
SMAPP : Towards Smart Multipath TCP-enabled
APPlications

B. Hesmans ∗, G. Detal †, S. Barre †, R. Bauduin ∗, O. Bonaventure ∗

∗Université catholique de Louvain, Louvain-la-Neuve, Belgium † Tessares, Louvain-la-Neuve, Belgium
∗ firstname.lastname@uclouvain.be † firstname.lastname@tessares.net

ABSTRACT
Multipath TCP was designed and implemented as a
backward compatible replacement for TCP. For this rea-
son, it exposes the standard socket API to the applica-
tions that cannot control the utilisation of the different
paths. This is a key feature for applications that are un-
aware of the multipath nature of the network. On the
contrary, this is a limitation for applications that could
benefit from specific knowledge to use multiple paths
in a way that fits their needs. As the specific knowl-
edge of an application can not be known in advance,
we propose a Multipath TCP path manager that dele-
gates the management of the paths to the applications.
This path manager enables applications to control how
the different paths are used to transfer data. We im-
plement this path manager above the Linux Multipath
TCP kernel. It is composed of a kernel part that ex-
poses events and commands to an userspace application
that controls the key functions of Multipath TCP such
as the creation/suppression of subflows or reactions to
retransmissions. We demonstrate the benefits of this
path manager on different use cases.

CCS Concepts
•Networks → Transport protocols; Programming
interfaces; Network control algorithms; Network exper-
imentation; Network mobility;

1. INTRODUCTION
The Transmission Control Protocol (TCP) is one of

the key protocols in today’s Internet. It provides a reli-
able bytestream service and is used by a wide range of

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

CoNEXT ’15 December 01-04, 2015, Heidelberg, Germany

© 2015 ACM. ISBN 78-1-4503-3412-9/15/12. . . $15.00

DOI: 10.1145/2716281.2836113

applications running on a wide range of devices ranging
from smartphones to datacenters. Despite or maybe due
to its popularity, TCP continues to evolve. Multipath
TCP [7, 19] is one of the most recent TCP extensions. It
completely changes one of the basic design assumptions
of the original TCP specification : a TCP connection
is always identified by a four-tuple (source and desti-
nation IP addresses and ports). All the packets that
are sent for such a connection always contain this four-
tuple. An annoying consequence of this coupling is that
on a multihomed host, e.g. a smartphone with a cellular
and a WiFi interface or a simple dual-stack PC having
one IPv4 address and one IPv6 address, it is impossible
to send the packets that belong to one TCP connection
using a different interface/address, even if the primary
one fails.

Multipath TCP [7] solves this problem by allowing
the packets that belong to one connection to be sent
from different interfaces/addresses. The development of
Multipath TCP has been motivated by several use cases
ranging from mobile devices such as smartphones that
are equipped with cellular and WiFi interfaces [15], to
large datacenters [18]. While previous TCP extensions
like Selective Acknowledgements or the Timestamp and
Window scale options took years to be widely deployed
[10], Multipath TCP has been quickly adopted by one
major operating system. Since September 2013, all Ap-
ple smartphones and tablets use Multipath TCP to sup-
port the Siri voice recognition application. In July 2015,
Korean Telecom announced a commercial deployment
of Multipath TCP on several types of Android smart-
phones to combine fast LTE and fast WiFi. In Septem-
ber 2015, OVH announced a bonding service that uses
Multipath TCP to enable SMEs to bond several DSL
lines together.

Multipath TCP was designed with three main com-
patibility objectives in mind [6]. The first is that Mul-
tipath TCP must be usable by existing applications
through the existing socket API. The Multipath TCP
implementation in the Linux kernel [14] meets this ob-
jective by allowing any application to use Multipath
TCP. The second objective is that Multipath TCP must

10.1145/2716281.2836113

be compatible with the deployed networks. To meet this
objective, the Multipath TCP designers had to include
in the protocol various mechanisms that enable it to
deal with existing middleboxes [7, 19]. The third objec-
tive was the fairness with other users of the network. To
meet this objective, several congestion control schemes
have been proposed and implemented.

In this paper, we revisit the first compatibility ob-
jective of the Multipath TCP working group. Instead
of assuming that the application is dumb and only re-
quires a regular byte stream service, we start with the
assumption that the application is adaptative and wants
to obtain the best results with Multipath TCP. We ex-
pect that such smart applications will be initially im-
plemented on smartphones and perhaps also in data-
centers.

This paper is organised as follows. We first briefly
present Multipath TCP and the related work in Sec-
tion 2. We then propose to separate the Multipath TCP
control and data planes. The data plane, i.e., all the
functions concerned by the data transfert, remains in
the kernel while we propose to move the control plane
functions, i.e., the management of the different paths,
into userspace. We then illustrate the benefits of this
approach in Section 4 with four different use cases.

2. MULTIPATH TCP
Multipath TCP [7] enables hosts to exchange pack-

ets belonging to a single connection over several inter-
faces/paths. For this, each Multipath TCP connection
is composed of several TCP connections that are called
subflows [7]. As an illustration of the operation of Mul-
tipath TCP, let us consider the simple but important
case of a smartphone equipped with a cellular and a
WiFi interface. To create a connection with a server,
the smartphone sends a SYN segment over the WiFi in-
terface. This segment contains the MP_CAPABLE option
that requests the utilisation of Multipath TCP and in-
cludes a random key. The server replies with a SYN+ACK
segment that also contains the MP_CAPABLE option and
a random key. The smartphone finalises the three-way
handshake and the Multipath TCP connection is estab-
lished. At this point, the connection is composed of
only one subflow, the one established over the WiFi in-
terface. Data can be sent over this subflow. Multipath
TCP uses two levels of sequence numbers : the reg-
ular sequence number in the TCP header that tracks
the bytes sent over this subflow and the data sequence
number that is placed in the DSS option and tracks the
bytes transported over the entire Multipath TCP con-
nection. To use the cellular interface, the smartphone
simply sends a SYN segment with the MP_JOIN option
over this interface. This option includes a token derived
from the random key exchanged in the MP_CAPABLE op-
tion to identify the Multipath TCP connection to which
the subflow must be associated. The server confirms
the establishment of the subflow with a SYN+ACK seg-

ment containing the MP_JOIN option. The smartphone
finalises the three-way handshake with an ACK segment.
At this point, the smartphone and the servers can send
data over the WiFi or the cellular subflow. The Mul-
tipath TCP implementation uses a packet scheduler to
decide over which available subflow each data is trans-
mitted. Several schedulers have been implemented [16]
and the default one prefers the subflow with the lowest
round-trip-time provided that its congestion window is
open. If one of the active subflows fails, e.g., due to
a loss of connectivity, data that was initially transmit-
ted over one subflow can be resent over the other. Due
to space limitations, we focus our discussion of the re-
lated work on the articles that are directly related to
the management of the subflows.

An important part of a Multipath TCP implemen-
tation is the strategy that it uses to create subflows.
The Linux kernel implementation [14] includes modules
that implement these strategies. As of this writing, the
Linux implementation contains two strategies that are
called path managers for historical reasons : full-mesh
and ndiffports. In both cases, only the client creates
the subflows. The server never creates subflows because
the client is often behind a NAT or firewall that blocks
connection attempts [5]. The full-mesh path manager
listens to events from the underlying network interfaces
and creates one subflow towards the server over each ac-
tive interface. These subflows are created immediately
after the creation of the connection or when an inter-
face becomes active. It enables smartphones to react to
losses of connectivity [15]. The ndiffports path man-
ager creates n subflows over the same interface as the
initial one immediately after the establishment of the
connection. This path manager was designed for data-
centers [18] where it enables the utilisation of paths that
are load-balanced with Equal Cost Multipath (ECMP).

A few researchers have explored how Multipath TCP
should manage the available subflows and interfaces.
RFC6897 proposes some extensions to the basic socket
API to enable applications to add/remove addresses
to a Multipath TCP connection [21]. However, none
of the existing Multipath TCP implementations imple-
ment this proposed extension [5]. Paasch et al. [15] eval-
uate how wireless devices can adapt to losses of connec-
tivity. This paper proposes three modes of operation for
Multipath TCP on smartphones: single-path, backup
and full-mptcp. Bocassi et al. [1] propose the Binder
path manager that leverages loose source routing and
Multipath TCP to aggregate different paths in wireless
mesh networks. Lim et al. [23] propose an extension to
Multipath TCP that enables to adapt the utilisation of
the subflows based on information extracted from the
MAC layer. This extension is evaluated experimentally,
but there are no details on how it has been implemented.
Several researchers have evaluated the energy impact of
using Multipath TCP on smartphones [17, 12]. Peng
et al. propose models that demonstrate the benefits of
managing the subflows to reduce energy consumption

but do not propose any implementation [17]. Lim et al.
propose an energy-aware Multipath TCP (eMPTCP)
[12]. eMPTCP delays the establishment of subflows on
smartphones over the LTE interface. However, when
the smartphone switches from LTE to WiFi, they pro-
pose to reset the round-trip-time estimation of the LTE
subflow to zero msec to force the utilisation of this sub-
flow [12]. This speeds up the utilisation of the LTE
subflow, but is not an architecturally clean solution to
the subflow management problem.

Schmidt et al. proposed the utilisation of socket in-
tents [22] to allow applications to inform the stack of
what they know about the future communication pat-
tern. These intents include information such as the
type of transfer (query, bulk, stream) or the informa-
tion about the flow (number of bytes, duration, . . .).
We also use this kind of information in our design and
socket intents could be a way to exchange it with the
subflow controller.

3. THE SUBFLOW CONTROLLER
The Linux implementation of Multipath TCP [14] re-

sides entirely in the kernel. Most of the kernel code is
devoted to the transmission and reception of data, but
the management of the subflows is also performed in the
kernel by the full-mesh and ndiffports path man-
agers. This design choice was motivated by performance
reasons. An unfortunate consequence of this choice is
that if an application wants to control the utilisation
of the subflows, it must include a new kernel module.
This is not a good solution and only three path man-
agers have been implemented in the kernel in several
years.

We reconsider this design choice by clearly separating
the Multipath TCP data and control planes. The data
plane includes all functions that deal with the transmis-
sion of data. It remains in the kernel for performance
reasons. The control plane includes all the functions
that manage the subflows that compose a Multipath
TCP connection. From a performance viewpoint, there
is no reason to place these functions in the kernel. Fur-
thermore, some applications might want to implement
complex policies to manage their subflows. This kind
of code does not really fit inside a kernel. To enable the
applications to interact with the Multipath TCP ker-
nel code, we define a new Netlink family. Netlink [20]
is an interprocess communication mechanism supported
by the Linux kernel that allows applications to interact
with the kernel through messages. This is similar to the
approach proposed earlier by M. Coudron [2].

However, writing code to send and receive Netlink
events can be complex for application developpers. To
ease the development of subflow controllers, we abstract
all the complexity of handling Netlink in a library [3]
that is linked with the subflow controller running en-
tirely into userspace. This library (Figure 1) interacts
with the Netlink path manager that is part of the ker-

Netlink PM

PM Library

Subflow controller

Netlink
msgs

Linux kernel

Figure 1: The subflow controller and the Netlink path
manager

nel. This path manager uses the existing in-kernel path
manager interface (shown in red in Figure 1) and ex-
poses this interface through Netlink. The path man-
ager is implemented in 1100 lines of C code while the
library contains 1900 lines of code.

The Netlink path manager provides a flexible API
that exposes events and state information from the ker-
nel [3]. Callback functions provided by the subflow con-
troller are triggered when a specific event happens in the
Multipath TCP kernel or based on other inputs. The
subflow controller receives only notifications for events
it registered to.

The Netlink path manager sends and receives mes-
sages that contain information about the connection,
the subflow(s), the type of event, etc. It supports many
more events and commands than M. Coudron’s earlier
prototype [2]. The created event is triggered when a
Multipath TCP connection is established. It contains
the four-tuple, the id of the initial subflow and other
information required to identify the connection. The
estab event indicates the success of the three-way hand-
shake and the closed event marks the termination of
the Multipath TCP connection. These events enable a
path manager to manage the connections established by
several applications.

The add_addr and rem_addr events provide the IP
addresses announced and removed by the remote host
with Multipath TCP options [7]. Thanks to these events,
the subflow controller can store the addresses of the re-
mote host and establish new subflows only when and if
needed. This is more flexible than the existing in-kernel
path managers that immediately create subflows. This
also reduces the state maintained for each Multipath
TCP connection in the kernel.

The sub_estab and sub_closed events enable an
application to control the utilisation of the subflows.
The sub_estab event is triggered once a new subflow
has been established. A server could use this event to
limit the number of subflows that it currently accepts
(e.g., only accept subflows originating from different ad-
dresses to prevent ressource abuse with parallel sub-
flows). The sub_closed event is triggered when a RST
segment is received over one subflow or when a subflow
is terminated due to excessive retransmissions. This

event is also associated with an error code (based on
standard errno) that indicates the reason for the re-
moval (e.g., excessive expirations of the rto, destination
unreachable, etc.).

The last event is the timeout event. On a TCP con-
nection, the expiration of the retransmission timer is
usually an indication of severe losses. With regular
TCP, there is nothing that the application could do if
the retransmission timer expires too often. With Multi-
path TCP, the situation is different since a second path
could have very different loss characteristics than the
current one. This event reports the current value of the
retransmission timer and can be used as a trigger to
create an additional subflow.

In addition, the Netlink path manager also gathers
the events that are triggered by the interfaces when a lo-
cal IP address is enabled (new_local_addr) or disabled
(del_local_addr).

In addition to subscribing to some of these events,
the library enables the subflow controller to modify the
state of Multipath TCP connections through commands.
Our initial implementation supports several types of
commands. First, it is possible to request the creation
of a subflow. A controller can create a subflow based on
an arbitrary 4-tuple (IP addresses and ports). A simi-
lar command allows to remove any established subflow
(either created through the controller or established by
the peer). This enables the subflow controller to easily
adjust the utilisation of the subflows. The controller
can also retrieve information from the control block of
the Multipath TCP connection or one of the subflows.
In practice, this is equivalent to the utilisation of the
TCP_INFO socket option on Linux.

4. SAMPLE USE CASES
In this section, we illustrate the benefits of the userspace

subflow controller with different use cases that demon-
strate how a smart application can intelligently interact
with Multipath TCP.

4.1 Smarter long-lived connections
Some applications such as ssh, various chat applica-

tions, or notification applications on smartphones use
long-lived connections that can last hours or days. These
connections pose operational problems in networks that
contain middleboxes like firewalls or NAT that main-
tain state for each established connection. The typical
example is a connection that has been established but
did not recently transmit data. Many NATs or fire-
walls will drop the state for this connection after some
time. Although the IETF recommends a timeout of not
less than two hours and four minutes, many deployed
NATs and firewalls are more aggressive and remove un-
used state after a few hundreds of seconds [9]. Further-
more, many networks include cascades of such middle-
boxes [13]. Some applications react by sending data on
a regular basis over each established connection. As an

example, RFC3948 [11] recommends to send keepalive
packets every 20 seconds. An unfortunate consequence
of this battle between applications and middleboxes is
that mobile devices need to consume a lot of energy
simply to preserve the state for the established TCP
connections in the middleboxes. Given the importance
of energy consumption on such devices [17, 12], this is
not a good approach.

Our first subflow controller is a reimplementation of
the fullmesh path manager that is present in the Multi-
path TCP Linux kernel. This controller is implemented
in about 800 lines of user space C code. It imple-
ments a listener for all the events described in Section 3.
It listens to the new_local_addr and del_local_addr
events to react to the activation and deactivation of
local addresses like the in-kernel path manager. In ad-
dition, it also listens to the sub_closed event to react
to the failure of any subflow. When such an event oc-
curs, the subflow controller analyses the error condition
(excessive timeout, RST, reception of an ICMP message,
etc.) and reacts accordingly. It tries to reestablish the
failed subflow and sets different timeouts based on the
error condition (e.g. a short timeout if a RST was re-
ceived and a longer timeout upon reception of an ICMP
network unreachable message). Experiments with this
controller show that it correctly maintains the subflows
established over the different paths even under difficult
network conditions.

4.2 Smarter backup
Multipath TCP [7] supports backup subflows. The

backup status associated to a subflow is a binary flag
that is exchanged in the SYN segment at subflow es-
tablishment time. It can also be changed dynamically
with the MP_PRIO option [7]. According to RFC6824
[7], a backup subflow is a subflow that should only be
used to transmit data once all other (non-backup) sub-
flows have failed. This is the classical definition of a
backup interface that works well on hosts. When an in-
terface fails on such hosts, Multipath TCP immediately
detects the failure and moves the traffic to the backup
interface [15].

On mobile devices such as smartphones, the availabil-
ity of one interface cannot be represented as a binary
variable. When a smartphone moves around an access
point or a cellular tower, there are regions where the
wireless network does not work at all, regions where
it works perfectly and regions where an IP address is
assigned to the smartphone, but the radio conditions
are so bad that most of the packets are lost. We use a
Mininet [8] emulation to illustrate the situation expe-
rienced on smartphones. A connection starts over one
interface and the second is set as a backup interface. Af-
ter 1 second, the packet loss ratio over the primary path
increases to 30%. Multipath TCP tries to retransmit
the data over this interface and applies the exponen-
tial backoff to its retransmission timer until it reaches
the maximum value (15 doublings on Linux). At this

point (after 12 minutes in our experiment with the de-
fault Linux configuration), TCP eventually terminates
the subflow. This triggers Multipath TCP to use the
backup subflow since it is the only available one.

The userspace subflow controller enables a different
model for backup subflows that improves user expe-
rience. Since Multipath TCP supports break-before-
make [7], our controller does not immediately establish
the backup subflow. On a smartphone where the cellu-
lar interface would likely be used as a backup, this re-
duces both energy and radio resource consumption. The
controller simply listens to the timeout event. When
a retransmission timer expires, it checks the current
value of the timer. If the timer becomes larger than
a configured threshold, the subflow is considered to be
underperforming. The controller then closes the un-
derperforming subflow and creates a subflow over the
backup interface to continue the transfer. This is illus-
trated in Figure 2a which shows the evolution of the
data sequence numbers (the color indicates the subflow
used to send the data). The transmission starts over
the primary subflow (in green in Figure 2a). When the
retransmission timer reaches one second, this subflow
is terminated and a new subflow is created over the
backup path (in red in Figure 2a).

4.3 Smarter streaming
We consider a simple streaming application that sends

one 64 KBytes block every second. It expects that each
block of data will be delivered within one second. We
use this application over an emulated network with two
5 Mbps links between the client and the server. Each
link has a 10 msec delay. The link bandwidth is al-
most an order of magnitude larger than the application
goodput (520 Kbps).

For this Mininet experiment, we first use the default
full-mesh path manager. When there is no loss, each
block of 64 KBytes is delivered within 100 msec. How-
ever, when there are losses over the initial subflow the
block delay quickly increases as shown by the CDF in
Figure 2b.

A closer look at the packet traces reveals the reasons
for the low performance achieved with the default full-
mesh path manager. When a retransmission timer ex-
pires on the initial subflow, the corresponding data can
be reinjected on the other subflow. However, the data
is still retransmitted on the initial subflow. If the re-
transmission is lost, the retransmission timer is doubled.
This can happen several times and most of the data is
sent on the second subflow. If at this point the sched-
uler decides to send some data on the underperforming
subflow, this data is protected by an already very long
RTO. If the data is lost, Multipath TCP waits a long
time to retransmit it, which explains the long tail of the
CDF in Figure 2b.

We prototype a subflow controller that expects the
blocks of data to be delivered within 1 second. 500 msec
after each start of block, it measures the progress of the

data transfer by extracting the snd_una state variable
from the kernel. If fewer than 32 KBytes have been
sent, it considers the subflow to be underperforming
and opens another subflow on the other interface. This
controller also monitors the evolution of the RTO. If
the RTO of a subflow becomes larger than 1 second,
it is immediately closed. With this controller, if the
initial subflow is fast enough to support the stream no
additional subflow is established. If the initial subflow
does not have enough bandwidth, a second subflow is
established. The controller can also close the initial
subflow if its performance is too bad. Our experiments
with different packet loss ratio (not shown in the figure)
for graphical reasons show that our controller provides
almost the same CDF of the block delays for packet loss
ratios in the 10-40% range.

4.4 Smarter exploitation of flow-based LB
In many networks, there are multiple paths between a

pair of single-homed hosts given the widespread usage
of Equal Cost Multipath (ECMP), link bonding and
other techniques that perform flow-level load-balancing.
Typically, load-balancing routers compute a hash over
the four-tuple to select the path for each flow. This
implies that hosts cannot easily predict which path will
be used for a particular flow. The ndiffports kernel
path manager was designed with this use case in mind
[18]. If many paths are available, the n subflows that it
creates are likely to use different paths. However, if the
number of available paths is close to n, several subflows
might use the same path.

The flexibility of our subflow controller enables a dif-
ferent approach to the management of the subflows in
such a scenario. When the connection starts, our con-
troller creates n subflows. These subflows use random
source ports and are load-balanced in the network. Reg-
ularly (every 2.5 seconds in our current implementa-
tion), the controller queries the Multipath TCP stack
to retrieve the pacing_rate of each subflow. This pac-
ing_rate is a state variable that measures the current
rate of a given TCP connection. It is included in re-
cent versions of the Linux TCP stack [4]. Our controller
compares the pacing_rate of the different subflows, re-
moves the one with the lowest rate and immediately
creates a new subflow. This is a very simple heuristic
that will need to be updated based on experience in
real networks. This controller is implemented in only
230 lines of C code. We evaluate it in a simple Mininet
environment. The client and the server are attached
to different routers. The two routers load-balance the
flows over four available paths that have a capacity of
8 Mbps and delays of respectively 10 msec, 20 msec,
30 msec and 40 msec. The client sends a 100 MBytes
file and opens 5 subflows. We expect that by opening
5 subflows over 4 paths, our controller will end up con-
tinually using all four paths, while the in-kernel ndiff-
ports path manager will likely have at least some of
its 5 subflows using the same path. This is illustrated

0 1 2 3 4

0
2

4
6

8
1

0

Relative Time (s)

R
e

la
ti
v
e

 s
e

q
u

e
n

c
e

 N
u

m
b

e
r

(1
0

^5
 B

y
te

s
)

Master

Back up

(a) The subflow controller detects when
the retransmission timer becomes too
long and creates the backup subflow at
this time.

0 2 4 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Block completion time (s)

C
D

F

Smart Stream

10% losses

20% losses

30% losses

40% losses

(b) CDF of the delay required to deliver
a 64 KBytes to the client under different
packet loss conditions.

25 30 35 40 45 50 55

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Completion time (s)

C
D

F

Refresh

Ndiffports

(c) By regularly restablishing low-
performing subflows, our subflow con-
troller improves network utilisation

Figure 2: Results of the Mininet experiments

in Figure 2c which shows the CDF of the file transfer
times. With the in-kernel ndiffports path manager,
we can identify 3 clusters around 28 s, 37 s and 55 s,
corresponding to the subflows using 4, 3 and 2 paths
respectively. Even with a very simple implementation,
our subflow controller tends to use the 4 available paths,
outperforming the in-kernel ndiffports path manager
significantly. For reference, the shortest time using the
four paths is 27.8 s, and the worst time using only one
path is 111.7 s.

4.5 User space path manager performances
As a first evaluation of the CPU cost of the user space

path manager, we perform a simple experiment in a lab
between two hosts connected with a direct 1 Gbps Eth-
ernet link. The server has an Intel(R) Xeon(R) CPU
X3440 @ 2.53GH and 8GB of memory. The client has
an Intel(R) Core(TM)2 Duo CPU E6550 @ 2.33GHz
and 4GB of memory. The server runs the lighttpd
HTTP web server and the default in-kernel path man-
ager. The client performs one thousand consecutive
HTTP/1.0 GET queries for a 512 KB file. This experi-
ment is performed with two variants of the ndiffports
path manager : user space and in-kernel. These two
path managers create a second subflow as soon as the
initial subflow has been established. We measure the de-
lay between the SYN of the initial subflow (i.e., contain-
ing the MP_CAPABLE option) and the SYN of the second
subflow (i.e., containing the MP_JOIN option. Figure 3
provides the CDF of the delays measured with the two
different path managers. It shows that the in-kernel
path manager is slightly faster than the user space one.
On average, the user space path manager increases the
delay by 23 microseconds. This additional delay is small
and remains acceptable for a client. We also performed
experiments during which we stressed the CPU on the
client by running additional processes. In this case,
both the in-kernel and the user space path managers

are affected. The delay increase due to the user space
path managers remains smaller than 37 microseconds.

0.2 0.3 0.4 0.5 0.6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Delay between CAPA and JOIN (msec)

C
D

F

Kernel

User space

Figure 3: Kernel path manager is slightly faster than
user space path manger to open a second subflow

5. DISCUSSION
Multipath TCP was designed under the assumption

that applications should not be modified to use it. For
this reason, it exposes the unmodified socket interface.
This design choice was key to ease the deployment of
Multipath TCP. Now that this deployment has started,
Multipath TCP users and developers seek ways to bet-
ter exploit its multipath capabilities. Our proposed sub-
flow controller solves this problem without forcing the
kernel to maintain a lot of state and handle complex
policies. Our design is a first step to separate the con-
trol and data planes of Multipath TCP. The control
plane includes all the functions related to the manage-
ment of the subflows while the data plane includes all
the functions that transmit and receive data. This de-
sign still assumes that the main parts of the networking

stack are implemented in the kernel. From an imple-
mentation viewpoint, this enables us to leverage the
optimised TCP and Multipath TCP implementations
in the Linux kernel. However, it also means that ap-
plication developpers depend on the evolution of the
kernel to use new Multipath TCP features. An alterna-
tive would be to move all the networking stack in user
space as proposed by various researchers [10, 24]. This
would simplify the deployment of new features and pro-
tocol extensions, but could result in the proliferation of
incompatible extensions if each application developper
implements his own stack. In the long-term, we expect
that the success of our approach and also of the user
space networking stacks will depend on the availability
of well maintained high-performance librairies that can
be easily used by application developpers.

Acknowledgements
This work was supported by the FP7 Trilogy2 project
and the RICE project.

6. REFERENCES
[1] L. Boccassi, et al. Binder: A system to aggregate

multiple internet gateways in community
networks. In Proceedings of the 2013 ACM
MobiCom Workshop on Lowest Cost Denominator
Networking for Universal Access, LCDNet ’13,
pages 3–8, New York, NY, USA, 2013. ACM.

[2] M. Coudron. Mptcp netlink.
https://github.com/teto/mptcpnetlink, Feb 2014.

[3] G. Detal and S. Barré. Flexible path managers for
MPTCP.
http://www.tessares.net/path-manager/.

[4] E. Dumazet and Y. Cheng. TSO, fair queuing,
pacing: three’s a charm. Presented at IETF’88,
Nov. 2013.

[5] P. Eardley. Survey of MPTCP Implementations.
Internet-Draft
draft-eardley-mptcp-implementations-survey-02,
IETF Secretariat, July 2013.

[6] A. Ford, et al. Architectural Guidelines for
Multipath TCP Development. RFC 6182, March
2011.

[7] A. Ford, et al. TCP Extensions for Multipath
Operation with Multiple Addresses. RFC 6824,
January 2013.

[8] N. Handigol, et al. Reproducible network
experiments using container-based emulation. In
Proceedings of the 8th International Conference
on Emerging Networking Experiments and
Technologies, CoNEXT ’12, pages 253–264, New
York, NY, USA, 2012. ACM.

[9] S. Hätönen, et al. An experimental study of home
gateway characteristics. In IMC, pages 260–7,
New York, New York, USA, 2010. ACM Press.

[10] M. Honda, et al. Rekindling network protocol

innovation with user-level stacks. SIGCOMM
Comput. Commun. Rev., 44(2):52–58, Apr. 2014.

[11] A. Huttunen, et al. UDP Encapsulation of IPsec
ESP Packets. RFC 3948 (Proposed Standard),
Jan. 2005.

[12] Y.-s. Lim, et al. How green is Multipath TCP for
mobile devices? In Proceedings of the 4th
Workshop on All Things Cellular: Operations,
Applications, & Challenges, pages 3–8. ACM,
2014.

[13] A. Müller, et al. Analysis and topology-based
traversal of cascaded large scale NATs. In
HotMiddlebox, pages 43–48. ACM Press, 2013.

[14] C. Paasch, et al. Multipath TCP in the Linux
Kernel. available from
http://www.multipath-tcp.org.

[15] C. Paasch, et al. Exploring Mobile/WiFi
Handover with Multipath TCP. In ACM
SIGCOMM CellNet workshop, pages 31–36, 2012.

[16] C. Paasch, et al. Experimental evaluation of
Multipath TCP schedulers. In Proceedings of the
2014 ACM SIGCOMM Workshop on Capacity
Sharing Workshop, CSWS ’14, pages 27–32, New
York, NY, USA, 2014. ACM.

[17] Q. Peng, et al. Energy efficient Multipath TCP
for mobile devices. In Proceedings of the 15th
ACM International Symposium on Mobile Ad Hoc
Networking and Computing, MobiHoc ’14, pages
257–266, New York, NY, USA, 2014. ACM.

[18] C. Raiciu, et al. Improving Datacenter
Performance and Robustness with Multipath
TCP. In ACM SIGCOMM 2011, 2011.

[19] C. Raiciu, et al. How hard can it be? Designing
and implementing a deployable Multipath TCP.
In Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation,
NSDI’12, pages 29–29, Berkeley, CA, USA, 2012.
USENIX Association.

[20] J. Salim, et al. Linux Netlink as an IP Services
Protocol. RFC 3549 (Informational), July 2003.

[21] M. Scharf and A. Ford. Multipath TCP
(MPTCP) Application Interface Considerations.
RFC 6897, March 2013.

[22] P. S. Schmidt, et al. Socket intents: Leveraging
application awareness for multi-access
connectivity. In Proceedings of the Ninth ACM
Conference on Emerging Networking Experiments
and Technologies, CoNEXT ’13, pages 295–300,
New York, NY, USA, 2013. ACM.

[23] Y. sup Lim, et al. Cross-layer path management
in multi-path transport protocol for mobile
devices. In INFOCOM, 2014 Proceedings IEEE,
pages 1815–1823, April 2014.

[24] H. Tazaki, R. Nakamura, and Y. Sekiya. Library
operating system with mainline Linux kernel.
Presented at Netdev 0.1, Feb 2015.

https://github.com/teto/mptcpnetlink
http://www.tessares.net/path-manager/
http://www.multipath-tcp.org

	Introduction
	Multipath TCP
	The subflow controller
	Sample use cases
	Smarter long-lived connections
	Smarter backup
	Smarter streaming
	Smarter exploitation of flow-based LB
	User space path manager performances

	Discussion
	References

