:

WATERL
WATERL
WATERLO

s
Y OF
Y OF

s e

The Thoth Assembler Writing Kit

Michael A. Malcolm
Gary J. Stafford

September 1977
S-77-14

The Thoth Assembler Writing Kit

Michael A. Malcolm
Gary J. Stafford

Department of Computer Science
University of Waterloo

September 1977

This research was supported by the National Research Council of Canada.

The Thoth Assembler Writing Kit

Michael A. Malcolm
Gary J. Stafford

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

Abstract: The Thoth assembler kit is designed to support the Thoth
portable programming system being developed at the University of
Waterloo. Thoth Assemblers are capable of cross or on-site
operation.

Approximately 85% of the code remains unchanged across im-
plementations. About 5% of the code is generated automatically
from descriptions of the target machine. The remaining 5% to 10%
must be provided in the form of small well-specified functions which
do error detection and combining of opcodes with operands.

To date, assemblers for six different machines have been
generated. The average time to completion for each of these
assemblers has been less than eight man hours.

1. Introduction

In this paper we describe one component of a programming system being developed
at the University of Waterloo. This system, called Thoth, consists of a set of
software tools that can be used for programming on and for a variety of different
machines. Other components of the Thoth system software include a portable com-
piler for a high-level language (Braga, 1976), and a portable real-time operating
system (Cheriton, et. al., 1977). The compiled and assembled modules are relocated
and linked by a portable linking loader (Sager, 1977).

It is not possible to avoid assembly coding altogether, even though the Thoth
language provides the ability to emit machine instructions inline. We find that on
most machines, assembly language is needed for initializing interrupt vectors,
processess activation and deactivation, interrupt and fault handling, and other
similar functions. We also find assembly language useful for certain functions
critical to system performance. Since the Thoth compiler output is incompatible
with that of assemblers supplied by machine vendors, we implement our own
assemblers. To avoid having to write a new assembler for each new machine, we
have implemented a “kit” which substantially reduces the effort required to build
each new assembler.,

The Thoth operating system requires approximately 500 lines of assembly code
for each implementation. Other system and user programs require no assembly
code. Therefore, our assemblers need not be efficient or powerful; we have not
attempted to make them so.

Before proceeding, we will define a few terms. An environment of a program is
the combination of hardware and system software required by the program. The
host environment is the environment in which the program executes; the target en-
vironment is the environment for which the output of the program is intended. All
programs have host environments, but only certain system programs such as
assemblers, have target environments. We say that a program is portable over a set
of environments if it is significantly easier to modify it for each environment than to
implement and maintain separately. If moving a program to new host environments
requires no modification, it is said to be machine independent. A program is said to
be machine invariant if it requires no effort to convert it to a new target en-
vironment. A program that is not machine invariant is said to be machine specific.

Thus, portability is a matter of degree, and portability problems may take many
forms. Our assemblers are machine independent over the set of machines which use
the Thoth operating system. In this paper, we will focus on the design features which
make it easy to adapt a Thoth assembler to a new target environment.,

The Thoth assembler kit evolved from an earlier “portable assembler writing kit”
described by Malcolm, Sager and Stafford (1976). Recent changes include the
elimination of certain directives and the addition of six new directives, more
operators, and the addition of manifest constants and a file indirection capability.
The present assembler is somewhat more portable than the earlier version; this is
mainly due to improved programming style rather than the development of new
techniques.

2. Structure of the Assembler

On close inspection, one may observe that large portions of a typical assembler con-
sist of algorithms which can be expressed independently of the target or host en-
vironments. These algorithms include symbol table managment, processing of
assembler directives, lexical scan, expression evaluation, and creation of the output
module. Our experience which is similar to that of others (e.g., Mueller (1976) and
Wick (1975)). indicates that these algorithms constitute approximately 85% of the
code in an assembler. If this invariant portion is written in a machine independent
fashion, it is only necessary to produce the remaining 15% when porting to a new
target environment.

The syntax for Thoth assembly programs is given in Appendix 1. Each Thoth
assembly language includes directives, pseudo opcodes, machine-specific instruction
opcodes, identifiers, constants and a set of operand symbols. The lexical scanner
classifies tokens into these categories; a token which satisfies the syntax rules for
identifiers is compared with symbols in the symbol table to categorize it as a direc-
tive, pseudo opcode, instruction opcode or identifier. If the symbol is an instruction
opcode, it is further categorized into one of the machine-specific instruction classes.
Tokens beginning with a numeric character, $ or ’ are categorized as constants. For
numeric constants, the first character specifies the radix: 0 indicates base 8, $ in-
dicates base 16, otherwise the base is 10. Character constants consist of a single
ASCII character enclosed with single quotes. The value of a character constant is
the value of its ASCII representation. Some nonprinting characters can be
represented in an "escaped” notation; the rules for this are the same as for the Thoth
base language described by Braga (1976).

The 15% of each assembler which is machine specific consists of functions for
error checking and specifying the semantics of machine opcodes and certain pseudo
opcodes. The structure of these functions is predetermined both by the manner in
which data is provided to them by the higher level machine-invariant functions and
by the information they must pass on to lower level machine-invariant functions.
Becuause of this structure, it it possible to construct them in skeletal form from
parameters describing the target machine. This is done by an interactive program
called Helper (see Appendix 3). Helper asks the assembler implementer for
parameters describing the sizes of storage cells on the target machine, the sizes of in-
structions, etc. Based on this information, Helper outputs skeletal forms of the func-
tions which must be augmented by hand. Typically, the amount of code added by the
implementor is 5% to 10% of the total assembler, or from 125 to 250 out of a total of
2500 lines of code. In addition to these functions, the implementor must prepare a
table of machine opcodes and their values, and categorize cach operation into a
“class” which indicates the number and position of operands within the instruction.

Of the time required to implement the assembler on a new machine, approx-
imately 50% is spent building the table of machine opcodes, 5% in interaction with
Helper and 45% augmenting the code skeletons.

3. Expressions and Relocatability

Expressions are evaluated in left-to-right order, but this can be over-ridden with
parentheses. The standard set of operations available include addition +,
subtraction —, bit-wise and &, bit-wise or |, exclusive or , multiplication *, division
/., modulus %, left shift <<, and logical right shift >>. The special symbols ++,
——., @, ', # [and] are not processed by the evaluator, but their presence at either
the beginning or end of an expression is reported to machine specific functions,
which may interpret them as appropriate to the target machine. For example, the
implementor may choose to have the symbol @ indicate indirection.

The machine-invariant code of the assembler evaluates “relocatable” expressions
which are subject to modification at load time. Here we have the advantage of
knowing fully the operational characteristics and capabilities of our relocating
loader, (Sager, 1977). Our loader allows programs to be loaded in up to 8 separate
relocatable “sections” and have up to 8 different fields it can relocate. The
programmer indicates the relocatable sections of his assembly program with the
directive:

Tel <expr>

where <expr> must evaluate to an absolute number between 0 and 7. The value
must be chosen to be compatible with the relocations used by the compiler, so the
user is expected to have some knowledge of the language implementation before
doing any serious assembly language programming.

Values in the symbol table have an associated attribute which may be either
absolute (i.e. known at assembly time) or relocatable (resolved at load time). In the
case of relocatable values, a further distinction is made to indicate the relocation
which will apply at load time. External symbols have attributes which cannot be

determined until load time, so Thoth assemblers give them a relocatabie attribute
which will not match that of any other symbol at assembly time.

As an expression is evaluated, each operation and the attributes of its operands
are used to determine the attribute of the result. For + and — operators, the rules
for deriving attributes of results is best presented in the form of tables:

right operand

+ A R R’

left

operand

In this table, A stands for absolute, R is a relocatable and R’ is a relocatable whose
attribute is different from R (i.e., it refers to a different relocatable "section” of
code). The symbol E is used to indicate an error due to an illegal combination of
operands, The table then tells us, for example, that it is not possible at any point
during an expression evaluation to add a relocatable to another relocatable. The
assembler will flag these types of errors. The table for the subtraction operator is:

right operand

- A R R’

A A E E

left

R R A E

operand

R’ R E A

For the operators *, /, %, << and >> the only legal combination is absolute for
both the left and right operands. Any other combination is in crror.

4. File Inclusion and Manifests

Two facilities of our compiler have been incorporated into the assembler. One is the
ability to "include” or "redirect” the source input stream via directives in the source.
The other is a form of textual macro (without parameters), called manifests. These
two leatures are related in the sense that we often use file inclusion to redirect the in-
put stream to a file of manifest definitions. Manifests are usually used to
parameterize the code, describe record formats, or to delay and localize the binding
of certain decisions which are likely to change. The combination of file inclusion and
manifests allows the programmer to use the same file of manifest definitions for
high-level language modules and assembly modules.

File inclusion directives can appear anywhere in the source; they must have a %
in column 1. The remainder of the line is a pathname of a file. In effect, the contents
of the file replace the file inclusion directive line.

Manifest definitions can appear anywhere in the source input stream; they must
have a # in column 1. The format for a definition is:

manifest name =manifest text

The manifest name can be any legal identifier, which must be unique throughout the
assembly. The manifest text begins immediately after the = and is terminated by the
first newline or \ character. (Note the \ begins a comment.) All further occurrences
of the manifest name, except in lines beginning with % or #, are replaced by the
manifest text as the assembler scans the source input.

5. Implementing a New Assembler

After studying the new target machine, the assembler implementor should have an
interactive session with the Helper program, as illustrated in Appendix 3. This
results in the creation of files which contain manifest definitions for machine-specific
parameters of the invariant code, and skeletal forms of functions which must be
completed by the implementor.

The implementor must provide a function for each class of operation code which

he specifies in the opcode table. These functions perform a number of tasks, as out-
lined below:

Opcode_n()
{
global variable declarations
local variable declarations

if{ pass 1) skip to end of input line

if(pass 2)
{

call expression evaluator for each operand
verify range and attribute of each operand

output assembled data with relocation information

J

increment location counter

Since the operations which must be performed in an Opcode function are fairly
standardized, lower level functions are provided to simplify the implementation.
These lower level functions do expression evaluation, code emission, etc.

In order for the output modules to load correctly with those of the compiler, the
compiler and assembler implementors must agree on the fields which are to be
relocated, how many relocatable sections are to be used, and on how this is
represented in the load code. For some machines, the assembler uses more types of
relocation than the compiler.

6. Conclusion

We have used the Thoth assembler kit to generate assemblers for the Honeywell
HIS 6000 series, Texas Instruments TI 990, Data General NOVA, Microdata
1600/30, Interdata 70 and Motorola M6800. The average time to completion for
each of these assemblers is less than eight man-hours for a person experienced with
Thoth assembler generation but not with the target machine. Time to completion for
the Microdata by a person unfamiliar with both the Thoth assembler kit and the
target machine was approximately 13 hours.

The HIS 6000, TI 990 and NOVA assemblers have been used Lo write support
software for Thoth, our portable real-time operating system (Cheriton, 1977).

A more formal approach to automating the generation of assemblers has been
investigated by Wick (1975). It is difficult to compare the effectiveness of Wick's
approach with that discussed here.

7. Bibliography

Braga, R. S. C. (1976), Eh Reference Manual, University of Waterloo, Computer
Science Department, Research Report CS-76-45, November.

Braga, R. S. C., Malcolm, M. A. and G. R. Sager (1976), A Portable Linking
Loader. Symposium on Trends and Applications 1976: MICRO and MINI
Systems (an IEEE/NBS conference). May, 124-128.

Cheriton, D. R., M. A. Malcolm, L. S. Melen and G. R. Sager (1977), Thoth, a
Portable Real-Time Operating System, Univerisy of Waterloo, Computer
Science Department, Research Report CS-77-11, October. (to appear: 1977
ACM SIGOPS Conference)

Malcolm, M. A, Sager, G. R. and G. J. Stafford (1976), A Portable Assembier
Writing Kit. Mini- and Microcomputers '76 Symposium, Toronto,
Ontario, Canada, November.

Mueller, R. A. (1976), Automatic Generation of Microcomputer Software.
Master's Thesis, Dept. of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado, April.

Sager, G. R. (1977), The Thoth Linking Loader, University of Waterloo, Computer
Science Department, Research Report CS-77-15, October.

Wick, J. D. (1975), Automatic Generation of Assemblers. Ph.D. Thesis.
Department of Computer Science, Yale Univeristy, December,

Appendix 1. Syntax of Assembly Programs

The following characters are used in source programs:

I. letterss A B CDEFGHIJKLMNOPQRTUYV
WXYZabcdefghijklmnopqrstuvwxyz._
3 4 5

2. digitss 0 1 2
3. delimiters;: + —
*n and blank.

6 7 8 9

(VL1788 | & <<>>%/% 15, \ #@

The *n is a "newline” used to delimit input lines; the character \ will cause the
scanner to ignore the remainder of the input line (this is for entering comments).

In addition to the delimiter characters, the tokens recognized by the scanner are:

1. special tokens: ++, ——

2. directives: .align, .ext, .ent, .equ, .loc, .rel, .ptr, .ds, .ptr, .str .dcl, .de2, .de3,
.dcd, .formal, .function, .nargs, .stack

3. implementor-defined opcode mnemonics

4. user-defined constants and identifiers

Since the forms of opcode argument lists vary {rom one target machine to
another, it is not possible to give syntax rules that apply fully to all Thoth
assemblers. The following grammar is intended to give the general flavor.

As with our high-level language, identifiers are defined as a letter followed by
zero or more letters and digits, not to exceed 32 characters in length. Similarly, the
syntactic rules for forming a string-constant are the same as for the Eh language.
and the same escaped characters are allowed (see Braga, 1976).

module—list
module
line—list
line

label—list

label

Statement

ident—list

argument—list

operand

module module—list
line—list .end

line line—list

label—list statement '*n’

label label—list
null

identifier :

.align expr

ds expr

.ent ident—list

.ext ident—list

formal expr , expr
function

Jloc expr

.nargs

.rel expr

.ptr expr

.stack expr

Str string—constant
del expr

dc2 expr , expr

.dc3 expr , expr , expr
.dc4 expr , expr , expr , expr
opcode argument—Ilist
null

identifier
ident—list , identifier

operand
argument—list , operand

expr
expr [expr]

special

expr

++

@

!

#

(‘expr)
expr & expr
expr + expr
expr — expr
expr | expr

expr << expr
expr > > expr
expr * expr
expr | expr
expr % expr
expr 1 expr

-~ expr
special expr
expr special
identifier
constant

10

Appendix 2. Directives and Pseudo Operations
The following directives are used in all implementations

.align : starts the next assembled cell at an address which is a multiple of the ex-
pression

del, .de2, .de3, .ded : define a constant word having 1, 2, 3 or 4 subfields,
respectively

.ds : reserves words of storage specified by expression
.ent : specifies external names defined in this module

.ext : specifies external names defined in other modules which may be referenc-
ed in this module

[formal : specifies the number of arguments expected by the function

function : specifies that a value is returned by the function

Joc : the location counter corresponding to the attribute of the expression is sel
to have the value of the expression, and is used for the following

code

.nargs : specifies that a function needs to know the number of actual arguments
passed to it

.rel : specifies which location counter to use for the following code
.ptr : defines a word containing a word pointer
.stack : specifies the number of words of stack used by a function

.Str ; defines a string constant

Appendix 3. An Example Session with Helper
I am here to help get your new assembler started.

What machine are you writing an assembler for? INTERDATA 70
What is the file name for this assembler? /interdata

Where is the file containing your list of opcodes? tla/interdata/mnemonics

Now tell me about the INTERDATA 70.
How many bits in a byte? &
How many bits in the smallest addressable celi? &8
How many bits in the largest machine address? /6
How many bits in the smallest instruction? /6
How many bytes in a no—op instruction? 2
What is the numeric representation of a no—op instruction? 30800

Now tell me about how Thoth is implemented on the INTERDATA 70.
How many bits in an word? /6

Will you need a .dcl? pes
What is the maximum value allowed? 32767
What is the minimum value allowed? —32768
Is the operand relocatable? yes
Which relocation descriptor? 0

Will you need a .dc2? no

Wi]l you need a .de3? no

Will you need a .dcd? no

The INTERDATA 70 assembler has had four files generated for it;
/tla/phl/interdata/manifests

/ta/phl/interdata/functions

/tla/phQ/interdata/externals

/ta/phl/interdata/externals

Best of luck with the rest of the assembler!

	
	
	
	
	
	
	
	
	
	
	
	
	

