EPARTMENT

ATERLES &

PARTMENT
EPARTMENT

S

ER
ER S

i
T
T
T

U
U

i
OMP

WA
W
IVERSITY OF WATERLOO C

B

Anthropomorphic
- Programming

Kellogg S. Booth
Jonathan Schaeffer
W. Morven Gentleman

CS-82-47

February, 1984




Anthropomorphic Programming *

Kellogg S. Booth
Jonathan Schaeffer

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3Gl
(519) 886-1351

W. Morven Gentleman

Division of Electrical Engineering
National Research Council of Canada
Ottawa, Ontario, Canada K1A OR38
(613) 993-2629

Anthropomorphism is the attribution of human form or personality to non-
human objects. Ancient Greeks anthropomorphised the gods in order to more
easily comprehend their actions. Modern programmers may find that anthropomor-
phism provides similar insight into the behavior of parallel programs. Anthropo-
morphic programming is a proven technique for building systems that work using
multitask structuring and message passing schemes to simplify the analysis of com-
plex systems.

These principles are illustrated by examples from the literature and from on-
going research in which multitask structuring results in highly modular, portable
systems. Many common problems associated with large systems (deadlock preven-
tion, performance monitoring, load balancing, resource allocation, debugging, and
synchronization of activities) are vastly simplified when they are treated anthropo-
morphically, often to the point that solutions mimicking structures evolved within
human society can be applied immediately to problems in software engineering.
Anthropomorphism is thus more than just a linguistic artifice. Its metaphors are
powerful tools for system design.

* This research was supported in part by the Natural Sciences and Engineering
Research Council of Canada under various grants.



Introduction

With the advent of parallel computers it is possible to structure programs as a
collection of cooperating tasks that execute concurrently. In order not to be
overwhelmed by the complexity of programming, it is important to have metaphors
and idioms with which to organize the tasks. Anthropomorphic programming is
data flow at the subroutine level, with the added feature that metaphors (anthropo-
morphisms) are used to “flesh out” the design and consequently our understanding
of the program structure. This approach to design forces the programmer to expli-
citly address parallelism inherent in the problem. By relating this concurrency to
similar cooperative tasks in everyday life, the programmer is frequently able to
develop elegant yet simple solutions. Our interest here is not merely academic;
elegance and simplicity contribute directly to our ability to comprehend a
program’s behavior.

The use of multiple tasks allows explicit scheduling of operations to be post-
poned as long as possible, or even suppressed entirely. This delayed binding accom-
plishes for. the scheduling of operations what relocatable modules and segmentation
schemes accomplish for the placement of data in memory. Multitask structuring is
thus a mechanism for resource allocation in the temporal domain that paralleis
techniques for resource allocation in the spatial domain. Message passing is the
means by which tasks communicate and the means by which synchronization is
achieved. A principal advantage of this approach is that it can be made indepen-
dent of linguistic features. Robust message passing primitives can be embedded in
Fortran or any other programming language.

Our attitude about concurrency is counter to other well-promoted design
methodologies for breaking monolithic sequential programs into parallel structures.
We see a confusion concerning the role of explicit parallelism within computation.
The source of this confusion is the bundling together of two very separate notions:
the asynchronous nature of actions within a computation and the scheduling of
those asynchronous actions. These are different issues and should be dealt with
separately. Implementors have attempted to provide high-level languages that
automatically detect parallelism during the optimization and code generation
phases of a compiler, effectively allowing users to ignore both issues. We think this
is a mistake. We advocate a different methodology for designing programs. Com-
putations should be expressed asynchronously unless there is an explicit dependency
compelling synchronization. Programmers should be forced to face the asynchro-

nous nature of problems; the question of scheduling should be addressed separately,
on its own merits.

The concepts of “task,” “process” and “computation” have various definitions
within the literature. The terminology we will use here will not be rigorously
defined because we intend that our ideas apply to many of the concepts discussed
by other authors. Rather, we will simply say that a task is roughly equivalent to



2 K.S. Booth, W.M. Gentleman & J. Schaeffer

our intuitive notion of a subroutine, but with the added distinction that when the
task is created it executes concurrently with its creator, perhaps even in parallel.
This contrasts with the simpler notion that a subroutine only executes when called
and that the caller blocks pending completion of the subroutine. Implicit synchron-
ization is lost when we allow concurrent execution of tasks. Most applications will
thus require that tasks be able to communicate and synchronize; we will assume
that a message passing mechanism exists for explicit synchronization [14]. The
choice of message passing over other synchronization primitives is not central to our
argument.

History

It is difficult to pinpoint the first occurrence of the term “anthropomorphic
programming.” The most general form is probably due to Carl Hewitt [16}, [17],
[18], [19], [27]. He interprets any intelligence, whether the ability to retrieve a
stored value or the ability to perform an operation, as the role of an actor.

In Hewitt’s terminology, each actor (task) follows a script (program). The
script defines how the actor will respond to receiving any possible message. An
actor is only defined in terms of its behaviour. A program is the pattern of interac-
tion between the cast of actors, each following a script. Teams of actors normally
are required to do anything interesting. Hewitt’s work provides a theoretical basis
on which others have buiit. His abstractions are embodied in many of today’s
attempts to structure a computation as a collection of tasks working together
toward a common goal. The Smalltalk-80 system [15] is one of the best known
examples. Capitalizing on Hewitt's ideas with available hardware requires that an
intuitive understanding of his goals be tempered by practical considerations of effi-
ciency.

Some earlier manifestations of anthropomorphism are found in the work of
Edsger Dijkstra in which he discusses concurrent tasks {9], {10]. Here is how
Dijkstra advises us to view a large programming system.

“If we dare to regard the whole happening as ‘meaningful,’ we do so
because we have mentally grouped sequences of instructions in such a
way that we can distinguish a structure in the whole happening . . . the
structure is our invention and not an inherent property of the equip-
ment ... it then follows that it is the programmer’s obligation to
structure ‘what is happening where’ in a useful way.”

Dijkstra devotes over four pages to describing his technique as applied to the
problem of the “Five Dining Philosophers.” He presents a rather elegant solution
using semaphores that synchronizes the philosophers’ use of their shared forks. A
generation of PhD students writing comprehensive exams will attest to the subtlety
of his arguments. But toward the end of his discussion we encounter the following
remarkable sentence.



Anthropomorphic Programming 3

“Instead of N sequential processes cooperating in critical sections via
common variables, we take out the critical sections and combine them
into a[n] N+1Ist process, called a ‘secretary;’ the remaining N

LIETY

processes are calied ‘directors’.

Dijkstra goes on for another page or so to tell us how this scheme works. But
we suspect that most people do not have to read beyond that initial sentence to
grasp the complete solution. The inescapable conclusion is that the simplicity of
Dijkstra’s explanation, and the appeal to everyday experience, are all the proof we
need. Curiously, seven years later [11], Dijkstra informs us that “The use of
anthropomorphic terminology when dealing with computing systems is a symptom
of professional immaturity.” We obviously disagree.

Anthropomorphic Design

In his own words, Dijkstra has *used the metaphor of directors and a com-
meon secretary.” His analogy with real-life leads to an immediate understanding of
the situation. Two points are worth reiterating here. The first is that the solution
itself is easy to comprehend once given. Equally important, however, is the obser-
vation that recognizing in the problem the need to coordinate the actions of a
number of independent computations, we can draw from our experience similar
situations in which society has evolved solutions. Armed with this insight, we can
realize an advantage using anthropomorphic metaphors.

Our aim is to embody within a task the same level of intelligence associated
with 2 human being in an organization. We do this in a number of ways, most
easily by adopting anthropomorphic metaphors. The concept of programming
metaphors is a basic tool for thinking and reasoning about programs. This is most
pervasive at Xerox PARC, where the term “metaphor” has itself become a meta-
phorical way of speaking about program abstractions.

De Millo, Lipton and Perlis presented a paper at the 4th POPL Conference
called “Social Processes and Proofs of Theorems and Programs” [8]. The authors
mean the first two words of the title to refer to the informal mechanisms by which
mathematical theorems come to be believed by the community of mathematicians.
There is another interpretation, however, which might occur to those for whom the
word “process” is a synonym for “task,” in which the words “social processes’ refer
to anthropomorphised abstractions of programs. The remainder of the title then
assumes a new meaning, different from that originally intended by the authors, but
still (we believe) within the spirit of their arguments. Suitably anthropomorphised,
programs become less fearsome (like the gods of the Greeks) and consequently
easier to live with. Following our intuition, we come to believe the correctness (or
detect incorrectness) of programs by appealing to our own social experience. It is
easy to-find examples that illustrate this phenomenon.

A solution to the problem of the Five Dining Philosophers has been proposed



4 K.S. Booth, W.M. Gentleman & J. Schaeffer

by Cargill [4]. He replaces the forks by a setting of alternating forks and spoons
(as would be found at a real spaghetti feed) for which there is an easy protocol that
insures all of the properties desired in a complete solution; each philosopher picks
up his fork before his spoon. The point here is not that a simple solution exists, but
rather that the explanation of the solution is so transparent once the problem is
viewed in everyday terms.

It is worth noting in this regard that a solution similar to Cafgill’s has
appeared, but without the anthropomorphism [3]. The correctness proof provided
by Burns has at least two {patchable) holes. The program as written does not work.
The solution is not “wrong,” but it is not immediately usable. We claim that this is
not an isolated phenomenon. Despite the many efforts in structured programming
(or perhaps because of those efforts) it remains a difficult job to design and imple-
ment reliable programs. Any mechanism, however simple, which aids us in that
endeavor should be given serious consideration. This is summed up for us by
Dyment [12].

“With all of this, however, the intellectual management of a large
software project remains a matter of considerable difficulty. Well
defined abstractions for dealing with the inherent difficulties associ-
ated with real-time interactions, multi-user configurations, parallel exe-
cution, and just the physical size of complex tasks often appear una-
vailable.” ’

What Dyment calls for is a formalism that will aid in the intellectual manage-
ment of software projects. Those with a mathematical background will be quick to
point out that the tools of program verification offer such a formalism. We again
cite De Millo, Lipton and Perlis.

“We believe that, in the end, it is a social process that determines
whether mathematicians feel confident about a theorem - and we
believe that, because no comparable social process can take place
among program verifiers, program verification is bound to fail. We
can’t see how it’s going to be able to affect anyone’s confidence about
programs.”

We have already pointed out that those authors meant “social process” to
refer to mechanisms in use among the community of mathematicians, not to our
netion of anthropomorphism. But our use of their argument is not out of place.
An anthropomorphic view of a program as a team of processes can provide just the
“social, informal, intuitive, organic, human process” that De Mille Lipton and
Perlis find to be at at the heart of successful mathematics. We suggest that a
proper goal of programming is to come to understand programs in the same way
that we eventually come to understand people, even though we may never be
entirely successful in predicting the behavior of either.



Anthropomorphic Programming 5

Case Study: Public Key Encryption

Needham and Schroeder [23] posed a problem in signature authentication
whose solution required an implicit network-wide time standard to validate signa-
tures. Their purpose was to provide a “foolproof” guarantee that digital signatures
were in fact correct. The primary deficiencies of their scheme are its dependence
both upon a network time standard and, worse, the assumption that encryption keys
are never compromised. Dealing with real distributed systems necessarily makes
the first assumption unlikely. The second assumption is dangerous in all cases. We
previously put forth a different solution which has neither of these drawbacks, but
which instead relies on the well-known function of a notary [2]. Our anthropo-
morphic approach uses a time-tested social institution to guarantee correctness.

With Needham and Schroeder’s scheme, in order to sign a document such as
a check the maker encrypts the document with his secret key. The payee relies
upon the fact that the decryption capability of the maker’s public key is tan-
tamount to proof of authenticity because.(in a well chosen public key system) the
probability of malicious or accidental decryption is effectively zero. The problem
not addressed by Needham and Schroeder is the question of compromise. Should
the maker subsequently announce that his key has been “compromised,” the payee
is left with no guarantee. The system leaves much to be desired, since an unscru-
pulous maker can renounce his key whether or not it has actually been comprom-
ised.

As in real life, our proposed solution gives a user (server, task, actor) within
the system the job of verifying signatures and validating their authenticity — not
when that authenticity is contested, but instead when it is not contested, at the time
of the signature. The notary, a neutral party, signs the document in a similar
manner to the maker, but using the notary’s secret key. Subsequently the payee
has two means for proving authenticity. If the maker’s key fias not been renounced
the original signature is obviously “good.” If the key has been renounced, the signa-
ture of the notary can be relied upon as an assurance that, at the (unspecified time)
that the document was notarized, the signature of the maker was indeed valid.

A convincing “proof™ that the solution satisfies our claims is little more than
an appeal to our everyday experience with signing documents and our social trust in
notaries. It happens that anthropomorphism aided in our discovery of this solution,
but we believe the strongest case for anthropomorphism is its explanatory role when
dealing with algorithms for inherently complicated situations. The reader who
doubts this need look no further than the original implementation of the Knuth-
Pratt-Morris pattern matching algerithm to see the importance of being able to
understand, at an intuitive level, the workings of a program. Originally installed
within a text editor at UC Berkeley, the pattern matching algorithm was removed
when a maintenance programmer realized that he could not understand how it
functioned. It was replaced with a significantly slower, but known-to-be-reliable



6 K.S. Booth, W.M. Gentleman & J. Schaeffer

algorithm [28]. "The maintenance programmer was correct in his decision.

Programs That Work

While it may be overstating our case to claim categorically that existing large
organizations do work and existing large programs do not, it is certainly true.that
the level of asynchronous activity is far greater for large organizations than for
large programs. The question is whether we can capitalize on this experience and
turn it to our advantage. In this respect we may be victims of our own cleverness.
Forty years ago “large” physics calculations were performed by groups of people
using mechanical calculators. As sequential computers replaced manual team
effort, coordination among subcomputations was neglected. Had advances in
hardware been slower we might have been forced to address the problems of organ-
izing large teams of human computors.

How were these people organized? Surely there must have been some coordi-
nation between individuals working on the same calculation. Examining the prob-
lems in such an organization could provide useful insight into how we should design
programs for those same calculations. For example, in a social context it is essen-
tial that provision be made to limit the repercussions of poor performance or
outright failure of individuals and to minimize the impact on other workers’ activity
during recovery. This is -a notorious shortcoming of most programming systems.
Failure of a single software module frequently dooms an entire project.

The goal in programming is to produce a program which solves a problem.
First and foremost a program must run and it must perform in the way we intend.
Efficiency is usually a secondary consideration. This attitude toward programming
is fostered by anthropomorphism, which hides the non-essential complexities of a
problem while highlighting the key aspects of a situation. The key aspect in this
case is the abstraction of behavioral responses to communication among tasks. This
focus allows the systems designer to separate the specification of services from their
implementation.

The delayed temporal binding afforded by multitask structuring means that
the programmer can complete the entire program without worrying about schedul-
ing considerations. Only after the algorithms have been tested and are seen to
deliver the desired result does the question of efficiency become important. As the
program evolves it is easy to allow more concurrency. Our experience has been
that, contrary to concern expressed in the literature, errors such as critical races
seldom occur in real programs designed this way. If anything, the designer usually
errs on the side of conservatism and over-constrains the parallelism.

A much more pervasive source of errors occurs at the level of specification.
Statistics compiled from error logs show that almost as many programming bugs
arise from incorrect specification as from incorrect implementation [13], {25].
Undoubtedly some of this can be attributed to a poor understanding of the original



Anthropomorphic Programming . . 7

problem, but we think it mere likely that the primary cause is the specification
vehicle itself. Some efforts at solving this problem have attempted to increase the
precision of the specification, thereby introducing a formal notation foreign to both
the specifier and the implementor, guaranteeing that neither fully comprehends the
implications of the design. In our world, anthropomorphic design would change the
specification to be within universal experience, reducing the probability that the
specification will be misunderstood, either by the specifier or by the implementor.

Case Study: An Interactive Paint Program

A good example of the way in which anthropomorphism can be used to sim-
plify the conceptual design of a system is the interactive paint program imple-
mented for raster graphics hardware at Waterloo [1], [24]. The paint program runs
under the Thoth operating system, a message-based portable operating system [6].
The program is divided into a number of tasks, each assigned a specific job, much
like the division of labor among people working together toward a common goal.
Some of these tasks have subsequently migrated into microcode and could well
evolve into hardware in future versions. Multitask structuring provides a means for
ensuring that this capability is maintained at a high-level within the system.

Unlike more traditional implementations of painting systems, we have been
able to incorporate algorithms directly from the literature, rather than having to
elaborate on them in order to handle asynchronous events such as user-initiated
breaks. A specific example of this is the algorithm which fills an area on the
screen given a seed point within the area. It frequently occurs that the area is not
a closed region, in which case the paint program “spills” into adjacent areas.
When this happens, the user must be able to signal the program that filling should
immediately cease. This is accomplished in our implementation by having separate
tasks, one to perform the actual fill, a second to wait for a possible signal from the
user, and a third to oversee the entire operation. The result is that each task con-
sists of a very simple piece of code to perform a specific job, in contrast to a larger
hodge-podge of instructions that attempts to interlace the two activities of filling
and detecting signals from the user.

Similar constructs are used throughout the paint program. The anthropo-
morphic roles of admiristrator, secretary, overseer, agent and assassin have
emerged as useful tools for structuring programs with the message-passing primi-
tives available in Thoth exploited to provide synchronization.

The Mega-Buck Physicist and His Problems

This paper grew out of a talk we originally intended to present at a confer-
ence sponsored by the physics and computation groups at two government labora-
tories. We were planning to discuss issues of anthropomorphic programming in the
context of the multitask paint program, but were persuaded that this was not what



8 K.S. Booth, W.M. Gentleman & J. Schaeffer

we really wanted to do. The comments below are George Michael's [22], after he
read the abstract we sent to the conference organizers.

“I do have a reaction to the abstract. In the following I'm wearing a
mega-buck physicist’s hat; ‘It is rather impressive that they have
designed an anthropomorphic interactive paint program. It is cleverly
able to run on home computers under control of some Egyptian god!
Wow!” The mega-buck physicist has a different problem. He doesn’t
know any better mathematics so he uses large computers to do large
computations. He needs to do more because the models are weak, so
he is looking for parallel and vector processors. He does not see gen-
eral ways to divide the cbmputation so cleanly as you can in the paint
program. He is not likely to listen to you. Your approach is fine for
separable tasks but not for problems at LASL and LLL.”

George has a valid criticism. One which needs to be addressed. We grant
that many physics codes do not seem to exhibit much separability, at least when we
first look at them. Nevertheless, large codes always have asynchronism. The
user’s interaction with a program is the most obvious example. This includes not
only input and output, but also debugging and performance monitoring. The com-
plex nature of large physics problems invariably makes graphical display of inter-
mediate and final results essential. Again, this interaction with the main code is
fundamentally asynchronous. Moreover, the user’s viewing of the data obtained
through this interaction is also an asynchronous activity. A user may want to
interactively peruse one or more models of a problem to compare results. The
depth of exploration depends heavily upon what the user sees in the various models.

Although large codes traditionally have been written as monolithic synchro-
nous programs, there are advantages to expressing parts of them as separate tasks.
Some large codes analyze aggregates; transient stability analysis of power grids is a
case in point. Various generators and loads are modelled separately and can profit-
ably be assigned to individual tasks. Even if this is not the case, there is still a use
for parallelism. A good example is the familiar problem of overlapping
input/output functions with the main computation. Multiprogramming systems
solve this problem quite handily for the general user, but in a large physics code
where resources are already inadequate, the possibility of achieving overlap through
sharing with other users is not feasible. The large code must somehow share cycles
with itself. This is usually accomplished using a machine-specific intertwining of
I/O and computation to efficiently schedule operations. If the original expression
of the computation were in terms of multiple tasks the computation could multipro-
gram with itself. Explicit scheduling might no longer be necessary.

One effect of this partitioning is that it may be possible to contain the ill-
effects of failure within a single task so that the computation in other tasks can be
salvaged. Clearly the partitioning allows exploitation of multiple processors. In



Anthropomorphic Programming 9

both cases muititask structuring delays the binding to a specific scheduling, rather
than forcing the decision at the start of the design cycle.

Numerous studies have shown that the kernel in large codes accounts for only
a small fraction of the total lines of source. Beyond the numeric representations of
the physics there are such matters as input and output, updating and manipulating
the data base, generating output reports, and selection control and options. The
kernel is even a smailer percentage of the total programming activity when this
support software is considered. All of the code must be organized. Anthropomor-
phism suggests natural ways to achieve this structuring and provides greater
assurance that the organization will carry over to other problems and to other
hardware.

Linguistic Considerations

Most of the examples we have cited involve systems written in languages
other than Fortran. Some languages contain message passing intrinsically. If we
restrict the activity of actors to something on the order of a subroutine, little advan-
tage is gained through such specialized notation. Subroutine calls can acceptably
implement all of the necessary mechanisms. This is as true in Fortran as in other
languages. It has the advantage of avoiding rigid semantics, allowing flexibility in
the choice of message passing schemes. In contrast, Ada enforces a particular
semantics which, we observe, does not correspond to any of the message passing
systems with which there is practical experience.

We personally prefer BCPL-based languages, but realize the need to stay
within the Fortran tradition for many applications. Our approach allows a free
choice of programming language because the message passing primitives can inter-
face to most languages through the standard subroutine or procedure facility.

There is a serious question as to whether other synchronization primitives
such as monitors can ever offer this same degree of linguistic independence. This
particular problem is the least of our objections to monitors, but it suffices to
dismiss them from consideration.

Anthropomorphic design naturally leads away from what Steve Johnson has
called the “center of the world syndrome” [20]. Most programming languages,
especially Fortran, assume a master/slave relationship between the various com-
ponents of a computation. But programs rarely exist in isolation. Usually, if a pro-
gram performs well and if the program solves a real problem, the desire to use it in
concért with other programs will arise. This frequently is very difficult to do
because most programs are written as if they occupy the central role in the compu-
tation. Hewitt might say that the problem is one of having to continually revise the
script. Actors don’t want to play bit parts, each wants top billing. Programs must
be capable of playing supporting roles as well as the lead. This gives an entirely
new interpretation to Weinberg’s idea of “egoless programming” [26].



10 K.S. Booth, W.M. Gentleman & J. Schaeffer

Dynamic Behavior Monitoring

One activity which is always asynchronous with the main stream of the com-
putation is monitoring the dynamic behavior of a program. This activity is a gen-
eralization of the way that interactive debuggers are normally used. Even in a
situation of provably correct programs it can be important to interactively monitor
various internal structures to fully understand performance issues. Often this
involves deriving and displaying ancillary resuits based upon available intermediate
values.

Two special cases of behavior monitoring are of particular importance. Pro-
gram debugging is a familiar feature in most systems. Robust exception handling
is less often found. Invoking the analogy with social institutions, frequently the
most effective means of exception handling is to “go over the head” of the person
(task) committing the error. In anthropomerphic systems this is easy. Special
tasks can readily be incorporated into the system which act as “spys” or “voyeurs”
to detect aberrant behavior and to report to other tasks (“supervisors™) for
appropriate action. One way to view both debugging and exception handling is that
one part of the computation is monitoring another, its action dependent upon find-
ing some particular pattern in the computation flow.

Case Study: A Text Editor

Our final example is again drawn from the Thoth system. The text editor in
Thoth appears to the user much like many other Qed-based editors [5], [7]. Ttis
line-oriented with a minimal regular expression capability. What is strikingly dif-
ferent is its internal structure. The editor consists of two independent tasks. One,
the actual “master,” is the buffer proprietor. This task accepts messages from a
second editor task. The messages consist of instructions to modify text in the file
being edited.

The purpose for this division of labor is twofold. First, each of the tasks is
much easier to conceptualize. It has only one job to accomplish, not twe, Second,
error recovery is particularly simple. After each atomic change to- the file, the
buffer proprietor awaits further instruction from the editor task. Should the editor
task become entangled due to an attempt to perform an illicit act, it simply com-
mits suicide rather than unwind its potentially complicated internal state. Should
the user decide to abort an action, the break key automatically destroys the editor
task. In either case the buffer proprietor detects the death of the editor task and
creates a fresh instance of the editor which begins anew. Because the actions of
the buffer proprietor are small and atomic there is no possibility of its failing. The
isolation of the buffer proprietor guarantees the integrity of the text file throughout
the editing session.



Anthropomorphic Programming 11

Current Work

The examples cited above illustrate various applications in which anthropo-
meorphic multitask concurrency aids in the design, implementation and understand-
ing of programs. Much of that work was performed in the Thoth environment at
the University of Waterloo. Development on Thoth ceased about two years ago,
but the notions of multiple tasks communicating through messages has continued in
the Waterioo Port system, designed and implemented by the Software Portability
Laboratory at the University of Waterloo, and in the Harmony operating system
developed at the National Research Council of Canada.

A version of the multiple task Paint system has been implemented under
Waterloo Port on an IBM PC. The work on Harmony is supporting research-into
intelligent, sensor-based robotics. Thoth was a uniprocessor system. Both Port and
Harmony have extended the notion of tasks and message passing to multipie proces-
sors, Port in a loosely-coupled environment of personal workstations and Harmony
in a tightly-coupled high-performance environment.

The acceptance of parallel computation is becoming widespread. Less com-
mon is an understanding of methodologies for supporting parallel computation
within programs. Our advocacy of multiple task concurrency with synchronization
via messagé passing is one such methodology. Karp [21] has pointed out that
experience with MIMD architectures invites an analogy with human organizations.
For a very small number of processors (people) detailed interactions can be main-
tained without a manager; with a modest number of processors {people) the interac-
tion patterns can be handled by simple structuring techniques that decombose the
problem into distinct tasks with well-defined areas of responsibility; with a very
large number of processors (people) the interaction becomes so complicated that
more rigid organization imposing a high degree of regularity seems to be required.
We suggest that these three levels of complexity may be understood best through
the metaphors of anthropomorphic programming.

Acknowledgements

Qur colleagues have contributed much to our understanding of the. ideas
expressed here. A number of the examples we have cited are drawn from research
conducted by members of the Software Portability Group including Michael Mal-
colm, Burt Bonkowski, Tom Cargill, David Cheriton, Morven Gentleman, Gary
Sager and Gary Stafford. Many other people participated in the evolution of these
techniques as they apply to problems in various areas such as computer graphics,
numerical computation and computerized problem solving.

The present version of this paper is the result of encouragement by George
Michael. A preliminary version was presented at the Conference on Language
Issues for Large-Scale Computing held March 16-18, 1982, at Glereden Beach,
Oregon. The conference was sponsored by the U.S. Department of Energy, Los



12

K.S. Booth, W.M. Gentleman & J. Schaeffer

Alamos National Laboratory and Lawrence Livermore National Labeoratory.

References

(1]

{2]

(3]

f4]

[5]

(6]

7]
(8]
[9]
[10]
[11]
[12)

[13]

f14]

Richard J. Beach, John C. Beatty, Kellogg S. Booth, Eugene L. Fiume and
Darlene A. Plebon, The message is the medium: multiprocess structuring of
an interactive paint program, Computer Graphics 16:3 (July 1982) pp. 277-
287.

Keliogg S. Booth, Authentication of signatures using public key Vencryption,
CACM 24:11 (November 1981) pp. 772-774.

James E. Burns, Complexity of Communication Among Asynchronous Paral-
lel Processes, PhD thesis, Georgia Institute of Technology (January 1981)
Technical Report GIT-ICS-81/01.

Thomas A. Cargill, A robust distributed solution to the dining philosophers
problem, Software — Practice and Experience 12:10 {October 1982) pp. 965-
969.

David R. Cheriton, Multi-process Structuring and the Thoth Operating Sys-
tem, PhD thesis, University of Waterloo (1979} Technical Report CS-79-19,

David R. Cheriton, Michael A. Malcolm, Lawrence S. Melen, and Gary R.
Sager, Thoth, a portable real-time operating system, CACM 22:2 (February
1979) pp. 105-115.

David R. Cheriton, The Thoth System: Multi-Process Structuring and Porta-
bility, North-Holland (1982).

Richard A. De Millo, Richard J. Lipton and Alan J. Perlis, Social processes
and proofs of theorems and programs. CACM 22:5 (May 1979) pp. 271-280.

Edsger W. Dijkstra, Co-operating sequential processes, in Programming
Languages, F. Gunuys (Ed.), Academic Press, New York (1968) pp. 43-112.
Edsger W. Dijkstra, Hierarchical ordering of sequential processes, in Operat-

ing Systems Techniques, C. A. R. Hoare and Perrott (Eds.), Academic Press
(1972) pp. 72-93.

Edsger W. Dijkstra, EWD498: How do we tell truths that might hurt?,
reprinted in Selected Writings on Computing: A Personal Perspective,
Springer-Verlag (1982) pp. 129-130.

Doug Dyment, A corkscrew for the software bottleneck, Micros 1:2 (October
1980) pp. 21-24.

Albert Endres, An analysis of errors and their causes in system programs,
IEEE Transactions on Software Engineering SE-1:2 (June 1975) pp. 140-
149,

W. Morven Gentleman, Message passing between sequential processes: the



(15]

[16]

[17]
[18]

[19]

(20]
f21]
[22]
[23]

[24]

{25]

[26]

[27]

(28}

Anthropomorphic Programming 13

reply primitive and administrator concept, Software — Practice and Experi-
ence 11 (1981) pp. 435-466.

Adele Goldberg and D. H. H. Engalls, The Smalltalk-80 system, BYTE 6:8
{August 1981) pp. 36-48.

Carl Hewitt, Peter Bishop and Richard Steiger, A universal actor formalism
for artificial intelligence, Third International Joint Conference on Artificial
Intelligence, Stanford University (1973) pp. 235-245.

Carl Hewitt, Viewing control structures as patterns of passing messages,
Artificial Intelligence Journal 8 (1977) pp. 323-364.

Carl Hewitt and Henry Baker, Laws for communicating parallel processes,
IFIP Congress Proceedings (1977) pp. 987-992.

Carl Hewitt and Henry Baker, Actors and continuous functionals in Formal
Description of Programming Concepts, E. J. Neuhold (Ed.), North Holland
(1978) pp. 367-387.

Stephen C. Johnson, personal communication.
Alan Karp, pérsonal communication.
George A. Michael, personal communication.

Roger M. Needham and Michael D. Schroeder, Using encryption for authen-
tication in large networks of computers, CACM 21:12 (December 1978) pp.
993-998.

Darlene A. Plebon and Kellogg S. Booth, Interactive picture creation systems,
Technical Report CS-82-46, University of Waterloo, Waterloo, Ontario,
Canada (December 1982).

Raymond J. Rubey, Joseph A. Dana, and Peter W. Blche Quantitative

~aspects of software validation, JEEE Transacnons on Software Engineering

SE-1:2 (June 1975) pp. 150-155.
Gerald Weinberg, The Psychology of Computer Programming, Van Nostrand
Reinhold (1971).

Akinori Yonezawa and Carl Hewitt, Modelling distributed systems, Fifth
International Joint Conference on Artificial Intelligence, Massachusetts Insti-
tute of Technology (1977) pp. 370-376.

{unknown), possibly apocryphal story once heard by the authors and thought
to be true by at least two other people who we asked.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

