the MOVE command.

Another instance of employing universal operations is Port’s editing facilities.
Port makes available its basic text editing features in every application that
requires text as input.

Consistency by Hardware Transparency

The system should avoid separate interaction mechanisms because of
hardware differences.

Unix works consistently across a wide variety of terminal devices, irrespective of
their sophistication. As a result, the user can easily switch between terminals with
almost no learning cost. However, this consistency is maintained at the cost of
wasting certain capabilities a terminal device may offer.

Port strives to conceal the presence of a network so that remote and local
files are accessed in an identical manner. Hence, all applications which reference
files operate in the same way, regardless of where the files are physically located.

4.2.2.2 Stimulus Differentiation

Dissimilar entities should be made to appear differently.

Information Transfer 25

If similar stimuli are associated with different responses (the A-B,A-C paradigm), a
conflict will arise as to which response should be elicited. The stimulus differentia-
tion principle suggests that making dissimilar objects and operations appear dif-
ferently will reduce or remove this potential source of interference.

Consistency by Dimensional Expansion

The stimulus differentiation principle constrains the ways in which con-
sistency can be applied. Often, a “special case” is forced into a consistent moid
and the resulting cracks hidden for the sake of maintaining consistency. This prac-
tice may make the concept easier to learn but only postpones the confusion that
inevitably follows.

At the first sign of an inconsistency, the dimensions of consistency should be
expanded to accommodate the inconsistency.

In Unix, all devices are generalized as files. Some devices, such as teletypes,
card readers and printers, can be considered restrictions of the file concept and
hence, are compatible. However, devices such as modems, tape drives, typesetters,
graphic terminals and network connectors do not fit well into the file concept. As a
result, there are many “special files”, each marring the concept in its own idiosyn-
cratic manner.

Room supports a higher level abstraction, icons, which does not disguise the
dissimilarities of devices as files. Rather than delude the lecarner with a false sense
of simplicity, Room addresses the problems of helping him assimilate the multitude
of available services. Although consistency between devices is lost, consistency is
maintained along more appropriate dimensions such as the method of using icons
and an icon’s similarity to its physical counterpart.

Modes and Escaping

Besides restoring consistency, dimensional expansion is one of the most power-
ful techniques available to the designer in simplifying a user interface. For exam-
ple, its application can eliminate modes and the need for escaping. A mode is a
state that prevents certain other useful operations from being invoked unless the
state is left. Escaping is used to create new objects from a finite collection of
objects. Unix’s tip illustrates an application which uses escaping to represent spe-
cial operations. Tip ecnables a user to connect to another Unix host computer
without leaving the current session, When invoked, it directs all input from the ter-
minal to the new session instead of the old session. The problem is how to disen-
gage this redirection of input and regain communication with the old session. A
command cannot be constructed from the normal character set as any character
and character sequence can potentially be used in the new session. This is solved
by choosing a character from the normal character set and endowing it with the
properties of an escape character. The escape character and the character(s) follow-
ing it, are interpreted as a special operation by the application. Two occurrences of
the escape character are interpreted by the application as a single normal instance
of that character.

There are basically two ways to achieve dimensional expansion: “display

26 Information Transfer

partitioning” and the creation of new objects. In display partitioning, the display is
divided into distinct regions. Keyboard input is interpreted differently depending
on which region contains the cursor. For example, windows partition the display
between applications. Windows enable a user to interact with other applications
without quitting the current one;, hence, windows eliminate a mode. Port’s opera-
tions further partition the display within a window.

The user interface of the tip application can be simplified by providing new
keys on the keyboard and have tip recognize them. Alternatively, the display can
be partitioned into two regions; keyboard input in one region is sent to the host,
while keyboard input in the other is interpreted.by tip.

Room adds a dimension to the desktop concept by essentially providing “mul-
tiple desktops™ in the form of multiple rooms, This is made possible by providing a
special icon that Star lacks — the door.

4.2,2.3 Analogy

Using analogies or metaphors in the design of a user interface is also a way of
exploiting transfer. Like consistency, it takes advantage of existing mental struc-
tures; a learner can draw upon the analogy to help him understand an unfamiliar
situation.

Designing around a familiar metaphor helps reduce learning time.

However, there is an important difference between consistency and analogy that
makes the use of analogies potentially detrimental. Consistency makes use of
“known” experiences and can therefore be predicted and controlled. Analogy
appeals to experiences which are not fully known; the effectiveness of an analogy
relies on the extent to which the users’s analogical mode] coincides with that of the
designer’s. If either the user or the designer misinterprets the analogy (interprets
too many, too little or the wrong aspects of the analogy), incorrect associations may
result in negative transfer.

Bounded Analogies

A useful analogy that demonstrates how analogies can be misused is the
adage. An adage such as “Getting things done around here is like mating
elephants” does little to enlighten the learner about how things are actually done.
Not until the punch line is delivered can the learner even begin to suspect the simi-
larities between the two models. In this case there are three — (1) it’s done at a
high level, (2) it’s accomplished with a great deal of roaring and screaming, and (3)
it takes two years to produce results.

Halasz and Moran (1982) suggest that an analogy should be used as a
literary metaphor and not as a model for reasoning about a computer system.
They feel that only an abstract conceptual model that accurately represents the sys-
tem should be used for detailed reasoning about the system. The role of the
literary metaphor is to impart to the learner a specific characteristic of the concep-
tual model — that is, to help construct the conceptual model. In other words, an
adage like the one above, is an effective way to build a model but should not be
used as the model itself. By clearly indicating what aspect of an analogy is

Information Transfer 27

relevant, this suggestion helps to bound the analogy.

Explanations of the limits and incompatibilities of an analogy should
accompany its use.

This principle restricts the space of misconceptions which may arise if the user is
not informed of the limits of an analogy. For example, a useful bounded analogy
for doors in Room would be “As in real life, doors are used to cnter other rooms;
however, in Room, doors can be copied and moved about”.

4.3 Summary

We have accounted several precepts from learning psychology and inferred
from each, a number of user interface design principles. The work of this chapter
is a first approximation of the design principles framework, Even in this primitive
form, the framework reveals relationships between popular design principles, For
example, our categorization rclates three of Xerox’s design principles (described in
Chapter 2). Universal commands is a strategy for achieving the consistency princi-
ple; the consistency and familiar user’s model principles are both ways to promote
specific transfer. However, there are several deficiencies with our framework, the
most prominent being a lack of any quantitative analysis. For example, although
our visibility strategy helps the trial space reduction principle, it creates another
problem, namely, searching for displayed objects; the search time is directly propor-
tional to the number of displayed objects. Because there is a tradeoff with using
this strategy, it is necessary to have a quantitative relation that allows the designer
to determine whether visibility should be applied in a particular circumstance.
Development of a more quantitative approach is a necessary step in the develop-
ment of the framework,

4.4 References

[Houston 1981]

J.P. Houston, Fundamentals of Learning and Memory 2E, New York:
Academic Press Inc., 1981,

[Malasz and Moran 1982)
F. Halasz and T.P. Moran, “Analogy Considered Harmful”, Proceedings of
the Human Factors in Computer Systems Conference, Gaithersburg, MD,
March 15-17, 1982,

[Marx and Bunch 1977]
M.H. Marx and M.E. Bunch, Fundamentals and Applications of Learning,
New York:Macmillian Publishing Co., Inc., 1977,

[Norman 1983)

D.A. Norman, “Design Rules Based on Analyses of Human Error”, Commun-
ications of the ACM, Vol. 26, No. 4 (April 1983), pp. 254-258.

28 References

[Price et al. 1982]
R.H. Price, M.Glickstein, D.L. Horton and R.H. Bailey, Principles of
Psychology, Holt, Rinehart and Winston, The Dryden Press, Saunders Col-
lege Publishing, 1982.

[Tarpy and Mayer 1978]
R.M. Tarpy and R.E. Mayer, Foundations of Learning and Memory,
Illinois:Scott, Foresman and Company, 1978.

S

Anatomy of the Room Environment

The Room environment is implemented as a set of cooperating processes.
This separation into processes reduces the average amount of main memory used by
the Room environment and enhances the responsiveness of Room’s user interface.
Figure 5-1 depicts the genealogical and communicative relationships of the various
Room environment processes.

With the exception of the Room Makers, this chapter presents the design of
the Room implementation under Port Version 2.0. The Room Maker described
here is as yet in a prototypical stage of development. We begin with a brief
description of the Port process model and then discuss Room’s major data struc-
tures and the role of each process.

5.1 The Port Process Model

Port is a multi-process operating system where process communication and
synchronization is achieved with four message-passing primitives [Cheriton et al.
1979, Cheriton 1982, Malcolm et al. 1983],

send(message, reply _message,receiver_pid)

receive(message, sender_pid)

sender _pid= receive _any(message)

reply(reply_message,sender__pid)

Each process is identified by a unique process identifier (PID). The send primitive
is used to send a message to, and await a reply from the process specified by
receiver _pid. The receiver process can receive the message with ecither the receive
or receive_any primitive. With the receive primitive, a particular process can be
specified from which a message is expected. If no message is immediately avail-
able from that process, the receiving process waits, Other sending processes are
suspended until the receiving process is ready to receive its messages. With the
receive _anyprimitive, a message from any process is accepted. After processing a
request, the receiver process can execuic a reply primitive to return a reply mes-
sage to the sender process. The sender process resumes execution once it obtains
the reply message. Figure 5-2 illustrates the send/receive/reply interaction.

Dynamic process creation and destruction are done with two process manage-
ment primitives.

pid = create(program_name,priority)

destroy(pid)

29

30 The Port Process Model

Entrance

——:= create

— send

Figure 5-1: Process Structure of the Room Environment

The create primitive creates a new process at the specified priority and returns its
PID. The destroy primitive terminates a process’ execution. The operating system
reclaims the resources used by the destroyed process and releases any processes
that are awaiting a message from the process.

5.2 Data Structures and Files of the Room Environment

5.2.1 The Icon Descriptor

The Icon Descriptor is a record that contains information about an icon. This
data structure is used by all but the Exit and Entrance processes. There are eight
fields in an Icon Descriptor (see Figure 5-6). The LABEL, CONTENTS, HELP_FILE
and ACTIVITY ficlds are pointers to strings containing the icon’s name, contents,

Data Structures and Files of the Room Environment 31

Sender Receiver
Process Process
send
; receive
Time :
reply

Figure 5-2: The send/receive/reply Interaction

help and activity attributes, respectively. The values of the remaining attributes —
removable, movable, copyable and examinable - are stored in the ATTRIBUTES
field. Since the values of these four attributes are either true or false, each is
represented by a single bit in the ATTRIBUTES field. The icon’s parameters are
stored in the PARAMETERS field. If the contents attribute specifics an icon picture,
the PICTURE field points to a string describing the icon picture. The INDEX field
contains the icon’s position in the room.

Icon descriptors are frequently sent between Room processes. The Room
processes use two functions, Send_icon and Receive_icon, to exchange lcon
Descriptors. These functions send the descriptor and associated strings with a
series of sends, receives and replies.

5.2.2 The Users Tree

Users’ files are stored in the Users Tree. Directly underncath the root of the
Users Tree are files with the names of the users authorized to use the workstation.
Figure 5-3a shows the Users Tree with two user subtrees, JPPChan and JSmith. A
new user is added to the system by creating a user subtree in the Users Tree.
Similarly, a user’s privileges can be revoked by removing his user subtree from the
Users Tree.

5.2.3 Room Files and the Rooms Subtree

feon Descriptor information is stored in room files. There is one room file for
each room. The name of a room file is that of the room it represents. A user’s
room files are stored in the Rooms Subtree located in the user’s subtree (see Figure
5-3a). Public rooms, such as the Supply Room and Lobby, are stored in the Rooms
Subtree located in the System Tree (sece Figure 5-3b).

There are 29 lines of text in a room file. Figure 5-4a shows the room file of
JSmith’s Studio (refer to Figure 3-1). The first line contains a single character that
represents the format version of the room file. This version indicator prevents

32 Data Structures and Files of the Room Environment

(a) The Users Tree

(b) The System Tree

Croms > CTieom > (el

CSupplies (CLobby > CMail > CPaint
Cprinter > (clock >

Figure 5-3: The Users and System Trees

Room from misinterpreting old room file formats.

Each of the remaining 28 lines holds information contained in an Icon
Descriptor. A line is constructed by concatenating the values in an Icon Descriptor
and separating each valuc by a delimiter character (). Each of the 28 lines
corresponds to an icon position in the Room display; vacant icon positions are
represented by empty lines. Figure 5-4b shows the format used to store Icon
Descriptor information in a room file,

5.2.4 Icon Pictures and the Icons Subtree

Each icon picture is represented by a string of bytes which, when displayed,
renders an appropriate graphical object. Fach icon picture is stored in a separate
file. A collection of icon picture files is stored in the Icon Subtree located in the
System Tree (see Figure 5-3b). An icon picture is identified by the filename in the

Data Structures and Files of the Room Environment 33

U w s W —

door'Gallery nneanx** # users/JSmith/profile /rooms/ Gatlery
9 | mail*Mail'nnenpx’ # system/ help/ Mail 1 # activitics/mail JPPChan'%

n
12
13
14
15 | doorOffice'nncnnx'* # users/JSmith/ profile/rooms/Office
16 [paint'Paint’ancapx‘# system/help/Paint' ! # activities /paint
17
18
19
20
21
22
23
24
25
26
27
28
29

(b)

not used

contents name help activity parameters

copyable examinable
removable movable

Figure 5-4: The Room File Contents for JSmith’s Studio

icon’s contents attribute. The Icons Subtree in Figure 5-3b has two icon picture
files — a clock and a printer.

An icon picture is created using the Port Editor. A file containing a tablet of
special characters is provided in the Icons Subtree for composing icon pictures, as
it is inconvenient to generate these special characters using the keyboard.

34 Data Structures and Files of the Room Environment

5.2.5 The .parameters File

An Icon Descriptor contains only the values of an icon’s parameters. The
Examiner acquires the names and types of the icon’s parameters from the .parame-
ters file. All icons with parameters have a parameters file beneath the program
file specified by the icon’s activity attribute.

3

file

t

orientation

o [portrait] [landscape]
number of copics

n

Figure 5-5: The .parameters File for Figure 3-3

Figure 5-5 illustrates the .parameters file for the printer icon of Figure 3-3.
The first line in a .parameters file contains the number of parameters. This enables
the Examiner to pre-allocate enough space for all the parameter fields. A parame-
ter field occupies two lines; one line defines the field name while the other defines
its type. Type ‘t’ specifies that file is a text field. Type ‘0" is lollowed by the
options available for the orientation parameter. Type ‘n’ specifies that number of
capies is a numeric field.

5.3 The Room Process

Of all the processes comprising the Room environment, only the Room pro-
cess is always executing; all other processes are created by the Room process when
needed, and destroyed when no longer needed. In addition to creating helper
processes, the Room process interprets user input, manages the Room window, and
maintains various data structures. File 1/O is done by the Worker to save space in
the Room process.

5.3.1 The Room Descriptor and Room List

As Icon Descriptor information is read in from a room file, it is saved in a
Room Descriptor. Figure 5-6 shows a Room Descriptor. The ROOM NAME field is
a pointer to the room’s name. The SLOTS field is a pointer to an array of Tcon
Descriptors. A room’s Icon Descriptors are stored in the SLOTS array. This array
has 28 entries, one for each icon in the room. The ROOM LINK field is used to
chain Room Descriptors into a linked list.

Room Descriptors are stored in the Room List in main memory to make trav-
cling between rooms very fast. However, to prevent a room file from becoming
inconsistent with the Room Descriptor in memory, the Room Descriptor informa-
tion is written into the room file whenever the user changes the room. Copying,
removing and repositioning an icon causes the Room process to update the room
file. An icon examination that results in a change to the icon’s parameters or attri-
butes also causes the room file to be updated.

The Room Process 35

Room List
28
Room Descriptor NN RN
ROOM NAME, /
SLOTS
ROOM LINK
Icon Descriptor
LABEL
ROOM NAME CONTENTS
SLOTS ATTRIBUTES
ROOM LINK HELP FILE
ACTIVITY
IPARAMETERS!
INDEX
Picture List PICTURE

N\ :

Picture Descriptor

f

NAME NAME
STRING STRING
LINK LINK

Figure 5-6: Data Structures in the Room Process

The Room List is a linked list of Room Descriptors.

5.3.2 The Picture List

An icon picture is stored in a Picture Descriptor (see Figure 5-6). The NAME
field is a pointer to the picture’s name while the STRING field is a pointer to a
sequence of bytes that represents the picture. The LINK field is used to chain Pic-
ture Descriptors into a linked list, allowing the list of pictures to grow with time.

When an icon references an icen picture which is not in the Picture List, a

Worker is created (described below) to obtain the picture. In this way, icon pic-
tures are stored in main memory as needed.

36 The Room Process

5.3.3 The Room Stack

The Room process maintains a Room Stack to record the user’s excursions
between rooms. Before Room enters another room, the Room process pushes the
name of the current room onto the Room Stack. Thus, the return route is available
by popping the Room Stack. The main motivation for having a Room Stack
instead of direct room connections is to permit several users o share a single room
(e.g. the Supply Room). Since a shared room can be entered from any room, it is
impossible to construct doors Jeading back to every room having direct access to
the shared room. The Room Stack enables the return route to be determined
dynamically.

The Room Stack is implemented as an array with currently 10 entries. The
array structure limits the “depth” of rooms a user can be from his Office, and thus
limiting any cycles that may occur.

5.3.4 Room Process Requests

In addition to handling user rcquests, the Room process also handles requests
from other processes.

+ ADD NEW ICON is a request used by applications that wish to place a new

icon in the current room. The Room Maker uses this request to display a

new door. 1f the current room cannot accommodate a new icon, the Room

process replies with an appropriate failure message.

+ ENTER ROOM forces the Room process to leave the current room and enter
the specificd room. The Exit and Entrance processes, for example, make use
of this request to enter the Lobby and Office, respectively.

There are three types of ENTER ROOM requests, The PUSH CURRENT type
makes the Room process push the current room onto the Room Stack before
entering the specified room. The FORGET ALL type makes the Room process
clear the Room List and Room Stack before entering the specified roem.
The FORGET CURRENT AND POP type makes the Room process free the Room
Descriptor of the current room, enter the room specified by the top of the
Room Stack and finally, pop the Room Stack.

+ DISPLAY MESSAGE is a request to display a message in the error message
area (see Figure 3-1).

5.4 The Examiner

The Examiner is created by the Room process when the user selects EXAM-
INg. The primary reason for separating the icon examination function in a process
is to cconomize on the amount of main memory used by Room. The Room process
relinquishes control of the display and redirects all keyboard input to the Examiner.
The Examiner obtains the Icon Descriptor of the selected icon from the Room pro-
cess and displays the icon’s attributes and parameters for manipulation by the user.
When the examination is completed, the modified properties are sent back to the
Room process and the Examiner terminates. The Room process then regains con-
trol of both the input stream and the display.

The Examiner 37

5.4.1 The Field Descriptor

In the Examiner, each icon parameter and attribute is stored in a Field
Descriptor (see Figure 5-7).

Table Descriptor Field Descriptor
NUMBER NAME
MAX_NAME_SIZE VALUE
LIST TYPE

OPTIONS

Figure 5-7: Table and Field Descriptors

The NAME field is a pointer to the parameter’s or attribute’s field name. The TYPE
field holds the parameter or attribute’s field type. If the TYPE field contains an ‘o’
the VALUE field points to a list of options. The OPTIONS field specifies which
option in the list of options is selected. If the TYPE field contains a ‘t’ (text) or ‘n’
(numeric), the VALUE field points to a string containing the valuc.

Field Descriptors are stored in tables. The Examiner maintains two tables,
one for the icon’s parameters and the other for the icon’s attributes. A table is
represented by a Table Descriptor (see Figure 5-7). The LIST field is a pointer to
an array of Field Descriptors. The NUMBER field holds the number of Field
Descriptors in LIST. The MAX NAME SIZE field holds the maximum length of the
field names. This value is used to minimize the width of the field name display
area in the Examiner’s window (see Figure 3-3).

5.5 The Worker Process

The Worker process is Room’s interface to the file system; it stores Icon
Deseriptor information in room files, reads icon pictures, and starts activities. The
Worker is a lransient process created by the Room process only when needed to
service a request. The Worker destroys itself after each request (to save space).

5.5.1 Worker Process Requests

The Worker handles four types of requests. All of the Worker requests are
sent by the Room process. :

* READ TCONS FROM ROOM is a request to obtain Icon Descriptor information

from the specified room file. The Worker checks the version indicator to

ensure that the room file format is current. If the format is out-of-date, the

Worker destroys itself. Each line of the room file is read and packaged into

an Icon Descriptor which is then sent to the Room process.

* WRITE ICONS TO ROOM is a request to save Icon Descriptor information in
the specified room file. The Worker first writes the current version indicator
into the room file. Then for each lcon Descriptor, the Worker writes a line of
text representing the contents of the Icon Descriptor into the room file.

38 The Worker Process

* READ ICON PICTURE is a request to locate and obtain an icen picture from
Room’s collection of icon picture files. The Worker searches for a file with
the given name in the lcons Subtree (sec Figure 5-3b. If the search is suc-
cessful, the picture is returned.

« EXECUTE A PROGRAM is a request to start and pass parameters to an
activity,

5.6 The Help Activity

The Room process creates a Help activity in response to a HELP operation,
After receiving the leon Descriptor of the selected icon from the Room process, the
Help activity attempts to read the help file specified by the help attribute. If the
read succeeds, the Help activity creates its own window and displays the contents
of the help file. Otherwise, the Help activity sends a DISPLAY MESSAGE request to
the Room process to display an appropriate message.

Help files may be located anywhere; by convention, help files for system icons
are stored in the Help Subtree located in the System Tree. Figure 5-3b shows help
files for the Mail and Paint applications.

5.7 The Room Maker Activity

The Room Maker icon starts the Room Maker activity. The Room Maker
creates a window and prompts the user for the new room’s name and type. The
Room Maker checks if the room name is already in use. If so, it refuses to make
the room and requests another name. Otherwise, the Room Maker creates a room
file in the user’s Rooms Subtree.

5.7.1 The Room Maker Helper Processes

There is a collection of Helper processes, one for cach room type, which are
responsible for actually making rcoms. Based on the room’s type, the Room Maker
creates the appropriate Helper process to make the room. The Helper inherits the
Room Maker’s window, and with it, asks the user questions that are needed to
create the specified room type, After acquiring the necessary information from the
user, the Helper fills the room file with Icon Descriptor information and sends an
ADD NEW ICON request to the Room process to add a new door to the current
room; this new door leads to the new room, If the room file cannot be filled with
icon Descriptor information or if the ADD NEW ICON request fails, the Helper
removes the room file and displays an appropriate message.

5.8 The Exit Process

The Exit process is created by entering through the Lobby door icon. The
Exit process makes an ENTER ROOM/FORGET ALL request with the location of the
Lobby room file to the Room process.

The Exit Process 39

5.9 The Entrance Activity

Entering through the Entrance door icon in the Lobby starts the Entrance
activity. The Entrance activity creates a window and displays a list of user names.
This list is acquired by looking directly underncath the root of the Users Tree.
After the user selects his user name, he presents his password by typing. The
Entrance activity encrypts the password and compares the encrypted password with
the contents of the password file, located in the user’s subtree (see Figure 5-3a). If
the encrypted passwords do not match, the Entrance activity destroys itself. Other-
wise, the activity makes an ENTER ROOM/FORGET ALL request with the location of
the user’s Office room file to the Room process.

5.10 References
[Cheriton et al. 1979]
D.R. Cheriton, M.A. Malcelm, L.S. Melen, and G.R. Sager, “Thoth, A Port-

able Real-Time Operating System”, Comm. ACM, Vol. 22, No. 2 (Feb.
1679), pp. 105-115.

{Cheriton 1982]
D.R. Cheriton, The Thoth System: Multi-Process Structuring and Portabil-
ity, Elsevier Science Publishing Co., 1982.

[Malcolm et al. 1983]
M.A. Malcolm, et al., The Waterloo Port Programming System, Computer
Science Department, University of Waterloo, Jan. 1983,

6

Summary and Further Research

This chapter summarizes the contributions of this report. Both the desktop
and room medels were discussed throughout Chapters 2, 3 and 4. Here, this
material is consolidated and the fundamental differences between the two models
are emphasized. For the design principles framework, several directions are sug-
gested for pursuing and using the framework. With the help of both experience
and our design principles framework, we prescribe some enhancements that can be
made to Room. In closing, we briefly report the current status of Room.

6.1 The Desktop Versus the Room Model

An important design criterion of a user interface is that it should be both
helpful toward the struggling novice and not encumber the expert. Reconciling
these two often dichotomous goals can be difficult. The Xerox Star effectively
demonstrates several principles that address the problems of reducing the overhead
of learning. The main contributions of the room model are principles that improve
an expert’s productivity without compromising the principles embodied in Star.
The following summarizes the techniques that the room model uses to promote effi-
cient interaction.

6.1.1 Activity Switching

A user often switches his attention between activities, For example, during a
session, a user may read and send mail, edit various documents and work on various
programs. Because of its single workspace, the desktop medel forces the user to
rearrange or clear his desk to prepare for another activity, Depending on the
number of tools and other objects associated with each activity, and the frequency
of activity switching, a user may waste significant time rearranging his desk. In
contrast, the room model permits the user to gather related tools and organize them
into an efficient arrangement for accomplishing a particular task. Switching activi-
ties simply involves entering the room designed especially for the task. Hence,
most of the overhead of switching activities is eliminated.

6.1.2 Organization

A consequence of not having to set aside objects with each task change is
that objects tend to remain in the same place. This results in increased operating
speed by reducing the time required to find an object. After having worked in a
particular room several times, a user remembers the positions of icons and can

40

The Desktop Versus the Room Model 41

quickly locate them without much conscious effort. In the desktop world, the posi-
tions of objects are more transient and the user must engage in time-consuming
searches.

6.1.3 Tailering

Universal commands have the effect of promoting consistency and hence,
make a system casier to learn. However, generality incurs a cost: most tasks typi-
cally require several general steps. For example, to move an object a user must (1)
find the object, (2) find its destination, and finally (3) invoke the move operation
(steps (1) and (2) are themselves composites of general steps). Although the
mechanics of this operation may be the best way to move an object in general, it is
clearly not the most efficient if a particular object is frequently moved to the same
place, such as to a printer; a single step is all that should be needed.

In Star, objects can be tailored but operations cannot. Hence, operations
such as printing or mailing a decument can only be accomplished by finding the
document and moving it to the appropriate icon. In the room model, every icon,
such as a printer and mail icon, can be either universal and able to operate on any
document, or can be tailored to print or mail a particular document,

6.1.4 The Room Maker

Aside from the obvious problem of learning the capabilities of a new applica-
tion, an expert can expericnce other problems when placed in a new task domain.
The first problem he encounters is finding the various tools which have been
developed to aid him in his new work, The Room Maker eliminates the tool gath-
ering stage by constructing a room that contains all the available and relevant tools
to perform a task, and arranges them in a standard fashion. Not only are the tools
provided, but each tool is tailored specifically for the particular task.

6.2 Using the Design Principles Framework

In Chapter 4, we derived user interface design principles from the precepts of
learning psychology. Our work is a first approximation and hence the framework
must be refined and validated. It must also be extended with principles from other
facets of psychology such as memory and perception.

The framework can be used as a basis for evaluating designs. For example,
the Trial Space Reduction principle asserts that learning time is inversely related to
the size of the trial space. With trial space size measurements of various user
interface designs, a designer can apply heavier preference weights to those designs
with smaller trial spaces.

There are often tradeoffs with applying a design principle. It is important
that a designer properly evaluate these tradeoffs; otherwise, a principle may
degrade rather than enhance performance, In this respect, the principles in our
framework are qualitative in nature, A logical and necessary step for the frame-
work is to develop quantitative models that reveal relationships between these prin-
ciples,

The framework has been quite useful in the design of Room and other Port
applications. At the very least, it can serve as a checklist that provides a sys-
tematic approach to building user interfaces. If only for this reason, we belicve

42 Using the Design Principles Framework

that the framework is worth pursuing.

6.3 Room Enhancements

6.3.1 Removing Rooms

Room currently lacks a facility for conveniently removing rooms. The prob-
lem does not lie in removing the room file (which is not difficult) but in detecting
and hence preventing the removal of an intermediate room. An intermediate room
is an essential junction for reaching other rooms. Removing such a room could
leave a user stranded in a room with no route to his Office, or it could permanently
sever all access to a vital collection of rooms.

Another problem with removing a room is the removal of all doors leading to
that room. The ability to copy and distribute doors complicates the door removal
process as all room files must be searched for “dead-end” doors. This would be
possible if door distribution were limited to only the same workstation. However,
Room permits doors to be distributed to other devices (e.g. the Truck) and even to
other workstations. A possible solution would be to remove all dead-end doors from
only the user’s private collection of rooms on his workstation. The remaining dead-’
end doors could eventually be eliminated by removing a dead-end door when a user
attempts to pass through it,

6.3.2 A Higher Level for Manipulating Rooms

Aside from the aforementioned difficulties of room removal, there is the more
important consideration of designing the logistics of room removal at the user inter-
face level. The Room environment lacks a means to visually identify and operate
on a room as an individual object. Applying the Dimensional Expansion principle,
a higher level application that can manipulate rooms is needed. The task of mak-
ing and removing a room would then be relegated to this application.

This application could enable the user to view the “building” of rooms, show-
ing their relative locations and connecting passageways. The removal of a room
would entail selecting the room and invoking the REMOVE operation. Adding a
room could entail selecting the room to which the extension is to be connected and
invoking the BUILD ROOM operation. Other operations such as moving a room and
copying the contents of a room could be included. This level could also be used as
a quick way fo travel between distant rooms, and perhaps eliminate the need for
door copying.

The problems of displaying room layouts may be as difficult as those encoun-
tered in designing masks for integrated circuits. However, with suitable constraints
(e.g. rooms must be square and have at most four doors), room layout could be
made feasible.

6.3.3 Applying Cosmetics

The use of metaphors can reduce the time it takes to acquire concepts. The
development of visual cues to accentuate these metaphors would also aid the cause.
For example, learning the notion of a door could be expedited if the door icon were
to visually “open” when entered. The notion of “traveling through” a door could
be strengthened by “expanding” the door 1o reveal the contents of the next room

Room Enhancements 43

instead of simply redrawing the display.

Examining an icon visually replaces the room display. This closely resembles
Room’s entrance into another room. As a result, some users have thought icon
examination meant “entering” the icon. This problem could be reduced by having
the icon “grow”, occupying as much as the room display as necessary; partially
covered icons should be visible “behind” the “opened™ icon.

The visual quality of the icon pictures in Room definitely needs to be
improved. The available display device restricts the quality of the pictures. A
display device with richer graphics capabilities would relieve this restriction and
better equip Room to incorporate principles from perception psychology.

6.3.4 Stimulus Differentiation for Icons and Rooms

Many users of Room have been confused about the distinction between door
icons and activity icons. Door icons should look different than activity icons
because they do not behave in the same manner. As this violates the Consistency
principle, doors should perhaps be made into objects which are different from
icons.

The room is another possible candidate upon which to apply the stimulus dif-
ferentiation principle. One type of room should look different from another type.
For example, a Truck should appear different from a Supply room.

6.3.5 Eliminating the Entrance Activity

First time users have an especially difficult time assimilating the Entrance
application into the room model. The visual cues of the Entrance application are
poor and consequently interfere with the room metaphor. Because the Entrance
application takes over the entire screen and visually replaces Rooms, many have
thought the Entrance to be another room, albeit atypical.

One way to reduce this confusion would be to integrate user authentication
into Room rather than delegate it to another activity, Each user of the workstation
would have an Office door in the Lobby. Overpopulation in the Lobby can be
alleviated by moving the Office doors of a user group te adjacent user group rooms.
To enter his Office, the user would find and enter his Office door. Room would
prempt the user for his password without disturbing the display in a drastic
manner. This should appeal to the more familiar notion of a locked door and elim-
inate some of the confusion caused by the security requirements of a workstation.

6.3.6 Eliminating Attributes

It is not clear whether the concept of icon attributes is necessary., To
dispense with this concept would reduce the learning overhead of Room. Of the
three options - removable, copyable and movable — removable is the one most often
used. The other two have been more useful to the workstation administrator in pro-
tecting icons in public rooms, such as the Supply Room and Lobby. The safeguard
against accidental removal offered by the removable option could be provided with
an extra set of operations; that is, s¢lecting the REMOVE operation should result in
another set of operations — REMOVE and DONT REMOVE — asking for confirmation.

The ability to edit infermation in the Room window would obviate the need

44 Room Enhancements

for both the name and contents attributes. The help and activity attributes are
more fundamental. It may be possible to absorb them into parameters or simply
revoke the ability to alter them once created. The former approach could be
applied to icons that the user creates. The latter could be applied to icons that the
system provides since both the help and activity attributes do not change.

6.3.7 Accommodating Network Services

The Port operating system enables a service to be used across a network.
Network services differ from local services in one very important respect — the
failure of cither the machine offering the service or the network connection renders
a network service inaccessible, A useful extension to Room would be the provision
of availability indicators on icons. This would enable the user to determine the
availability of a service by simply inspecting the appearance of the icon, There
would be no need to start an activity to acquire this information.

A user may have Offices on more than one workstation. Room should permit
a user to enter rooms on other workstations in the network,

6.3.8 Integrating Room into the System

The Port operating system had its own self-sufficient command interpreter
well before the inception of Room. Consequently, Room has had to conform to
some decisions made without Room in mind. For example, Port commands are
designed with few options to maintain simplicity and reduce typing. Complex
operations are possible with the help of simple commands and the pipe facility.
However, in the Room environment, selecting options is both mentally and physi-
cally simpler than constructing pipelines. This is because a complete list of options
for an activity icon is displayed, whereas a list of commands and their options is not
displayed. For Room to be more effective, it may be necessary to integrate certain
popular pipelines into more powerful commands.

6.4 Current Status of Room

All features of the Room environment as described in Chapter 3 have been
implemented and tested. Room is used in a fourth year undergraduate course. So
far, approximately 100 students have been exposed to the system over the course of
8 months. Moreover, all of Room’s features, save the Room Makers, are used com-
mercially by a number of companies; of the Room Makers, only the empty Room
Maker has been made available commercially.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

