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Preface

A new English translation of the Almagest needs no apology. As one of the most 
influential scientific works in history, and a masterpiece of technical exposition 
in its own right, it deserves a much wider audience than can be found amongst 
those able to read it in the original. The existing English translation by R. 
Catesby T aliaferro,' besides being difficult to acquire, is such that silence is the 
kindest com m ent one can make. The French translation by N. Halm a, virtually 
unobtainable, suffers from excessive literalness, particularly where the text is 
difficult. T he other m odem  version, K arl M anitius’ G erm an translation, is on 
an entirely different level from these. It was done by a m an who had studied the 
text and m ade a strenuous and on the whole successful effort to understand 
Ptolem y’s m eaning and methods. I have used it constantly for twenty years, and 
those to whom it is familiar will recognise how much I owe to it. Nevertheless, it 
is not free from mistakes, and, to my taste, errs in the direction of paraphrasing 
where it should be translating. Most important, one can no lohger assume that 
those with a serious interest in histor\' are able to read G erm an with ease. I have 
been able to improve on M anitius’ translation, in part because of work 
published since he made it, in part because I had independent access to much of 
the textual evidence, notably the mediaeval Arabic translations. I have drawn 
attention to a few passages where I have noticed that he is in error, but I have 
made no systematic comparison between my translation and his or any other 
version.

Every translator, and especially one dealing with an  ancient language, is 
confronted with the dilemma of being faithful to the original and at the 
same tim e comprehensible to his readers. My intention was that this trans­
lation should serve both those who know no Greek, as a  substitute for the 
text, and those who do, as an aid to reading it. This has inevitably led to 
compromises. O n  the whole, I have kept closely to the m eaning and structure of 
the Greek, even, on occasion, where this entailed abandoning idiomatic 
English. But I have usually broken up Ptolemy’s enormously long sentences 
(characteristic of Hellenistic scientific prose) into shorter units more suitable for 
English, and I have frequently substituted m athem atical symbols (=, + etc.) and 
a symmetric presentation for the continuous rhetorical exposition of the ancient 
text. I have been liberal w ith explanatory additions, which are marked as such 
by enclosure within square brackets. W herever the need to be intelligible forced 
me to a paraphrase, I give the literal translation in a footnote.

It would have m ade what is an  already big book impossibly unwieldy if I had

' For full references here and elsewhere see the Bibliography.



viii Preface

provided a full technical and historical com m entary on the Almagest. 
Fortunately two recent works, by Neugebauer {HAM A) and Pedersen, are 
excellent guides to the technical content, and the former is also of considerable 
help on the numerous historical problems which arise from it. I have therefore 
confined my own com mentary to footnotes on p>oints of detail (referring to the 
above works for expository treatm ents), and to an introduction giving the 
minimum of information necessary to understand and use the translation.

In the course of making the translation I recom puted all the num erical results 
in the text, and all the tables (the latter mostly by means of com puter 
programs). The main purpose of this was to detect scribal errors (in which I 
have been moderately successful). But my calculations incidentally revealed a 
num ber of com puting errors or distortions com m itted by Ptolemy himself. 
W here these are explicable as the result of rounding in the course of 
com putation they are ignored, since to list some thousands of slightly more 
accurate results which I have found with m odern mechanical aids would invite 
Ptolemy’s own sardonic remark: 'Scrupulous accuracy about such a small 
am ount is a sign of vain conceit rather than love of tru th ’. However, 1 have 
noted every com puting error of a significant am ount, and also those cases where 
the rounding errors are not random, but seem directed towards obtaining some 
“neat' result. I hope that this will shed some light on the problem  of Ptolemy's 
m anipulation oi’his m aterial (both com putational and observational) in order 
to present an appearance of rigor in his theoretical treatm ent which he could 
never have found in his actual experience. The problem is an interesting one, 
which deseives an informed and critical discussion. Unfortunately, the recent 
book on this subject by R. R. Newton provides nothing of the kind, hut rather 
tends to Ijring the whole topic into disrepute. The only detailed discussion 
which is useful is that by Britton [1].’ This, however, is confmed to certain 
classes of the observations. My own inferences from the com putations tend to 
confirm Britton's conclusions about the nature and purpose of Ptolem y’s 
manipulations of his data.

This book owes much to the help of numerous people and institutions, which 
I gratefully acknowledge here. The Bibliotheque Nationale, Paris, the 
Biblioteca Apostolica V^aticana and the Biblioteca de El Escorial provided me 
with microfilms of various Greek and Arabic m anuscripts of the Almagest 
(detailed on pp. 3-4). I thank my colleague, David Pingree, P rof Dr. Fuat 
Sezgin and P ro f Dr. Paul Kunitzsch for providing me with other microfilms 
and photocopies which I needed. Mr. Colin Haycraft not only gave me the 
necessary encouragem ent actually to em bark on a project which I had been 
contem plating for a long time, but also bore patiently with the repeated delays 
until the book was ready for publication. W hen B. R. Goldstein, who was 
already engaged in preparing an English version of the Almagest, heard that I 
had decided to make this translation, he generously abandoned the project and 
turned over his materials to me. I owe to these and to him several ideas about 
format and notation. M y pupil, Don Edwards, detected a num ber of slips and

- It i.s ret^cttablf that this has never been formally published. It is available in Xerox copy from 
University Microlilms International, Ann Arbor, Michigan 48106.
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typing errors in my preliminary version, and performed m any useful services in 
com paring the translation with the Greek text. Michele Wilson drew Fig. F for 
me. Ja n e t Sachs provided invaluable help in preparing the typescript for 
publication and eliminating numerous mistakes. Several of my footnotes on 
difficult problems have been influenced by my discussions w ith Noel Swerdlow. 
R ather than trying to disentangle his contribution at each place, I here record, 
with thanks, the stimulus he has given to my thinking. N. G. Wilson answered 
my questions on points of Greek palaeography and went out of his way to 
examine manuscripts at my request. M y colleague, A. J . Sachs, gave me the 
benefit of his unrivalled expertise on several points of Babylonian astronomy 
and M esopotam ian historv'. To my colleague O. Neugebauer Lowe more than I 
can express here. Let me say only that it was he who first introduced me to the 
Almagest more than twenty years ago, that his own investigations of it (only 
part of which have been published in his m onum ental A History o f Ancient 
Mathematical Astronomy) have been invaluable to me as an aid and as a model, 
and that many will recognize his draughtsm anship in several of the supple­
m entary diagrams. As an inadequate token I dedicate this book to him.

Providence, 1982 G.J.T.





Introduction

1. Ptolemy

For a detailed discussion of what little is known of the life of the author of the 
Almagest, and an account of his numerous other works, on astronomy, 
astrology, geography, optics and other m athem atical subjects, I refer the reader 
to my article in the Dictionary of Scientific Biography (Toom er [5]). Here I 
m ention only tha t his nam e was Claudius Ptolemaeus (KXaOSioq rixoXejiatoq), 
that he lived from approxim ately A.D. 100 to approxim ately A.D. 175, and that 
he worked in Alexandria, the principal city of G reco-Rom an Egy'pt, which 
possessed, am ong other advantages, w hat was probably still the best library' in 
the ancient world.

2. The Almagest

T he Almagest is firmly dated to the reign of the Rom an em peror Antoninus 
(A.D. 138-161). T he latest obseivation used in it is from 141 February’2 (IX 7 p. 
450), and Ptolemy takes the beginning of the reign of Antoninus as the epoch of 
his star catalogue (VH 4 p. 340). Although it is clear that Ptolemy had spent 
much time on it and that it is a work of his m aturity  (his own observations 
recorded in it range from .A.D. 127 to 141), it has always been considered as his 
earliest extant work, because of the changes from it and references back to it in 
other works by him (for details see Toom er [5] p. 187). However, a recent 
discovery by Norm an T. Ham ilton (see IV n.51 p. 205) has shown that the 
‘Canobic Inscription’ represents a stage in the development of Ptolemy’s 
astronomical theory earlier than the Almagest. Since Ptolemy erected that 
dedication in the tenth year of Antoninus (A.D. 146/7), the Almagest can hardly 
have been published earlier than the year 150.

As is implied by its Greek name, |ia0TinaTiKTi ‘m athem atical
systematic treatise’, the Almagest is a complete exposition of mathem atical 
astronomy as the Greeks understood the term. W hether there were any 
com parable works (i.e. comprehensive astronomical treatises) before it is not 
known. In any case, its success contributed to the loss of most of the work of 
Ptolem y’s scientific predecessors, notably H ipparchus, by the end of antiquity, , 
because, being obsolete, they ceased to be copied. W hereas H ipparchus’ works 
are still used by Ptolemy’s younger contemporaries, G alen and  Vettius Valens, ‘

' E.g. Galen, On Seven-month Children, ed. W alzer 347, 350; Commentary on Hippocrates’ .-lirj 
Waters and Places (see GAS VI 98). Vettius Valens, Anthologiac 354.



by the early fourth century (and probably much earlier),^ when Pappus wrote 
his com mentary on it, the Almagest had become the standard textbook on 
astronomy which it was to rem ain for more than a thousand years. Thus its 
im portance for us lies not only in its value as a historical source for earlier 
theories and observations, but also, and perhaps chiefly, in its influence on all 
later astronomy in antiquity and the middle ages (in both Islamic and Christian 
areas) down to the sixteenth century. It was dom inant to an extent and for a 
length of time which is unsurpassed by any scientific work except Euclid’s 
Elements.

No attem pt can be m ade here to sketch even an outline of the history of its 
influence.^ I mention only some points to which I will make reference in the 
notes to the translation. The position of the Almagest as the standard  textbook 
in astronomy for ‘advanced students’ in the schools at A lexandria (and no 
doubt at Athens and Antioch too) in late antiquity is am ply dem onstrated by 
the partially extant com mentaries on it by Pappus [c. 320) and by Theon of 
Alexandria {c. 370). In the late eighth and ninth centuries, with the growth of 
interest in Greek science in the Islamic world, the Almagest was translated, first 
into Syriac, then, several times, into Arabic. In the middle of the twelfth 
century no less than five such versions were still available to the am ateur ibn as- 
Salah: a Syriac translation, two versions m ade under the Caliph a l-M a’mHn 
(an older one by al-Hasan ibn Qiiraysh, and one dated 827/8 by al-Hajjaj), a 
version by the famous translator Ishaq ibn H unayn {c. 879-90), and a revision ol' 
the latter by Thabit ibn Q urra  (d. 901).^ Two of these translations are still 
extant, those of al-Hajjaj and Ishaq-Thabit. In them we find the title of 
Ptolemy’s treatise given as ‘al-mjsty’ (consonantal skeleton only). This is 
undoubtedly derived (ultimately) from a Greek form |i8y'iaTr| (?sc. auvxa^K;), 
meaning ‘greatest [treatise]’, but it is only later that it was incorrectly vocalised 
as al-majasn, vyhence are derived the mediaeval Latin ‘almagesti’, ‘alma- 
gestum’, the ancestors of the modern title ‘Almagest’. T he available evidence 
has been assembled and discussed by Kunitzsch, Der Almagest 115-25, where he 
makes a good case for supp>osing that the Arabic form was derived, not directly 
from the Greek, but from a middle Persian (Pahlavi) translation of the 
Almagest. There is independent evidence for the existence of the latter, but 
whether it was made as early as the reign of the Sassanid k in g S h ah p u h rl (241- 
272), as later Persian accounts m aintain, seems very dubious to me.

While Ptolem y’s work in the original Greek continued to be copied and 
studied in the eastern (Byzantine) empire, all knowledge of it was lost to western

 ̂The evidence for the practice of astronomy in the third century is pitifully small, but there exists 
a fraenment of a text from about A. D. 213 which isciosely related  to the Almagest (see HAMA  I I 948- 
49), and there are several third-century papyri related to the Handy Tables {ibid. 974-75,979-80). 
P. Ryl. 27 (written c. 260) quotes Ptolemy’s solstice and equinox observations from Almagest III 1, 
and in the late third century Porphyry {Comm, on Harmonica 2, p. 24,15 IT.) quotes Almagest 12 (H9, 
11-16). The only evidence I have seen for knowledge of the Almagest in the second century, Galen, 
CommenUry on Hippocrates’ Airs Waters and Places III (ms. Cairo, f a r a t  tibb 550, p. 73a), where 
Ptolemy is mentioned at the end of a  list o f authorities on astronomy, must be an interpolation in the 
Arabic tradition, since Ptolemy is there characterized as ‘the king of Egypt’.

^I know of no satisfactory account of this. I gave a very brief sketch, Toomer(5] 202.
^For a full account of this see Kunitzsch, Der Almagest, especially 15-71. Kunitzsch has also 

published the work of ibn as-^alah (see Bibliography).

2 Introduction: History o f  the Almagest



Europe by the early middle ages. Although translations from the Greek text 
into Latin were m ade in mediaeval times,^ the principal channel for the 
recovery of the Almagest in the west was the translation from the Arabic by 
G erard of Cremona, m ade at Toledo and completed in 1175.® M anuscripts of 
the Greek text began to reach the west in the fifteenth century, but it was 
G erard’s text which underlay (often a t several removes) books on astronomy as 
late as the Peurbach-Regiom ontanus epitome of the Almagest (see Biblio­
graphy under Regiomontanus). It was also the version in which the Almagest 
was first printed (Venice, 1515). The sixteenth century saw the wide 
dissemination of the Greek text (printed at Basel by Hervagius, 1538), and also 
the obsolescence of Ptolem y’s astronomical system, brought about not so much 
by the work of Copernicus (whichin form and concepts is still dominated by the 
Almagest), as by that of Brahe and Kepler.

Introduction: The translation 3

3. The translation

T he basis of my translation is the Greek text established b\- Heiberg. I have, 
however, found it necessary to make several hundred corrections to that text. 
These are noted at the places in the translation where they occur,' an d  are also 
listed in Appendix B. In many cases (usually Involving numerical com puta­
tions), my correction consists of adopting the reading of tĥ e manuscript D. 
unjustly spurned by Heiberg as descended from an archetype due to an 
Alexandrian recension in late antiquity (Prolegomena, in Ptolemy, Opera 
Minora C X X \’I-V II). W hatever the truth about that, and despite the fact that 
D itself is, as Heiberg says, ‘most negligently w ritten ', I am convinced on 
grounds of internal consistency that it represents a sounder tradition than that 
of the mss. ABC, generally preferred by Heiberg. In many cases its obviously 
correct readings are shared by all or part ol the Arabic tradition. Nevertheless, I 
have not deviated from H eiberg’s text except where it seemed essential for sense 
or num erical consistency. In making corrections I have referred to photographs 
of the following manuscripts.

Greek (I use Heiberg’s notation)
A Parisinus graecus 2389. M ainly uncial, ninth century 
B Vaticanus graecus 1594. Minuscule, ninth century 
D Vaticanus graecus 180. Several hands, but not, as Heiberg, Almagest 1 p. V, 

of the twelfth century, but rather of the tenth: see the V atican Catalogue 
by M ercati and Franchi de’ Cavalieri, I p. 206. N. G. Wilson has 
confirmed this dating  for me by personal inspection. (Heiberg himself 
seems to have changed his opinion later: see Prolegomena LX X IX .)

Arabic (I have used the abbreviations ‘Ar’ to refer to the consensus of the

* Sec Haskins, Studies 103-112, 157-165.
*Kunitzsch, Der Almagest 83-112, gives a valuable account of the evidence for this, and of 

G erard’s method of work; evidently he used more than one of the Arabic translations.
’ I have acknowledged there all cases known to me where my correction has been anticipated by 

others, notably Manitius.



Arabic tradition, and ‘Is’ to the consensus of the mss. containing the Ishaq- 
T habit version).
L Leiden, or. 680. Eleventh century according to Kunitzsch, Der Almagest 38.

This is the only surviving m anuscript of the version of al-Hajjaj.
T  Tunis, BibliothequeNationale, 07116 (seeKunitzsch,Z)#r.'l/ma^«/ 38-40).

Completed O ctober 1085. T he Ishaq-Thabit version, complete.
P Paris, B.N. ar. 2482. Completed December 1221. See Kunitzsch, Der 

Almagest 42-3. The Ishaq-Thabit version. Books I-V I 13.
Q  Paris, B.N. ar. 2483. Fifteenth century. See Kunitzsch, Der Almagest 43.

The Ishaq-Thabit version. Books I-V II.
E Escorial 914. See Kunitzsch, Der Almagest 43-4. T he Ishaq-Thabit version, 

Books V -IX .
F Escorial 915. Com pleted Septem ber 1276. See Kunitzsch, Der Almagest 

44-5. The Ishaq-Thabit version, allegedly containing Books V II-X III. 
but in fact lacking large sections even of these, and bound in such disorder 
as to be almost useless.

Ger The Latin translation of G erard of Crem ona, for which I have used only 
the printed edition (Venice, Liechtenstein, 1515). For the complex 
dependence of this on the various Arabic versions see Kunitzsch, Der 
Almagest 97-104.

I did not undertake a complete collation of any of the above mss. For the 
Greek mss. that would have been largely useless, since Heiberg’s reports are, as 
in all his editions, very accurate (to judge from my sporadic verifications; I 
remarked the rare exceptions in the notes to the translation). To collate the 
Arabic translation would have delayed this book for several years, w ith no 
commensurate gain. I have consulted the above mss. only in passages where I 
already considered Heiberg’s text wrong or suspect. Therefore no conclusions 
should be drawn about the readings of the Arabic mss. where I do not explicitly 
report them.

There are a num ber of places where, if I were to establish a Greek text, it 
would differ from Heiberg’s, but which I have not bothered to record in this 
book. Examples are:

mere orthography:
rjupioKo^sv for eup'iaKO)iev (imperfect) I 327,15
KdXXiTtTtoc; for KdXtitTtoc; I 199,5
d^eTd7t6lOTOV for d îeTdTtiCTTOv I 6,18 (cf. Boll, Studien 74)
KpiKog for KpiKo<; I 196,8

changes in form not affecting the sense: dv for edv I 393,11 
reversals of letters referring to figures: ZK for KZ I 243, 22 
obvious misprints:

CTE>.Tivr|(; for 1 406,25
dv(i)^aA.iaq for d^a}^a>.taq 1 462,19

(less obvious misprints, particularly those involving numbers, are recorded).

During the course of making the translation, I became convinced tha t the

4 Introduction: Manuscripts and text



text contains quite a large num ber of interpolations, which must go back to 
antiquity, since they are in the whole manuscript tradition, both Greek and 
Arabic. I was first led to this conclusion by the discovery th a t there are places in 
the text, nonsensical as they stand, which can be m ade to yield perfect sense by 
the simple elimination of a clause or sentence, which must have been inserted as 
‘explanation’ by someone who failed to understand Ptolem y’s meaning- A 
notable example is V 1 (see p. 219 n.5). Cf also V 12, p. 245 with n.41.1 later 
realised that there are whole classes of textual m atter which must also be 
regarded as interpolations. O ne of these is the totals in the star catalogue (see pp. 
16-17). The other is the chapter headings. Some of these (e.g. IX  2) are so inept as 
descriptions of the actual content of the chapter that it is impossible to attribute 
them to Ptolemy. In fact I do not believe that Ptolemy himself used any chapter 
divisions at all. It is obvious that he is resp>onsible for the division into 13 books, 
both from the summaries that are found a t the beginning of most books, and 
from explicit references such as ‘in Book I’ (^v rw jrptoTfp auvrd^Ewq, I I 1 p. 
75) and ‘in the preceding book’ (sv xw Tipo TOUTtov auvTaynaTi, V I 5 p. 283). 
But he never refers to a chapter division. Furtherm ore, there is some 
discrepancy in the m anuscript tradition (especially between the branch 
represented by D and that represented by A) as to the points o f division between 
chapters (e.g. at the beginning of Book III), and it is clear from Pappus’ 
com m entary that although a division into chapters already existed in his time, 
it was very different, at least in Book V, from the present division. ® If the chapter 
division and headings are spurious, so too must be the table of contents 
preceding each book. Nevertheless, since this method of subdividing the text is 
useful for reference purposes, and appears in all editions, I have retained it, 
merely m arking the character of the chapter headings by enclosing them in 
brackets thus; { }.

Introduction: Interpolations 5

4. What is in the Almagest, and what is not

The order of treatm ent of topics in the Almagest (outlined in 1 2) is completely 
logical. In Book I, after a brief treatm ent of the nature of the universe (in w  far 
as it concerns the astronomer), Ptolemy develops the trigonom etrical theory 
necessary for the work as a whole. In Book II he discusses those aspects of 
spherical astronomy which are related to the observer’s position on earth (rising*- 
times, length of daylight, etc.). Book III is devoted to the theory of the sun. This 
is a necessary preliminar>' for the treatm ent of the moon in Book IV, since the 
use of lunar eclipses there depends on one’s ability to calcidate the solar 
position. Book V treats the advanced lunar theory, which is a  refinement of that 
in Book IV, and also lunar and solar parallax. Book V I is on eclipses, and thus 
requires a knowledge of both solar and lunar theory, and also of parallax. Books 
V II and V III treat the fixed stars: since the moon is used as a ‘m arker’ to 
determ ine the position of some crucial fijced stars, lunar theory must precede 
this, and since some planetary observations are m ade with respect to fixed stars,

*See the note in Rome{l] I p. 106, and cf. (for Theon) II p. 448 n. (1).



the establishment of a star catalogue (VII 5 and V III 1) must precede the 
planetary theory. The last five books are devoted to the planets. Books IX -X I 
develop the theory of their longitudinal motion, Book X II treats retrograda- 
tions and greatest elongations (which depend only on longitude), vk̂ hile Book 
X III deals with planetary latitude and those phenom ena (the ‘phases’) which 
are partially def)endent on it. Ptolemy occasionally anticipates later results for 
the sake of convenience (see IV 3 p. 179 and IX  3 p. 423, where the m ean motion 
tables of moon and planets incorporate some later corrections), but in general 
the order of presentation, within books as well as in the treatise as a whole, is 
dictated by the logic of the didactic method.

There are, however, certain topics which Ptolemy does not discuss either 
because he takes it for granted that they are already known to his readers, or 
because it seemed superfluous to go into details (here I am  referring especially to 
chronological matters). He says specifically (I 1 p. 37 with n .l3 ) that the work 
is for ‘those who have already m ade some progress in the field’. This means, in 
practice, that he assumes a knowledge of elem entary geometry (‘Euclid’) and 
’logistic’ (thus he does not consider it necessary to explain how to extract a 
square root), and also o f ‘spherics'. The latter is illustrated by the extant works 
of Autolycus, Euclid (Phaertornena) and Theodosius {Sphaerica), which deal with 
the phenom ena arising from the rotation of stars and sun about a central, 
spherical earth, e.g. their risings, settings, first and last visibilities, periods of 
invisibility etc., using elem ental^ geometry, but arriving mainly at qualitative 
rather than quantitative results.*^ These results are mostly irrelevant to 
Ptolemy's work, but he does use much of the terminology and concepts of 
spherics without e.xplanation.

6 Introduction: Contents o f  the Almagest

5. What the reader o f the Almagest needs to know

The modern reader, too, is likely to be familiar with elem entary geometry. S o l 
have not burdened the translation with references to Euclid except where the 
theorems assumed are not immediately obvious. However, in what follows I 
give a brief explanation of methods, concepts and facts not explained by 
Ptolemy which the reader of the Almagest needs to know, but which may be less 
familiar. O n Ptolemy’s m athem atical methods in general one may profitably 
consult Pedersen 47-56.

(a) The sexagesimal system

This was taken over by the Greeks (one may guess by the Hellenistic 
astronomers) from the Babylonians as a convenient way of expressing fractions 
and (to a lesser extent) large numbers, and of perform ing calculations with 
them. It is the first place-value system in history. In the translation and notes I 
use the convenient m odern ‘com ma and semi-colon’ notation, in which

®For more detail see HAMA  II 755-71.



6,13; 10,0,58 represents 6 X 60+13 + 10 x 60“ ' + 0 x 6 0 ”^+ 58 x 60“ .̂ Ptolemy uses 
the system only for fractions, and represents whole numbers, even when 
com bined with sexagesimal fractions, by the standard Greek (alphabetic) 
notation. T he translation follows this mixed notation (thus the above number 
would be written 373; 10,0,58 in the translation, and  foy  i  o VTi in Greek).

- -... ...

Introduction: Sexagesimal system; fractions 7

(b) Fractions

Except where it is necessary to be precise, Ptolemy prefers the traditional Greek 
fractional system to the sexagesimal. In this, although it is possible to express 
proper fractions as e.g. ‘4 5ths’, preference is given to unit fractions, so that, e.g. 
‘4’ is expressed as the sum of i and i (written Z '5 ', i.e. 4 i ’). There is a special 
sign fo r !. In the translation I have usually converted these sums of unit fractions 
to proper fractions without comment. However, I have always retained the 
fractional form where PtoJemy has it, since it gives a misleading appearance ol’ 
precision to convert to sexagesimals (as M anitius often does, putting an exact 
num ber of minutes instead of a fraction of a degree). This is particularly true of 
the star catalogue.

(c) Trigonometry

T he sole trigonometrical function used by Ptolemy is the chord. The derivation 
and structure of his chord table are fully explained in I 10. However, Ptolemy 
does not give explicit instructions for its use in trigonom etrical calculations, 
although his method is obvious enough from the worked examples. In what 
follows I give a literal translation, with com mentary, of a typical calculation 
involving trigonometry.

See Fig. A, and, for my conventions, compare the translation pp. 163-4. In the 
given situation arc 0 H  is 30®, AD is 60*’, AH is 2;30^, and it is required to find 
the angle ADH (the ‘equation’). In modern trigonom etry we would u«e the 
cosine formula. Ptolemy has no equivalent, so he drops the perpendicular HK, 
thus transform ing the problem into one of solving only right triangles, which is 
his standard  procedure.*®

‘T hen  since arc © H is again 30 degrees, angle 0  AH would be 30 of those [units] 
of which 4 right angles are 360, and 60 of those [units] of which 2 right angles are 
360. So the arc on H K  is 60 of the units of which the circle [circumscribed] 
about the right-angled [triangle] HKA is 360, and the arc on AK is 120, the 
supplem ent m aking up the semi-circle. And so, of the chords subtended by 
them, H K  will be 60 ofthe units of which hypotenuse A H  is 120, and AK 103;55 
of the same [units].’

He knows the equivalent of the sine formula, namely that in the general triangle the sides are 
proportional to the chords ofthe doubles of the opposite angles, but uses it surprisingly infrequently. 
An example is IX  10 p. 462 (cf, n.96 there).
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G
Fig. A

To solve a right-angled triangle (here HK A), Ptolenay iniagines a circle 
circumscribed about it. Then the hypotenuse of the triangle is the diam eter of 
the circle, and is taken (initially) as 120 parts (R = 60 being the standard on 
which Ptolem y’s chord table is constructed). T he two acute angles of the 
triangle being given, the other two sides can now be expressed in the same units: 
they are the chords of the arcs of the circumscribed circle, which are the doubles 
of the angles of the triangle (since they are equal to the angles at the centre). 
Instead of explicitly doubling these angles, Ptolemy always first expresses them 
in ‘units of which 2 right angles are 360’. (Following the convention invented by 
B. R. Goldstein, I indicate these ‘demi degrees’ by the notation reserving ° 
for the standard degree of which there are 90 in a right angle.) This enables him 
to switch smoothly from the triangle to the circle (and hence to the chord table, 
which gives him  the actual numbers dO** and 103;55’’): an angle of size 0° is 
20°°, and hence the arc of the circumscribing circle which corresponds to that 
angle is 20°.

‘Therefore in those [units] of which line AH is 2;30, and the radius AD is 60, H K  
will be 1;15 and AK, likewise, 2; 10, and K D , the rem ainder, 57;50.’

The sides of triangle A K H  are converted to the norm  representing their actual 
size (AH = 2;3(f, hence they are multiplied by 2;30/120). This gives two sides of 
the next right triangle to be solved, D H K :H K  and  (by subtraction of AK from 
the given AD) KD.

‘And since the squares on these added together make the square on D H, the



latter will be, in length, approximately 57;51 of the units of which line K H  was 
[found to be]

Since Ptolemy has no tangent function, he has to use ‘Pythagoras’ theorem’ to 
find the hypotenuse of the right triangle in question. H e uses the word jiTiKSi, ‘in 
length’, to indicate that he is taking the square root (considered as the side of a 
square, hence a line length).

‘And so of those [units] of which hypotenuse D H  is 120, line H K  will be2;34 and 
the arc on it [HK , will be] 2;27 of those [units] of which the circle about D H K  is 
360. So that angle H D K  is 2;27 of those [units] of which 2 right angles are 360, 
and about 1;14 of those of which 4 right angles are 360.’

T he sides of triangle D H K  are now converted to the standard in which the , 
hypotenuse is 120'’, thus enabling Ptolemy to use the chord table to determine 
the size of the arc corresponding to the side opp>osite the angle to be determined, 
H D K. T he latter, being at the circumference of the circumscribed circle, is half 
the arc. Ptolemy again expresses this relationship by saying that it is the same 
num ber o f ‘demi degrees’ as the arc is ‘single degrees’, and then converting the 
‘demi degrees’ to ‘single degrees’ by halving. Note that I frequently translate 
expressions like ‘30 degrees of the kind of which the great circle is 360’ simply as 
‘30°’.
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[d) Chronology and calendars

Ptolem y’s own chronological system is ver\- simple. He uses ihc Egyptianyear and 
the era yabonassar. The Egyptian year is of unvarying length of 365 days, 
consisting of twelve 30-day months and 5 extra (‘epagom enal’) days at the end. 
Ptolemy uses the Greek transliterations of the Egyptian m onth names. For the 
reader’s convenience, I usually add a Rom an num eral indicating the num ber of 
the month. T he order of the months is:

I Thoth VII Pham enoth
II Phaophi V III Pharm outhi

III Athyr IX Pachon
IV Choiak X Payni
V Tybi X I Epiphi

VI M echir X II Mesore.

T he reason for choosing the era Nabonassar is given by Ptolemy at III 7 (p. 
166: the earliest (Babylonian) observations available to him were from the 
reign of K ing Nabonassar. Ptolemy’s epoch, Nabonassar I, Thoth  1 cor­
responds to -7 4 6  February 26 in our reckoning." '

‘' Throughout this book I use the ‘astronomical’ system of dating according to the Christian era, 
since it is far simpler for calculating intervals than the ‘B.&/.A.D.’ system. In this, year -1 
corresponds to 2 B.G, year 0 to 1 B.a, year 1 to A.Di 1, etc.



Even when he refers to other calendars, Ptolemy usually gives the equivalent 
date in his own system, so there is no uncertainty. Sometimes, however, he 
gives, not the running date in the era Nabonassar, but only the regnal year of a 
king. It is clear tha t there already existed, in some form, a ‘king-list’ enabling 
one to relate the regnal year of a given king to a standard epoch. Later, in his 
‘H andy Tables’, Ptolemy published such a king-list (known as ‘Canon 
Basileon’), and  it survives, in a considerably augm ented form, in Byzantine 
versions of Theon of Alexandria’s revision of the H andy Tables. From  these I 
have excerpted and ‘reconstructed’ the table on p. 11, which makes no 
historical pretensions, but is intended solely as an aid to readers of this 
book. The basis of the table is Usener’s edition of the two versions in the 
m anuscript Leidensis gr. 78, in Monumenta Germaniae Historica, Auctores Antiquis- 
simi X III {Chronica Minora Saec. IV. V. VI. VII, ed. Th. Mommsen), Vol. I ll ,  447- 
53, supplem ented by my own reading of the version in the ms. V aticanus gr. 
1291, 16'-17'. T he names of the Babylonian and Assyrian kings are obviously 
very corrupt, and I have made no attem pt to emend them, but have chosen 
those m anuscript variants which seem closest to the forms now known from the 
cuneiform sources, which are listed in the second column (supplied to me by A. 
Sachs).

Foi' the purposes of astronomical chronology, an integer num ber of years is 
assigned to each reign. As far as can be checked from independent sources, 
‘Year 1’ of each reign was assumed to begin on the T hoth 1 preceding the 
historical date on which the king began to reign.*'’ Thus, to use the table to go 
from a given regnal \ ear to the era Nalx)nassar, one simply adds the num ber of 
the regnal year to the total listed (in the fourth column) for the previous king.‘*’ 
E.g. to lind the second year of M ardokem pad in the era N abonassar (cf IV 8 p. 
204), we add 2 to the total of 26 given for his predecessor, Ilulai, and get the 
twenty-eighth year in the era Nabonassar.

Although I supply in the translation the modern equivalent of all dates in the 
Almagest, I have added, for the use of those readers who wish to check them, a 
fifth column listing the Ju lian  equivalent of the first day of each king’s reign. If 
one bears in m ind that every Ju lian  year divisible by 4 is a  leap-year, while the 
Eg\ ptian year is constant, this is a suflicient basis for the calculation. However, 
I recommend as an easier alternative the use o[ ̂ chrdLxn'% Kalendariographische 
Tafeln: from pp. 182-9 of that one can find th e ju lian  day num ber of any date in

'• Papyrus I'raRments of such king-lists are found in P. Oxy. 1.35 and Sattler. Studien 39-50. These 
are, however, later than Ptolemy. P. Oxy, 19.2222, a list of the Ptolemies ol Egypt, is earlier than the 
.■\lmagest, but is very different in format from Ptolemy's king-list.

“ It is not known why these two kings are combined. In cuneiform sources (e g. the king-list 
translated in Pritchard, Ancient ,\ear Eastern Texts 272 (iv), they appear consecutively, UkTn-zer 
being assigned 3 years and Pulu 2.

'^This must be a corniption in theGreek tradition of Arses (’Apor]^), the usual form of this king’s 
name (also known a s ’OapoTic;;.

‘̂ This was recognised long ago. See Usener, MGH  XIII.3 p. 441, with references to older 
literature in his n.5.

In the Handy Tables Ptolemy adopted the ‘era Philip’ (which already occurs in the Almagest as 
death of Alexander’); hence in the mss. the totals for era Nabonassar go only as far as Alexander the 
Macedonian (no. 31), and a new totalling system begins with Philip (no. 32). I have converted all 
these later totals to the era Nabonassar by the addition of 424 to each. Cf. Schram p. 173.

10 Introduction: Chronology
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Ruier

Kin{^ [of Assyria 
and  Babylonia]

1 N abonassar
2 N adi
3 Chinzer and  P o r‘^
4 Ilulai
5 M ardokem pad
6 Arkean
7 Fii-st interregnum
8 Belib
9 A paranad

10 Rfgeljel
11 Mesescmoi'dak
12 Second in ta regnun i 
Ki AsariHin
14 Saosdouchin
15 K iniladan
16 \abopola> sar
17 Nabokolassar
18 Illoaroudani
19 Nerigasola.vsar
20 \a l> onadi

Corret i (brm Yeai-s of Total years to Julian dale of 
reign end ol' reign lieginning ol' reign

Nabii-nasir
X adin
Ukin-zer; Pulu 
Elulai
M arduk-apla-iddin
Sanu-uk in

Bel-ibni
Assur-nadin-sumi
Neri»ai-iisezib
M uM'zib-Marduk

Assiir-a(ia-iddina
Samas-IIiiina-ukin
K.aiKialanii
.N'abu-apla-usur
Nabil-kudurra-u.sur
A mil-M ardiik
Nfr^al->arra-usur
N abu-na’id

14
2
5
5

12
5 
2
3
6 
I
4 
8

13
20

43

14
16
21
26
38
43
45
48
54
55 
59 
67 
80

l(K)
122
143
186
188
192
20'.t

-746 Feb. 26 
-732 F eb  23 
-730 Feb. 22 
-725 F eb  21 
-720 Feb: 20 
-708 Feb. 17 
-703 Feb. 15 
-701 Fei). 15 
-698 Feb. 14 
-692 Feb. 13 
-691 Feb. 12 
-liS7 Feb. 11 
-679 Feb. 9 
-666 Feb. 6 
-(H6 Feb. 1 
-624 Jan. 27 
-603 Jan . 21 
-■>«) Jan. 11 
-5.58 Jan. 10 
-554 Jan. 9

K inip ol the Persian>
21 Cvriis
22 Kambvses
23 D arius I
24 Xerxes
25 .\rta.\erxes I 
2(i D arius II
27 .\rlaxerxes II
28 ()< hus
29 .Arogos'*
30 Darius III
31 .M fxander the .Maredonian

Kurus 
K am buzi\ ai-v - hU arayava u
X>avarsa
•\rtaxsaOra
D ara \ava 'u
.\rtaxsa6ra
\'ah au k a
.^Hawarsa
Darav ava u
A/.ecaviSpo^

9
8

36
21
41
19
4<i

218
226
2(i2
283
324
343
389
410
412
416
424

-537 Jan. 5 
-528 Jan . 3 
-520 Jan . I 
-485 D. <. 23 
-464 l>< . 17 
-423 Der. 7 
-404 Dee. 2 
-358 .Nov . 21 
-337 Nov. 16 
-335 .\ov. 15 
-331 .Nov. 14

Kings o f the .Macedonians
32 Philip who succeeded

.Alexander the (i)under
33 .M exander II
34 Ptolemy son ol' Lagos
35 Ptolemy Philadelphos
36 Ptolemy Euergetes
37 Ptolemy Philopator
38 Ptolemy Epiphanes
39 Ptolemy Philometoi'
40 Ptolemy Euergetes II
41 Ptolemv Soter
42 Ptolemy .Neos Dionysus
43 C leopatra

Kings ol the Romans
44 .Augustus
45 Tiljerius
46 G aius
47 Claudius
48 Nero
49 \ ’espasian
50 Titus
51 D om itian
52 Ner%a
53 T ra jan
54 H adrian
55 Antoninus

(p'tXtrtTOw
'AX^avdpoc ETEpo.; 
riTOA.e|id\oc Adyou 
<DiX.d6£/.ipoc
EiiEpyETTic 
<I>iA.ortdT(op 
Erttipavn̂  

<DtXonnTtop 
EOepyETTi;; P'
IcoTtip
Ai6vuoo<; v£o<; 
KA.£OitdTpa

•Augustus
Tiljerius
Gaius
Claudius
-Nero
X’espasianus
Titus
Domitianus 
Nerva 
Traianus 
H adrianus 
Aelius Antoninus

20
38
25
17
24
35 
29
36 
29

43
22

4
14
14 
10
3

15 
1

19
21
23

431
443
463
.501
526
543
567
602
631
667
696
718

761
783
787
801
815
825
828
843
844 
863 
884 
907

-323 Nov. 12 
-316 .Nov. 10 
-304 .Nov. 7 
-284 Nov. 2 
-246 Oct. 24 
-221 Ocf. 18 
-204 Oct. 13 
-180 Oct. 7 
-145 Sept. 29 
-116 Sept. 21 , 
-80 Sept. 12 
-51 Sept. 5

-29 .Aug. 31 
14 Aug. 20 
36 Aug. 14 
40 Aug. 13 
54 .Aug. 10 
68 Aug. 6 
78 Aug. 4 
81 Aug. 3
96 July 30
97 July 30 

116 July 25 
137 Ju ly  20



the era Nabonassar in a few seconds, and hence (from his other tables) the 
equivalent date in any standard calendar.

The only other zispect of Ptolemy’s own chronology requiring rem ark is the 
‘double dates’. He frequently characterises the day of an observation by 
expressions likeFIaxtov e’k; fnv  iT]', translated ‘Pachon 17/18’, but literally 
Tachon, the seventeenth towards the eighteenth’. M odern com m entators have 
made unnecessarily heavy weather of this. Ptolemy himself uses a noon epoch, 
but this is an artificial starting-point (the reason for which he explains at III 9 pp. 
170-1), and has nothing to do with numbering the day. In antiquity the ‘civil epoch’ 
of the day was either dawn (as in Egypt) or sunset (as in Babylon). In either 
system, an event which took place in the daylight would be on the same ‘day’, 
but one which took place in the night would be on ‘day n’ for those using dawn 
epoch and 'day n+1’ for those using sunset epoch. Hence ambiguity was 
possible. Ptolemy uses double dates (which are found only for night-time 
observations) to avoid this ambiguity. T he form he uses implies the Egyptian,
i.e. dawn epoch (cf. the long form III 1 p. 138,Tfj la ' xov M saopi] jiexd 
kyyvc, tou  eiq Tf)v iP ' |ieaovvjKTiou (literally ‘on the eleventh ol' Mesore, 
approximately two hours after the m idnight towards the twelfth’), but it would 
be clear even to someone using sunset epoch (who would date the above event to 
‘Mesore 12’) what day he means.

In using the obsei-vations of his predecessors Ptolemy often has occasion to 
refer to other systems of chronology' and calendars. A lthough in such cases one 
can always readily derive the equivalent date in Ptolem y’s own system (he 
almost always gives it explicitly), I shall describe them briefly here.

The most frequently mentioned is the Kallippic Cycles. To explain this, we 
must go back to Meton, who in -431 devised a 19-year ‘cycle’, i.e. a fixed 
scheme of intercalation of months containing 6940 days (thus the average 
length of a year was 3651 + days).’’ Since he was an Athenian, he used the 
month names of the A thenian civil calendar for the months of his artificial 
‘calendar’. A hundred years later an associate of Aristotle, Kallippos, produced 
a revision of this, based on the more accurate year-length of365i days. In order 
to achieve this, he eliminated one day from 4 M etonic cycles, thus producing 
the ‘Kallippic cycle’ of 76 years and 27759 days. W hat was later known as the 
'First Kallippic Cycle’ l)egan at the summer solstice (probably June  28th) of the 
year -329. In the Almagest we find references also to the Second and T hird  
Kallippic Cycles, which began in -253  and -177  respectively. T o  judge from 
the Almagest, this chronological system was the one most used by earlier 
Hellenistic astronomers.'® In V II 3 four observations by Tim ocharis (Alexan­
dria, third century B.C.) are given according to the year of the First Kallippic 
Cycle and ‘A thenian’ m onth and day. O n  the basis of these, several attem pts 
have been made to reconstruct the whole ‘K allippic calendar’, with discrepant 
results. Since the above constitute the whole evidential basis, apart from the

•’ For a detailed discussion see Toomer[7]. I give there the arguments for supposing that M eton’s 
purpose was not to rel'orm the Athenian calendar, but to establish an ‘astronomical chronology’.

'“The dates of the three eclipses in IV 11 (p. 211, cf. n.63 there) which, though observed in 
Babylon, are given according to Athenian archon and Athenian month, are presumably in the 
Metonic calendar.
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passage in Geminus, Eisagoge V III, which I regard as fiction, and two dubious 
equivalences in the Milesian parapegm a, any reconstruction is academic.^® 
Here I note only that Kallippos evidently retained the p>eculiar Athenian method 
of counting the days of the m onth by decads, and  in the last decad counting 
backwards, so that V I I3 p. 336 (p0ivovTO<;, literally ‘on the sixth [day] of 
the w aning [moon]’, means ‘the sixth day from the end of the last decad’, i.e. the 
twenty-fifth.^®

H ipparchus too used the Kallippic cycles for astronom ical dating, but 
com bined them, not with Kallippos’ ‘A thenian’ calendar, but with the 
Egyptian calendar (i.e. he used the cycles simply as a year count), at least as far 
as we can tell from the Almagest. This seems to have led to ambiguities, since 
the ‘K allippic’ year began at or near the summer solstice, while the Egyptian 
year is a ‘w andering.year’, which in H ipparchus’ time began about the end of 
September. Thus there arose the possibility of a discrepancy of 1 in the year 
count, for certain stretches of the year (whether it is +1 or -1  depends on 
H ipparchus’ choice). Such a discrepancy is firmly attested in Almagest IV 11 
(see p. 214 n. 72), and cannot plausibly be removed by em endation, though this 
has been done (by Ideler and others) in the interest of consistency. In fact it is 
impossible to make all of H ipparchus’ ‘Kallippic cycle’ dates in the Almagest 
consistent w ith one another (see p. 224 no. 13), and we must allow for the 
possibility that H ipparchus used different systems in different works.

Three planetary observations in the Almagest are dated  Katd XaX5aiou<;, 
‘according to the Chaldaeans’, with a year num ber and a M acedonian month 
nam e and day number. The year numbers show that the era used is that known 
in m odern times as the Seleucid Era (dating from the year which Seleucus I 
counted as the first of his reign, -311/10), which was common throughout the 
Seleucid empire. Since the observations are undoubtedly Babylonian, the 
particular epoch used in them is, as one would expect, that known from the 
surviving Babylonian astronomical texts, 1 Nisan (April) -310 (Greeks under 
the Seleucid empire commonly used an epoch of au tum n -311). The use of 
M acedonian month names has rightly been taken to show tha t the Babylonian 
lunar months were simply called by the names of the M acedonian months by 
the Greeks under the Seleucid empire: ifone computes the date o f the first day of 
the ‘M acedonian’ month from the equivalent date in the eraN abonassar given 
by Ptolemy, it coincides (with an error of no more than  one day) with the 
com puted day of first visibility of the lunar crescent at Babylon.^* There is other 
evidence for the assimilation of the month names,'■ but this is the strongest.

U nattested outside the Almagest is the Calendar o f Dionysius. This had a

Those who care to may consult Ginzel I I 409-19 and Samuel, Greek and Roman Chronology, 42-9 
for details and literature.

For this system sec Samuel, Greek and Roman Chronology 59-60. I do not know why it is not used 
for the other three ‘Kallippic’ dates in which the days are simply numbered consecutively.

These are conveniently listed in Parker-Dubberstein.
** For details see Samuel, Greek and Rmtan Chronology 140-2. However, Samuel is wrong in saying 

that the Almagest evidence proves that the assimilation was made as early as the date of the earliest 
observation (Nov. -244). In the cuneiform record from which this was derived the Babylonian 
names must have been used. It was only when this was translated into Greek (which may have been 
as much as a century later) that the Macedonian names were substituted.
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running year count and months nam ed after the signs of the zodiac 
(corresponding, a t least approxim ately, to the period of the year when the sun 
was in the sign in question). T he m onths T auron  (8  ), D idym on (H ), Leonton 
( ^ ) ,  Parthenon (115), Skorpion (m ), Aigon (l^ ) and H ydron ( ^ )  are attested. 
From  analysis of the Almagest evidence Bdckh, Sonnenkreise 286-340, showed 
tha t the epoch of the calendar was the summ er solstice o f -284. Since T hoth  1 
(Nov. 2) of -284 is the beginning of the first regnal year of Ptolemy 
Philadelphos, it is plausibly concluded that Dionysius observed in Egypt. 
Bockh’s further conclusions, that the calendar was similar to the Egyptian one 
in having 12 months of 30 days, but was modified by introducing a sixth 
epagomenal day every four years, cannot be regarded as certain, especially 
since this requires 'em ending’ some of the Almagest dates. Here, as for the 
Kallippic calendar, ‘reconstruction’ seems pointless when the evidence is so 
scanty and the likelihood of verification utterly remote.^^

O ne observation is dated in the Bithynian calendar of the imperial period. Like 
a num ber of other contemporary calendars in Asia M inor, this was simply the 
Ju lian  calendar, with different month-names, and with the first day of the year 
Augustus’ birthday, Sept. 23. For details and literature see Samuel, Greek and 
Roman Chronology 174-5.
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{e) Ptolemy's star catalogue

The list of the coordinates and m agnitudes of the principal fixed stai-s visible to 
Ptolemy poses special problems to the translator. In particular, there are 
numerous manuscript variants in the coordinates, and while one must put some 
num ber in the translation, it is often dilficult to be certain about one’s choice. 
T he solution I have adopted is (in the star catalogue only) to append an asterisk 
to any element (longitude, latitude, magnitude, description or identification) 
where there is reason to suppose that it may be incorrect (i.e. not w hat Ptolemy 
wrote or intended),'^ either because there is a plausible ms. variant, or because 
of some gross inconsistency with the astronom ical Tacts. In such cases I give all 
significant variants known to me in a footnote. I have m ade no eflbrt to record 
all variants, since most are obviously wrong. T he reader who wishes to go 
further must still consult Peters-Knobel, on which I have draw n heavily, and 
which is still the best treatm ent of the catalogue as a whole, though badly in 
need of updating and revision in certain respects.'^

Ptolemy lists the stars under 48 constellations, and gives for each star (1) a 
description of its location on the Tigure’ and (sometimes) of its brightness and 
colour; (2) its longitude; (3) its latitude and direction (north or south of the 
ecliptic); and (4) its magnitude. I have followed my predecessors (notably 
M anitius) in adding to these: (a) an  initial column giving a running num ber to

‘‘‘The interested reader may consult HAMA  III 1067 n.22indSAmuc\^ Greek and Roman Chronology 
50, n.6 for further literature.

^^The lark ol an asterisk does not imply that I regard the reading adopted as Ptolemy’s beyond 
any (luestion. i)ut only that I have no good reason to doubt it.

“’ See the strictures of Kunitzsch, Der Almafiest 46.



the star w ithin its constellation (stars listed a t the end of some constellations by 
Ptolemy as ‘outside the constellation’, i.e. not part o f the imaginary figure, are 
num bered continuously with those preceding them); (b) a final column giving 
the m odern identification of the star. For those stars which have them, this is the 
Bayer letter or Flamsteed number. C ertain fainter stars have neither; for these I 
give the num ber in the Yale Bright S tar Catalogue (abbreviated as ‘BSC’). 
From that publication those interested can find the corresponding number in 
the Durchm usterung and the Henry D raper and  Boss G eneral Catalogues. I 
have abandoned all references to the antiquated Piazzi catalogue (still used by 
Peters-Knobel).

I have used Rom an numerals to num ber the constellations, and refer to 
individual stars (throughout the translation) by the com bination of Rom an and 
Arabic numerals (thus ‘catalogue X X X IX  2’ refers to the second star in the 
thirty-ninth constellation (Canis Minor), namely Procyon).

The star descriptions pose numerous individual problems, only a few of 
which are touched on in the footnotes. Ideally one should provide a 
reconstruction of the outline of each constellation as it appears on Ptolemy's 
star-globe. Unfortunately no one has done the necessary work of assembling 
and com paring all the literary and iconogi'aphic evidence from antiquity and 
from the derivative Arabic tradition (notably as-Siiii). This would be an 
interesting and valuable enterprise. Meanwhile, for the reader who needs some 
visual illustration. I can recommend only the old work of Bayer. I'rammetria, 
with the warning that in many cases his positioning of the stai's on the figures, 
and the outlines of the figures themselves, are certainly dill'erent from 
Ptolemy’s.-*’ O n the m atter of the orientation of the figures, I have satisfied 
myself that Ptolemy describes them as if thes were drawn on the inside of a globe, 
as seen by an obsen-er at the centre ol'that globe, and facing towards him. This 
is in agi eement with what H ipparchus says {Comm, in Aral. 14 5): ‘for all the stars 
are described in constellations (i^aTeptoxai) from our point of view, and as if 
they were facing us. except for such of them  as are drawn in profile’ 
(KaTdypaipov, as interpreted by M anitius. whom I follow dubiously). It is in 
this sense that we must interpret ‘left hand', ‘right leg’, etc. This has to be said, 
since on the actual star globes the constellations were necessarily drawn On the 
outside. Hence the orientation of the figures was (at least in some cases) reversed, 
which could lead to confusion.'^ I have rendered the prepositions used by 
Ptolemy in indicating the positions of stars with respect to parts of the figures 
consistently, as follows:

in = 8V 
on = ejri 

over = Urt8p

-'’The work of Thiele, .-Intike Himmebbilder, is ver\- little help, although I have referred to it to 
illustrate some particulars.

■^Cf. the scholion on Aratus, Maass. Comm, in .-iral. p. 384 no. 251: ‘the signs look inward with 
respect to the heavens . . . but they have their backs to the globe, so that their faces may be seen. 
Hence, if he says “ right hand” or “ left hand" and we llnd the opposite on the glolie, we should not 
l)e confounded.’
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above = tnAvca 
under = uno 
below = UTCOKdTO)

just over = Kaxd + genitive 
advance, in advance = 7tp0TiY0U|iev0<; 

rear, to the rear = feTCÔ ievô

O n the m eaning of the last two terms see below p. 20. Note that ‘rear’ is never 
used in a sense other than directional. T o indicate the back parts of an animal 
figure I use ‘hind’.

Both longitudes and latitudes are given, not in degrees and minutes, but in 
degrees and fractions of a degree. I have retained this in the translation (see p. 
7). W ith very few exceptions, the longitudes are not given more accurately 
than to 6°. (This has been taken to imply that the ecliptic ring of Ptolemy’s 
instrument was graduated only every 10'). However, one frequently finds the 
fractions i° and for the latitudes.

The latitudes in Ptolemy’s list are preceded by the direction (Po = PopEioq, 
‘northern’; vo = v6tio<;, ‘southern’). I have rendered these by + and -  
respectively.

The magnitudes range (according to a system which certainly precedes 
Ptolemy, but is only conjecturally attribu ted  to H ipparchus) from 1 to 6. 
Ptolemy indicates intermediate magnitudes by adding (after the number) 
fieiCo)v, ‘greater' or eXdaawv, iess’ (abbreviated in the mss.). I have rendered 
these by >  and <  (before the number) respectively. O ne occasionally finds for 
the magnitude, instead of a number, the rem ark dfaaupot; (rendered ‘f  ’ for 
‘faint’) or vecpsA.. (for VEcpeXoEiSqc;), ‘nebulous’, abbreviated as ‘neb.’

For the identifications, wherever Peters-Knobel and M anitius are in 
agreement, I have usually been content to adopt their opinion. W here they 
dilfer (and even when the\' agree, in some special c a s e s ) , I  have checked the 
possibilities as carefully as I could, using the large-scale Allas o f the Heavens by 
Becva!', and transforming Ptolemy’s coordinates to right ascension and 
declination at the modern epoch, where necessary. However, I have made no 
attem pt to redo the work of Peters and Knobel, namely to compute the 
longitude and latitude of the relevant stars for Ptolem y’s time from modern 
data (in particular using the most up-to-date values for the proper motions). This 
might be worth while, though I doubt w hether the degree of improvement over 
Peters-Knobel would justify the large am ount of com putation. In any case, it is 
unlikely that it would eliminate the doubts that remain about the identification 
of many of the fainter stars.

At the end of each constellation in the mss. are listed the total num ber of stars 
in the constellation, and the sub-totals of each magnitude. These in turn are 
added up at various intermediate points (the northern segment, the zodiac, and 
the southern segment), and the grand totals are given a t the end. I am
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Notably, where Ptolemy describes a star as a ‘nebulous mass’ (ve(peXoei5ii<; ouoTpcxpTi), I have 
preferred to give the globular cluster (abbreviated ‘CGlo’) or galactic cluster (abbreviated ‘CGal’) 
rather than some particular star inside it.



convinced that this was not done by Ptolemy (who makes no mention of it in his 
description of the catalogue, V II 4 pp. 339-40). A nother indication of the 
spuriousness of these passages is that no separate count is m ade in the totals of 
the stars which are greater (> )  or less (<) than a certain magnitude: all are 
lum ped in with the stars of that magnitude. I have translated the passages in 
question, but enclosed them in brackets thus: { }.
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if) Explanations o f special terms

(i) Geometrical

by subtraction (XoiTtoq -T̂ -6v): literally ‘the rem aining [part]’, ‘'rem ainder’ 
(I have on occasion so rendered it).

by addition {oXoq *t| -ov); literally ’the total’.

Crd v: chord of the angle x° (R = 60'’). Greek has no word with the specific 
m eaning 'chord’, but uses the generic eOOeTa, ‘straight line’. ‘Crd x’ renders 
Td<; X (ioipat; bnoxEwovoa  suGsTa, ‘the straight line subtending x degrees’.

In connection with the Menelaus Theorem  (see p. 18), an e.xpression of the 
type 'C rd  arc 2AB’ represents bno Tiiv SiTrXT̂ v Tr)<; AB TTEpKpepeiat;, literally 
'the [linej subtended by the double of arc .\B ’.

siipplemertt, supplementary arc (î  XexKOVoa [X.cijrfi] eiq to  n|iiKi)KXiov TrspKpepeia): 
literally ‘the arc which is the rem ainder to the semi-circle’.

complement (XoiTTii to  TeTaptr|)i6piov): literally, 'the rem ainder to the 
q u ad ran t’.

II literally, ‘is similar to". Used of arcs of different-sized circles. Arc .ABU arcG D  
if each arc is the same fraction of its circle.

III (laoyojvidv eaxt): literally, ‘has [all] its angles equal to’, i.e. is similar to (used 
only of triangles).

=  ftaOTtXeupov eaxi): literally ‘has its sides equal to’, i.e. is congruent to. Used 
only of spherical triangles. Sometimes laoyoiviov KdilaoTtXeupoveoTi, ‘has its 
angles and sides equal to’.

Q .E .D . (oTTEp eSet SsT^ai): literally ‘which is w hat it was required to prove’.

componendo (ctuvG^vti). Expresses the operation of addition of ratios: if 
a ; b = c ; d, then (a + b);b = (c + d);d.

dividendo (SteXovxi, Kara S iaipeoiv) (1) Usually expresses the operation of 
subtraction of ratios: if a : b = c : d. then (a -  b) : b = (c -  d) : d.



(2) Once, a t X II 1 (see p. 558 n.4) 5 i£X6vti expresses division of members of 
ratios. I f  a  : b = c : d, then „ : b = n : d.

Menelaus Configuration and Menelaus Theorem (used only in the footnotes and 
explanatory additions). C f H AM A  26-9. Fig. B represents a M enelaus 
Configuration. m ,n ,r and s are four great circle arcs on the surface of the sphere, 
intersecting each other as shown, and divided by the intersections into the parts 
mi, m2 etc. (thus m = mj + m2 etc.) In I 10 Ptolem y proves the theorems

I Crd 2m Crd 2r Crd 2s,
X
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Crd 2m, C rd 2rj C rd 2s

II Crd 2r, C rd 2m2 C rd 2n 
Crd 2r, "  C rd 2m, C rd 2no '

Since it is known that these were discovered by M enelaus, Neugebauer has 
nam ed them ‘M enelaus Theorem  F and ‘M enelaus Theorem  IF respectively, 
and I follow him, abbreviating to ‘M .T .I.’ and ‘M .T .IF .

(ii) Spherical astronon^

(at) sphaera recta ( in ' 6p0fjq tf](; atpaipac;) and (at) sphaera obliqua {kiz' 
EyKEKXtnevTii; tfiq a(paipa(;). These mediaeval Latin terms are the literal 
translations of the Greek, m eaning ‘on the upright sphere’ and ‘on the inclined 
sphere’ respectively. Probably taken from the use of celestial globes, they refer 
to the phenom ena which occur when the celestial equator is perpendicular to 
the local horizon {sphaera recta) o r inclined to it a t an  acute angle {sphaera 
obliqua). In particular, we use rising-time at sphaera recta or right ascension, and 
rising-time at sphaera obliqua or oblique ascension to designate the arc of the equator 
which crosses the horizon together with a given arc of the ecliptic (e.g. one



zodiacal sign) at sphaera recta (i.e. a t the terrestrial equator), and at sphaera 
obtiqua (i.e. any other terrestrial latitude) respectively.

equator represents Icrniaeptvog (kukXoc;), literally ‘circle of equal day’, so called 
for the reason Ptolemy gives in I 8 (pp. 45-6).

meridian represents ^80^^nPplv6q (kukXoc;), literally ‘midday circle’ (defined 
and explained at I 8 p. 47). M eridian passage of a heavenly body is called 
culmination. The Greek terms for culminate and culm ination, ^eooupaveTv, 
|i£aoupdvTiai<;, mean literally ‘being in the middle of the heaven’, upper ?Lnd lower 
culm ination are expressed by UJtsp yflv anduno y^iv, m eaning ‘above the earth ’ 
and ‘below the earth ’ respectively, and sometimes so translated.

An altitude circle is any circle drawn through the zenith perpendicular to the, 
horizon. Ptolemy has no special term for this in the Almagest, merely saying 
‘the (great) circle drawn through the zenith (through the poles of the horizon)’, 
e.g. II 12, H I 166, 20-1.

colure. This term  is used by Ptolemy only once, at II 6 p. 83. I translate part of 
M anitius’ note on that passage: Two of the circles of declination through the 
poles of the equator are named ‘colure’ (ic6A.oupog): the solsticial colure, which 
goes through the solstices and hence carries the poles of the ecliptic, and the 
equinoctial colure. These two colures divide the sphere into four equal parts 
and divide both ecliptic and equator into four quadrants, so that one quadrant 
corresponds to each season of the year. Ptolemy counts the solsticial colure as 
boundary of the daily revolution [18 pp. 46-7, where however the term ‘colure’ 
is not used], but never explicitly mentions the equinoctial colure. Both colures 
were already defined by Eudoxus (Hipparchus, Comm, in Aral. 117 (T.) The term 
is explained by Achilles, Isagoge 27 (Maass, Comm, in Aral. 60) as follows: ‘They 
are called colures because they appear to have their tails cut off as it were 
(KeKoXouaGai coaTtEp tok; oupd^), since we cannot see the parts of them 
beginning at the antarctic, always invisible parallel’.

It is unfortunate that we have to use the same word latitude to refer both to the 
celestial coordinate (vertical to the ecliptic) and to the unrelated terrestrial 
coordinate. Ptolemy uses, for the former JtXdToq, and  for the latter KXi|ia, 
literally ‘inclination’. W hen necessary I gloss this e.g. as ‘[terrestrial] latitude’. 
KX.l(ia, however, does not refer to the coordinate as such (for which Ptolemy uses 
eYKXl^a, H I 68,9, eykXiok;, H I 101,23 or, once, -nXaxoc,, H I 188,4), but to a 
specific ‘band’ of the earth  where the same phenom ena (e.g. length of longest 
daylight) are found. Hence in early Hellenistic times arose the notion of the 
division of the known world (the g\kouh8VT|) into 7 standard  climala (see 
H AM A  334 IT., II 727 ff. and Honigmann, Diesieben Klimata). This is reflected in 
several places in the Almagest, e.g. in Table I I 13.1 refer to these seven standard’' 
parallels by Rom an numerals, e.g. Clima IV = the parallel through Rhodes, 
longest day 14  ̂ hours. .
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(iii) Referring to the heavenly bodies

As Ptolemy explains in I 8, in his system the whole heavens are conceived as 
rotating from east to west, making one revolution daily. T he direction defined 
bv this motion, and the direction counter to it, are called el(; TCi TiporiYou^eva 
(‘towards the leading [parts]’) and s’k; xd fe7t6^eva (‘towards the following 
[parts]’) respectively. T he corresponding adjectives 7tp0TiY0U|igV0<; and 
fe7t6^EVO(; are also found, particularly in the star catalogue, and Ptolemy 
frequently uses the phrases elc; td  jrporjYouneva (e7tO|ieva) tcSv Cq)5io)v, 
‘towards the leading (following) [parts] o f the zodiacal signs’, to indicate the 
direction of motion in the ecliptic. A m odem  reader may find this confusing: 
since the normal motion of bodies in the ecliptic is from west to east, w hat we 
regard as forward motion, e.g. of a planet, is described as ‘towards the following 
[parts]’ (‘towards the rear' in my translation). No version of these terms in a 
modem language is satisfactory. O ne cannot use ‘west’ and ‘east’ because these 
must be resened for Ptolem y’s 5ua |ja i and dvaxoXai, which are confined to 
situations where a terrestrial observer is implied. It is a distortion to translate 
(with Manitius) ‘in the reverse order of the signs’ and ‘in the order of the signs’, 
since this implies that the terms define ecliptic coordinates, whereas they are in 
the equatorial system, and while it is usually true that a celestial object which 
;rpor|yelTai (‘leads’) another will have a lesser ecliptic longitude, if their 
latitudes dilTer greatly the reverse may be true, especially at verv’ high ecliptic 
latitudes. Precisely this situation occurs in the star catalogue, despite Ptolem y’s 
own statement at \ ’II 4 p. 340 that the terms in the catalogue define ecliptic 
coordinates (see n.93 there). Although I am  aware tha t my choice loo has its 
drawbacks, I have settled on in advance ibr eiq td  ;tpor|YoO)i8va, and towards the 
rear for e’k; xd fe7t6 |i£va. These always imply ‘with respect to the daily motion 
from east to west’, with the paradoxical consequence, as rem arked above, that 
in the ecliptic a body which is ‘in advance’ of another has a lesser longitude. 
However, I have com mitted an inconsistency in translating the derived noun 
rtpoTiyr|oiq as retrogradation. This is used onl\’ for the portion of the courses of the 
five planets in which they reverse their normal direction of motion, and  it would 
be too confusing to render this by ‘motion in advance’.

ecliptic. Ptolemy ne\ er refers to this circle by the term eKXeiTTCiKoq (which he con­
iines strictly to the meaning ‘having to do with eclipses’). His normal term iso 5id 
î£O(0V xwv i^tpSiwv (kuicXoc;), ‘the (circle) through the middle of the zodiacal 

signs’ (e.g. H I 18,23-4); more fully, 6 "kc^oc, KOt 6idn60(ovxSv^(p5i(ovKi3K>ioq, 
‘the inclined circle through the middle of the signs’ (HI 64,4). Occasionally, 
when the context is clear, simply A.6^oq kukXo^, ‘inclined circle’ (HI 8,22). 
However, the latter can be used for other things, notably the moon’s orbit 
(which is ‘inclined’ to the ecliptic). I normally use ‘ecliptic’ throughout.

[zodiacal] sign. The conventional subdivision of the ecliptic into twelve 30° 
stretches named Aries, Taurus, etc. For this Ptolemy uses, not^cpStov (‘animal 
sign’), but 5a)5eKaxTi|iopiov (‘twelfth’), presumably because he wishes to
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distinguish the ecliptic, a notional circle, from the zodiac, a band of actual 
constellations.

star. T he Greek term doTTip really means ‘heavenly body’, and can be used 
indifferently for a star (in the m odern sense), a planet, or even the sun and 
moon. W hen Ptolemy wishes to distinguish w hat we call stars, he says ‘fixed 
stars’. I have normally translated datTip according to the context, as ‘planet’, 
‘star’ or ‘body’. However, in I 3-8, where Ptolemy uses the term to include all 
heavenly bodies, I too have used star in this special sense. W hen nam ing the five 
planets, Ptolemy almost always uses the periphrasis ‘star o f . . ’, thus 6 TOi) 
Kpovou [doTTip], ‘[star] of Kronos’. I always translate simply ‘Saturn’ etc.

latitude {celestial). TtXaroc; (literally ‘bread th’) refers not only to ‘the direction 
orthogonal to the ecliptic’, but to any ‘vertical’ direction, e.g. that normal to the ' 
equator. In such cases I use, not ‘latitude’, but another appropriate term (see I
12 p. 63 with n. 74). In V II 3, however, I have been forced to use‘latitude’ to 
e.xpress the more general m eaning of the Greek (see p. 329 n.55).

Ptolemy uses iKKevxpoq as both adjective and noun. It may be that in the latter 
case one has always to understand £KK8VTpo<; ‘eccentric circle’.
However, to avoid ambiguity, I have (following mediaeval usage) consistently 
denoted the noun by eccentre and the adjective by eccentric. An ‘eccentre’ is simply 
an eccentric circle. Similarly for concentre and concentric.

I have occasionally used the convenient mediaeval term deferent to denote the 
circle on which an epicycle is ‘carried’. Ptolemy has no one-word equivalent, 
but uses phrases like ‘the concentric carrying the epicycle’, ‘the circle carrying 
it’.

anomaly. As noted e.g. by Pedersen (139 with n.9), dvcona>.ia in the Almagest 
has a num ber of different meanings. Despite the am biguity, I have generally 
rendered dvo>^aX.ia and the adjective from which it is derived, dvcofiaXoq, by 
‘anom aly’, ‘anom alistic’, although where necessary I have translated the latter 
literally as ‘non-uniform’. Besides referring to non-uniform motion, ‘anom aly’ 
is also used for the mean (hence uniform) motion of the moon and planets on 
their epicycles (because the motion on the epicycle produces the appearance of 
‘non-uniformity’). For the planets Ptolemy distinguishes between the synodic 
anomaly (f| npoc; to v  fjXiov dvcDjiaXia, ‘the anomaly with respect to the sun’, 
H II 255,8), which produces the phenom ena of retrogradation and varies with 
the planet’s elongation from the sun, and the ecliptic anomaly (^©SiaKTi 
dvtonaXia, H II 258,11), which varies according to the p lanet’s position in the 
ecliptic.

equation. I use this convenient mediaeval term for the angle (or arc) to be applied 
to a m ean motion to ‘correct’ it to account for a particular feature of the 
geometric model. Ptolemy uses the vaguer terms x6 5id(popov ‘difference’ (which 
is also used for many other things) and TipooGaipaipeOK; (‘am ount to be added
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or subtracted’), equation o f anomaly reliers to the correction for the varying 
position of a body on its epicycle, and equation o f centre (only in the footnotes, not 
the text) to the correction due to the eccentricity of a planet’s deferent.

centrum. I have occasionally used this mediaeval term in the footnotes to denote 
the angular distance from apogee (see below) to the centre of the epicycle.

elongation (dTtoxTl) is the angular distance along the ecliptic between two bodies 
or points. It is used particularly, but not exclusively, for the ecliptic distance 
between sun and moon.

apogee and perigee are simply transcriptions ordjroyEiov andTrepiyeiov, literally 
‘[point] far from earth’ and ‘[point] near to ea rth ’. These are the usual terms for 
the points on a body’s orbit which are respectively farthest from and nearest to 
the terrestrial observer. Ptolemy also uses the superlativ’e forms dTtOYEioTaTOv 
(TtepiyeiOTaTov) aTmEiov (‘point farthest from (nearest to) earth ’), with no 
obvious difi'erence in meaning. However, in the case of M ercury, translation of 
both by ‘perigee’ generates an ambiguity. For all other bodies, in Ptolem y’s 
models, the perigee is diam etrically opposite the apogee, but for M ercury the 
point of closest approach is about 120° from apogee. Ptolemy still refers to the 
point 180® from apogee as the ‘perigee’ (Ttepiyetov) for M ercury, and when he 
wants to refer to the point of that planet’s closest approach uses the superlative 
(;repiy£i6TaT0<;). I have m itigated the ambiguity by translating the latter, not 
as 'perigee', but as 'closest to earth ’ (for M ercury alone).

phase. Used for the fixed stars and planets, this is simply a transcription of(pdat<;, 
and is a general term including ail the significant 'configurations with respect to 
the sun' (listed by Ptolemy at V I I I4 pp. 409- 10, and exemplified in his partially 
extant work<pdaei(;d7r>.avSvdoT£pQ)v, ‘PhasesoftheFixedStars"), suchas first 
visibility at sunset, or last visibility just before dawn. But the literal meaning of 
(pdotc; is ‘appeai-ance’, and Ptolemy also uses it to mean specifically ‘first 
visibility’ of a body after a period of invisibility. To avoid ambiguity, I have 
translated the latter case by 'first visibility’, reserving ‘phase’ for the general 
term.
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(iv) Referring to sun and moon

conjunction is a fairly literal rendering of auvoSoc; (‘meeting’), but opposition 
renders TravaeXrivoq (literally ‘full m oon’, which occurs when sun and moon 
are in opposition), syzy’gy is a transcription ofthe convenient au^uyta (literally 
‘yoking together’), a general term to denote either or both conjunction and 
opposition. In eclipses the partial phases are denoted by immersion fejiTrTCOait;, 
‘falling in’, the phase from the beginning o fthe eclipse to totality) and emersion 
(dvanX-T^ptooic;, ‘filling up again’, the phase from the end of totality to the end of 
the eclipse). The total phase is denoted by |iOVTi (‘rem aining’) and rendered by 
duration {of totality).
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(v) Time-reckoning

Ptolem y often uses the term vuxGri^epov, which combines the Greek words for 
night and day, to m ean the ‘solar day’ of 24 hours. There is no such convenient 
term in English. I have generally translated it daj vyhen no am biguity is pos­
sible, but have occasionally resorted to periphrasis (e.g. II 3 p. 79= H I 96, 7-9). 
Since we use clocks, we reckon time by the mean solar day of uniform length, 
the average time taken by the sun to go from one m eridian crossing to the next. 
In antiquity, where the normal means of telling time was the sundial, it was 
usually reckoned by the true solar day, of varying length, the time taken by the 
sun to go from one meridian crossing to the next on a specific day. In III 9 
Ptolemy explains why they are diflerent, and how to transform one into the 
other. He uses the terms 6|jaXd vu^QT^^epa (‘uniform days’) and dvw^taXa 
vuxQ^nepot (‘non-uniform days’) for m ean and true solar days respectively. 
W hen he is talking about intervals, he often refers to those measured in true 
solar days as ‘reckoned simply’, and those measured in mean solar days as 
‘reckoned accurately’.

T he kind of hours normally used in the ancient world seasonal hours (copai 
KaipiKa'i), sometimes known as ‘civil hours’. An hour was i^th of the actual 
length of daylight or night-time at a given place, and hence the length of an 
hour varied according to terrestrial latitude and time of year, and a day-hour 
was of diflerent length from a night-hour except at equinox. For astronomical 
purposes, however, the uniform I'jth of a  day was used; these were known as 
equinoctial hours (wpai larm eptvai), because they were the same length as the 
seasonal hour a t equinox. If an ordinal num ber is attached to an hour, it 
indicates a seasonal iiour, counted from daw n (or sunset, if specified by ’of 
night’ or by the context). Thus ‘the si.xth hour’ is the same as noon.

time-degrees. Another way of measuring tim e was by the am ount of the celestial 
equator which had passed a bound (horizon or meridian). This was often con­
nected with the rising-times of ecliptic arcs (see pp. 18-19). This measurement 
was in degrees. Since 360° of the equator cross the m eridian in about one^day, 
one 'tim e-degree’ equals i^th of an equinoctial hour or 4 minutes. The Greek 
term is ^povoi lor|nepivoi (‘equatorial times’), sometimes abbreviated to 
Xpovot (‘times’).

(vi) Other

mean (^eooq) can imply ‘of average length’ (as in ‘m ean synodic m onth’) or 
‘uniform’ (as in ‘mean motion in longitude’).

hypothesis. W ith some hesitation, I have used this to translate bn6Qeoi<;, 
although the connotation in the Almagest never really coincides with the^ 
modern one. Whereas we use ‘hypothesis’ to denote a tentative theory which 
has still to be verified, Ptolemy usually means by U7cd0eai(; something more like 
‘model’, ‘system of explanation’, often indeed referring to ‘the hypotheses



which we have dem onstrated’. T he word still retains much of the etymological 
meaning of ̂ basis on which som ething else is constructed’. T he corresponding 
verbal forms are u7iOTi0eTai, UTCOKEitai, which I have frequently translated, 
not only as ‘assume’, but even as ‘it is given’. They are standard terms of Greek 
geometry in this sense at least as early as Euclid.
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6. Editorial procedures

Since the translation is based principally on theT eubner text of Heiberg (see p. 
3), it is keyed to that edition by the addition of H eiberg’s page numbers in the 
margin. There and elsewhere references to H eiberg are preceded by ‘H ’. Thus 
HI 236,15 means ‘Heiberg’s edition, Vol. I p. 236 line 15’. W here the context 
makes it unnecessary the volume num ber is omitted.

Brackets are used as follows. Square brackets [ ] enclose explanatory 
additions to or expansions of the Greek text by the translator. Curved brackets 
{ } enclose passages which I believe to be later additions to Ptolem y’s original 
text. Parentheses ( ) are used merely for clarity, better to express the author’s 
sequence of thought.

As explained on p. 5, I believe the list of chapter headings preceding each 
book to be a later addition. Nevertheless, since these serve a useful purpose, I 
have grouped them together at the beginning (pp. 27-32) to serve as a table of 
contents.

I have made no elfort to provide a continuous commentary, but refer the 
reader to the relevant sections in O laf Pedersen's J  Survey o f the Almagest 
(abbreviated ‘Pedersen’) and O. N eugebauer’s*-! History o f Ancient Mathematical 
Astronomy (abbreviated HAMA).  My footnotes are confmed to particulars not 
treated by them, or requiring some elaboration, and to textual corrections. In 
Appendix A, however, I have provided worked examples of every type of 
problem (including, where it is not utterly trivial, the use of the tables) which 
arises in the Almagest, except where Ptolemy himself gives a worked example. 
W here possible, my example is taken from a calculation or observation actually 
occurring in the Almagest. Appendix B lists all my corrections to Heiberg’s text. 
Appendix C discusses the problem of the derivation of Ptolem y’s planetary 
mean motions, which has never been adequately treated.

The index includes all proper names occurring in the text, and certain 
selected topics (mostly taken from the Introduction and footnotes). It also 
contains all observations recorded in the Almagest, under the topic or body 
concerned (e.g. ‘equinox’, ‘moon’). For a list of the observations in chrono­
logical order the reader is referred to Pedersen’s Appendix A.

In drawing the diagrams I have tried to reproduce the manuscript tradition, 
while at the same time making the figures as clear as possible by marking the 
points unambiguously. Since there is often considerable variation in the 
manuscript representations, I have been forced to make many choices; but I 
have not ‘modernized’ the figures. W here a  figure seemed inadequate, I have 
not changed it, but have added an explanatory one of my own. Such 
explanatory (and other supplementary) figures are distinguished by alpha-
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beticaJ num bering (‘Fig. A ’ etc.), whereas figures reproduced from the 
manuscripts are numbered according to the book and the order within that 
book (thus ‘Fig. 3.10’ indicates that this is the tenth diagram  in Book III; in the 
manuscripts they are not usually num bered, but where they are, they are 
num bered separately in each book). I have represented the Greek letters of the 
figures by the following system;

Text Trans. Text Trans. Text Trans.

A A 
B B 
r G 
A D 
E E 
Z Z 
H H 
0  0

I J
K  K  
A L 
M M 
N xN 
H X
o o

n P 
P R 

-2 S 
T  T  
Y Y 
O F 
X  Q  
'P V

7. Other conventional symbols and abbreviations

e eccentricity '
r  radius of epicycle or body
M  length of longest day in hours
m length of shortest day in hours
R  radius of principal circle (e.g. of deferent)
a  (I) right ascension (see p. 18)

(2) anomaly (see p. 21)
P celestial latitude
5 declination
£ obliquity of ecliptic
rj elongation
0 equation
1 inclination of orbit (of moon or planet)
K ‘centrum ’, i.e. distance from apogee (see p. 22)
X longitude
p (1) oblique ascension (see p. 18)

(2) geocentric distance
(p terrestrial latitude
Q) distance from northpoint on orbit

A bar over a letter denotes ‘m ean’, thus X = ‘mean longitude’.

T he following are used in a raised position (e.g. 2’’) to denote units: 

d days
h equinoctial hours



m
y
P
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%

months
years
‘parts’, i.e. the arbitrary  units in trigonom etrical calculations (see pp.
7-9)
degrees
demi degrees (2°® = 1°, see p. 8) 
degrees per day
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In the star catalogue only, * indicates some doubt about the reading. For other 
abbreviations particular to the star catalogue see p. 341 n.95.

Zodiacal signs
T Aries T 0̂  ̂= 0°
y Taurus 8 0° = 30°
n Gemini n 0° = 60°
12 Cancer £3 0° = 90°
n Leo a O'̂  = 120°
TTP Virgo n? 0° = 150°

L ibra 0̂  ̂= 180°
ni Scorpius n . 0® = 210°

Sagittarius 0*̂ = 240°
V> Capricorn us v> 0“ = 270°

Aquarius O'̂  = 300°
K Pisces K 0° = 330°

Planetary symbols

Other astronomical symbols

Vl Saturn
% Jup ite r
(5 M ars
9  Venus
§ M ercury

O  Sun
}) M oon

©  Earth
i l  ascending node 
I f  descending node

O n ‘sexagesimal’ representations such as 6,13; 10,0,58 see pp. 6-7.

For the m athem atical symbols)) and))) (both m eaning ‘is sim ilar to’) a n d =  (‘is 
congruent to’) see p. 17.

For ‘M. T. r  and ‘M. T. II’ see p.. 18.

For m anuscript abbreviations see pp. 3-4.
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Book I

1. {Preface^

T he true philosophers, Syrus,^ were, I think, quite right to distinguish the 
theoretical part of philosophy from the practical. For even if practical 
philosophy, before it is practical, turns out to be theoretical,® nevertheless one 
can see that there is a great difference between the two: in the first place, it is 
possible for many people to possess some of the m oral virtues even without being 
taught, whereas it is impossible to achieve theoretical understanding of the 
universe without instruction; furthermore, one derives most benefit in the first 
case [practical philosophy] from continuous practice in actual affairs, but in the 
other [theoretical philosophy] from making progress in the theory. Hence we 
thought it fitting to guide our actions (under the impulse of our actual ideas [of H5 
what is to be done]) in such a way as never to forget, even in ordinary affairs, to 
strive for a noble and disciplined disposition, but to devote niost of our time to 
intellectual matters, in order to teach theories, which are so many and 
beautiful, and especially those to which the epithet 'm athem atical’ is particu­
larly applied. For Aristotle divides theoretical philosophy too, very fittingly, 
into three prim ary categories, physics, m athem atics and theology.^ For 
everything that exists is composed of m atter, form and motion; none of these 
[three] can be observed in its substratum  by itself, w ithout the others: they can 
only be imagined. Now the first cause of the first motion o f the universe, if one 
considers it simply, can be thought of as an  invisible and  motionless deity; the *’ 
division [of theoretical philosophy] concerned with investigating this [can be 
called] ‘theology’, since this kind of activity, somewhere up in the highest 
reaches of the universe, can only be imagined, and is completely separated from

* This ‘philosophicid’ prcface and its relationship to Ptolemy’s attitude to philosophy is discuss«l 
by Boll, Studien 6 ^ 7 6 , to which the reader is referred for the relevant passages in ancient literature. 
The general standpoint is Aristotelian.

 ̂Syrus is also the addressee of a num ber of other works by Ptolemy (see T  oomer(5] 187). Nothing 
is known about him. The name is very common in (but not conflned to) Greco-Roman Egypt. The 
statement in a scholion to the Tetrabiblos (quoted by Boll, Studien 67, n. 2) that some say he was a 
fictitious person, others that he was a  doctor, merely reveals that he was equally unknown in late 
antiquity.

* Theon in his commentary (Rome I I 320,13-14) gives <pTio'i. . . ou^iPePtiKevai t 3  itpaKUK^ to  
Ttpotepov auTOU t o u  6 e (DPT]t ik o u  w yxaveiv. This is a paraphrase rather than a  diflerent reading, 
but shows thzt he understood the text as I have translated it. By this obscure expression I takUr 
Ptolemy to mean that before actually practising virtues one must have some concept of them (even 
though thb  b innate rather than taught).

’ E. g. Metaphysics E 1 ,10^6a 18 ff., wore Tpeiq dv etev (ptX.oocxpiai BempiiTiKai, paOripaTiicn, 
(puCTiicn, OeoXoYiKTi.



perceptible reality. The division [of theoretical philosophy] which investigates 
m aterial and ever-moving nature, and which concerns itself with ‘white’, ‘hot’, 
‘sweet’, ‘soft’ and suchlike qualities one may call ‘physics’; such an  order of 
being is situated (for the most part) am ongst corruptible bodies and  below the 
lunar sphere. T hat division [of theoretical philosophy] which determines the 

H6 nature involved in forms and m otion from place to place, and which serves to 
investigate shape, num ber, size, and  place, time and suchlike, one may define as 
‘m athem atics’. Its subject-m atter falls as it were in the middle between the 
other two, since, firstly, it can be conceived of both with and without the aid of 
the senses, and, secondly, it is an attribu te of all existing things without 
exception, both mortal and  immortal: for those things which are perpetually 
changing in their inseparable form, it changes with them, while for eternal 
things which have an aethereal® nature, it keeps their unchanging form 
unchanged.

From all this we concluded:® that the first two divisions of theoretical 
philosophy should rather be called guesswork than knowledge, theology 
because of its completely invisible and ungraspable nature, physics because of 
the unstable and unclear nature of m atter; hence there is no hope that 
philosophers will ever be agreed about them; and that only m athem atics can 
provide sure and unshakeable knowledge to its devotees, provided one 
approaches it rigorously. For its kind of proof proceeds by indisputable 
methods, namely arithmetic and geometry. Hence we were draw n to the 
investigation of that part of theoretical philosophy, as far as we were able to 
the whole of it, but especially to the theoiy concerning divine and heavenly 
things. For that alone is devoted to the investigation of the eternally 

H7 unchanging. For that reason it too can be eternal and unchanging (which is a 
proper attribute of knowledge) in its own domain, which is neither unclearnor 
disorderly. Furtherm ore it can work in the domains of the other [two divisions 
of theoretical philosophy] no less than they do. For this is the best science to help 
theolog>’ along its way, since it is the onh ’ one which can make a good guess at 
[the nature of] that activity which is unmoved and separated; [it can do this 
because] it is familiar with the attributes of those beings*” which are on the one 
hand perceptible, moving and being moved, but on the other hand eternal and 
unchanging, [I mean the attributes] having to do with motions and the 
arrangements of motions. As for physics, m athem atics can make a significant 
contribution. For almost every peculiar attribute of m aterial nature becomes 
apparent from the peculiarities of its motion from place to place. [Thus one can 
distinguish] the corruptible from the incorruptible by [whether it undergoes] 
motion in a straight line or in a circle, and heavy from light, and passive from 
active, by [whether it moves] towards the centre or away from the centre. With

36 I I .  Relation o f  astronomy to philosophy

®‘aetherear (a’i0ep(65n^) has a precise meaning in Aristotelian physics; everything above the 
sphere of the moon is composed o( an ‘incorruptible’ substance, unlike anything known on earth in 
its consistency (very thin) and in its natural motion (circular). Sec I 3 p. 40. One of the names for 
this substance is aether’, another Mifth essence’. See Campanus n. 56. pp. 394-5.

’ In this exaltation of mathematics above the other two divisions of philosophy Ptolemy parts 
company with Aristotle, for whom theology was the most noble pursuit for the human mind. 

‘“The heavenlv Imdies.



regard to virtuous conduct in practical actions and  character, this science, 
above all things, could make men see clearly; from the constancy, order, 
symmetry and calm which are associated with the divine, it makes its followers 
lovers of this divine beauty, accustoming them and  reform ing their natures, as it 
were, to a similar spiritual state.

It is this love of the contem plation of the eternal and unchanging which we 
constantly strive to increase, by studying those parts of these sciences which H8 
have already been mastered by those who approached them  in a genuine spirit 
of enquiry, and by ourselves attem pting to contribute as m uch advancement as 
has been m ade possible by the additional time between those people and 
ourselves." We shall try to note down*' everything which we think we have 
discovered up to the present time; we shall do this as concisely as possible and in 
a m anner which can be followed by those who have already m ade some progress 
in the f i e l d .F o r  the sake of completeness in our treatm ent we shall set out 
everything useful for the theory of the heavens in the proper order, but to avoid 
undue length we shall merely recount what has been adequately established by 
the ancients. However, those topics which have not been dealt with [by our 
predecessors] at all, or not as usefully as they might have been, will be discussed 
at length, to the best of our ability.

I  2. Order o f  the theorems 31

2. {On the order o f the theorems}

In the treatise which we propose, then, the fii'st order of business is to grasp the 
relationship of the earth taken as a whole to the heavens taken as a whole. In 
the treatm ent of the individual aspects which follows, we must first discuss the 
position of the ecliptic‘s and the regions of our part of the inhabited world and 
also the features differentiating each from the others due to the [varying] 
latitude at each horizon taken in order.** For if the theory of these matters is H9 
treated first it will make exam ination of the rest easier. Secondly, we have to go 
through the motion of the sun and of the moon, and the phenomena 
accom panying these [motions];*' for it would be impossible to e.xamine the 
theory of the stars*® thoroughly without first having a grasp of these matters.
O ur final task in this way of approach is the theory of the stars. Here too it 
would be appropriate to deal first w ith the sphere of the so-called ‘fixed stars’,*®

‘ ‘ This notion of the advancement of science, and particularly astronomy, by the additional time 
available is one to which Ptolem\ recurs in the epilos^ue t X III 11 p. 647), and also, in a specifically 
astronomical context, at VII 1 p. 321 and VII 3 p. 329.

‘-urtO|iVT)naTiaao6ai. A u7tO(ivr)|ia is a 'memoir', usually implying summary brevity. Ptolemy 
recurs to this too in the epilogue (X III 11 p. 647).

Ptolemy assumes that his readers will have a certain competence. See Introduction p. 6.
‘^I 3-8. O n the logic of Ptolemy's order see Introduction pp. 5-6.
” I 12-16. The mathematical section I 10-11 is not specifically mentioned here.

Book II.
■’ Books III-V I.
‘“‘Stars’ here and throughout chs. 3-8 includes both fixed stars and planets (see Introduction p. 

21) and also, sometimes, sun and moon.
’’ Books V II-V III.



and follow that by treating the five ‘planets’, as they are called.^® We shall try to 
provide proofs in all of these topics by using as starting-points and  foundations, 
as it were, for our search the obvious phenom ena, and those observations made 
by the ancients and in our own times which are reliable. We shall a ttach  the 
subsequent structure of ideas to this [foundation] by means of proofs using 
geometrical methods.

The general preliminary discussion covers the following topics: the heaven is 
spherical in shape, and moves as a  sphere; the earth  too is sensibly spherical in 
shape, when taken as a whole; in position it lies in the middle of the heavens very 
much like its centre; in size and distance it has the ratio of a point to the sphere of 

H10 the fixed stars; and it has no motion from place to place. We shall briefly discuss 
each of these points for the sake of reminder.

38 /  3. Sphericity o f  the heavens

3. {That the heavens move like a sphere]^^

It is plausible to suppose that the ancients got their first notions on these topics 
from the following kind of observations. They saw that the sun, moon and other 
stars were carried from east to west along circles which were always parallel to 
each other, that they began to rise up from below the earth  itself, as it were, 
gradually got up high, then kept on going round in similar fashion and getting 
lower, until, falling to earth, so to speak, they vanished completely, then, after 
remaining invisible for some time, again rose afresh and set; and [they saw] that 
the periods of these [motions], and also the places of rising and setting, were, on 
the whole, fixed and the same.

W hat chiefly led them to the concept of a sphere was the revolution of the 
ever-visible stars, which was observed to be circular, and always taking place 
about one centre, the same [for all]. For by necessity tha t point became [for 

HI I them] the pole of the heavenly sphere: those stars which were closer to it 
revolved on smaller circles, those that were farther away described circles ever 
greater in proportion to their distance, until one reaches the distance of the stars 
which become invisible. In the case of these, too, they saw that those near the 
ever-visible stars remained invisible for a short time, while those farther away 
remained invisible for a long time, again in proportion [to their distance]. The 
result was that in the beginning they got to the aforementioned notion solely 
from such considerations; but from then on, in their subsequent investigation, 
they found that everything else accorded with it, since absolutely all 
phenom ena are in contradiction to the alternative notions which have been 
propounded.

For if one were to suppose that the stars’ motion takes'place in a straight line 
towards infinity, as some people have thought,^^ w hat device could one

^  Books IX -X IIl.
See Pedersen 36-7.
According to Theon’s commencary (Rome II 338) this belief was Epicurean, but I know of no 

other evidence. The only other relevant passage appears to be Xenophanes, D iek-Kranz A41a (the 
sun really moves towards infinity).



conceive of which would cause each of them  to  appear to  begin their motion 
from the same starting-point every day? How could the  stars tu rn  back, if their 
motion is towards infinity? Of, if they did tu rn  back, how could this not be 
obvious? [O n such a hypothesis}, they m ust gradually dim inish in  size until they 
disappear, whereas, on the contrary, they are seen to  be greater a t the very 
m om ent of their disappearance, a t which tim e they are gradually obstructed 
and cut off, as it were, by the earth ’s surface.

But to suppose that they are kindled as they rise o u t o f the earth  and  are 
extinguished again as they fall to earth  is a  completely absurd hypothesis.”  For 
even if we were to concede that the strict order in their size and  number, their H12 
intervals, positions and periods could be restored by such a  random  and  chance 
process; that one whole area of the earth  has a  kindling nature, and another an 
extinguishing one, or rather that the same part [of the earth] kindles for one set 
of observers and extinguishes for another set; and that the same stars are already 
kindled or extinguished for some observers while they are not yet for others: 
even if, I say, we were to concede all these ridiculous consequences, what could 
we say about the ever-visible stars, which neither rise nor set? Those stars which 
are kindled and extinguished ought to rise and set for observers everywhere, 
while those which are not kindled and extinguished ought always to be visible 
for observers everywhere. W hat cause could we assign for the fact that this is not 
so? We will surely not say that stars which are kindled and extinguished for 
some observers never undergo this process for other observers. Yet it is utterly 
obvious that the same stars rise and set in certain regions [of the earth] and do 
neither at others.

To sum up, if one assumes any motion whatever, except spherical, for the 
heavenly bodies, it necessarily follows tha t their distances, measured from the 
earth  upwards, must vary, wherever and however one supposes the earth  itself 
to be situated. Hence the sizes and m utual distances o f the stars must appear to 
vary for the same observers during the course of each revolution, since at one H13 
time they must be at a  greater distance, a t another a t a  lesser. Yet we see that no 
such variation occurs. For the apparent increase in their sizes a t the horizons^^ is 
caused, not by a decrease in their distances, but by the exhalations of moisture 
surrounding the earth  being interposed between the place from which we 
observe and the heavenly bodies, just as objects placed in w ater appear bigger 
than they are, and the lower they sink, the bigger they appear.

T he following considerations also lead us to the concept of the sphericity, of 
the heavens. No other hypothesis but this can explain how sundial constructions 
produce correct results; furthermore, the motion of the heavenly bodies is the 
most unham pered and free of all motions, and freest motion belongs am ong
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^^Theon (Rome I I 340) ascribes this to Heraclitus. Otherwise it is attested for Xenophanes (Dieis- 
Kranz A38), and was adm itted as one p>o$sibie explanation by Epicurus (e.g. Letter to Pythocles 92) 
and his followers.

Ptolemy refers to the well-known phenomenon that the sun and moon appear larger when close 
to the horizon. He js(ives an incoiTect physical and optical explanation here. In a  later work {Optics 
III 60, ed. Lejeune p. 116) he correctly explains it as a purely psychological phenomenon. N o doubt 
instrumental measurement o fjhe  apparent diameters had convinced him that the enlargement is 
entirely illusory.



plane figures to the circle and am ong solid shap>es to the sphere; similarly, since 
of'diflerent shapes having an equal boundary those with more angles are greater 
[in area or volume], the circle is greater than [all other] surfaces, and the sphere 
greater than [all other] so lids;[likew ise] the heavens are greater than all other 
bodies.

Furtherm ore, one can reach this kind of notion from certain physical 
H14 considerations. E.g., the aether is, of all bodies, the one with constituent parts 

which are finest and most like each other; now bodies with parts like each other 
have surfaces with parts like each other; but the only surfaces with parts like each 
other are the circular, am ong planes, and the spherical, am ong three- 
dimensional surfaces. And since the aether is not plane, but three-dimensional, 
it follows that it is spherical in shape. Similarly, nature formed all earthly and 
corruptible bodies out of shapes which are round but of unlike parts, but all 
aethereal and divine bodies out of shapes which are of like parts and spherical. 
For if they were ilat or shaped like a discus*® they would not always display a 
circular shape to all those observing them simultaneously from different places 
on earth. For this reason it is plausible that the aether surrounding them, too, 
being of the same nature, is spherical, and because of the likeness of its parts 
moves in a circular and uniform fashion.

40 1 4 . Sphericity o f  the earth

4. [That the earth loo, taken as a whole, is sensibly sphericalY^

T hat the earth, too, taken as a w h o le , is  sensibly spherical can best be grasped 
from the following considerations. We can see, again, tha t the sun, moon and 

H15 other stars do not rise and set simultaneously for ever\'one on earth , but do so 
earlier for those more towards the east, later for those towards the west. For we 
find that the phenom ena at eclipses, especially lunar eclipses,^® which take 
place at the same time [for all observers], are nevertheless not recorded as 
occurring at the same hour (that is at an equal distance from noon) by all 
observers. R ather, the hour recorded by the more easterly observers is always 
later than that recorded by the more westerly. We find that the differences in 
the hour are prof>ortional to the distances between the places [of observation]. 
Hence one can reasonably conclude that the earth ’s surface is spherical, 
because its evenly curving surface (for so it is when considered zs. a  whole) cuts 
off [the heavenly bodies] for each set of observers in turn  in a regular fashion.

If the earth ’s shape were any other, this would not happen, as one can see 
from the following arguments. If it were concave, the stars would be seen rising 
first by those more towards the west; if it were plane, they would riise and set

These propositions were proved in a work by Zenodorus (early second century a c ,  see 
Toomer(l]) from which extensive excerpts are given by (amongothers) Theon (Rome I I 355-79). 
There is a good summary in H eath H GM  II 207-13.

**The only relevant passage I know is Empedocles, Diels-Kranz A60, who m aintained that the 
moon is disk-shaped.

” See Pedet^en 37-9.
**‘taken as a whole’: ignoring local irregularities such as mountains, which are negligible in 

comparison to the total mass.
” The timings for solar eclipses are complicated by parallax.



simultaneously for everyone on earth; if it were triangular or square or any 
other polygonal shape, by a similar argument, they would rise and set simul­
taneously for all those living on the same plane surface. Yet it is apparent that 
nothing like this takes place. N or could it be cylindrical, w ith the curved surface 
in the east-west direction, and the flat sides towards the poles of the universe, H I6 
which some might suppose more plausible. This is clear from the following: for 
those living on the curved surface none of the stars would be ever-visible, but 
either all stars would rise and set for all observers, o r the same stars, for an equal 
[celestial] distance from each of the poles, would always be invisible for all 
observers. In fact, the further we travel toward the north, the more^® of the 
southern stars disappear and the more of the northern stars appear. Hence it is 
clear tha t here too the curvature of the earth cuts off[the heavenly bodies] in a 
regular fashion in a north-south direction, and proves the sphericity [of the 
earth] in all directions.

There is the further consideration that if we sail towards mountains or 
elevated places from and to any direction whatever, they are observed to 
increase gradually in size as if rising up from the sea itself in which they had 
previously lieen submerged: this is due to the curv'ature of the surface of the 
water.

/  5. Central position o f  the earth 41

5. {Thai the earth is in the middle o f the heavensY^

O nce one has grasped this, if one next considers the position of the earth, one 
will fmd that the phenom ena associated with it could take place only if we HI 7 
assume that it is in the middle of the heavens, like the centre of a sphere. For if 
this were not the case, the earth  would have to be either

[a] not on the axis [of the universe] but equidistant from both poles, or
[b] on the axis but removed towards one of the poles, or
[c] neither on the axis nor equidistant from both poles.

Against the first of these three p>ositions m ilitate the following arguments. If 
we imagined [the earth] removed towards the zenith or the nadir of some 
observer, then, if he were at sphaera recta, he would never experience equinox, 
since the horizon would always divide the heavens into two unequal parts, one 
above and one below the earth; if he were at sphaera obliqua, either, again, 
equinox would never occur at all, or, [if it did occur,] it would not be at a 
position halfway between summ er and winter solstices, since these intervals 
would necessarily be unequal, because the equator, which is the greatest of all 
parallel circles drawn about the poles of the [daily] motion, would no longer be 
bisected by the horizon; instead [the horizon would bisect] one of the circles 
parallel to the equator, either to the north or to the south of it. Yet absolutely 
everyone agrees that these intervals are equal everywhere on earth, since H18 
[everywhere] the increment of the longest day over the equinoctial day a t the

^R ead in g  itXeiova (with D) for rd  nXeiova at H I6,9. Corrected by Manitius.
^•See Pedersen 39-42.



summer solstice is equal to the decrem ent of the shortest day from the 
equinoctial day at the w inter solstice. But if, on the other hand, we imagined the 
displacement to be towards the east or west o f some observer, he would find that 
the sizes and distances of the stars would not rem ain constant and unchanged at 
eastern and western horizons, and that the tim e-interval from rising to 
culmination would not be equal to the interval from culm ination to setting. 
This is obviously completely in disaccord with the phenomena.

Against the second position, in which the earth  is imagined to lie on the axis 
removed towards one of the poles, one can make the following objections. If  this 
were so, the plane of the horizon would divide the heavens into a part above the 
earth and a part below the earth  which are unequal and always different for 
different la titu d e s ,w h e th e r  one considers the relationship of the same part at 
two different latitudes or the two parts at the same latitude. Only Aisphaera recta 
could the horizon bisect the sphere; at a sphaera obliqua situation such that the 
nearer pole were the ever-visible one, the horizon would always make the part 
above the earth lesser and the part below the earth greater; hence another 
phenomenon would be that the great circle of the ecliptic would be divided into 

H19 unequal parts by the plane of the horizon. Yet it is apparent that this is by no 
means so. Instead, six zodiacal signs are visible above the earth  at all times and 
places, while the rem aining six are invisible; then again [at a later time] the 
latter are visible in their entirety above the earth, while at the same time the 
others are not visible. Hence it is obvious that the horizon bisects the zodiac, 
since the same semi-circles are cut off by it, so as to appear at one time 
completely above the earth, and at another [completely] below it.

And in general, if the earth were not situated exactly below the [celestial] 
equator, but were removed towards the north or south in the direction of one of 
the pxjles, the result would be that at the equinoxes the shadow of the gnomon at 
sunrise would no longer form a straight line with its shadow at sunset in a plane 
parallel to the horizon, not even s e n s ib ly .Y e t this is a phenom enon which is 
plainly observed everywhere.

It is immediately clear that the third position enum erated is likewise 
impossible, since the sorts of objection which we m ade to the first [two] will both 
arise in that case.

To sum up, if the earth  did not lie in the middle [of the universe], the whole 
order of things which we observe in the increase and decrease of the length of 
daylight would be fundam entally upset. Furtherm ore, eclipses of the moon 
would not be restricted to situations where the moon is diametrically opposite 
the sun (whatever part of the heaven [the luminaries are in]), since the earth 

H20 would often come between them when they were not diametrically opposite, 
but at intervals of less than a semi-circle.

42 /  5. Central position o f  the earth

^^The word translated here and elsewhere as ‘{terrestrial] latitude’ is KXi(ia, for the meaning of 
which see Introduction p. 19.

’̂ The caveat ‘scruibly’ is inserted because the equinox is not a date but an instant of time. 
Therefore on the day of equinox the sun docs not rise due east and set due west (as is implied by the 
rising and setting shadows lying on the same straight line). However, the difference would be 
‘imperceptible to the senses’.



6. {That the earth has the ratio o f a point to the heavens}^*

Moreover, the earth has, to the senses, the ratio of a point to the distance of the 
sphere of the so-called fixed stars. A strong indication of this is the fact that the 
sizes and distances of the stars, at any given time, appear equal and the same 
from all parts of the earth everywhere, as observations of the same [celestial] 
objects from different latitudes are found to have not the least discrepancy from 
each other. O ne must also consider the fact that gnomons set up in any part of 
the earth  whatever, and likewise the centres of arm illary spheres,^* operate like 
the real centre of the earth; that is, the lines of sight [to heavenly bodies] and the 
paths of shadows caused by them agree as closely with the [mathematical] 
hypotheses explaining the phenom ena as if they actually passed through the real 
centre-point of the earth.

Another clear indication that this is so is tha t the planes drawn through the; 
observer’s lines of sight at any point [on earth], which we call ‘horizons’, always 
bisect the whole heavenly sphere. This would not happen if the earth were of H21 
perceptible size in relation to the distance of the heavenly bodies; in that case 
only the plane drawn through the centre of the earth  could bisect the sphere, 
while a plane through any point on the surface of the earth  would always make 
the section [of the heavens] below the earth  greater than  the section above it.

/  6. Earth negligibly small in relation to heavens 43

7. {That the earth does not have any motion from place to place, either]^^

O ne can show by the same arguments as the preceding th a t the earth cannot 
have any motion in the aforementioned directions, or indeed ever move at all 
from its position at the centre. For the same phenom ena would result as would if 
it had any position other than the central one. Hence I think it is idle to seek for 
causes for the motion of objects towards the centre, once it has been so clearly 
established from the actual phenom ena that the earth  occupies the middle 
place in the universe, and that all heavy objects are carried towards the earth.
T he following fact alone would most readily lead one to this notion [that all 
objects fall towards the centre]. In absolutely all parts of the earth, whiclf, as we 
said, has been shown to be spherical and in the middle of the universe, the 
direction^® and path of the motion (I mean the proper, [natural] motion) of all H22 
bodies possessing weight is always and everywhere at right angles to the rigid 
plane draw n tangent to the point of impact. It is clear from this fact that, if

^^See Pedersen 42-3.
Ptolemy qualifies the traditional terminologv- for the fixed stars as ‘so-called’ (KaX.ounevtov) 

because they do in fact, according to him, have a motion (the modern ‘precession’). He develops the 
point further at V I I 1 p. 321, q.v. In general, however, he uses the traditional terminology without 
qualification.

An example of an armillary sphere (KpiKtoTii ocpafpa) is the ‘astrolabe’ described in V 1. For 
references to the term in other works see LSJ s.v. KptKCOTÔ .

”  See PedcRcn 43-4.
■*®7tp6CTveiXTi<;, which I have translated ‘the direction of motion’ here, means basically ‘direction 

in which something points’ (for astronomical usages see V 5 p. 227 n. 19 and V I I I  p. 313 n. 77). 
Thus it would also include here the direction of a plumb-line (cf. I 12 p. 62).



[these falling objects] were not arrested by the surface of the earth, they would 
certainly reach the centre of the earth  itself, since the straight line to the centre is 
also always at right angles to the plane tangent to the sphere a t the point of 
intersection [of that radius] and the tangent.

Those who think it paradoxical that the earth, having such a great weight, is 
not supported by anything and yet does not move, seem to me to be m aking the 
mistake of judging on the basis of their own experience instead of taking into 
account the peculiar nature of the universe. They would not, I think, consider 
such a thing strange once they realised that this great bulk of the earth, when 
com pared with the whole surrounding mass [of the universe], has the ratio of a 
point to it. For when one looks at it in th a t way, it will seem quite possible that 
that which is relatively smallest should be overpowered and pressed in equally 
from all directions to a position of equilibrium  by that which is the greatest of all 

H23 and of uniform nature. For there is no up and down in the universe with respect 
to itself,^® any more than one could imagine such a thing in a sphere: instead the 
proper and natural motion of the com pound bodies in it is as follows: light and 
rarefied lx>dies drift outwards towards the circumference, but seem to move in 
the direction which is ‘up ’ for each obsei-ver, since the overhead direction for all 
of us, which is also called ‘up’, points towards the surrounding surface;^" heavy 
and dense bodies, on the other hand, are carried towards the middle and the 
centre, but seem to fall downwards, because, again, the direction which is for all 
us towards our leet, called ‘down’, also points towards the centre of the earth. 
These heavy bodies, as one would cxpect, settle about the centre because of 
their m utual pressure and resistance, which is equal and uniform from all 
directions. Hence, too, one can sec that it is plausible that the earth, since its 
total mass is so great com pared with the bodies which fall towards it, can remain 
motionless under the impact of these very small weights (for they strike it from 
all sides), and receive, as it were, the objects falling on it. If  the earth  had a single 
motion in common with other heavy objects, it is obvious that it would be 
carried down faster than all of them because of its much greater size: living 

H24 things and individual heavy objects would be left behind, riding on the air, and 
the earth itself would very soon have fallen completely out of the heavens. But 
such things are utterly ridiculous merely to think of.

But certain people,^' [propounding] w hat they consider a more persuasive 
view, agree with the above, since they have no argum ent to bring against it, but 
think that there could be no evidence to oppose their view if, for instance, they 
supposed the heavens to remain motionless, and the earth  to revolve from west 
to east about the same axis [as the heavens], making approxim ately one 
revolution each day;^^ or if they m ade both heaven and earth  move by any 
am ount whatever, provided, as we said, it is about the same axis, and in such a

Read ini? auTOV (with D, Is) for aoTTiv at H 23,l.
** It is not clear to me whether Ptolemy means the outmost boundary of the universe or merely the 

surface (of the ‘aether’) surrounding the earth.
Heraclides of Pontos (late fourth century RG ) is the earliest certain authority for the view that 

the earth rotates on its axis. Sec H AM A  I I 694-6. It was also adopted by Aristarchus as part of his 
more radical heliocentric hypothesis.

^^‘approximately’ because one revolution takes place in a sidereal, not a solar day.
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way as to preserve the overtaking of one by the other. However, they do not 
realise that, although there is perhaps nothing in the celestial phenomena 
which would count against that hypothesis, at least from simpler considerations, 
nevertheless from what would occur here on earth  and in the air, one can see 
that such a notion is quite ridiculous. Let us concede to them  [for the sake of 
argum ent] that such an unnatural thing could happen as that the most rare and 
light of m atter should either not move a t all or should move in a way no different 
from that of m atter with the opposite nature (although things in the air, which 
are less rare [than the heavens] so obviously move with a more rapid motion 
than any earthy object); [let us concede that] the densest and heaviest objects H25 
have a proper motion of the quick and unilbrm  kind which they suppose 
(although, again, as all agree, earthy objects are sometimes not readily moved 
even by an external force). Neverthi less, they would have to admit that the 
revolving motion of the earth must be the most violent ofall motions associated 
with it, seeing that it makes one revolution in such a short time; the result would 
be that all objects not actually standing on the earth  would appear to have the 
same motion, opposite to that of the earth: neither clouds nor other Hying or 
thrown objects would ever he seen moving towards the east, since the earth’s 
motion towards the east would always outi un and overtake them, so that all 
other objects would seem to move in the direction of the west and the rear. But if 
they said that the air is carried around in the same direction and with the same 
speed as the earth, the compound objects in the air would none the less always 
seem to be left behind by the motion of both [earth and air]; or if those objects 
too were carried aroimd, fused, as it were, to the air, then they would never 
appear to have an\ motion either in advance or rearwards: they would always 
appear still, neither wandering about nor changing position, whether they were 
living or thrown objects. Yet we quite plainly see that they do undergo all these H26 
kinds of motion, in such a w a\’ that they are not even slowed down or speeded up 
at all bv anv motion of the earth.

I  7. Earth’s rotation denied 45

8. { T/ia/ there are two different primary motions in the heavensY^

It was necessary to treat the above hypotheses first as an introduction to the 
discussion of particular topics and what follows after. T he above summary 
outline of them will sullice. since they will be completely confirmed and further 
proven by the agreement with the phenom ena of the theories which we shall 
dem onstrate in the following sections. In addition to these hypotheses, it is 
proper, as a further preliminary, to introduce the following general notion, that 
there are two different prim ary motions in the heavens. O ne of them is that 
which carries everything from east to west: it rotates them  with an unchanging 
and uniform motion along circles parallel to each other, described, as is 
obvious, about the poles of this sphere which rotates everything uniformly. The 
greatest of these circles is called the ‘equator’, b e c a u s e  it is the only [such

■•̂ See Pedersen 45.
” ‘equator’: imuiEpivo^, literally ‘ot equal day’ or ‘equinoctial’. See Introduction p. 19.



parallel circle] which is always bisected by the horizon (which is a great circle), 
and because the revolution which the sun makes when located on it produces 
equinox everywhere, to the senses. T he other m otion is that by which the 

H27 spheres of the stars perform movements in the opposite sense to the first motion, 
about another pair of poles, which are different from those of the first rotation. 
W e suppose that this is so because of the following considerations. W hen we 
observe for the space of any given single day, all heavenly objects w hatever are 
seen, as far as the senses can determine, to rise, culm inate and  set a t places 
which are analogous and lie on circles parallel to the equator; this is 
characteristic of the first motion. But when we observe continuously without 
interruption over an interval of time, it is apparent that while the other stars 
retain their m utual distances and (for a long time) the particular characteristics 
arising from the positions they occupy as a result of the first motion,*^ the sun, 
the moon and the planets have certain special motions which are indeed 
complicated and different from each other, but are all, to characterise their 
general direction,^* towards the east and opposite to [the motion ol] those stars 
which preserve their m utual distances and are, as it were, revolving on one 
sphere.

Now if this motion of the planets too took place along circles parallel to the 
equator, that is, about the poles which produce the first kind of revolution, it 

H28 would be sufficient to assign a single kind of revolution to all alike, analogous to 
the first. For in that case it would have seemed plausible that the movements 
which they undergo are caused by various retardations, and not by a motion in 
the opposite direction. But as it is. in addition to their movement towards the 
east, they are seen to deviate continuously to the north and south [of the 
equator]. M oreover the am ount of this deviation cannot be explained as the 
result of a uniformly-acting force pushing them to the side: from that point of 
view it is irregular, but it is regular if considered as the result of [motion on] a 
circle inclined to the equator. Hence we get the concept of such a circle, which is 
one and the same for all planets, and particular to them. It is precisely defined 
and, so to speak, draw n by the motion of the sun, but it is also travelled by the 
moon and the planets, which always move in its vicinity, and do not randomly 
pass outside a zone on either side of it which is determ ined for each body. Now 
since this too is shown to be a great circle, since the sun goes to the north and 
south of the equator by an equal am ount, and since, as we said, the eastward 
motion of all of the planets takes place on one and the same circle, it became 
necessaiT to suppose that this second, different motion of the whole takes place 

H29 about the poles of the inclined circle we have defined [i.e. the ecliptic], in the 
opposite direction to the first motion.

If, then, we imagine a great circle draw n through the poles of both the above- 
mentioned circles, (which will necessarily bisect each of them, that is the 
equator and the circle inclined to it [the ecliptic], at right angles), we will have 
four points on the ecliptic; two will be produced by [the intersection of] the

46 1 8 . Tw o primary motions in the heavens

These characteristics ol the (ixed stars are e.g. dates of first and last visibility. They are 
unchanged 'for a lonjj time’ because the ell’ect of precession is ver\- slow.

’“The c|ualification is inserted here to allow lor the retrogradations of the planets.



equator, diam etrically opposite each other; these are called ‘equinoctial’ 
points. T he one a t which the motion [of the planets] is from south to north is 
called the ‘spring’ equinox, the other the ‘autum nal’. Tw o [other points] will be 
produced by [the intersection of] the circle drawn through both poles; these too, 
obviously, will be diametrically opposite each other; they are called ‘tropical’
[or ‘solsticial’] points. T he one south of the equator is called the ‘winter’ 
[solstice], the one north, the ‘summ er’ [solstice].

We can imagine the first prim ary motion, which encompasses all the other 
motions, as described and as it were defined by the great circle drawn through 
both pK)les [of equator and ecliptic] revolving, and carrying everything else with 
it, from east to west about the poles of the equator. These poles are fixed, so to 
speak, on the ‘m eridian’ circle, which differs from the aforementioned [great] H30 
circle in the single respect that it is not drawn through the poles of the ecliptic 
too at all p>ositions of the latter. Moreover, it is called ‘m eridian’ because it is. 
considered to be always orthogonal to the horizon.^’ For a circle in such a 
position divides both hemispheres, that above the earth  and that below it. into 
two equal parts, and defines the midpoint of both day and night.

The second, m ultiple-part motion is encompassed by the first and encom­
passes the spheres of all the planets. As we said, it is carried around by the 
afoi'cmentioned [first motion], but itself goes in the opposite direction about the 
poles of the ecliptic, which are also fixed on the circle which produces the first 
motion, namely the circle through both poles [of ecliptic and equator]. 
N aturally they [the poles of the ecliptic] are carried around with it [the circle 
through both poles], and. throughout the period of the second motion in the 
opposite direction, they always keep the gi'eat circle of the ecliptic, which is 
described by that [second] motion, in the same position with respect to the 
equator.^®

I  9. The individual demonstrations 47

9. {On the individual concepts]

Such, then are the necessary preliminary concepts which must be summarily set 
out in our general introduction. VVe are now about to begin the individual 
demonstrations, the first of which, we think, should be to determ ine the size of H31 
the arc between the aforementioned poles [of the ecliptic and equator] along the 
great circle draw n through them. But we see that it is lli-st necessary to explain 
the m ethod of determ ining chords;^® we shall dem onstrate the whole topic 
geometrically once and for all.

■‘’ See Introduction p. 19.
“̂M y translation follows the interpretation of Theon (Rome II 447). Manitius (p. 24 n. a p  

wrongly considers Tot) ypaiponevou 5 i’ outtic; neyioTOu icdt A.o4oD kokXou interpolated, partly 
Ijecause he misinterprets ouvTTjpotSaiv (which is used here in a way similar to ouvTiipov5oav at HI
6 , 10).

’̂ ‘chords’: literally ‘straight lines in a circle’. On this term see Introduction p. 17.
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H32

1 10. Calculation o f  chord table

10. {On the size o f chords}

For the user’s convenience, then, we shall subsequently set out a table of their 
amounts, dividing the circumference into 360 parts, and tabulating the chords 
subtended by the arcs at intervals of half a degree, expressing each as a num ber 
of parts in a system where the diam eter is divided into 120 parts. [We adopt this 
norm] because of its arithm etical convenience,®* which will become apparent 
from the actual calculations. But first we shall show how one can undertake the 
calculation of their amounts by a simple and rapid method, using as few 
theorems as possible, the same set for all. W e do this so that we may not merely 
have the amounts of the chords tabulated unchecked, but may also readily 
undertake to verify them by com puting them by a strict geometrical method. In 
general we shall use the sexagesimal system for our arithm etical computations, 
because of the awkwardness of the [conventional] fractional system. Since we 
always aim at a good approximation, we will carry out m ultiplications and 
divisions only as far as to achicve a result which dilfers from the precision 
achievable by the senses by a negligible am ount.

First, then, [see Fig. 1.1 ] let there be a semi-circle ABG about centre D and on 
diameter ADG. Draw DB perpendicular to AG at D. Let DG be bisected at E, 
join EB, and let EZ be made equal to EB. Jo in  ZB.

B

n z D

Fig. 1.1

E G

I say that ZD  is the side of the [regular] decagon, and BZ the side of the 
[regular] pentagon.

[Proof:] Since the straight line DG is bisected at E. and a straight line DZ is 
adjacent to it,

H33 GZ.ZD + ED^ = EZl®^
But EZ^ = BE- (EB = ZE), 
and EB^ = ED" + DB^.

G Z.ZD  + ED= = ED^ + DB^.

^®On Ptolemy’s calculation of his chord table see HAM A  21-4, Pedersen 56-63.
The principal convenience is that the radius is 60 parts, or 1,0 in the sexagesimal system. Hence 

in som e w ays th is  resem b les a  sine ta b le  w ith  R  = 1.
E uc lid  i l  6.



G Z.ZD  = DB^ (subtracting ED^, common).
/. G Z.ZD  = DQ2.

So ZG has been cut in extreme and mean ratio at
Now since the side of the hexagon and the side of the decagon, when both are 

inscribed in the same circle, make up the extreme and m ean ratios of the same 
straight line,®  ̂ and since GD, being a radius, represents the side of the 
h e x a g o n ,D Z  is equal to the side of the decagon.

Similarly, since the square on the side of the pentagon equals the sums of the 
squares on the sides of the hexagon and decagon when all are inscribed in the 
same circle,^* and, in the right-angled triangle BDZ, the square on BZ equals H34 
the sum of the squares on BD, which is the side of the hexagon, and on DZ, 
which is the side of the decagon, it follows that BZ equals the side of the 
pentagon.

Since, then, as I said, we set the diam eter of the circle as 120 parts, it follows 
from the above that

DE = 30*’ (DE half the radius) 
and DE- = gOO”;

BD = 60" (BD a radius) 
and BD" = 3600”.
And E Z ' = EB- = 4500'’, the sum [of DE" and BD']

E Z «67 ;4 ,55 '’ 
and by subtraction [of DE from EZ], DZ = 37;4,55‘’.
So the side of the decagon, which subtends 36°, has 37;4,55’’ where the diameter 
has 120'’.

Again, since DZ = 37;4,55'’.
DZ- = 1375:4, IS^;'' 

and DB- = 3600^ 
so BZ- = DZ- + DB- = 4975;4.15'’.

••• B Z «70 ;32 ,3^  H35
Therefore the side ol the pentagon, which subtends 72°, contains 70;32,3'’ 

where the diam eter has 120'’.
It is immediately obvious that the side of the [inscribed] hexagon, which 

subtends 60° and is equal to the radius, contains 60’’.
Similarly, since the side of the [inscribed] square, which subtends 90°, is 

equal, when squared, to twice the square on the radius, and  since the side of the 
[inscribed] triangle, which subtends 120°, is equal, when squared, to three times 
the square on the radius, and the square on the radius is 3600'’, we compute that 

the square on the side of the square is 7200'’
and the square on the side of the triangle is 10800^.

/  10. Chords o f  36° and 72° 49

Euclid VI Def. 3 states that ‘a straight line has been cut in extreme and mean ratio when, as the 
whole line is to the greater segment, so is the greater to the less’; i.e. here ZG;DG = DG:ZD. 

Euclid X III 9.
“ Euclid IV 15 porism.

Euclid X III 10.
*’ The reading 14 (for 15) occurs as a marginal variant, in the Greek mss., here and at related 

places (see apparatus at H34.16; 34,18; 36.4 and 36,7), and, in the Arabic, in T, and was adopted in 
H a jj^ ’s translation. It is more accurate, but makes no difference to the final result.
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C r d 9 0 ° «  84;51,10'’l  ^ u • ,onP
and Crd 1 2 0 » - I03;55,23'>/ '

/  10. Chord o f  the supplement; Ptolemy’s Theorem

We can, then, consider the above chords as established individually by the 
above straightforward procedures. It will immediately^® be obvious that if any 
chord be given, the chord of the supplem entary arc is given in a simple fashion, 

H36 since the sum of their squares equals the square on the diameter. For instance, 
since the chord of 36° was shown to be 37;4,55‘’, and the square of this is 
1375;4,15’’, and the square on the diam eter is 14400'’, the square on the chord of 
the supplementary arc (which is 144°) will be the difference, namely 
13024;55,45, and so

Crd 144°«  1I4;7;37‘’.

Similarly for the other chords [of the supplements].
We shall next show how the rem aining individual chords can be derived from 

the above [chords], fii-st of all setting out a theorem which is extremely useful for 
the m atter at hand.

[See Fig. 1.2.] Let there be a circle with an arbitrary  quadrilateral ABGD 
inscribed in it. Jo in  AG and BD.

D

We must prove that

AG.BD = AB.DG + AD.BG.^^
[Proof:] M ake Z ABE = Z DBG.

Then, if we add Z EBD common,

Z ABD = Z EBG.

“ Reading auTodev (with D) for ivre»36ev at H35,18.
’̂ This proposition, commonly known as ‘Ptolemy’s Theorem ’, is not in fact attested before him. 

It remains uncertain whether any o f  the earlier chord tables (e.g. Menelaus’) used any geometrical 
basis beyond the half-angle theorem (sec n. 60 and Toomer(2] 18-19).
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1 10. Chord o f  the difference 51

But Z BDA = Z BGE also, since they subtend the same segment. H37
triangle ABD ||| triangle BGE.

BG.GE = BD:DA.
BG.AD = BD.GE.

Again, since Z ABE = Z DBG, 
and Z BAE = Z BDG, 

triangle ABE ||| triangle BGD.
BA:AE = BD:DG.

•• BA.DG = BD.AE.
But it was shown that ‘

BG.AD = BD.GE.
Therefore, by addition, AG.BD = AB.DG + AD.BG.

Q .E.D.
H aving established this prelim inary theorem, we draw  [Fig. 1.3] semi-circle 

ABGD on diam eter AD, and draw from A two chords, AB, AG, each given in H38 
size in terms of' a diam eter of 120*’. Jo in  BG.

1 say that BG too is given.
[Proof:] Jo in  BD,GD.

D

Then, clearly, BD and GD too will be given, since they are chords of [arcs] 
supplementary [to the arcs of the given chords AB and AG].
Now since ABGD is a cyclic quadrilateral,

AB.GD + AD.BG = AG.BD.
But AG.BD and AB.GD are given.

AD.BG is given by subtraction.
And AD is a diameter.

Therefore chord BG is given.
And we have shown that, if two arcs and the corresponding chords are given, 

the chord of the difference between the two arcs will also be given.
It is obvious that by means of this theorem we shall be able to enter [in the 

table] quite a few chords derived from the difference between the individually 
calculated chords, and notably the chord of 12°, since we have those of60° and H39 
72°.



52 1 10. Chord o f  the half-arc

Let us now consider the problem of finding the chord of the arc which is half' 
that of some given chord.®®

Let [Fig. 1.43 ABG be a semi-circle on diam eter AG. Let GB be a given chord. 
Bisect arc GB at D, join AB, AD, BD, DG, and drop perpendicular DZ from D 
on to AG.

B

G

H40

I say that
ZG  = 5(AG -  AB).

[Proof;] Let AE = AB, and join DE.
Then since [in the triangles ABD. ADE]

AB = AE, and AD is common, 
the two paii-s of sides AB, AD, and AE, AD are equal.

Furtherm ore Z BAD = Z EAD.
Ijase BD = base DE.
But BD = DG [by construction]

••• DG = DE.
So, since, in the isosceles triangle DEG, perpendicular DZ has been drawn 

from apex to base
EZ = ZG.

But EG = [AG -  AE = ] AG -  AB.
ZG = i(AG -  AB).

Now, if the chord of arc BG is given, the supplem entary chord AB is 
immediately given.

Therefore ZG, which is ;(AG -  AB), is also given.
But, since, in the right-angled triangle AGD, the perpendicular DZ has been 

drawn,
triangle ADG ||| triangle DGZ (both right-angled).®*

AG:GD = GD:GZ.
•• AG.GZ = GD2.

Although Ptoiemy’s formula for the chord of the half-angle can easily be derived from his 
general theorem (see Toomer(2] 16-17), he introduces instead another theorem, which goes back to 
.\rchimedes (sec H AMA  23-4). It is a plausible inference that this is because the latter theorem was 
the sole basis of earlier chord tables, notably Hipparchus’, as I have argued, Toomer[2] 18-19.

Euclid VI 8.



But AG.GZ is given.
Therefore GD^ is given, and so chord GD, which subtends an arc half of [the arc 
of the given chord] BG, is also given.

By means of this theorem too a large num ber of chords will be derived by 
halving [the arcs of] the previously determ ined chords, and notably, from the 
chord o fl2 ° , the chords of 6°, 3°, l i °  and i°. By calculation we find the chord of 
12° to be approxim ately 1 ;34,15‘* where the diam eter is 120*’, and the chord o fi°  H41 
to be approxim ately 0;47,8*’ in the same units.

Again, [see Fig. 1.5] let there be a  circle ABGD on diam eter AD, with centre 
Z. From A let there be cut off in succession two given arcs, AB, BG. Join the 
corresponding chords AB, BG; they too will be given.

1 10. Chord o f  the sum 53

D

Fig. 1.5

I say, that if we join AG, that [chord] too will be given.
[Proof:] Draw  through B diam eter BZE, and join BD,DG,GE,DE. It is 

immediately clear that from BG one can derive GE, and from AB one can 
derive BD and DE [all as chords of the supplem entary arc]. By an argument 
similar to the preceding [p. 51], since BGDE is a cyclic quadrilateral, in which 
BD and GE are diagonals, the product of the diagonals will be equal to the sum 
of the products of the opposite sides [i.e. BD.GE = BG.DE + BE.GD]. There­
fore, since (BD.GE) and (BG.DE) are both given, (BE.GD) is also given. But 
BE also is given, being a d iam eter therefore the remaining®^ part, GD, will also H42 
be given, and hence GA, the [chord of the] supplement.

Therefore, if two arcs and the corresponding chords are given, the chord 
corresponding to the sum of these two arcs will be given by means of this 
theorem.

It is obvious that by com bining [in this way] the chord of with all the 
chords we have already obtained, and  then com puting successive chords, we 
will be able to enter [in the table] all chords [of arcs] which when doubled are

** Reading 1̂  Xonn^ (with A) at H42,l forXx>wn  ̂ (‘by subtraction’).
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divisible by three {i.e. multiples o f li°]. T hen  the only chords rem aining to be 
determ ined will be those between the intervals, two in each interval, since 
our table is m ade a t intervals. If, therefore, we can find the chord ofs®, this 
will enable us to  com plete [the table w ith] all the rem aining interm ediate 
chords, by finding the sum o r difference {of 1®] from the given chords a t either 
end o f the (1^°] intervals. Now, if a  chord, e.g. the chord of U°, is given, the 
chord corresponding to  an arc which is one-third of the previous one cannot be 
found by geometrical methods.®^ (If this were possible, we should immediately 
have the chord ofi®). Therefore we shall first derive the chord of 1° from those of 
12® and i°. {We shall do  this] by establishing a  lemma which, though it cannot 
in general exactly determ ine the sizes {of chords], in the case of such very small 
quantities can determ ine them  w ith a  negligibly small error.

I say, then, tha t if  two unequal chords be given, the ratio of the greater to the 
lesser is less than  the ratio  o f the arc on the greater to the arc on the lesser.

[See Fig. 1.6] Let there be a  circle ABGD, in which there are draw n two 
unequal chords, the lesser AB and  the greater BG.

54 1 1 0 . Lemma on ratios o f  arcs and chords

D

H44

Fig. 1.6
I say that

G B ;B A < arc  BG: arc BA.
[Proof:] Let Z ABG be bisected by [chord] BD. Jo in  AEG, AD and GD. Then, 
since Z ABG is bisected by chord BED,

GD = AD 
and G E >E A .® “

“  This is true; the problem of finding Crd a  from given Crd 3a can be reduced to a cubic equation 
of the kind which cannot (except for a few particular values o fa) be solved by Euclidean geometry 
(using straight line and circle). See Toomer[3] 138.

*■* Derivable from Euclid V I3, which states that the bisector of the angle at the apex of a triangle 
divides the base in the ratio of the two sides enclosing the angle. Here, since BG >  BA, GE >  EA.



So drop perpendicular D 2  from D on to AEG.
Then, since AD >  ED and ED >  DZ, a  circle draw n on centre D with radius 

DE will cut AD and pass beyond DZ. Let it be draw n as HE©, and let DZ be 
produced to ©. Now, since sector DE© is greater than  triangle DEZ, and 
triangle DEA is greater than sector DEH, 

triangle DEZ: triangle DEA <  sector DE©; sector DEH.
But triangle DEZ: triangle DEA = EZ:EA,®®

and sector DE©: sector DEH = Z ZDE:Z EDA.
Z E :E A < Z  ZDE.Z EDA.

So, componendo,
Z A :E A < Z  ZDA;Z ADE.

And, doubling the first members [of the ratios],
G A :A E < Z  GDA:Z EDA.

Then, dividendo,
G E :E A < Z  GDE:Z EDA.

But GE:EA = GB:BA,«® 
and Z GDB:Z BDA = arc GB:arc BA.

•■-GB:BA<arc GB:arc BA.
Having established this, let us draw [Fig. 1.7] circle ABG, and in it two 

chords, AB and AG. Let us suppose, first, that AB is the chord of'i® and AG the 
chord of 1 Then, since

1 10. Chord o f  1° 55

H45

A G :B A < arc AG:arc AB 
4 arc AB

and arc AG =

G A <
4AB

“ Euclid VI 1. 
'''* Euclid VI 3.



But, in units of which the diam eter contains 120, we showed that
AB = 0;47,8^
G A <  l;2,5(y’ (for 1;2,50 «  i0;47,8).

H46 Again, using the same figure, let us set AB as the chord of 1® and AG as the 
chord of By the same argum ent, since

3 arc AB 
arc AG ------- ^----- ,

^  ^  3BA 
G A < —

But, in units of which the diam eter contains 120, we showed that
AG = l;34,15^
AB >1;2,50^ (for 1;34,15 = ll;2 ,5 0 ) . 

Therefore, since the chord of 1° was shown to be both greater and less than the 
same am ount, we can establish it as approxim ately 1 ;2,50'’ where the diam eter 
is 120’’. By the preceding propositions we can also establish the chord of 
which we find to be approxim ately 0;31,25’’. T he rem aining intei-vals can [now] 
be completed, as we said [p. 54]. For example, in the first [ li° ]  interv al, we can 
calculate the chord of 2° by using the addition formula for the chord of!° applied 
to the chord of l!°, while the chord of2!° is given by using the difierence formula 
for [the chord of i°] applied to the chord of 3°. Similarly for the rem aining 
chords.

Such, then, I think, is the easiest way to undertake the calculation of the
H47 chords. But, as I said, in order that we may have the actual amounts of the 

chords readily available for every occasion, we shall set out tables [for that 
purpose] below. They will be arranged in sections of 45 lines®’ to achieve a 
symmetrical appearance. The first column [in each section] will contain the 
arcs tabulated at intervals of j°, the second the corresponding chords in units of 
which the diameter contains 120, and the third the thirtieth part of the 
increment in the chord for each interval. [This last] is so that we may have the 
average increment corresponding to one m inute [of arc], which will not be 
sensibly dilferent from the true increment [for each minute]. Thus we can easily 
calculate the am ount of the chord corresponding to fractions which fall between 
the [tabulated] half-degree intervals.

It is easy to see that, if we suspect some scribal corruption in one of the values 
for the chord in the table, the same theorems which we have already set out will 
enable us to test and correct it easily, either by taking the chord of double the 
arc [of that] of the chord in question, or from the difference with some other 
given chord, or from the chord of the supplement.

The layout of the table is as follows.

H48—63 n .  {Tab/e o f Chords]

[See pp. 57-60.]
•’̂ 45 lines is the standard height of tables throughout the Almagest. It is presumably chosen to 

conlbrm to some standard height of papyrus roll (on papyrus standards see Lewis, Pafnrus in Classical 
Antiquity, 36-9, 56, on Pliny V7/ 13, 78). Various consequences How from it, notably the 18-year 
interval in mean motion tables (see III 1 p. 140 with n. 28).

56 /  10. Structure o f  Chord table



1 1 1 . Chord table 57

TABLE O F  CHO RDS

Arcs Chords Sixtieths Arcs Chords Sixtieths

0 31 25 1 2 50 23 23 55 27 1 1 33
1 1 2 50 1 2 50 23 i 24 26 13 1 1 30
l i 1 34 15 1 2 50 24 24 56 58 1 , 1 26
o 2 5 40 1 2 50 245 25 27 41 1 1 22

2 37 4 1 2 48 25 25 58 22 1 1 19
3 3 8 28 1 2 48 25i 26 29 1 1 1 15

3 39 52 1 2 48 26 26 59 38 1 1 11
4 4 11 16 1 2 47 26! 27 30 14 1 1 8
4^ 4 42 40 1 2 47 27 28 0 48 1 1 4

5 5 14 4 1 2 46 27 ̂ 28 31 20 1 1 0
5; 5 45 27 1 2 45 28 29 1 50 1 0 56
6 6 16 49 1 2 44 28! 29 32 18 1 0 52

6 48 11 1 2 43 29 30 2 44 1 0 48
7 7 19 33 I 2 42 29! 30 33 8 1 0 44-1/! 7 30 54 1 2 41 30 31 3 30 1 0 40

8 8 22 15 I 2 40 30! 31 33 50 1 0 35
8j 8 53 35 1 2 39 31 32 4 8 1 0 31
9 9 24 54 1 2 38 3\': 32 34 22 1 0 27

9 56 13 1 2 37 32 33 4 35 1 0 22
10 10 27 32 1 2 35 32! 33 34 46 1 0 17
lOi 10 38 49 1 2 33 33 34 4 55 1 0 12

11 11 30' 5 1 2 32 33! 34 35 11 1 0 8
11^ 12 1 21 1 2 30 34 35 5 5 1 0 3
12 12 32 36 1 2 28 34! 35 35 t> 0 59 57

12i 13 3 50 1 2 27 35 3(i 5 5 0 59 52
13 13 35 4 1 2 25 35: 36 35 1 0 59 48
13i 14 6 16 1 2 23 36 37 4 55 0 59 43

14 14 37 27 1 2 21 36! 37 34 47 0 59 38
14i 15 8 38 1 2 19 37 38 4 36 0 59 32
15 15 39 47 I 2 17 37: 38 34 22 0 59 27

15^ 16 10 56 1 2 15 38 39 4 5 0 59 22
16 16 42 3 1 2 13 38^ 39 33 46 0 59 16
164 17 13 9 1 2 10 39 40 3 25 0 59 11

17 17 44 14 1 2 7 394 40 33 0 0 59 5
1"! 18 15 17 1 2 5 40 41 2 33 0 59 0
18 18 46 19 1 2 2 40i 41 32 3 0 58 54

18| 19 17 21 1 2 0 41 42 1 30 0 58 48
19 19 48 21 1 1 57 41.4 42 30 54 0 58 42 '
19.4 20 19 19 1 1 54 42 43 0 15 . 0 58 36

20 20 50 16 1 1 51 42: 43 29 33 0 58 31
20 i 21 21 11 1 1 48 43 43 58 49 0 58 25
21 21 52 6 1 1 45 434 44 28 1 0 58 18

2U 22 22 58 1 1 42 44 44 57 10 0 58 12
22 22 53 49 1 1 39 444 45 26 16 0 58 6
22^ 23 24 39 1 1 36 45 45 55 19 0 58 0

®* Ptolemy’s chord table has been recomputed, using a com puter program  which reproduces, as 
far as possible, Ptolemy’s own methods of calculation, by Glowatzki and Gottsche. Although much 
of their book is superfluous (see my review, Toomeil4]), it contains some interesting results, notably 
that Ptolemy must have carried out his calculations to five sexagesimal places to achieve the
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Arcs Chords Sixtieths Arcs Chords Sixtieths

45i 46 24 19 0 57 54 68 67 6 12 0 52 I
46 46 53 16 0 57 47 68^ 67 32 12 0 51 52
46i 47 22 9 0 57 41 69 67 58 8 0 51 43

47 47 51 0 0 57 34 69i 68 23 59 0 51 33
47 i 48 19 47 0 57 27 70 68 49 45 0 51 23
48 48 48 30 0 57 21 70^ 69 15 27 0 51 14

48i 49 17 11 0 57 14 71 69 41 4 0 51 4
49 49 45 48 0 57 7 71^ 70 6 36 0 50 55
49^ 50 14 21 0 57 0 72 70 32 3 0 50 45

50 50 42 51 0 56 53 72 j 70 57 26 0 50 35
50! 51 11 18 0 56 46 73 71 22 44 0 50 26
51 51 39 42 0 56 39 73 i 71 47 56 0 50 16

5H 52 8 0 0 56 32 74 72 13 4 0 50 6
52 52 36 16 0 56 25 74! 72 38 7 0 49 56
52i 53 4 29 0 56 18 75 73 3 5 0 49 46

53 53 32 38 0 56 10 73 27 58 0 49 36
53: 54 0 43 0 56 3 76 73 52 46 0 49 26
54 54 28 44 0 55 55 76! 74 17 29 0 49 16

54^ 54 56 42 0 55 48 77 74 42 7 0 49 6
55 55 24 36 0 55 40 77’ 75 6 39 0 48 55
55 j 55 52 26 0 55 33 78 75 31 7 0 48 45

56 56 20 12 0 55 25 78 j 75 55 29 0 48 34
56; 56 47 54 0 55 17 79 76 19 46 0 48 24
57 57 15 33 0 55 9 79: 76 43 58 0 48 13

b l\ 57 43 7 0 55 1 80 77 8 5 0 48 3
58 58 10 38 0 54 53 80: 77 32 6 0 47 52
38 i 58 38 5 0 54 45 81 77 56 2 0 47 41

59 59 5 27 0 54 37 81^ 78 19 52 0 47 31
59^ 59 32 45 0 54 29 82 78 43 38 0 47 20
60 tiO 0 0 0 54 21 82: 79 7 18 0 47 9

60j 60 27 11 0 54 12 83 79 30 52 0 46 58
61 60 54 17 0 54 4 83: 79 54 21 0 46 47
61; 61 21 19 0 53 56 84 80 17 45 0 46 36

ti2 61 48 17 0 53 47 84^ 80 41 3 0 46 25
62.̂ 62 15 10 0 53 39 85 81 4 15 0 46 14
63 62 42 0 0 53 30 85: 81 27 22 0 46 3

63j 63 8 45 0 53 22 86 81 50 24 0 45 52
64 63 35 25 0 53 13 86: 82 13 19 0 45 40
64? 64 2 2 0 53 4 87 82 36 9 0 45 29

65 64 28 34 0 52 55 87: 82 58 54 0 45 18
65? 64 55 1 0 52 46 88 83 21 33 0 45 6
66 65 21 24 0 52 37 88 i 83 44 4 0 44 55

66^ 65 47 43 0 52 28 89 84 6 32 0 44 43
67 66 13 57 0 52 19 89: 84 28 54 0 44 31
67^ 66 40 7 0 52 10 90 84 51 10 0 44 20

accuracy he does in the third place. The book also enables one to make a num ber of corrections of 
scribal errors in the table. Before seeing it I had already made those given below. None of the other 
corrections (all of I in the last place) suggested by the authors seem likely to me, although some are 
possible.

Corrections to Heiberg’s text;

Crd 9®, seconds, v5 (with D, Ar) for va (51) at H48,20 (corrected by Hultsch, Sehnentafeln 52)
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Arcs Chords Sixtieths Arcs Chords Sixtieths

90i 85 13 20 0 44 8 113 100 3 59 0 34 34
91 85 35 24 0 43 57 113^ 100 21 16 0 34 20
9 l! 85 57 23 0 43 45 114 100 38 26 0 34 6

92 86 19 15 0 43 33 I H i 100 55 28 0 33 52
92^ 86 41 2 0 43 21 115 101 12 25 0 33 39
93 87 2 42 0 43 9 115i 101 29 15 0 33 25

93 i 87 24 17 0 42 57 116 101 45 57 0 33 11
94 87 45 45 0 42 45 116i 102 2 33 0 32 57
94^ 88 7 7 0 42 33 117 102 19 1 0 32 43

95 88 28 24 0 42 21 1171 102 35 22 0 32 29
95^ 88 49 34 0 42 9 118 102 51 37 0 32 15
96 89 10 39 0 41 57 1184 103 7 44 0 32 0

965 89 31 37 0 41 45 119 103 23 44 0 31 46
97 89 52 29 0 41 33 119^ 103 39 37 0 31 32
97: 90 13 15 0 41 21 120 103 55 23 0 31 18

98 90 33 55 0 41 8 120^ 104 11 2 0 31 4
98^ 90 54 29 0 40 55 121 104 26 34 0 30 49
99 91 14 56 0 40 42 121: 104 41 59 0 30 35

99! 91 35 17 0 40 30 122 104 57 16 0 30 21
100 91 55 32 0 40 17 122: 105 12 26 0 30 7
100! 92 15 40 i 0 40 4 123' 105 27 30 0 29 52

101 92 35 42 1 0 39 52 1231 105 42 26 0 29 37
101: 92 55 38 ; 0 39 39 124 105 57 14 0 29 23
102 93 15-27 1 0 39 26 124: 106 11 55 / 0 29 8

102.̂ 93 35 11 1 0 39 13 125 106 26 29 0 28 54
103 93 54 47 0 39 0 125i 106 40 56 0 28 39
103: 94 14 17 0 38 47 126 106 55 15 0 28 24

104 94 33 41 0 38 34 126: 107 9 27 0 28 10
104: 94 52 58 0 38 21 127 107 23 32 0 27 56
105 95 12 9 0 38 8 127^ 107 37 30 0 27 40

105: 95 31 13 0 37 55 128 107 51 20 0 27 25
106 95 50 11 0 37 42 128i 108 5 2 0 27 10
106j 96 9 2 0 37 29 129 108 18 37 0 26 56

107 96 27 47 0 37 16 129: 108 32 5 0 26 41
107^ 96 46 24 0 37 3 130 108 45 25 0 26 26
108 97 4 55 0 36 50 130j 108 58 38 0 26. 11

108: 97 23 20 0 36 36 131 109 11 44 0 25 56
109 97 41 38 0 36 23 13H 109 24 42 0 25 41
109: 97 59 49 0 36 9 132 109 37 32 0 25 26

110 98 17 54 0 35 56 132: 109 50 15 0 25 11 '
110^ 98 35 52 0 35 42 133 110 2 50 0 24 56
111 98 53 43 0 35 29 133j 110 15 18 0 24 41

i w i 99 11 27 0 35 15 134 110 27 39 0 24 26
112 99 29 5 0 35 1 134.1 110 39 52 0 24 10
112j 99 46 35 0 34 48 135 110 51 57 0 23 55

Crd 72°, seconds, y (with all mss. except D) lor 8 (4) at H54,10 (cl‘. H 35,l and p. 81 n. 19; corrected 
by Manitius)

Crd 88^°, minutes, pS (with Ar) lor pa (41) at H55,43.
Crd 97°, seconds. tc0 (with D, Ar) fbrK ; (27) at H56.15 
Crd 108°, seconds, ve (with D, Ar) for vi; (56) at H57,37 
Crd 118i°, seconds, ^8 (with Ar) for )ia (41) at H58,13 
Crd 143°, seconds, v<; (with'D, Ar) for kc; (26) at H60,I7.
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Arcs Chords Sixtieths Arcs Chords Sixtieths

135^ 111 3 54 0 23 40 158 117 47 43 0 11 51
136 111 15 44 0 23 25 158.^ 117 53 39 0 11 35
136^ 111 27 26 0 23 9 159 117 59 27 0 11 19

137 111 39 1 0 22 54 159^ 118 5 7 0 1 1 3
137< 111 50 28 0 22 39 160 118 10 37 0 10 47
138 112 1 47 0 22 24 1605 118 16 1 0 10 31

i;?8! 112 12 59 0 22 8 161 118 21 16 0 10 14
139 112 24 3 0 21 53 161! 118 26 23 0 9 58
139! 112 35 0 0 21 37 162 118 31 22 0 9 42

140 112 45 48 0 21 22 162! 118 36 13 0 9 25
140^ 112 56 29 0 21 7 163 118 40 55 0 9 9
141 113 7 2 0 20 31 163! j  118 45 30 0 8 53

141i 113 17 25 0 20 36 164 118 49 56 0 8 37
142 113 27 44 0 20 20 164: 118 54 15 0 8 20
142: 113 37 54 0 20 4 165 118 58 25 0 8 4

143 113 47 56 0 19 49 165: 119 2 26 0 7 48
143i 113 57 50 0 19 33 166 119 6 20 0 7 31
144 114 7 37 0 19 17 Kki: 119 10 6j 0 7 15

144i 114 17 15 0 19 2 167 I 119 13 44 0 6 59
145 114 26 46 0 18 46 167: 1 119 17 13 0 6 42
145! 114 36 9 0 18 30 Ki8 119 20 ,)4 0 6 26

Hli 114 45 24 0 18 14 168! i 119 23 47 0 6 10
146i 114 54 31 0 17 59 169 119 26 52 0 5 53
147 115 ;5 30 0 17 43 169: 119 29 49 0 5 37

]47j 115 12 22 0 17 27 170 ;  119 32 37 0 5 20
148 1 115 21 6 0 17 11 170: 1 119 35 17 0 5 4
148i 115 29 41 0 16 55 171 ;1 119 37 49 i  0 4 48 •

149 115 38 9 0 16 40 171: 1 119 40 13 0 4 31
149^ 115 46 29 0 16 24 172 119 42 28 0 4 14
150 115 34 40 0 16 8 172: ! 119 44 35 0 3 58

150: 116 2 44 0 15 52 173 119 46 35 0 3 42
15! 116 10 40 0 15 36 173: 119 48 26 0 3 26
151! 116 18 28 0 15 20 174 119 50 8 0 ;5 9

152 116 26 8 0 15 4 174: 119 51 43 0 2 53
152i ‘ 116 33 40 0 14 48 175 119 53 10 0 2 36
153 116 41 4 0 14 32 175: 119 54 27 0 2 20

153i 116 48 20 0 14 16 176 119 55 38 0 2 3
154 116 55 28 0 14 0 176: 119 56 39 0 I 47
154^ 117 2 28 0 13 44 177 119 57 32 0 1 30

155 117 9 20 0 13 28 177! 119 58 18 0 1 14
155! 117 16 4 0 13 12 178 119 58 55 0 0 57
156 117 22 40 0 12 56 178^ 119 59 24 0 0 41

156^ 117 29 8 0 12 40 179 119 59 44 0 , 0 25
157 117 35 28 0 12 24 179^ 119 59 56 0 0 9
157j 117 41 40 0 12 1 180 120 0 0 0 0 0



1 12. Determination of obliquity of ecliptic

12. [On the arc between the solsticesY^

61

H64

Now that we have tabulated the chords, our first task, £is we said, is to determine 
the inclination of the ecliptic to the equator, that is, the ratio of the great circle 
through the poles of both to the arc intercepted between the poles. It is obvious 
that this is equal to the distance from the equator to either of the solsticial 
points. This quantity can be determined directly by an instrumental method, 
using the following simple apparatus.^® [See Fig. C.]

We make a bronze ring of a suitable size, turned on the lathe so that its surface 
is accurately squared ofT[i.e. has a rectangular cross-section]. We use this as a 
m eridian circle, by dividing it into the normal 360° of a great circle, and 
subdividing each degree into as many parts as [the size of the instrument] 
allows. Then we take another smaller ring, and fit it inside the first in such a

Ptolemy’s determination of the obliquity of the ecliptic see Britton[2J.
O n the instruments described by Ptolemy here sec Price, Precision Instruments, 587-9. There is a 

very detailed ancient description o f the construction and use of the ring instrument by Proclus, 
Hypotyposis III 5-27 (ed. Manitius pp. 42-52).
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m anner that the lateral faces of both are in the same plane, while the smaller 
ring can rotate freely inside the larger, w ith a north-south motion, [always] in 
the same plane. At two diametrically opposite points on one lateral face of the 

H65 smaller ring we fix [two] little plates, of equal size, pointing towards each other 
and the centre of the rings, and exactly in the middle of the width of each 
plate we fix small pointers, which graze the surface of the larger, graduated 
ring. To serve all the necessary purposes we fix this ring firmly on a pillar of 
appropriate size, and set it up in the open air, so that the base of the pillar is 
on a foundation which is not inclined to the plane of the horizon. W e take 
care that the [lateral] plane of the rings is perpendicular to the plane of the 
horizon and parallel to the plane of the meridian. T he first of these [desiderata] 
is achieved by suspending a plumb-line from a point [on the outer ring] chosen 
as zenith, and adjusting supporting elements'* until the plumb-line points 
towards the point diametrically opposite [the zenith-point]. The second is 
achieved by marking a meridian line'* clearly in the plane below the pillar and 
moving the rings laterally until one can sight their [lateral] plane as parallel to 
that line. Having set the instrument up in that way, we obseived the sun’s 
movement towards the north and south by turning the inner ring at noon until 

H66 the lower plate was completely enshadowed by the upper one. W hen this was 
the case, the tips of the pointers indicated to us the distance of the sun from the 
zenith in degrees.'^ measured along the meridian.

We found an even handier way of making this kind of obser\ation by 
constructing, instead of the rings, a plaque [see Fig. D] of stone or wood, square

ReadifijfUffoOefiaTitov (with D) for6jro0£nctT(ov at H65.13. Cl'. H67,7. Both readings are found 
in mss. ol Proclus. Hyp<aypom p. 50.10.

"'Ptolemy assumes that one can draw a meridian line, without explaining how. Diodorus of 
Alexandria (first century B.u) in his (lost) treatise Analeimna, gave an ingenious method Ibr 
determining the meridian line from any three gnomon shadows (see HAMA  II 841-2).

'T(itinaTa, literally divisions’, and it could be so interpreted here ( divisions of the graduated 
arc’), cf. p. 61. But there are many places in the Almagest where it means simply ’degrees’.
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and rigid, w ith one of its faces smooth and accurately squared off. O n this we 
drew a quadrant, using as centre a point near one of the corners, and drew from 
the centre to the inscribed arc the lines enclosing the right angle forming the 
quadrant. We divided the arc, as we had [the other instrument], into 90 degrees 
and subdivisions of those degrees. Next, on tha t line which was chosen to be 
perpendicular to the plane of the horizon and towards the south, we fixed two 
small cylindrical pegs, with their sides at right angles to their bases and exactly 
circular, machined to be of equal size: one of them we fixed on the centre-point 
itself, positioning the mid-point of the peg precisely on it, the other at the lower 
end of the line. Then we set this inscribed face of the plaque up along the H67 
m eridian line which we had draw n on the foundation-plane, so as to be parallel 
to the plane of the meridian, and, using a plum b-line suspended between the 
pegs, set up the line between them precisely at right angles to the plane of the 
horizon, again correcting any deficiency by adjusting thin supporting elements 
underneath. In the same way as before, we observed the shadow cast at midday 
by the peg at the centre. In order to determ ine its position more accurately, we 
placed some object on the inscribed arc [where the shadow crossed it]. M arking 
the m id-point of the shadow, we took that division of the quadrant as indicating 
the position of the sun on the m eridian in the north-south direction.^'*

From obsei'V'ations of this kind, and especially from com paringobservations 
near the actual solstices, which revealed that, over a num ber of returns [of the 
sun], the distance from the zenith was in general the same num ber of degrees of 
the m eridian circle at the [same] solstice, whether sum m er or winter, we found 
that the arc between the northernmost and southernm ost points, which is the arc 
between the solstitial points, is always greater than 47!° and less than 47i°. H68 
From this we derive very much the same ratio as Eratosthenes, which 
H ipparchus also used. For [according to this] the arc between the solstices is 
approxim ately 11 parts where the m eridian is 83.'^

From the preceding kind of observation it is easy to derive immediately the 
latitude ol'the region in which the observation is made, wherever it is: one takes 
the point halfway between the two extrema; this point lies on the equator; then - 
one takes the distance between this point and the zenith, which is the same, 
obviously, as the distance of the poles from the horizon.

TtX-dxcx;, literally ‘in latitude’. Ptolemy, following common Greek usage, usesrtXdTO<; for 
any ‘vertical’ direction, including that normal to the equator, as here. See Introduction p. 21.

of 360° 47;42,39,2® = 2e, hence e ** 23 ;51,20°, which is what Ptolemy actually adopts (his 2e 
lies between 47;40° and 47;45°, but is not the mean).

The text could equally well mean, not that Eratosthenes and Hipparchus used the ratio 11:83, 
but that the ratio 11:83 is Ptolemy’s value, which is close to the actual ratio used by them [namely 
2; 15, i.e. e = 24°]. T hat interpretation has the advantage of agreeing with the only value otherwise 
attested for Eratosthenes (in his Geograph, see Berger Frg. IIB  23, Strabo 2.5.7) and Hipparchus (in 
his Geography and in his Commentary on Aratus, ed. M anitius p. 96,20; of. HAMA  303, 335). It was 
proposed by Eerger, Eratosthenes 131, followed by Heath, 131 n. 4 .1 prefer the traditional
interpretation, since I find it inconceivable that Ptolemy would not mention what the ratio was to 
which his own was close, and also because of his expression at I 14 (p. 70). Eratosthenes’ peculiar 
ratio is due not to a perverse division of the circle into 83rds, as Theon supposes (Rome I I 529), but 
to a pre-trigonometrical derivation from gnomon measurements, as I shall show elsewhere.



13. [Preliminaries for spherical proof

O ur next task is to dem onstrate the sizes of the individual arcs cut offbetween the 
equator and the ecliptic along a great circle through the poles o f the equator. As 
a preliminary we shall set out some short and  useful theorems which will enable 
us to carry out most demonstrations involving spherical theorems in the 
simplest and most methodical way possible.

H69 [See Fig. 1.8.] Let two straight lines, BE and GD, which are draw n to meet 
two straight lines. AB and AG, cut each other at point Z.
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n

B- G
Fig. 1.8

I say that
GA:AE = (GD:DZ).(ZB:BE).”

[Proof:] Let EH  be draw n through E parallel to GD.
Then, since GD and EH are parallel,

GA:AE = GD:EH.
If we bring ZD in [as auxiliary],

G D .EH  = (GD:DZ).(DZ:HE).
GA-.AE = (GD:DZ).(DZ:HE).

But D Z:H E = ZB:BE (EH parallel to ZD).
GA:AE = (GD:DZ).(ZB:BE). [13.1]

Q;E.D.
In the same way, dividendo, we shall prove that 

GE:EA = (GZ:DZ).(DB:BA).

'*On the spherical trigonometry in this chapter see H AM A  26-30, Pedersen 72-8.
’ ’ L i te r a l ly  ( h e r e  a n d  in  g e n e r a l )  th is  k in d  o f  r a t i o  is e x p re s s e d  a s  ‘t h e  r a t i o  o f  GA t o  AE is 

c o m b in e d  f ro m  (ouv^Trtat £K, au y K eT T a t £k ) t h e  r a t i o  o f  GD to  DZ a n d  th e  r a t i o  o f  ZB to  BE’.



[See Fig. 1.9.] Draw a line through A parallel to EB and  produce GD to cut it at
H. Again, since AH is parallel to EZ, H70

GE:EA = GZ:ZH.
But, if we bring in ZD [as auxiliary],

G Z;ZH  = (GZ:ZD).(DZ:ZH).
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fl

But D Z.ZH  = DB.BA (BA and ZH  drawn to meet the parallel lines AH and 
ZB).

•• G Z:ZH  = (GZ:DZ).(DB:BA).
But GZ:ZH = GE:EA.

GE.EA = (GZ:DZ).(DB:BA). .[13.2]
Q.E.D.

Again [Fig. 1.10] on circle ABG, with centre D, take any three points A,B,G, 
on the circumference, provided that each of the arcs AB and BG is less than a 
semi-circle (let the same condition be understood to apply to all subsequent arcs 
we take). Draw AG and DEB.

I say that H71
Crd arc 2AB:Crd arc 2BG = AE;EG.

[Proof;] Drop perpendiculars AZ and G H  from points A and  G on to DB. Then, 
since AZ is parallel to GH, and they meet line AEG,

AZ:GH = AE:EG.
But AZ:GH = Crd arc 2AB : Crd arc 2BG 

(for AZ = i Crd arc 2AB and G H  = \ Crd arc 2BG).
AE;EG = Crd arc 2AB:Crd arc 2BG. [13.3]

Q..E.D.
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B

It immediately follows that if we are given the whole of arc AG and the ratio 
(Crd arc 2AB;Crd arc 2BG), both arc AB and arc BG will be given.

For, repeating the same Hgure [see Fig. 1.11 ], jo in  AD, and drop perpendicu­
lar DZ from D on to AEG.

H72 It is obvious that, if arc AG be given, Z ADZ, which subtends hall aic AG, will 
be given, and hence the whole triangle ADZ. Now, since the whole chord AG is

B

For one already knows Z AZD, a right angle, and AD, a  radius.
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given, and  (AE;EG) is given (for it equals (Crd arc2AB :Crd arc 2BG)), AE will 
be given/® and so will ZE, by subtraction [of AZ from AE]. Hence, since DZ too 
is given, in the right-angled triangle EDZ, Z EDZ will be given, and hence the 
whole angle ADB. Hence arc AB will be given and (by subtraction) arc BG.

Q..E.D.
Again [see Fig. 1.12] on circle ABG with centre D  take three points on the 

circumference, A,B,G.®‘’Jo in  DA and GB and produce them  to meet a t E.

I say that H73
C rd arc 2GA:Crd arc 2AB = GE:BE.
By a similar argum ent to the previous theorem, if we drop perpendiculars 

BZ and G H  from B and G on to DA, since they are parallel,
GH:BZ = GE:EB.

Crd arc 2GA:Crd arc 2AB = GE:EB. [13.4]
Q.E.D.

In this case too it follows immediately that if we are given just the arc GB and 
the ratio (Crd arc 2GA;Crd arc 2AB), arc AB will also be given.

For, if we repeat the same figure [see Fig. 1.13], and jo in  DB and drop DZ 
perpendicular to BG, then ZBDZ, which subtends half arc BG, will be given. H74 
Hence the whole of the right-angled triangle®* BDZ will be given. Now, since 
the ratio (GE:EB) and line GB are given, EB will be given, and hence, by 
addition, line EBZ. So, since DZ is given, in the right-angled triangle EDZ,

’̂ Euclid Data 7 (if a given magnitude is divided in a given ratio, each part is given).
^ “ O m itting (with D, Is), at H72. 13-15, fioTe bKaxipav xSv AB, A F nepupepeiSIV zkaoaova  

eivai fmiKUKXlou. Kci M  tS v 8e Xa^^vo^eva>v nepupepeimv to ottoiov unaKoueo6<a7 
which is an otiose repetition of H70, 21-5.

*' Here (H74,3) and elsewhere (e.g. H74.7) D has the fuller form 6pdoY<aviov TpiYoavov for 
Heiberg’s dpBoymviov. This may be right, but I have not recorded it as a  correction, following the 
principle enunciated Introduction p. 4.
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H75

Z EDZ is given, and, by subtraction [of the given Z BDZ]Z EDB is given. Hence 
arc AB will be given.

Having established these preliminary theorems, let us drav^ [Fig. 1.14]®  ̂the 
following arcs of great circles on a sphere; BE and  GD are draw n to meet AB 
and AG, and cut each other at Z. Let each of them be less than a semi-circle 
(and let the same condition be understood to apply to all the figures).
I say that

Crd aic 2GE:Crd arc 2EA =
(Crd arc 2GZ:Crd arc 2ZD). (Crd arc 2DB:Crd arc 2BA).

[Proof:] Let us take the centre of the sphere, H, and draw  from it to the inter­
sections of the circles, B, Z, E, lines HB, H Z, HE. Jo in  AD and produce it to 
meet HB, also produced, a t© . Similarly, jo in  DG and AG, and let them cut HZ 
and HE at points®^ K and L.

fl

Fig. 1.14

For an adaptation of this figure useful in visualizing the various planes involved iccH AM A  Fig. 
17 p . 1213 .

“  Reading to  . . . <n)ti£Ta (with D) at H75,2 for t6 . . . crnneiov. Corrected by Manitius.



Then ©, K  and L lie on a straight line, since they all lie simultaneously in 
two planes, the plane of triangle AGD, and the plane o f circle BZE.

D raw  this line [0K L ]. T he result will be that there are  two straight lines,
© L and GD, draw n to meet two straight lines, ©A and  GA, and intersecting 
each other at K.

•• GL.LA = (GK;KD).(D©:©A). [from 13.2]
But GL:LA = C rd arc 2GE:Crd arc 2EA [from 13.3] 

and G K :K D  = C rd arc 2GZ:Crd arc 2ZD  [from 13.3] 
and D © :0A  = C rd arc 2DB:Crd arc 2BA. [from 13.4]

• • C rd arc 2GE:Crd arc 2EA =
(Crd arc 2GZ:Crd arc 2ZD).(Crd arc 2DB:Crd arc 2BA). [13.5] H76

In the same way, corresponding to the straight lines in the plane figure [Fig.
1.8], it can be shown that 

Crd arc 2GA:Crd arc 2EA =
(Crd arc 2GD:Crd arc 2DZ).(Crd arc 2ZB:Crd arc 2BE).«^ [13.6]

Q.E.D.

1 14. Calculation o f  declinations 69

14. {On the arcs between the equator and the ecliptic}^^

H aving set out this preliminary theorem, we shall first o f all demonstrate the 
am ounts of the arcs we set ourselves to determine,®® as follows.

[See Fig. 1.15.] Let the circle through both poles, that o f the equator and that 
of the ecliptic, be ABGD; let the semi-circle representing the equator be AEG, 
and that representing the ecliptic BED, and let point E be the intersection of the 
two at the spring equinox, so that B is the w inter solstice and D the summer 
solstice. O n  arc ABG take the pole of the equator AEG: let it be point Z. C ut off H77 
arc EH on the ecliptic; let us suppose it to be 30°, and draw  through Z and H  an 
arc of a great circle ZH©. O u r problem, obviously, is to determ ine H©. Let us 
take for granted both here and in general for all such dem onstrations (to avoid - 
rejjeating ourselves on each occasion), that when we speak of the sizes of arcs or 
chords in terms o f ‘degrees’ or ‘parts’ we mean (for arcs) those degrees of.which 
the circumference of a great circle contains 360, and (for chords) those parts of 
which the diam eter of the circle contains 120.

Now since, in the figure, the two great circle arcs Z© and  EB are drawn to 
meet the two great circle arcs AZ and AE, and intersect each other at H,

Crd arc 2ZA:Crd arc 2AB =
(Crd arc 2©Z:Crd arc 2©H). (Crd arc 2H E:Crd arc 2EB). [M .T.I]

*^The theorem connecting six great circle arcs on the surface o f the sphere in a  Menelaus 
Configuration (see Introduction p. 18), of which the enunciations 13.5 and 13.6 are examples, is 
due to Menelaus, whom Ptolemy mentions in the Almagest only as an  observer (see index s.v.). It 
appears (in both forms) as Prop. I ll  1 of his Sphaerica (ed. Krause pp. 194-7). These two forms have 
bcCT labelled by Neugebauer {HAMA 28) as Theorem I (= 13.6), where four inner parts of the 
Menelaus Configuration are related to two outer parts, and Theorem II (= 13.5), where four outer 
parts are related to two inner parts. We shall use t ^  terminology in w hat follows (M .T. I and M .T.
II for brevity).

" S e e  H AM A  30-1, Pedersen 95-6.
“ Reference back to I 13 p. 64.
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G
Fig. 1.15

But arc 2ZA = 180°, so C rd arc 2ZA = 120^, 
and arc 2AB = 47;42,40° (according to the ratio 11:83, with 

which we agreed [p. 63]). 
so Crd arc 2AB = 48;31,55^

H78 Again, arc 2HE = 60°, so C rd arc 2H E = eO**,
and arc 2EB = 180°, so C rd arc 2EB = 120^.

Crd arc 2Z 0 :C rd  arc 2 0 H  = (120 : 48;31.55)/(60 : 120)
= 120 : 24;15,57.

And arc 2 Z 0  = 180°, so C rd arc 2 Z 0  = 120^.
Crd arc 2 0 H = 24; 15,57”. 

arc 2 0 H  = 23; 19,59°. 
and arc 0 H * «  11;40°.

Again, let arc EH  be taken as 60°. T hen  the other m agnitudes will remain 
unchanged, but

arc 2EH = 120°, so C rd arc 2EH  = 103;55,23’’.
Crd arc 2Z 0 :C rd  arc 2 0 H  = (120 : 48;31,55)/(103;55,23 : 120)

= 120 : 42; 1,48.
But Crd arc 2 Z 0  = 120^.

C rd arc 2 0 H  = 42; 1,48”. 
arc 2 0 H  = 41;0,18°, 

and arc 0 H  = 20;30,9°.
Q .E.D.

H79 In the same way we shall com pute the sizes of[the other] individual arcs, and 
set out a table giving for each degree of the quadran t the arc corresponding to 
those com puted above. T he table is as follows.
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15. { Table o f  Jnclination}^^

[See p. 72.]

16. [On rising-times at sphaera recta}®®

O u r next task is to show how to com pute the size of an  arc o f the equator 
determ ined by a circle draw n through the poles of the equator and  a given point 
on the ecliptic. In this way we can find how long, in equinoctial time-degrees, it 
takes a given section of the ecliptic to  cross the m eridian a t any point on earth 
and the horizon at sphaera recta (for only in tha t situation does the horizon pass 
through the poles of the equator).

R epeat the previous figure [see Fig. 1.16]. Let the ecliptic arc E H  again be 
given, first as 30°. We have to find arc E© of the equator.

71

H80—&

H82

G
Fig. 1.16

By the same argum ent as the preceding,
Crd arc 2ZB:Crd arc 2BA =

(Crd arc 2ZH :Crd arc 2H 0). (Crd arc 2©E:Crd arc 2EA). 
But arc 2ZB = 132; 17,20°, 

so C rd arc 2ZB = 109;44,53^

Corrections to Heiberg in Table I 15:
45°, seconds, a  (with D, Ar) for k (20) at H81,50 (computed: 2)
69°, seconds, a  (with D, Ar) for la  (11) at H81,29 (computed: 10,59 for 11,1). 
Possible emendations are;
27°, seconds (47) for (57) (computed: 48). No ms. authority.
51°, seconds e (5) for te (15) (computed: 7). No ms. authority.
59°, seconds a  (1) lor 5 (4) (computed: 0). Only variant is ‘0’ in L.

«*See HAM A  31-2, Pedersen 97-9.

[M .T.II]



72 1 15. Declination table

TABLE O F INCLINATION

ARCS 
of the of the 

Ecliptic Meridian
of the 

Ecliptic

ARCS
of the 

Meridian

1 0 24 16 46 16 54 47
2 0 48 31 47 17 12 16
3 1 12 46 48 17 29 27

4 1 37 0 49 17 46 20
5 2 1 12 50 18 2 53
6 2 25 22 51 18 19 15

7 2 49 30 52 18 35 5
8 3 13 35 53 18 50 41
9 3 37 37 54 19 5 57

10 4 1 38 55 19 20 56
11 4 25 32 56 19 35 28
12 4 49 24 57 19 49 42

\:\ 5 13 11 58 20 3 31
14 5 36 53 59 20 17 4
15 6 0 31 60 20 30 9

16 6 24 1 61 20 42 58
17 6 47 26 62 20 55 24
18 7 10 45 63 21 7 21

19 7 33 57 64 21 18 58
20 7 57 3 65 21 30 11
21 8 20 0 66 21 41 0

22 8 42 50 67 21 51 25
23 9 5 32 68 22 1 25
24 9 28 5 69 22 11 1

25 9 50 29 70 22 20 11
26 10 12 46 71 22 28 57
27 10 34 57 72 22 37 17

28 10 56 44 73 22 45 11
29 11 18 25 74 22 52 39
30 11 39 59 75 22 59 41

31 12 1 20 76 23 6 17
32 12 22 30 77 23 12 27
33 12 43 28 78 23 18 11

34 13 4 14 79 23 23 28
35 13 24 47 80 23 28 16
36 13 45 6 81 23 32 30

37 14 5 11 82 23 36 35
38 14 25 2 83 23 40 2
39 14 44 39 84 23 43 2

40 15 4 4 85 23 45 34
41 15 23 10 86 23 47 39
42 15 42 2 87 23 49 16

43 16 0 38 88 23 50 25
44 16 18 58 89 23 51 6
45 16 37 1 90 23 51 20



A n d a rc 2 B A =  47;42,40°, 
so C rd  arc 2BA = 48;S1,55‘’. H83
Again, arc 2ZH  = 156;40,1° [180° -  arc 2 0 H , p. 70} 
so C rd  a rc 2 Z H  = 117;31,15^ 

and  arc 2 H 0  = 23; 19,59°, 
so C rd arc 2 H 0  = 24;15,57^

Crd arc 0 E :C rd  arc 2EA = (109;44,53 : 48;3I,55)/(117;31,15 : 24;15,57)
= 54;52,26 : 117;3I,15 = 56; 1,53 : 120.

But arc 2EA = 180°, so Crd arc 2EA = 120^.
C rd arc 2 0 E  = 56;l,53^8«

So arc 2 0 E  *** 55;40° and arc 0 E  ** 27;50°.
Again, let arc EH be taken as 60°. Then the other magnitudes will remain 

unchanged, but
arc 2ZH  = 138:59,42°, [180° -  arc 2 0 H , p. 70] 

so C rd a rc 2 Z H  = 112;23,56P.
A n d a r c 2 0 H =  41;0,18°. 

s o C r d a r c 2 0 H =  42; 1,48'’.
C rd arc 20E :C rd  arc 2EA = (109;44,53 : 48;31,55)/(112;23,56 : 42;1,48)

^ 95;2,40 : H2;23,56 H84
= 101;28,20 : 120.

But Crd arc 2EA = 120^.
••• Crd arc 2 0  E = 101;28,20'’

•• arc 2 0 E «  115;28°. 
a r c 0 E «  57;44°.

Thus it has been shown that the first sign of the ecliptic, counted from the 
equinox,^® rises in the aforementioned m anner [i.e. Sit sphaera recta] in the same 
time as 27;50° of the equator; and that the second sign rises with 29;54° (for the 
sum of both arcs was shown to be 57;44°). It is obvious th a t the third sign will 
rise at sphaera recta in the same time as 32:16° (which is the complement [of 
57;44°]), since each whole quadran t of the ecliptic®' rises in the same time as the 
corresponding quadran t of the equator as defined by circles draw n through the 
poles of the equator.

Following the same m ethod as dem onstrated above, we calculated the arc of 
the equator which rises in the same time as each 10-degree section of the 
ecliptic. (The [true] rising times of arcs smaller than 10° are not noticeably 
different from those derived by linear interpolation [from those of 10° arcs]). We 
shall set these too out, then, in order to be able to reckon conveniently the time 
which each arc takes, as we said, to cross the m eridian a t any point on earth  and H85 
the horizon a t sphaera recta. W e begin with the 10° arc starting a t [either] 
equinoctial point.
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“*Herc and just above (H83,13 and 10) Heiberg’s text gives 56; 1,25 (ice for v^). The correct 
reading is given by D and Is.

’®From considerations of symmetry, it makes no difference which equinox one starts from.
A ‘quadrant’ here is understood to start at equinox or solstice.



74 1 16. Rising-limes at sphaera recta
Time-degrees 

;10°  
:15°ten-degree section rises in

For 1st sign sum is

4th
5th
6th

ten-degree section rises in

For 2nd sign sum is

7th
8th
9th ! ten-degree section rises in

r  9;]
< 9;1 

 ̂ 9;25°

27;50°.

'  9;40° 
9;58° 

10;16°

29;54°

■ 10;34° 
10;47° 
10;55°.

For 3rd sign, ending at either solstice, sum is 32; 16°.
The sum for the whole quadrant is 90°, as it should be.^^

It is immediately obvious that the arrangem ent [of the rising-times] is the 
same for the other [three] quadrants, since the same relationships hold in each 
at sphaera recta, that is when the equator has no inclination to the horizon [i.e. is 
vertical to it].

**These data  are repeated in tabular form in the table of rising-times, II 8.



Book II

1. {On the general location o f our pari o f the inhabited world\

In Book I of’ our treatise we discussed such prelim inary notions about the 
situation of the universe as had to be summarily disposed of, and such theorems 
concerning îphaera recta as might be thought useful for the investigations which 
we propose. In what follows we shall try to develop the more important 
theorems concerning sphaera obliqiia too, in the most convenient way possible.

O n that topic, then, we must first make the following general introductory 
remark. If one considers the earth  to be divided into four quarters by the H88 
equator and a circle drawn through the poles of the equator, our part of the 
inhabited world* is approximately bounded by one of the two- northern 
quarters. The main proof of this in the case of latitude (that is in the north-south 
direction) is that the noon shadows of gnomons at equinox always point towards 
the north and never towards the south. In the case of longftude (that is in the 
east-west direction) the main proof is that observ'ations of the same eclipse 
(especially a lunar eclipse) by those at the extreme western and extreme eastern 
regions of our part of the inhabited world (which occur at the same [absolute] 
time), never differ- by more than twelve equinoctial hours [in local time];^ and 
the quarter [of the earth] contains a twelve-hour interval in longitude, since it is 
bounded by one of the two halves of the equator.

T he individual points [concerning obliqua] which might be considered
most appropriate to study for the subject we have undertaken are the more * 
im portant phenomena which are particular to each of the northern parallels to 
the equator and to the region of the earth  directly beneath each. These are
[1] the distance of the poles of the first motion [i.e. the equator] from the H89 
horizon, or [in other words] the distance of the zenith from the equator, 
measured along the meridian;^

‘ So one must translate k o 0 ’ 0iK0U(i£VTi : Ka0’ i^nS<; can mean ‘in our neighbourhood’ or 
in our time’. Manitius takes the expression to be temporal (e.g. here, 58,17 ‘des zurzeit bewohnten 

Gebietes der Erde’). This implausible interpretation is contradicted by V'l 6 (p. 294) where Ptolemy 
talks about difl'erent parts of the inhabited world’ (̂ Tii Siacpopou o'lKOUnevT) ,̂ H498.2). and 
mentions the so-called antipodes’ (tSv dvTixOovwv KaA.ounev(ov). In using the expression he is 
implicitly allowing the possibility of an inhabited zone in the southern hemisphere. On the meaning 
and history of the concept oiKOUnevti see Campanus 396-7.

^‘dilfer’; literally ‘are earlier or later’.
 ̂O ne should not infer that Ptolemy possessed records of lunar eclipses observed simultaneously at 

eastern and western ends of the known world. In fact it seems probable that the only eclipse observed 
at places widely separated in longitude for which he had records of both observations was that of 
-  330 Sept. 20 (cf. HAMA  668 n.30), observed at Arbela and Carthage.

*In modem terms, the tfrrestrial latitude, in antiquity usually known as £^ap^a tou noA.ou, 
‘elevation of the pole’.
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[2] for those regions where the sun reaches the zenith, when and how often this 
occurs;
[3] the ratios of the equinoctial and soisticial noon shadows to the gnomon;
[4] the size of the difference of the longest and shortest day from the equinoctial 
day;^ and all other additional phenom ena which are [commonly] studied 
concerning
[5] the individual increases and decreases in the length of the days and nights,®
[6] and the arcs of the equator which rise or set with [given] arcs of the ecliptic, ̂
[7] and the particulars and quantities of angles between the more im portant 
great circles.®

2. [Given the length oj the longest day, how to find  the arcs o f the horizon 
cut o jf between the equator and the ecliptic}^

Let us take as a general basis for our examples the parallel circle to the equator 
H90 through Rhodes, where the elevation of the pole is 36°, and the longest day 14? 

equinoctial hours. Let [Fig. 2.1] ABGD represent the meridian, BED the 
eastern half of the horizon, AEG, likewise, the [eastern] half of the equator, with 
its south pole at Z. Let us suppose that the w inter solstice on the ecliptic is rising 
at H. Draw through Z and H the great circle cjuadrant Z H 0 .

G
Fig. 2.1

’ Details ol [ 1 ] to [4] are j^ivcn lor numerous parallels in II 6. 
•’See II 9.
’ See II 7-8.
"See 11 10-13.
“On < hapters 2 and .3 see HAMA  37-8. Pedersen 101-4.



First of all let the length of the longest day be given, and let the problem be to 
find arc EH  of the horizon.

Now, since the revolution of the [heavenly] sphere takes place about the poles 
of the equator, it is obvious that points H and 0  will be on the meridian ABGD 
at the same time. Thus the time from the rising of H  to its upper culmination is 
given by the equatorial arc 0 A , and the time from its lower culmination to its 
rising is given by [the equatorial arc] G 0 . It follows that the length of daylight is H 9l 
twice the time corresponding to arc 0 A , and the length o f night twice the time 
corresponding to arc G 0 . For every parallel circle to the equator has both 
sections alike, that above the earth  and that below it, bisected by the meridian.

Therefore arc E 0 , which is half the difference between longest or shortest day 
and equinoctial day, is li'’ at the parallel in question, or 18;45 time-degrees.
Hence its complement, arc 0 A , is 71; 15 time-degrees.

Then since, in accordance with the previous theorems, the two great circle , 
arcs EB and Z 0  have been drawn to meet the two gi eat circle arcs AE and AZ, 
and intersect each other at H,

Crd arc 20A :C rd arc 2AE =
(Ctxd arc 20Z :C rd  arc 2ZH). (Crd arc 2HB;Crd arc 2BE). [M .T.I]

But arc 2 0 A = I42;30°, 
so Crd arc 2 0 A = 113;37.54'’ 

and arc 2AE = 180°, 
so Crd arc 2AE = 120^. H92
Again, arc 2 0 Z  = 180°, so Crd arc 2 0 Z  = 120^

and arc 2ZH = 132; 17,20°. so Crd arc 2ZH  = 109:44.53’’.
•• Crd arc 2HB:Crd arc 2BE = (113;37.54 : 120)/(120 : I09;44,53)

= 103:55,26 ; 120.
But arc 2BE = 120*’, since arc BE is a quadrant.

Crd arc 2HB = 103:55,26'’."
••• arc 2 H B «  120°, 

and arc HB 60°. 
arc HE, its complement, is 30° where the horizon is 360°.

Q.E.D.

I I 2. Computation o f  ortive amplitude 77

3. { I f  the same quantities be given, how to find  the elevation o f the pole, 
and vice versa}

Next let the problem be, given the same quantity  [i.e. the length of the longest 
day] again, to find the elevation of the f>ole, that is arc BZ of the meridian [in 
Fig. 2.1]. Now, in the same figure,

Crd arc 2E 0:C rd  arc 20A  =
(Crd arc 2EH:Crd arc 2HB). (Crd arc 2BZ:Crd arc 2ZA). [M .T.II] H93

"’In modern terms, an  EH is tlie ortive amplitude ol‘ the sun.
" H e re  and just alx)ve (H 92.il and 8) Heiberg's text gives 103:55,23 (icy foricq). The coirect 

reading is given by ACDAr at H92,8 and by ail mss. at H92,l I. Heiberg prefers the reading "23’
Ixrcause it is given by all mss. at H 93,10. But the comparison is illegitimate, since there the amount is 
taken from the chord table, whereas here it is derived bv calculation.



But arc 2 E 0  = 37;30°, 
so Crd arc 2 E 0  = 38;34,22'’, 

and arc 2 0 A = 142;30°, 
so Crd a rc 2 0 A  = 113;37,54‘’- 

Furtherm ore arc 2EH = 60°, 
so Crd arc 2EH = 60^ 

and arc 2HB = 120°, 
so Crd arc 2HB = 103;55,23^

Crd arc 2BZ:Crd arc 2ZA = (38;34,22 ; 113;37,54)/(60 ; 103;55,23)
70;33 : 120.

And again, Crd arc 2ZA = 120'’, 
so Crd arc 2BZ = 70:33'’. 

arc 2BZ = 72; 1° 
and arc BZ«*36°.

To do the reverse, in the same figure again [Fig. 2.1] let BZ. the arc of the 
H94 pole's elevation, be given, having been obseived to be 36°. Let the problem be 

to find the difl'erence between the shortest or longest day and the equinoctial 
day. i.e. arc 2E 0.

Xovv. from the same considerations,
Crd arc 2ZB:Crd arc 2BA =

(Crd arc 2ZH :Crd arc 2H 0). (Crd arc 20E :C rd  arc 2EA). [M .T .II] 
But arc 2ZB = 72° 

so Crd arc 2ZB = 70;32,3".
and arc 2BA = 108°, 

so Crd arc 2BA = 97;4.56^
Furtherm ore arc 2ZH = 132:17,20°, 

so Crd arc 2ZH = 109;44,53^ 
and arc 2 H 0  = 47;42.40°, 

so Crd arc 2 H 0  = 48;31.55^
Crd arc 2 0 E:Crd arc 2EA = (70;32,3 : 97:4,56)/ (109;44.53 : 48;31,55)

= 31:11,23 : 97:4,56 
«  38:34 : 120.

H95 But Crd arc 2EA = 120^
Crd arc 2E 0  = 38:34”.

arc 2E0=»37;3O°, or 2: equinoctial hours.
Q.E.D.

In the same way arc EH of the horizon can be determined. For 
Crd arc 2ZA:Crd arc 2AB =

(Crd arc 2Z 0 :C rd  arc 20H ). (Crd arc 2H E:C rd arc 2EB), [M .T.I] 
and (Crd arc 2ZA:Crd arc 2AB) is a given ratio, 
and so is (Crd arc 2Z 0:C rd  20H ), 
so, since arc EB is given, so is the am ount of arc EH.
It is obvious that if we suppose H to be, instead of the place of the winter 

solstice, any other degree of the ecliptic, by similar reasoning both of the arcs

’’̂ There has l>een srieclive rounding at dilFerent stages of this calculation to achieve this nice 
result. Ac curate calculation of arc 2E 0 would give (to the nearest minute) 37;29°.

78 I I 3. Computation o f  (p from  M  and M  from  (p



I I 3. Symmetries o f  arcs and daylight-lengths 79

E© and EH  will be given, since we have already set out, in the ‘Table of 
Inclination’, the arc of the m eridian intercepted between ecliptic and equator 
for every degfree of the ecliptic: this arc‘  ̂ corresponds to H© [in Fig. 2.1].

It immediately follows that points on the ecliptic cut by the same parallel H96 
circle, i.e. points equidistant from the same solstice, cut off [between ecliptic 
and equator] arcs of the horizon which are equal and on the same side of the 
equator. They also make the length of the day equal to that of the day [at the 
corresponding point], and the length of the night equal to that of the 
[corresponding] night.

It likewise follows that points [on the ecliptic] cut by equal parallel circles, 
that is points equidistant from the same equinox, cut off arcs of the horizon 
which are equal, but on opposite sides of the equator. They also make the length 
of the day equal to the length of the night at the opposite [corresponding] point, 
and the length of the night equal to that of the [corresponding] day.

For, in the figure already draw n [see Fig. 2.2], we put K as the point in which 
the parallel circle equal to the parallel through H cuts the semi-circle BED of 
the horizon; we draw in arcs H L and KM  ol the parallel circles: these will, 
clearly, be cc[ual and opposite. We draw  through K and the north pole the 
[great circle] quadrant N K X. Then

arc 0 A  = arc XG (arc 0 A  || arc LH, and arc XG  1| arc MK). 
arc E 0  = arc EX (complements [of arc 0 A  and arc XG]).

Then, in the two similar spherical triangles*"' E H 0  and EF^^^ have two H97 
pairs of corresponding sides equal. E 0  to EX. and H 0  to K X ,'^  and both of 
the angles at 0  and X are light, so the base EH etjuals the base KE.

N

Fig. 2.2

Reading irpoEKTE0ein£vtov'(with D) for TtpoeiCTiGenevcov at H95.18, and iceptcpepeiuv 'with 
DL, adopted by Manitius), for i tE pK pepE ig  at H95.22.



4. [How to compute for ivhat regions, when, and how often the sun reaches the zenithY^

O nce the above quantities are given, it is a straightforward com putation to 
determ ine I'or what regions, when, and how often the sun reaches the zenith. 
For it is immediately obvious that for those beneath a parallel which is farther 
away from the equator than the 23;5l,20° (approximately), which represents 
the distance of the summ er solstice [from the equator], the sun never reaches the 
zenith at all, while for those beneath the parallel which is exactly that distance 
[from the equator], it reaches the zenith once [a year], precisely at the summer 
solstice. It is furthermore clear that for those beneath a parallel less far [from the 
eciuator] than the above-mentioned am ount the sun reaches the zenith twice [a 
year]. The time when this happens is readily supplied I’rom the Table of 
Inclination which we have set out [I 15]. For we take the distance from the 
eciuator. in degiees. of the parallel in C|uestion (which must, obviously, lie 
within the [parallel of the] summ er solstice), and enter with it the second set of 
columns; we take the corresponding argum ent, in degrees liom 1° to 90°, in the 

H98 lirst set of colimins; this gives us the distance of the sun from each of the 
ec|uinoxes towards tiie summer solstice when it is in the zenith for those beneath 
the parallel in Cjuestion.

80 I I  4. How to compute when the sun reaches zenith

5. [How fine ran (lerue the ratios of the t’tunnon to the eijuinoctial and solsticial noon 
shadows frtnn the ahin e-iiicntioned iiiiantities] ’'

The reciuiied ratios of shadow to gnomon'*^ can be found quite simply onceoiie 
is given the arc ijetween the solstices and the arc between the horizon and the 
pole: this can l>e shown as follows.

[See Fig. 2.3.] Let the m eridian circle be ABGD, on centre E. Let A l̂ e taken 
as the zenith, and draw  the diam eter AEG. At right angles to this, in the plane 
ol the meridian, draw GKZX; clearly, this will l)e parallel to the intersection of 
horizon and meridian. Now', since the w hole earth  has, to the senses, the ratio of 
a point and centre to the sphere of the sun, so that the centre E can be 
considered as the tip of the gnomon, let us imagine GE to be the gnomon, and 

H99 line G K ZX  to be the line on which the tip of the shadow falls at noon. Draw 
through E the equinoctial noon ray and the [two] solsticial noon rays: let BEDZ 
represent the equinoctial ray, H E 0 K  the sum m er solsticial ray, and LEM N  the 
w inter solsticial ray. Thus GK will be the shadow' at the summ er solstice, GZ 
the equinoctial shadow, and GN the shadow at the w inter solstice.

Then, since arc GD, which is eciual to the elevation of the north pole from the 
horizon, is 36° (where m eridian ABG is 360°) a t the latitude in question, and

‘̂ The word Ptolemy uses lor spherical triangle’, Tp'iJtXeupov, was, according to Pappus 
VI 2, Hultsch p. 476, 16-7, the term used by Menelaus.

‘̂ Arc H 0  = arc KX because they are the declinations offKsints equidistant from an equinox.

"’.See Pedereen 104-5 and App>endix A, Example la.
'\See Pedersen 105-6.
'"Reference back to II 1 [3] p. 76. They are the equinoctial and solsticial noon shadows.
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where 2 right angles = 360*̂

both arc 0 D  and arc DM  are 23:51,20°. by subtraction arc G 0  = 12;8,40°, and 
l)v addition arc GM  = 59:51.20°.
Therefore the corresponding angles 

Z K EG  = 12:8.40° 1
Z ZEG = 36° ■ where 4 right angles = 360°
Z XEG = 59:51,20° 

and
Z KEG = 24:17,20°°
Z ZEG = 72°°
Z NEG = 119:42,40°^ ^
Therefore in the circles about right-angled triangles K EG, ZEG, NEG, HlOO 

arc GK = 24:17,20° 
and arc GE = 155;42,40° (supplement), 

arc GZ = 72° 
and arc GE = 108°, similarly [as supplement], 

arc GN = 119;42,40° 
and arc GE = 60; 17,20° (again as supplement).

Therefore where Crd arc G K  = 25;14,43'’, Crd arc GE = 117;18,51‘’, 
and where C rd arc GZ = 70;32,4’’‘®, Crd arc GE = 97;4,56P, 
and where Crd arc GN = 103;46,16’’, Crd arc GE = 60; 15,42'*.

Therefore, where the gnomon GE has 60'’, in the same units 
the summ er [solsticial] shadow, GK** 12;55’’, 

the equinoctial shadow, GZ*® 43;36’’ 
and the winter [solsticial] shadow, GN 103;20'’.

**The chord table gives, for 72°, 70;32,3'’ (wrongly changed to 70;32.4'’ by H eibergon the basis of 
this passage). All mss. (including the Arabic tradition, except for Gerard, who has 3) have 4 here.
The inconsistency probably goes back to Ptolemy, h  has no ellect on the llnal result. Cf. p. 93.



It is immediately clear that the reverse process is possible. T h a t is, provided 
only that any two of the three above ratios o f  the gnomon GE to the shadow be 
given, the elevation of the p>ole and the arc between the solstices are determined. 
For if any two of the angles at E are given, so is the third, since a rc s0 D  and DM  

H I 01 are equal. However, in so far as accuracy of the observation is concerned, the 
former quantities [elevation of the pole and 2e] can be exactly determ ined in the 
way we explained; but the ratios of the shadows in question to the gnomon 
cannot be determined with equal accuracy, since the moment of the equinoxes 
is, in itself, somewhat indeterminate, and the tip ofthe shadow at w inter solstice 
is hard to discern.

82 I I 6. Characteristics o f  parallel M  = 12

6. {Exposition o f the special characteristics, parallel hy parallel) 20

By the same method we also found the above-m entioned general characteristics 
for the other parallels [to the equator]. W e calculated for latitudes at inteivals 
of 4-hour [of longest daylight], considering that sullicient. Before we deal with 
particulars,'' we shall set out these general characteristics.

1. VVe Iwgin with the parallel beneath the equator itself, which forms, 
approximately, the southern boundaiy o fthe [earth’s] quarter which comprises 
our part o fth e  inhabited world. This is the only parallel which has every day 
c(jual to e\ ery night, since only in that ca.se [i.e. at the equator] are all parallel 
circles bisected l)y the horizon, so that every section above the earth  is an arc of 
the same size, and is equal to the corresponding section below the earth. This 
does not occur at any other la titude :'' [elsewhere] only the equator is bisected at 

H I02 every place on earth  by the horizon, so that it makes the night sensibly equal to 
the day [when the sun is] in it. For the equator too is a great circle. All the other 
[parallels] are divided [by the horizon] into unequal p a r t s .A s  the sphere is 
inclined in oin- part o fthe inhabited world, parallels south of the equator make 
the sections above the earth  smaller than those below the earth, and the days 
shorter than the nights, while the northern [parallels], on the contrary, make 
the sections above the earth larger, and the days longer.

This parallel [of the equator] also has the shadow going both ways:'^ the sun

-"The inlormation given in this chapter is a gesture towards the traditional topics ol'Hellenistic 
geogi aphy. Most ol'it is irrelevant to the rest ol the Almagest and is never mentioned or used again. 
In particular, the dellniiion oflatitude by the gnomon-shadow ratio at equinox or solstices is known 
to have l)een much used in earlier works (sec HAM A  II 746-8). and. to judge from Sanskrit 
astronomical works, had important applications in earlier Hellenistic astronomy, but is a mere fossil 
in the Almagest (although Ptolemy probably introduced the norm ol 60‘’ for the gnomon).

The shadow lengths in this chapter are all rounded to the nearest neat fraction or whole number. 
For higher latitudes there are considerable inaccuracies.

■' By ‘particulars' he refers to rising-times at sphaera obtiqua and other matters treated in the latter 
part of Book II.

■‘ ‘at any other latitude’: literally ‘at any o f th e  inclinations’. Sec Introduction p. 19.
Proved Theodosius, Sphaerica II 19.
diitpioKioq, meaning that the mon shadow is to the south for part ofthe year. This term, and the 

corresponding ETepoOKitx; and JtEpioKtO^ (see p. 85 n.36 and p. 89 a67 ) were used by Posidonius 
(early first century B.C.) in his geographical work (Edelstein-Kidd frs. 49,44-8 and 208) as reported



comes into the zenith twice [a year] for those living beneath it, when it reaches 
the intersections of ecliptic and equator; only a t those [two times] do the 
gnomons cast no shadow at noon; while the sun is traversing the northern semi­
circle [of the ecliptic] the shadows of the gnomons point towards the south, and 
while it is traversing the southern semi-circle they point towards the north. In 
that region a gnomon of GO** has a shadow of 2^*’ at both summer and winter 
solstices. (W hen we say ‘shadow’ we mean, in general, the noon shadow; it 
makes no signilicant difference that the equinoxes and solstices do not, in 
general, take place exactly at noon.)

For those who live beneath the equator those stars come into the zenith which 
revolve on the equator itself, but all stars are seen to rise and set, since the poles H I03 
of the sphere are exactly on the horizon, and thus it is impossible for any of the 
parallel circles to appear always visible or always invisible, or for any meridian 
to be a colui e'^ [i.e. always partly invisible]. It is said that the regions beneath 
the equator could be inhabited, since the clim ate m ust be quite temperate. For 
the sun does not stay long in the neighbourhood of the zenith, since its motion in 
declination is swift round about the equinoctial p>oints, and hence the summer 
would be temperate; furthermore, it is not very far from the zenith at the 
solstices, so the winter would not be harsh. But w hat these inhabited regions are 
we have no reliable grounds for saying. For up  to now they are  unexplored by 
men from our part of the inhabited world, and w hat people say about them must 
be considered guesswork rather than refKjrt. In any case, such, in sum, are the 
characteristics of the parallel beneath the equator. '

As for the other parallels, which, according to some authorities, comprise the 
inhabited regions, we shall make the following general observations, to avoid 
repeating ourselves in ever\- case. For each of them  in order those stars come 
into the zenith whose distance from the equator, measured along the circle H104 
through the poles of the equator, is equal to the distance of the parallel in question 
[from the equator]. Furtherm ore the circle which has the north pole of the 
equator as its pole, and the elevation of the pole [at tha t parallel] as its radius, is 
always visible, and all stars within that circle are always visible. [Likewise], the 
circle which has the south pole as its pole, and the same radius [as the former], is 
always invisible, and the stars within it are always invisible.

2. T he second is the parallel w ith a longest day of 12i equinoctial hours. This is 
4 |° from the equator, and passes through the island Taprobane.^® This too is one 
of the parallels with the shadow going both ways: the sun comes into the zenith 
for those beneath it twice [a year], and makes the gnomons shadowless at noon, 
when it is 7 ^ °  distant from the summ er solstice on either side. Thus while it is 
traversing these 159°, the gnomon shadows point towards the south; and while

I I 6. Characteristics o f  parallel M  ~ 12 a 83

by Strabo 2.2.3 and 2.5.43. W hether Posidonius actually coined the terms, as Strabo implies 
(feKdXeoev, wrongly denied by me, Toomer[3] 146) seems improbable, but we have no earlier 
attestation.

“*On this term see Introduction p. 19.
Ceylon. For this and the rest of the geographical data  in this chapter help is provided by 

Kiepert’s reconstruction of Ptolemy’s world map, ‘Orbis Terrarum  secundum C l. Ptolemaeum’, 
Format Orbis Anliquae no. XXXVI, I9I1.



it is traversing the other 201°, they pkjint towards the north. In this region, fora 
gnomon of SO**, the equinoctial shadow is the sum m er [solsticial] shadow 
2li* ,̂ and the winter [solsticial] shadow 32'’.

H I 05 3. The third is the parallel with a longest day of 125 equinoctial hours. This is 
8;25° from the equator and goes through the Avalite gulf.^’ This too is one of the 
parallels with the shadow going both ways: the sun comes into the zenith for 
those beneath it twice [a year], and makes the gnomons shadowless at noon, 
when it is 69® distant from the summ er solstice on either side. Thus while it is 
traversing these 138°, the gnomon shadows point towards the south; and while 
it is traversing the other 222°, they point towards the north. In this region, for a 
gnomon of 60*’, the equinoctial shadow is the summer [solsticial] shadow 

and the winter [solsticial] shadow 37to'’ .

4. The fourth is the parallel with a longest day of 12i equinoctial hours. This is 
12:° from the equator, and  goes through the Adulitic gulf.^® This too is one of 
the parallels with the shadow going both ways; the sun comes into the zenith 
twice [a year] for those beneath it, and makes the gnomons shadowless a t noon,

H I06 when it is 57!° from the summer solstice on either side. Thus while it is 
traversing these 115j° the gnomon shadows point towards the south, and while 
it is traversing the rem aining 244?° they point towards the north. In this region, 
for a gnomon of 60’’, the equinoctial shadow is iSj®, the sum m er [solsticial] 
shadow 12’’. and tiie w inter [solsticial] shadow 44s’’.

5. The fifth is the parallel with a longest day of 13 equinoctial hours. This is 
16:27° from the equator, and  goes through the island ofM eroe.^“ This too is one 
of the parallels with the shadow going both ways: the sun comes into the zenith 
for those beneath it twice [a year], and makes the gnomons shadowless a t noon, 
when it is 45° from the summer solstice on either side. Thus while it is traversing 
these 90° the gnomon shadows point towards the south, and while it is 
ti'avei'sing the rem aining 270° they point towards the north. In this region, for a 
gnomon of 60’’, the equinoctial shadow is 174^ the sum m er [solsticial] shadow 
7i ’’, and the winter [solsticial]) shadow 51’’.^’

6. The sixth is the parallel with a longest day of ISi. equinoctial hours. This is
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•'.Avalites was a trading-post on the .Alrican coast jusi outside the mouth of the Red Sea. It is 
identified with the mediaeval and modern Zeila, just south of Djibouti. The ‘.Avalite gulf is surely 
the nearby Gulf of Tajura, rather than the G ulf of Aden, as asserted by Tomsischek (R-E s.v. 
Aualites).

-“ReadingTc (with Is) fo rt^  Z ' y ' (16^) at H105.13. Computed: 16:34,28.
-^.Adule or Adulis was a town on the .Aethiopic coast ol the Red Sea. The gulf is the modern 

Gulf of Zula (fovmerly .\nnesley. Bay).
*" -Meroe is not an island in the modern sense, but was so called by the Greek geogi aphers because 

it was roughly Ixjundod by the rivers Nile, A tbara (ancient Astaboras), Blue Nile (ancient Astopus) 
and possibly some ol' their tributai'ies. Cf. Ptolemy. Geofiraphv IV 7 20 (vtiaOTTOieiTOi .Meroe. 
!x>unded l>y .Nile to the west and Astaboras to the east), and theconl'used account ofStrabo, 17.2.L'.

*■ Computed: 50:53,4. 51 is probably correct as a rounding to the nearest whole number, but one 
ini(»lu lonsider D’s .‘)0;51 or 'f 's  50  ̂ (H I06,18).



20; 14° from the equator, and  goes through Napata.^* This too is one of the 
parallels w ith the shadow going both ways: the sun comes into the zenith for H I07 
those beneath it twice [a year], and makes the gnomons shadowless at noon, 
when it is 31 ° from the summ er solstice on either side. Thus while it is traversing 
these 62® the gnomon shadows point towards the south, and while it is 
traversing the remaining 298° they point towards the north. In this region, for a 
gnomon of 60’’, the equinoctial shadow is 22s'’, the summ er [solsticial] shadow 
si'’, and the winter [solsticial] shadow 58^'’.̂ ^

7. T he seventh is the parallel w ith a longest day of 13  ̂equinoctial hours. This is 
23;51° from the equator^'* and goes through Soene.^^ This is the first of the so- 
called ‘one-way-shadow’ ®̂ parallels. For in this region the noon shadows of the 
gnomon never point towards the south. Only at the actual summ er solstice does 
the sun come into the zenith for those beneath this parallel, so that the gnomons 
appear shadowless. For they are exactly the same distance from the equator as 
the summer solstice is. At every other time the shadows of the gnomons point 
towards the north. In this region, for a gnomon of60'*, the equinoctial shadow is
26^'’, the winter [solsticial] shadow is 65?’’, and the summ er [solsticial] shadow is H 108 
zero.^^ Furtherm ore, all parallels north of this up to the northern boundary of 
our part of the inhabited world have the shadows going one way. For in those 
regions the gnomons at noon neither become shadowless nor point their shadows 
towards the south: they always point them towards the north, since the sun 
never comes into the zenith for them, either.

8. T he eighth is the parallel w ith a longest day of 13i equinoctial hours. This is 
27; 12° from the equator, and goes through Ptolemais in the Thebaid, which is 
called Ptolemais Hermeiou. In this region, for a gnomon of 60’’, the summer 
[solsticial] shadow is 3^’’, the equinoctial shadow 30g’’,̂ ® and the winter 
[solsticial] shadow 74«‘’.

9. T he ninth is the parallel with a longest day of 14 equinoctial hours. This is 
30;22° from the equator, and goes through lower Egypt. In this region, for a 
gnomon of 60’’, the summer [solsticial] shadow is 6g’’, the equinoctial shadow 
3 5 n ’’, and  the winter [ solsticial] shadow 83; 12’’.̂ ®
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'■’X apaia is the modern Gebel Barkal. near Merowe in the Sudan.
’'Com puted: 22:6.7 Ibr the ecjuinoctial shadow, and 58:5,55 lor the winter solsticial shadow. One 

would expect T5 instead cl I in ix>th places. Perhaps one should interpret as i.e. 6 minutes; but 
this would normally be written as an alic|uot fraction (i').

Computed: 23:48,20. The discrepancy is inteiiesting. because it is due, not to rounding, but to the 
desire to make the parallel with M = ISi" exactly coincide with the parallel with a latitude ec)ual to 
the obliquity of the ecliptic, i.e. where the sun is in the zenith at summer solstice. The difference is 
negligible, but instead of saying so Ptolemy fudges the result.

*^Also known as Syene: the modern Assuan in upper Egypt.
’̂’fexepooKioc;, the opposite of dutpioKioc;; see p. 82 n.24.
'^Literally "shadowless’. __
'“R e a d in g !  Z ' y ' (with D, Is) for Xq Z ' y ' (36|) at H108,13. Computed: 30;48,36.
'^Reading Jry (with L) for Tty i|}' (i.e. 12 minutes instead of n ) at H108,20. Computed: 

83;10,39. Ptolemy does not often use the aliquot fraction e ' (jl).



10. The tenth is the parallel w ith a longest o f 144 equinoctial hours. This is 
H109 33;18® from the equator, and goes through the m iddle of Phoenicia. In this

region, for a gnomon of 60’’, the sum m er [solsticial] shadow is lO**, the 
equinoctial shadow 39:1’’, and the  winter [solsticial] shadow 93f5’’.̂ ®

11. The eleventh is the parallel with a longest day of 14j equinoctial hours. This 
is 36° from the equator, and goes through Rhodes. In this region, for a gnomon 
of 60’’, the summ er [solsticial] shadow is 12n‘’, the equinoctial shadow 435’’,'“ 
and the w inter [solsticial] shadow 103 3’’.

12. The twelfth is the parallel with a longest day of H 4 equinoctial hours. This 
is 38;35° from the equator, an d  goes through Smyrna. In this region, for a 
gnomon of 60’’, the summ er [solsticial] shadow is 15 j ’’, the equinoctial shadow is 
47^’’, and the w inter [solsticial] shadow is I H n ’’.

13. T he thirteenth is the parallel w ith a  longest day of 15 equinoctial hours. 
This is 40;56° from the equator, and goes through the Hellespont. In this region, 
for a gnomon of 60’’, the summer [solsticial] shadow is I85'’, the equinoctial 
shadow 521’'. and the w inter [solsticial] shadow 127ft'’.

H I 10 14. The fourteenth is the parallel w ith a  longest day of 15i equinoctial hours. 
This is 43:1°^ ̂  from the equator, and  goes through Massalia.^"* In this region, for 
a gnomon of 60’’, the summ er [solsticial] shadow is 20s’’, the equinoctial shadow 
55} '̂’, and the winter [solsticial] shadow 1401’’. '̂’

15. T he fifteenth is the parallel w ith a longest day of 152 equinoctial hours. This 
is 45:1° from the equator, and goes through the middle of Pontus.^” In this 
region, for a gnomon of 60’’. the sum m er [solsticial] shadow is 23]’’. the 
equinoctial shadow 60’’, and the w inter [solsticial] shadow 155n’’.̂ ^

the \ ahies for the shadow at this parallel are rather inaccurate. For M = 14i*' one finds 
9:57,43. 39:23.11 and 92:52..‘51. Ptolemy’s figures fit a latitude ol 33l° much Ixnter.

Readina;fFy (with Ar) Ibrp7 Z 'y '  (43^) at H109.9. Corrected bv Manitius. Cl'. 43;36 at I I 5 
p. 81.

-̂’There is a strange discrepancy here. For M =15", one finds (p =40:52,21°. However, the 
shadow lengths fit neither M = 15" nor <p = 40:56°, but <p = 41°. Computations:

M =15" <p = 40:56° <f> = 41° text
summer shadow 18:21.47 18;25.58 18:30.34 18:30
equinoctial shadow 51;55,23 52:2,5 52;9.26 52:10
winter shadow 127:5,30 127:26.32 127:49,41 127:50
The parallel through the Hellespont is Clima V in the traditional ‘7 clim ata’ (see Introduction p. 
19). Possibly, an older round number for the latitude underlies Ptolemy's values here.

Reading d tor jpy 5 (43;4) at HI 10.3. Although not supported by any ms. reading (.\r has 
434), 43:1 is conlltmed ijy the values lor the shadow lengths. Furthermore. 4 ' would normally be 
written as an aliquot iVaction, te ' (but cf. HI 11,6 where 50:4 is certainly correct, and is written v S. 
i.e. 50:4 and not 50iV).

Modern .Marseilles. ___
Reading pp 6 ' (with BCIs) Ibi pn8 (144) at HI 10,6. Computed: 140:31,31. (^ne might also 

consider pps (l4 l) , as a rounding to the nearest whole numl)er, ina this has no ms. support. 
^"'I'he Black Sea.
’'Com puted: 155:10,32. Possibly one shouki read 155;12 (with L, iP lor t^ 'j. Cl. p. 85 n..^9.
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16. T he sixteenth is the parallel w ith a longest day of ISl equinoctial hours.
This is 46;51 ° from the equator and goes through the sources of the river Istros.^*
In this region, for a gnomon of GO**, the summer [solsticial] shadow is 2 ^ ”, the 
equinoctial shadow and the w inter [solsticial] shadow 171̂ **.

17. T he seventeenth is the parallel w ith a longest day of 16 equinoctial hours.
This is 48;32° from the equator, and goes through the mouths of the H i l l  
Borysthenes.^® In this region, for a gnomon of 60*’, the summ er [solsticial] 
shadow is 27]’’, the equinoctial shadow 67^’’, and the w inter [solsticial] shadow 
IBSn".'”

18. The eighteenth is the parallel w ith a longest day of 16s equinoctial hours.
This is 50;4° from the equator, and goes through the middle of the M aiotic 
lake.^‘ In this region, for a gnomon of 60’’, the summ er [solsticial] shadow is 
29n’’,̂  ̂ the equinoctial shadow 71s'’, and the winter [solsticial] shadow 2083’’.'’̂

19. The nineteenth is the parallel with a longest day of 16? equinoctial hours.
This is 513°̂  ̂ from the equator and goes through the southernmost parts of 
Brittania. In this region, for a gnomon of 60*’, the summer [solsticial] 
shadow is 31 n*’, the equinoctial shadow and the w inter [solsticial] shadow 
229i^

20. T he tw entieth is the parallel w ith a longest day of I 64 equinoctial hours.
This is 52,50° from the equator and goes through the mouths of the Rhine. In this 
region, for a gnomon of 60**, the summer [solsticial] shadow is 33j*’, the 
equinoctial shadow 791̂ **, and the w inter [solsticial] shadow 2536*’.’’

21. The twenty-first is the parallel with a  longest day of 17 equinoctal hours. H I 12 
This is 54; 1° from the equator,^® and goes through the mouths of the Tanais."*^
In  this region, for a gnomon of 60**, the summer [solsticial] shadow is 3 4^’’, the 
equinoctial shadow 82il’’, and the w inter [solsticial] shadow 2785*’.
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■‘“T he Danube.
■**The modern river Dnieper.

These shadow lengths accord lx;tter with a latitude ol'48j°. Howev er, (p = 48;32° is abundantly 
attested for this parallel, which isClima V IIol thcTclimata. There are variants I88j (T) and 188?? 
(=  188:38. L) for the winter shadow. Computed: 188:44.49.

^'M odern Sea of Azov.
’^Reading Z ' tp ' (with Ar) for Z ' y ' i3 ' (29i^) at H l l l ,9 .  Computed: 29;31.31.
’^Computed: 208;2,32. Perhaps one should read 208;3 (interpreting y '  as y, i.e. 3 minutes, at 

H i l l , 10).
Reading ^  Z ' (with D, Ar) for v3 Z ' (5lj -i- i) at HI 11,13. Computed: 51;28,54. Corrected 

by Manitius.
’’ For (p = 52;50° one finds the winter shadow as 253;35,53. L has 253;36. Hence one might 

consider em endingi;' to Z ' t '  at HI 11, 23. However, there are increasing inaccuracies in the winter 
shadows from here on.

^® R eading^ a  (with BCDAr) f o r ^ T  (54;30) at HI 12,3. Computed: 54;0,18. Corrected by 
Manitius.

”  The modern river Don. For.the great error in the latitude assigned to this region here and in the 
Geography see Toomer(3] 148.



22. T he twenty-second is the parallel w ith a  longest day of 1?4 equinoctial 
hours. This is 55® from the equator^® and goes through Brigantium in Great 
Brittania. In this region, for a gnomon of 60’’, the sum m er [solsticial] shadow is 
36 i’’, the equinoctial shadow is 85 f'*, and the w inter [solsticial] shadow is 3041’’.

23. The twenty-third is the parallel w ith a longest day of 1 ?2  equinoctial hours. 
This is 56° from the equator, and goes through the m iddle ofG reat Brittania. In 
this region, for a gnomon of 60'’, the sum m er [solsticial] ̂ hadoy^ is 37j'’, the 
equinoctial shadow 88|'*, and the w inter [solsticial] shadow 335i*’.

H I 13 24. The twenty-fourth is the parallel w ith a longest day of 17i equinoctial 
hours. This is 57° from the equator, and goes through C aturactonium  in 
Brittania.®” In this region, for a gnomon of 60'’, the sum m er [solsticial] shadow is 
3 ^ ’’,®* the equinoctial shadow is 921̂ '*, and the winter [solsticial] shadow is
372! " ." '

25. The twenty-fifth is the parallel w ith a  longest day of 18 equinoctial hours. 
This is 58° from the equator and goes through the southern part of Little 
Brittania. In this region, for a gnomon of60’’, the summ er [solsticial] shadow is 
40?’’, the equinoctial shadow 96’’, and the w inter [solsticial] shadow 419n'’.*’̂

26. The twenty-sixth is the parallel w ith a longest day of 18  ̂equinoctial hours. 
This is 59:° from the equator, and goes through the middle of Little Brittania.

Fiom here on we no longer used i-hour increments, since [at intervals of 
j-hour for the longest daylight] the parallels are now close together, and the 
difference in the elevation of the pole is no longer as much as a whole degree. 
Furtherm ore, for the points even further north there is not the same need for 
detail. Hence we considered it superfluous to list the ratios of the shadows to the 
gnomon, as if it were for some well-defined place.

H I 14 27. The parallel where the longest day is 19 equinoctial hours is 61° from the 
equator and goes through the northern parts of Little Brittania.
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* Computed: 55;7,16. From here on the roundings become much more drastic.
^''By Great Brittania’ and ‘Little Brittania' Ptolemy refers to the two principal islands of the 

British isles, namely modern 'Great Britain' (Enijland. Wales and Scotland) and Ireland. None of 
the places called Brigantium were in Britain. However, there was in Britain a tribe of Brigantes, 
whose kingdom was sometimes known as Brigantia (which was further to the north than this 
latitude would imply). Ptolemy presumably made an error here. He seems to have corrected it by 
the time he came to write the Geography, which does mention the Brigantes, but no Brigantium in 
Britain.

“ Modern Catterick in Yorkshire. The usual Latin form is ‘Cataractonium ’.
Reading q ' (with D, Is) for ^  7 '  (39j) at H I 13,4. Computed for (p = 57°: 39; 10,48.

®*Reading toP  f7 (with B^EF, Ar) for to P  iP ' ( 3 7 2 t̂ ) at HI 1 3 ,5 . Computed: for <p = 5 9°: 
3 7 2 :4 4 ,2 7 .

Ireland: see above n.59.
*■* Computed for<p = 58°: 419; 15,1. Perhaps one should emend to419i (5' fo riP ' at HI 13,11). Cf. 

‘1191’, Ger.



28. T he parallel where the longest day is 19i equinoctial hours is 62° from the 
equator and goes through the islands called ‘Eboudae’.®®

29. T he parallel where the longest day is 20 equinoctial hours is 63° from the 
equator and goes through the island Thule.®®

30. T he parallel where the longest day is 21 equinoctial hours is 64^° from the 
equator and goes through unknown Scythian peoples.

31. T he parallel where the longest day is 22 equinoctial hours is 6^ °  from the 
equator.

32. T he parallel where the longest day is 23 equinoctial hours is 66° from the 
equator.

33. The parallel where the longest day is 24 equinoctial hours is 66;8,40° from 
the equator. This is the first of the [parallels] where the shadow goes full circle.
For on that parallel, at the summer solstice (and then only), the sun does not set,
so the shadow of the gnomon points towards every part of the horizon [in turn]. HI 1.5 
There the parallel of the summer solstice is ever-visible, and  the parallel of the 
w inter solstice is ever-invisible, since both are tangent to the horizon, on 
opposite sides. And the ecliptic coincides with the horizon when the spring 
equinoctial point on it is rising. '

If, purely theoretically, one were to investigate some of the general 
characteristics of the latitudes even farther north, one would find the following.

34. W here the elevation of the north pole is about 67°, the 15° ofthe ecliptic on 
either side of the summer solstice do not set at all. So the longest day and the 
period when the shadow turns to point in all directions on the horizon is about a 
m onth long. This too can easily be seen from the T able of Inclination set out 
[above]. For we take a parallel, e.g. the parallel which cuts ofi'[a segment ofthe 
ecliptic] 15° either side of the solstice (at which point it is either ever-visible or 
ever-invisible). T he distance from the equator corresponding to that segment of 
the ecliptic will, obviously, give the am ount by which the elevation of the north 
pole differs from the 90° of the quadrant.®®

35. Thus, where the elevation of the pole is 69i°, one would find that the 30° on H 116 
either side of the summer solstice do not set at all. So the longest day and the

'’̂ By this name (which possibly ought to be aspirated, as Hebudae’ in Pliny.VW4.30) Ptolemy 
refers to the Hebrides, which he supposed to lie north of Ireland.

By ‘Thule’ Ptolemy refers to the modern Shetlands, as is clear from his Geography ( I I3 32). It has 
been a m atter of great dbpute to what place (if any) the man who first introduced the name ‘Thule’ 
to the Greek world, Py theas ofMassalia, was referring. For ancient information on Pytheas’ voyage. 
to Thule, a discussion of its identification and references to modern literature see Hennig, Tmae 
Incognitae I 119-24, 129-35.

"TrEpioKio^. Cf. p. 82 n.24.
See Appendix A, Example 16.
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period when the gnomons throw shadows in all directions last about two 
months.

36. W here the elevation o f the pole is 73i°, one would find that the 45° on either 
side of the summer solstice do not set a t all. So the longest day and the period 
when the gnomons throw shadows in all directions last about three months.

37. W here the elevation of the pole is 78j°, one would find that the 60® on either 
side of the same solstice do not set a t all. So the longest day and the period when 
the shadow turns through a full circle would last about four months.

38. W here the elevation of the pole is 84°, one would find that the 75° on either 
side of the summer solstice do not set at all. So in this case the longest day would 
be about five months long, and the gnomon would throw shadows in all 
directions for the same period.

39. W here the north pole is elevated from the horizon through the 90° of the 
complete quadrant, the whole semi-circle of the ecliptic which is north of the 
equator never goes below the earth, and  the whole semi-circle south of it never

H 117 comes above the earth. Therefore every year contains only one day and one 
night, each about six months long, and the gnomons always throw shadows in 
all directions. F urther special characteristics of this latitude are that the north 
pole is in the zenith, and that the equator coincides with the position of the ever- 
visible circle, and also with that o f the ever-invisible circle and with the horizon; 
thus the whole hemisphere north of the equator is always above the earth, and 
the whole hemisphere south of the equator is always below the earth.

7. (On simultaneous risings o f arcs oj the ecliptic and equator at sphaera obiiqua}®®

After we have thus set out the general characteristics which can be theoretically 
deduced for the [various] latitudes, our next task is to show how to calculate, for 
each latitude, the arcs of the equator, measured as time-degrees, which rise 
together with [given] arcs of the ecliptic. From this we shall systematically derive 
all the other special characteristics [of the climata]. We shall use the names of 
the signs of the zodiac for the twelve [30°-] divisions of the ecliptic, according to 
the system in which the divisions begin at the solsticial and  equinoctial points.^® 

H 118 We call the first division, beginning at the spring equinox and going towards the 
rear with respect to the motion of the universe, ‘Aries’, the second ‘T aurus’, and 
so on for the rest, in the traditional order of the 12  signs.

W e shall first prove tha t arcs of the ecliptic which are equidistant from the 
same equinox always rise with equal arcs o f the equator.

*»Sec HAMA  34-7, Pedersen 110-13.
the spring equinox defines ‘Aries 0°’, etc. This specification was necessary bccause other 

norms existed in antiquity, notably those where the springequinox was at HP 8° and 9P 10° (derived 
from Babylonian practice). Sec H AMA  II.594-8.
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[See Fig. 2.4.] Let ABGD be a  m eridian, BED the semi-circie of the horizon, 
AEG the semi-circie of the equator, and ZH  and 0 K  two arcs of the ecliptic 
such tha t points Z and 0  are each supposed to be the spring equinox, and equal 
arcs have been cut off on opposite sides of [that equinox]: these are arcs ZH  and 
0 K , which are rising a t points K  and H  [respectively], I say, that the arcs of the 
equator which rise with them, nam ely ZE and 0 E  respectively, are equal. 
[Proof.] Let points L and  M  represent the poles o f the equator, and draw 
through them the great-circle arcs LEM , L 0 , LK, ZM  and M H. Then since

H I 19

G
Fig. 2.4

M

arc ZH = arc ©K, 
and arc LK  = arc M H | because the parallels 

through K  and H  are 
equidistant from the » 
equator on opposite 

and  arc EK  = arc EH J sides,
[spherical triangle] L K 0  =  [spherical triangle] M H Z 

and [spherical triangle] LEK  =  [spherical triangle] M EH.
Z K LE = I  H M E, 

and Z K L 0  = Z HM Z.
Therefore, by subtraction, Z E L 0  = Z EM Z.

E 0  = EZ, bases [of congruent triangles EL©, EMZ].
Q.E.D.

Again, we shall prove tha t if two arcs of the ecliptic are equal and are 
equidistant from the same solstice, the sum o f the two arcs o f the equator which

”  Cf. II 3 (p. 79).
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H120

rise with them  is equal to the sum of the rising-times [of the same two arcs of the 
ecliptic] a t sphaera recta.

[See Fig. 2.5.] Let ABGD be a m eridian, and  let semi-circle BED represent 
the horizon, and semi-circle AEG the equator. D raw  two arcs o f the ecliptic, 
equal and equidistant from the winter solstice, ZH  (where Z is taken as the 
autum nal equinox) and © H (where 0  is taken as the spring equinox).

fl

D

H121

Thus H is the point on the horizon which is common to the rising of both, 
since arcs ZH and 0 H  are both bounded by the same parallel circle to the 
equator. Therefore, obviously, arc 0 E  rises with arc 0 H . and arc EZ with arc 
ZH. Then it is immediately obvious that the whole arc 0 E Z  is equal to the sum 
of the rising-times of arc ZH and arc 0 H  at sphaera recta.
[Proof] For if we take K as the south pole of the equator, and draw  through it 
and H the great-circle quadrant K H L, which represents the horizon at sphaera 
recta, then 0 L  is the arc which rises w ith arc 0 H  z.i sphaera recta, and similarly 
LZ is the arc which rises with arc ZH. Thus the sum of the arcs (0 L  + LZ) 
equals the sum of the arcs (0E  + EZ), and both are comprised in the arc 0 Z .

Q..E.D.
From the above we have shown that, if we can calculate the individual rising- 

times at any latitude for just a single quadrant, we will simultaneously have 
solved the problem for the remaining three quadrants as well.

This being the case, let us again take as a paradigm  the parallel through 
Rhodes, where the longest day is 14? equinoctial hours, and the elevation of the 
north pole from the horizon is 36°.

[See Fig. 2.6.] Let ABGD be a meridian, BED the semi-circle of the horizon, 
AEG the semi-circle of the equator, and Z H 0  the semi-circle of the ecliptic, 
positioned so that H represents the spring equinox. Take K as the north pole of
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the equator, and draw through K  and L, which is the intersection of the ecliptic 
and the horizon, the great-circle quadrant K LM .

Let the problem be, given arc HL, to find the arc of the equator which rises 
with it, that is arc EH.

First let arc HL comprise the sign of Aries.
Then since, in the diagram , the two great-circle arcs ED and K M  are drawn 

to meet the two great-circle arcs EG and GK, and intersect each other at L,
C rd arc 2K D :Crd arc 2DG =

(Crd arc 2KL;Crd arc 2LM). (Crd arc 2M E:C rd arc 2EG). [M .T. II] H122 
But arc 2KD = 72°. so Crd arc 2K D  = 70;3 2 .4‘’;̂ 2 

arc 2GD = 108°, so Crd arc 2GD = 97,•4,56'’.
And arc 2KL = 156;40,1°,^? so C rd arc 2KL = 117;31,15'’; 

arc 2LM  = 23; 19.59°. so C rd arc 2LM  = 24;15,57^
Crd arc 2M E;Crd arc 2EG = (70:32,4 ; 97;4,56)/(117;31,I5 : 24;15,57)

= I8;0,5 ; 120.
And Crd arc 2EG = 120*’.

Crd arc 2M E = I8;0,5‘’ 
arc 2ME*« 17;16° 

and arc M E = 8;38°
And since the whole arc H M  rises with the whole arc H L at sphaera recta, it is 

27;50°, as was shown above, [p. 73.]
Therefore, by subtraction. EH  is 19; 12°.
W e have simultaneously proved that the sign Pisces rises in the same time (in H I 23

' “Here (H122.4) and at H122.10 and H123.13 thcGreek and Arabic ms. traditions give 70;32,4’’ 
as the chord of 72°, whereas in the chord table it is 70;32,3’‘ (found here only in Ger.). Is this an 
indication that there was an earlier version of the chord table? Cl. p. 81 n.l9.

'* Reading S (with B.Is) for PV? pB (156;41) at H122.7. Corrected by Manitius.



degrees) of 19;12®, and that each of the signs Virgo and L ibra rises in 36;28°, 
which is the rem ainder [of 19; 12° taken] from twice the rising-time at sphaera 
recta.

Q.E.D.
Secondly, let arc H L comprise the 60° of the two signs Aries and Taurus. 

Then, from our assumptions, the other quantities will remain the same, but 
arc 2KL = 138;59,42°, so C rd arc 2K L = 112;23,56P, 

and arc 2LM  = 41;0,18°,^* so Crd arc 2LM  = 42;l,48‘*.
Crd arc 2M E:C rd arc 2EG = (70;32,4 : 97;4,56)/(l 12;23,56 : 42; 1,48)

= 32;36,4 : 120.
And Crd arc 2EG = 120^.

Crd arc 2ME = 32;36,4^ 
a rc 2 M E « 3 1 ;3 2 ° , 

and arc ME** 15;46°.
But the whole arc was previously shown to be 57;44° [ p. 73.]
Therelbre, by subtraction, arc H E = 41;58°.
Therefore the combined signs of Aries and T aurus rise in 41 ;58 time degrees, 

H I 24 of which 19; 12° was shown to belong to the rising-time of Aries. Therefore the 
sign of T aurus by itself rises in 22;46 time-degrees.

By the same reasoning as before, the sign of Aquarius will rise in the same 
time of 22;46°, and each of the signs of Leo and Scorpio in 37;2°, which is the 
rem ainder [of 22;46° taken] from twice the rising-time at sphaera recta.

Now since the longest day is 14̂  equinoctial hours, and the shortest 9i 
equinoctial hours, it is obvious that the semi-circle [of the ecliptic] from Cancer 
to Sagittarius will rise with 217;30° of the equator, and the semi-circle from 
Capricorn to Gemini with 142;30°. Therefore each of the quadrants on either 
side of the spring equinox will rise in 71; 15 time-degrees, and each of the 
quadrants on either side of the autum nal equinox will rise in 108;45 time- 
degrees. Therefore the rem aining signs [in each quadrant], Gemini and 
Capricorn, will each rise in 29; 17 time-degrees. which is the difference [of 
19;12° + 22;46°] from the 71;15° in which the quadran t rises, and the 
rem aining signs Cancer and Sagittarius will each rise in 35; 15 time-degrees, 
which is the difference [of 36;28° + 37;2°] from the 108:45° in which that 
quadran t rises.

H 125 It is obvious that we could also calculate the rising-times of smaller arcs of the 
ecliptic [than whole signs] by exactly the same method. But we can also 
compute them by another easier and more practical procedure, as follows.

[See Fig. 2.7.] First let ABGD represent a meridian, BED the semi-circle of 
the horizon, AEG the semi-circle of the equator, and Z EH  the semi-circle of the 
ecliptic, with the intersection E taken as the spring equinox. C ut off an arbitrary 
arc E 0  on [the ecliptic], and draw the segment 0 K  of the parallel to the equator 
through 0 .  Taking L as the [south] pole of the equator, draw  through it the 
great-circle quadrants L 0 M , LK N  and LE.

94 I I 7. Calculation o f  rising-time at sphaera  obliqua

'^Reading fin o tT| (with Ar and variants in Greek mss.) for 9 TT̂ (41;9,18) at H 123.il. 
Corrected by Manitius.

'■^Correct in I? the misprint M E’ at H123,21, with Manitius.
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Then it is immediately obvious that the segment E 0  ol'the ecliptic rises with 
arc EM  of the equator at sphaera recta, and with NM  at sphaera ohliqua, since arc 
K 0  of the parallel circle, with which segment E 0  rises [at sphaera obliqua], is 
similar to arc N M  of the equator and similar arcs of parallel circles rise in equal 
times everywhere. Therefore arc EN is the dilVerence between the rising-times H I26 
of segment E 0  at sphaera obliqua and 2A sphaera recta. Thus we have shown that, 
for arcs of the ecliptic bounded by point E and the parallel circle through K, in 
every case, if the great-circle arc corresponding to LKN is drawn, segment EN 
will comprise the difference between that arc’s rising-times a t sphaera recta and at 
sphaera obliqua.'^

Q.E.D.
Having established this as a preliminary, let us draw [see Fig. 2.8] a diagram 

containing only the meridian and the semi-circles of the horizon [BED] and of 
the equator [AEG]; through Z, the south pole of the equator, let us draw the two 
great-circle quadrants Z H 0  and ZKL. Let us take H as the intersection of the 
horizon with the parallel circle through the w inter solstice, and K  as the 
intersection [of the horizon] with the parallel circle through, e.g., the beginning 
of Pisces, or any other given point on the quadran t [from the beginning of H I27 
Capricorn to the end of Pisces].

Then, again, the great-circle arcs ZK L and E K H  are draw n to meet the 
great-circle arcs Z© and E 0 , and intersect each other at K. Therefore 

Crd arc 2 0 H :C rd  arc 2ZH  =
(Crd arc 2 0E :C rd  arc 2EL). (Crd arc 2K L:Crd arc 2KZ) [M .T. II]

But a t every latitude arc 2 0 H  is given and is the same, since it is the arc 
between the solstices. Hence arc 2HZ, its supplement, is also given. Similarly^

’•’This arc EN is known in mediaeval astronomy as the ‘ascensional difTerence’. See HAMA 36 
and 980-2, and Neugebauer-^chmidt.
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for the same arc of the ecliptic, arc 2LK  is the same at all latitudes, and is given 
from the Table of Inclination [I 15]; and thence again its supplement, arc2K Z, 
is given. Therefore, by division [of the above members], (Crd arc 2 0E :C rd  arc 
2EL) is found to be the same at all latitudes (for the same arc of that quadrant 
[of the ecliptic]).

Since this is so, we take the different values of arc KL at every 10° [of the 
ecliptic] through the quadrant from the sprin,^ equinox to the winter solstice 
(for subdivision down to arcs of this size [ 10°] will be sufficient for practical 
purposes). Then in every case 

H I 28 arc 2 0 H  = 47;42,40°, and C rd arc 2 0 H  = 48:31,55^, 
arc 2HZ = 132; 17,20°, and C rd arc 2H Z = 109;44,53”

Then, for the 10° [of the ecliptic] from the spring equinox towards the winter 
solstice,

arc 2KL = 8;3,I6°, and Crd arc 2K L = 8;25,39”, 
arc 2KZ = 171;56,44°, and C rd arc 2K Z = 119;42,14'’.

For the arc 20° from the equinox
arc 2KL = 15;54,6°, Crd arc 2K L = 16;35,56^ 
arc 2KZ = 164;5,54°, Crd arc 2K Z = 118;50,47^

For the arc 30° from the equinox
arc 2LK  = 23; 19,58°, C rd arc 2LK  = 24;15,56P, 
arc 2KZ = 156;40,2°, Crd arc 2K Z = 117;31,]5^

For the arc 40° from the equinox 
H 129 arc 2LK  = 30;8,8°, Crd arc 2LK  = 31;I I ,43^

arc 2KZ = I49;5I,52°, Crd arc 2K Z = II5 ;52 ,I9 p.
For the arc 50° from the equinox

arc 2LK  = 36;5,46°, Crd arc 2L K  = 37;I0,39^, 
arc 2KZ = 143;54,14°, C rd arc 2K Z = 114;5,44^

For the arc 60° from the equinox



arc 2LK  = 41;0,18°, C rd arc 2LK  = 42;1,48P, 
arc 2K Z = 138;59,42°, Crd arc 2KZ = 112;23,57'’.

For the arc 70° from the equinox
arc 2LK  = 44;40,22°, Crd arc 2LK  = 45;36,18‘’’ 
arc 2K Z = 135;19,38°, Crd arc 2KZ = 110;59,47p.

For the arc 80° from the equinox
arc 2LK  = 46;56,32°, Crd arc 2LK  = 47;47,40P, 
arc 2K Z = 133;3,28°, Crd arc 2KZ = 110;4,16p.
From  the above we find that if we divide the ratio (Crd arc 20H :C rd  arc 

2HZ), namely (48:31,55 : 109;44.53), by the ratio (C rdarc2L K :C rdarc2K Z ), H13( 
as given above, at each of the 10° interv'als, we will get the ratio (Crd arc 
20E :C rd  arc 2EL), which is the same at all latitudes.

For the 10° arc it is 60 : 9;33 
for the 20° arc 60 : 18:57 
for the 30° arc 60 : 28;1 
for the 40° arc 60 : 36;33”  
for the 50° arc 60 : 44:12 
for the 60° arc 60 : 50;44 
for the 70° arc 60 ; 55;45 

and for the 80° arc 60 : 58;55.
It is immediately obvious that for each latitude we will have arc 2 0 E  as a 

given arc, since it is, in degrees. thedilTerence in time-degrees of the equinoctial 
day from the shortest day. Hence, from Crd aic 2 0 E  and the ratio (Crd arc 
20E :C rd  arc 2EL). Crd arc 2EL will be given, and [hence] arc 2EL. VVe will 
subtract half of this, namely arc EL, which comprises the above-mentioned 
difference [between rising-times at sphaera recta and sphaera obliqua], from the 
rising-time of the ecliptic arc in question at sphaera recta, and thus obtain the 
rising-time of the same arc at the given latitude.

As an example, let us again take the latitude of the parallel through Rhodes. H I 31 
Here

arc 2E 0  = 37;30°, so Crd arc 2 E 0  38;34‘’.
Then since 60 ; 38;34 = 9:33 : 6;8

= 18;57:12;11 
= 28;1 : 18;0 
= 36;33 : 23;29'«
= 44; 12 : 28;25 
= 50;44 : 32;37 
= 55;45 : 35;52'*
= 58;55 : 37;52,
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”  Computed from Ptolemy’s figures; 36;31,42. For the arc 40° above, a more accurate value for 
Crd arc 2KZ would be 115;52,26‘’. However, substituting that leads to36;31,40 here. In either case, 
36;32 would be the correct result to the nearest minute. This is the readingofG er. but the rest ofthe 
tradition is unanimous for 36;33.

Accurate computation with 36;33 here gives 23;29,36, while 36;32 (see n.77) gives 23;28,58. 
This speaks in favour of the reading 36;32, but not decisively.

Computed: 35;50,6. However 35;52 is guaranteed by 17;24 for the seventh 10° arc below (35;50 
leads to 17;23°).



and since C rd arc 2EL equals the above am ount [6;8’’, etc.] at each of the aixjve- 
mentioned 10* intervals, half o f the ju-c it subtends, namely arc EL, will assume 
the following values:

98 I I 7. Computation o f  rising-time tables

for the first 10° 2;56°
up to the end of the second 5;50°
up to the end of the third 8;38°
up to the end of the fourth 11;17°
up to the end of the fifth 13;42°
up to the end of the sixth 15;46°
up to the end of the seventh 17;24°
up to the end of the eighth 18;24°
up to the end of the ninth, obviously, 18;45°.

Since the corresponding rising-times at sphaera recta are as follows: 
for the first 10° 9; 10°

up to the end of the second 18;25°
up to the end of the third 27;50°

H I32 up to the end of the fourth 37;30°
up to the end of the fifth 47;28°
up to the end of the sixth 57;44°
up to the end of the seventh 68; 18°
up to the end of the eighth 79;5°

and up to the end of the ninth 90° (the time-
degrees of the whole quadrant), 

it is clear that by subtracting the difl'erence, given by the arc EL, from the 
corresponding rising-time at sphaera recta in each case, we get the rising-times of 
the same arcs at the latitude in question. These are

for the first 10° 6; 14°
up to the end of the second 12;35°
up to the end of the third 19; 12°
up to the end of the fourth 26; 13°
up to the end of the fifth 33;46°
up to the end of sixth 41;58°
up to the end of the seventh 50;54°
up to the end of the eighth 60;41°
up to the end of the ninth 71; 15°
(i.e. for the whole quadrant) (which cor­

responds to the 
length of half of 
the [shortest] day). 

T he ten-degree segments will rise in the following time-degrees:
1st 6;14°
2nd 6,2 1 °
3rd 6;37°
4th 7;1°
5th 7;33°
6th 8; 12°
7 th 8;56°
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8th  9;47°
9th 10;34°.

Once we have established the above, the corresponding rising-times of the H I 33 
rem aining quadrants will immediately be established on the same basis, by 
means of the theorems set out above.

In the same way we calculated the rising-times a t every 10® interval for all 
other parallels which one might come upon in actual practice. For future use we 
shall set these out in tabular form, beginning with the parallel directly beneath 
the equator, and going as far as the parallel w ith a longest day of 17 hours. The 
parallels are taken at intervals o fl-hour [of longest day], since the difference [of 
exact computations] from results derived from linear interpolation [between 
half-hour intervals] is negligible. In the first column we put the 36 ten-degree 
intervals of the circle, in the next the corresponding time-degrees of the rising­
time of that 10-degree arc a t the latitude in question, and in the third the 
accum ulated sum, as follows.

8. [Table o f rising-times at ten-degree intervals] '̂^ H I34—41

[See pp. 100-3.]

9. {On the particular features which follow from the rising-times}^^ H142

Now that we have set out the rising-times in the above mariner, all the other 
problems associated with this subject will be easily soluble, and we shall not 
need to go through geometrical proofs or construct special tables to solve each 
problem. This will become clear from the actual methods described below.

First, one can find the length of a given day or night as follows. Take the 
rising-times of the appropriate latitude; for the day, count from the degree in 
which the sun is to the degree diametrically opposite, going towards the rear 
through the signs; for the night, count from the degree opposite the sun to the 
sun’s degree. Form  the sum of the rising-times [of the relevant 180°], and divide '  
by 15: this will give the relevant interv’al in equinoctial hours. If  we takeiljth [of 
the sum of the rising-times] we will have the length of the seasonal hour o f that 
interval [i.e. day or night] in time-degrees.

O ne can also find the length of the [seasonal] hour more conveniently by 
taking, from the above Table of Rising-times [II 8], the total rising-tijne 
corresponding to the sun’s degree for the day (or the degree opposite the sun for 
the night) both at the parallel beneath the equator [i.e. sphaera recta] and at the 
relevant latitude, and forming the difference. Take 6 th  of the latter, and  add it H143 
to the 15 time-degrees of one equinoctial hour for points on the northern semi­
circle [of the ecliptic], or subtract it from 15° for points on the southern semi­
circle: the result will be the length of the relevant seasonal hour in time- 
degrees.®^

“ Correction to text: atH138,2 (latitude for M = 16'') readjH^XP (with Ar) forjini (48°). Cf. I I 6 p.
87.

*'See HAMA  40-3 (with worked examples) and Pedersen 113-15.
“  Sec Appendix A, Example 2.
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TABLE OF RISIX G-TIM ES A T 10° INTERVALS

SIGNS
10°

Inter­
vals

SPHAERA RECTA 
12" 0° 

Accumulated 
o ' T im e-D e^ees

AV'ALITE G U LF 
12i" 8:25° 

Accumulated 
o ' Time-Degrees

M ERO E 
13" 16:27° 

Accumulated 
o / Time-Dcgrees

10 9 10 9 10 8 35 8 35 7 58 7 58
ARIES 20 9 15 18 25 8 39 17 14 8 5 16 3

30 9 25 27 50 8 52 26 6 8 17 24 20

10 9 40 37 30 9 8 35 14 8 36 32 56
rA U R l'S 20 9 58 47 28 9 29 44 43 9 1 41 57

30 10 Hi 57 44 9 51 54 34 9 27 51 24

10 10 34 68 18 10 15 64 49 9 56 61 20
GEMINI 20 10 47 79 5 10 35 75 24 10 23 71 43

30 10 55 ‘H) 0 10 51 86 15 10 47 82 30

10 10 55 100 55 10 59 97 14 11 3 93 33
CANt'.ER 20 10 47 111 42 10 59 108 13 11 11 104 44

30 10 34 122 Ifi 10 53 119 6 11 12 115 56

10 10 16 132 32 10 41 129 47 II 5 127 1
LEO 20 9 58 142 30 10 27 140 14 10 55 137 56

30 9 40 152 10 10 12 150 26 10 44 148 40

10 1 9 25 161 35 9 58 160 24 10 33 159 13
\IR G O 20 9 15 170 50 9 51 170 15 10 25 169 38

30 9 10 180 0 9 45 180 0 10 22 180 0

10 9 10 189 10 9 45 189 45 10 22 190 22
LIBRA 20 9 15 198 25 9 51 199 36 10 25 200 47

30 9 25 207 50 9 58 209 34 10 33 211 20

10 9 40 217 30 10 12 219 46 10 44 ‘’22 4
SCORPILS 20 9 58 227 28 10 27 230 13 10 55 232 59

JO 10 Ifi 237 44 10 41 240 54 11 5 244 4

10 10 34 248 18 10 53 251 47 11 12 255 16
SAGITTARIUS 20 10 47 259 5 10 59 262 46 11 11 266 27

30 10 55 270 0 10 59 273 45 11 3 277 30

10 10 55 280 55 10 51 284 36 10 47 288 17
CAPRICORNL’S 20 10 47 291 42 10 35 295 11 10 23 298 40

30 10 34 302 16 10 15 305 26 9 56 308 36

10 10 16 312 32 9 51 315 17 9 27 318 3
AQUARIUS 20 9 58 322 30 9 29 324 46 9 1 327 4

30 9 40 332 10 9 8 333 54 8 36 335 40

10 9 25 341 35 8 52 342 46 8 17 343 57
PISCES 20 9 15 350 50 8 39 351 25 8 5 352 2

30 9 10 360 0 8 35 360 0 7 58 360 0

102 I I 8. Rising-time tables: M  = 15  to M  = 16
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SIGNS
10°

Inter­
vals

SOENE 
131" 23:51° 

Accumulated 
° 'Time-Degrecs

LOW ER EGYPT 
14" 30;22° 

Accumulated 
° 'Time-Dc)?rees

RHODES 
36:0° 

Accumulated 
° ' Time-Degrecs

10 7 23 7 23 6 48 6 48 6 14 6 14
ARIES 20 7 29 14 52 6 55 13 43 6 21 12 35

30 7 45 22 37 7 10 20 53 6 37 19 12

10 8 4 30 41 7 33 28 26 7 1 26 13
TA U RU S 20 8 31 39 12 8 2 36 28 7 33 33 46

30 9 3 48 15 8 37 45 5 8 12 41 58

10 9 36 57 51 9 17 54 22 8 56 50 54
GEM INI 20 10 11 68 2 10 0 64 22 9 47 60 41

30 10 43 78 45 10 38 75 0 10 34 71 15

10 11 7 89 52 11 12 86 12 11 16 82 31
CANCER 20 11 23 101 15 11 34 97 46 11 47 94 18

30 11 32 112 47 11 51 109 37 12 12 106 30

10 11 29 124 16 11 55 121 32 12 20 118 50
LEO 20 11 25 135 41 11 54 133 26 12 23 131 13

30 11 16 146 57 11 47 145 13 12 19 143 32

10 11 5 158 2 11 40 156 53 12 13 155 45
\ IR G O 20 11 I 169 3 11 35 168 28 12 9 167 54

30 10 57 180 0 11 32 180 0 12 6 180 0

10 10 57 190 57 11 32 191 32 12 6 192 6
LIBRA 20 11 1 201 58 11 35 203 7 12 9 204 15

30 11 5 213 3 11 40 214 47 12 13 216 28

10 11 16 224 19 11 47 226 34 12 19 228 47
SCORPIUS 20 11 25 235 44 11 54 238 28 12 23 241 10

30 11 29 247 13 11 55 250 23 12 20 253 30

10 11 32 258 45 11 51 262 14 12 12 265 42
SAGITTARIUS 20 11 23 270 8 11 34 273 48 11 47 277 29

30 11 7 281 15 11 12 285 0 11 16 288 45

10 10 43 291 58 10 38 295 38 10 34 299 19
CAPRICORNUS 20 10 11 302 9 10 0 305 38 9 47 309- 6

30 9 36 311 45 9 17 314 55 8 56 318 2

10 9 3 320 48 8 37 323 32 8 12 326 14
AQUARIUS 20 8 31 329 19 8 2 331 34 7 33 333 47

30 8 4 337 23 7 33 339 7 7 1 340 48 '

10 7 45 345 8 7 10 346 17 6 37 347 25
PISCES 20 7 29 352 37 6 55 353 12 6 21 353 46

30 7 23 360 0 6 48 360 0 6 14 360 0

I I 8. Rising-time tables: M  = 1 6 \  and M  ^ 1 7 103



SIGNS
10°

Inter­
vals

HELLESPONT

15" 40;56° 
Accumulated 

° ' Time-Desiees

M IDDLE OF 
PONTUS 

ISi" 45; 1°
Accumulated 

° ' Time-De^rees

M O U TH S OF 
BORVSTHENES 
16" 48:32° 

Accumulated 
° '  Time-Degrees

10 5 40 5 40 5 8 5 8 4 36 4 36
ARIES 20 5 47 11 27 5 14 10 22 4 43 9 19

30 6 5 17 32 5 33 15 55 5 1 14 20

10 6 29 24 1 5 58 21 53 5 26 19 46
TAURUS 20 7 4 31 5 6 34 28 27 6 5 25 51

30 7 46 38 51 7 20 35 47 6 52 32 43

10 8 38 47 29 8 15 44 2 7 53 40 36
GEM INI 20 9 32 57 1 9 19 53 21 9 5 49 41

30 10 29 67 30 10 24 63 45 10 19 60 0

10 11 21 78 51 11 26 75 11 11 31 71 31
CANCER 20 12 2 W 53 12 15 87 26 12 29 84 0

30 12 30 103 23 12 53 100 19 13 15 97 15

10 12 46 116 9 13 12 113 31 13 40 110 55
LEO 20 12 52 129 1 13 22 126 53 13 51 124 46

30 12 51 141 52 13 22 140 15 13 54 138 40

10 12 45 154 37 13 17 153 32 13 49 152 29
\ ’IRGO 20 12 43 167 20 13 16 166 48 13 47 166 16

30 12 40 180 0 13 12 180 0 13 44 180 0

10 12 40 192 40 13 12 193 12 13 44 i  193 44
LIBRA 20 12 43 205 23 13 16 206 28 13 47 207 31

30 12 45 218 8 13 17 219 45 13 49 221 20

10 12 51 230 59 13 22 233 7 13 54 235 14
SCORPIUS 20 12 52 243 51 13 22 246 29 13 51 249 5

30 12 46 256 37 13 12 259 41 13 40 262 45

10 12 30 269 7 12 53 272 34 13 15 276 0
SAGITTARIUS 20 12 2 281 9 12 15 284 49 1.2 29 288 29

30 11 21 292 30 11 26 296 15 11 31 300 0

10 10 29 302 59 10 24 306 39 10 19 310 19
CAPRICORNUS 20 9 32 312 31 9 19 315 58 9 5 319 24

30 8 38 321 9 8 15 324 13 7 53 327 17

10 7 46 328 55 7 20 331 33 6 52 334 9
AQUARIUS 20 7 4 335 59 6 34 338 7 6 5 340 14

30 6 29 342 28 5 58 344 5 5 26 345 40

10 6 5 348 33 5 33 349 38 5 1 350 41
PISCES 20 5 47 354 20 5 14 354 52 4 43 355 24

30 5 40 360 0 5 8 360 0 4 36 360 0



SIGNS
10“

Inter­
vals

SO U TH ER N M O ST 
BRITT ANIA

16!’' 5J;30‘>
Accumulated 

° ' Time-Degrees

M O U TH S OF 
TANAIS 

17” 54; 1°
Accumulated 

° '  Time-Degrees

10 4 5 4 5 3 36 3 36
ARIES 20 4 12 8 17 3 43 7 19

30 4 31 12 48 4 0 11 19

10 4 56 17 44 4 26 15 45
TAURUS 20 5 34 23 18 5 4 20 49

30 6 25 29 43 5 56 26 45

10 7 29 37 12 7 5 33 50
GEM INI 20 8 49 46 1 8 33 42 23

30 10 14 56 15 10 7 52 30

10 11 36 67 51 11 43 tvJ- 13
CANCER 20 12 45 80 36 13 1 77 14

30 13 39 94 15 14 3 91 17

10 14 7 108 22 14 36 105 53-
LEO 20 14 22 122 44 14 52 120 45

30 14 24 137 8 14 54 135 39

10 14 19 151 27 14 50 , 150 29
\IR G O 20 14 18 165 45 14 47 165 16

30 14 15 180 0 14 44 180 0

10 14 15 194 15 14 44 194 44
LIBRA 20 14 18 208 33 14 47 209 31

30 14 19 222 52 14 50 224 21

10 14 24 237 16 14 54 239 15
SCORPIUS 20 14 22 251 38 14 52 254 7

30 14 7 265 45 , 14 36 268 43

10 13 39 279 24 14 3 282 46
SAGITTARIUS 20 12 45 292 9 13 1 295 47

30 11 36 303 45 11 43 307 30

10 10 14 313 59 10 7 317 37 '
CAPRICORNUS 20 8 49 322 48 8 33 326 10

30 7 29 330 17 7 5 333 15

10 6 25 336 42 5 56 339 11
AQUARIUS 20 5 34 342 16 5 4 344 15

30 4 56 347 12 4 26 348 41

10 4 31 351 43 4 0 352 41
PISCES 20 4 12 355 55 3 43 356 24

30 4 5 360 0 3 36 360 0



Next, one can convert seasonal hours for a given date into equinoctial hours 
by multiplying them by the length in time-degrees of the hour of the day in 
question a t the relevant latitude (if they are hours of the day), or by the length in 
time-degrees of the hour of the night in question (if they are hours of the 
night). Then division of that product by 15 will give the total of equinoctial 
hours. Vice versa, one can convert equinoctial hours to seasonal by m ultiplying 
by 15 and dividing by the length of the hour of the relevant interval in time- 
degrees.®^

Furtherm ore, given a date and-any time whatever, expressed in seasonal 
hours, on that date, we can find, first, the degree of the ecliptic rising at that 
moment. We do this by multiplying the num ber of hours, counted from sunrise 
by day, and from sunset by night, by the relevant length of the [seasonal] hour 

H I 44 in time-degrees. W e add this product to the rising-time at the latitude in 
question of the sun’s degree by day (or the degree opposite the sun by night): the 
degree [of the ecliptic] with rising-time corresponding to the total will be rising 
at that moment.®*

[Secondly], if we want to find the point at upper culmination [at the given 
moment], we take in every case [i.e. for both day and night] the total ofseasonal 
hours from the last midday to the given time, multiply it by the appropriate 
length(s) of the hour(s) in time-degrees, and add the product to the rising-time 
at sphaera recta of the sun’s degree: the degree [of the ecliptic] w ith rising-time at 
sphaera recta equal to the total will be at upper culmination at that moment.®^

Similarly, we can find the culm inating point from the rising point as follows: 
find from the table of rising-times for the relevant latitude the cum ulative 
rising-times corresponding to the degree which is rising. Subtract from it, in 
every case, the 90° of the quadran t [of the equator between horizon and 
meridian]. The degree corresponding to the result in the column for rising- 
times at sphaera recta will be at upper culm ination at that moment.®® Vice versa, 
one can find the rising point from the culm inating p>oint by taking the degree 
corresponding to the culm inating point in the column for rising-times sitsphaera 

H I45 recta, adding to it, in every czise, the above 90®, and finding the degree 
corresponding to the result in the column for rising-times for the latitude in 
question: this degree will be rising at that moment.

It is also obvious that for those living beneath the same m eridian the sun is the 
same distance from noon or midnight, counted in equinoctial hours, while for 
those living beneath different meridians the sun’s distance from noon or 
midnight difiers by an  am ount, counted in time-degrees, equal to the distance 
of one meridian from the other in degrees.
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“  See Appendix A, Example 3.
®*This sentence, like the corresponding one in the next problem, is a paraphrase giving the sense 

of Ptolemy’s ambiguous expression. Literally ‘we count off this product towards the rear through 
the signs, beginning from the sun’s degree. . .  by night, according to the rising-times ofthe latitude in 
question: we say that whatever degree this amount reaches is the degree rising at that moment’. See 
Appendix A, Example 4.

**See Appendix A, Example 5.
“ See Appendix A, Example 6.



10. {On the angles between the ecliptic and the meridian}^''

T he rem aining topic in the present theory is the discussion of angles formed at 
the ecliptic. We must first m ake clear that we define an angle between [two] 
great circles as follows: we say tha t [two] great circles form a right angle when a 
circle having as pole the intersection of the great circles and as radius any 
distance whatever has [exactly] a quadran t intercepted between the segments 
of the great circles forming the angle; in general, whatever ratio the intercepted H 146 
arc of a circle described in the above m anner bears to the whole circle is the 
same as the ratio of the angle between the planes [of the two great circles] to 4 
right angles. Thus, since we set the circumference ofthe circle as 360®, the angle 
subtending the intercepted arc will contain the same num ber of degrees as the 
arc, in the system where one right angle contains 90®.

For the purposes of our present investigation, the most useful of the angles at 
the ecliptic are those formed by
[ 1 ] the intersection of the ecliptic and the meridian,
[2] the intersection of the ecliptic and the horizon for all positions [of the 

ecliptic], and .
[3] the intersection of the ecliptic and a great circle draw n through the poles of 

the horizon [i.e. an altitude circle];
the process of finding the latter will also produce the arc of this [altitude] circle 
cut olf between its intersection with the ecliptic and the p>ole of the horizon, i.e. 
the zenith. Com putation of each of the above angles, besides being a  most 
suitable topic for the theoiy proper, also plays a very im portant part in the 
requirem ents for lunar parallax: it is impossible to make any progress in that 
subject w ithout having first understood how to com pute these angles.

Now there are four angles at the intersection of the two circles (I mean the HI 47 
ecliptic and any of the [above] circles meeting it). Since vve shall [always] discuss 
only one of these, which always occupies the same relative position, we must 
make the following preliminary definition. In general, when we demonstrate in 
what follows the characteristics and size of an angle, we refer to that angle [of 
the four possible] which lies to the rear of the intersection of the circles and to the 
north of the ecliptic.®®

T he com putation of the angles between the m eridian and the ecliptic is 
simpler, so we shall start w ith that, and first we shall show that points on the 
ecliptic equidistant from the same equinox produce angles of the above kind 
equal to each other.

[See Fig. 2.9.] Let ABG be an arc of the equator, DBE an arc of the ecliptic, 
and Z the pole of the equator. C ut off equal arcs, BH and B 0 , on opposite sides 
of the equinox B, and draw  through pole Z and points H, 0  the meridian arcs 
ZK H  and Z 0 L . I say that H I48

Z K H B  = Z Z 0 E .  [10.1]
[Proof:] This is immediately obvious. For the spherical triangle BHK has all its
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®’ On chapters JO and IJ sec H AM A  45-8, Pedersen 115-18.
®* Literally ‘that one of the two angles on the arc to the rear of the intersection of the circles which 

is to the north of the ecliptic’. See HAMA  45 with Fig. 38.
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1

Fig. 2.9

angles equal to the angles of spherical triangle B 0L , since the three 
corresponding sides in each triangle are equal, HB to B 0, H K  to 0 L ,  and  BK to 
BL. All this has been proven previously.

Therefore Z KHB = Z B 0L  = Z Z 0 E .
Q.E.D.

Secondly, we must prove that the sum of the angles between ecliptic and 
meridian at p>oints on the ecliptic equidistant from the same solstice is equal to 
two right angles.

[See Fig. 2.10.] Let ABG be an arc of the ecliptic, with B taken as solstice. Let 
equal arcs, BD and BE, be taken on opposite sides of it, and draw  through Z, the 

H149 pole of the equator, and points D, E the m eridian arcs ZD and ZE. I sav that 
Z ZDB + Z ZEG = 2 right angles [10.2]

[Proof:] This too is immediately obvious. For since points D and E are 
equidistant from the same solstice,

arc DZ = arc ZE.
Z ZDB = Z ZEB.

But Z ZEB + Z ZEG = 2 right angles.
Z ZDB + Z ZEG = 2 right angles.

q .e .d .
H aving established these prelim inary theorems, let us draw  [Fig. 2.11] the 

m eridian circle ABGD and the semi-circle of the ecliptic AEG (taking A as the 
w inter solstice); then with pole A and radius the side of the [inscribed] square 
draw semi-circle BED. T hen, since m eridian ABGD goes through the poles of 
AEG and the poles of BED, arc ED is a q u ad ra n t.^

**HB = B 0 by construction; H K  = 0 L , declinations ofpoints equidistant from an equinox (of. p. 
80 n.I5); BK = BL, cf. II 7 (arc E© = arc EZ p 91).

Derivable from Theodosius Sphaerica II 9.
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G
Fig. 2.10

Therefore Z DAE is right.
And the angle at the summ er solstice is also right, from the previous theorem 
[10.2].

aE.D :
Again, [see Fig. 2.12] let ABGD be a meridian circle, AEG a  semi-circle of the 

equator, and AZG a semi-circle of the ecliptic in such a position that A is the 
autum nal equinox. T hen  with pole A and  radius the side of the [inscribed] 
square draw  semi-circle BZED.

H150
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By the same reasoning [as above], since ABGD goes through the poles of 
[circles] AEG and BED, AZ and ED are quadrants. Hence point Z is the winter 
solstice, and

arc ZE 23;51°, as was shown previously [I 12 p. 63], 
Therefore, by addition, arc ZED = 113;51°

and Z DAZ = 113;51° where one right angle = 90°. 
And again, from the previous theorem [10.2], the angle at the spring 
equinoctial point is the supplement, 66;9°.

Again [see Fig. 2.13] let ABGD be a m eridian circle, AEG a semi-circle of the 
equator, and BZD a semi-circle of the ecliptic in such a position that point Z is

G



the autum nal equinox, and arc BZ is (first of all) the length of one sign, that of H I 51 
Virgo; thus point B, obviously, is the beginning of Virgo. Again, with pole B and 
radius the side of the [inscribed] square, draw semi-circle H 0 E K .

Let the problem be to find Z KB©.
Now since meridian ABGD goes through the poles of [circles] AEG and 

H EK , arc BH, arc B© and arc EH are all quadrants.
And, from the figure,
Crd arc 2BA:Crd arc 2AH =

(Crd arc 2BZ:Crd arc 20Z ). (Crd arc 2©E;Crd arc 2EH). [M .T. II]
But, as was shown previously,®* arc 2BA = 23;20°, so C rd arc 2BA = 24; 16’’, 

arc 2AH = 156;40°, so Crd arc 2AH = 117;3P, 
and arc 2ZB = 60°, so Crd arc 2ZB ^  eO’’, H I52

arc 2 Z 0  = 120°, so Crd arc 2Z© = 103;55,23’’.
Crd arc 20E :C rd  arc 2EH = (24; 16 : I17;31)/(60 : 103;55,23)

« 4 2 ;5 8  : 120.
But Crd arc 2EH = 120’’.

Crd arc 2 0 E « 4 2 ;5 8 ‘’ 
arc 2 0 E « 4 2 °  

and arc 0 E*=« 2 1°.®'
Therefore, by addition [of a quadrant] arc 0 E K  = Z K B 0 = 111°, and the 
angle at the beginning of Scorpius is also 111°, and the angles at the beginning 
of Taurus and Pjsces are each 69°, the supplement, by the theorems proved 
above [10.1 and 10 .2].

Q.E.D.
Next, in the same figure [2.13], let arc ZB represent two signs, so that point B 

is the beginning of Leo. Then, with the [other] quantities rem aining the same, 
arc 2BA = [25(60°)=] 41°, so Crd arc 2BA = 42;2” 

and arc 2AH = 139°, so Crd arc 2AH = 112;24'’; 
furthermore arc 2ZB = 120°, so Crd arc 2ZB = 103;55,23’’ H I53

and arc 2Z 0  = 60°, so Crd arc 2 Z 0  -  60*’.
Crd arc 20E :C rd  arc 2EH = (42:2 : 112;24)/(103;55.23 : 60)

= 25;53 : 120.
Crd arc 2 0 E  = 25;53'’ 

arc 2 0 E « 2 5 °  
and a rc 0 E « »  12j°.®'

Therefore, by addition, arc 0 E K  = Z K B 0 = 102i°.
Therefore the angle at the beginning of Sagittarius is also 102 j°, and the angle 
at both the beginning of Gemini and the beginning of Aquarius is the 
supplement, 77i°.

We have [thus] calculated what we set out to do. It is sufficient for practical 
use to display [the results] for each sign, although the same procedure would 
apply to even smaller sections of the ecliptic.
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Reference to II 7 p. 93. The quantities are rounded here. 
’̂ .‘\ccurate computation would give 20;58° to the nearest minute. 

Accurate computation would give 12;28° to the nearest minute.



H154 11. {On the angles between the ecliptic^* and the horizon}

Next we shall show how to calculate, for any given latitude, the angles formed 
by the ecliptic at the horizon. These too can be derived by a procedure which is 
simpler than that for the rem aining angles [between ecliptic and altitude 
circles].

Now it is obvious that the angles [between ecliptic and] m eridian are the 
same as those [between ecliptic and] horizon at sphaera recta. But, in order to 
calculate these angles also at sphaera obliqua, we must first prove that points on 
the ecliptic equidistant from the same equinox produce equal angles at the same 
horizon.

[See Fig. 2.14.] Let ABGD be a m eridian circle, AEG the semi-circle of the 
equator and BED the semi-circle of the horizon. Draw two segments of the 
ecliptic, Z H 0  and K LM , such that points Z and K  both represent the 
autum nal equinox, and arc ZH equals arc KL.

110 I I 11. Angles between ecliptic and horizon: symmetries

D

H155 I say that Z EH© = Z DLK.
[Proof:] This is immediately obvious.

For spherical triangle E Z H =  spherical triangle EKL, 
since, from what was proven above, the corresponding sides are equal:

ZH  = KL
H E = EL ([arcs cut off by] the intersection of the

horizon [with the ecliptic]) 
EZ = EK  (rising-time arcs).^®

Z EHZ = Z ELK 
•• Z E H 0  = Z D LK  (supplements).

Q .E.D.
'^'ecliptic'; literally 'the same inclined circle’.
'•'ZH = KL by hypothesis; HE = EL from II 3 (p. 79); EZ = EK from II 7 (p. 91).
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I also say that, if two points [of the echptic] are diametrically opposite, the 
sum of the angles [between ecliptic and horizon] at the rising-point of one and 
the setting-point of the other is equal to two right angles.
[Proof: see Fig. 2.15.] If  we draw ABGD as the circle of the horizon, andA EG Z 
as the circle of the ecliptic, so that they intersect at A and G, then

fZ

Z ZAD + Z DAE = 2 right angles.
B u t Z Z A D  = Z Z G D  HI  56

Z ZGD + Z DAE = 2 right angles.
Q.E.D.

Since this is so, and since we have also proven that angles at the same horizon 
formed by jx>ints [on the ecliptic] equidistant from the same equinox are equal, 
a further consequence will be that, ibr points equidistant from the same solstice, 
the sum of the rising-angle at one and the setting-angle at the other will be equal 
to two right angles.®'’

Hence, if we llnd the rising-angles from Aries to L ibra [inclusive], we will 
simultaneously have found the rising-angles on the other semi-circle and the 
setting-angles on both semi-circles. W e shall explain briefly how to do the 
calculation, again taking as example the same parallel, at which the elevation of 
the north pole from the horizon is 36°.

As for the angles between ecliptic and horizon at the equinoctial points, they 
can be calculated simply. For if [see Fig. 2.16] we draw  ABGD as the meridian 
circle, AED as the eastern semi-circle of the horizon in question, EZ as a H I 57

Proof: see Fig. E, in which the ecliptic E X T  intersects the horizon SR in the setting-point S and 
the rising-point R. T  is the solstice, E the equinox (hence ET = 90°) and the two points X and R a r^  
the same distance, d, from T. Then EX = TE  -  T X  = 90° -  d. ES = RS -  RE = 180° -  (90° + d) 
= 90° -  d. EX = ES. TTrerefore setting-angle at X  equals setting-angle at S (p. 110). But the sum 
of the angles at the rising-point R and the setting-point S is 2 right angles (p. 111). Therefore the 
sum of the rising-angle at R and the setting-angle at X equals 2 right angles.
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B
Fig. 2.16

quadrant of the equator, and EB and EG as two quadrants of the ecliptic such 
that point E is the autum nal equinox w ith respect to EB, and the spring equinox 
with respect to EG (thus B is the w inter solstice and G the summ er solstice), we 
can conclude as follows.

Ex hypothesi, arc DZ = 54° [colatitude of 36°] 
and arc BZ = arc ZG *** 23;51°.

• • arc GD = 30;9° 
and  arc BD = 77;51°.



Thus, since E is the p>ole of meridian ABG,
Z DEG, the angle at the beginning of Aries, is 30;9® 1 where 1 right 

and Z DEB, the angle at the beginning of Libra, is 77;51°J angle = 90°.
In order to explain the procedure for finding the angles at other points, let us 

take, for example, the problem of finding the rising-angle formed at the 
beginning of Taurus and the horizon.

[See Fig. 2.17.] Let ABGD be the circle of the meridian, and BED the eastern 
semi-circle of the horizon in question. Draw semi-circle AEG of the ecliptic, so 
that point E represents the beginning of Taurus. Now at this latitude, when the 
beginningofTaurus is rising, 2̂  17;41° is at lower culm ination (we have shown
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Fig. 2.17

how such a problem can readily be solved by means of the tabulated rising- 
times).^' Therefore arc EG is less than a quadrant. So with pole E and radius the 
side of the [inscribed] square draw  thegi eat circle segment 0 H Z , and complete 
the quadrants EGH and E D 0. Both DGZ and Z H 0  are also quadrants, 
because the horizon B E0 goes through the poles of m eridian ZGD and of the 
great circle Z H 0 . Furtherm ore, 215 17;41° is 22;40° north of the equator, 
measured along the great circle through the poles of the equator (we have set out 
a table [I 15] for that too); and the equator is 36° from pole Z of the horizon, 
measured along the same arc, ZGD. Therefore arc ZG = 58;40°. These 
quantities being given, it then follows from the figure that 

Grd arc 2GD:Crd arc 2DZ =
(Grd arc 2GE;Crd arc 2EH). (Grd arc 2 H 0 :C rd  arc 2Z 0). [M .T. I] 

But, from the above,
arc 2GD = 62;40°, so Grd arc 2GD = 62;24^, 
arc 2DZ = 180°, so Grd arc 2DZ = 120^,

H159

II 9 p. 104 (simply add 180° to the point of upper culmination, which is calculated for this 
example in H AM A, 42).



arc 2GE = 155;22‘̂ , so Grd arc 2GE = 
arc 2EH = 180°, so G rd arc 2EH  = 120^.

Grd arc 20H :G rd  arc 2 Z 0  = (62;24 : 120)/(1I7;14 : 120)
= 63;52 : 120.

And Grd arc 2 0 Z  = 120^.
Grd arc 2 H 0  = 63;52‘’ 

arc 2 H 0  = 64;20° 
and arc H 0  = Z H E 0  = 32; 10°.

Q .E.D.
To avoid lengthening the explanatory part of this treatise by continual 

repetition of the procedure, we will take the same m ethod for granted for the 
rem aining signs and latitudes.®*
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H I 60 12. {On the angles and arcs formed with the same circle [i.e. the ecliptic] by a 
circle drawn through the poles o f the horizon}'^^

It remains [to describe] the method by which we can com pute the angles formed 
between the ecliptic and a circle through the poles ol the horizon [i.e. an 
altitude circle] for any latitude and any position [of the ecliptic relative to the 
altitude circle]. As we said, this method also produces the size of the arc of the 
circle through the poles of the horizon cut ofi' between the zenith and the 
intersection of that circle with the ecliptic. W e shall again set out the 
prelim inary theorems for this topic too; we shall prove, first, that if two points 
of the ecliptic are equidistant from the same solstice, and cut otf an equal 
num ber of time-degrees on either side of the meridian, one to the east and the 
other to the west, then the great circle arcs from the zenith to those two points 
are equal, and the sum of the [two] angles at those points, chosen according to 
our [previous] d e f in i t io n , i s  equal to two right angles.

[See Fig. 2.18.] Let ABG be a segment of the meridian, with point B on it 
taken as the zenith, and point G as the pole of the equator. Draw  two segments 

H I 61 of the ecliptic, .\D E  and AZH, such that points D and Z are equidistant from 
the same solstice, and cut off, on either side of meridian ABG, equal arcs of the 
parallel circle which passes through them. Furtherm ore, draw  through points 
D and Z the following great circle arcs: arc GD and arc GZ from the pole of the 
equator G, and arc BD and arc BZ from the zenith B.

I say that
arc BD = arc BZ 

and Z BDE + Z BZA = 2 right angles.
[Proof:] Since jx)ints D and Z cut off equal arcs of the parallel circle through 
them on either side of m eridian ABG,

Z BGD = Z BGZ.

**Thc angles between ecliptic and horizon are not explicitly tabulated by Ptolemy, but can be 
derived from the angles between ecliptic and altitude circle at the rising-point tabulated in Table II 
13. See H AM A  47, which also tabulates them explicitly.

*’ See HAMA  4 ^ 5 2 , Pedersen 118-21- (with my correction, Toomer[3] 139).
'“ 11 10 p. 105, with n.88.
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Fig. 2.18

Therefore, in the two spherical triangles BGD, BGZ
GD = GZ [D, Z equidistant from solstice]
BG = BG (common) 

and Z BGD = Z BGZ, 
so they have two sides and the included angle equal.

BD = BZ (bases)
and Z BZG = Z BDG. ' H162

But since we showed just above tha t the sum of the two angles formed by a 
circle through the poles of the equator at points [of the ecliptic] equidistant from 
the same solstice is equal to two right angles [10.2],

Z GDE + Z GZA = 2 right angles.
But we proved that Z BDG = Z BZG.

Z BDE + Z BZA = 2 right angles.
Q.E.D.

Next we must prove tha t if we take the same point o f the ecliptic at two • 
positions equidistant from the m eridian (as measured in time-degrees) on 
opposite sides of it, the great-circle arcs from the zenith to these two positions 
are equal, and the sum of the two angles [between altitude circle and ecliptic] 
east and west [of the meridian] is equal to twice the angle formed by the same 
point [of the ecliptic] at the meridian, provided that for both positions [i.e. 
when the point is east and west of the meridian] the points [of the ecliptic] which 
are [then] culm inating are either both north or both south of the zenith.

Let us suppose, first, that both are south. [See Fig. 2.19.] Let ABGD be a 
segment of the meridian, with point G  on it as the zenith, and D as the pole of 
the equator. Draw  two segments o f the ecliptic, AEZ and B H 0 , such that points H I 63 
E and  H  represent the same point, and cut off equal arcs of the parallel circle 
through th a t point on opposite sides of m eridian ABGD. Again, draw  through 
them  [points E and H] the great-circle arcs GE and G H  from G, and DE and

For Z BDE = Z GDE + Z BDG; Z BZA = Z GZA -  Z BZG. So, by addition (since Z BDG = 
Z B Z G \ Z BDE + Z BZA = Z GDE + Z GZA = 2 right angles.
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D

Z
Fig. 2.19

DH from D. By the same reasoning as belbre, since points E and H generate the 
same parallel circle and cut olT equal arcs ol'it on either side of the meridian, 

spherical triangle G D E =  spherical triangle GDH.
• • arc GE = arc GH.

Then I sav that
Z GEZ + Z GHB = 2 Z D EZ = 2 Z DHB.

[Proof:] Since Z DEZ is the same as Z DHB [E and  H  the same point]
and Z GED = Z DHG [from congruent spherical triangles] 

H164 Z GED + Z GHB[= Z D H G  + Z GHB = Z DHB] = Z DEZ.
Therefore, by addition Z GEZ + Z GHB = 2 Z DEZ = 2 Z DHB

Q.E.D.
Next, draw the same segments of the above circles again [Fig. 2.20], except 

that points A and B should be north of point G. I say that here too the same will 
applv. namelv

Z KEZ + Z LHB = 2 Z DEZ.
[Proof:] Since Z DEZ is the same as Z DHB.

and Z DEK = Z DHL [supplements of equal angles DEG, DHG], 
by addition [ofZ  DHB to Z DHL], Z LHB = Z DEZ + Z DEK.

Z LHB + Z K EZ = 2 Z DEZ.
\o w  again draw a similar ligure [Fig. 2.21], except that the culminating 

point on the segment [of the ecliptic] east [of the meridian], namely A, should be 
H I 65 south of the zenith G, while the culm inating point on the segment west [of tlic 

rneridian|, namely B, should be north of the zenith.
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D

D
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H I 66

1 say that
L  GEZ + Z LH B - 2  L  D E Z  plus 2 right angles.

[Proof:] Since
Z D H G  = Z D E G  

and Z D H G  + Z D H L = 2 right angles,
Z DEG + Z D H L = 2 right angles.

But Z D EZ is the same as Z DHB.
Z GEZ + Z  LHB [ = (Z DEZ + Z DEG) + (Z DHB + Z DHL)]

= (Z D E Z  + Z DHB) + (Z D EG  + Z DHL)
= (Z D EZ + Z DHB) plus 2 right angles 
= 2 Z DEZ plus 2 right angles.

Q .E.D.
For the rem aining case, draw a  similar figure [Fig. 2.22], in which point A, 

which is culm inatingon thesection east[ofthem erid ian], is north ofG , while B, 
which is culm inating on the section west [of the m eridian], is south of [the 
zenith].

D

I say that
Z K EZ + Z GHB = 2 Z DEZ minus 2 right angles.

[Proof:] By the same reasoning as before
Z K EZ + Z GHB = (Z DEZ + Z DHB) -  (Z D EK  + Z DHG)

= 2 Z DEZ -  (Z D EK  + Z DHG).
But Z D EK  + Z D H G  = 2 right angles, since

Z D EK  + Z DEG = 2 right angles, and Z D EG = Z DHG.
Q.E.D.
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O f the angles and arcs Ibrmed in the way defined between the ecliptic and an 
altitude circle, those at the meridian and the horizon can be com puted readily, 
as can be shown immediately in the following way.

D raw  [Fig. 2.23] the meridian circle ABGD, the s,emi-circle o f  the horizon 
BED, and the semi-circle of the ecliptic in any p>osition, ZEH. Then if we 
imagine the altitude circle through the zenith A and the culm inating point of 
the ecliptic Z, it coincides with the m eridian ABGD, and Z DZE will 
immediately be given, since the point Z and the angle that [the ecliptic makes] 
with the m eridian at point Z are g i v e n .A r c  AZ will also be given, since we 
know the distance in degrees of point Z from the equator (measured along the 
meridian), and the distance of the equator from the zenith A .‘®̂

H167

D

G
Fig. 2.23

Next, if we imagine the altitude circle AEG, drawn through the rising-point 
of the ecliptic, E, and [the zenith] A, here too it is immediately obvious that arc 
AE is always a quadrant, since p>oint A is the pole of the horizon BED. For the 
same reason, Z AED is always right; and since the angle which the ecliptic 
makes with the horizon, namely Z D EH, is given, the sum, angle AEH, will 
also be given.

Q.E.D.
Thus it is clear that, since the above relationships hold, if we compute, for 

each latitude, just the angles and arcs before [i.e. to the east of] the meridian, 
and just for the signs from the beginning of C ancer to the beginning of 
Capricorn, we will simultaneously have found the angles and arcs for the same

H I 68

•Bv II 10 (p. 109).
'5  and <p respeciivelv, so a ir  AZ = cp -  8. 
'B y II 11 (pp. 113-14). .
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H169

signs [Cancer to Capricorn] after the meridian too, and also the angles and arcs 
both before and after the meridian for the rem aining signs. But in order to make 
clear the procedure in this case too for any position [of the ecliptic], as an 
example we shall display the general method by means of a single solution ofthe 
problem. At the same latitude, namely where the elevation of the north pole 
from the horizon is 36®, we suppose that the beginning of Cancer is, e.g., one 
equinoctial hour to the east of the m eridian. In this situation, at the above 
latitude, El 16;I2° is culminating, and 17;37° is rising.

Then let [Fig. 2.24] ABGD be the m eridian circle, BED the semi-circle of the 
horizon, and Z H 0  the semi-circle of the ecliptic in such a position that point H 
is the beginning of Cancer, while Z represents El 16:12° and©  17;37°. Draw' 
through A, the zenith, and H, the beginning of Cancer, segment AHEG oCthe 
[altitude] great circle. Let the first problem be to lind arc AH.

fl

D

G
Fig. 2.24

H I 70

Now it is clear that arc Z 0  = 91;25° [np 17;37° -  El 16:12°] 
and arc H© = 77;37° [up 17;37° -  23 0°].

Similarly, since EE 16;12° cut ofT23;7° of the meridian to the north of the 
equator, and the equator cuts off 36° [of the meridian] from the zenith A, 

arc AZ = 12;53° 
and arc ZB = 77;7° (complement).

W hen these quantities are given, from the figure 
Crd arc 2ZB:Crd arc 2BA =

(Crd arc 2Z 0 :C rd  arc 2©H). (Crd arc 2H E:Crd arc 2EA). [M .T. I] 
But arc 2ZB = 154; 14°, so Crd arc 2ZB = 116;59'’ 
and arc 2BA = 180°, so C rd arc 2BA = 120^.

*®*This exampJe is worked through H AM A  49-50.



Furtherm ore arc 2 Z 0  = 182;50°, so Crd arc 2 Z 0  = 119;58'’ 
and arc 2 0 H  = 155;14°, so Crd arc 2 0 H  = 117;12^

Crd arc 2EH; Crd arc 2EA = (116;59 : 120)/(119;58 : 117;12)
114;16 : 120.

But Crd arc 2EA = 120^
Crd arc 2EH = 114; 16”

A arc 2EH«=* 144;26° 
and arc EH = 72; 13°.

arc AH = 17;47° (complement).
Q.E.D.

Next we shall find Z A H 0 , as follows.
Draw the same figure [Fig. 2.25], and with pole H and radius the side ofthe 

[inscribed] square draw the great circle segment K L M .'
Then, since circle AHE is draw n through the p>oles of E 0 M  and KLM , both 

EM  and K M  are quadrants. Again, from the figure
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fl

D

G

Fig. 2.25

Crd arc 2H E;C rd arc 2EK  =
(Crd arc 2 H 0 :C rd  arc 20L ). (Crd arc 2LM :C rd arc 2KM ). [M .T. II] 

But arc 2HE = 144,26° [above], so C rd arc 2HE = 114;16‘’ 
and arc 2EK  = 35;34°, so C rd  arc 2EK  = 36;38‘’. 

Furtherm ore arc 2 0 H  = 155; 14°, so C rd arc 2 0 H  = 117; 12'* 
and arc 2 0 L  = 24;46°, so C rd arc 2 0 L  = 25;44^

C rd arc 2LM :C rd arc 2M K  = (114;I6 : 36;38)/(l 17;12 : 25;44)
« 8 2 ;1 1  : 120.

But C rd arc 2M K  = 120”
C rd arc 2LM  = 82;1P



arc 2LM = 86;28° 
and arc LM = 43; 14° 

arc LK  = Z LH K  = 46;46° (complement).
Z A H 0  = 133; 14° (supplement).

Q.E.D.
H I 72 T he same method as was used for finding the above also applies to the 

rem aining [arcs and angles]. But in order to have conveniently displayed all the 
other arcs and  angles which it is reasonable to suppose we may need in our 
particular investigations, we com puted these too geometrically, beginning from 
the parallel through Meroe, at which the longest day is 13 equinoctial hours, 
and going up to the parallel above Pontus [the Black Sea], through the mouths 
of the Borysthenes, where the longest day is 16 equinoctial houi's."’*’ The 
intervals which we used were half an hour [of length of longest day] between 
parallels of latitude (as for the rising-times), one sign for the sections of the 
ecliptic, and one equinoctial hour for the position [of the altitude circles] to east 
and west of the meridian. VVe shall display the results in tabu lar form, one set of 
tables for each parallel of latitude, and one table for each sign. In the first 
column we put. first, the meridian situation, then the distance before or after 
the meridian, measured in equinoctial hours. In the second column we put the 
am ount of the corresponding arc (as explained above) from the zenith to the 
beginning of the sign in question. In the third and fourth columns we put the 

H I 73 am ount of the angles formed by the above-mentioned intersection [between 
ecliptic and altitude circle], defined in the way we explained: the angles at 
positions to the east of the meridian in the third column, and those at positions 
to the west of the meridian in the fourth column. O ne must bear in mind that, 
according to our original d e f in i t io n ,w e  always took the angle which lies to 
the rear of the intersection ol'the circles and to the north of the ecliptic, and 
expressed its m agnitude in the system in which one right angle is 90 [degrees].

T he lavout of the tables is as follows.

122 I I 12. Description o f  table o f  zenith distances

H174—87 13. [LayotU o f angles and arcs, parallel by paralleiy^^

[See pp. 123-9.]

H I 88 Now that the treatm ent of the angles [between ecliptic and principal circles] 
has been methodically discussed, the only rem aining topic in the foundations 
[of the rest of the treatise] is to determ ine the coordinates in latitude and 
longitude of the cities in each province which deserve note, in order to calculate

‘®*The seven parallels selected here are in fact the canonical ‘7 clim ata’, for which see 
Introduction p. 19.

II 10 p. 105 with n.88. ,
‘®*The tabic for Clinia I (Meroe) has a peculiarity. Since, alone of the parallels tabulated, its 

latitude is less than e, it is possible for the f>oint of the ecliptic which is culminating to fall north of 
the zenith. W hen this occurs at a tabulated position, the corresponding eastern or western angle is 
marked ‘N’ (for ‘north’). This is a modification of the system in the mss., where BO (forPopeto^) is 
written aboie the first value in each column where the ecliptic is north of the zenith, and NO (for 
voTtcx;) above the value where it changes back to south. Since Ptolemy makes no mention of this
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avN C ER CAPR/COR.VU.S

Hour Air EaM AngU- Wesi Aniflc Hour All- East Angle Wcsl Angle

noon 7 24 90 0 N noon 40 IB 90 0
1 »5 55 25 16 \ (54 44 .V I 42 54 III  24 68 .36
2 29 3 9 15 N 170 45 N 2 49 48 128 51 51 9

3 42 42 1 38 N 178 22 N. :i 59 35 141 49 38 11
4 5(i 25 175 7 4 53 4 71 4 151 25 28 35
5 70 2 170 18 9 42 5 83 31 158 48 21 12

6 83 27 164 41 15 19 5 30 90 0 161 57 18 3
6 30 ‘X) 0 161 57 18 3

L i;o AQUARIUS

Hour All East Angir WiM An!{lf Hour Ar< East Angle West Angle

noon 4 3 102 30 \ ni«n 3(i 57 77 30
1 14 20 26 3 N 178 57 N 1 39 46 100 12 ,54 4«
2 28 42 15 28 N 9 32 2 47 15 118 5 36 .55

3 42 43 10 5 \ 14 55 3 57 33 131 3 23 57
4 5ti 49 6 19 N 18 41 4 69 30 139 48 15 12
3 70 38 2 33 N 22 27 5 82 18 146 43 8 17

() 84 17 177 0 28 0 5 35 ;h) 0 149 51 5 9
6 [HJ 0 174 31 :i(i 9

\  iR(;c) IMSCICS

Hf>ni Ak Ea>l Ani!lc Wc'l Anijlr Hour An Kasi Angle U o i  .\ngle

noon 4 47 111 0 luxin 28 7 69 0
1 15 20 0 0 N 42 0 1 31 46 97 0 41 0

■jy 28 H fl \ 34 0 2 40 52 115 59 22 1

3 43 40 y 15 \ 32 45 3 52 30 127 23 10 37
4 58 13 8 39 \ 33 21 4 65 40 1.34 41 .i 19

72 3ii - 1. 53 N 35 7 79 18 139 41 178 19 N

6 H(i 41 5 37 N 3(> 23 :> 41) >K) 0 142 9 175 51 N
h 14 ;hi 0 4 9 N 37 51

LIBRA ARll.S

Aj< K;im Anijk- \Vf>i Ani;U‘ Hour \i. 11 IM .\lii:lr Wevi .\ngie

ItlMUt Hi 27 )13 51 iHKin 16 ‘J7 111) y
1 22 H 154 53 72 49 1 22 !! 107 11 25 7
2 33 50 173 17 54 25 - 33 50 125 .15 6 4.)

3 47 20 1 23 N 46 19 3 47 20 1 i:i 41 178 .17 ,\
4 1)1 22 5 8 \ 42 34 4 61 22 137 26 174 52 N
3 75 7 9 \ 40 33 75 39 1.J9 27 172 51 N

t) yo 0 7 24 N 40 18 6 90 0 139 42 172 .S6 ,\

SC:ORPIl'.S T A rH r.s

Hour Ak Easi Atn(li' Anifk- Hour Art East Angle W e«i» .Angle

noon 28 7 111 0 noon 4 47 6̂ 1 0
1 31 46 139 0 83 0 1 15 20 138 0 180 0 N
2 40 52 157 59 64 1 2 29 28 146 0 172 0 N

3 52 31» 169 23 52 37 3 43 40 147 15 170 45 , \ ,
4 ti5 40 176 41 45 19 4 58 13 146 39 171 21 N
5 79 18 1 41 \ 40 19 5 72 36 144 53 173 7

5 4<j 90 (» 4 9 ,\ 37 51 6 86 41 143 37 174 23 N
S 14 ‘X» 0 142 9 175 51 N

SAGIITARILS GEMINI

Hour An Ea>i An^lc U't*si Aiiiflt* Hour An. East Angle U i'>l .Angle

niMin 36 57 102 30 IUH)I1 4 3 77 30 N
1 39 46 125 12 79 48 1 14 20 1 3 .\ 153 ,57 .\
2 47 15 143 5 61 55 2 28 42 170 28 164 32 N

3 57 33 156 3 48 57 3 42 43 165 5 169 55 N ,
4 69 30 164 48 40 12 4 .56 49 161 19 173 41 N
5 82 18 171 43 33 17 5 70 38 157 33 177 27 X

5 35 90 0 174 51 30 9 6 84 17 152 0 3 0
6 25 W 0 149 51 5 9
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PARALLEL THROUGH SOENE 13f 23;51°
(’.ANCER c;<\PR1CC>RNUS

Hour An Easi Anjfic VVcM Angk- Hoih Air Easi Angle West Angle

noon 0 0 90 0 noon 47 42 90 0
1 13 43 176 15 3 45 1 49 52 108 3 71 57
2 27 23 173 51 6 9 2 55 52 123 31 56 29

3 41 20 168 15 11 45 3 64 37 135 37 44 23
4 54 27 166 51 13 9 4 75 12 144 57 35 3
5 ft7 42 162 42 17 18 5 86 54 152 0 28 0

6 80 36 157 59 22 1 5 15 90 0 153 46 26 14
H 45 90 0 153 46 26 14

L tO AQ,!.’ARILS

Hour An EakI An^le UVst Ani?lr Hoin An Ka.si Anglf WeM Angli-

tioon 3 21 102 :M) ufion 44 21 77 30
1 14 IR 176 4 28 56 1 46 40 96 30 58 30

27 56 180 0 25 0 2 53 4 112 16 42 44

41 44 17!) 3 25 57 3 62 18 124 25 ■>() 35
4 55 14 177 18 27 42 4 73 20 i:>2 38 22 2

43 173 40 31 21) 85 23 139 46 15 14

(> «l 52 168 56 ;ifi 4 5 22 <M) 0 14! 53 13 7
!H( (1 Ki6 53 :iH 7

\  IRtX) HlSt^KS

Hour An Ansle Wi-M Aintli- H.iur An l-̂ a»l Ani;U- WcM Aimli-

noon 12 11 t i l  U u(K)n >5 31 69 0
1 18 42 158 40 l>3 20 1 38 25 91 15 +6 45
1’ ,iO 57 173 44 tH 16 2 46 2 108 18 29 42

;i 44 22 178 3 43 5 7 3 56 30 119 41 18 19
4 5« 1 IHO 0 42 0 4 HH 31 127 5 10 55

71 43 179 15 42 45 81 22 132 30 ■> 10

b 85 2() 177 39 44 21 5 39 90 0 134 41 3 19
ri 21 90 0 176 41 45 19

i .ib r a ARIES

Hour An K;i»i Ani;l<r Wi-si AnKlr Hour An Ea>i Angle Wi-M .Angle

niNin 23 51 113 51 no«>i) 23 51 66 9
1 27 56 144 lU 83 32 1 27 56 96 28 35 50
2 37 36 162 13 h5 29 2 37 36 114 31 17 47

3 49 42 171 45 55 57 3 49 42 124 3 8 15
4 62 47 176 59 50 43 4 62 47 129 17 3 1
5 76 20 179 3 48 39 S 76 20 131 21 0 57

90 0 180 0 47 42 6 W 0 132 18 0 0

SCORPILS lA L R L S

Hour An- East Angle \V<-5( Angle Hour An- Eas( Angle WfM Angle

noon 35 31 111 0 noon 12 11 69 0
1 38 25 133 15 88 45 1 18 42 116 40 21 20
2 46 2 150 18 71 42 2 30 57 131 44 6 16

3 56 30 161 41 60 19 3 44 22 136 3 1 57
4 68 31 169 5 52 55 4 58 1 138 0 0 0
5 8! 22 174 30 47 30 5 71 43 137 15 0 45

5 39 90 0 176 41 45 19 6 85 20 135 39 2 21
6 21 90 0 134 41 3 19

•SAGITTARIUS GEMINI

Hour An- East Angle W «i Angle Hour Arc East Angle Wesi Angle

noon 44 21 102 30 noon 3 21 77 30
1 46 40 121 30 '83 30 1 14 18 151 4 3 56
2 53 4 137 16 67 44 2 27 56 155 0 0 0

3 62 18 149 25 55 35 3 41 44 154 3 0 57
4 73 20 157 58 47 2 4 55 14 152 18 2 42
5 85 23 164 46 40 14 5 68 43 148 40 6 20

5 22 90 0 166 53 38 7 6 81 52 143 56 II 4
6 38 90 0 141 53 13 7
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PARALLEL THROUGH LOWER EGYPT 14" 30;22°
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CANCER aVPRICORNUS

Hour .-v<- EaM Ani?lc West Ai><lr Hutii' An Hast Ant(lc West An̂ U*

Mwn 6 :}i 90 0 noon 54 13 90 0
14 56 150 0 30 0 1 56 6 105 34 74 26

2 27 23 1.59 38 20 22 2 61 22 119 23 60 37

3 4<t 19 160 30 19 30 3 69 17 130 46 49 14
4 5:S 14 158 51 21 9 4 78 59 139 30 40 30
5 65 55 156 0 24 0 5 90 0 14«i 28 33 32

H 78 15 151 49 28 11
7 90 0 146 28 33 32

LEO ACiL'ARlL'.S

Hour An Ea.'i Ani;lr West •Ani'lc Hour Art Ea.« Ani{k- WfM Ani{k'

mx>n 9 52 102 :io n<M»n .3(1 52 77 :«)
1 Iti 45 1.53 13 51 47 1 .32 33 93 .<9 61 21
2 28 44 m  22 38 38 2 .38 27 107 31 47 9

;i 41 ;>i 169 2b 33 34 3 t)() 44 119 1 35 .59
4 54 27 169 8 35 52 4 76 51 127 37 27 2.3
3 Ii7 17 167 1 37 59 5 88 9 133 43 21 17

h 79 4(i 163 46 41 14 3 9 >»(l II 134 49 ■20 11
fi 5J 1) 139 49 43 11 ,

\ i R ( ; o

Hour An Ea>i .\iis;U- Wfsc H.iiu .\n Ka^l Aimlf Wfsl .\lll{lf

IH 42 III II IKK >11 42 2 ti9 II
! 2;i IK 143 18 76 42 1 44 26 87 .i2 . .3(1 28
li :>:t .id 162 23 39 33 - 30 38 1(12 38 .)3 22

:J 43 169 H 32 26 :i Ul 19 113 .53 24 27
4 5H 21 172 111 49 30 4 71 2(1 120 .36 17 4

71 I.) 172 2H 49 .12 K3 19 lit:, 34 12 6

H4 7 171 3 .3(1 33 .12 <*(l II 127 33 10 3
li 28 <MI II ll>9 33 32

LIBRA • \R1KS

Hiilir Arr W. si Ainil.- Hour .\r< Ea>l Anijlf U i-M .\m!k-

HIM HI :i() 22 ll.i 31 iKMin 30 22 6ti 9
1 :i:5 .55 l.)7 32 ;)o III 1 ,i3 33 89 .">11 42 28
'1 41 :i9 1,34 19 7.i 23 2 41 39 106 .)7 23 41

.1 32 25 164 10 63 .i2 ,i ,)2 23 116 28 13 .3(1
4 1)4 28 169 47 37 33 4 IH 28 122 3 10 13
:> 77 H 172 21 33 21 77 6 124 .39 7 39

l> II 173 2̂» 34 13 6 !I0 II 125 47 6 31

s c o R P i r s l A l RL S

Horn An -\nelf \Vi>i .XmkU' Hour ,\r( tiiM Anitli- Wfsi Aiiiili-

n<M>n 42 2 111 0 iHK)n 18 42 69 0
1 44 26 12i> 32 92 28 1 23 IK 103 18 34 42
'1 3(1 58 144 ;58 77 22 2 33 3(1 120 25 17 35

;i liO 19 1.33 .13 tki 27 3 43 36 127 .>4 10 21V
4 71 20 162 ,3<i 39 4 4 .38 21 130 1(1 7 .3(1
5 8:i 19 167 54 1 .34 6 3 71 13 13(1 28 7 32

5 32 90 0 169 35 32 3 6 K4 7 129 3 8 53
6 28 W 0 127 55 10 5

SA (;IT r.\R ll-.S GEMINI

Hour Ak Ka>t Ani l̂e Wisi Aimic Hour Arc EaM Aimlr W j-m  Ani;U-

IKKJIl .30 32 102 30 n<Kin 9 52 77 30
I 52 5:! 118 39 86 21 1 16 45 128 13 26 47
2 58 27 132 51 72 9 2 28 44 141 22 13 38

i 66 44 144 1 60 59 3 41 31 144 26 JO 34
4 76 51 152 37 52 23 4 54 27 144 8 10 .52
5 88 9 1.58 43 46 17 5 67 1 7 142 1 12 59

5 9 >*) 0 159 49 45 U (i 79 48 138 46 16 14
6 51 W) (1 134 49 20 II
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PARALLEL THROUGH RHODES 14f 36°

CANCER C A P R ia )R N L S

Hour Arc East Ani<lr VVcsl Ani;lc Hcmr Arc East Anxlf Wrst AnxU-

noon 12 9 90 0 ti<x>n 59 51 90 0
1 17 47 133 14 46 46 1 61 30 103 45 76 15
2 28 22 147 45 32 15 2 1)6 12 116 10 63 50

3 40 27 151 46 28 14 3 73 22 126 36 53 24
4 52 36 151 52 28 R 4 82 24 134 56 45 4
5 64 36 149 54 30 6 4 45 90 0 140 I 39 59

fi 76 It) 146 25 33 35
7 87 23 141 :$o 38 30

7 15 90 0 140 1 39 59

LEO AQ,L'ARRS

Hfnir Ak KaM Anxic W ot Anifli' Hoin Arc ivasi Anisic WVsi Angle

IKKJII 15 JO 102 30 iHMin 56 30 77 30
I 20 20 139 32 65 28 1 58 14 91 39 63 21

M) 2« 155 19 49 41 2 (U 13 1114 23 50 3 7

42 6 160 !7 44 23 3 70 41 114 47 40 13
4 54 12 16U' 11 42 4<» 4 HO 2 122 47 32 13
3 (ki 17 161 5 43 55 4 56 ',m 0 128 36 26 24

It 78 7 158 10 46 .56
7 89 27 153 39 51 21

7 4 9(t 0 153 36 51 24

\  iR i;o I 'rsf.i-is

llnlir Ar( EiiM Ankjlf Himh’ \r<- Hast Ani;U* Aniitc

24 !.’(» 111 0 M<M>n 47 40 69 (1
I 27 :>i 137 38 84 .’2 1 49 42 84 50 53 10
- ,i6 -J4 15.) 59 i 2 55 26 98 L’(l 59 -iO

47 !4 16-> 111 59 5il 3 63 48 11)8 ;14 29 26
I ■>9 (1 165 40 56 Jll 4 7) 55 115 51 22

71 .'i 166 i4 55 26 85 5 120 'J8 17 32

t> i!,i 9 iii5 III 56 ,itl 5 25 ‘Nl (1 122 7 15 53
li ,i,i >N) 0 164 7 57 53

l.iBRA ARIES

Himr An K.̂ l̂ Ancli' Wi -i Anijlf M.xn \r. East An«li-  ̂ W oi Aimlc

ri(nm ill 0 ll.i 51 [HM>n >6 0 t.6 9
1 !8 37 133 23 W 19 1 38 37 85 41 46 37
- 45 31 148 Zi 79 19 2 45 31 IIH) 41 31 37

.{ 55 6 158 9 ti9 33 3 55 6 110 27 21 51
4 riti 9 163 58 63 44 4 lili 9 116 16 16 2

77 56 116 36 61 6 77 56 118 54 13 24

li 9() II 167 51 59 51 !»0 0 120 9 12 9

lAL'RLS

Hour Arc- EaM Anifk- Wt-M An«lf Hour An- Ea:»l An^flc Wt-'l Ain{k-

noon 47 40 111 0 Miion 24 20 »« 0
1 49 42 126 50 95 10 1 27 51 95 38 42 22
2 55 2(i 140 20 81 40 2 3ti 24 111 59 26 I

:( Ii3 48 150 34 71 26 3 47 14 120 10 17 50
4 73 55 157 51 64 9 4 59 0 123 40 14 20
5 85 5 162 28 59 32 5 71 5 124 34 13 26

5 25 90 0 164 7 57 53 6 83 9 123 30 14 30
6 35 90 0 122 7 15 53

S A G i r r  A R IL S G E M IN I

Hour Aix- EaM Ani(le \ \  «M Aiit'le Hour Arc East An^le WcM Anijlc

iHN>n 56 30 102 30 noon 15 30 77 30
1 58 14 116 39 88 21 1 20 20 114 32 40 28
2 63 13 129 23 75 37 2 30 28 130 19 24 41

i 70 41 139 47 65 13 3 42 6 135 37 19 23
4 «0 2 147 47 57 13 4 54 12 137 11 17 49

4 5*) 90 0 133 36 51 24 5 (Wi 17 136 5 18 55

6 78 7 133 10 21 50
7 89 27 128 39 2S 21

7 4 90 0 128 36 26 24
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PARALLEL THROUGH THE HELLESPONT 15" 40;56°
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C.VN'CER CAPRICORNL’S

Hoiii Ak lia.M Ani?lc West Ani{lc Hour An KasI An^lc Wtsi Aiii(lc

n(x>n 17 5 90 0 !KM>n 64 47 90 0
I 21 18 122 32 57 28 1 66 15 102 27 77 33
2 30 17 138 29 41 31 2 70 30 113 35 66 25

3 41 37 144 18 35 42 3 77 4 122 55 57 5
4 52 25 145 38 34 22 4 85 18 i:w 58 49 2
5 fi3 47 144 28 35 32 4 30 90 0 134 16 45 44

(i 74 48 141 30 38 30
7 85 9 137 5 42 55

7 30 ;k) 0 134 16 45 44

LKC) AQ,L ARU S

Horn Ak Kast Anyk* \V<*>1 An^lf Houi An l-'aNl Ani l̂t- Wcvl Aniflc

iUXMl 20 2ti 102 30 noon 61 26 77 30
1 24 5 131 6 73 54 1 63 n 90 5 64 55

32 37 147 0 58 0 - 67 24 101 29 53 31

43 8 153 50 51 10 3 74 13 111 1(1 43 50
■i 54 19 156 5 48 55 4 82 48 118 45 M  15

85 3() 155 8 49 52 4 44 90 0 123 6 31 54

b 7li 4ti 153 24 51 36
7 87 24 149 6 55 54

7 Iti 90 0 148 6 56 54

M R (;0 iM.sc:i>i

Mom An l*â i AiiifU* WcM AiivjU- Hoin- An lilast Alii'lt* \ \  <-M Anijlr

IKMM) 29 l() 111 0 nm>li 52 36 ()*) 0
1 32 5 132 30 89 30 1 54 23 82 46 55 14

39 22 147 30 74 30 2 59 25 fM 55 43 5

49 3 156 II lit) 0 ,i M> 58 104 24 33 36
\ ■)9 ill UiO 7 61 53 4 76 15 VI1 10 2(. 50
3 71 5 161 24 liO 36 ■’ K6 m 115 45 22 15

r> 82 22 liiO 40 61 20 5 18 •K) 0 116 59 21 1
h 42 IHI 0 158 59 63 1

LIBKA ARIKS

....... A,. ta^l Aiiijli- WrM AnyU- Hour An 1-̂ aM Ani:li- WfM Anijlc

MiKtn ■U) 5ii 113 51 fKK*n 40 56 66 9
1 43 8 129 57 97 45 1 43 H 82 15 50 3
i; 49 7 143 38 84 4 - 49 7 95 56 :i6 22

:! 57 42 153 8 74 34 57 42 105 26 26 52
4 ti7 50 158 47 68 55 4 67 50 111 5 21 13

78 45 161 59 65 43 78 45 114 17 18 1

t> !H) 0 162 55 i>4 4 / fi <10 0 115 13 17 5

sc ;o R F ir .s T A I'R IS .

Horn An Ka>i Ai»{li- WcM An«U* Hour An Ea^t An^le \Vr>t Ani[lc

IlOOIl 52 36 111 0 noon 29 16 69 0
1 54 23 124 46 97 14 1 32 5 90 30 47 30
2 59 25 136 55 85 5 2 39 22 105 30 32 30

3 titi 58 146 24 75 36 3 49 3 114 0 24 0
4 76 15 153 10 68 50 4 59 50 118 7 19 53
5 86 38 157 45 64 15 5 71 5 119 24 18 36

5 18 90 0 158 59 63 1 6 82 22 118 40 19 20
6 42 90 0 116 59 21 1

SA Cil'I'l'A R aS GEMINI '

Hour All- Easi Ani<ic W ot Anijlc Hour An- Easl Angle Wesi Anijlc

iHx>n 61 26 102 30 tMjon 20 26 77 30
1 63 0 115 5 89 55 1 24 5 106 6 48 54
2 67 24 126 29 78 31 2 32 37 122 0 33 0

3 74 13 136 10 68 50 3 43 8 128 50 26 10
4 82 48 143 45 61 15 4 54 19 131 5 23 55

4 44 <J0 0 148 6 56 54 5 1x5 36 130 8 24 52

6 76 46 128 24 26 36
• 7 87 24 124 6 30 54

7 16 90 0 123 6 31 54



128 I I 13. Table o f  zenith distances and ecliptic angles
PARALLEL THROUGH THE MIDDLE OF PONTUS ISl" 45;1°

C’./\NC’.ER C.\PRICX)RNUS

Hour Ar< East Ani(lc Wcsl AnKk- Houi Arc East Ani(l<; W «i Antclf

noon 21 10 90 0 noon 68 52 90 0
1 24 32 116 5 63 55 1 70 14 101 11 78 49
2 32 12 131 30 48 30 2 74 5 111 30 68 30

i 42 1 138 17 41 43 3 80 6 120 29 59 31
4 52 29 140 31 39 29 4 87 42 128 13 51 47
3 (i3 4 140 2 39 58 4 15 90 0 129 21 50 39

rt 73 24 137 32 42 28
7 83 17 133 26 46 34

7 45 9(1 0 129 21 50 39

LEO .\Q,L ARU S

Hour Arc EaM An({lf Anijlr Hour Arc Ea.\i Anijlf \Vi >i Ani(li-

ntion 24 31 102 :M) iMKin 65 31 77 30
1 27 2!» 124 49 HO 11 1 lili 55 88 .51) Ii6 10
'2 ,!4 4K 140 47 64 13 2 70 58 99 21 .55 39

i 44 L'lt 148 5 Vi 55 3 77 14 108 19 46 41
4 ")4 ,17 15\ 5 5.1 55 4 85 10 115 20 39 40
5 rt5 15 151 7 .53 53 4 32 90 0 118 25 36 35

li 75 :(•» 149 20 55 41)
7 H5 .19 145 ;w 59 21

7 L’8 U() (1 143 25 hi :i5

\  iK (;o I’I.SCKS

Hour Ar< t.iM An^lc \\  <-si AniiU- Hour .\ri Ea>i .\ni:li- \Vc>l .\ni;lc

noon i.i 21 111 II ntNUi 56 41 rt) 1)
1 i5 43 129 15 92 45 1 .8 19 81 31 ■>i> 29
- 42 4 142 50 79 III 2 62 49 92 16 45 44

:>() 4ti 151 9 711 51 .i 69 42 nil 12 36 48
4 till 44 I5-) ,il li(i L"* 4 7!1 16 107 ;>1 .;(! 29

71 12 157 > i>4 57 87 56 112 6 25 54

It «1 4ri I5<> ,i| ii5 29 5 12 'HI 0 112 43 25 17
li 4H '.HI II 154 4.i 1.7 17

I.IBRA ARIE.S

Honi Arc KaM Ani!lt' \V, M .Xn-lr Hour .\r< EaM .Vimlr V\ CM Ani;lc

noon 45 1 111 51 u«N>n 45 1 66 9
1 4«> ;>5 12H 19 !i;» 23 1 46 55 80 37 51 41
- 52 17 140 2li H7 Hi - .52 17 92 44 .>9 34

m  1 149 4 78 38 IKI 1 101 22 ,)0 3(i
4 Ii9 19 154 48 72 54 4 69 19 107 6 i::? V2

79 2H li!* 47 79 28 n o  13 22 5

!K) I) 158 VI (iH 52 h iH) 0 111 K 21 10

SCORPIl .S lA lR L S

Hour An Easi Anifif Wi-I .\ni;ir Hour ,\r< Ka;*i Aritfic W cM .\nulc

mion 5*i 41 111 0 noiH) 33 21 69 0
1 58 19 123 ,il 98 29 1 35 43 87 15 .■)() 45

Ii2 49 134 16 87 44 2 42 4 100 50 37 10

.! Wt 42 143 12 7!) 48 :i 50 46 109 9 28 51
4 78 Iri 149 31 72 29 4 60 44 113 31 24 29
■> 87 5rt 154 6 lu 54 5 71 12 115 3 22 57

5 12 90 0 154 43 67 17 6 81 46 114 31 2;! 29
6 48 W 0 112 43 25 17

s A ( ; n T \ R i i s GEMINI

Hour Ait East An^lr \Vt>l Anxle Hour •Arc EasI Ani?l«- W'cM .Vnalc

noon t)5 31 102 :io noon 24 31 77 30
1 li*) 55 113 50 91 10 1 27 29 99 49 .55 11
2 70 58 124 21 80 39 2 34 48 115 47 39 13

3 77 14 133 19 71 41 3 44 20 . 123 5 31 55
4 H5 10 140 20 64 40 4 54 37 126 5 28 55

4 :)2 !)() 0 143 25 61 35 5 65 15 126 7 28 53

6 75 .)9 124 20 :to 40
7 85 39 120 39 34 21

7 28 W 0 118 25 .16 35
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c;a .n o i;r CAPRICORNL'S

Hour Air Kasi An^k* Wi-M AiikU- Hour Air KaM Ani{U' W oi Ani{lc

nfxin 24 41 <J0 0 noon 72 23 90 0
i 27 30 III 44 H8 Id 1 73 38 100 15 79 45
2 34 9 12fi 7 53 33 2 77 10 109 47 70 13

i 43 2 133 18 4(i 42 3 82 44 118 3 (il 57
4 52 44 I3(i li 43 54 4 90 0 124 58 55 2
r> 40 13() 4 43 Tri

f) 72 24 134 0 4(i 0
7 81 3g 130 16 49 44
H 9() 0 124 5H 55 2

I .W ) AQl A R ll S

Hiiiii An i;aM Amili- U cM AukIc H<Mir Ait KaM Ansif VWm .\in<lf

IIIMHl 2K 2 1(12 3(1 ii(N»n (i9 2 77 30
1 :)0 32 122 9 8'.’ 51 1 70 20 , 87 49 Ii7 11

.)(> 13'. :>4 (i9 (1 2 74 2 97 .il 57 2!»

,i 43 .10 143 28 1.1 32 ,1 79 48 105 49 49 II
4 V> :i I4(> 'lO 58 III 4 87 14 112 25 42 35
■'> 147 19 57 41 4 20 >»l 0 114 20 40 4<>

I) 74 47 143 4(i 59 14
7 H4 1(1 142 27 ii2 33

7 4(» ■Kt II 139 2(1 ti5 40

\  IR( ;o HISCI.S

Hnni An Arnilr W. M Ainili- H.»u Ai. K.im .\n«U-

iHKin !(i j2 111 (1 IK HIM 1.0 12 li!l II
1 1« 'yfi IJIi 4j 95 15 1 111 18 80 5 57 '.5
- 44 31 139 7 82 53 2 1,5 li, 'Kl 111 47 44

i :.2 2,'. ,1 4 7  9 74 51 ; 72 5 98 21. .19 ^4
4 hi 3:> 131 3(i 70 24 4 80 ; I04'28 .13 .12
■> 71 22 I -.3 23 >>H 37 ■> 89 3 1119 2 28 58

(!l 17 I V.’ :.H m9 2 '«! II 109 22 28 .18
li .'i4 <H) (t ir.i 2-J 7(1 ,;h

l.IBRA ARIKS

Honi Ar. Aniilr ] \V, M An-.-lr H..1II All Kasi Ain:l.' W.M Am;!.-

ItiMHI 4K 32 111 31 IIIHUI 48 32 nil 9
1 M) 21 I2(i Ml 101 12 1 .50 21 78 48 .5.) .10

34 "lit 137 4(1 !K) 2 - .54 59 89 .58 42 20

t>2 .') 143 4ti 81 5ii 3 Ii2 5 98 4 14 14
4 70 41 1-.1 18 7i> 24 4 70 41 103 .i(i 28 42

«(l 8 134 23 73 19 ■> 80 8 iOti 41 25 .17

i> 'Kl II 133 19 72 23 1' 'Ml II 107 .17 24 41

SCORl'Il S l At K l S

H<»ui An EaM Aii«it- \ ' f ' i  Ainrlf Hour Air Ka.si Amilf Wr^l AiimU*

(><» 12 111 0 lUHMI .!(i 52 Ii9 0
1 ISI 38 122 3 W 55 1 38 5(i 84 45 53 15

1).') ill 132 Hi 89 44 2 44 31 97 7 40 5.! ,

: i. 72 f) 140 21 i 81 34 ! 52 25 105 9 .12 51
4 8<) 3 14ri 28 75 32 4 lil 35 109 ,irt 28 24
■> Wt :i ir.i 2 70 58 71 22 111 23 2(i 37

,'i () 90 U 131 22 70 ;i8 81 17 110 58 27 2
li 54 !KI 0 10*1 22 28 i8

SACJITIARIIS (JKM IM

Hour Air K ast Ailifir \S t-M Atisflc Hour Ar< Ka.si .Ntiifir VSrsI Aiiifir

n(K>ii (i‘J 2 102 30 tUKMl 28 2 77 30
1 70 20 112 49 K  11 1 32 97 9 57 51
2 74 2 122 3! 82 2!) 2 ;Mi ,55 110 54 44 (i

3 79 48 130 49 74 11 3 45 30 118 28 36 32
4 87 14 137 25 H~ 35 4 55 3 121 50 33 10

4 20 <*l U 139 20 t)5 40 (i4 59 122 19 32 41

li 74 47 l‘*0 4̂ i 34 14
7 84 10 117 27 37 33

7 4(1 !H) () 114 20 W 40



the [astronomical] phenom ena for those cities. However, the discussion of this 
subject belongs to a separate, geographical treatise, so we shall expose it to view 
by itself [in such a treatise], in which we shall use the accounts of those who have 
elalx)rated this field to the extent which is possible. We shall [there] list for each 
of the cities its distance in degrees from the equator, measured along its 
meridian, and the distance in degrees of that m eridian from the meridian 
through Alexandria, to the east or west, measured along the equator (for that 
[Alexandria] is the meridian For which we establish the times of the positions [of 
the heavenly bodies]).’®®

For the time being we take the locations [of the cities] ibr granted, and 
[therefore] think it appropriate to add no more than the following. W henever 
we arc given the time at some standard place, and we undertake to determine 
what the corresponding time is at another place, then, if they lie on dilferent 
meridians, we have to take the distance between the two places in degrees, 

H 189 measured along the equator, and determ ine which of them is to the east or west, 
and then increase or decrease the time at the standard place by the same 
num ber of time-dcgrees. to get the corresponding time at the required place. 
We increase if the required place is the further east, and decrease if the standard 
[place is the further east].“ “

130 I I 13. Geographical coordinates

notation, it may Ix- a later addition, hut it is a iisehil one. since it allei ts the siijn ol'ttie parallax iser \ '  
19 p. 266). It is easy to venTy that Ptolemy's rules on pp. 113-18 hold tjood accord:ns< as .V is 
appended to the eastern an^le. the western anijjle, or lx>th.

Beeause of the symmetries demonstrated in II 12 (see also HAMA  51) we have a means of 
cheekini? most of the entries in these tables. The only entries which cannot l)e thus checked are the 
zenith distances (or the sii3;ns ol Cancer and Capricorn. This shows that there arc very Inv scribal 
errors in Heiberg's,te.xt here. However, recomputaiion of the data usinij modem formulas re\'eals 
considerable inaccuracies in Ptolemy's values. The zenith distances are generally correct to w iihin 
2'. ahhouj^h occasional errors of up to 10' occur: but the angles regularly show errors of 10', and 
occasionally as much as 1° (e.g. Parallel through Middle Pontus. Gemini, 1 hour from noon, eastern 
angle: tc.xt 99:49°; computed 100:54°).

Corrections to Heiberg's text:

Clima I, lO’. 2" (H175.7) nO vr] (49:58): ^0 fiq* BCDL (computed: 49;49).
Clima IV, 2  ̂ (H181,7) p (100:47), Xa X.a (3l;3l): p na. Xa XiJ with Ar. Cf. supplementary 

angles at Libra: 148;23, 79; 19. Corrected by Manitius.
Clima V'', y , 2* (HISS,17) Xp (32): X P C f .  supplementary angle lor \'irgo: 167:30. This is simply a 

misprint, corrected by Manitius.
Clima VII. TH, ^  (H186.17) pXp i (132:10). Jt0 v (89;50): pXP tg, 7i0 n5. as Ger. Cf. supple­

mentary angles at Pisces: 90; 16, 47;44. M anitius noticed the discrepancy, but changed the Pisces 
entries. My correction is closer to the accurately computed values (I32;15°, 89;39°). Most of the 
Arabic tradition agrees with Heiberg here; L has 47;50 at Pisces. 2*'. west angle.
'®*This promise is fullilled in Ptolemy’s Grogra/^Ay. However, by the time he came to write that, he 

decided to give distances in longitude, not fix)m the meridian thix)ugh Alexandria, but from one at 
the extreme west of the known world (through the Fortunate Isles), so that all longitudes could be 
counted in the same direction. A remnant of the original plan survives in Geography VIII, w hich 
includes a summary of time differences from Alexandria to east or west.

‘*® Excising SuomKtitepo^ at H189,6. Heiberg’s text would mean ‘and decrease if the standard 
place is the further west’, which is the opposite of what is required. Manitius’ excision of 6 
UTioKei^evot; produces a good sense (‘ if the required place is the further west’), and the same sense is 
found in part of the Arabic tradition (L, Ger, P, but not T, Q). But the word order favours my 
correction.



Book III
{PrefaceY

In the preceding part of our treatise we have dealt w ith those asf>ects of heaven 
and earth  which required, in outhne, a prelim inary m athem atical discussion; H191 
also the inclination of the sun’s path through the ecliptic, and the resultant 
particular phenomena, both at sphaera recta and a t sphaera obliqua for every 
inhabited region. VVe think that we should [now] discuss, as the subject which 
appropriately follows the above, the theory of the sun and moon, and go 
through the phenom ena which are a consequence of their motions. For none of 
the phenom ena associated with the [other] heavenly bodies can be completely 
investigated without the previous treatm ent o f these [two]. Furtherm ore, we 
find that the subject of the sun’s motion must take first place amongst these [sun 
and moon], since without that it would, again, be impossible to give a complete 
discussion of the moon's theory from start to finish.

1. {On the length o f the year}"

T he very first of the theorems concerning the sun is the determ ination of the 
length of the year. The ancients were in disagreem ent and confusion in their 
pronouncem ents on this topic, as can be seen from their treatises, especially 
those of H ipparchus, who was both industrious and a lover of truth. The main 
cause of the confusion on this topic which even he displayed is the fact that, when 
one examines the apparent returns [of the sun] to [the same] equinox or sobtice, 
one finds that the length of the year exceeds 365 days by less than i-day, but when H192 
one examines its return to [one of] the fixed stars it is greater [than 365i days].
Hence H ipparchus comes to the idea that the sphere of the fixed stars too has a 
very slow motion, which, just like that of the planets, is towards the rear with 
respect to the revolution producing the first [daily] motion, which is that of a 
[gieat] circle drawn through the poles o f both equator and ecliptic. ̂

As for us, we shall show this is indeed the case, and how it takes place, in 
our discussion of the fixed stars'* (the theory of the fixed stars, too, cannot be

' D and part of the Arabic tradition (L, P, but not Q, T) begin chapter 1 at this point. O n such 
variations, and the conclusion to be drawn, see Introduction p. 5.

^See HAM A  54-5, Pede«-sen 128-34.
 ̂This characterisation of the daily motion by means of the rotation of a great circle through the 

{X»les of equator and ecliptic refers back to I 8 p. 47.
"V II 2-3.



thoroughly investigated without previously establishing the theory of the sun 
and moon). However, for the purposes of the present investigation, it is our 
judgm ent that the only reference point we must consider when exam ining the 
length of the solar year is the re tu rn  of the sun to itself, th a t is [the period in 
which it traverses] the circle of the ecliptic defined by its own motion. W e must 
define the length of the year as the tim e the sun takes to travel from some fixed 
point on this circle back again to the same point. T he only points which we can 
consider proper starting-points for the sun’s revolution are those defined by the 
equinoxes and solstices on that circle. For if we consider the subject from a 
mathem atical viewpoint, we will find ho more appropriate way to define a 

H193 ‘revolution’ than that which returns the sun to the same relative position, both 
in place and in time, whether one relates it to the [local] horizon, to the 
meridian, or to the length of the day and night; and the only starting-points on 
the ecliptic which we can find are those which happen to be defined by the 
equinoxes and solstices. And if, instead, we consider w hat is appropriate from a 
physical point of view, we will not find anything which could more reasonably 
be considered a ‘revolution’ than that which returns the sun to a similar 
atmospheric condition and the same season; and the only starting-points one 
could find [for this revolution] are those which are the principal means of 
marking off the seasons from one another [i.e. solsticial and equinoctial points]. 
O ne might add that it seems unnatural to define the sun’s revolution by its 
return to [one of) the fixed stars, especially since the sphere of the fixed stars is 
observed to have a regular motion of its own towards the rear with respect to the 
[daily] motion of the heavens. For, this being the case, it would be equally 
appropriate to say that the length of the solar year is the time it takes the sun to 
go from one conjunction with Saturn, let us say, (or any other of the planets) to 
the next. In this way many difi'erent ‘years’ could be generated. For the above 
reasons we think it appropriate to define the solar vear as the time from one 

H194 equinox or solstice to the next of the same kind, as determ ined by observations 
taken at the greatest possible interv'al.

Now since Hipparchus is somewhat disturbed by the suspicion, derived from 
a series of observations which he m ade in close succession, that this same 
revolution [of the sun] is not of constant length, we shall try to show succinctly 
that there is nothing to be disturbed about here. W e became convinced that 
these intervals [from solstice to solstice etc.] do not vzry, from the successive 
solstices and equinoxes which we ourselves have observed by means of our 
instruments. For we find tha t [the times of the observed solstices etc.] do not 
differ by a significant am ount from those derivable from the [365]i-day [year]^ 
(sometimes they differ by an am ount roughly corresponding to the error which 
is explicable by the construction and positioning of the intruments). But we also 
guess from H ipparchus’ own calculations that his suspicion concerning the 
irregularity [in the length of the tropical year] is an error due mainly to the 
observations he used.

For, in his treatise ‘O n  the displacem ent of the solsticial and equinoctial 
points’, he first sets out those summ er and w inter solstices which he considers to

’ Literally ‘from the surplus due to the i-day’.

132 I I I  / .  Definition o f  "year’



have been observed accurately, in succession, and himself adm its that these do 
not display enough discrepancies to allow one to use them  to assert the existence 
of any irregularity® in the length of the year. H e comments on them as follows:
‘Now from the above observations it is clear tha t the differences in the year- 
length are very small indeed. However, in the case of the solstices, I have to H195 
adm it that both I and Archimedes may have com m itted errors of up to a 
quarter of a day in our observations and calculations [of the time]. But the 
irregularity in the length of the year can be accurately perceived from the 
[equinoxes] observed on the bronze ring situated in the place at Alexandria 
called the “ Square S toa” . This is supposed to indicate the equinox on the day 
when the direction from which its concave surface is illum inated changes from 
one side to the other’.̂

Then he sets out, first, the times of autum nal equinoxes which he considers to 
have been very accurately observed:

[1] In the seventeenth year of the T h ird  Kallippic Cycle, M esore30[-161 Sept.
27], about sunset.

[2] 3 years later, in the twentieth year, on the first epagomenal day [-158 Sept.
27], at dawn. This should have been at noon, so there is a i-day discrepancy.

[3] 1 year later, in the twenty-first year, [on the first epagomenal day, -157 
Sept. 27], at the sixth hour. This was in agreement with the preceding 
observation.®

[4] 11 years later, in the thirty-second year, at the m idnight between the third 
and fourth epagomenal days [-146 Sept. 26/27]. This should have been at 
dawn, so again there is a i-day discrepancy.

[5] 1 year later, in the thirty-third year, on the fourth epagomenal day [-145 H I96 
Sept. 27], at dawn. This was in agreement with the previous observation.

[6] 3 years later, in the thirty-sixth year, on the fourth epagomenal day [-142 
Sept. 26], in the evening. This should have been at m idnight, so again there is 
only a i-day  discrepancy.

Next he sets out the spring equinoxes which have been observed with a 
similar accuracy:

I l l  1. Hipparchus’ autumnal equinox observations 133

*Manitius claims that the reading dviaoTiiTd Tiva for dviooTTixa at H194,21 is 'absolutely 
necessary’. It is H alm a’s text, adopted from the<’rfj/!o princeps. However, it is not lound in any oftfie 
principal mss., and Heiberg’s text as it stands can mean the same thing.

’ For a diagram of this ‘equatorial armiilary’ see Price, ‘Precision Instruments’ Fig. 343Con p. 
589. It is simply a ring permanently fixed in the plane of the equator. From Ptolemy (p. 134) we 
learn that there were two such rings at Alexandria in his time, in the Palaestra. W hether either was 
identical with the one mentioned by Hipparchus cannot be discussed here. For what little is known 
about the ‘Square Stoa’ and the Palaestra (presumably in the great gymnasium mentioned in Strabo 
17.1.10) see Fraser[l] II 98 n.222 and 223, I 28-9, and Fraser[2] 144-5.

® While there is general agreement that all the other equinox observations reported from 
Hipparchus were made by him in person, there is considerable dispute whether these three were 
observed by him or merely used by him. They are separated by an interval of 11 years from the next' 
attested observation, which also falls into the period for which other types of obseivation by 
Hipparchus are recorded (the lunar eclipse o f - 145 Apr. 21, p. 135). My own view is that this group 
of three early observations was not made by Hipparchus himself, but was simply adduced by him 
lor comparison.



[1] In the thirty-second year of the T hird  Kallippic Cycle, M echir 27 [-145 
M ar. 24], at dawn. Furtherm ore, he says, the ring at A lexandria was 
illuminated equally from both sides at about the fifth hour.® Thus we can 
already see two different observations of the same equinox with a discrepancy 
of approxim ately 5 hours.

[2 to 6] He says that the subsequent observations up to the thirty-seventh year 
[-144 to -140] were all in agreement with the times derivable from the [365]l- 
day [year].

[7] 11 years later [than 1], in the forty-third year, he says, the spring 
equinox occurred after m idnight M echir 29/30 [-134 M ar. 23/24]. This was 
in agreement*® with the observ-ation [1] in the thirty-second year, and, he 
says, again agrees with the observ'ations [8 to 13, -133 to -128] in the 
subsequent years up to the fiftieth year [14]. This took place on Pham enoth 
1 [-127 M ar. 23], about sunset. This is approxim ately li days later [in the 
Egy ptian year] than the [equinox] in the forty-third year. This also fits the 
7-year interv'al.

H I97 Thus in these observations too there is no discrepancy worth noticing, even 
though it is possible for an error ol'up to a quarter of a day to occur not onl\' in 
observations of solstices, but even in equinox obser\ations. For suppose that the 
instrument, due to its positioning or graduation, is out of true by as little as 
j ^ t h  of the circle through the poles of the equator: then, to correct an error of 
that size in declination, the sun, [when it is] near the intersection [of the ecliptic] 
with the equator, has to move in longitude on the ecliptic. Thus the 
discrepancy comes to about i o f a day. * ‘ T he error could be even greater in the 
case of an instrument which, instead of being set up for the specific occasion and 
positioned accurately at the time of the actual observation, has been fixed once 
for all on a base intended to preserve it in the same position for a long f>eriod: 
[the error occurs when] the instrum ent is alfected by a [gradual] displacement 
which is unnoticed because of the length of time over which it takes place. O ne 
can see this in the case of the bronze rings in our Palaestra, which are supposed 
to be fixed in the plane of the equator. W hen we observe with them, the 
distortion in their jxjsitioning is apparent, especially that of the larger and older 
of the two, to such an extent that sometimes the direction of illumination of the 
concave surface in them  shifts from one side to the other twice on the same 
equinoctial day.'*

*This statement has occasionally been used (most recently by Fraser[l] I 423) as evidence that 
Hipparchus observed in Alexandria. O n the contrary, Ptolemy’s expression makes it clear that this 
Alexandrian observation was dilTercnt (and discrepant) from Hipparchus’ own. Whenever the 
place of an observation by Hipparchus is known, it is Rhodes (except for his weather prognostica­
tions reported in Ptolemy’s Phaseis, for which the place was Bithynia, presumably Hipparchus’ 
native Nk:aea).

'"R eading aKoXovOov at H i96,15 for the misprint dKoXoixjOov.
** Ptolemy says that an observational error of 6 ' in declination corresponds, near equinox, to an 

ecliptic motion ofi° or (since the sun moves about 1 ° per day in the ecliptic) to an error ofl day in the 
time ofobservation. This is easily verified by linear interpolation in the declination table 115, where 
the declinatktn for 1® is 0;24,16°.

For the ring see p. 133 n. 7. If the instrument was correctly set up, a t the moment of equinox the 
direction of illumination would shift from below the shadowing part to above it in spring (and vice
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However, H ipparchus himself does not think tha t there is anything in the H I98 
above observations which provides convincing support for his suspicion that 
there is an irregularity in the length of the year. Instead he makes computations 
on the basis of certain lunar eclipses, and declares that he finds that the 
variation in the length of the year, w ith respect to  the m ean value, is no more 
than 4 of a  day. This would be sufficiently great to take some account of, if it 
were indeed so; but it can be seen to be false from the very considerations which 
he adduces [to support it]. For he uses certain lunar eclipses which were 
observed to take place near [specific] fixed stars to com pare the distance of the 
star called Spica in advance of the autum nal equinox at each [eclipse]. By this 
means he thinks he finds, on one occasion, a distance of 6;°, the maximum in his 
time, and on another a distance of Sl®, the m inim um  [in his time]. Thence he 
concludes that, since it is impossible for Spica [itself] to move so much in such a 
short time, it is plausible to suppose that the sun. which H ipparchus uses to 
determ ine the positions of the fixed stai's, does not have a constant period of 
revolution. But this kind of com putation cannot be m ade without using the 
sun’s position at the eclipse as a basis. Thus, though he does not realise it, at each 
eclipse he is applying for this purpose [determ ination of the sun’s position] the 
accurate observ'ations of solstices and equinoxes which he himself has m ade‘̂  in 
these same yeai-s. By the very act of doing this he shows that, when one compares H I 99 
the length of those years, there is no discrepancy from the [365j[-day intei'V'al.

To take a single example: from the eclipse obser\'ation in the thirty-second 
year of the Third  Kallippic Cycle which he adduces, he clairhs to find that Spica 
is in advance of the autum nal equinox, whereas from the eclipse observation 
in the forty-third year of that cycle he claims to find that it is 5i® in advance.'^ 
Likewise, in order to carr\- out the com putations for the above, he adduces the 
spring equinoxes which he had accurately observ'ed in those years. This was in 
order that from the latter he could find the position of the sun at the middle of 
each eclipse, from these the {X)sitions of the moon, and from the positions of the 
moon those of the stars. He says that the spring equinox in the thirty-second year 
took place on M echir27 [-145 M arch 24] at dawn, and the one in the forty-third 
year on [M echir] 29/30 [-134 M arch 23/24] after midnight, later [in the 
Egy ptian year] than that in the thirty-second by approxim ately 2 i days, which 
is the same am ount as is produced by the addition of precisely 4-day in each of

versa in autumn). Manitius (1427 n.21) explains the phenomenon reported here by Ptolemy as due 
to the effect of refraction on a correctly placed ring. His argument is dismissed by Rome{5) 1230-5 
and [1] II p. 818 n., on the grounds that the true one of the two ‘equinoxes’ could easily be 
determined by the direction of shift. This does not of course invalidate M anitius’ explanation. The 
only good detailed discussion is Britton[l] 29-42, correcting both M anitius and Rome, and 
concluding (p. 34) that multiple “ equinoxes” on a  well-aligned ring would be normal.

Reading wp’ feauTou (with D, Ar) at H198.24 for J(p’ ^auToti (‘which were made in his time’).
The eclipses in question are those o f - 145 Apr. 21 and -1 3 4  Mar. 21 (misfHrinted M arch 31 in 

Pedersen Appendix A, 414). We have no further data  on Hipparchus’ observations of these eclipses. 
For a  detailed discussion of the procedures involved see Rome[5] II. From V II 2 (p. 327) it s e ^ s  
that Hipparchus eventually settled on a compromise figure of 6° from the autum nal equinox in his 
own time.

' ’ M eaning ‘as in the other similar calculations’. D ’s reading is ‘however’, which makes
good sense, but is not supported by the Arabic tradition.



the intervening 11 years. Since, then, the sun has been shown to complete its 
revolution (as measured with respect to those equinoxes) in a time neither greater 
nor less than the [ 3 6 5 -day interval, and since it is impossible for Spica to move 

H200 l |°  in such a small num ber of years, surely it is perverse to use calculations based 
on the above foundations to impugn the very foundations on which they were 
based. It is p>erverse to ascribe the reason for such an impossibly large motion of 
Spica solely to the equinoxes on which the calculations are based (which entails 
the simultaneous assumptions, both that they are accurately observed, and that 
they have been inaccurately observed), when there are several possible causes 
for so great an error. It is more plausible to supp>ose, either that the distances of 
the moon from the nearest stars at the eclipses have been too crudely estimated, 
or that there has been an error or inaccuracy in the determ inations of the 
moon’s parallax with respect to its apparent position, or of the motion of the sun 
from the equinox to the time of mid-eclipse.

However, it is my opinion that H ipparchus himself realised that this kind of 
argum entation provides no persuasive evidence tor the attribution of a second 
anomaly to the sun, but his love of tru th  led him not to suppress anything 
which might in any way lead some people to suspect [such an anomaly]. At any 
rate, he himself, in his theories of the sun and moon, assumes that the sun has a 
single and invariable anomaly, the period of which is the length of the year as 

H201 defined by [return to] solstices and equinoxes. Furtherm ore, when we assume 
that the period of these revolutions of the sun is constant, we see that there is 
never any significant dilTerence lietween the phenom ena observed at eclipses 
and those calculated on the above assumption. Vet there would be a very 
perceptible difi'erence if there were some correction due to a variation in the 
length of the year which we failed to take into account, even if that correction 
were as little as a single degi'ee, which corresponds to approxim ately two 
equinoctial hours.'**

From all the above considerations, and from our own determ ination of the 
period of the [solar] revolution, by means of a series ofobser\'ations o fthe  sun’s 
position, we conclude that the length o fthe  year is constant, provided that it is 
always defined with respect to the same criterion, and not with respect to the 
solsticial and equinoctial points at one time and to the fixed stars at another. VVe 
also conclude that the most natural definition of the revolution is that in which 
the sun, starting from one solstice or equinox or any point on the ecliptic, 
returns to the same point again. And in general, we consider it a good principle 
to explain the phenom ena by the simplest hypotheses possible, in so far as there 
is nothing in the observations to provide a significant objection to such a 
procedure.*^

Now it was already clear to us from H ipparchus’ demonstrations that the 
length of the year, defined with respect to the solstices and equinoxes, is less than 

H202 3-day in excess o f365 days. T he am ount by which it falls short [ofi-day] cannot

'*The time of an eclipse depends on the speeds of sun and moon. Assuming, with Ptolemy, round 
figures of I"'* for the sun’s motion and 13“' for the moon’s, we get a relative motion of 1 ^ “, o ri°  
per hour. Thus a  shift of 1® in the position of the sun at an eclipse l e ^  to a shift of 2 hours in the time.

‘'T h is general principle of the desirability of simplicity in the hypotheses is repeated, but 
modified, at X III 2 p. 600. Cf. also III 4 p. 153.
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be determ ined with absolute certainty, since the difference is so small that for 
m any years in succession the increment [over 365 days] remains sensibly the 
same as a constant i-day  increment. Hence it is possible, when comparing 
observations taken over quite a long period, that the surplus days [over 365], 
which have to be obtained by distributing [the total surplus] over the years of 
the interval [between the observations], may appear to be the same whether one 
takes [observations over] a greater or lesser num ber of years. However, the 
longer the time between the observations compared, the greater the accuracy of 
the determ ination of the period of revolution. This rule holds good not only in 
this case, but for all periodic revolutions. For the error due to the inaccuracy 
inherent in even carefully performed observations is, to the senses of the 
observer, small and approxim ately the same at any [two] observations, whether 
these are taken at a large or a small interv’al. However, this same error, when 
distributed over a smaller num ber of years, makes the inaccuracy in the yearly* 
motion [comparatively] greater (and [hence increases] the error accumulated 
over a longer period of time), but when distributed over a  larger number of 
years makes the inaccuracy [comparatively] less. Hence we must consider it 
sufficient if we endeavour to take into account only that increase in the accuracy H203 
of our hypotheses concerning periodic motions which can be derived from the 
length of time between us and those observations we have which are both 
ancient and accurate. VVe must not, if we can avoid it, neglect the proper 
exam ination [of w ch  records]; but as for assertions of validity ‘for eternity', or 
even for a length of time which is many times that over which the obser\’ations 
have been taken, we must consider such as alien to a love of science and truth.'®

Now, as far as concerns antiquity [of the observations], the summer solstices 
observed by the school of M eton and Euktemon, and, later, the school of 
•Aristarchus, deserve to be com pared with those of our own time.'® However, 
since observ’ations of solstices are, in general, hard to determ ine accurately, and 
since, furthermore, the observations handed down by the above-mentioned 
people were conducted rather crudely (as Hipparchus too seems to think), we . 
abandoned those, and have used instead, for the com parison we propose, 
equinox observations, choosing amongst them, for the sake of accuracy, those 
which H ipparchus especially noted as verv' securely determ ined by him, and 
those which we ourselves have m ade with the greatest accuracy using the 
instruments for such purposes described at the beginning of our treatise [1 12 ].
For these we find that the solstices and equinoxes occur earlier than [one would 
expect from a year of 365]i days by one day in approxim ately 300 years. H204

For H ipparchus noted that in the thirty-second year of the T hird  Kallippic

**This remarkably sensible attitude towards the validity of mean motions derived from 
observations was not imitated by most of Ptolemy’s successors throughout antiquity and the middle 
ages. The contemptuous remark about ‘eternity’ may be a glance at the alcavioi KOv6ve(; 
mentioned at IX  2 p. 422 (see n .l2  there).

'* T he only solstices known to have been observed by these men are that o f-431 June 27, ascribed 
below (p. 138) to ‘the school of M eton and Euktemon’, and that o f-279  {no further details known) 
ascribed below (p. 138) to ‘the school of Aristarchus’. The latter is Aristarchus of Samos, now 
famous mainly for his ‘heliocentric hypothesis’. See Heath, Aristarchus. O n  Meton see ToonrKr[7].
By ‘the school o f . . .’ I translate o\ Jtepi . . . The precise way to interpret the phrase here and 
elsewhere in the Almagest remains obscure.
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CycJe he had m ade a very accurate observation o f  the autum nal equinox, and 
says that he calculated tha t it occurred a t m idnight, th ird-fourth  epagomenal 
day [-146 Sept. 26/27]. T he year is the 178th from the death of Alexander.^® 
285 years later, in the third year of Antoninus, which is the 463rd from the death 
of Alexander, we observed, again very securely, that the au tum nal equinox 
occurred on A thyr 9 [139 Sept. 26], approxim ately one hour after sunrise.^* 
Therefore the period of return  comprised, over 285 complete Egyptian years 
(that is years of 365 days), 70i days plus approxim ately jgth of a day, instead of 
the 71 i  days corresponding to the i-day  surplus for the above [285] years. Thus 
the return  took place earlier than it would have w ith the [365]i-day year by one 
day less about 25 th day.

Similarly, H ipparchus says that the spring equinox in the same thirty-second 
year of the Third  Kallippic Cycle, which he observed most accurately, took 
place on M echir 27 [-145 M ar. 24] a t dawn. T he year is the 178th from the 

H205 death of Alexander. We find that the corresponding spring equinox 285 years 
later, in the 463rd year from the death  of Alexander, took place on Pachon 7 
[140 M ar. 22], approxim ately I hour after noon. Thus this period too 
comprised an increment [over 285 Egyptian years] of the same am ount, 70i + 
about 15 days, instead of the 71 i days corresponding to the i-day  surplus for the 
285 years. Here loo, then, the return of the spring equinox took place earlier 
than it would have with the [365]i-day year by !5ths of a day. Hence, since 

1 day : :s day = 300 : 285, 
we conclude that the return of the sun to the equinoctial points takes place 
earlier than it would for a [365]i-day year by approxim ately one day in 300 
years.

Furtherm ore if, ijecause of its antiquity, we com pare the sum m er solstice 
observed by the school of M elon and Euklem on (though somewhat crudely 
recorded) with the solstice which we determ ined as accurately as possible, we 
will get the same result. For that [solstice] is recorded as occurring in the year 
when Apseudes was archon at Athens, on Pham enoth 21 in the Egyptian 

H206 calendar [-431 June 27], at d aw n ."  W e determ ined securely that the [summer 
solstice] in the above-mentioned 463rd year from the death of Alexander 
occurred on Mesore 11/12 [l4 0 Ju n e2 4 /2 5 ] about 2 hours after midnight. Now 
there are 152 years (as H ipparchus too reckons) from the summ er solstice 
recorded in the archonship of Apseudes to the solstice observed by the school of 
Aristarchus in the fiftieth year of the First K allippic Cycle [-279], and from that 
fiftieth year, which corresponds to the 44th year from the death of Alexander, to 
the 463rd year, in which our observation was made, is 419 years. Therefore in

' “O n this (-323, not -322, the actual year of Alexander’s death) see Introduction p. 10 n. 16. 
'178th’ is inclusive reckoning.

-‘Notoriously, like Ptolemy’s spring equinox and summer solstice observations below, this is 
about 1 day later than the actual event. This is the strongest argument of those modern critics who 
have maintained that Ptolemy ‘faked’ observations. See Toomer(5] 189. The best discussion o( thi.s 
dillkult problem is Britton[l] Chapter II.

The Egyptian date of this observation was not given by Meton himself, who dated it to 
Skirophorion 13 in his calendar, but is a  later convei'sion (found in the Milesian parapegma of the 
latesffond century B.C., see Samuel, 6>«A anrf/foma« f-’Arowo/ô v 44 or Toomer[7] 338, but no doubt 
already made by Hipparchus).
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the whole interval of 571 years, if the summer solstice observed by the school of 
Euktem on took place around the dawning of Pham enoth 21, there is an 
increm ent of approxim ately 140| days over complete Egyptian y e a rs ,in s te a d  
o f the I42 i days corresponding to the i-day  surplus for 571 years. Thus the 
return  in question took place earlier than it would have w ith the [365] I-day 
year by 1 days. Here too, then, it is clear that in a round 600 years the [true] 
year-length accumulates a decrement of approxim ately 2 complete days 
against the [365]i-day year.

W e find the same result from a num ber ofother observ'ations ofour own, and 
we see that H ipparchus agrees with it on more than one occasion. For in his 
work ‘O n the length of the year’ he compares the summer solstice observed by 
Aristarchus at the end of the fiftieth year of the First Kallippic Cycle [-279] with H207 
the one which he himself had determined, again with accuracy, at the end of the 
forty-third year of the T hird  Kallippic Cycle [-134], and then says: ‘It is clear.’ 
then, that over 145 years the solstice occurs sooner than it would have with a 
[365]i-day year by half the sum of the length of day and night’. Again, in ‘O n 
intercalary months and days’ also, after rem arking that according to the 
school of M eton and Euktemon the length of the year comprises 36.5i +?6 days, 
but according to Kallipp>os only 365i days,*^ he comments, in his own words, as 
follows: ‘As for us. we find the numlx-r of whole months comprised in 19 years to 
be the same as they ibund. but we find the year to be even less than i-[day 
beyond 365], l)v approximately jiioth of a day. Thus J n  300 years its 
[accum ulated] detlck is 5 days compared with M eton['s figure], and 1 da\- 
com pared with Kailippos'.' -\nd  when he more or less sums up his opinions in 
his list of his own writings,-^ he says: ‘I have also composed a work on the length 
ol'the year in one l)ook, in which I show that the solar year (by which I mean the 
time in which the sun goes from a solstice back to the same solstice, or from an 
equinox back to the same equinox) contains 365 days, plus a fraction which is 
less than i by about TMth of the sum of one day and night, and not. as the H208 
mathematicians*'’ suppose, exactly i-day beyond the above-mentioned number 
[365] of days.’

Thus I think it appeai-s plainly from the agreement of present-day 
[observations] with earlier ones, that all phenom ena observed up to the present

Ptolemy apparently reckons daw n' (jrptoia^) in the earlier obser\ ation as 6 a.m. in equinoctial 
hours (despite the fact that at .Athens siuirise at summer solstice occurs at al)out 4:45 a.m.!. and 
means '2 hours after midnight’ in his own obsen ation to be 2 a.m.. i.e. equinoctial hours. Then the 
increment over whole days between the oljserx'ations is 20 equinoctial hours =i day. If we were to 
take the times as precisely sunrise' and ‘2 seasonal houre'. the inteival would be closer to 21 hours, 
or if day.

These accord with the Metonic and Kallippic c\cles respectively. See Introduction pp. 12-13.
-^This phrase, which appears to have been misunderstood by all earlier translators, but is 

correctly interpreted by Rehm, Hipparchos' col. 1666. shows that Hipparchus published a 
c a ta lo ^ e  of his own works with a summary of the contents of each. .An example of this kind of 
publication which has come down to us is Gaien's O n his own Books' (itep'i tS v  iSioDV PipX-KOv), 
Scripta Minora II 91 11'. From Galen’s work it is apparent that for a prolific writer of monographs, li^e 
Hipparchus, such a catalogue was necessary as a check on the ascription of his works (perhaps 
circulating in unauthorised versions) to others.

|ia0rmaTiKoi, which includes astronomers. One might almost think from Hipparchus' tone 
that he means 'astrologers’ (this is a standard meaning in later Greek). Ptolemy, however, does not 
use the word in this sense (cf. pp. 175 and 421, where I have translated it 'astronomers’).



time having to do with the length of the solar year accord with the above- 
mentioned figure for the return  to solstices or equinoxes. This being so, if we 
distribute the one day over the 300 years, every year gets 12 seconds of a day. 
Subtracting these from the 365;IS** of the i-day  increment, we get the required 
length of the year as 365; 14,48^. Such, then, is the closest possible approxim a­
tion which we can derive from the available data.

Now, with regard to the determ ination of the positions of the sun and the 
other [heavenly bodies] for any given time, which the construction of individual 
tables is designed to provide in a handy and as it were readym ade form: we 
think that the m athem atician’s task and goal ought to be to show all the 
heavenly phenom ena Ijeing reproduced by uniform circular motions, and that 
the tabular Ibrm most appropriate and suited to this task is one which separates 
the individual uniform motions from the non-uniform [anomalistic] motion 
which [only] seems to take place, and is [in fact] due to the circular models; the 
apparent places of the lx)dies are then displayed by the com bination of these 
two motions into one."’ In order to have this type of table in a form which shall 
be usable and ready to hand for the actual proofs [which are to come], we shall 
now set out the individual uniform motions of the sun in the following manner.

H209 Since we have shown that one revolution contains 365:14,48'^, dividing the 
latter into the 360° of the circle, we find the mean daily motion of the sun as 
approximately 0;59,8.17,13,12.3I° (it will be suHlcient to carry out divisions to 
this numljer [i.e. 6] of se.xagesimal places).

Next, taking ijth  of the daily motion, we find the hourly motion as 
approximately 0;2.27,50,43,3.1°.

Similarly, we multiply the daily motion l)v 30. the num ber of days in one 
month, and get as the mean monthly motion 29:34,8.36.36.15.30°;

and, multiplying it 1)\’ 365. the num ber of days in one Egyptian year, we get 
the mean annual motion as 359;45,24.45,21,8,35°.

Then we multiply the yearly motion by 18 years, since this num ber will 
produce symmetry in the layout ol the tables,'® and, after reduction of complete 
circles, we find the increment over 18 years to be 355:37,25.36,20,34,30°.

So we ha\ e set out three tables for the uniform motion of the sun. each again 
containing 45 lines, and each having two [vertical] sections. T he lirst table will 
contain the mean motions of the l8-\ ear periods, the second will contain the

"’This is an implicit polemic against the ephemeris kind of astronomical table which gives the 
true positions of the planets (their apparent places’). To judge from the suiviving papyri, the most 
common kind of planetary table was that giving the entries ol the heavenly bodies into the zodiacal 
signs tor a period ol'years (see HAMA  II 785 IV.). Ptolemy was perhaps thinking of a kind of 
■perpetual almanac’ which gives the true positions of the planets at regular intervals over a whole 
planetaiT period. His argument is that his approach (mean motion tables modified by equation 
tables) gi\es a tiuer picture of the actual motions, which are uniform and circular.

■“Despite Ptolemy’s clear statement here of his motivation for choosing the 18-year period, it has 
been the subject of much fru itier debate. Starting from a standard height of 45 lines (see I 10 p. 56 
n.67). and allowing some space for headings, he is led by the combination ofsingle years on the same 
sheet with hours to 18 lines for that table (18 + 24 = 42 = 12 + 30 [months and days]). That is also 
the reason why the table Ibr 18-year periods goes up to only 810 years (45 x 18), even though this 
does not reach Ptolemy’s own time from his epoch. By the time he came to compose the Handy 
Tables, he had realised the inconvenience of this arrangement, and switched to 25-year jxfriods and 
an epoch closer to his own lime (Era Philip. -323 Nov. 12).
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yearly motions above and the hourly motions below, and the third will contain 
the monthly motions above and the daily motions below. T he numbers 
representing time will be in the first [i.e. left-hand] section, and the 
corresfKJnding degrees, obtained by successive addition of the appropriate 
am ount for each [time-unit], in the second [i.e. right-hand] section. The tables 
are as follows.
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2. {Table o f the mean motion o f the sun}"^ H 2I0 15

[See pp. 142-3.]

3. {On the hypotheses for uniform circular motionY'^ H216

O ur next task is to dem onstrate the apparent anomaly of the sun. But first we 
must make the general point that the rearward displacements of the planets 
with r espect to the heavens are, in every case, just like the motion ol the universe 
in advance, by nature uniform and circular. T h a t is to say, if we imagine the 
bodies or their circles being carried around by straight lines, in absolutely every 
case the straight line in question describes equal angles at the centre of its 
revolution in equal times. The apparent irregularity [anomaly] in their motions 
is the result of the position and order ol'those circles in the'sphere ol'each by 
means of which they carry out their movements, and in reality there is in essencc 
nothing alien to their eternal nature in the ’disorder' which the phenomena are 
supposed to exhibit. The reason for the appearancc of irregularity can be 
explained by two hypotheses, which are the most basic and simple. When their 
motion is viewed with respect to a circle imagined to be in the plane of the 
ecliptic, the centre of which coincides with the centre of the universe (thus its 
centre can be considered to coincide with our point o f view), then we can 
suppose, either that the uniform motion of each [body] takes place on a circle 
which is not concentric with the universe, or that they have such a concentric 
circle, but their uniform motion takes place, not actually on that circle,*but on H217 
another circle, which is carried by the first circle, and [hence] is known as the 
'epicycle’. It will be shown that either of these hypotheses will enable [the 
planets] to appear, to our eyes, to traverse unequal arcs of the ecliptic (which is 
concentric to the universe) in equal times.

In the eccentric hypothesis: [see Fig. 3.1] we imagine the eccentric circle, on 
which the body travels with uniform motion, to be ABGD on centre E, with 
diam eter AED, on which point Z represents the observer.^' Thus A is the 
apogee, and D the perigee. We cut off equal arcs AB and DG, and join BE, BZ,
GE and GZ. Then it is immediately obvious that the body will traverse the arcs

Corrections to Heiberg’s text: H 210,23-5, colum noffourths(forargum ents342,360and378).
A misprint has disrupted the order, which should beX, va, tP, but has become va, ip.X. (51,12,30).
H 215,38, thirds : Xe (35): Xq, as Is.

^®See HAMA  55-7, Pedersen 134-44.
" ‘the observer’; literally ‘our point of view’.
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TABLE O F T H E SUN’S MEAN M O TIO N

Distance [in Anomaly] from the Sun’s Apogee in n  5;30° to its M ean 
Longitude in the 1st Year of Nabonassar, 0;45° : 265; 15°

18-Year 
Periods 0 - //f ////

18 355 37 25 36 ' 20 34 30
36 351 14 51 12 41 9 0
54 346 52 16 49 1 43 30

72 342 29 42 25 22 18 0
90 338 7 8 1 42 52 30

108 333 44 33 38 3 27 0

126 329 21 59 14 24 1 30
144 324 59 24 50 44 36 0
162 320 36 50 ■>7 5 10 30

180 316 14 16 3 25 45 0
198 311 51 41 39 46 19 30
216 307 29 7 16 1 ^ 54 0

234 303 6 32 52 27 28 30
252 298 43 58 28 1 3 0
270 294 21 24 5 i 37 30

288 289 58 49 ! -̂ 1 ! 29 12 0
306 285 36 15 i 17 1 49 46 30
324 281 13 40 i 54 10 21 0

342 27(i 5! 6 3(t 1 30 55 30
3(U) 272 28 32 1 30 0
378 268 5 57 43 1 12 4 30

396 263 43 23 19 1 32 39 1
414 259 20 48 55 ! 53 13 ; 30
432 254 58 14 1 32 1  13 48 ! <»
450 250 35 40 1 « i  34 22 30
468 24«i 13 5 44 I i 57 0
486 241 50 31 I 21 1 1 31 1 30

504 237 27 56 57 36 6 0
522 233 5 22 33 56 40 30
540 228 42 48 10 17 15 0

558 224 20 13 46 37 49 30
576 219 57 39 22 58 24 0
594 215 35 4 59 18 58 30

612 211 12 30 35 39 33 0
630 206 49 56 12 0 7 30
648 202 27 21 48 20 42 0

666 198 4 47 24 41 16 30
684 193 42 13 1 1 51 0
702 189 19 38 37 22 25 30

720 184 57 4 13 43 0 0
738 180 34 29 50 3 34 30
756 176 11 55 26 24 9 0

774 171 49 21 2 44 43 30
792 167 26 46 39 5 18 0
810 163 4 12 15 25 52 30
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Single
Years 0 , „ „ „

I 359 45 24 45 21 8 35
2 359 30 49 30 42 17 10
3 359 16 14 16 3 25 45

4 359 1 39 1 24 34 20
5 358 47 3 46 45 42 55
6 358 32 28 32 6 51 30

7 358 17 53 17 28 0 5
8 358 3 18 2 49 8 40
9 357 48 42 48 10 17 15

10 357 34 7 33 31 25 50
11 357 19 32 18 52 34 25
12 357 4 57 4 13 43 0

13 356 50 21 49 34 51 35
14 356 35 46 34 56 0 10
15 356 21 11 20 17 8 45

16 356 6 36 5 38 17 20
17 355 52 0 50 59 25 55
18 355 37 25 36 20 34 30

Hours o .// tutr

1 0 2 27 50 43 3 1
2 0 4 55 41 26 6 2
3 0 7 23 32 9 9 3

4 0 9 51 22 52 12 5
5 0 12 19 13 35 15 6
6 0 14 47 4 18 18 7

7 0 17 14 55 1 21 9
8 0 19 42 45 44 24 10
9 0 22 10 36 27 27 11

10 0 24 38 27 10 30 12
11 0 27 6 17 53 33 14
12 0 29 34 8 36 36 15

13 0 32 1 59 19 39 16
14 0 34 29 50 2 42 18
15 0 36 57 40 45 45 19

16 0 39 25 31 28 48 20
17 0 41 53 22 11 51 21
18 0 44 21 12 54 54 23

19 0 46 49 3 37 57 24
20 0 49 16 54 21 0 25
21 0 51 44 45 4 3 27

22 0 54 12 35 47 6 28
23 0 56 40 26 30 9 29
24 0 59 8 17 13 12 31

Months O , /////

30 29 34 8 36 36 15 30
60 59 8 17 13 12 31 0
90 88 42 25 49 48 46 30

120 118 16 34 26 25 2 0
150 147 50 43 3 1 17 30
180 177 24 51 39 37 33 0

210 206 59 0 16 13 48 30
240 236 33 8 52 50 4 0
270 266 7 17 29 26 19 30

300 295 41 26 6 2 35 0
330 325 15 34 42 38 50 30
360 354 49 43 19 15 6 0

Days O f ir* t fft  e i m  ///</<

1 0 59 8 17 13 12 31
2 1 58 16 34 26 25 2
3 2 57 24 51 39 37 33

4 3 56 33 8 52 50 4
5 4 55 41 26 6 2 35
6 5 54 49 43 19 15 6

7 6 53 58 0 32 27 37
8 7 53 6 17 45 40 8
9 8 52 14 34 58 52 39

10 9 51 22 52 12 5 10
11 10 50 31 9 25 17 41
12 11 49 39 26 38 30 12

13 12 48 47 43 51 42 43
14 13 47 56 1 4 55 U
15 14 47 4 18 18 7 45

16 15 46 12 35 31 20 16
17 16 45 20 52 44 32 47
18 17 44 29 9 57 45 18

19 18 43 37 27 10 57 49
20 19 42 45 44 24 10 20
21 20 41 54 1 37 '22 51

22 21 41 2 18 50 35 22
23 22 40 10 36 3 47 53
24 23 39 18 53 17 0 24

25 24 38 27- 10 30 12 55
26 25 37 35 27 43 25 26
27 26 36 43 44 56 37 57

28 27 35 52 2 9 50 28
29 28 35 0 19 23 2. 59
30 29 34 8 36 36 15 30
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AB and GD in equal times, hut will [in so doing] appear to have traversed 
unequal arcs ol’ a circle drawn on centre Z. For 

Z BEA = Z GED.
But Z B Z A < Z  BEA (or Z GED), 

and Z GZD > Z  GED (or Z BEA).
H 2I8 In the epicyclic hypothesis: we imagine [see Fig. .3.2] the circle concentric 

with the ecliptic as ABGD on centre E. with diam eter AEG, and the epicycle 
carried by it, on which the body moves, as Z H 0 K  on centre A.

Then here too it is im m ediateh’ obvious that, as the epicycle traverses circle 
ABGD with uniform motion, say from A towards B, and as the body traverses 
the epicycle with unilorm motion, then when the body is at points Z a n d 0 ,  it 
will appear to coincide with A, the centre of the epicycle, but when it is at other 
points it will not. Thus when it is, e.g., at H, its motion will appear greater than 
the uniform motion [of the epicycle] by arc AH, and similarly when it is at K  its 
motion will appear less than the uniform by arc AK.

Now in this kind of eccentric hypothesis^^ the least speed always occurs at the 
apogee and the greatest at the perigee, since Z AZB [in Fig. 3.1] is always less 
than Z DZG. But in the epicyclic hypothesis both this and the reverse are 
possible. For the motion of the epicycle is towards the rear with respect to the 

H219 heavens, say from A towards B [in Fig. 3.2]. Now if the motion of the body on 
the epicycle is such that it too moves rearw ards from the apogee, that is from Z 
towards H, the greatest speed will occur at the apogee, since at that point both

Ptolemy is hinting at the existence of another kind of eccentric hypothesis, one which is 
geometrically equivalent to that epicyclic hypothesis in which the sense of rotation is the same for 
lx)th planet and epicycle. But he does not discuss this until X I I 1 (p. 555), where we learn that the 
equivalence was already known to Apollonius of Perge (c. 200 B.C.). See H AM A  149- 
50.
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epicycle and body are moving in the same direction. But if the motion ol'the 
body from the apogee is in advance on the epicycle, that is from Z towards K, 
then the reverse will occur: the least speed will occur at the apogee, since at that 
point the body is moving in the opposite direction to the epicycle.

H aving established that, we must next make the additional preliminary 
point that tor bodies which exhibit a double anom aly both the above 
hypotheses may be combined, as we shall prove in our discussions of such 
bodies, but for a body which displays a single invariant anom aly, a single one of 
the above hypotheses will suirice; and [in this case] all the phenom ena will be 
represented, with no difl'erence, by either hypothesis, provided that the same 
ratios are preserved in both. By this I mean that the ratio, in the eccentric 
hypothesis, of the distance between the centre of vision and  the centre of the 
eccentre to the radius of the eccentre, must be the same as the ratio, in the 
epicyclic hypothesis, of the radius of the epicycle to the radius o f the deferent;^^ 
and furthermore that the time taken by the body, travelling towards the rear, to 
traverse the immovable eccentre, must be the same as the tim e taken by the 
epicycle, also travelling towards the rear, to traverse the circle w ith the observer 
as centre [the deferent], while the body moves with equal [angular] speed about 
the epicycle, but so that its motion at the apogee [of the epicycle] is in advance.

If  these conditions are fulfilled, the identical phenom ena will result from 
either hypothesis. We shall briefly show this [now] by com paring the ratios in '  
abstract, and later by means of the actual numbers we shall assign to them for

H220

‘deferent’: see Introduction p. 21.



the sun’s anomaly. I say then, first, that in both hypotheses, the greatest 
difference between the uniform m otion and the apparent, non-uniform motion 
(which is also the notional position of the m ean speed for the bodies)^® occurs 
when the apparent distance from the apogee comprises a quadran t, and that 
the time between apogee [position] and the above-mentioned mean speed 
[position] is greater than the time between m ean speed and perigee. Hence, for 
the eccentric hyp>othesis always, and for the epicyclic hypothesis when the 
motion at apogee is in advance, the time from least speed to m ean is greater 

H221 than the time from mean speed to greatest; for in both hypotheses the slowest 
motion takes place at the ap)ogee. But [for the epicyclic hypothesis] when the 
sense of revolution of the body is rearwards from the apogee on the epicycle, the 
reverse is true: the time from greatest speed to mean is greater than the time 
from mean to least, since in this case the greatest speed occurs at the apogee.

First, then, [see Fig. 3.3] let the body’s eccenter be ABGD on centre E, with 
diam eter AEG. O n this diam eter take the centre of the ecliptic, that is, the 
position of the obseiA er, at Z, and draw  BZD through Z at right angles to AEG, 
Let the positions of the body he B and D, so that, obviously, its apparent 
distance Irom apogee A is a quadrant on either side. W e have to prove that the 
greatest difference between mean and anomalistic motion takes place at points 
B and D.

Jo in  EB and ED.
It is immediately obvious that the ratio ofZ EBZ to 4 right angles equals the

fl
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'^Relerence to III 4 p. 157.
Ptolemy never aUempts to prove this staiement alwiit the |x>sition where the apparent motion 

ftjuals the mean motion, l>ul it is intuitively seen to he true i'rom the epicyclic model. See HAMA  57, 
Pedersen 143.



ratio of the arc of the difference due to the anomaly^* to the whole circle; for H222 
Z AEB subtends the arc of the uniform motion, and  ZAZB subtends the arc of the 
apparent, non-uniform motion, and the difference between them is Z EBZ.

I say, then, tha t no angle greater than  these two [Z EBZ and Z EDZ] can be 
constructed on line EZ at the circumference of circle ABGD.
[Proof;] Construct at points © and K  angles E 0 Z  and EK Z, and  join ©D, KD.
T hen  since, in any triangle, the greater side subtends the greater angle, 

and ® Z > Z D ,
Z ©DZ >  Z D©Z.

But Z ED© = Z E©D, since E© = ED [radii].
Therefore, by addition, Z EDZ (=Z EBD) >  Z E 0 Z .

Again, since DZ > K Z ,
Z ZK D  > Z  ZD K.

But Z EK D  = Z ED K, since E K  = ED.
Therefore, by subtraction, Z EDZ (= Z EBZ) > Z  EKZ.

Therefore it is impossible for any other angle to be constructed in the way H223 
defined greater than those a t points B and D.

Simultaneously it is proven that arc AB, which represents the time from least 
speed to mean, exceeds BG, which represents the time from mean speed to 
greatest, by twice the arc comprising the equation of anomaly. For Z AEB 
exceeds a right angle (Z EZB) by Z EBZ, and Z BEG falls short of a right angle 
by the same am ount.

To prove the same theorem again for the other hypothesis, let [Fig. 3.4] the 
circle concentric with the universe be ABG on centre D  and diam eter ADB, and 
let the epicycle which is carried around it in the same plane be EZH on centre 
A. Let us suppose the body to be at H when its apparen t distance from the 
apogee is a quadrant. Jo in  AH and DHG.

I say that D H G  is tangent to the epicycle; for tha t is the position in which the 
dilference between uniform and anomalistic motion is greatest. H224
[Proof:] T he m ean motion, counted from the apogee, is represented byZ EAH; 
for the body traverses the epicycle with the same [angular] speed as the epicycle 
traverses circle ABG. Furtherm ore the dilference between m ean and apparent 
motion is represented by Z ADH. Therefore it is clear th a t the am ount by which 
Z EAH exceeds Z ADH (namely Z AHD) represents the apparent distance of 
the body from the apogee. But this distance is, by hypothesis, a quadrant.
Thei efore Z AHD is a right angle, and hence line D H G  is tangent to epicycle 
EZH. Therefore arc .AG, since it comprises the distance between the centre A 
and the tangent, is the greatest possible difl'erence due to the anomaly.

By the same reasoning, arc EH, which according to the sense of rotation on
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**’This expression is later used as a technical term for the angle corresponding to Z EBZ here, and 
is usually translated 'equation of anomaK'. See Introduction pp. 21-2.

"  Precisely this statement, that the greater angle is subtended by the greater side, is the - 
enunciation of Euclid I 19 (which Heilierg refers to ad loc.)- But in fact what underlies Ptolemy’S' 
statement is that, if side a is greater than side b, angle A is greater than angle B. which isEuclidl 18. 
Perhaps we should adopt the reading of D, bnb TTjv (iEi^ova 7rA.eupdv fj (ic't^cov ytovia ujroTcivet 
(‘the greater angle subtends the greater side’), and assume that the text has been assimilated to the 
(wrong) Euclidean wording.
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the epicycle assumed here, represents the time from least speed to mean, 
exceeds arc HZ, which represents the time from m ean speed to greatest, by 

H225 twice arc AG. For if we produce DH to 0  and  draw  A K 0  a t right angles to EZ,
Z K A H  = Z ADG,3« 

and arc K H  = arc AG.*’
And arc EK H  is greater than a quadran t by arc K H ,
while arc Z H  is less than a  quadran t by arc KH.

Q;E.D.
It is also true that the same effects will be produced by both hypotheses if one 

takes a partial motion over the same stretch of time for both, w hether one 
considers the mean motion or the apparent, o r the difference between them, 
that is the equation of anomaly. T he best way to see that is as follows.

[See Fig. 3.5.]"*® Let the circle concentric with the ecliptic be ABG on centre 
D, and let the circle which is eccentric but equal to the concentre ABG be EZH  
on centre 0 .  Let the common diam eter through their centres D, 0  and the

”  Euclid VI 8.
** To get a grammatical text I excise 6tioia at H225,4. It was introduced (at an early period, sincc 

it is reflected in the Arabic translations) as a correction of Ptolemy’s inaccurate (to the scholastic 
mind) statement that arc K H  equals arc AG. Since the arcs are on circles of diilerent sizes, they are 
technically only ‘similar’. An alternative correction would be lo a i nev yiyvovTai di re vno  KAH 
Koi AAH ywv'iai (which is actually found in Theon's commentary ad loc., Rome III 868,8, but is 
probably a  paraphrase; it also seems to be behind L).

The figure in Heiberg (p. 225) wrongly omits the letter corresponding to L (though this is found 
in all mss.). Manitiiis, misled by this, ‘emended’ AA at H226,23 to the nonsensical ‘AB’.
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apogee E be EA 0D . C ut off at random  afl arc AB on the concentre, and with 
centre B and  radius D© draw  the epicycle K Z. Jo in  KBD.

I say that the body will be carried by both kinds o f  m otion [i.e. according to 
both hypotheses] to point Z, the intersection of the eccentre and the epicycle, in 
the same time in all cases (that is, the three arcs, EZ on the eccentre, AB on the

H226

concentre, and K.Z on the epicycle, are all similar), and  tha t the difference 
between uniform and anomalistic motion, and the apparen t positions of the 
body, will turn out to be one and the same according to both hypotheses. 
[Proof;] Jo in  Z 0 , BZ and DZ.

Since, in the quadrilateral B D 0Z , the opfKJsite sides are equal, Z 0  to BD and 
BZ to D 0 , B D 0Z  is a parallelogram.

Therefore Z E 0 Z  = Z ADB = I  ZBK.
Therefore, since they are angles at the centre [of circles], the arcs subtended 

by them are also similar, i.e.
Arc EZ of the eccentre j] arc AB of the concentre || arc K Z of the epicycle.
Therefore the body will be carried by both kinds of motions in the same time 

to the same point, Z, and will appear to have traversed the same arc AL of the 
ecliptic from the apogee, and accordingly the equation of anom aly will be the 
same in both hypotheses; for we showed that that equation is represented by 
Z D Z 0  in the eccentric hypothesis and by ZBDZ in the epicyclic hypothesis, and 
these two angles are alternate and equal, since, as we have shown, Z 0  is parallel 
to BD.

It is obvious that the same results will hold good for all distances [of the body 
from the apogee]. For quadrilateral 0D Z B  will always be a  parallelogram, and 
[hence] the motion of the body on the epicycle will actually describe the

H227
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eccentric circle, provided the ratios^' a re  similar and their memljers equal in 
both hypotheses.

Moreover, even if  the members are unequal in size, provided their ratios are 
similar, the same phenom ena will result. This can be shown as {ollows.

As before [see Fig. 3.6] let the circle concentric with the universe be ABG on 
centre D and the diameter, on which the body reaches apogee and perigee 
positions, ADG. Let the epicycle be draw n on point B, at an arb itrary  distance, 
arc AB, from apogee A. Let the arc traversed by the body [on the epicycle] be 
EZ, which is, obviously, similar to AB, since the revolutions on [both] circles 
have the same period. Jo in  DBE, BZ, DZ.

150 I I I  3. Equivalence o f  eccentric and epicyclic hypotheses
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Now it is immediately obvious that, according to this [epicyclic] hypothesis, 
Z ADE will always equal Z ZBE, and the body will appear to lie on line DZ.

But I say that the body will also appear to lie on the same line DZ according 
to the eccentric hypothesis, whether the eccentre is greater or smaller than the 
concentre ABG, provided only that one assumes that the ratios are similar and 
that the periods of revolution are the same.
[Proof:] Let the eccentre be draw n under the conditions we have described, 
greater [than the concentre] as H© on centre K  ([which must lie] on AG), and

The ratios arc c:R aiid nR .
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smaller [than the concentre] as LM  on centre N  (this too [must lie on AG]). 
Produce DZ as D M Z 0 , and DA as DLAH, and  jo in  © K , M N.

T hen  since
DB:BZ = © K :K D  = M N :N D  [by hypothesis], 

and Z BZD = Z M D N  (since DA is parallel to BZ);
the three triangles [ZD B ,D 0K ,D M N ] are equiangular, 

and Z BDZ = Z D 0 K  = Z D M N  (angles subtended by corresponding sides).
Therefore DB, 0 K  and M N are parallel.

•. Z ADB = Z A K 0  = Z ANM .
Since these angles are a t the centres of their circles, the arcs on them, AB, H 0  

and LM , will also be similar.
So it is true, not only that the epicycle has traversed arc AB in the same time 

as the body has traversed arc EZ, but also that the body will have traversed arcs 
H© and LM  on the eccentres in that same time; hence in every case it will be 
seen along the same line D M Z 0 , according to the epicyclic [hypothesis] at 
point Z, according to the greater eccentre at point ©, and according to the 
smaller cccentre at point M. T he same will hold true in all positions.

A further consequence is that where the apparent distance of the lx>dy from 
apogee [at one moment] equals its apparent distance from perigee [at another], 
the equation of anomaly will be the same at both positions.
[Proof:] In the eccentric hypothesis [see Fig. 3.7], we draw  the eccentric circle

H229
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ABGD on centre E and diam eter AEG through apogee A. We suppose the. H230 
observer to be located at Z, and draw  an arb itrary  [chord] BZD through Z, and 
join EB and ED. Then the apparent positions [ o f the body at B and D] will be 
equal and opposite, that is the angle AZB from the apogee will be equal and
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H231
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opposite to angle G ZD  from the perigee; and the equation of anom aly will be 
the same [in both cases], since

BE = ED, and  Z EBZ = Z EDZ.
So the arc [AB] of mean motion counted from the apogee A will exceed the arc of 
apparent motion (i.e. the arc subtended by angle AZB) by the same equation 
[equal to Z EBZ] as the arc of mean motion counted from the perigee G is 
exceeded by the arc oi apparent m otion (i.e. the [equal] arc subtended by 
Z GZD). For

Z AEB > Z  AZB, and Z G ED <  Z GZD.
In the epicyclic hypothesis [see Fig. 3.8] if, as before, we draw  the concentre 

ABG on centre D and diam eter ADG, and the epicycle EZH  on centre A, draw 
an arbitrary line DHBZ, and join AZ and AH, then the arc AB representing the 
equation of anomaly will be the same at both positions, i.e. w hether the body is

G
Fig. 3.8

at Z or at H. And the distance of the body from the p>oint on the ecliptic 
corresponding to the apogee when it is at Z will be equal to its distance from the 
point corresponding to the perigee when it is at H. For the arc of its apparent 
distance from the apogee is represented by Z DZA, since, as we showed, this is 
the difference between the mean motion and the equation of anomaly.'*^ And 
the arc of its apparent distance from the perigee is represented by Z ZH A  (for 
this, too, is equal to the mean motion from the perigee plus the equation of 
anomaly).

But Z DZA = Z ZHA, since AZ = AH.

DZA = Z EAZ-Z ADZ. Shown p. 147.



Thus here too we conclude that the mean motion exceeds the apparent near 
the apogee (i.e. Z EAZ exceeds/ AZD) by the same equation (namely Z ADH) 
as the m ean m otion is exceeded by the (same) apparent motion (i.e. Z HAD by H232 
Z AHZ) near the perigee.

Q .E.D.

I l l  4. Hipparchus on season lengths and solar anomaly 153

4. {On the apparent anomaly o f the sun}*^

H aving set out the above prelim inary theorems, we must add a further 
prelim inary thesis concerning the apparent anom aly of the sun. This has to be a 
single anomaly, of such a kind that the time taken from least speed to mean shall 
always be greater than the time from mean sp>eed to greatest, for we find that 
this accords with the phenomena. Now this could be represented by either of the 
hypotheses described above, though in case of the epicyclic hypothesis the 
motion of the sun on the apogee arc of the epicycle would have to be in advance. 
Howev'er, it would seem more reasonable to associate it with the eccentric 
hypothesis, since that is simpler and is performed by means of one motion 
instead of two.*'*

O ur first task is to find the ratio of the eccentricity of the sun’s circle, that is, 
the ratio which the distance between the centre of the eccentre and the centre of 
the ecliptic (located at the obser\'er) bears to the radius of the eccentre. We must 
also find the degree of the ecliptic in which the apogee of the eccentre is located.
These problems have been solved by H ipparchus with great care. He assumes H233 
tha t the interval from spring equinox to summ er solstice is 94^ days, and that the 
interval from summer solstice to autum nal equinox is 92i days, and then, with 
these observations as his sole data, shows that the line segment between the 
above-mentioned centres [of eccentre and ecliptic] is approxim ately 53th of the 
radius of the eccentre, and that the apogee is approxim ately 2M° (where the 
ecliptic is divided into 360°) in advance of the summ er solstice. We too, for our 
own time, find approxim ately the same values for the times [taken by the sun to 
traverse] the above-mentioned quadrants, and for those ratios. Hence it is clear 
to us that the sun’s eccentre always maintains the same position relative to the 
solsticial and equinoctial points.*®

In order not to neglect this topic, but rather to display the theorem worked 
out according to our own num erical solution, we too shall solve the problem, for 
the eccentre, using the same observed data, namely, as already stated, that the 
interv al from spring equinox to summ er solstice comprises 94^ days, and that

«S cc H AM A  57-8, Pedersen 144-9.
the desirability of simplicity in hypotheses see III 1 p. 136 with n.l7 .

Reading [iexa rtdon^ OJtoo5f^(; (with D, Ar) at H233.1-2 for vietd OJiouS*f̂ (; (‘with care’).
‘̂ According to Ptolemy the sun’s apogee (unlike those of the five planets, as it later tuiiis out, IX 

7) does not share in the motion of precession. The reproaches that have been cast on Ptolemy (e.g. 
by M anitius I 428-9) for failing to discover that the sun’s apogee too has a  motion through the ' 
ecliptic are unjustified. To do that he would have needed observations of the time of equinox and 
solstice far more accurate than those available (to the nearest i-day), and not only for his own time 
but also for an earlier time. See the papers by Rome(3] and Petersen and Schmidt for a 
mathematical demonstration of this.



from sum m er solstice to autum nal equinox 92i days. For our own very precise 
H234 observations of the equinoxes and the sum m er solstice in the 463rd year from 

the death of Alexander confirm the day-totals in these intervals: as we said, 
[III I, p. 138], the autum nal equinox occurred on A thyr [III] 9, [139 Sept. 26], 
a lter sunrise, the spring equinox on Pachon [IX ] 7 [140 M arch 22], after noon 
(thus the interval [between them] is ITSi days), and the summ er solstice on 
Mesore [X II] 11/12, [140 Ju n e  24/25], after m idnight. Thus this interval, from 
spring equinox to summ er solstice, comprises 94 | days, which leaves approxi­
mately 92i days to complete the year, this num ber represents the interval from 
the sum m er solstice to the following autum nal equinox.

[See Fig. 3.9.] Let the ecliptic be ABGD on centre E. In it draw two 
diameters, AG and BD, at right angles to each other, through thesolsticialand 
equinoctial points. Let A represent the spring [equinox], B the summer 
[solstice], and so on in order.

fl
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■*’ In III I the precise limes of day given a r e ‘I hour alter sunrise ',‘I hour after ncxm 'and‘2 hours 
after m idnight’. Thus the precise intervals are 178i days and 94"* IS", leading to corrected figures of 
94** 13*' and 92^ 11" lor the intervals used in the computation. But see p. 139 n.23 lor the possibility 
that the time of solstice is ‘2 seasonal hours’ (®»1T equinoctial haul's). Even as small a chan.ge as 1 
hour in an interval has an ell'ect ofalx>ut 1° in the location of the apogee (cl. Petersen and Schmidt 
80-3 and Rome[3] 13-15).



Now it is clear that the centre of the eccentre will be located between lines EA 
and EB. For semi-circle ABG comprises more than half of the length of the year, 
and hence cuts off more than a semi-circle of the eccentre; and  quadran t AB too 
comprises a longer time and cuts off a greater arc of the eccentre than quadrant H235 
BG. This being so, let point Z represent the centre of the eccentre, and draw the 
diam eter through both centres and the apogee, EZH. W ith centre Z and 
arbitrary radius draw  the sun’s eccentre 0 K L M , and- draw  through Z lines 
N X O  parallel to AG and PRS parallel to BD. Draw  perpendicular 0 T Y  from 
© to N X O  and perpendicular KFQ, from K  to PRS.

Now since the sun traverses circle 0 K L M  with uniform motion, it will 
traverse arc 0 K  in 94^ days, and arc K L in 92| days. In 94j days its mean 
motion is approxim ately 93;9°, and in 92  ̂ days 91; 11°. Therefore 

arc 0 K L  = 184;20°
and, by subtraction of the semi-circle N PO  [from arc © K L], H236
arc NQ  + arc LO  [= 184;20° -  180°] = 4;20°

So arc ©NY = 2 arc 0 N  = 4;20° also,
.'. 0 V = Crd arc ©NY 4;32‘’t  where the diam eter of 

and EX = 0 T  = !©Y = 2;16‘’ J the eccentre = 120’’,
Now since arc © N PK  = 93;9°,

and arc ©N = 2; 10° and quadran t NP = 90°. 
bv subtraction, arc PK  = 0;59°,

and arc K P Q =  2 arc PK = I;58°.
K F Q  = Crd arc K P Q  = 2;4'’. 1 whefe the diameter 

and ZX = K F = 5K F Q =  1;2‘’ J of the eccentre = 120’’.
And we have shown that EX = 2:16’’ in the same units.

Now since E Z ' = ZX" + E X ',
EZ 2 :2 ^ ’’ where the radius of the eccentre = 60’’.
Therelbre the radius of the eccentre is approxim ately 24 times the distance 
between the centres of the eccentre and the ecliptic.

Now. since EZ:ZX = 2;29? ; l;2, H237
ZX will be about 49;46‘’ where hypotenuse EZ = 120'’.

Therefore, in the circle about right-angled triangle EZX. 
a r c Z X « 4 9 ° .

. _ j  49°° where 2 right angles = 360°°
 ̂ ~ [ 24;30° where 4 right angles = 360°°.

So, since Z ZEX  is an angle at the centre of the ecliptic, arc BH, which is 
the am ount by which the apogee at H is in advance of the summer solstice 
at B, is also 24;30°.

Furtherm ore, since quadrants OS and SN are each 90°, 
and arc OL = arc 0 N  =2; 10°, 
and arc MS = 0;59°, 

arc LM  = 86;51°, 
and arc M© = 88;49°.

But the sun in its uniform motion travels 
86;51° in about 8 ^  days, 

and 88;49° in about_9(^ days.
Hence it is clear that the sun will traverse arc GD, which extends from the
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H238 autum nal equinox to the w inter solstice, in about 88^ days, and arc DA, which 
extends from the winter solstice to the spring equinox, in about 90i days. The 
above conclusions are in agreem ent w ith w hat H ipparchus says.

Using these quantities, then, let us first see w hat the greatest difference 
between mean and anomalistic motions is, and at w hat points it will occur.

[See Fig. 3.10.] Let the eccentric circle be ABG on centre D and diam eter 
ADG through the apogee A, on which E represents the centre of the ecliptic. 
Draw EB at right angles to AG, and jo in  DB.

Now since, where BD, the radius, equals 60’’, DE, the eccentricity, equals 
2;30‘’ (according to the ration 24:1),

in the circle about right-angled triangle BDE,
DE = S'* where hypotenuse BD = 120'’, 

and arc DE 4;46°.
Thereiore Z DBE, which represents the greatest equation of anomaly,

_ f4;46°° where 2 right angles -  360°°
H239 |^2;23° where 4 right angles = 360°

In the same units, right angle BED = 90°,
and Z BDA = Z DBE + Z BED = 92;23°.

R
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Fig. 3.10

Thus, since Z BDA is at the centre of the eccentre and Z BED is at the centre of the 
ecliptic, we conclude that the greatest equation of anom aly is 2;23°, and the 
position where it occurs is 92;23° from the apogee, measured along the eccentre 
in uniform motion, and (as we proved earlier) a quadian t, or 90° [from the 
apogee], measured along the ecliptic in anomalistic motion. It is obvious from 
our previous results that in the opposite semi-circle** the m ean speed and the 
greatest equation of anom aly will occur at 270° of apparent motion, and at 
267;37° of mean motion on the eccentre.

**Reading nni)cuKA.iov (wiih D,Ar) lor Turina (‘segment’) at H239.12.
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We now want to use numerical com putation, as we promised [pp. 145-6], to 
show that one derives the same quantities from the epicyclic hypothesis too, 
provided the same ratios are preserved in the way we explained.

[See Fig. 3.11.] Let the circle concentric to the ecliptic be ABG on centre D 
and diam eter ADG, and the epicycle circle EZH  on centre A. From D draw a 
tangent to the epicycle, DZB, and jo in  AZ. Then, as before, in the right-angled 
triangle ADZ, AD is 24 times AZ, so that, in the circle about right-angled 
triangle ADZ, AZ is, again, S'* where hypotenuse AD is 120’’, and the arc on AZ 
is 4;46°.

• /  AD7 -  /  where 2 right angles = 360°®
.. Z AUZ -  |2 ;2 3 °  where 4 right angles = 360°.

H240

G
Fig. 3.11

Therefore the greatest equation of anomaly, namely arc AB, has been found to 
be 2;23° here too. in agreement with [the previous result], and the arc of 
anomalistic motion is 90°. since it is represented by the right angle AZD, while 
the arc of mean motion, which is represented by Z EAZ. is again 92:23°.

5. {On the construction o f a table for indii'idual subdivisions o f the anomaly}*^

In order to enable one to detem iine the anom alistic motion over anv

”  R e a d in g  tAv dvtonaXiaiv Kavovonoiiaq at H240.16-17. with D (cf. all G reek  mss. in the table 
of contents, H190.9-10) forTTfq dv(ojiaX.'ia<; ejnaKEvecai; (‘investigation of the anomaly for partial 
stretchcs', which is the reading ol .\r  in lx)th places).

O n chs. 5 and 6 see HAMA  58-60. Pedersen 149-51.
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subdivision [of the circle], we shall show, again for both hypotheses, how, given 
one of the arcs in question, we can com pute the others.

H241 [See Fig. 3.12.] First, let the circle concentric to the ecliptic be ABG on centre 
D, the eccentre EZH on centre 0 ,  and let the diam eter through both centres 
and the apogee E be E A 0D H . C ut off arc EZ, and jo in  ZD, Z 0 . First, let arc 
EZ be given, e.g. as 30°.

G
Fig. 3.12

H242

Produce Z 0  and drop the perpendicular to it I’rom D, DK.
Then, since arc EZ is, by hypothesis, 30°,

30° where 4 right angles = 360°
60°° where 2 right angles = 360°°.

Therefore, in the circle about right-angled triangle D 0 K , 
arc D K  = 60° 

and arc K 0  = 120° (supplement).
Therefore the corresponding chords

D K  = 60’’ 1 
and  K 0  I lOSiSS' J hypotenuse D 0  = 120'.

Therefore, where D 0  = 2;30*’ and radius Z 0  = 60'’,
D K  = 1;15'’ and 0 K  = 2;10’’.

Therefore, by addition [ o f0 K  to radius Z 0 ], K 0 Z  = 62; 10’’
Now since DK^ + K 0Z ^  = ZD^, 

the hypotenuse ZD 62; 1 P .
Therefore, where ZD = 120^ D K  = 2;25p, 

and, in the circle about right-angled triangle ZD K , 
arc D K  = 2;18°.



■ Z D 7K  _ where 2 right angles = 360°®
~ \l;9®  where 4 right angles = 360®.

I l l  5. Derivation o f  mean motion from  anomalistic motion 159

T hat [1;9®] will be the am ount of the equation of anomaly a t this position.
And Z E 0 Z  was taken as 30°.

Therefore, by subtraction, Z ADB (which equals arc AB of the ecliptic) equals 
28;5P.

Furtherm ore, if any other of the [relevant] angles be given [instead of 
Z E 0Z ], the remaining angles will be given, as is immediately obvious if, in the 
same figure [see Fig. 3.13] we drop perpendicular 0 L  from 0  on to ZD.

G
Fig. 3.13

For suppose first that arc AB of the ecliptic, i.e. Z 0 D L , is given. Then the 
ratio D 0 ;0 L  will be given.®® And since D © :0Z  is also given, 0 Z :0 L  will be 
g iv e n .H e n c e  Z 0 Z L , the equation of anomaly, will be g iv e n .a n d  so w'ill 
Z E 0 Z , i.e. arc EZ of the eccentre.

O r suppose, secondly, that the equation of anomaly, i.e. Z 0 Z D , is given: we 
will get the same results in reverse order. For fromZ 0 Z D  the ra tio 0 Z :0 L  will 
be given, and 0 Z :0 D  is given from the beginning. Hence D © :0L  will be given, 
and hence Z 0 D L , i.e. arc AB of the ecliptic, and [hence] Z E 0 Z , ,i.e. arc EZ of 
the eccentre.

H243

Euclid Z)a/a 40: ifthe angles ofa triangle are given, its sides are given in form (i.e. the ratio of the 
sides is given, cf. Data 3).

Euclid Da/a 8: magnitudes having a given ratio to the same magnitude have a given ratio to 
each other. D © ;0Z is given as the ratio of eccentricity.

Euclid Data 43: if, in a rigbt-angled triangle, the sides about one of the acute angles have a given 
ratio, the triangle is given in form (cf. n,50).
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Next [see Fig. 3.14] let the circle concentric with the ecliptic be ABG on 
centre D and diameter ADG, and let the epicycle (in the same ratio [to circle ABG 
as the eccentricity to the eccentre]) be EZH© on centre A. C ut off arc EZ and join 
ZBD and ZA. Let arc EZ again be taken in the same am ount, 30®. Drop 
perpendicular Z K  ii-om Z on to AE.

G
Fig. 3.14

Since arc EZ = 30°,
Z EAZ -  { ^  right angles = 360°

\6 0 °°  where 2 right angles = 360°°. 
Therefore in the circle about right-angled triangle AZK,

H244 arc ZK  = 60°
and arc AK = 120° (supplement).

Therefore the corresponding chords
ZK. “ 60** 1 

and KA = 103;55' |  AZ = 120'.
Therefore where hypotenuse AZ = 2;30'’ and  radius AD = 60*’

ZK  = l;15^  K A  = 2;10^ 
and, by addition, KAD = 62; 10**.

And since ZK^ + KD^ = ZBD^,
ZD = 62; 11", where Z K  = U lS”.

So where hypotenuse DZ = 120**, Z K  = 2;25’’, 
and, in the circle about right-angled triangle D ZK, 

arc ZK  = 2;18°.

Z ZD K ^ /2 ;1 8 °°  where 4 right angles = 360°° 
\  1;9° where 2 right angles = 360°.



This is, again, the am ount of the equation of anomaly, which is represented by 
arc AB.

And Z EAZ was taken as 30°.
Therefore, by subtraction, Z AZD, which represents the arc of apparent motion 
on the ecliptic, is 28;51°.

These am ounts are in agreement with what we found for the eccentric 
hypothesis.

H ere too, if any other angle be given [instead ofZ EAZ], the remaining angles 
will be given, [as can be seen] on the same figure [see Fig. 3.15] if the 
perpendicular AL is dropped from A on to DZ.
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H245

G
Fig. 3.15

For if, as before, we first take the arc of apparent motion on the ecliptic, i.e. 
Z AZD, as given, from this the ratio ZA; AL will be given. And since ZA: AD was 
given from the beginning, DA; AL will be given. Hence Z ADB will be given, i,e. 
arc AB, the arc of the equation of anomaly, and so willZ EAZ, i.e. arc EZ of the 
epicycle.

O f  if, secondly, we take the equation of anomaly, i.e. Z ADB, as given, then, in 
the same way but in reverse order, from this AD:AL will be given; and since 
DA:AZ was given from the beginning, ZAiAL will also be given; and hence 
Z AZD will be given, which corresponds to the arc of apparen t motion on the 
ecliptic, and so will Z EAZ, i.e. arc EZ of the epicycle.

Let us again take the previous figure for the eccentre [see Fig. 3.16], and cut 
off from H, the perigee of the eccentre, arc H Z , which we again take as 30®. Jo in  
DZB and Z 0 , and drop perpendicular D K  from D on to 0 Z .

H246
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G
Fig. 3.16

Then since arc ZH = 30°,

where diam eter D 0  = 120'*.

30° where 4 right angles = 360°
60°° where 2 right angles = 360̂  ̂

Therefore in the circle about right-angled triangle D 0 K , 
arc DK = 60° 

and arc K 0  = 120° (supplement).
Therefore the corresponding chords

DK = eo"
and K 0  = lOS-.SS”

Therefore where hypotenuse D 0  = 2;30‘’ and radius 0 Z  = 60'’,
H247 DK = UlS** and 0 K  = 2 ;ltf’,

and KZ = 57;50’’ by subtraction [of 0 K  from 0 Z ] 
And since DZ^ = DK^ + KZ^,

DZ «  57;51‘’ where DK = l^ S ”.
Therefore where hypotenuse DZ = 120’’, D K  = 2;34’’.̂ ^

And, in the circle about right-angled triangle D ZK , 
arc DK = 2;27°.

• Z DZK -  I  ^
[1;14° (approximately) where 4 right angles = 360*̂

Reading 3 for 0 A.5 kq (2;34,36) at H247,6, with Ar. Accurate computation gives 2;35,34 (cf. 
rcadinnol'D^), but Ptolemy gives his resuhs here only to minutes, and 2;34 is c orrect, since Crd 2:27° 
= 2;33,55’’ =» 2:34'’. The 36 was presumably a marginal correction to the 34 (cf. reading of D at 
H249.20), which was later mistakenly incorporated as an extra place. The same correction has lo !>e 
made at H249,20 (Ixjth made by Manitius).
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This [1;14®], then, is the equation of anomaly.
And since Z Z 0 H  was taken as 30®, 

by addition, Z BDG, i.e. arc GB of the ecliptic, equals 31; 14°.
H ere too, in the same way [as before], [see Fig. 3.17], we produce BD and 

drop p>erpendicular 0 L  on to it.

G
Fig. 3.17

Then if, first, we take arc GB of the ecliptic, i.e. Z 0 D L , as given, from this the 
ratio D © :0L  will be given. And since 0 D :0 Z  was also given from the 
beginning, Z 0 :0 L  will be given. Hence we will have as given angles 

Z 0 Z D , i.e. the equation of anomaly 
and Z Z 0 D , i.e. arc HZ of the eccentre.
O r if, secondly, we take the equation of anomaly, i.e. Z 0 Z D , as given, then 

conversely, from this Z 0 :0 L  will be given. And since Z 0 :0 D  was also given 
from the beginning, D 0 :0 L  will be given. Hence we will have, as given angles, 

Z 0 D L , which corresponds to arc GB of the ecliptic 
and Z Z 0 H , i.e. arc H Z of the eccentre.

Similarly, on the previous figure of concentre and epicycle [see Fig. 3.18], we 
cut off arc 0 H  from the perigee, in the same am ount of 30°, join AH and DHB, 
and drop perpendicular H K  from H on to AD.

Then since arc 0 H  is again 30°,
/  <=)a h  -  /  where 4 right angles = 360°

” \  60°° where 2 right angles = 360°°. 
Therefore in the circle about right-angled triangle H KA, 

arc H K  = 60° 
and arc AK = 120° (supplement).

H248

H249
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Fig. 3.18

H250 Z H D K  =

Therefore the corresponding chords 
H K  = 60^

and  AK = m ;5 5 "  |  hyixxenuse A H  = 120'.

Therefore where AH = 2;30*’ and radius AD = 60*’,
H K  = l;15^ AK = 2;10P and K D  = 57;50^ by subtraction, 

and since HK^ + K D ' = D H ^
DH «  57;5P  where K H  =

Therefore where hypotenuse DH = 120*’
H K  = 2;34P, 

and, in the circle about D H K , arc H K  = 2;27°.
2;27°° where 2 right angles = 360®°
1; 14° (approximately) where 4 right angles=360°. 

Here too, then, that is the size of the equation of anomaly, i.e. arc AB.
And since Z K A H  was taken as 30°, by addition, Z BHA, which represents 

the apparent motion on the ecliptic [counted from perigee], is 31; 14°. These 
amounts agree with those found for the eccentric [hypothesis].

Here too, in the same way [as before], we drop perpendicular AL on to DB 
[see Fig. 3.19].

Then if, first, we take the arc of the ecliptic, i.e. Z AH L, as given, from this the 
ratio HA:AL will be given. And since HA:AD was given from the beginning, 
DA:AL will be given. Thence we will have as given angles 

Z ADB, i.e. arc AB, representing the equation of anom aly 
and Z 0 A H , i.e. arc 0 H  of the epicycle.
O r if, secondly, we take as given arc AB, representing the equation of
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G
Fig. 3.19

anomaly, i.e. Z ADB, then, in the same way but in reverse order, from this the H251 
ratio DA’.AL will be given. And since DA: AH is given from the beginning,
HA:AL will also be given. Hence we will have as given angles 

Z AHL, i.e. the arc of the ecliptic 
and Z 0 A H , i.e. arc 0 H  of the epicycle.
Thus we have proved what we set out to do.

In order to have conveniently available the am ount of the correction for any 
given position, [we want] to establish a table, subdivided into [appropriate] 
sections, for the com putation of the apparent positions from the anomaly. The 
above theorems would allow a wide variety in the form of such a t a b le ,b u t  we 
prefer that form in which the argum ent is the mean motion and the function is 
the equation of anomaly. For this form accords well w ith the actual theories, 
and it also provides a simple but highly practical way of com puting any desired 
result. So using the first set of theorems [i.e. with the eccentric hypothesis] which 
we used in the numerical examples above, we com puted geometrically, in the 
way described, for the individual subdivisions [of the circle], the equation of 
anomaly corresponding to the arc of mean motion. In general, both for the sun 
and for the other bodies, we divided the quadrants near the apogee*® into 15 H252 
subdivisions (thus in these quadrants the interval of tabulation is 6°), and the

Ptolemy means that theoretically one could take as argument either the mean motion (ic), the 
true position (k), or the equation (0).

Literally ‘which contains the equations of anomaly correspondini; to the arcs ol mean motion’.
“ Reading Ttpo? toTq dTtOYeioti; (with all mss.) for Jtpo^ dJtoyeiOK; (misprint in Heiberg) at 

H251.24. Corrected bv Manitius.

la iik
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quadrants near the perigee into 30 subdivisions (thus in these the interval of 
tabulation is 3°). T he reason is tha t the differences between [successive] 
equations of anomaly, for equal subdivisions [of the argum ent], are greater near 
the perigee than near the apogee.

We shall set out the table of the sun’s anomaly, then, in 45 lines, as before, and 
3 columns. T he first two columns will contain the num bers of the m ean motion 
through 360°: the first 15 lines will comprise the two quadrants near the apogee, 
the next 30 the two quadrants near the perigee. T he third column will contain 
the degrees of equation of anomaly to be added or subtracted, corresponding to 
the appropriate mean motion. T he table is as follows.

166 I I I  7. Epoch o f  solar mean motion

6. {Table oj the sun’s anomaly} 

[See p. 167.]

H254 7. [On the epoch o f the sun's mean motionY'

It remains to establish the epoch of the sun’s mean motion, in order to be able to 
compute the particular position for any given time. In m aking our exposition of 
that m atter, we shall again usê ® those positions of the body which we ourselves 
have observed most accurately (this is our general rule both for the sun and for 
the other planets), but we use the mean motions we have derived to compute 
back to the beginning of the reign of Nabonassar for the epochs we establish. For 
that is the era beginning from which the ancient obsers'ations are, on the w hole, 
preserved down to our own time.^®

[See Fig. 3.20.] Let the circle concentric with the ecliptic be ABG on centre 
D, and the sun’s eccentre EZH on cen tre© , and let the diam eter through both 
centres and the afXJgee E be EAHG. Let B represent the autum nal equinox on 
the ecliptic. Jo in  BZD and Z 0 , and  drop perpendicular 0 K  from 0  on to ZD 
produced.

H255 Then since B, the autum nal equinox, is located at the beginning of Libra, 
and G, the perigee, at ^

arc BG = 65;30°.
• /  R n r  /  <=>nK- -  /  ^ angles = 360°
■ ■ ■ \  131°° where 2 right angles = 360°°.

Therefore in the circle about right-angled triangle D 0 K , 
arc 0 K  = 131°, 

and its chord 0 K  = 109; 12’’ where the diam eter D© = 120’’.

” See H AMA  58-60, Pedersen 151-3.
Reading Jtoir]o6n£0a (with D) for ^noiTiod^£6a (‘we used’) at H254.5. It is unclear what 

reading(s) lie behind the Arabic translations.
**This statement is borne out not only by the Babylonian observations preserved in the Almagest 

(the earliest ofwhich is the lunar eclipseof-720 Mar. 19, in the IstyearofM ardokem pad, or the 27 th 
year of the era Nabonassar, IV 6 p. 191, but also by the extant cuneiform records: the earliest 
surviving astronomical observations (apart from the special case of the Venus tablets of 
Ammbaduqa) are from -651 (Sachs[l] 44).
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I 2

Common 
N umbers

3

Equation

6 354 0 14
12 348 0 28
18 342 0 42

24 336 0 56
30 330 » 9
36 324 1 21

42 318 1 32
48 312 ) 43
54 306 1 53

60 300 2 1
66 294 2 8
72 288 2 14

78 282 2 18
84 276 2 21
90 270 2 23

93 267 2 23
96 264 2 23
99 261 2 22

102 258 2 21
105 255 2 20
108 252 2 18

111 249 2 16
114 246 2 13
117 243 2 10

120 240 2 6
123 237 2 2
126 234 1 58

129 231 1 54
132 228 1 49
135 225 1 44

138 222 1 39
141 219 1 33
144 216 1 27

147 213 1 21
150 210 1 14
153 207 1 7

156 204 1 0
159 201 0 53
162 198 0 46

165 195 0 39
168 192 0 32
171 189 0 24

174 186 0 16
177 183 0 8
180 180 0 0
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Z 0 Z K  =

Therefore where D© = S'* and the hypotenuse Z 0  = 120’’,
0K = 4;33̂

And, in the circle about right-angied triangle 0 Z K , 
arc 0 K  = 4;20°.

4;20°° where 2 right angles = 360°°
2; 10° where 4 right angles = 360°.

And we found Z BDG = 65;30®.
Therefore, by subtraction, Z Z 0 H  (i.e. arc Z H  of the eccentre) = 63;20°. 
Therefore, when the sun is at the autum nal equinox, it is 63;20° in m ean motion 

H256 in advance of the perigee (i.e. f  ^ ° ) ,  and 116;40° in m ean m otion to the rear of 
the apogee (i.e. I I  5;30°).

Now that we have established that, am ong the first of the equinoxes observed 
by us, one of the most accurately determ ined was the autum nal equinox which 
occurred in the seventeenth year of H adrian , on A thyr [III] 7 in the Egyptian 
calendar [132 Sept. 25], about 2 equinoctial hours after noon. [From the above 
computation] it is clear that at that time the sun, in its m ean motion, was 
116;40° to the rear of the apogee on the eccentre. Now from [the beginning of] the 
reign of Nabonassar [-746 Feb. 26] to the death  of A lexander [-323 Nov. 12] is 
a total of424 Egyptian years, and from the death  of A lexander to [the beginning 
of] the reign of Augustus [-2 9  Aug. 31] 294 years, and from the first year of 
Augustus, T hoth  1 in the Egyptian calendar, noon (for we establish all epochs at 
noon), to the seventeenth year of H adrian , A thyr 7, 2 equinoctial hours after 
noon, is 161 years 66 days 2 equinoctial hours. Therefore the sum total from the 
first year of Nabonassar, T hoth  1 in the Egyptian calendar, noon, up  to the time 
of the above autum nal equinox, is 879 Egyptian years 66 days and  2 equinoctial 

H257 hours. In  tha t interval the mean m otion of sun is approxim ately 211 ;25° beyond



complete revolutions. Therefore, to the 116;40°, which is the [sun’s] distance 
from the apogee of the eccentre a t the above au tum nal equinox, we add the 
360° of one revolution, and subtract from the result the 211 ;25® o f the increment 
in m ean motion over the interval [in question], we find for the epoch in mean 
motion in the first year of Nabonassar, T hoth  I in the Egyptian calendar, noon, 
that the sun’s distance in m ean m otion is 265; 15° to the rear of the apogee. Thus 
its mean position is X  0;45°.“
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8. [On the calculation o f the solar position}^^

So whenever we w ant to know the sun’s position for any required time, we take 
the time from epoch to the given m oment (reckoned with respect to the local 
time at Alexandria), and enter with it into the table of m ean motion. We add up 
the degrees [and their subdivisions] corresponding to  the various a i lm e n ts  
[18-year periods, years, months, etc.], add to this the elongation [from apogee at 
ep o c h ],2 6 5 ;1 5 ° , subtract complete revolutions from the total, and count the 
result from EL 5;30° rearwards through [i.e. in the order of] the signs. The point 
we come to will be the mean position of the sun. N ext we enter with the same H258 
number, that is the distance from apogee to the sun’s m ean position, into the 
table of anomaly, and take the corresponding am ount in the third column. If 
the argum ent falls in the first column, that is if it is less than  180°, we subtract 
the [equation] from the m ean position; but if the argum ent falls in the second 
column, i.e. is greater than  180°, we add it to the m ean position. Thus we obtain 
the true or apparent [position of the] sun.

9. [On the inequality in the [solar] days}^^

Such, then, we may say, are the theories concerning the sun alone. Following 
this it seems appropriate to add  a briefdiscussionofthe subject of the inequality 
of the solar day. A grasp of this topic is a necessary prerequisite, since the mean 
motions which we tabulate for each body are all arranged on the simple system 
of equal increments, as if all solar days were of equal length. However, it can be 
seen that this is not so. T he revolution of the universe takes place uniformly 
about the poles of the equator. T he more prom inent ways of marking that 
revolution are by its return  to the horizon, o r to the m eridian. Thus one 
revolution of the universe is, clearly, the return  of a  given point on the equator 
from some place on either the horizon or the m eridian to the same place; and a H259 
solar day, simply defined, is the return  of the sun from some point either on the

“ Literally ‘45 minutes of the Jirst degree of Pisces’.
®'See HAM A  58-61, Pedersen 153-4, and Appendix A, Example 7.
“  T he reading of D,Ar at H257.I8, fejtoxfl? (for ctKOXfT?) possible. T he meaning would be the 

same, but one would have to understand ‘[the elongation from apogee] at epoch’, which b  rather 
obscure.

^ ? ^ H A M A  61-8, Pedersen 154-8.
“ vuxO’IMEPOV, literally ‘a night plus a  day’. See Introduction p. 23.



horizon or on the meridian to the same point. O n  this definition, a m ean solar 
day is the period comprising the passage of the 360 time-degrees of one 
revolution of the equator plus approxim ately 0;59 time-degrees, which is the 
am ount of the mean motion of the sun during tha t period; and an anomalistic 
solar day is the period comprising the passage of the 360 time-degrees of one 
revolution of the equator plus tha t stretch of the equator which rises with, or 
crosses the meridian with, the anomalistic m otion of the sun [in that period].

This additional stretch of the equator, beyond the 360 time-degrees, which 
crosses [the horizon or meridian] cannot be a constant, for two reasons: firstly, 
because of the sun’s apparent anomaly; and secondly, because equal sections of 
the ecliptic do not cross either the horizon or the m eridian in equal times. 
Neither of these effects causes a perceptible difference between the m ean and 
the anomalistic return for a single solar day, bu t the accum ulated difference 
over a num ber of solar days is quite noticeable.

As far as the effect of the solar anom aly is concerned, the greatest 
H260 [accumulated] difference occurs between the two positions of the sun where its 

[true] speed equals its m ean speed. T he sum of the [anomalistic] solar days [over 
either of the two such intervals] will differ from the sum of the mean solar days 
[over the same interval] by about 4i time-degrees, and from the sum of 
[anomalistic] solar days over the other [such] interv'al by twice that amount, 
about 9̂  time-degrees. For the apparent motion of the sun over the semi-circle 
containing the apogee is 44° less than the mean, and its apparent motion over 
the semi-circle containing the perigee is the same am ount [4|°] greater than the 
mean.®’

As far as the effect of the variation in the time taken to cross the horizon at 
rising or setting is concerned, the greatest [accum ulated] difference occurs 
between the ends of the semi-circles bounded by the soisticial points. For here 
too the rising-times of either of those semi-circles will differ from the 180° of the 
mean interval by the am ount by which the longest or shortest day differs from 
the equinoctial day (measured in time-degrees); and they will differ from each 
other by the amount by which the longest day (or night) differs from the 
shortest. As far as the effect of the variation in the time taken to cross the 
meridian is concerned, the greatest [accum ulated] difference will occur 
between two points enclosing two signs which are on either side of either a 
soisticial or an equinoctial point. For the sum of [the rising-times 2Xsphaera recta 
of] the two such signs on either side of a solstice will differ from the mean interval 
by about 4̂  time-degrees, and from [the sum of the rising-times of] the two signs 
on either side of an equinox by 9 time-degrees, since the latter fall short of, and 

H261 the former exceed the am ount lor the mean by about the same quantity.**® Hence 
we establish the beginning of the solar day at [astronomical] epochs from the 
meridian-crossing of the sun, and not from its rising or setting, since the [time-] 
difference with respect to the horizon can reach several hours, and is not the 
same everywhere but varies according to the difference in longest or shortest

" 'T he sun’s maximum equation of anomaly is 2;23° (II 6). Thus from mean speed (90® or 270° 
from apogee) to mean speed the mean motion is (2 x 2;23 4^) greater or less than the true.

“ From the table of rising-times at w /a, 118, thesum of the rising-times of e.g. El a n d s  is
64;32 (=*» 60° + 4i°), while that of e.g. itj and is 55;40 (»“ 60° -  4i°).
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day a t the different latitudes, whereas the [time-]difference with respect to the 
m eridian is the same at every place on earth, and is no greater than the time- 
variation due to the sun’s anomaly.

T he greatest®^ [accumulated] difference [between m ean and anomalistic 
solar days] resulting from the com bination of both these effects, namely that due 
to the sun’s anomaly 2ind that due to the [variation in the time of] meridian- 
crossing, occurs over intervals where the above effects are either both additive 
or both subtractive. Now the [maximum] subtractive result from both effects 
occurs over the interval from the middle of Aquarius to [the end of] Libra, and 
the [maximum] additive one over the interval from [the beginning of]
Scorpio to the middle of Aquarius. Both of these intervals produce a maximum 
additive or subtractive result which is composed of about 3f° due to the effect of 
the solar anomaly, and about 45° due to the [variation in the time of] meridian- 
crossing.*’® Thus the maximum difference arising from the combination of both 
the above effects is 83 time-degrees, or §ths of an hour, between the [true] solar H262 
days over either of these intervals and the [coi responding] mean solar days, and 
twice as much, 16| time-degrees, or I9 hours, between the [true] solar days of 
one such interval and those of the other. Neglect of a difference of this order 
would, perhaps, produce no perceptible error in the com putation of the 
phenom ena associated with the sun or the other [planets]; but in the case of the 
moon, since its speed is so great, the resulting error could no longer be 
overlooked, since it could am ount to i of a degree.*’®

Therefore, to state once for all the rule for converting any interval whatever, 
given in [true] solar days (by which I mean days counted from noon to noon or 
midnight to midnight), into mean solar days: we determ ine the ecliptic position 
of the sun in both mean and anomalistic motion a t the beginning and end of the 
given interval of solar days; then we fake the increment, in degrees, from [the 
first] anomalistic (i.e. apparent) position to [the second] apparent position, 
enter with it into the table of rising-times atsphaera recta, and [thus] determine 
the time taken by this apparent distance [of the sun between the fii'st and second H263 
positions] to cross the meridian, measured in degrees of the equator. VVe then * 
take the difference between this num ber of time-degrees and the mean distance 
[of the sun from first to second positions], measured in degrees, and convert this 
difference, which is in time-degrees, to a fraction of an equinoctial hour. We 
add the result to the num ber of [true] solar days given if the am ount of the time- 
degrees [corresponding to the rising-time of the apparent motion] was greajter 
than the mean motion, or subtract it if less. T he interval we arrive at will be 
corrected for expression in mean solar days. W e shall use this type of interval 
particularly in computing the m ean motions of the moon from its tables. One 
can immediately comprehend that, given m ean solar days, one can find the 
[corresponding] civil solar days, i.e. days defined by simple observ’ation, by
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Reading to JtA.eToTOV 5id(popov (with D B^\r) at H261,14 for to 5td<popov (‘the difTerence"). 
•’“For a graphical verification of the amounts and positions given hereby Ptolemy see//.4.V/.4 III 

Fig. 57 on p. 1222.
'’''T he  hourly mean motion of the moon ( I \ ’ 3 p. 179) is about 0;32,56. So in U hours it moves 

0:36.36 «  '



performing the above com putation of addition or subtraction of time-degrees in 
reverse.^®

At our epoch, tha t is, Y ear 1 of Nabonassar, T ho th  I in the Egyptian 
calendar, noon, the position of the sun was in mean motion, as we showed just 
above, X  0;45°, and in anomalistic motion about H  3;8®.^’
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® If we call the interv al in true solar days between times tj and to At. and the interv al in mean 
solar days AT, then Ptolemy's rule, expressed algebraically, is A” = At + E (E corresponds, in a 
certain sense, to the modem ‘equation of time'), and E = (a (to) -  a (t,)) -  {X (to) -  a  (ti)). For 
proofs of the v alidity of this rule see HAMA  65-6, Pedersen 156-7. Pedersen shows that the rule is in 
fact an approximation, since one should take the motion in mean longitude, not over the interval 
(t2 -  ti) = At, but over the interval in mean solar days AT (which is in practice impossible). Since, 
however, the difference between At and AT never exceeds about 33 minutes, during which the sun 
moves less than 2 ', the error is utterly negligible. For examples of computation sec HAMA  63-5 and 
Appendix A, Example 8.

'' Ptolemy gives the data for era Nalxinassar because the\- will l)e required every time one needs 
to compute the lunar position accurately (i.e. in mean solar days) from his tables (e.g. for the series of 
olwervations ol fixed slani w ith respect to the moon in VII 3). Neugebauer notes {HAMA 63) that 
the epoch value for the mean longitude, H  0;45°, seems itself to be corrected for the equation of time, 
since reckoning backwards simply’ from Ptolemy’s observation would give K  0;44° to the nearest 
minute.



Book IV
1. {The kind o f observations which one must use to examine lunar phenomena}'

In the preceding book we treated all the phenom ena associated with the sun’s 
motion. We now begin our discussion of the moon, as is appropriate to the 
logical order. In doing so we think it our first duty not to take a naive or 
arbitrary approach in our use of the relevant observations. R ather, to establish 
our general notions [on this topic], we should rely especially on those 
demonstrations which depend on observations which not only cover a long 
period, but are actually m ade at lunar eclipses. For these are the only 
observations which allow one to determ ine the lunar position precisely: all 
others, whether they are taken from passages [of the moon] near fixed stars, or 
from [sightings with] instruments, or from solar eclipses, can contain a 
considerable error due to lunar parallax. It is only for particular further 
developments [of the theor\] that we should use these other kinds of 
obser\'ations for our investigations. For the distance between the sphere of the H266 
moon and the centre of the earth, unlike the distance to the ecliptic, is not so 
great that the earth’s bulk has the ratio of a point to it. Hence it necessarily 
follows that the straight line drawn from the centre of the earth  (which is the 
centre of the ecliptic) through the centre of the moon- to a point on the ecliptic, 
which determines the true position ([as it does] for all bodies), does not in this 
case always coincide, even sensibly, with the line draw n from some point on the 
earth’s surface, that is, the obsei-ver’s point of view, to the moon’s centre, which 
determines its apparent position. Only when the moon is in the observ'er’s 
zenith do the lines from the earth ’s centre and the observ'er’s eye through the 
moon’s centre to the ecliptic coincide. But when the moon is displaced from the 
zenith position in any way whatever, the directions of the above lines become 
different, and hence the apparent position cannot be the same as the true, but 
[differs from it], as the [line through] the observer’s eye assumes various 
positions with respect to the line drawn through the centre of the earth, [by an 
amount] profKjrtional to the varying angle of inclination [between the two 
lines].

This is the reason why in the case of solar eclipses, which are caused by the H267

' O n Chs 1-3 see HAMA  68-73, 308-15, Pedersen 160-4.
‘ Reading dito toO Kevrpou toutectti too C<pStaKou 5id toi5 Kevrpoo creXtivnq

(with D, Ar) for dno tov5 KEvrpou xriq oeX.iivp(; (‘the straight line drawn from the moon’s centre’, 
which is nonsense) at H266,5. The error in most Greek mss. is due to haplography, and is an important 
indication that all except D and its descendanu come ti-om a single (?Byzantine) ms. Corrected by 
Manitius.
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moon passing below and blocking [the sun] (for when the moon falls into the 
cone from the observer’s eye to the sun it produces the obscuration which lasts 
until it has passed out [of the cone] again), the same^ eclipse does not appear 
identical, either in size or in d u ra t io n ,in  all places. For the moon does not 
produce obscuration for all observers, for the reasons stated above, and [even 
for those for whom it does produce obscuration] does not appear to obscure the 
same parts of the sun [for all alike]. W hereas in the case of lunar eclipses there is 
no such variation due to parallax, since the observer’s position is not a 
contributory cause to what happens at a lunar eclipse. For the moon’s light is at 
all times caused by the illumination from the sun. Thus when it is diametrically 
opposite to the sun, it normally appears to us as lighted over its whole surface, 
since the whole of its illuminated hemisphere is turned towards us as well [as 
towards the sun] at that time. However, when its position at opposition is such 
that it is immersed in the earth ’s shadow-cone (which re\olves with the same 
speed as the sun, but opposite it), then the moon loses the light over a part of its 
surface corresponding to the am ount of its immersion, as the earth  obstructs the 
illumination by the sun. Hence it appears to be eclipsed for all parts of the earth 

H268 alike, both in the size [of the eclipse] and the length of the intervals [of the 
various phases].

Now to establish our general theory we need to use true, and not apparent, 
positions of the moon; for the ordered and regular must necessarily precede and 
seive as a foundation foi- the disordered and irregulai’. So, for the af)ove reasons, 
we declare that we must not use. for this purpose, o ljseivationsofthem oon into 
which the ofiserver's position enters, but only lunar eclipse observations, since 
[only] in these does the obsei’ver's position have no effect on the determ ination 
of the moon’s position. For it is obvious that, if we find the point on the ecliptic 
which the sun occupies at the time of mid-eclipse (which is, as accurately as we 
can determine, the moment at which the moon's centre is diametrically 
opposite the sun's in longitude), then at the same time of mid-eclipse the precise 
position of the moon’s centre will be the point diam etrically opposite.

2. On the periods oj the moon

The above may serve as an outline of the kind of observations which must be 
H269 examined to determ ine the general theory of the moon. We shall now 

endeavour to describe the method which was used by the ancients in their 
attem pts a t establishing a [lunar] theory, and which we will find a most 
convenient tool in deciding which hypotheses accord with the phenomena.

The m oon’s motion appears anomalistic both in longitude and in latitude: 
the time it takes to traveree the ecliptic is not constant, and neither is the time it

 ̂Reading tck; autiu; (with D, Ar) for tauxaq (‘these eclipses’) at H267,4. Corrected by Manitius. 
’ duration’: the Greek has the vague ‘times’ (toiq xpovoic;). This is elucidated by H268,l tou; 

tS v StaordGEODV xp6voi<;,‘the duration of the intervals [of partial and total phases]’. Ptolemy may 
also be alluding, in both places, to the fact that the actual moments of e.g. the beginning or middle 
of a solar eclipse are different at dilTerent places, and by an amount which does not correspond 
directly to the difference in longitude.



takes to return  to the same latitude.^ Now unless one finds the period ot‘ its 
return in anom aly it is, necessarily, impossible to determ ine the period of the 
other motions [in longitude and latitude]. However, from individual observa­
tions it is apparen t that the moon’s mean speed can occur in any part of the 
ecliptic, as can its greatest speed and its least speed, and that it can reach its 
greatest northern or southern latitude, or appear exactly in the ecliptic, 
anywhere, too. Hence the ancient astronomers, w ith good reason, tried to find 
some period in which the moon’s motion in longitude would always be the 
same, on the grounds that only such a period could produce a return in 
anomaly. So they compared observations of lunar eclipses (for the reasons 
mentioned above), and tried to see whether there was an interv al, consisting of 
an integer num ber of months, such that, between whatever points one took that 
interval of months,'’ the length in time was always the same, and so was the 
motion [of the moon] in longitude, [i.e.] either the same num ber of integer 
revolutions, or the same num ber of revolutions plus the same arc. H270

The even more ancient [astronomers] used the somewhat crude estimate that 
such a f>eriod could be found in 65851 days. For they saw that in that interv'al 
occurred approxim ately 223 lunations, 239 returns in anomaly, 242 returns in 
latitude, and 241 revolutions in longitude plus 10f°. which is the am ount the 
sun travels beyond the 18 revolutions which it performs in the above tim e(that 
is when the motion of sun and moon is measured with respect to the fixed stars).
They called this.inteival the ‘Periodic’, since it is the smallest single period 
which contains (approximately) an integer num ljer of returns of the various 
motions.' In order to obtain a period with an integer num ber of days, they 
tripled the 6585.1 days, obtaining 19756 days, which they called ‘Exeligmos’. 
Similarly, by tripling the other numbers, they obtained 669 lunations, 717 
returns in anomaly, 726 returns in latitude, and 723 revolutions in longitude 
plus 32°, which is the am ount the sun travels beyond its 54 revolutions.^

However, H ipparchus already proved, by calculations from observations 
m ade by the Chaldaeans and in liis time, that the above relationships were not 
accurate. For tiom the obseivations he set out he shows that the smallest 
constant interval defining an ecliptic period in which the num ber of months H271 
and the am ount of [lunar] motion is always the same, is 126007 days plus 1 
equinoctial hour. In this interval he finds comprised 4267 months, 4573 
complete returns in anomaly, and 4612 revolutions on the ecliptic less about 
7 which is the am ount by which the sun’s motion falls short o f345 revolutions 
(here too the revolution of sun and moon is taken with respect to the fixed stars).
(Hence, dividing the above num ber of days by the 4267 months, he finds the

* Reading KaT& Kkdzo<; (with D) for Kara t6  irXdTOc; at H269,9.
*‘months’ here means ‘true synodic months’. This is generally true throughout the Almagest 

(except where the context makes it obvious that the reference b strictly calendaric). In the 
translation I usually make the meaning explicit.

’ This period, generally, but wrongly, called ‘Saros’ in modern times (see N eugebauer[l]), wjjs 
well-known in Babylonian astronomy. See HAMA  497 IT. We do not know to whom Ptolemy refers 
by ‘the even more ancient people’, except that they are earlier than Hipparchus.

“The e^£X.iyjio<; (meaning turn of the wheel’) is also mentioned by Geminus (Cap. XVIII. ed 
Manitius pp. 200-2), who gi^es exactly the same numbers as Ptolemy, including the ex( C‘ • 
sidereal longitude of 32*’.
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mean length of the [synodic] m onth as approxim ately 29;31,50,8,20 days). H e 
shows, then, that the corresponding interval between two lunar eclipses is 
always precisely the same when they are taken over the above period 
[126007* I**]. So it is obvious that it is a  period of return in anomaly, since [from 
whatever eclipse it begins], it always contains the same num ber [4267] of 
months, and 4611 revolutions in longitude plus 352i°, as determ ined by its 
syzygies with the sun.

But if one were to look for the num ber of months [which always cover the 
same time-interval], not between two lunar eclipses, but merely between one 

H272 conjunction or opposition and another syzygy of the same type, he would find 
an even smaller integer num ber of months containing a return in anomaly, by 
dividing the above numbers by 17 (which is their only common factor). This 
produces 251 months and 269 returns in anomaly.

However, it was found that the above period [of 126007‘‘l''] did not contain 
an integer num ber of returns in latitude too. For it was apparent that the [pairs 
of) corresponding eclipses exhibited equality only with respect to the interval 
[between the pair] in time and revolution in longitude, but not with respect to 
the size and typ>e of the obscuration,® which is the criterion for [a return  in] 
latitude. Nevertheless, having already determ ined the period of return in 
anomaly, Hipparchus again adduces intervals containing [an integer num ber 
ol] months which have at each end eclipses which were identical in every 
resf>ect. both in size and in duration [of the various phases], and in which there 
was no diflerence due to the anomaly. Thus it is apparent that there is a return 
in latitude too. He shows that such a period is contained in 5458 months and 
5923 returns in la titude.’®

That, then, is the method which our predecessors used for the determ ination 
of such [periods]. It is not simple or easy to carry out, but dem ands a great deal 
ol extraordinary care, as we can see from the following considerations."  Let us 
grant that [two] inteiA’als [between pairs of eclipses] are found to be precisely 

H273 equal in time. In the fu st place, this is no use to us unless the sun too exhibits no 
elfect due to anomaly, or exhibits the same over both intervals: for if this is not 
the case, but instead, as I said, the equation of anomaly has some elfect. the sun 
will not Have travelled equal distances over [the two] equal tim e-inter\ als, nor. 
obviously, will the moon. For example, let us suppose that each of the two 
interv als being com pared comprises half a year beyond the same num ber of 
complete years, and that in this time the motion of the sun in the fii-st inteiA’al

176 I V  2. Hipparchus’ eclipse period

^By type' Ptolemy means whether the obM uration lx*sins Irom the north or south ol'the lunar 
disk.

' “Ptolemy's account here is not historically accurate. In fact Hipparchus took from Babylonian 
sources the parameters [1] 1 synodic month = 29:.31.50.8.20'', [2] 251 synodic months = 269 
anomalistic months, and [3] 5458 synodic months = 5923 rettuns in latitude (Kiigler. Babyhnische 
Mondmhming 4-46). Multiplying [2] by \7, he consirucied an et lipse-period (Aalx>e[1955], whence 
HAMA  310-2). .An input ol'som e\alue lor the len^ho l'theyear produced thesolar motion over this 
[X’riod. rounded by Hipparchus to the nearest j-sijtfn (on which .see Neugebauer[2], 251). Then 
Hipparchus tonjirmi'i/{not dfiivrd, as Ptolemy says) the aix)ve by comparison ol et lipses from his own 
lime with Babylonian ones 345 years earlier (see 'I'oomcrfl I ] Ibi- the method and identilication of 
the eclipses he used).

"T h e  Ibllowing (to p. 178) is well explained and illustrated by Neugebauer, HAMA  71-2.



starts from the position of m ean speed in Pisces, and in the second interval from 
the position of mean speed in Virgo.'* Then over the first interval the sun will 
have traversed about 4 i°  less than a semi-circle [beyond complete revolutions], 
but over the second about 44*̂  more than  a semi-circle. Thus the moon too will 
have traversed over the first interval 175?° beyond complete revolutions and 
over the second 184i°, although both intervals cover an equal time. Therefore 
we define as the first necessary condition [for a return in lunar anomaly] that the 
intervals must exhibit one of the following characteristics with respect to the 
sun;
[1] It must complete an integer num ber of revolutions [in both intervals]; or
[2] traverse the semi-circle beginning at the apogee over one interval and the 

semi-circle beginning at the perigee over the other; or
[3] begin from the same point [of the ecliptic] in each interval; or
[4] be the same distance from apogee (or perigee) at the first eclipse of one interval H274 

as it is at the second eclipse of the other interval, [but] on the other side.‘̂
For only under one of these conditions will there be no effect due to the 
anomaly, or the same effect over both intervals, so that the arc traversed beyond 
complete revolutions over one interval is equal to that traversed over the other, 
or even equal to the mean motion of the sun [over the intervals] as well.

Secondly, it is our opinion that we must pay no less attention to the moon’s 
[var\ ing] s p e e d .F o r  if this is not taken into account, it will be possible for the 
moon, in many situations, to cover equal arcs in longitude in equal times which 
do not at ail represent a return in lunar anomaly as well. This will come to pass
[1] if in both interv’als the moon starts from the same speed (either both 

increasing or both decreasing), but does not return to that speed; or
[2] if in one interval it starts from its greatest speed and ends at its least speed, 

while in the other interval it starts from its least speed and ends at its gieatest 
speed; or

[3] if the distance of [the position of] its speed at the beginning of one interval is 
the same distance from the [position of] greatest or least speed as [the p>osition 
of] its speed at the end of the other interv'al, [but] on the other side.'^
In each of these situations there will again be either no effect or the same effect 

[in both intervals] of the lunar anomaly, and hence equal increments in H275 
longitude will be produced [over both inter\ als], but there will be no return in 
anomaly at all. So the intei-vals adduced must avoid all the above situations if

'-T h a t is. from the pKJsitions where the equation ol anomaly reaches its positive maximum 
(Pisces) and negative maximum ( \ ’irgo). Illustrated by HAMA  Fig. 59 p. 1223.

" T h a t is, if the sun has an anomaly ot'a° at the beginning of the lust intei-val, it must have an 
anomaly ol’(360-a)° at the end of the second inteival. This situation (and the othei'S listed here) is 
illustrated by HAMA  Fig. 60 p. 1223.

5p6no<; is often used in early Greek astronomy for the (varying) amount which the moon travels 
in one day. The earliest example seems to be the 'Eudoxus’ papyrus \cd. Blass p. 14). Where 
Ptolemy uses 5p6nO(; Ibr the moon (e.g. \ ’ 2, H355.14; V 3. H361.16) 'speed' seems the Ixfst 
translation. For a special use of the term by Hipparchus see V 3 p. 224 with n.l4.

'^Illustrated (in the order [1], [3], [2]) by HAMA  Fig. 61 p. 1224, which utilizes the lunar 
epicycle model. O ne must presume that Ptolemy avoids talking in geometrical terms (which is the 
most convenient way to visualize the situation) Ijecause he has not yet established a lunar model.
However, it is hard to give any sense to EKaTEp(i)0EV (literally ‘on oppxjsite sides’, translated here as 
'on the other side’) which does not involve an epicycle model.
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they are to provide us directly with a period of return  in anomaly. O n  the 
contrary, we should select intervals [the ends o f which are situated] so as to best 
indicate [whether the interval is or is not a period of anomaly], by displaying the 
discrepancy [between two intervals] when they do not contain an  integer 
num ber of returns in anomaly. Such is the case when the intervals begin from 
speeds which are not merely different, but greatly different either in size or in 
effect. By ‘in size’ I mean when in one interval [the moon] starts from its least 
sp>eed and does not end at the greatest speed, while in the other it starts from its 
greatest speed and does not end a t its least speed. For in this case, unless the 
intervals contain an integer num ber of revolutions in anomaly, the difference in 
the increments in longitude over the two intervals will be very great; when the 
increment in anomaly is about one or three quadrants of a revolution, the 
intervals will differ by twice the [maximum] equation of anomaly. By ‘in effect’ 
I mean when [the moon] starts From mean speed in both positions, not, 
however, from the same mean sp>eed. but from the mean speed during the 
period of increasing speed at one interval, and from that during the period of 

H276 decreasing speed at the other. H ere too, if there is nor a return in anomaly, there 
will be a great difference in the increment in longitude [over the two interv'als]; 
again, when the increment in anomaly is one or three quadrants of a revolution, 
the difference will again am ount to twice the [maximum] equation of anomaly, 
and when the increment in anomaly is a semi-circle, the differenceWill l>e four 
times that am ount.'*

T hat is why, as we c an see, H ipparchus too used his customary extreme care 
in the selection of the intervals adduced for his investigation ofthis question: he 
used [two Intervals], in one of which the moon started from its greatest speed 
and did not end at its least speed, and in the other of which it started from its 
least speed and did not end at its greatest speed. Furtherm ore he also made a 
correction, albeit a small one, for the sun's equation of anomaly, since the sun 
fell short of an integer num ber of revolutions by about i of a sign, and this sign 
was different, and produced a different equation of anomaly, in each of the two 
intervals.*'

VVe have made the above remarks, not to disparage the preceding method of 
determining the periodic returns, but to show that, while it can achieve its goal 
if applied with due care and the appropriate kind of calculations, if any of the 
conditions we set out above are om itted from consideration, even the least of 

H277 them, it can fail utterly in its intended effect; and that, ifone does use the proper 
criteria in making one’s selection of obseivational m aterial, it is difticult to (Ind 
corresponding [pail's of eclipse] observ'ations which precisely fulfil all the 
required conditions.

In any case, when we take the above periodic returns, as determ ined by 
Hipparchus' calculations, we find that the period [containing an integer 
number] of months has, as we said, been calculated as correctly as possible, and 
has no perceptible difference from the ti ue value. But there is an error in the

"’These two situations (o<'maximum ell'ect due to the anomaly when there is not a return in 
anomaly) are illustrated by HAMA  Fig. 62 p. 1225.

' 'O n  the eclipses used by Hipparchus see Toomer[l 1].
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periods of anomaly and latitude, so considerable as to become quite apparent to 
us from the procedures we devised to check these values in simpler and more 
practical ways; we shall soon explain these, in connection with our demon­
stration of the size of the lunar anomaly. But first, for convenience [of 
calculation] in what follows, we set out the individual mean motions [of the 
moon] in longitude, anomaly and latitude, in accordance with the above 
periods of their returns, and [also the m ean motions] calculated on the basis of 
the corrections which we shall derive later.*®
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3. {On the individual mean motions o f the moon} H278

If, then, we multiply the mean daily m otion of the sun which we derived, ca. 
0;59,8,17,13,12.31“ ‘‘, by the num ber of days in one [mean synodic] month, 
29;31,50,8,20‘̂ , and add to the result the 360° of one revolution, we will get the 
mean motion of the moon in longitude during one synodic month as ca. 
389;6,23,1,24,2,30,57°. Dividing this by the above num ber of days in a month, 
we get the mean daily motion of the moon in longitude as ca. 
13;10,34,58,33,30,30°.

Next, multiplying the 269 revolutions in anom aly by the 360° of one 
revolution, we get 96840°. Dividing this by the num ber of days in 251 months, 
7412;10,44,51,40‘̂ , we get the mean daily motion in anomaly as 
13;3.53,56,29.38,38°.

Similarly, multiplying the 5923 returns in latitude by the 360° of one 
revolution, we get 2132280°. D ividing this by the num ber of days in 5458 H279 
months. 161177;58,58,3,20‘’, we get the mean daily motion in latitude as 
13;I3,45.39,40.17,19°.

Next, subtracting the m ean daily m otion of the sun from the mean daily 
motion of the moon in longitude, we get the m ean daily motion in elongation as 
12; 11,26,41,20,17,59°.

However, from the methods which, as we said, we shall employ in what ’’ 
follows for investigation of this topic, we find that the mean daily motion in 
longitude (and hence, obviously, that in elongation), is practically identical to 
the above, but the mean daily motion in anom aly is 0;0,0,0,11,46,39° less: thus it 
is 13;3,53,56,17,51,59°; and the m ean daily m otion in latitude is0,0,0,0,8,39,18° 
more; thus it is 13; 13,45,39,48,56,37°.'^

Using the latter daily motions, and taking ijth  of each, we get the following 
mean hourly motions:

in longitude; 0;32,56,27,26,23,46,15°
in anomaly: 0;32,39,44,50,44,39,57,30°
in latitude: 0;33,4,24,9,32,21,32,30°
in elongation: 0;30.28,36,43,20,44,57,30°. H280
‘® Ptolemy’s corrections to the mean motions in anomalv and latitude, given below, are 

justified at IV 7 (p. 204) and IV 9 (p. 207).
All the alx)ve computations have been carried out very precisely, and are correct to the nearest 

sixth (60"* degree). In the following computations of the mean motions for the greater units, 
however, Ptolemy operates as if the last place in the mean daily motions were precisely correct, 
i.e. no account is taken of the accumulated error for months, years, etc.



M ultiplying the daily motions by 30 an d  subtracting  com plete revolutions, 
we get the following monthly m ean increments:

in longitude: 35;17,29,16,45,15°
in anomaly: 3 1;56,58,8,55^59,30°
in latitude: 36:52.49,54.28,18,30°2o
in elongation: 5;43,20,40,8,59,30®.
Next, multiplying the daily motions by the 365 days of the Egyptian year, 

and subtracting complete revolutions, we get the following yearly mean 
increments:

in longitude: 129;22,46,13,50,32,30°
in anomaly: 88;43,7,28,41,13,55°
in latitude: 148;42,47,12,44,25,5°
in elongation: 129;37,21,28,29,23,55°.
Next, m ultiplying the yeai ly motions by 18 (this num ber is chosen, as we said, 

for convenience in tabulation), after subtracting  complete revolutions we get 
the following m ean increments over a n  eighteen-year period: 

in longitude: 168;49.52.9,9,45°
in anomaly: 156:56,14,36,22,10,30°
in latitude: 156;50,9,49,19,31,30°
in elongation: 173:12,26,32,49,10,30°.

H 281 As in the case of the sun, we will again set ou t three tables arranged in 45 lines, 
with 5 columns in each. T he first colum n will contain the time-divisions 
appropriate to each table, in the first table the 18-year p>eriods, in the second the 
years, again followed by the hours, in the th ird  the months, again followed by 
the days. T he rem aining four columns will contain the degrees [and their 
subdivisions] corresponding to the appropriate argum ent; the second column, 
longitude, the third, anom aly, the fourth, latitude, and the fifth, elongation. 
T he lavout of the tables is as follows.
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H282-93 4.{ Tables o f ihe mean motions o f the moon}

[See pp. 182-7.]

H294 5. {Thai in the simple hypothesis o f the moon, loo, the same phenomena are produced
by both eccentric and epicyclic hypolheses}^^

O u r next task is to dem onstrate the typ>e and size of the m oon’s anom aly. For the 
time being we shall treat this as if it were single and  invariant.^^ It is apparent 
that this anomaly, namely the one w ith a period corresponding to the above 
period o f return, is the only one which our predecessors (just about all of them)

Reading X for l a  (‘31’) in the last place a t H280.5, with D, Ar (cf. also the tables IV 4). 
Corrected by Manitius.

• 'See Pedersen 166-7.
“ Reading ko\  tti(; autiiq (with BD) for {‘as if this were single’) a t H294,6. Ar read

raoTTiq.



have hit upon. Later, however, we shail show tha t the m oon also has a  second 
anomaly, linked to its distance from the sun; this [second anom aly] reaches a 
m axim um  round about both [waxing and waning} half-moons, and goes 
through its period of return twice a  month, [being zero] precisely a t conjunction 
and opposition.'^ W e adopt ihis order of procedure in our demonstration 
because it is impossible to determ ine the second [anom aly] apart from the first, 
which is always combined with it, whereas the first can be found apart from the 
second, since it is determ ined from lunar eclipses, a t which there is no 
perceptible effect of the anomaly connected with [the distance from] the sun.

In  this first part of our demonstrations we shail use the m ethods of establishing 
the theorem which Hipparchus, as we see, used before us.^* W e too, using three H295 
lunar eclipses, shall derive the maxim um  difference from m ean motion and the 
epoch of the [moon’s position] a t the apogee, on the assum ption that only this 
[first] anomaly is taken into account, and tha t it is produced by the epicyclic 
hypothesis. It is true that the same phenom ena would result from the eccentric 
hypothesis, but we shall find the latter more suitable to  represent the second 
anomaly, which is connected with the sun, when we come to combine both 
anomalies. However, the same phenom ena will in all cases result from both the 
hypotheses we have described, whether, as in the situation described for the sun, 
the period of return in anomaly and the period o f return  in the ecliptic [i.e. in 
longitude] are both equal, or whether, as in the case of the moon, they are 
unequal, provided only that the ratios [of epicycle to deferent and eccentricity 
to eccentre] are taken as identical. We can see this from the following, in which 
we use the above-mentioned simple anom aly of the moon for our examination.

Since the moon completes its return with respect to the ecliptic sooner than its 
return with respect to this anomaly, it is clear that, in the epicyclic hypothesis, 
over a given period of time, the epicycle will always traverse a  greater arc*^ of 
the circle concentric to the ecliptic than the arc of the epicycle traversed by the H296 
moon in the same time; in the eccentric hypothesis, the arc traversed by the 
moon on the eccentre will be similar to the arc traversed by it on the epicycle [in 
the epicyclic hypothesis], while the eccentre will move about the centre of the 
ecliptic in the same direction as the moon by an am ount equal to the increment 
of the motion in longitude over the motion in anom aly [in the same time] (this 
corresponds to the increment of the arc of the deferent over the arc of the 
epicycle [in the epicyclic hypothesis]). In this way we can preserve the equality 
of the periods of both motions [i.e. in longitude and anomaly], as well as 
equality of the ratios, in both hypotheses.

W ith the above as a necessary basis (as is obvious from logic), let [Fig. 4.1 ] the 
circle concentric with the ecliptic be ABG on centre D and diam eter AD, and 
let the epicycle be EZ on centre G. Let us suppose that when the epicycle was at 
A, the moon was at E, the apogee of the epicycle, and tha t in the same time as 
the epicycle has traversed arc AG, the moon has traversed arc EZ. Jo in  ED, GZ.
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Reference to V  2-4.
Hipparchus’ determination of the lunar parameters sec further I \ '  11, Toomer[8] and 

Toomer(2].
“ ‘a greater arc’: literally ‘an arc greater than the one similar to [the arc]’.
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TABLES O F  T H E  M O O N ’S MEAN M O TIO N S

18-Year
Periods

Increment in Longitude 

{Epoch Position:] b  H;22<’
0 f  r f  f f f » f f f  f t

Increment in Anomaly

{Epoch Position;] 268;49°
0 f f f  f t t  f t f t  t t f t t

18 168 49 52 9 9 45 0 156 56 14 36 22 10 30
36 337 39 44 18 J9 30 0 313 52 29 12 44 21 0
54 146 29 36 27 29 15 0 110 48 43 49 6 31 30

72 315 19 28 36 39 . 0 0 267 44 58 25 28 42 0
90 124 9 20 45 48 45 0 64 41 13 1 50 52 30

108 292 59 12 54 58 30 0 221 37 27 38 13 3 0

126 101 49 5 4 8 15 0 18 33 42 14 35 13 30
144 270 38 57 13 18 0 0 175 29 56 50 57 24 0
162 79 28 49 22 27 45 0 332 26 11 27 19 34 30

180 2 4 8 ^ 18 41 31 37 30 0 129 22 26 3 41 45 0
198 57 8 33 40 47 15 0 286 18 40 40 3 55 30
216 225 58 25 49 57 0 0 83 14 55 16 26 6 0

234 34 48 17 59 6 45 0 240 11 9 52 48 16 30
252 203 38 10 8 16 30 0 37 7 24 29 10 27 0
270 12 28 2 17 26 15 0 194 3 39 5 32 37 30

288 181 17 54 26 36 0 0 350 59 53 41 54 48 0
306 350 7 46 35 45 45 0 147 56 8 18 16 58 30
324 158 57 38 44 55 30 0 304 52 22 54 39 9 0

342 327 47 30 54 5 15 0 101 48 37 31 1 19 30
360 136 37 23 3 15 0 0 258 44 52 7 i 23 30 0
378 305 27 15 12 24 45 0 55 41 (i 43 i 40 30

596 114 17 7 21 34 30 0 ‘*12 37 21 20 7 51 0
414 283 i 59 30 44 15 0 9 33 35 56 30 1 30
432 91 i  56 51 39 54 0 I 0 16») 29 1[5 0 32 I 32 12 0

450 2(i0 46 43 49 3 45 0 323 i  26 5 9 14 ! 22 30
468 69 36 35 58 13 30 0 120 22 I 19 45 36 33 i 0
486 238 26 28 7 23 15 0 277 18 1 21 58 43 30

504 47 16 20 16 33 0 0 74 14 48 58 20 54 0
522 216 6 12 25 42 45 0 231 11 i  3 34 43 4 30
540 24 56 4 34 52 30 0 28 7 1 18 11 5 15 0

558 193 45 56 44 >> 15 0 185 3 32 47 27 25 30
576 2 35 48 53 12 0 0 341 59 47 23 49 36 0
594 171 25 41 2 21 45 0 138 56 2 0 11 46 30

612 340 15 33 11 31 30 0 295 52 16 36 33 57 0
630 149 5 25 20 41 15 0 92 48 31 12 56 7 30
648 317 55 17 29 51 0 0 249 44 45 49 18 18 0

666 126 45 9 39 0 45 0 46 41 0 25 40 28 30
684 295 35 1 48 10 30 0 203 37 15 2 2 39 0
702 104 24 53 57 20 15 0 0 33 29 38 24 49 30

720 273 14 46 6 30 0 0 157 29 44 14 47 0 0
738 82 4 38 15 39 45 0 314 25 58 51 9 10 30
756 250 54 30 24 49 30 0 111 22 13 27 31 21 0

774 59 44 22 33 59 15 0 268 18 28 3 53 31 30
792 228 34 14 43 9 0 0 65 14 42 40 15 42 0
810 37 24 6 52 18 45 0 222 10 57 16 37 52 30



I V  4. Lunar mean motion tables 183

18-Year 
Periods O

Increment in Lalitude 

[Epoch Position:] 354; 15°

Increment in Elongation 

[Epoch Position] 70;37°
O t f t  t t t  / / / ^  f f f f f

18 156 50 9 49 19 31 30 173 12 26 32 49 10 30
36 313 40 19 38 39 3 0 346 24 53 5 38 21 0
54 110 30 29 27 58 34 30 159 37 19 38 27 31 30

72 267 20 39 17 18 6 0 332 49 46 11 16 42 0
90 64 10 49 6 37 37 30 146 2 12 44 5 52 30

108 221 0 58 55 57 9 0 319 14 39 16 55 3 0

126 17 51 8 45 16 40 30 132 27 5 49 44 13 30
144 174 41 18 34 36 12 0 305 39 32 22 33 24 0
162 331 31 28 23 55 43 30 118 51 58 55 22 34 30

180 128 21 38 13 15 15 0 292 4 25 28 11 45 0
198 285 11 48 2 34 46 30 105 16 52 1 0 55 30
216 82 1 57 51 54 18 0 278 29 18 33 50 6 0

234 238 52 7 41 13 49 30 91 41 45 6 39 16 30
252 35 42 17 30 33 21 0 264 54 11 39 28 27 0
270 192 32 27 19 52 52 30 78 6 38 12 17 37 30

288 349 22 37 9 12 24 0 251 19 4 45 6 48 0
306 !4<i 12 46 58 31 55 30 (34 31 31 17 55 58 30
324 303 2 56 47 51 27 0 237 43 57 50 45 9 0

342 99 53 6 37 10 58 30 50 56 24 23 34 19 30
;560 256 43 16 26 30 30 0 224 8 50 56 23 30 0
378 53 33 26 15 50 1 30 37 21 17 '29 12 40 30

396 210 23 36 5 9 33 0 210 33 44 2 1 51 0
414 7 13 45 54 29 4 30 23 46 10 34 51 1 30
432 164 3 55 43 48 36 0 196 58 37 7 40 12 0

450 320 54 5 33 8 7 30 10 11 3 40 29 22 30
468 117 44 15 22 27 39 0 183 23 30 13 18 33 0
486 274 34 25 11 47 10 30 356 35 56 46 7 43 30

504 71 24 35 1 6 42 0 169 48 23 18 56 54 0
522 228 14 44 50 26 13 30 343 0 49 51 46 4 30
540 25 4 54 39 45 45 0 156 13 16 24 35 15 0

558 181 55 4 29 5 16 30 329 25 42 57 24 25 30
576 338 45 14 18 24 48 0 142 38 9 30 13 36 . 0
594 135 35 24 7 44 19 30 315 50 36 3 2 46 30

612 292 25 33 57 3 51 0 129 3 2 35 5! 57 0
630 89 15 43 46 23 22 30 302 15 29 8 41 7 30
648 246 5 53 35 42 54 0 115 27 55 41 30 18 0.

666 42 56 3 25 2 25 30 288 40 22 14 19 28 30
684 199 46 13 14 21 57 0 101 52 48 47 8 39 0
702 356 36 23 3 41 28 30 275 5 15 19 57 49 30

720 153 26 32 53 1 0 0 88 17 41 52 47 0 0
738 310 16 42 42 20 31 30 261 30 8 25 36 10 30
756 107 6 52 31 40 3 0 74 42 34 58 25 21 0

774 263 57 2 20 59 34 30 247 55 1 31 14 31 30
792 60 47 12 10 19 6 0 61 7 28 4 3 42 0
810 217 37 21 59 38 37 30 234 19 54 36 52 52 30
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Single
Years O

Increment in Longitude 

/ / /  t f f f  / / / / / / / / / / / 0

Increment in Anomaly 

f  f t  f t t  / / / /  / / / / / / / / / / ^

1 129 22 46 13 50 32 30 88 43 7 28 41 13 55
2 258 45 32 27 41 5 0 177 26 14 57 22 27 50
3 28 8 18 41 31 37 30 266 9 22 26 3 41 45

4 157 31 4 55 22 10 0 354 52 29 54 44 55 40
5 286 53 51 9 12 42 30 83 35 37 23 26 9 35
6 56 16 37 23 3 15 0 172 18 44 52 7 23 30

7 185 39 23 36 53 47 30 261 1 52 20 48 37 25
8 315 2 9 50 44 20 0 349 44 59 49 29 51 20
9 84 24 56 4 34 52 30 78 28 7 18 11 5 15

10 213 47 42 18 25 25 0 167 11 14 46 52 19 10
II 343 10 28 32 15 57 30 255 54 22 15 33 33 5
12 112 33 14 46 6 30 0 344 37 29 44 14 47 0

13 241 56 0 59 57 2 30 73 20 37 12 56 0 55
14 11 18 47 13 47 35 0 162 i 3 44 41 j 37 i 50
15 140 41 33 27 38 7 30 250 1 52 10 18 28 45

16 270 4 19 41 28 40 0 339 29 59 38 59 42 40
17 39 27 5 3 3 19 12 30 68 13 7 7 40 56 35
18 168 49 52 9 9 45 0 156 56 14 36 22 10 30

Incremem in Longitude Incn-ment in Anomaly

Hours " t t f t r ............

1 0 32 56 27 26 23 46 0 32 39 44 50 44 40
2 I 5 52 54 52 47 32 1 5 19 29 41 29 20
3 1 38 49 22 19 11 18 1 37 59 14 32 14 0

4 2 11 45 49 45 35 5 2 10 38 59 22 58 40
5 2 44 42 17 11 58 51 9 43 18 44 13 43 20
6 3 17 38 44 38 22 37 3 15 58 29 4 28 0

7 3 50 35 12 4 46 23 3 48 38 1 13 55 12 40
8 4 23 31 39 31 10 10 4 21 17 I 58 45 57 20
9 4 56 28 6 57 33 56 4 53 57 11 43 36 42 0

10 5 29 24 34 23 57 42 5 26 37 28 27 26 40
11 6 2 21 1 50 21 28 5 59 17 13 18 11 20
12 6 35 17 29 1 16 45 15 6 31 56 !1 58 1 8 56 0

V.S 7 8 13 56 1 43 9 I 7 4 36 : 42 i 59 40 39
14 7 41 10 24 11 9 32 47 7 37 16 i 27 1 50 25 19
15 8 14 6 51 35 56 33 8 9 56 ! 12 41 9 59

16 8 47 3 19 2 20 20 8 42 35 1 57 31 54 39
17 9 19 59 46 28 44 6 9 15 15 42 22 39 19
18 9 52 56 13 55 7 1 52 9 47 55 27 13 23 59

19 10 25 52 41 21 31 38 10 20 35 12 4 8 39
20 10 58 49 8 47 55 25 10 53 14 56 54 53 19
21 11 31 45 36 14 19 11 11 25 54 41 45 37 59

22 12 4 42 3 40 42 57 11 58 34 26 36 22 39
23 12 37 38 31 7 6 43 12 31 14 11 27 7 19
24 13 10 34 58 33 30 30 13 3 53 56 17 51 59
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Single
Yean* O

Increment in Latitude

O

Increment in Elongation

1 148 42 47 12 44 25 5 129 37 21 28 29 23 55
2 297 25 34 25 28 50 10 259 14 42 56 58 47 50
3 86 8 21 38 13 15 15 28 52 4 25 28 11 45

4 234 51 8 50 57 40 20 158 29 25 53 57 35 40
5 23 33 56 3 42 5 25 288 6 47 22 26 59 35
6 172 16 43 16 26 30 30 57 44 8 50 56 23 30

7 320 59 30 29 10 55 35 187 21 30 19 25 47 25
8 109 42 17 41 55 20 40 316 58 51 47 55 11 20
9 238 25 4 54 39 45 45 86 36 13 16 24 35 15

10 47 7 52 7 24 10 50 216 13 34 44 53 59 10
11 195 50 39 20 8 35 55 345 50 56 13 23 23 5
!2 344 33 26 32 53 1 0 115 28 17 41 52 47 0

13 133 16 13 45 37 26 5 245 5 39 10 22 10 55
14 281 59 0 58 21 51 10 14 43 0 38 i 51 i 34 50
15 70 41 48 11 6 16 15 144 20 22 7 20 58 45

16 219 24 35 23 50 41 20 273 57 43 35 50 22 40
17 8 7 22 36 35 6 25 43 35 5 4 19 46 35
18 156 50 9 49 19 31 30 173 12 26 32 49 10 30

Increment in Latitude Increment in Elongation

Hours O » " " "

1 0 33 4 24 9 32 22 0 30 28 36 43 20 45
2 1 6 8 48 19 4 43 1 0 57 13 26 41 30
3 1 39 13 12 28 37 5 1 31 25 50 10 2 15

4 2 12 17 36 38 9 26 2 1 54 26 53 23 0
5 2 45 22 0 47 41 48 2 32 23 3 36 43 45
6 3 18 26 24 57 14 9 3 2 51 40 20 4 30

7 3 51 30 49 6 46 31 3 33 20 17 3 25 15
8 4 24 35 13 16 18 52 4 3 48 53 46 46 0
9 4 57 39 37 25 51 14 4 34 17 30 30 6 45

10 5 30 44 1 35 23 35 5 4 46 7 13 27 30
11 6 3 48 25 44 55 57 5 35 14 43 56 48 15
12 6 36 52 49 54 28 18 6 5 43 20 40 9 0

13 7 9 57 14 4 0 40 6 36 11 57 23 29 44
14 7 43 1 38 13 33 2 7 6 40 34 6 50 29
15 8 16 6 2 23 5 23 7 37 9 10 50 11 14

16 8 49 10 26 32 37 45 8 7 37 47 33 31 59
17 9 22 14 50 42 10 6 8 38 6 24 16 52 44
18 9 55 19 14 51 42 28 9 8 35 1 0 13 29

19 10 28 23 39 1 14 49 9 39 3 37 43 34 14
20 11 1 28 3 10 47 11 10 9 32 14 26 54 59
21 11 34 32 27 20 19 32 10 40 0 51 10 15 44

22 12 7 36 51 29 51 54 11 10 29 27 53 36 29
23 12 40 41 15 39 24 15 11 40 58 4 36 57 14
24 13 13 45 39 48 56 37 12 11 26 41 20 17 59
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Increment in Longitude Increment in Anomaly

Months O ' ///// /// f/0ff //////

30 35 17 29 16 45 15 0 31 56 58 8 55 59 30
60 70 34 58 33 30 30 0 63 53 56 17 51 59 0
90 105 52 27 50 15 45 0 95 50 54 26 47 58 30

120 141 9 57 7 1 0 0 127 47 52 35 43 58 0
150 176 27 26 23 46 15 0 159 44 50 44 39 57 30
180 211 44 55 40 31 30 0 191 41 48 53 35 57 0

210 247 2 24 57 16 45 0 223 38 47 2 31 56 30
240 282 19 54 14 2 0 0 255 35 45 11 27 56 0
270 317 37 23 30 47 15 0 287 32 43 20 23 55 30

300 352 54 52 47 32 30 0 319 29 41 29 19 55 0
330 28 12 22 4 17 45 0 351 26 39 38 15 54 30
360 63 29 51 21 3 0 0 23 23 37 47 11 54 0

In c re m e n t in Lons^iiude Increment in Anomaly

Days „„ ..... = '

1 13 10 34 58 33 30 30 13 3 53 56 17 51 59
2 26 21 9 57 7 1 0 26 7 47 52 35 43 58
3 39 31 44 55 40 31 30 39 11 41 48 53 35 57

4 52 42 19 54 14 2 0 52 15 35 45 11 27 56
5 65 52 54 52 47 32 30 65 19 29 41 29 19 55
6 79 3 29 51 21 3 0 78 23 23 37 47 11 54

7 92 14 4 49 54 33 30 91 27 17 34 5 3 53
8 105 24 1 39 48 28 4 0 104 31 11 30 22 55 52
9 118 35 14 47 1 34 30 117 35 5 26 40 47 51

10 131 45 49 45 35 5 0 130 38 59 22 58 39 50
11 144 56 24 44 8 35 30 143 42 53 19 16 31 49
12 158 6 59 42 42 6 0 156 46 47 15 34 23 48

13 171 17 34 + 1 15 36 30 169 50 41 11 52 15 47
14 184 28 9 39 49 7 0 182 54 35 8 10 7 46
15 197 38 44 38 22 37 30 195 58 29 4 27 59 45

16 210 49 19 36 56 8 0 209 2 23 0 45 51 44
17 223 59 54 35 29 38 30 222 6 16 57 3 43 43
18 237 10 29 34 3 9 0 235 10 10 53 21 35 42

19 250 21 4 32 36 39 30 248 14 4 49 39 27 41
20 263 31 39 31 10 10 0 261 17 58 45 57 19 40
21 276 42 14 29 43 40 30 274 21 52 42 15 11 39

22 289 52 49 28 17 11 0 287 25 46 38 33 3 38
23 303 3 24 26 50 41 30 300 29 40 34 50 55 37
24 316 13 59 25 24 12 0 313 33 34 31 8 47 36

25 329 24 34 23 57 42 30 326 37 28 27 26 39 35
26 342 35 9 22 31 13 0 339 41 22 23 44 31 34
27 355 45 44 21 4 43 30 352 45 16 20 2 23 33

28 8 56 19 19 38 14 0 5 49 10 16 20 15 32
29 22 6 54 18 11 44 30 18 53 4 12 38 7 31
30 35 17 29 16 45 15 0 31 56 58 8 55 59 30
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Months O

Increment in Latitude 

/ / /  / / / /  / / / / / / / / / / / O

Increment in Elongation 

/  / /  f / f f  f t f / t

30 36 52 49 54 28 18 30 5 43 20 40 8 59 30
60 73 45 39 48 56 37 0 11 26 41 20 17 59 . 0
90 n o 38 29 43 24 55 30 17 10 2 0 26 58 30

120 147 31 19 37 53 14 0 -  22 53 22 40 35 58 0
150 184 24 9 32 21 32 30 28 36 43 20 44 57 30
180 221 16 59 26 49 51 0 34 20 4 0 53 57 0

210 258 9 49 21 18 9 30 40 3 24 41 2 56 30
240 295 2 39 15 46 28 0 45 46 45 21 11 56 0
270 331 55 29 10 14 46 30 51 30 6 1 20 55 30

300 8 48 19 4 43 5 0 57 13 26 41 29 55 0
330 45 41 8 59 11 23 30 62 56 47 21 38 54 30
360 82 33 58 53 39 42 0 68 40 8 1 47 54 0

I iK ic m cn t in L itituc le In c re m e n t in E lonii;ation

Days - ” ...... ' ..........

1 13 13 45 39 48 5(i 37 12 1 1 26 41 20 17 59
9 26 27 31 19 37 53 14 24 22 53 22 40 35 58
3 39 41 16 59 26 49 51 36 34 20 4 0 53 57

4 52 55 2 39 15 46 28 48 45 46 45 21 11 56
3 b f ) , 8 48 19 4 43 5 60 57 13 26 41 29 55
6 79 22 33 58 53 39 42 73 8 40 ' 8 1 47 54

7 92 36 19 38 42 36 19 85 20 6 49 22 5 53
8 105 50 5 18 31 32 56 97 31 33 30 42 23 52
9 119 3 50 58 20 29 33 109 43 0 12 2 41 51

10 132 17 36 38 9 26 10 121 54 26 53 22 59 50
11 145 31 22 17 58 22 47 134 5 53 34 43 17 49
12 158 45 7 57 47 19 24 146 17 20 16 3 35 48

13 171 58 53 37 36 16 1 158 28 46 57 23 53 47
14 185 12 39 17 25 12 38 170 40 13 38 44 11 46
15 198 26 24 57 14 9 15 182 51 40 20 4 29 45

16 211 40 10 37 3 5 52 195 3 7 1 24 47 44
17 53 56 16 52 2 29 207 14 33 42 45 5 43
18 238 7 41 56 40 59 6 219 26 0 24 5 2 i 42

19 251 21 27 36 29 55 43 231 37 27 5 25 41 41
20 264 35 13 16 18 52 20 243 48 53 46 45 59 40
21 277 48 58 56 7 48 57 256 0 20 28 6 17 39

22 291 2 44 35 56 45 34 268 11 47 9 26 35 38
23 304 16 30 15 45 42 11 280 23 . 13 50 46 53 37
24 317 30 15 55 34 38 48 292 34 40 32 7 11 36

25 330 44 1 35 23 35 25 304 46 7 13 27 29 i 35
26 343 57 47 15 12 32 2 316 57 33 54 47 47 34
27 357 11 32 55 1 28 39 329 9 0 36 8 5 33

28 10 25 18 34 50 25 16 341 20 27 17 28 23 32
29 23 39 4 14 39 21 53 353 31 53 58 48 41 31
30 36 52 49 54 28 18 30 5 43 20 40 8 59 30..
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Then, since arc AG > a r c  EZ.
cut oiF arc BG || arc EZ, and join BD.

Then it is clear that, in the same time, the eccentre will have moved through 
H297 Z ADB, which represents the difference between the two motions, and its centre 

and apogee will lie along line BD.
This being so, let DH = GZ. Jo in  ZH , and with centre H  and radius HZ draw 

the eccentre Z 0 .
I say, that

ZH :H D  = DG:GZ, 
and that in this hypothesis too the moon will be a t point Z, i.e. 

arc Z© II arc EZ.
[Proof:] Since Z BDG = Z EGZ, GZ is parallel to DH.

But GZ = DH [by construction].
Therefore ZH  too is equal and parallel to G D .‘®

•• Z H :H D  = DG:GZ.
H298 Furtherm ore, since DG is parallel to HZ,

Z GDB = Z Z H 0 ; 
and, by hypothesis, Z GDB = Z EGZ.

•• arc Z 0  II arc EZ.
Therefore the moon has reached point Z in the same tim e according to either 
hypothesis, since the moon itself has traversed arc EZ on the epicycle and arc 
0 Z  on the eccentre, which we have shown to be similar, while the epicycle

Euclid I 33: straight lines joining equal and parallel lines are themselves equal and parallel.
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centre has moved through arc AG, and the centre o f the eccentre through arc 
AB, which is the increment of arc AG over arc EZ.

Q.E.D.
Moreover, even if [the members of] the ratios are unequal, and the 

eccentre is not the same size as the deferent, the same phenom ena will result, 
provided the ratios are similar, as will be clear from the following.

Draw  each of the hypotheses in a separate figure. Let [Fig. 4.2] the circle 
concentric to the ecliptic be ABG on centre D  and  diam eter AD, and the 
epicycle EZ on centre G. Let the moon be a t Z. L et [Fig. 4.3] the eccentre be 
H 0 K  on centre L and diam eter 0 L M , with the centre of the ecliptic at M. Let 
the moon be at K. In the first figure jo in  D G E,G Z,D Z, and in the second figure 
join H M , K M , KL.

Let DG:GE = 0 L :L M .
Let us suppose that in the same time as the epicycle has moved through 

L ADG, the moon has again moved through Z EGZ, the eccentre through 
Z HM © , and the moon, again, through Z 0 L K .

Therefore, because of the assumed relationship between the motions,
Z EGZ = Z 0 L K ,

fl

H299

and Z ADG = Z H M 0  Z 0 L K .
This being so, I say that the moon will again app>ear to have traversed an equal 
arc in the same time according to either hypothesis, i.e.

Z ADZ = Z H M K
(for a t the beginning of the tim e-interval the moon was a t the apogee and 
appeared along lines DA and M H , while at the end it was a t points Z and K  and 
appeared along lines ZD and M K).
[Proof;] Let arc BG again be similar to arc 0 K  (or arc EZ). Jo in  BD.

Then, since DG:GZ = K L:LM , 
and the angles at G and L are equal,

H300
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0

triangle GDZ ||| trians^le K LM  (sides about equal angles proportional), and the 
angles opposite the corresponding .sides are equal.

Z GZD = Z LM K .
But Z BDZ = Z GZD. 

for GZ is parallel to BD. since, hv hvpothesis, Z ZGE = Z BD(J.
•. Z ZDB = Z LM K .

But. by hypothesis. Z ADB, the dillerence between the motions [in longitude and 
anomaly] equals Z H M 0 , the motion of [the contreel] theeccentre. Thei elore. 
by addition,

Z ADZ = Z K M H .
Q.E.D.

6. [Demonstration oj the first, simple anomnly of the moon\ - ‘

Let the preceding sulHce us as prelim inaiy theory. We shall now dem onstrate 
H301 the lunar anomaly in question, by means of the epicyclic hypothesis, for the 

reason mentioned. [For this purpose] we shall use, first, am ong the most ancient 
eclipses available to us, three [which w'e have selected] as being recorded in an 
unam biguous fashion, and, secondly, [we shall repeat the procedure] using, 
am ong contem porary eclipses, three which we ourselves have observed very 
accurately. In  this way our results will be valid over as long a period as possible, 
and in particular it will be apparent that approxim ately the same [maximum] 
equation of anomaly results from both dem onstrations, and that the increment 
in the mean motions [between the two sets of eclipses] agrees^® with that 
com puted from the above periods (as corrected by us).

‘-'See f / ,L lU  73-8. Pedersen 169-79:
Reading oun<po)vo^ (with D, Ar) for ai)n<pti)VO(; de\ (‘always agrees’) at H30I,10.



For the purposes of dem onstrating the first anomaly, considered separately, 
the epicyciic hypothesis which we m entioned can be described as follows.
Imagine a circle in the sphere oi'the moon which is concentric to and lies in the 
same plane as the ecliptic. Inclined to this, at an angle corresponding to the 
am ount of its [maximum] deviation in latitude, is another circle, which moves 
uniformly in advance (with respect to the centre of the ecliptic) with a speed 
equal to the difference between the motions in latitude and longitude. O n this 
inclined circle we suppose the so-called ‘epicycle’ to be carried, with a uniform 
motion, towards the rear with resp>ect to the heavens, corresponding to the 
motion in latitude. (This motion, obviously, will represent the [mean] motion in H302 
longitude with respect to the ecliptic). O n the epicycle itself [we suppose] the 
moon to move, in such a way that on the arc near the apogee its motion is in 
advance with respect to the heavens, at a speed corresponding to the p>eriod of 
return in anomaly. However, for the purposes of the present dem onstration we 
shall suffer no ill consequences if we neglect the advance m otion in latitude and 
the inclination of the moon’s orbit, since such a small inclination has no 
noticeablc effect on the position in longitude.'®

First, the three ancient eclipses which are selected from those observed in 
Babylon.

T he first is recorded as occurring in the first year of M ardokem pad, Thoth [I]
29/30 in the Egyptian calendar [-720 M ar. 19/20]. T he eclipse began, it says, 
well over an hour after moonrise, and was total.

Now since the sun was near the end of Pisces, and [therefdre] the night was 
about 12 equinoctial hours long, the beginning of the eclipse occurred, clearly,
4 i equinoctial hours before midnight, and mid-eclipse (since it was total) 2i 
hours before midnight.^® Now we take as the standard m eridian for all time deter­
m inations the meridian through Alexandria, which is about \ of an equinoctial H303 
hour in advance [i.e. to the west] of the m eridian through Babylon.^* So at 
Alexandria the middle of the eclipse in question was 3 j equinoctial hours before 
midnight, at which time the true position of the sun, according to the [tables] 
calculated above, was approxim ately K  24^°.

The second eclipse is recorded as occurring in the second year of the same 
M ardokem pad, Thoth [I] 18/19 in the Egyptian calendar [-719 M a r.'8/9].
T he [maximum] obscuration, it says, was 3 digits^^ from the south exactly at 
midnight. So, since mid-eclipse was exactly at m idnight at Babylon, it must

’* I.e. lor the purposes of computing the longitude the moon's orbit is treated as if it lay in the 
plane of the ecliptic. The maximum resulting error (for i »  5°) is about 6 ' (cf. HAMA  83). Ptolemy 
himself (VI 7 p. 297) estimates it as 5'.

A total eclipse of the moon is assumed to last 4 hours from stjirt to fmish. This agrees fairly well 
with the duration one derives from Ptolemy’s own eclipse tables (V'l 8) and with the actual 
maximum possible duration. The duration of the eclipse in question (Oppolzer no. 741) was in fact 
about s i '’.

This time difference corresponds to a longitudinal difference of 12i°. T he actual time difference 
is about 58 J minutes. In the Geography Ptolemy amended the difference, in the right direction but by 
far too much, to l l  hours (8.20.27), corresponding to the dilFerence between the longitudes there- 
assigned to Alexandria (60J°, 4.5.9) and Babylon (79°, 5.20.6).

Modern calculations give a considerably smaller eclipse: Oppolzer (no. 743) 1.6 digits, P.V. 
Neugebauer 1.5 digits. However Ptolemy’s own tables give about 2 \ digits: see Appendix A,
Example 11.
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have been I** before midnight a t A lexandria, a t which time the true position of 
the sun was X  ISi®.

T he third eclipse is recorded as occurring in the (same) second year of 
M ardokem pad, Pham enoth [VII] 15/16 in the Egyptian calendar [-719 Sept. 
1/2]. The eclipse began, it says, after moonrise, and the [maximum] 
obscuration was more than half [the disk] from the north. So, since the sun was 
near the beginning of Virgo, the length of night a t Babylon was about 11 

H304 equinoctial hours, and half the night was ^  [equinoctial] hours. Therefore the 
beginning of the eclipse was about 5 equinoctial hours before m idnight (since it 
began after moonrise), and mid-eclipse about hours before m idnight (for the 
total time for an  eclipse of that size must have been about 3 h o u r s ) .S o  in 
Alexandria mid-eclipse occurred 4j equinoctial hours before midnight, at 
which time the true position of the sun was about 3i®.

Then it is clear tha t the motion of the sun (which is the same as that of the 
moon apart from complete revolutions) is

from the middle of the first eclipse to the middle of the second: 349; 15° 
from the middle of the second eclipse to the middle of the third: 169:30°.

T he time intervals are:
c r  j  /  354‘‘2i'' reckoned simply
from first to second i  oi^h , . • , .I 345 ^30 reckoned m mean solar days

. J 176‘‘20i'' reckoned simplv 
from second to third i  i j  • . j17o reckoned in m ean solar days.

Over such short intervals it will make no appreciable difference if one uses
H305 approxim ate periods [to determine the moon’s m ean motions].-*^ The moon’s

mean motions are, then, (beyond complete revolutions), approxim ately
.d oJ7h J 306;25° in anomalv

1 345;51” in longitude
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in l7 6 » 2 0 i‘ j 170;7° in longitude.
Thus it is clear that the motion on the epicycle of 306;25° over the first 

interval has produced an increment of [349;15° -  345;51°=] 3;24° over the 
mean motion, and the motion [on the epicycle] of 150;26° over the second 
interval has produced a decrement from the m ean m otion of [169;30° -  
170:7°=] 0;37°.

W ith the above as data, let [Fig. 4.4] the moon’s epicycle be [circle] ABG, on

"  At a lunar eclipse the moon is diametrically opposite the sun. Therefore moonrise coincided 
with sunset, which was 5! equino< tial hours before midnight. Ptolemy allows i-hour to account tor 
after moonrise". He estimates a duration of 3 hours lor an eclipse of more than 6 digits (according to 

Oppolzer, no. 744, this eclipse had a magnitude of 6.4 digits and a duration of alx>ut 2;36*'; P.V. 
Neugcbauer calculates 6.1 digits and 2.4*'). Obviously this eclipse is hardly ‘recorded in an 
unambiguous fashion’ (p. 190).

‘̂ This is a point of methodolog\-. Ptolemy’s mean motion tables are based, not on the exact 
periods he took from Hipparchus, but (Ibr the anomaly) on a correction applied to the number 
derived from those periods (IV 7). However, the correction is itself based in part on the parametei^ 
derived here. It is therefore important to note that the correction makes no difference over theshort 
inteival-s considered here (lietween the first and second eclipses it is only alx)ut 1 second of arc). 
From IV 11 ii is clear that Hipparchus had already established the principle that it was necessan' to 
use an eclipse triple close in time, so that any long-term error in the mean motions would have a 
minimal ellcct.
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B

D
Fig. 4.4

which point A is the location of the moon at the middle of the first eclipse, B its 
position at the middle of the second eclipse, and G its position at the middle of 
the third eclipse. W e must imagine the moon to move on the epicycle from B to 
A and from A to G in such a way that arc AGB, which is its increment in motion 
between the first and second eclipses, is 306;25° and produces an increment of 
3;24° over the m ean motion, while arc BAG, which is its increment in motion 
between the second and third eclipses, is 150;26°, and produces a decrement of 
0:37° from the mean motion. Hence the motion from B to A is 53;35° and 
produces a decrement of 3;24° from the m ean motion, and the motion from A to 
G is 96:51° and produces an increment of 2;47° over the m ean motion.

Now the perigee of the epicycle cannot lie on arc BAG. This is clear because 
this arc has a subtractive effect, and is less than a semi-circle, while the greatest 
speed occurs at the perigee. Since, then, [the perigee] necessarily lies on arc 
GEB,^^ let us take the centre of the ecliptic, which is also the centre of the 
deferent, as point D, and draw lines DA, DEB and  DG to the points 
representing [ the positions of the m oonat]the three eclipses. In order to make the 
sequence of the proof readily transferable for com putations of this kind, 
w hether we use the epicyclic hypothesis (as now) for our dem onstration, or the

H306

For a detailed argument about the location of the observer with respect to the points on the 
epicycle representing the three eclipses see HAXiA 74.
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eccentric hypothesis, in which case [see Fig. 4.5] centre D is taken inside the 
circle, we give the following generally applicable description.

Produce one of the three straight lines draw n [DA,DB,DG] to the opposite 
H307 circumference (in this case we already have DEB draw n to E from point B of the 

second eclipse), and draw  a line joining the points of the other two eclipses (here 
AG). From the point where the first line produced cuts the circumference again 
(here E) draw lines to the other two points (here EA, EG), and [from the same 
point] drop perpendiculars on to the lines between the other two points and the 
centre of the ecliptic (here EZ on to AD and EH on to GD). From  one of these

B

two points (here G) drop a perpendicular on to the line draw n from the other 
(here A) to the extra intersection [with the circumference] (here E) resulting 
from [the first straight line, DB,] being produced (in this case, we drop G© on to 
AE). W hichever fK>int we start draw ing the figure from, we shall find that the 
same ratios result from the numbers used in the dem onstration. O u r choice [of 
starting-point] is guided merely by convenience.

So, since we found that arc BA subtends 3;24° of the ecliptic,
, , /  /  3;24° where 4 right angles =360°

the angle at its centre, Z BDA = ^ ^ . 0 0 0  l  o - l  1 ocnoo ^ [ 6,-48°° where 2 right angles = 360°°.
H308 Therefore in the circle about right-angled triangle DEZ.

arc EZ = 6;48°
and EZ = 1\1S^ where hypotenuse DE = 120'’.



Similarly, since arc BA = 53;35, 
the angle [it subtends] a t the circumference,

Z BEA = 53;35°® where 2 right angles = 360°®.
But, in the same units, Z BDA = 6;48°°.
Therefore, by subtraction, Z EAZ = 46;47°° in the same units.
Therefore in the circle about right-angled triangle AEZ, 

arc EZ = 46;47®
and EZ = 47;38,30‘* where hypotenuse EA = 120*’.

Therefore where EZ = 7;7,O'* and ED = 120’’,
AE = 17;55,32".

Again, since arc BAG subtends 0;37° of the ecliptic,
, , . , „  r 0;37° where 4 right angles = 360°

the angle at Its centre, Z dU(j  = -s , , .no l o • l i <>caoo^ [ I;14°° where 2 right angles = 360°°.
Therefore in the circle about right-angled triangle DEH, 

arc EH = 1;14°
and EH = 1;17,30‘’ where hypotenuse DE = 120*’. H309

Similarly, since arc BAG = 150;26°, 
the angle [it subtends] at the circumference,

Z BEG = 150:26°° where 2 right angles = 360°°.
But Z BDG = I; 14°° in the same units.

Therefore, by subtraction, Z EGD = 149; 12°°.
Therefore in the circle about right-angled triangle G EH, 

arc EH = 149;12°
and EH = 115:41.21'’̂ '’ where hypotenuse GE = 120'*. 

Therefore where EH = 1;17.30'’ and DE = 120'’.
GE = l;20,23^ 

and, as we showed, EA = 17;55.32‘’ in the same units.
Again since, as we showed, arc AG = 96;51°, 
the angle [subtended by it] at the circumference,

Z AEG = 96;51°° where 2 right angles = 360°°.
Therefore in the circle about right-angled triangle G E 0 , 

arc G 0  = 96:51° 
and arc E© = 83,9° (complement).

So the corresponding chords
G© =89;46,14’’l  . 

and E 0  = 79;37,55'’;  hypotenuse GE = 120 .  ̂ ^,3 ,^

Therefore where GE = 1;20,23’’
G 0  = 1;0,8‘’ 

and E 0  = 0;53,21'’.
And, in the same units, the whole line EA was found to be 17;55,32‘’.
Therefore, by subtraction, 0 A  = 17;2,11’’ where G 0  = 1;0,8‘*.
And the square on A 0  is 290; 14,19 
while the square on G 0  is 1;0,17.
But AG2 = A02 + G©2 = 291; 14,36.

^  115;41,24 (as L) may be correct at H309,10 (computed: 115;41,28). I t makes no difference to 
subsequent calculations whetTier one adopts 21, 24 or 28.
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Therefore AG = 17;3,57‘’ where DE = 120^ and GE = l;20,23^
But, where the diam eter of the epicycle is 120’’, AG = 89;46,14‘’

(for it subtends arc AG, which is 96;51°).
Therefore where AG = 89;46,14'’ and the epicycle diam eter is 120*’,

DE = 631; 13,48” 
and GE = 7;2,50’’.

Therefore arc GE of the epicycle = 6;44,1°.
And, by hypothesis, arc BAG = 150;26°.

Therefore, by addition, arc BGE = 157; 10,1°,
H311 so its chord, BE = 117;37,32'* where the epicycle diam eter is 120'’ and ED = 

631; 13,48”.
Now if we had found BE equal to  the diam eter of the epicycle, the epicycle 

centre would, obviously, lie on u, and we would immediately get the ratio 
between the diameters [of epicycle and deferent]. Since, however, it is less than 
the diameter, and also arc BGE is less than a semi-circle, it is clear that the 
centre of the epicycle will fall outside segment BAGE.

Let it be [Fig. 4.6] in point K. and draw  the line D M K L  from D, the centre of 
the ecliptic, through K. Thus point L represents the apogee of the epicycle and 
M  its perigee. Then

BD.DE = L D .D M ;"

196 I V  6. Geometrical determination o f  lunar anomaly

Euclid III 36: the rectangle contained by any line drawn from a point outside the circle and the 
segment of that line outside the circle equab the square on the tangent to the circle from that point.
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and we have shown tha t where the epicycie diam eter L K M  = 120’’,
BE = 117;37,32'’ and  ED = 631;13,48P.

Therefore, by addition, BD = 748;51,20^ H312
Therefore LD .D M  = BD.DE = 472700;5,32^

Furtherm ore, since LD.DM  + K M - = DK",^® 
and the radius of the epicycle, K M  = 60'’,

KM2 = 3600^, 
and DK2 = 472700;5,32'’ + 3600” = 476300•,5,32^

Therefore D K, the radius of the deferent circle concentric to the ecliptic, is 
690;8,42’’ where K M , the radius of the epicycle, is 60'’.
So, where the radius of the deferent, the centre of which coincides with the 
observer, is 60*’, the radius of the epicycle is about 5:1 S’*. H313

Repeating the same figure [Fig. 4.7], drop perpendicular K N X  from centre K 
on to BE, and join BK.

Now, where DK = 690;8,42", 
we found that DE = 631:13,48'’

and N E  = iBE  = 58;48,46‘’.
Therefore, by addition, DEN = 690;2,34'’.

X

D
Fig. 4.7

^  Euclid I I 6: if a straight line (LM) be biscctcd and a straight line (DM) added to it, the rectangle 
contained by the whole plus the added line (LD) and the added line (DM), together with the square 
on the half (KM*) is equal to the square on the line (DK) made up of the half (KM) and the added 
line (DM).



nu arc uin ~  i .
■ Z D K N  -  -f 'vhere 2 right angles =

\  89; 1° where 4 right angles = 3

Therefore in the circle about right-angled triangle DNK,
DN = 119;58,57‘' where hypotenuse D K  = 120’’, 

and arc D N «  178;2®.
360°°

Therefore arc XM  of the epicycle = 89;1'
and arc LBX = 90;59° (complement),

H314 and arc XB =  ̂ arc BXE = 78;35° (for arc BE was determ ined [p. 196]
as about 157; 10°).

Therefore, by subtraction, arc LB of the epicycle, which is the distance of the 
moon from the apogee of the epicycle at the middle of the second eclipse in 
question, is 12,24°.

Similarly, since, as we showed,
Z DKN = 89; 1° where 4 right angles = 360°, 

by subtraction, Z KDN, which represents the equation of anomaly (which is 
subtractive with respect to the mean motion) corresponding to the epicycle arc 
LB. is 0:59° (complement of Z DKN). Therefore the mean position of the moon 
at the middle of the second eclipse was TTp 14;44°. since its tm e position was 
13;45°, corresponding to the position of the sun in Pisces.

Let us now turn to the three eclipses which we have selected from those verv 
carefully observed b\- us in Alexandria.

The fust occurred in the seventeenth year of Hadrian, Pauni [X] 20 21 in the 
EgN’ptian calendar [133 M ay 6-7]. VVe com puted the exact time of mid-eclipse 
as 4 of an equinoctial hour before midnight. It was t o t a l .A t  that time the true 
position of the sun was about 8 13i°.

H315 T he second occurred in the nineteenth year of H adrian, Choiak [ I \ ']  2. 3 in 
the Egsptian calendar [134 Oct. 20/21]. We com puted that mid-eclipse 
occurred 1 equinoctial hour before midnight. [The moon] was eclipsed & of its 
diam eter from the north. At that time the true position of the sun was about 
^ 25i°.

The third eclipse occurred in the twentieth year of H adrian, Pharm outhi 
[Vni] 19/20 in the Egy ptian calendar [136 M ar. 5/6]. We com puted that m id­
eclipse occurred 4 equinoctial hours after midnight. [The moon] was eclipsed 
half of its diam eter from the n o r t h .A t  that time the position of the sun was 
about K  14n°.

It is clear that here too the mean motion [in longitude] of the moon, be\ ond 
complete revolutions, is equal to that of the sun, and is:

from middle of the first eclipse to middle of the second: 16I;55° 
from middle of the second eclipse to middle of the third: 138;55°.

The length of the first interval is:
1 Egyptian year 166 days 23i equinoctial hours reckoned simply 
1 Egyptian year 166 days 23| equinoctial hours reckoned accurately.
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T he length of' the second interval is:
1 Egyptian year 137 days 5 equinoctial hours reckoned simply
1 Egyptian year 137 days Si equinoctial hours reckoned accurately.

T he approxim ate mean motion of the moon (beyond complete revolutions) is:
• ly oQ5h f  H0;21° in anomaly 
in 1 166 238 I  jg^.370 longitude

J iQ-ri Kih i  81;36® in anomaly 
and m V 137  ̂ 1 10-7 qao • 1 j  [ 137;34° in longitude.

Therefore, clearly, the 110;21® of motion on the epicycle over the first
interval have produced a decrement from the m ean m otion of [161;55° -
169;37°=] 7;42°, while the 81;36° of motion on the epicycle over the second
interval have produced an increment to the m ean motion of [138;55° -
I37;34°=] 1;21°.

W ith the above data, let the moon’s epicycle [Fig. 4.8} be ABG. Let A be the 
point in which the moon was at the middle of the first eclipse, B its location at 
the middle of the second eclipse, and G  its position at the middle of the third.
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W e must, again, imagine the motion of the moon taking place from A to B and ' 
then from B to G in such a way that, as we said, arc AB, which is 110;21°, 
produces a decrem ent of 7;42° with respect to  the m ean motion, while arc BG, 
which is 81;36°, produces an increment of 1;21® with respect to the mean



motion; thus the rcniaining arc GA is 168;3® and produces an  increm ent to the 
mean motion of 6;21®, which is the difference [between 7;42° and 

H 317 It is clear that the apogee must lie on arc AB, since it can lie neither on arc BG 
nor on arc GA, both of which produce an additive effect and are less than a 
semi-circle. In the same way [as before],*” take the centre of the ecliptic and the 
circle carrying the epicycle as D, and draw  from it, to the; points representing 
the 3 eclipses, lines DEA,DB,DG. Jo in  BG and  draw  from point E to B and G 
lines EB and EG, and drop on to lines BD and  DG perpendiculars EZ and EH. 
Also drop perpendicular G 0  from G on to BE.

Then, since arc AB subtends 7;42® on the ecliptic, the angle at the centre of 
the ecliptic,

, _ _  _ f  7;42° where 4 rieht aneles = 360®
^  ADB _ I  j 5.2400 ^ h e re  2 right angles = 360°°. 

Therefore in the circle about right-angled triangle^^ DEZ, 
arc EZ = 15;24°

H318 and EZ = 16;4,42‘’ where hypotenuse DE = 120^
Similarly, since arc AB = 110;21°, 

the angle [subtended by it] at the circumference,
Z AEB = 110;2I°° where 2 right angles = 360°°.

But Z ADB = 15;24°° in the same units.
Therefore, by subtraction, Z EBD = 94;57°°.
Therefore in the circle about right-angled triangle'*'* BEZ, 

arc EZ = 94:57°
and EZ = 88;26,17’’ where hypotenuse BE = 120’’. 

Therefore where EZ = 16;4,42’’ and DE = 120’’,
BE = 21;48,59^

Furtherm ore, since, as we showed, arc GEA subtends 6;21° of the ecliptic, the 
angle at the centre of the ecliptic also,

/  ADP - 1  where 4 right angles = 360°
" 1 12:42°° where 2 right angles = 360°°. 

Therefore in the circle about right-angled triangle DEH, 
arc EH = 12;42°

and EH = 13;16,19’’ where hypotenuse DE = 120’’. 
Similarly, since arc ABG = 191;57°, 

the angle [subtended by it] at the circumference,
Z AEG = 191:57°° where 2 right angles = 360°°

H319 But Z ADG was found to be 12:42°° in the same units.
Therefore, by subtraction, Z EGD = 179; 15°° in the same units.
Therefore in the circle about right-angled triangle G EH, 

arc EH = 179; 15°
and EH = 119;59,50'’ where hypotenuse GE = 120’’.

Reading opoiax; Ibi op(o^ coq uti UTtoiceinevou toutou at H 317.4-5. This would mean 
‘Nevertheless, without this as an assumption’; but the location of the apogee on arc ABii (and must 
be) assumed in Fig. 4.8. I suppose that 6^oi(lx; (‘similarly’) was corrupted to o^coq (‘however’) 
and the rest then added as an ancient gloss.

^‘Reading 6p0o7(oviov (with D, .\r) (or Tp'iYOivov at H317.25. So 100 at H319,4 and 319,14. 
” Reading BEZ 6p0OYoi)viov (with D, Ar) for BEZ at H3I8.8.

200 I V  6. Geometrical determination o f  lunar anomaly



Therefore where EH  = 13;16,19^ and = 120^,
GE = I3;I6,20^.

And, as we showed, BE = 21;48,59‘̂ in the same units.
Furtherm ore, since arc BG = 81;36°, 

the angle [subtended by it] at the circumference,
Z BEG = 81;36°® where 2 right angles = 360°°.

Therefore in the circle about right-angled triangle G E 0 , 
arc G© = 81;36° 

and arc E 0  = 98;24° (supplement).
Therefore the corresponding chords

^  ^ hypotenuse EG = 120^.
and E 0  = 90;50,22^ /

Therefore where GE = 13;16,2(y’,
G 0  = 8;40,20’’ and E 0  = 10;2,49^.

And the whole line EB was found to be 21;48.59‘’ in the same units.
Therefore, by subtraction [of E© from EB],

0 B  = 11;46,10^ where G 0  = 8;40,20'*.
And 0B2 = 138;31,ll^  G 0^ = 75;12,27^ H320
and BG- = 0B2 + G 02 = 213;43,38‘’.

Therefore BG = I4;37,10‘’ where DE = 120*’ and GE = 13;16.20'’.
But where the diameter of the epicycle is 120'*,

BG = 78:24,37'’ (chord of arc BG, which is 81:36°).
Therefore where BG = 78:24,37'’ and the epicycle diam eter is 120'’,

DE = 643:36,39'’ and G E = 71:11,4^
Therefore arc GE of the epicycle = 72:46,10°.

And, by hypothesis, arc GEA = 168:3°.
Therefore, by subtraction, arc EA = 95:16,50°

and therefore its chord AE = 88:40,17'’
where the epicycle diam eter is 120*’ and where ED = 643:36,39'’.
Furtherm ore, since arc EA was shown to be less than a semi-circle, the centre 

of the epicycle will, obviously, fall outside segment E A. Take the centre as point 
K  [Fig. 4.9], and draw line D M K L, so that, again, point L represents the 
apogee and f>oint M the perigee. Then

AD.DE = LD.DM , H321
and we have shown that, where the epicycle diam eter LK M  = 120'’,

AE = 88:40,17'’ and ED = 643;36,39'’
(thus, bv addition, AD = 732:16,56'’).

LD.DM  = AD.DE = 471304;46,17.
Again, since

LD.DM  + KM2 = DR2, 
and K M , the radius of the epicycle, is 60'’, 
if we add the 3600” (of KM^)^* to the above 471304;46,17^, 

we find DK^ = 474904;46,17^

Reading 5e AE ^  fon’i AE ^  (all mss.) at H 319,7. The latter would mean ‘where
DE, as was shown, equals 12 f f \  which is nonsense, since this is assumed, not proven. D,Ar have the 
same nonsensical£5eix6Ti at H 318,ll. _

** Reading to»3 fejtiKUKXou tffiv autSv fe<mv eav td 7% tou xeTpaYtovoo (with D,Ar) for tou
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H322 Thereibre the radius of the del'erent, concentric with the ecliptic,
DK = 689;8‘’ where the radius of the epicycle, K M  =60'*. 

Therefore where the line joining the centres of ecliptic and cpicycle is 60’’, 
the radius of the epicycle is 5; 14’’.

This ratio is veiy nearly the same as that derived just above from the more 
ancient eclipses.

So, in the same figure [Fig. 4.10] drop perpendicular K N X  from centre K on 
to DEA, and join AK.
Then, as we showed, where DK = 689;8‘’, DE = 643:36,39’’;

and NE = lAE = 44;20,8’’ in the same units.
Therefore, by addition, DEN = 687:56,47'’.
Therefore, where hypotenuse D K  = 120'’, DN = 119;47,36‘’, 
and in the circle about right-angled triangle DKN, 

arc D N «  173; 17°.
173; 17°° where 2 right angles = 360°° 
86;38,30° where 4 right angles = 360°.

Z D K N  =

ejtiKUKX-ou e^TiKovta itoiei to  o.k outtii; YX.ectv td  yx at H321,14-15. Heiberg excises e^iitcovta 
from the iatter, but it is still very clumsy.
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arc M EX  of the epicycle = 86;38,30°,
and arc LAX = 93;21,30° (supplement), H323

and arc AX = i arc AE 47;38,30°.
Therelbre, by subtraction, arc AL = 45;43°.
But, by hypothesis, the whole arc AB = 110;21°.
Therelbre, by subtraction, arc LB = 64;38°.
This is the distance of the moon from the apogee at the middle of the second 
eclipse determ ined above.

Similarly, as we showed,
Z D K N *86 ;38°, 

so Z KDN = 3;22° (complement), 
and, by hypothesis, Z ADB = 7;42°.

Therelbre, by subtraction, Z LDB = 4:20°.
This angle subtends the arc of the ecliptic representing the equation of 

anomaly (which is subtractive with respect to the m ean motion) resulting from 
arc LB of the epicycle.

Therefore the mean position of the moon at the m iddle of the second eclipse H324 
was 29;30°, since its true position was 25; 10°, corresponding to the 
position of the sun in Libra.



7. \0n  the correction of the mean positions o f the moon in longitude and anomaly]*^

Now we have shown that the mean position of the moon at the middle ol the 
second ol' the [three] ancient eclipses was: 

in longitude: TIB 14;44°
in anomaly: 12:24° from the apogee ol’ the epicycle; 

and at the second ol' the three eclipses in our time: 
in lo n g itu d e:^  29;30° 
in anomaly: 64;38° from the apogee.

So it is d e a r  that in the interval between the above two eclipses the mean 
motion ol the moon, beyond complete revolutions, was; 

in longitude: 224;46° 
in anomaly: 52; 14°.

Now the time between M ardokem pad 2, T hoth  18/19. s hour before midnight, 
and H adrian 19. Choiak 2/3, 1 hour belbre midnight is

854 Egyptian years 73** 23^ equinoctial hours reckoned simply 
854 Egyptian years 73'’ 23j equinoctial hours reckoned accurately (in mean 

solar days).
H325 In days this is 311783 days 23^ equinoctial hours.

In this interval we lind that the increment over complete revolutions, according 
to the daily motions derived above from the imcorrccted hypotheses, is: 

in longitude: 224:46° 
in anomaly: 52;31°.^“

Thus, as we said [p. 179], we iind that the increment in longitude is identical 
with what we derived irom the above obsei-vations, but the increment in 
anomaly is 17 minutes too great. Hence, belbre constructing the [mean motion] 
tables, we corrected the daily motion in anom aly by dividing these 17 minutes 
by the above total in days, and subtracting the resulting coriection lor 1 day (of 
0;0,0,0,11,46.39°) from the uncorrected mean daily motion in anomaly. The 
corrected motion is 13;3,53,56,17,51,59°, which is the basis ol the other entries, 
derived bv accum ulation, in the tables.
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8. {On the epoch o f the mean motions o f the moon in longitude and anomaly}

In order to establish the epochs ol’these [mean motions] lor the same fii-st year ol' 
Nabonassar, Thoth 1 in the Egyptian calendar, noon, we took the time-interval 

H326 from that moment to the middle o f the second eclipse of the lirst trio (which is 
the nearer [to the epoch]). This, as we said, took place in the second year of 
M ardokem pad, Thoth  18/19 in the Egyptian calendar, | t h  of an equinoctial 
hour before midnight. This interval is com puted as 27 Egyptian years, 17 days

" O n  chs 7 and 8 see H AM A  78-9, Pedersen 180-2.
** If one computes accurately with Ptolemy’s mean daily motions (p. 179) one finds 224,47,15° (of. 

HAMA  79) and 52;32,18° respectively, i.e. in each case one minute more (not utterly negligible in 
this context). I suspect that Ptolemy computed, not for23;20‘', but for23;18*’, i.e. his correction for 
the equation of time was not precisely -  i , but -3 2  mins. (accurate computation gives -2 8 i mins.)



and 1 1  ̂ hours both by the simple and (approximately) by the accurate 
reckoning.^* To this interval corresponds (beyond complete revolutions) 

123;22° in longitude, and 
103;35° in anomaly.

Subtracting each of these values i’rom the corresponding one at the middle oi' 
the second eclipse [ITB I4;44°and 12;24°, p. 198], we find for the mean positions 
of the moon in the first year ofNabonassar, T hoth 1 in the Egyptian calendar, 
noon:

in longitude: B H ;22°
in anomaly: 268;49® from the apogee of the epicycle
in elongation; 70;37° (for, as we showed, the [mean] position of

the sun at the same moment was X  0:45°).

I V  8. Determination o f  moon’s epoch in longitude and anomaly 205

9. {On the correction o f ihe mean posiliom tn latitude oj the moon, and their efMchs]'^

By the above methods we have established the periodic motions and epochs [of 
the moon] in longitude and anomaly. Concerning the corresponding amounts 
for its latitude, we were fbi-merly in error, because we too adopted H ipparchus’ H32^ 
assumptions that [the diam eter of] the moon goes approxim ately 650 times into 
its own orbit, and 2: times into [the diam eter oi] the earth ’s shadow, when it is at 
mean distance in the syzygies. For once these quantities and the size of the 
Inclination of the moon’s orbit are given, the limits of individual lunar eclipses 
are given. So we took [paiis ol] eclipses separated by a known inteival. 
com puted (from the m agnitude of the obscuration at mid-eclipse) the true 
distanc e [of the moon] from whichever of the two nodes [the eclipse was near] 
along its inclined circle in [argum ent of] latitude, determ ined the mean position 
[in latitude] from the true by applying the equation of anomaly as already 
determined, and thus found the m ean position in latitude at the middle of each 
eclipse, and hence the motion in latitude (as increment over complete 
revolutions) during that interval."’'

But now, using more elegant methods which do not require any of the 
previous assumptions for the solution of the problem, we have found that the 
motion in latitude com puted by the above method is faulty. Furtherm ore, from

^*The equation of time between era Nabonassar (-746 Feb. 26) and the eclipse in question (-719 
.Mar. 18) is in lact about -3  mins. This would make the mean motions 1 minute less in each case 
than Ptolemy's ligures.

’“See HAMA  80-2. Pedersen 181 is inadequate.
Hipparchus’ method was first explained by Schmidt. 'M aanens Middelbevaegelse’. Cf.

HAMA  313. Norman T. Hamilton has discovered the relevance of this passage to the value of the 
moon's mean motion and position in latitude given in theCanobic Inscription, {Op. Min. 151-2, cf.
HAMA  914). and shown that these were derived by application of the method outlined here to the 
two eclipses Nabonassar 281 18 19 (IV 6, H303) and Nabonassar 882IV 2/3 (IV' 6, H 315). The first 
ol' these had already been used by Hipparchus (cf. VI 9, H526), who had found (by this method) 
that the moon was 9° past the node. Applying Hipparchus’ mean motion in latitude to the inter\ al 
between the eclipses, Ptolemy found that the moon should have been 5° past the node at the second 
eclipse. However, from the obseived magnitude he computed that it must rather be 6° past the 
node, and thus ‘corrected’ Hipparchus’ mean motion by adding 1°, to be distributed over the 
intervening 311784 days. Cf. IV 7. This proauces exactly the value found in the Canobic Inscription.



the motion in latitude com puted from our new method without those 
assumptions, we have proven that those very' assumptions concerning sizes and 
distance are false, and have corrected them. We have done something similar 

H328 with the hypotheses for Saturn and M ercury, changing some of our earlier, 
somewhat incorrect, assumptions because we later got more accurate obser­
vations. For those who approach this science in a true spirit ofenquiry and  love 
of truth ought to use any new methods they discover, which give more accurate 
results, to correct not merely the ancient theories, but their own too, if they need 
it. They should not think it disgraceful, when the goal they profess to pursue is so 
great and divine, even if their theories are corrected and made more accurate 
by others beside themselves. As for those topics [corrections lo the theories ol' 
Saturn and M ercuiy], we will explain how we deal with them at the proper 
places in the later part of our t r e a t i s e .F o r  the time being, to preseiAe the 
proper order of procedure, we will turn to the dem onstration of the position in 
latitude, which is by the following method.

First, then, to correct the actual mean motion in latitude, we looked for [pairs 
ot] lunar eclipses (among those securely recorded) separated by as great an 
inteival as possii)le, at both of which
[ 1 ] the size of obscuration was equal,
[2 ] the eclipses took place near the same node,
[3] the eclipsc was from the same side (either both liom the north or both fioni 

the south) and
[4] the moon was at about the same distance [from the earth].

H329 If these conditions are lullllled the moon's centre must be the same distance 
from the same node, and on the same side, at both eclipses, and hence its true 
motion in latitude during the inteival between the observations contains an 
integer num ber of revolutions in latitude.

The first eclipse we used is the one obser\-ed in Babylon in the thirty-first year 
of Darius I, T \ lii [ \ ']  3 4 in the Egyptian calendar. [-490 Apr. 25 26] at the 
middle of the sixth hour [of night]. It is reported that at this eclipse the moon 
was obscured 2 digits from the south.

The second eclipse we used is the one obser\ed in .Alexandria in the ninth 
year of H adrian. Pachon [IX] 17 18 in the Egyptian calendar [125 Apr. 5 6 ]. 
3 5 equinoctial houi-s before midnight. At this eclipse too the moon was obscured 
h h  of its diam eter from the south.^^

The position of the moon in latitude was near the descending node at each

There is nothing in the discussions ol'Mercuiy and Saturn (Bks. IX and XI) which cfives a clue to 
the changes which Ptolemy mentions, but H am ilton’s discovery about the lunar latitude theory (see 
n.5l) makes it plausible that Ptolemy is referring to the different parameters for M ercuiy and 
Saturn Ibund in the Canobic Inscription. These are: for Saturn, an eccentricity of3;15'’ instead of 
3;25’’, ascending node 353;30° from Regulus instead of327;30°; lor Mercury, an eccentricity of2;30'’ 
instead of 3-9’’, inclination of deferent 0;40° instead of0;45®, inclination of epicycle 7° instead of 
6:15°, slant of epicycle 2;30° instead of 7° (cf. H AM A  908-17).

Oppolzer no. 1107: time 19;55'’ (** 10 p.m. Alexandria), magnitude 1.1 digits. P.V'. Neugebauer 
calculates ca. 22.7" Babylon (** 10; 15 p.m. Alexandria), 1.7 digits.

"■^Oppolzer no. 2058: time 18;57'* (*« 9 p.m. Alexandria), m agnitude2 digits. Note that although 
this eclipse was observed in Alexandria, Ptolemy does not say that he himself was the observer. We 
may conjecture that it was observed by the Theon who 'transm itted' the planetary observations 
recorded at IX 9, X 1 and X 2 (pp. 456, 469, 471) to Ptolemy.
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eclipse (such conclusions can be draw n even 1‘rom quite crude hyf>otheses).^^
The distance [of the moon] was about the same [at both eclipses], and a little 
closer to the perigee than the mean distance. This too can be shown from our 
previous determ ination of the anomaly. Now, when the moon is eclipsed from H330 
the south, its centre is north of the ecliptic. So it is clear that at both eclipses the 
moon’s centre was an equal am ount in advance of the descending node. In the 
first eclipse the distance of the moon from the apogee of the epicycle was 
100;19°. (For the time of mid-eclipse was 1-hour before m idnight at Babylon, 
and [hence] 13 equinoctial hours before midnight at Alexandria;^® from the 
Nabonassar epoch the time comes to

/  101 hours reckoned simply 
256 veai-s 122 davsS , , , . , , .[ IO4 hours reckoned m true solar days.)

Therefore the true position was 5° less than the m ean.’' In the second eclipse the 
moon was 251:53° from the apogee of the epicycle. (For in this case the time, 
from epoch to the middle of the eclipse comes to

, J 8* equinoctial hours reckoned simplv 
871 years 256 davs i n i -  ■ .

8 15 equmoctial hours reckoned accurately.)
Therelbrc the true position was 4;53° more than the mean. Fherefore, in the 
inteival between the two eclipses, which comprises 615 Egyptian years. 133 H331 
days and 21 h ec|uinortial hours. ’** the true motion of the moon in latitude 
comprises an integer num ber of revolutions, while its m ean motion fell short ofa 
complete revolution by 9;.53°. which is the sum ot both [equations ol] anomaly.
But according to the mean motions derived from H ipparchus' hypotheses, as set 
out above, in that interval it falls short ol'a complete revolution by about 10:2°.
Thus the mean motion in latitude is greater than one would e.xpect from his 
hypotheses by 9 minutes.

We divided these 9 minutes by the total ol days in the above inteival 
(approximately 224609), and added the resulting 0:0,0.0,8.39,18° to the mean 
daily motion [in latitude] derived above from those hypotheses: thus we found 
the corrected mean motion of 13:13.45.39.48.56.37°, which we again used as 
the l)asis for the other accum ulated totals in the tables.

H aving once, in this way, determined the mean motion in latitude, we next 
proceeded to establish its epoch position. For this purpose we looked for another 
pair of accurately obseiA’ed eclipses at a known interval, in which all the same H332 
conditions were fulfilled as in the previous pair (namely, for both eclipses the 
distance of the moon was approxim ately equal, and [the m agnitude ol] the 
obscuration was equal and from the same side (either from the north or from the 
south for both), except that here the eclipses were near opposite nodes instead of 
near the same node.

 ̂’For an example ol'how this can be done see HA.MA 81 n.4.
It is not clear whether Ptolemy takes the time of the observ ation to be given in seasonal or 

equinoctial hours. However, the sun is close enough to the equinox that (for 5-hour) the difference is 
minimal. ^

’’ The simplest way to check this (and the corresponding amount at the second eclipse) is to use 
the equation table (IV' 10) with arguments 100:19° and 251;53°.

^*The con ections for ec|uation of time are computed rather inaccurately, being about 4 minutes 
too great at Iwth eclipses. However, these inaccuracies cancel out in the computation of the 
interval.
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The first of these eclipses is the one which we also used for our dem onstration 
of the anomaly [p. 191]. It occurred in the second year of M ardokempad, 
Thoth[I] 18/19 in the Egyptian calendar [-719 M ar. 8/9], a t m idnight in 
Babylon, and i  of an  equinoctial hour before m idnight at Alexandria; at this 
eclipse it is recorded tha t the moon was obscured 3 digits from the south.

The second, which H ipparchus too used, occurred** in the twentieth year of 
that Darius who succeeded Kambyses, Epiphi [XI] 28/29 in the Egyptian 
calendar [-501 Nov. 19/20], when 65 equinoctial hours of the night had passed; 
at this eclipse the moon was, again, obscured from the south 4 of its diameter. 
The middle of the eclipse was 5 of an equinoctial hour before m idnight in 
Babylon (for the length of half the night was about 6 1 equinoctial hours on that 
date), and [hence] l l  equinoctial hours before midnight in Alexandria.®” 

H333 Both of these eclipses occurred when the moon was near its greatest distance, 
but the first was near the ascending node, while the second was near the 
descending node. So here too the centre of the moon was an  equal distance 
north of the ecliptic at [both] eclipses.

Then let [Fig. 4.11 ] the moon’s inclined orbit be ABG on diam eter AG. Let us 
take point A as the ascending node, G as the descending node, and B as the
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Fig. 4.11

northern limit. Cut ofl'equal arcs, AD and GE, from nodes A and G towards the 
northern limit B. Then in the first eclipse the centre of the moon was at D and in 
the second at E.

Now the time from epoch to [the middle of] the fii-st eclipse is 27 Egyptian 
years, 17 days lU  equinoctial hours (reckoned lx>th simply and accurately). 
Hence the moon’s distance I'rom the apogee of the epicycle was 12;24°, and the

Reading yevonEVTi with CD lor YEvo|ievT| at H332,14.
“ ()p|K>l/fr no. 1090; tim r 21;24" (»  11:15 p.m. Alexandria), maj^nitude 2.1 digits.



m ean position was greater than  the true by 59 minutes. Likewise, the time [from 
epoch] to [the middle of] the second eclipse was

245 Egyptian years, 327 days /  ' " I  equinoctial hours reckoned simply
IO4 e q u in o c tia l hours re ck o n ed  a ccu r a te ly .

Hence the moon’s distance from the apogee of the epicycle was 2;44®, and the H334 
mean position was greater than the true by 13 minutes. T he interval between 
the observations contains 218 Egyptian years, 309 days 23n equinoctial hours, 
which produces, for the m ean motion in latitude deduced above, an increment 
[over complete revolutions] of 160;4°.

So, because of the above, let the mean position of the centre of the moon be at 
Z [in Fig. 4.11] at the first eclipse and at H  in the second. Then since 

arc ZBH = !60;4° 
and arc DZ = 0:59° and arc EH = 0;13°,

arc DE = [arc DZ + arc ZBH -  arc EH = ] 160;50°.
(arc AD + arc EG) = 19; 10° (supplement).

And, since they are equal, arc AD = arc EG = 9:35°.
T hat is the am ount by which the true position of the moon at the first eclipse was 
to the rear of the ascending node, and by which the true position of the moon at 
the second eclipse was in advance of the descending node. Therefore, by 
addition,

arc AZ = [arc AD + arc DZ = ] 10;34°
and, by subtraction,

arc HG  = [arc EG -  arc EH = ] 9;22°.
Hence the mean position of the moon at the first eclipse was 10;34° to the rear of 
the ascending node, and [therefore] was 280:34° from the northern limit B, and H335 
at the second eclipse it was 9;22° in advance of the descending node, and 
[therefore] its distance from the northern limit was 80;38°.

Next, since the time from epoch to the middle of the first eclipse produces an 
increment [over complete revolutions] of [mean motion in] latitude o f286; 19°, 
we subtract this am ount from the 280:34° for the position at the first eclipse and 
(after adding 360°) find, for the first year of Nabonassar, Thoth 1 in the 
Egyptian calendar, noon: the mean position in latitude (counted from the 
northern limit): 354; 15°.

In order to be able to check calculations concerning conjunctions and 
oppositions (since for those positions [of the moon] we have no need of the 
second anom aly which we shall dem onstrate later), we shall set out a table for 
the individual [equations of anomaly]. W e have calculated it geometrically, in 
the same way as we already did for the sun. In this case we used the ratio 60:5|
[as a basis], but, as [previously], we tabulate it at intervals of 6° for the apogee 
quadrants, and of 3° for the perigee [quadrants]. Thus the layout of the table is 
identical to that for the sun: it consists of 45 lines and 3 columns; the first two H336 
columns contain the argum ent, in degrees of anom aly, while the third contains 
the equation corresponding to each argum ent. In calculating the longitude and, 
the latitude, this equation has to be subtracted when the anomaly, counted 
1‘rom the apogee of the epicycle, is up to 180°, and added when the anomaly is 
more than 180°. The table is as follows.
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I V  10. Table o f lunar equation (first anomaly)

10. {Table o f the first, simple anomaly o f  the moon]

I 2 
Common 
Numl>ei-s

3

Equation

6 354 0 29
12 348 0 57
18 342 I 25

24 336 1 53
30 330 2 19
36 324 2 44

42 31-8 3 8
48 312 3 31
54 306 3 51

60 300 4 8
66 294 4 24
72 288 4 38

78 282 4 49
84 276 4 56
90 270 4 59

93 267 5 0
<W) 2(H 5 1
yy 261 5 0

102 258 4 :)9
105 255 4 57
108 <)5<) 4 53

111 249 4 49
114 24(i 4 44
117 243 4 38

120 240 4 31
123 237 4 24
126 234 4 16

129 231 4 7
132 228 3 57
135 005 3 46

138 222 3 33
141 219 3 23
144 216 3 10

147 213 2 57
150 210 2 43
153 207 2 28

156 204 2 13
159 201 1 57
162 198 I 41

165 195 I 25
168 192 I 9
171 189 0 52

174 186 0 35
177 183 0 18
180 180 0 0



11. {That the difference in the size o f the lunar anomaly, according to Hipparchus, H338 
is due not to the different f^potheses employed, but to his calculations}^^

Now that we have dem onstrated the above, it would be quite reasonable for 
someone to ask why it is that the ratio [of the eccentricity] found by Hipparchus 
from the lunar eclipses which he adduced for the determ ination of this anomaly 
is neither identical with the one determined by us, nor [consistent w ith itself, 
since] the first ratio he found, using the eccentric hypothesis, differs from the 
second, which was calculated from the epicyclic hypothesis. For in his first 
dem onstration he derives the ratio between the radius of the eccentre and the 
distance between the centres of the eccentre and the ecliptic as about 3144:327i 
(which is the same as 60:6; 15), while in the second he finds the ratio between the 
line jo in ing the centre of the ecliptic to the centre of the epicycle, and the radius 
of the epicycle, as31222:247i (which is the same as 60:4;46). Now the maximum 
equation of anomaly for a ratio of 60:61 is 5;49°; for a ratio  of60:4;46 it is 4;34”, H339 
while our ratio of 60:53 produces a maximum equation of about 5°.®̂

Such a discrepancy cannot, as some think, be due to some inconsistency 
between the [epicyclic and eccentric] hypotheses. N ot only have we shown this 
by logical argum ent just above [IV 5], from the perfect agreement between the 
phenom ena resulting from both hypotheses, but numerically too, if we wanted 
to carry out the calculations, we would find that the same ratio results from both 
hypotheses, provided we use the same set of data  for both, and not. like 
Hipparchus, different sets. For in that case (if different sets of Eclipses are used as 
basis), the discrepancy can occur [through errors] in the actual observations or 
in the com putations of the intervals. At any rate, we will find that in the case of 
those eclipses [used by H ipparchus] the syzygies were observed correctly, and 
are in agreem ent with our proven theories for the m ean and anomalistic 
motions, but the computations of the intervals (on which the demonstration of 
the size of the ratio depends) were not carried out as carefully as possible. We 
shall dem onstrate both of these assertions, beginning with the first three 
eclipses.

He says that these three eclipses which he adduces are from the series brought H340 
over from Babylon, and were observed there; that the first occurred'in the 
archonship of Phanostratos at Athens, in the m onth Poseideon;®^ asm all section 
of the m oon’s disk was eclipsed from the summ er rising-point [i.e. the north­
east] when half an hour of night was remaining. He adds that it was still eclipsed
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» 'See///1A/.4 317-19.
“̂ There are some inaccuracies here: 3122J : 247: 60 : 4;45,21. The maximum equation 

resulting from an eccentricity of 4;46 in 60 is not 4;34°, but 4;33° to the nearest minute. These 
inaccuracies could be eliminated by changing 3122i to 3112i (cf. p. 215 n.75), but ms. authority is 
unanimous at all places. Even more inaccurate is the 5;49° of the maximum equation resulting from 
60 : 64. Correct (to the nearest minute) is 5;59°, and perhaps we should so emend it (v0 for n0 at 
H338.23).

“  It is practically certain that this and the corresponding dates for the other two eclipses are in the 
astronomical Metonic calendar (see Introduction p. 12) rather than the Athenian civil calendar, for 
at the time when the Babylonian observations were ‘brought over’, the equation with the old 
Athenian civil calendar could hardly have been determined, and certainly was of no interest to the 
users of the observations.



when it set. Now this m oment is in the 366th year from Nabonassar, in the 
Egyptian calendar (as H ipparchus himself says) T hoth  26/27 [-382 Dec. 
22/23], s i  seasonal hours after m idnight (since half an hour of night was 
remaining). W hen the sun is near the end of Sagittarius, 1 hour of night in 
Babylon is 18 time-degrees (lor the night is 14? equinoctial hours long).®"* So 5i 
seasonal hours produce 65 equinoctial hours. Therefore the beginning of the 
eclipse was 18^ equinoctial hours after noon on the 26th. And since a small 
section [of the disk] was obscured, the duration of the whole eclipse must have 
been about 1 i  hours, so the middle of the eclipse, obviously, must have been 19t 
equinoctial hours after [noon]. Therefore mid-eclipse a t A lexandria was I81 

H341 equinoctial hours after noon on the 26th.*’̂  T he time from epoch in the first year 
of Nabonassar to the mom ent in question is

■ oc j  J 183 equinoctial hours reckoned simply3o5 Lg\'ptian years 25 days . . . .  , , ^  '
I84 equm octial hours reckoned accurately.

A t this moment, using our hypotheses as set out above, we find
the true position of the sun as 28; 18°
the mean position of the moon as I I  24:20°.
and its ti-ue position as JH 28:17°'’'’

(for its distance in anom aly from the apogee of the epicycle is 227;43°).
He says that the next eclipse occurred in the archonship of Phanostratos at

Athens, in the month Skirophorion, Pham enoth 24/25 in the Egyptian
calendar, and that [the moon] was eclipsed from the sum m er rising-point [i.e.
the north-east] when the first hour [of night] was well advanced. This moment is
in the 366th year from Nabonassar, Pham enoth [\T I] 24/25 [-381 Ju n e
18/19], about 5 i seasonal houi-s before midnight. W hen the sun is near the end
of Gemini, one hour of the night a t Babylon is 12 time-degrees. Therefore the5 j
seasonal hours produce 4? equinoctial hours. So the beginningof the eclipse was

H342 7 5 equinoctial hours after noon on the 24th. And since the duration  of the whole
eclipse is recorded as three hours, mid-eclipse, obviously, occurred 9t5
equinoctial hours after [noon]. So in Alexandria it must have occurred about 8i
equinoctial hours after noon on the 2 4 t h . T h e  time from epoch is

„  nno j  J s i  equinoctial hours reckoned simplv36o Egyptian years 203 davs S ^ . . . .  , , ^
1̂ 7? equm octial hours reckoned accurately.

For this moment we find:
true longitude of the sun: I I  21;46°

These fii^res agree well enough with those derivable from the rising-time table ( I I8) forClima 
IV' (Rhodes, M = q> = 36°), for X© = f  28;18°. In the Geography (5.20.6) Ptolemy assigns 
Babylon a latitude of 35°.

“̂ Oppolzer no. 1275: time 5;5'' (®“ 7 a.m. Alexandria), magnitude 2.6 digits, hali'-duration 5? 
mins. P. V. Neugcbauer calculates c. 8 a.m. Babylon (*• 7 a.m. Alexandria), magnitude 3.0 digits, 
duration l.S*.

®*I.e. here (and in the other five eclipses) the true moon and true sun, as calculated from 
Ptolemy’s hypotheses, are almost exactly 180° apart, thus giving further confirmation of those 
hypotheses. In fact more accurate calculation gives rather worse agreement (e.g. here the 
discrepancy is about 4^ minutes of arc rather than 1'), but in no ease is the difference greater than 
could be explained by the vagueness of the time given in the eclipse report.

*’ Oppolzer no. 1276: time 18;3l'' (•» 8;30 p.m. Alexandria), half-duration 1;15". P .\'. 
Neugebauer calculates the beginningof the eclipse at Babylon as 19.8^, mid-eclipse as ca. 21.1'' (»»8 
p.m. Alexandria), duration 2.7''.
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mean longitude of the moon: f  23; 58°
true longitude of the moon; f  21;48°

(for its distance from the apogee of the epicycle in anom aly was 27;37®).
The intervals between the first and second eclipses are:

[time:] 177*“ 13  ̂ equinoctial hours 
motion of the sun in longitude: 173;28°, 

whereas H ipparchus carried out his dem onstration on the basis o f the intervals:
[time:] 177^ IS l equinoctial hours 

[longitude:] 173° -  1°.
He says that the third eclipse occurred in the archonship of Euandros at 

Athens, in the month Poseideon I, T hoth  16/17 in the Egyptian calendar, and H343 
that [the moon] was totally eclipsed, beginning from the summ er rising-point 
[i.e. the north-east], after 4 hours [ot night] had passed.** This moment is in the 
367th year from Nabonassar, Thoth  [I] 16/17 [-381 Dec. 12/13], about 2 i 
hours before midnight. Now when the sun is about two-thirds through 
Sagittarius, one hour of night a t Babylon is about 18 time-degrees. So 
2 i seasonal hours produce 3 equinoctial hours. Therefore the beginning of the 
eclipse was 9 equinoctial hours after noon on the 16th. And since the eclipse was 
total, its duration was about 4 equinoctial hours. So mid-eclipse, clearly, wzis 
about 11 hours after noon. Therefore in Alexandria mid-eclipse must have 
occurred lOi equinoctial hours after noon on the 16th.®® T h e time from epKJch 
[to this moment] is

, I lOl equinoctial hours reckoned simplv io o  Egyptian vears lo davs . i > ,
^  ' 1̂ 9? equinoctial hours reckoned accurately.

For this moment we find:
true longitude of the sun: ^  17;30°
mean longitude of the moon: EE 17:21°
true longitude of the moon: El 17;28°

(for its distance from the apogee of the epicycle in anom aly was 181;12°).
The interv'als from the second to the third eclipse are: H344

[in time:] 177  ̂ 2 equinoctial hours
[in longitude:] 175:44°,

whereas H ipparchus assumed the following intervals:
[in time:] 17T* 1 ? hours

[in longitude:] 1751°.'®
Thus it is apparent that he committed errors in his com putations of the intervals
of gth and ird  of an equinoctial hour in time, and about  ̂ of a degree [in

“  Ptolemy interprets this h>elow to mean seasonal hours before midnight, i.e. alter 3i seasonal 
hours of night (he thus arrives at a time for the beginning of the eclipse at Babylon, 9 p .n ^  which 
agrees fairly well with modem calculations: P. V. Neugebauer gives 21.3’’). But 5 (bpQv 
JtapeXtiXuSuiffiv can only mean 'alter 4 hours had passed’. Hence Manitius suggests emending to 

5 ' Spaq JtpoeXrjXuSuio^ (‘when the fourth hour was well advanced’), comparingTTi? nptOTTiq 
dipa<; npoeXiiXuduiac; at H341. 13-14, which is interpreted (p. 212) to mean ‘half a seasonal hour 
after sunset’. A less violent emendation would be7  for J  (‘when 3 hours had passed'), cf. ^ia<; mpaq- 
iKavox; JtapeX0ou<rn<; at H302,16-17, ‘when one hour was well past’, which is interpreted as *H 
seasonal hours (after moonrise)’. But the whole ms. tradition is unanimous for ‘4’.

**Oppolzer no. 1277; time 20;4*' («» 10 p.m. Alexandria), half-duration 1;50".
’"R eading ^  ica'i ti'  (with D,Ar) for poe n (175;8®) at H344,5.
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longitude] in each interval. Errors of this am ount can produce a considerable 
discrepancy in the size of the ratio {derived].

We will pass to the second set o f three eclipses he set out, which he says were 
observed in Alexandria. He says tha t the first of these occurred in the 54th 
year of the Second Kallippic Cycle, Mesore [X II] 16 in the Egyptian 
calendar [-200 Sept. 22]. In this eclipse the moon began to be obscured half an 
hour before it rose, and its full light was restored in the middle of the third hour 
[of night]. Therefore mid-eciipse occurred at the beginning of the second hour, 
5 seasonal hours before midnight, and  also 3 equinoctial hours, since the sun 

H345 was near the end of Virgo. So mid-eciipse a t A lexandria occurred 7 equinoctial 
hours after noon on the 1 6 th .A n d  the time from epoch in the lirst year of 
Nabonassar is

r tc r  r,.r I j 7  cquiuoctial hours reckoned simplv546 E g\p tian  years J45 d a v s i ^i .
■ ' equm octial hours reckoned accurately.

For this moment we find:
true longitude of the sun; irp 26:6°
mean longitude of the moon: K  22°
true longitude of the moon: X  26;7°

(for its distance in anomaly from the apogee of the epicycle was 300:13°).
He says that the next eclipse occurred in the 55 th ‘‘ year of the same

cycle. M echir [ \ ’I] 9 in the Egyptian calendar [-199 M ar. 19]. that it began
when 5^ hours ot night had passed, and was total. So the beginningofthe eclipse
was 111 equinoctial hours after noon on the 9th since the sun was near the
end of Pisces), and mid-eclipse was 13i equinoctial houi-s after [noon], (since the
whole moon was eclipsed). ’ The time from epoch to this mom ent is

H346 547 Egs ptian years 158 days 13 i equinoctial hours, w hether reckoned simpl\
or accurately.
For this moment we lind:

true longitude of the sun: K  26; 17°
mean longitude of the moon: ^  I;7°
true longitude of the moon: ITB 26; 16°

(lor its distance in anomaly from the apogee was 109;28°).
The intervals from fust to second eclipse are:

[in time:] 178*̂  6 i equinoctial hours
[in longitude]: 180; 1 1 °,

' ‘ Oppolzer no. 1545; time 17;2*’ 7 p.m. .Alexandria), half-duration 1;29".
'■ Idclcr, / 'ntersuchun^en 216-17. emended ‘55th’ to '54th' here (H345.12) and was consequently 

forced to excise auTW ('the same') in the year desie^nation of the third eclipse at H346,13. His 
argument was that the year begins at the summer solstice in the Kallippic calendar (see 
Introduction p. 12). Since year 1 of Cycle I begins at the summer solstice of -329. year .̂ 4 of 
Cycle II goes from June -200 to June - 1 ^ .  and thus includes this eclipse of.VIarch-199. However, 
the two passages H345.12 and 346,13 confirm one another, and we must allow the possibility that 
Hippan hus. who was using the Eg> ptian calendar w ithin the framework of the Kallippic cycle, 
Ixfgan the year, not at the summer solstice, b u ta tT h o th  1. Thus in his reckoning\car 55 of Cycle II 
would run from Oct. o f -200 to Oct. of-199, and would include both the second and third eclipses.
It is true that this kind of reckoning cannot be applied to the Kallippic years of the equinoxes listed 
in III 1, blit that was in another work of Hipparchus, and there is ho mention of the Egyptian 
calendar there. .See also V 3 p. 224 with n. 13.

’Oppolzcr no. 1.546: time 23;7" (*» 1 a.m. Alexandria), half-duration l;48'‘.
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whereas H ipparchus carried out his dem onstration on the basis of the following 
intervals:

[in time:] 178'* 6 equinoctial hours 
[in longitude:] I80;20°.
H e says that the third eclipse occurred in the same (55th) year of the

Second Cycle, on Mesore [X II] 5 in the Egyptian calendar [-199 Sept. 11] and
that it began when 6^ hours of the night had passed, and  was total. He also says
that mid-eclipse occurred at about Si hours o f night, tha t is 2^ seasonal hours
after midnight. Now when the sun is near the middle of Virgo, one hour of the
night in Alexandria is 14? time-degrees. So 2 j seasonal hours produce about 2i
equinoctial hours. So mid-eclipse was I4 | equinoctial hours after noon on the H347
5th. T he time from epoch to this mom ent is

- ooA j  J 1^4 equinoctial hours reckoned simply547 Egyptian years 334 d a y s -  , ,  , . ,1̂ 135 equm octial hours reckoned accurately.
For this mom ent we find:

true position o f the sun: TTB 15; 12°
mean jX>sition o f the moon: X  10; 24°
true position o f the moon: X  15; 13°

(for its distance in anomaly from the apogee of the epicycle was 249;9°).
T he interval from second to third eclipse is:

[in time:] 176  ̂ ? equinoctial hour 
[in longitude:] 168;55°, 

whereais H ipparchus assumed the following intervals: '
[in time:] 176  ̂ I j  equinoctial hours 

[in longitude:] 168;33°.
Here too, then, it is apparent that he com mitted errors of about and 3° [in 

longitude], and about I and^^ (I + is) equinoctial hours [in time]. These errors 
too can result in a considerable discrepancy in the ratio calculated for the 
[particular] hypothesis.

'^Oppolzer no. 1547: time Sept. 12 0;28*’ (»  2;30 a.m. Alexandria), half-duration USO*. Note 
that for Hipparchus the whole cclipse took place on Mesore 5, although it did not begin until after 
midnight (what Ptolemy would call ‘the midnight which lies towards the sixth’). See Introduction 
p. 12.

”  Reading A|i'ioei Kai Tpito) icai fjniaet teat Tpito) icai SeKOTO) for Vj^iaet Kai Tpittp Koi ScKdTcp 
(4  and } and to’) at H347,16-17. The diffcrencc between Ptolemy’s and Hipparchus’ time intervals 
are: I-II: 61'' -  o = I"; II-III: 1 i" -  !*' = fj'' = (I + Tb)". The emendation is certain and simple, but 
appears never to have been made. (In the Arabic tradition, T, Q, occurs the almost correct variant 
‘! + j and i + i + r^’.) Manitus noticed the discrepancy, but was led astray by his misunderstanding 
at H347, 13-14ofniSq Tp'iTOu wpot?, which he took to mean ‘a third of one hour’. Thus he supposed 
the difference between Ptolemy’s and Hipparchus’ intervals (II-III) to be (I -  i) = 4 minutes*** ri 
hour, and emended Heiberg’s SeKCtTtp to S(i)5eKdT0> (the reading of D). I carelessly followed his 
interpretation and emendation in Toomer[2], in which I used Hipparchus’ intervals to recompute 
the ratios for the eccentric and epicyclic models. The result was that, while I b u n d  fairly good 
agreement with the ratio 3144:327! for the eccentric model, using the first triple ofeclipscs, I could 
derive a value close to the ratio 3122 J:247 5 for the epicyclic model and the second eclipse triple only 
by attributing a computational error to Hipparchus. Now, however, using the correct time interval . 
of Ij'' for II-III , I find much better agreement with the above ratio, as I shall show in d e u il~  
elsewhere. (If the ratio were 3112i:247 J, agreement would be almost perfect, and this also provides 
a better lit with the equivalences given by Ptolemy.) These calculations not only vindicate 
H ipparchus’ computational abilities, but cast doubt on my claim that he was operating with a 
chord table with base R = 3438."
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H348 Thus we have plainly displayed the reason for the above discrepancy, and it is 
clear that we can have even more confidence than  before in the correctness of 
the ratio we deduced for the anom aly at lunar syzygies, since we have found 
these very same eclipses agreeing closely with our hypotheses.
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Book V
I. [On the conslruclion o f an 'astrolabe' instrument^

As far as conceins the [moon’s] syzygies with the sun at conjunction and 
opposition, and the eclipses which occur at such syzygies, we find that the 
hypothesis set out above for the first, simple anom aly is sufTicient, even if we 
employ it just as it is, w ithout any change. But for particular positions [of the 
moon] at other sun-moon configurations one will find that it is no longer 
adequate, since as we said [p. 181], we have discovered that there is a second H351 
lunar anomaly, related to its distance from the sun. This anomaly is reduced to 
the fust [i.e. becomes zero] at both syzygies, and reaches a ma.ximum at both 
quadratures. W e were led to aw'areness of and belief in this [second anomaly] by 
the obsei*v'ations of lunar positions recorded by H ipparchus,' and also by our 
own observations, which were m ade by means of an  instrument which we 
constructed for this puipose. T he makeup of the instrument is as follows.

W e took two rings of an appropriate size, with their surfaces precisely turned 
on the lathe so as to be squared off [i.e. with rectangular cross-sections], equal 
and similar to each other in all dimensions. W e joined them together at 
diam etrically opposite points, so that they were fixed at right angles to each 
other, and  their corresponding surfaces coincided: thus one of them [Fig.
F,3] represented the ecliptic, and the other [Fig. F,4] the m eridian through the 
poles of the ecliptic and the equator [i.e. a colure]. O n  the latter, using the side 
of the [inscribed] square [as measure], we marked the points representing the 
poles of the ecliptic, and  pierced each point with a cylindrical peg [Fig. F,e,e] 
projecting beyond both outer and inner surfaces. O n the outer [projections] we 
pivoted another ring [Fig. F,5] the concave [inner] surface of which fitted H352 
closely on the convex [outer] surface of the two joined rings, in such a way that it 
could move freely about the above-mentioned f>oles of the ecliptic in the

‘ O n the instrument described in this chapter the only good discussion is that of Rome{4], to 
which the reader is referred for all details of its construction and use. My Fig. F is based on the 
drawing there. The numbers and letters designating the rings and other parts of the instrument also 
follow Rome’s notation. In modern terms, it is an ‘annillary sphere’. The adjective ‘astrolabe’ 
applied to it and to its parts simply means for takingthe [the position of] the stars’, and has nothing 
to do with the instmment to which the name ‘astrolabe’ is now usually applied (on which see 
HAMA  II 868-79). The latter was called the ‘small astrolabe’ by Theon of Alexandria; see 
Rome[l ] I 4 n.O; by Ptolemy it was apparently called ‘horoscopic instrument’ (see HAMA  II 866).

- Examples of these are presei-ved at V 3 p. 224 ^ d  V 5 pp. 227 and 230. It is notable that these 
are the latest three known observations of Hipparchus. The obvious conclusion is that towards the 
end of his career he suspected that the ’simple’ lunar hypwthesis was inadequate for positions outside 
the syzygies, and was making observations to check thb.



218 V 1. Construction o f  armillary sphere

H353

longitudinal direc tion. Similarly u e  pivoted another ring[Fitx. F.2] on the inner 
[projections]; this too fitted the two [joined] rings closely, its convex surface to 
their concave, and. like the outer ring, moved freely in longitude about the 
same poles. VVe marked on this inner ring, and also on the i ingi epresentingthe 
ecliptic, the divisions indicating the standard  360 degrees of the circumference, 
and as small subdivisions of a degree as was practical. 'Fhen we litted snugK 
inside the inner of the two [movable] rings another thin l ing [Fig. F. 1] with 
sighting-holes [Fig. F,b.b] projecting from it at diam etrically opposite points. 
[This ring was constructed] so that it could move laterally in the plane ol the 
ring it was fitted into, towai-ds either of the above-mentioned poles, in order to 
allow obseivation of the variation in latitude.

Having completed the above construction, we marked off from both poles of 
the ecliptic, on the ring representing the circle through both poles [Fig. F.4], an 
arc equal to the distance between the poles of ecliptic and ecjuator (as 
determ ined above). At the ends of these arcs (which were, again, diametrically 
opposite) we again inserted pivots [Fig. F ,d,d], attaching them  to a meridian 
ring [Fig. F,6] similar to that^ described at the Ijeginningof this treatise [pp. 61-2] 
for making observations of the arc of the m eridian between the solsticial points. 
This m eridian ring was set up in the same position as the earlier one. 
perpendicular to the plane of the horizon and at an elevation of the pole 
appropriate for the place in question, and also parallel to the plane of the actual 
meridian [at that place]. Thus the inner rings [Fig. F,4 etc.] were set up so as to

 ̂Reading t 5  kv dpxfi iriq ouvTd^Eox; dn:o6e5eiynev(p (with D,Ar) for t (3v  ev dpxff Tfjq 
ouvxd^eax; uno5e5EiY|ievo)V (which is untranslatable) at H353.1-2.



revolve about the poles of the equator, from east to west, following the lirst 
motion ol' the univeise.

O nce we had set up the instrum ent in the way described, whenever we had a 
situation in which both sun and moon could be obsei-ved above the earth  at the 
same time, we set the outer astrolabe ring [Fig. F,5] to the graduation [on the 
ecliptic ring, fig. F,3] marking, as nearly as p>ossible, the position of the sun at 
that moment. T hen  we rotated the ring through the poles [Fig. F,4] until the 
intersection [ofouter asti olabe ring and ecliptic ring] m arking the sun’s position 
was exactly facing the sun, and thus both the ecliptic ring [Fig. F,3] and the 
[ring] which goes through the p>oles of the ecliptic [Fig. F,5] cast its shadow 
exactly on itseli.^Or, ifwe were using a star as sighting [i.e. orienting] object, we 
set the outer [astrolabe] ring to the position assumed for that star on the ecliptic- 
ring, [and then rotated the ring Fig. F,4 to such a position] that when we 
applied one eye to one face of the outer ring [Fig. F,5] the star appeared 
fastened, so to speak, to both [nearer and farther] surfaces of that face,'’ and thus H354 
was sighted in the plane through them. Then we rotated the other, inner 
astrolabe ring [Fig. F.2] towards the moon (or any other oliject we desired) so 
that the moon 'or any other desired object) was sighted through both sighting- 
holes on the inmost ring at the same time as the sun (or tiie other sighting-star) 
was being sighted [as described al)ove].

In this wa\ u e t ead olf the position [of the moon or any other desired object] 
in longitude on the ecliptic, from the graduation occupied by the inner 
[astrolaix*] ring [Fig. F.2] on the l ing representing the ecliptic*[Fig. F,3], and its 
deviation to north or >outh [of the ecliptic] along the circle through the poles of 
the ecliptic, from the graduations of the inner astrolabe ring [Fig. F,2]; the 
latter is given by the distance Iwtween the mid-point of the upper" sighting-hole 
on the inmost rotating ring [Fig. PM] and the line draw n through the centie 
of the ecliptic ring.
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’ .V cordinif to Ptoli'my's iiisiiiu iioiis. one has to amtfmh’ the solar loniiitncle. set the (uiier 
astiolalx- fin s '! Fisj. F. 5: to tliat position on the ecliptic lingiF i^. F. J'l. and then, keeping the two in 
that position ielati\ e to each other, su inj  ̂Ixjtli iiiiti] one can siglit the>iin alon^ the outer astrolai)e 
rin^. Both rings should then shade themselves. Theoretically, even without knowing the sun's 
])osition. one could set up the instrument by sighting; the sun along the outer astroiabc ring and then 
moving the ecliptic ring ie lati\e  to the latter until it shaded itseK. Cl', p. 224 n. 11.

’ Reading dianep KeKOA/ir|pevOi; dpcpoTepais ai)Tri<; Talq EitnpavEiaK; for koi 5id xiic; 
djrevavTiov kq'i itapa/iXriXou tou kOkXou TrXeupat; cjj'ojtep KeKo/,Aripevoq dptpoTEpaic; aCiSv tdii; 
eirt(paveiat(; at H353.24-')54.1. The latter would mean when we applied one eye to thi- [nearer} 
face of the outer ring and [looked] along the opposite, parallel lace of the i ing, the star appeared 
fastened, so to speak, to thesuriacesol Ixjth those faces'. The words K'a'i 5id . . . 7rA.eyp5(; area Ibolish 
explanatoiy interpolation by someone who misinterpreted d|i<pOT£pat(; talc; e7rt<pavetai<; to mean 
the opjxjsite faces' oi the i ing instead of the two parts ol'the same lace nearer to and larther from 

the eye'; then atiTT̂ i; (referring to tt] etepa tS v  JtXeupwv) was changed to auTcav (relerring to Ixjth 
7iX.eupai), or possibly aurSv was simply intei polated. Q uite apart from the technical problem, the 
te.xt as printed by Heiberg is extraordinarily clumsy. The interpolation is quite early, since it is also 
in the .-\rabic tradition. Pappus' commentary to the passage betrays no hint that he read the 
interjx)lation, but is not sulliciently close to the Almagest to allow us to say that he did not.

'•‘upper’: literally above the earth '. Since the centre of all the rings represents the centre of the 
earth, the sight neater the observer's eye is notionally below theeai th’, the other aljove the earth’.



2. {On ike hypGlkesis for the double anomaly o f ihe moony

When this type ofobservation was m ade without further analysis, it was found, 
H355 both from the obseivations recorded by H ipparchus and from our own, that the 

distance of the moon from the sun ’-vas someiimes in agreem ent with that 
calculated from the above [simple] hypothesis, and sometimes in disagreement, 
the discrepancy being a t some times small and at other times great. But when 
we paid more attention to the circumstances of the anom aly in question, and 
examined it more carefully over a continuous period, we discovered that at 
conjunction and opposition the discrepancy [between obser\'ation and calcula­
tion] is either imperceptible or small, the diiference being ofa size explicable by 
lunar parallax; at both quadratures, however, while the discrepancy is verv 
small or nothing when the moon is at apogee or perigee of the epicycle, it 
reaches a maximum when the moon is near its mean speed and [thus] the 
equation of the first anomaly is also a maximum; furthermore, at either 
quadratiu e, when the iir'st anomaly is subtractive the moon's observed position 
is at an even smaller longitude than that calculated by subtracting the equation 
of the lii-st anomaly, but when the lirst anomaK' is additive its true position is 
even greater [than that calculated !>y adding the equation ol'the linst anomaly ]. 
and the size of this discrepancy is closely related to the size of the equation of the 
llrst anomaly. From these circumstances alone we could see that we must 
suppose the moon's epicycle to be carried on an eccentric circle, being farthest 

H356 from the earth at conjunction and opposition, and nearest to the earth at both 
quadratures. This will come about if we modify the ilrst hypothesis along 
somewhat the following lines.

Imagine the circle (in the inclined plane of the moon) concentric with the 
ecliptic moving in advance, as before [p. 191], (to represent the [motion in] 
latitude) about the poles of the ecliptic with a speed equal to the increment of 
the motion in latitude over the motion in longitude. Imagine, again, the moon 
traversing the so-called epicycle (moving in advance on its apogee arc) with a 
speed corresponding to the return of the first anomaly. Now. in this inclined 
plane, we suppose two motions to take place, in opposite directions, both 
uniform with respect to the centre of the eliptic: one of these carries the centre of 
the epicycle towards the rear through the signs with the speed of the motion in 
latitude, while the other carries the centre and apogee of the eccentre. which we 
assume located in the same [inclined] plane, (the centre of the epicycle will at all 
times be located on this eccentre), in advance through [i.e. in the reverse order 
oi] the signs) by an am ount corresponding to the difference between the motion 
in latitude and the double elongation (the elongation being the am ount by 
which the moon’s mean motion in longitude exceeds the sun’s m ean motion). 

H357 Thus, to give an example, in one day the centre of the epicycle traverses about 
13; 14° in motion of latitude towards the rear through the signs, but appears to 
have traversed 13;11° in longitude on the ecliptic, since the whole inclined 
circle [of the moon] traverses the difference of 0;3° in the opposite direction, 
[i.e.] in advance; [meanwhile] the apogee of the eccentre, in turn, travels 1 1 ;9°

'O n  chs. 2-4 ice HAMA  84-8, Pedersen 184-9.
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in the opposite direction, (again in advance): this is the am ount by which the 
double elongation, 24;23°, exceeds the motion in latitude, 13; 14®. The 
com bination oFboth of these motions, which take place in opposite directions, 
as we said, alx)ut the centre of the ecliptic, will produce the result that the radius 
cany ing  the centre oi' the epicycle and the radius carrying the centre of the 
eccentre will be separated by an arc which is the sum of 13; 14° and 11;9°, and is 
twice the am ount of the elongation (which is approxim ately 12; 11|°). Hence the 
epicycle will traverse the eccentre twice during a m ean [synodic] month. We 
assume that it returns to the apogee of the eccentre at m ean conjunction and 
opposition.

In order to illustrate the details of the hypothesis, imagine [Fig. 5 .1 ] the circle 
in the m oon’s inclined plane concentric with the ecliptic as ABGD on centre E 
and diam eter AEG. Let the apogee of the eccentre, the centre of the epicycle, 
the northern limit, the beginning of Aries and the m ean sun [all] be located at

H358

G
Fig. 5.1

point A at the same moment. Then I say that in the course ofone day the whole 
[inclined] plane moves in advance from A towards D about centre E, by about 
3': thus the northern limit (which is [still represented by] A) reaches K  29;57°. 
T he two opposite motions are carried out by the radius corresponding to EA 
[moving] uniformly about E, the centre of the ecliptic. Thus I say that in the 
course of one day the radius through the centre of the eccentre corresponding to 
EA rotates uniformly in advance [i.e. in the reverse order] of the signs to the 
position ED, carrying the apogee of the eccentre to D,® and making arc AD

“O m itting Kai yp<i<peiv Jtspi to Z iCEVtpov tov AH eKKevrpov after A  at H358,20~2l. This 
would mean ‘and describing ctcenire DH alK>ut centre Z’. This is nonsense: EA does not ‘describe 
the eccentre’ (since it is not a radius of the eccentre), but merely marks the position ofthe apogee of 
the eccentre. If Ptolemy wanted to refer to the eccentre here, he would presumably have written (as



II;9°. [In the same time] the radius through the centre of the epicycle 
[corresponding to EA] rotates uniformly, again about E, towards the rear 
through the signs to the position EB, carrying the centre of the epicycle to H, 

H359 and making arc AB 13;14°. Thus the apparen t distance of H , the centre of the 
epicycle, is 13;I4° (in motion of latitude) from the northern limit A, 13;11® (in 
longitude) from the beginning of Aries (for the northern limit A has moved to X  
29;57® in the same time), and 24;23° (the sum of arc AD and arc AB, and twice the 
mean daily elongation) from the apogee of the eccentre D. Since, in this way, 
the motion through B and the motion through D meet each other once in half a 
mean [synodic] month, it is obvious that these motions will always be 
diametrically opf>osite a t intervals of a quarter and three-quarters of that 
period, i.e. at the mean quadratures. At those times the centre of the epicycle, 
located on EB, will be diametrically opposite the apogee of the eccentre, located 
on ED, and [thus] will be at the perigee of the eccentre.

It is also clear that under these circumstances the eccentre itself (that is, the 
fact that the arc DB is not similar to arc DH) will not produce any correction to 

H360 the mean motion. For the uniform m otion of the line EB is counted, not along 
arc DH of the eccentre, but along arc DB of the ecliptic, since it rotates, not 
about the centre of the eccentre Z, but about E. The only [correction] which 
will result is that due to the difference in the elfcct o f the epicycle: as the 
epicycle moves towards the perigee it produces a continuous increase in the 
equation of anomaly (subtractive and additive alike), since the angle formed by 
the epicycle at the observer’s eye is greater at positions [of the epicycle] nearer 
the perigee. O n the other hand, there will, in general, be no difference from the 
liist hyfjothesis when the centre of the epicycle is at the apogee A, which is 
the situation at the mean conjunctions and oppositions.

For if [Fig. 5.2]® we draw epicycle M N  about point A, AE:AM is the same 
ratio as that which we demonstrated from the eclipses. T he greatest dilTerence 

H361 will be when the epicycle reaches H, the p>erigee of the eccentre (as X O  here). 
This occurs at the mean quadratures. For the ratio X H :H E  is greater than that 
at any other p>osition, since X H, the radius of the epicycle, is always a constant 
length, while EH is the shortest of all lines draw n from the centre of the earth to 
the eccentre.

3. {On the size o f the anomaly o f the moon which is related to the sun]

In order to see what the maximum equation of anom aly is when the epicycle 
is at the perigee of the eccentre, we sought observations of the distance of the 
moon from the sun under the following conditions:

d(x-s Is.) KQi YpaipevTCx; nep'i to Z icevTpov to(j AH EKKEvxpou 'and if the eccentre DH is descril)ed 
alwiit centre Z’. However, it seems more likely that this Ls an interpolation hy someone who wanted 
an explicit ix'Cerence to the drawing of the eccentre DH on centre Z, irpresented in Fig. 5.1 and 
relcrred to l)y Ptolemy lielow.

^The ligure given by Heil>erg (p. 360), which is taken from the ms. tradition represented liy A, is 
wrong in making E the centre ol the circle and adding a point K alx)veit. M y Hgure agrees with the 
text and with part ol’the Arabic tradition (e.g. P), except that all Arabic mss. have the equivalent of 
0  Ibr O. Manitius already made the same correction, except that he unnecessarily added the point 
Z (unattested in the mss.) as the centre of the circle.

222 V  2. Equivalence with simple lunar model at syzygies
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Fig. 5.2

[1] The moon’s speed was about at the mean (for tha t is when the equation 
of anomaly is maximum).
[2] T he m ean elongation of the moon from the sun was about a quadrant 
(tor then the epicycle was near the perigee of the eccentre).
[3] In addition to the above, the moon had no longitudinal parallax.

If these conditions are fulfilled, the apparent observ ed longitudinal distance is 
the same as the true, and thus we can safely inl'er the size of the second anomaly 
which we are seeking. W hen we investigate on the basis of the above kind of 
observations, we find that, when the epicycle is closest to the earth, the greatest 
equation of anomaly is about with respect to the m ean position (or 2 f° 
different from [the corresponding equation of] the first anomaly).

We will illustrate the wa>’ in which this kind of determ ination is made from 
one or two observations by w ay of example. We sighted sun and moon in the 
2nd year of Antoninus, Pham enoth [\^II] 25 in the Egyptian calendar [139, 
Feb. 9], after sunrise, and Si equinoctial houi^s before noon. T he sun was sighted 
i n ^  18i°, and f  4 was culminating. T he apparent position of the moon was %  

and that was its true position too, since when it is near the beginning of 
Scorpius, about I i hours to the west of the meridian at Alexandria, it has no 
noticeable parallax in lo n g itu d e .N o w  the time from epoch in the first year oT

H362

I.e. at lhai situation the attglc Ix-twecn ecliptic and altitude circle (derived liom Tahle I I 13) is 
alxjut 90°, hence the parallax alle< ts only the latitude, not the longitude. Interpolation in the tables



Nabonassar to the observation is 
H363 885 Egyptian years 203 days 184 equinoctial hours (whether reckoned simply or 

. accurately).
For this moment we find:

mean position of the s u n :^  I6;27® 
true position of the sun:Cr 18;50°(in accordance with its sighted position 

according to the astrolabe).'*
From the first hypothesis we find the mean position of the moon at that 
moment as ITI, 17;20° (thus its mean elongation from the sun was about a 
quadrant), and the moon’s distance in anomaly from the apogee of the 
epicycle as 87; 19® (which is near the position of m aximum equation). Thus 
the true position of the moon was-less than the mean by 7 3° (instead of the 
5° of the first anomaly).

Again, to display the amount of the equation undersim iiar conditions which 
is derived from H ipparchus’ observations of such positions, we will adduce one 
of these. He says that he made the observation in the lifty-lirst year‘̂  of the Third 
Kallippic Cycle, Epiphi [XI] 16 in the Egy ptian calendar [-127 Aug. 5], w.hen? 
of the fii-st hour had passed. ‘The speed was [that of day] 241’.'* he says, and 
while the sun was sighted in Leo 8n °  the apparent position of the moon was 
Taurus 12i°. and its true position was approximately the same'. So the true 
obser\’ed distance l>ctvveen moon and sun was 86; 15°. But when the sun is near 
the beginning of Leo, at Rhodes (where the obser\ ation was made), 1 hour of 

H364 the day is 17j time-degrees. So the 5j seasonal hours (which make up the 
interval to [the following] noon) produce 6  ̂ equinoctial hours. Therefore the
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Ibr Clima 111. n̂ i 9:40°. 1 j'’ weM ol'ihf meridian, sjivrs 83:5°. Exact computation lor .Alexandria 
(p 31 °) gives 83:45°. P'or the computaiions here and at the other obser\ ations ol \ '  3 and \ ‘ 5 see 

HAMA  9 i-2 .
“ Is this meant as a contirmaiion of the accuracy oi the observation? This would implv that 

Ptolemy set up the instrument by usina; the shadow ,c(‘. p. 219 n.4). It may. however, merely mean 
that this computation is the basis ol the position to which Ptolemv >et the instrument.

‘•Precise computation: mean elongation = ~  16:27° -  m, 17:20° = 89:7°: equation = irt 
9:40° -  nt 17:20° = -7:40°: equation from llrst hypothesis (from Table I \ ’ 101. ai87:19°1 — -4:57°. 
However, Ptolemy is operating with rounded numlicrs, quite properK' here.

"  I have, doubti'ulty. accepted the emendation va ' Ibrv ' ^'fiftieth) at H363.16. The Julian  date of 
the observation. -127 .Aug. 5. is guaranteed both by the astronomical data and by Ptolemy’s 
reckoning in the era Nabonassar. Ideler [Historische L’ntersuchungen 217-18'i made the emendation 
Ixrcause he calculated, correctly, from the known epoch of the Kallippic cycles that this must fall in 
the lifty-lirst year. In this case cf. p. 214 n.72) using the Egy ptian calendar makes no dill'erence. 
However. I >uspect that the eiTor. if it is one. lies not with the scribes but with Ptolemy or even 
Hipparchus, and that possibly there is no error, but another method of counting which eludes us.

Literally "The true daily motion i8p6nO(;) was the 241st'. Hipparchus is referring to a table of 
the true motion of the moon over 248 days 9 anomalistic months), in which the moon was 
supposed to return to the same velocity. Such a table is extant on a cuneiform tablet. 
•ACT no. 190^111 p. 131). IfHipparchus was using that table the motion on day 241 would Ije 13:30° 
or 13:31,10° according to whether one starts at the beginning or goes in 1 everse from the end), i.e. 
close to the mean, as our passage requires. The historical interest of this passage has Ijeen missed 
Ix-cause '241' has hitherto lx;en interpreted as degrees of anomaly' (and hence emended', to ’259' 
by Manitius and to|ieoo<;, "mean’, by Halma). I think it likely that Hipparchus was the channel 
through which use of the 248-day lunar anomaly period was transmitted from Mesopotamia to the 
Greek world (e.g. S’ettius \'alens I 4-5. ed. Kroll20-1, and P. Ryl. 27. on which see A/. 1.1/. I 80811.!. 
and ultimatelv to India (the \ ’akvasvstem, see HAMA  817 H.) See provisionallv Toomer [11 ] p. 108 
n.l2.



observation occurred 65 equinoctial hours !>efore noon on the sixteenth, while 
B 9° was culminating. Thus in this case the time from epoch to the observation 
is

^ J n l  equinoctial hours reckoned simply
619 Egvotian vears 314 davsS , is• 1/4  equinoctial hours reckoned accuratelv. ^
For this moment we find from our hypotheses {since the meridian through 
Rhodes is the same as that through Alexandria): 

mean position of the sun: 10;27°
true position of the sun: H  8;20°
mean position oi'the moon in longitude: 8 4;25°
(thus the m ean elongation was again nearly a quadrant) 

mean distance of the moon from the apogee of the epicycle in anomaly: 257;47°
(which is again near the position of the maximum equation of the anomaly 
due to the epicycle).
So the distance from the mean moon to the true sun is calculated as93;55°. And 
the obseived distance from the true moon to the true sun was 86; 15°.*' 
Therefore the true position of the m.oon was greater than the mean, again bv 7 3° 
instead of the 5° of the first hypothesis. And it is [further] evident, that of these 
two obseivations taken near the second quadrature, ours was found to be less H365 
than the position computed from the Hrst anomaly by 2*°. while Hipparchus’ 
was greater by the same am ount, since the total equation of anomaly was 
subtractive at our observation and additive at H ipparchus'.

From numerous other similar obseivations also we find that the greatest 
equation of anomaly is alxjut 7j° when the epicycle is at the perigee of the 
eccentre.
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4. {On the ratio o f the eccentricity o f the moon's circle}

W’ith this as a datum , let [Fig. 5.3] the moon's eccentric circle be ABG on centre 
D and diam eter ADG. on which E is taken as the centre of the ecliptic. Thus A is 
the apogee of the eccentre and G the perigee. O n centre G draw the moon's 
epicycle Z H 0 , draw E 0B  tangent to it. and join G 0 .

Then since the greatest equation of anomaly occurs when the moon is at the 
epicycle tangent, and we have shown that this am ounts to 7!°, the angle at the H366 
centre of the ecliptic.

/  p F O  -  /  ' '  here 4 right angles=360°
"  115:20°° u here 2 right angles = 360°°.

Neugebauer remarks, the equation of time for a solar longitude o l 'il  8°shouldbe-16m ins. 
rath'T  than -5 mins. For this and other inaccuracies in Ptolemy's computations see HAMA  92-3.

In lact Rhodes is about 1.7° west of .‘\le.xandria. The notion that they lay on the same meridian 
was traditional; see Strabo 2.5.7. where the same meridian is supposed to pass through Meroe, 
Svene. Alexandria. Rhodes, the Troad. Byzantium and the Borv sthenes. This is probably derived 
from Eratosthenes via Hipparchus.

‘’ Note that Ptolemy takes only the distance obser\-ed by Hipparchus (86:15°) as accurate, and 
substitutes h\%ovjx\ calculations of the positions of sun and moon for those observed (or calculated) by 
Hipparchus.
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Therefore in the circle about right-angled triangle G E 0  
arc G 0  = 15;20° 

and the corresponding chord
G 0** IG** where the hypotenuse GE = 120'’.

So, where GO, the radius of the epicycle, is, as was shown, 5;15'* 
and EA, the distance from the centre of’ the ecliptic to the apogee of the 
eccentre, is 60**,
EG, the distance from the centre of the ecliptic to the perigee of the eccentre, 
is 39;22^

Therefore, by addition, diam eter AG = 99,22'’, 
and DA, the radius of the eccentre = 49;41’’
and ED, the distance between the centres of the ecliptic and the eccentre = 
10; 19.“

Thus we have dem onstrated the ratio of the ercentricitv.

R

Z
Fig. 5.3

H367 5. \0 n  the ‘direction’ o f the moon's epicycleY^

As far as concerns the phenom ena a t syzygies and at quadra tu re  positions of the 
moon, the preceding discussion would provide a full explanation of the 
hypotheses elucidating the circles o f the moon described above. But from 
individual observations taken at distances of the moon [from the sun] when it is 
sickle-shaped o r gibbous (which occur when the epicycle is between the apogee

**Scc H AM A  88-91, Pedersen 189-95.



and the perigee of the eccentre), we find tha t the moon has a peculiar 
characteristic associated with the direction*® in which the epicycle points.
Every epicycle must, in general, possess a single, unchangingpoint defining the 
position of return  of revolution on that epicycle. W e call this point the ‘mean 
ap>ogee’, and establish it as the beginning from which we count motion on the 
epicycle. Thus point Z on the previous figure [5.3] is such a point. It is defined, 
for the position of the epicycle at apogee or perigee of its eccentre, by the straight 
line drawn through all the centres [of ecliptic, eccentre and epicycle] (DEG 
here). Now in all other hypotheses [involving epicycle on eccentre], we see 
absolutely nothing in the phenom ena which would count against the following H368 
[model]: in other positions of the epicycle [outside apogee and perigee of the 
eccentre], the diam eter of the epicycle through the above apogee, i.e. ZGH, 
always keeps the same position relative to the straight line which carries the 
epicycle centre round with uniform motion (here EG), and [thus] (as one would 
think appropriate) always points towards the centre of revolution, at which, 
lurtherm ore, equal angles of uniform motion are traversed in equal times. In 
the case of the moon, however, the phenom ena do not allow one to suppose that, 
for positions of the epicycle between A and G, diam eter ZH points towards E, 
the centre of revolution, and keeps the same position relative to EG. VVe do 
indeed find that the direction in which [diam eter ZH] points is a single, 
unchanging point on diam eter AG, but that point is neither E, the centre of the 
ecliptic, nor D, the centre of the eccentre, but a point removed from E towards 
the perigee of the eccentre by an am ount equal to DE. VVe shall show that this is 
so, again, by setting out. from am ong the numerous [relevant] obseivations, two 
which are particularly suitable for illustrating our point, since the epicycle at 
these obseivations was at distances halfway [between apogee and f>erigeeofthe 
eccentre], and the moon was near apogee or perigee ol’the epicycle; for in these H369 
situations occur the greatest elfects of the above direction [of the epicycle 
diameter].

Now H ipparchus records that he observed the sun and the moon with his 
instruments*'’ in Rhodes in the 197th year from the death of Alexander, 
PhaiTnouthi [VIII] 11 in the Eg>'ptian calendar [-126 M ay 2], at the beginning 
of the second hour. He says that while the sun was sighted in y 71®, the 
apparent position of the centre of the moon was K  215°, and its true position 
was H  21 3 + 1° [21 ;27 i°].^‘ Therefore a t the m om ent in question the distance of 
the true moon from the true sun was about 313;42°, [ counting] towards the 
rear. Now the observation was made at the beginning of the second hour, about 
5 seasonal hours (which correspond to about 5 S equinoctial hours in Rhodes on

‘’'TrpooveuoK;, used by Ncugebaucr and Pedersen as a technical term (‘prosneusis’) for this 
element oi Ptolemy’s lunar theory. However, it is hardly that for Ptolemy, as he applies the word in 
many other contexts (see p. 43 n.38).

It is usually assumed that by this is meant an armillary sphere similar to that described by 
Ptolemy in V 1 (andorten, that Hipparchus was the inventor of that instrument). That may be true, 
but the vague expression here certainly does not require it, and  whether the data described below 
do is doubtful. I consider it possible that Hipparchus used a  dioptra of the type described by Heron 
(‘Dioptra’, ed. Schone, 187 fT).

O n  the correction for f>anOlax made by Hipparchus here (which is fairly accurate) sec HAMA
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that date) before noon on the i i th .  So the time from our epoch to the 
observation is

18j equinoctial hours reckoned simply 
18 equinoctial hours reckoned accurately, 

'o r this moment we find:
mean sun in B 6;41° 

true sun in 8 7;45°
in X  22; 13° in longitude
at 185;30° from m ean apogee of epicycle in anomaly. 

Therefore the distance of the m ean moon from the true sun was 314;28°.
W ith these data, let [Fig. 5.4] the moon’s eccentric circle be ABG on centre D 

and diam eter ADG, on which E represents the centre of the ecliptic. O n centre 
B draw the moon’s epicycle, Z H 0 . Let the sense of motion of the epicycle be 
towards the rear from B towards A. and the sense of motion of the moon on the 
epicycle be from Z towards H and [then] 0 .  Jo in  DB and E0BZ.
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Now in a mean [synodic] m onth occur two revolutions of the epicycle on the 
eccentre, and in the situation in question the elongation of m ean moon from 
mean sun was 315;32®. So if we double the latter and subtract [the 360° of] a 
circle, we will get the elongation at that m om ent of the epicycle from the apogee 

H371 of the eccentre, [counting] towards the re a r  this is 271;4°.
Z AEB = 88;56® (rem ainder [when 271;4® is subtracted] from 360°).

So drop perpendicular D K  from D on to EB.
■ Z DEB -  •[ where 4 right angles = 360°

\  177;52°° where 2 right angles = 360°°.



Therefore in ihe circle about right-angled triangle D EK , 
arc D K  = 177;52® 

and  arc EK = 2;8° (supplement).
Therefore the corresponding chords

and EK hypotenuse DE = 12(y.

Therefore where DE, the distance between the centres, is I0;19‘’ 
and DB, the radius of the eccentre, is 49 ;4 l’’,

D K «  10; 19  ̂ also, 
and EK = 0;12^
But BK^ = DB^ -  DK-.

BK = 48;36‘’ in the same units, 
and, by addition, BE [= BK + EK] = 48;48‘*.
Again, since the distance of the mean moon from the true sun was found to be H372 
314;28-, and the distance of the true moon [from the true sun] was observ^ed 
to be 313:42°. the equation of anom aly is -0;46°. Now the mean position 
of the moon is seen along the line EB. So let the moon be located at H (since 
it is near the perigee), jo in  EH and BH, and drop perpendicular BL from B 
on to EH  produced. Then, since Z BEL contains the moon’s equation of 
anomaly,

/  RFI - I  where 4 right angles = 360®
~\^1;32°® where 2 right angles = 360°°.

Therefore in the circle about right-angled triangle EBL, 
arc BL = 1;32° 

and the corresponding chord
BL = l;36’’ where the hypotenuse EB = 120‘*.

Therefore where BE = 48;48‘* and BH, the radius of the epicycle, is 5;15'*,
BL = 0;39'’.

Therefore where BH, the radius of the epicycle, is 120*’,
BL = 14;52‘’

and, in the circle about right-angled triangle BHL, 
arc B L =  14:14°
Z BHL = 14:14°° where 2 right angles = 360°°, H373

and. by subtraction _ f  12:42°° where 2 right angles = 360°°
[of Z BEL], Z EBH \6 :2 1 °  where 4 right angles = 360°.

T hat [6;21°], then, is the size of arc H 0  of the epicycle, which comprises the 
distance from the moon to the true perigee [of the epicycle].

But since the distance of the moon from the m ean apogee at the time of the 
observation was 185;30° [p. 228], it is clear tha t the m ean perigee is in advance 
of the moon, i.e. of point H. Let [the mean p»erigee] be point M , draw line BMN, 
and  drop perpendicular EX  on to it from point E.
Then since, as was shown,

arc 0 H  = 6;21°, 
and arc H M , the distance from the perigee, is given as 5;30°, 

by addition, arc 0 M  = 11;51°.
S /F R V  -  /  where 4 right angles = 360°

~ \  23;42°° where 2 right angles = 360°°.
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Therefore in the circle about right-angled triangle BEX, 
arc EX = 23;42«

and  EX = 24;39'* where hypotenuse BE = 120'*.
Therefore where BE = 48;48^

H374 EX = 10;2^
Again, since [p. 228]

Z AEB=177;52«’ \  . o • u* i 
and Z EBN = 23;42~ /  ^ " g h t angles = 360«,

by subtraction, ZENB = 154;10°°.
Therefore in the circle about right-angled triangle EN X, 

arc EX = 154;I0«
and EX = 116;58‘* where hypotenuse EN  = 120'’. 

Therefore where EX = 10;2‘* and DE, the distance between the
centres, is 10; 19”,

EN = 10; 18 .̂
Therefore the [radius of the epicycle] through the mean p>erigee, BM, points in a 
direction such that, when produced to N, it cuts off a line EN which is very 
nearly equal to DE.

Similarly, in order to show that we get the same result at the opposite sides of 
eccentre and epicycle, we have again selected from the distances [between sun 
and moon] observed by Hipparchus, as already mentioned, in Rhodes, the 
observation he made in the same year [as the preceding one], being the 197th 
year from the death of Alexander, Payni [X] 17 in the E g\p tian  calendar 

H375 [-126 Ju ly  7), at 9 i hours. He says that while the sun was sighted at 23 10 to° the 
apparent position of the moon was H  29°. And this was its true position too; for 
at Rhodes, near the end of Leo, about one hour past the m eridian, the moon has 
no longitudinal parallax.^' Therefore the distance of the true moon from the 
true sun at the time in question was 48;6° towards the rear. Now since the 
observation was 3^ seasonal houi-s after noon on the 17th of Payni, which 
corresfxjnd to about 4 equinoctial hours in Rhodes on that date, the time from 
our epoch to the observation is
con c- one j  J  4 equinoctial hours reckoned simplv620 Egyptian years 286 daysK ^  ,

3! equm octial hours reckoned accurately.
For this moment we find:

mean sun a t2 3 12;5° 
true sun a ts s  10;40° 

mean moon a t ^  27;20® in longitude 
(thus the distance of the mean moon from the true sun was 46;40°) 
mean moon at 333; 12® in anomaly from the apogee of the epicycle.

W ith these data, let [Fig. 5.5] the moon’s eccentric circle be ABG on centre D

230 V  5. Geometrical determination o f  direction o f  mean apogee

■•For verilication of this see HAMA  92.
■'For620''286''35'’ Iflnd:X ^ = 147;7°,a]> =333;l°.Sincethedinerencesl'rom Ptolciny'spositions 

rcprm ’ni ihe lunar motion over about 20 mins., it is obvious that he has carelessly calculated the 
positions Ibr 4 hours after noon, i.e. without making the correction lor.the equation of time, which 
he had tfiven, correctly, as alx>ut 20 mins. This error has a not inconsiderable effect on the final 
result, which would not aj?ree nearly so neatly if the computation were carried out with the alxjve 
fij^ures.
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and diam eter ADG, on which the centre o f the ecliptic is represented by point 
E. About point B draw the moon’s epicycle, Z H 0 , and jo in  DB, E0BZ.

Then since twice the mean elongation of sun and moon is 90;30®, from the 
theory already established

H376

Z AEB _ /  90;30® where 4 right angles = 360® 
~ \ l 8 V[°° where 2 right angles = 360°®.

So if we produce BE and drop perpendicular D K  on to it from D,
Z D EK  = 179®° (supplement).

Therefore in the circle about right-angled triangle D EK  
arc DK  = 179® 

and arc EK = 1° (supplement).
Therefore the corresponding chords

an< f^K  = hypotenuse DE = W .

Therefore where DE, the distance between the centres, is 10;19'' 
and BD, the radius of the eccenter, is 49;41‘’,

DK«10;19P 
and EK = 0;5^

Now since BK^ = BD^ -  DK^,
BK = 48;36^ 

and, by subtraction [of EK], EB = 48;31‘’.
Furtherm ore, since the distance of mean moon from true sun was found to be 

46;40®, and the distance of true moon [from true sun was observed as] 48;6°, the 
equation of anomaly is +1 ;26®. So let the position of the moon be at H  (since it is 
near the apogee of the epicycle). Jo in  EH, BH, and drop perpendicular BL from 
B on to EH.

H377
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T hen  since
/  RFT -  /  where 4 right angles = 360®

~ \  2;52®® where 2 right angles = 360°®, 
in the circle about right-angled triangle BEL,

arc BL = 2;52°
H378 and BL = 2;59'* where hypotenuse EB = 120’’.

Therefore where EB = 4B;31’* and BH, the radius of the epicycle, is 5;15‘’ 
BL = l;12^

So in tne circle about right-angled triangle BHL,
BL = 27;34'’ where hypotenuse BH = 120 ,̂2* 

and arc BL = 26;34°.
Z BHL = 26;34°° where 2 right angles = 360®°. 

and, by addition [of Z BEL = 2;52°°],
Z ZBH -  -f where 2 right angles = 360°°.

\  14;43° where 4 right angles = 360°.
T hat [14:43°] is the size of the arc HZ of the epicycle, which comprises the 
distance from the moon to tlie true apogee.

But since [the moon’s] distance from the m ean apogee at the time of the 
obser\'ation was 333; 12°, ifvve put the mean apogee at M, draw lineM BN, and 
drop perpendicular EX on to it from E, then

arc H ZM  = 26;48° (by subtraction [of 333;12°] from the circle), 
and, by subtraction [of arc HZ = 14;43°], arc ZM  = 12;5°.

• '  \ fR 7   ̂ FRX {  angles = 360°
.. ^  MUZ. = ^  = I  24;10°° where 2 right angles = 360°°. 

Therefore in the circle about right-angled triangle BEX 
arc EX = 24; 10°

H379 and EX = 25; T'* where hypotenuse BE = 120'’.
Therefore where BE = 48;3l'* and DE, the line between the ccntres, is 10;19'’, 

EX = 10;8'’.
Again, since Z AEB is given as 181°° where 2 right angles = 360°°, 
and we have shown thatZEB.V = 24; 10°°.

by subtraction, Z EXB = 156:50°° in the same units, 
and. in the circle about right-angled triangle ENX, 

arc EX = 156:50°
and EX = 117:33’’ where hypotenuse EN = 120’’. 

Therefore where EX = 10:8’’ and DE, the line between the centres, is 10:19’’. 
EN = 10:20”.

So from this calculation too it turns out that MB, [the radius of the epicycle] 
through M, the mean apogee, points in a direction such that, when produced to 
N. it cuts olT a line EN approxim ately equal to DE, the distance between the 
centres.

W e also find that approxim ately the same ratio results by calculation from a 
num ber of other observations. Thus these observations confirm the peculiar 
characteristic of the direction of the epicycle in the hypothesis of the moon: the

1;12 X 120/5:15 = 27;25,43. Ptolemy was obviously operating, not with the value 1;I2. but with 
1:12.22 (which leads to 27:34.5). which is in fact what one finds from the immediately preceding 
ralculation. 2:59 x 48:31 120.
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[unilorm] revolution of the centre ol'the epicycle takes place about E, the centre 
of the ecliptic, but the diam eter of the epicycle which defines the unchanging 
point of the epicycle at which the mean epicyclic apogee is located points, not (as 
it does for the other [planets]), towards E, the centre of m ean motion, but 
always towards N, which is removed in the opposite direction [to D from Ej by 
an am ount equal to DE, the distance between the centres.

H380

6. {How the true position o f the moon cm be calculated geometrically from the periodic
motions}^^

Now tha t we have demonstrated the above, the appropriate sequel is to show 
how. lor a particular position of the moon, given the am ounts of thefvai ious] 
m ean motions, we can find from the am ount of the elongation and of the moon's 
[motion in anomaly] on the epicycle the am ount due to the equation of anomaly 
which should be added to or subtracted from the m ean motion in longitude. Ii‘ 
one uses [strictly] geometrical methods, the way to solve such a problem is via 
theorems similar to those already set out.

Let us use the last of the above figures [5.5] as an example, and take as a I>asis 
of calculation the same f>eriodic motions in elongation and anomaly, namely 

double elongation: 90;30°
anom aly counted from the mean epicyclic apogee: 333:12®.
[See Fig. 5.6.], VVe drop p>erpendicular X X  (instead of EX) and perpen­

dicular HL (instead ofBL). Then, by the same com putation as belbre [p. 2311. 
since we are given
[1] T he angles at centre E;
[2] hypotenuse DE and hypotenuse EN (which are equal).

DK = NX «  10:19^

fi

G
Fig. 5.6

H381

-•■'See HAMA  93, Pedersen 194-5.



anu arc

• /  V R \' -  /  7BM  -  -f where 2 right angles = 360° 
\ l 2 ; l °  (approximately) where 4 rig

where DB, the radius of the eccentre = 49;41’* 
and BH, the radius of the epicycle = 5;15'’ 

and EK = EX = 0;5^
Hence, as shown before [p. 231] BK = 48;36‘’ 
and similarly, [bysubtractionofEK ] BE = 48;31‘’ 

and, by subtraction [of EX] BX = 48;26’’.
So, since BX^ + XN^ = BN^,

BN = 49;31’’ where N X  = 10;19P.
Therefore, in the circle about right-angled triangle BNX, 

where hypotenuse BN = 120’’
H382 ’ N X « 2 5 ^

and arc N X = 24;3“̂
360°°

ight angles = 360'  ̂
T hat [12;1°] is the size of the arc ZM  of the epicycle.

But since the distance of point H, representing the moon, from M, the mean 
apogee, is one revolution minus [the m ean anom aly of 333;12°], i.e. 26;48°, 
by subtraction [of arc ZM  from arc M H], arc H Z = I4;47°.

■ A HBZ -  -f '''here 4 right angles = 360°
“ \2 9 ;3 4 °°  where 2 right angles = 360°° 

and. in the circle about right-angled triangle HBL, 
arc H L = 29;34° 

and arc LB = 150:26° (supplement).
Therefore where hypotenuse BH = 120’’, the corresponding chords 

H L = 30;37'’ and LB = 116;2'’.
Therefore where BH, the radius of the epicycle, is 5; IS'’ 

and (as was shown) BE = 48;3P,
H L = 1;20^ and LB = 5:5'’.

H383 Therefore, by addition, EBL = 53;36’’ where LH  = I;20'’.
And since E L ' + LH^ = EH^

EH®* 53;37’’ in the same units.
Therefore in the circle about right-angled triangle EHL, 

where hypotenuse EH  = 120’’,
H L  = 2;59^ 

and arc H L = 2;52°.
Therefore the equation of anomaly,

Z H EL -  {  where 2 right angles = 360°°
[ 1;26° where 4 right angles = 360°.

Q .E .D .

7. {Construction o f a table for the complete lunar anomalyY^

In order again to provide a ready means of com puting the individual additive 
or subtractive equations by setting out a table, we have supplem ented the table

‘^ '^ c H A M A  93-5, Pedersen 195-202.
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for the simple hypothesis set out above [IV 10] with columns which enable one 
to correct easily for the second lunar anomaly. For this purpose we again used 
the same geometrical methods [as explained above]. After the first two columns 
containing the argum ent, we inserted a third colum n containing the equation 
to be added to or subtracted from the anom aly in order to reduce the mean H384 
motion counted from M [in Fig. 5.6], the m ean apogee, to Z, the true apogee.
[E.g.] above [p. 234], for the elongation of90;30°, we showed that arc ZM is 
12;1°, and thus, since the distance of the moon from M, the m ean apogee, was 
333; 12°, we find that its distance from Z, the true apogee, was, obviously,
345; 13°, which we must use as argum ent for the epicyclic equation correcting 
the mean motion in longitude. In the same way, for other elongations, taken at 
intervals appropriate [for the table], we calculated the corresponding amount 
of the equation in question. VVe did this by the same method [as above], (to cut a 
long story short), and entered the am ount corresponding to each [tabulated] 
argum ent in the third column. O f the succeeding columns, the Iburth will 
contain the equations of the epicyclic anom aly (already set out in the previous 
table [IV  10]), where the maxim um  equation reaches approxim ately 5;1°, 
corresponding to the ratio 60 : 5; 15. T he fifth column will contain the 
increments in the equations due to the second anom aly as com pared with the 
first, in the situation where the m axim um  equation is 71°, coi responding to the H385 
ratio 60 : 8.'^ Thus the fourth column is lor the situation of the epicycle at the 
apogee of the eccentre (which occurs at the syzygies), and the fifth column is Ibr 
the increments [to the equations] accruing from [the position of the epicycle]'** 
at the perigee of the eccentre (which occurs at the Cjuadratures).

In order to enable one to find the proportion of these tabulated increments [in 
the fifth column] corresponding to a position of the epicycle in between those 
two locations [at apogee and perigee of the eccentre], we have added a sixth 
column. This contains, for each tabulated argum ent of elongation, the 
corresponding fraction (given in sixtieths) of the tabulated increment which 
must be added to the equation of anom aly tabulated  in the fourth column. VVe 
have calculated these fractions in the following manner.

[See Fig. 5.7.] Let the moon’s eccentre again be ABG on centre D and 
diam eter ADG, on which E is taken as the centre of the ecliptic. Mark'otl’arc 
AB, draw  the epicycle, Z H 0 K , on centre B, and draw  line EBZ. Let the 
elongation be given, e.g., as 60°.
Hence by the same argum ent as before

Z AEB = double the given elongation = 120°. H386
Drop perpendicular DL from D on to BE produced, and draw  HBKD. Suppose 
that the line from centre E to the moon, EM N , is tangent to the epicycle,

The ratio is 39;22 (the distance from the earth to the perigee ol'the moon’s eccentre, p. 226) to 
5; 15 (the radius of the moon's epicycle). This is approximately equal <b 60 : 8.

ExcisingdvwuaXiot^ at H385,7. Heiberg’s text would have to mean 'accruing from ih.eanomaly 
which is produced at the perigee of the eccentre, at the quadratures’. Besides being an exceedingly 
clumsy expiession, this ruins the parallelism of the sentence, h  is obvious that Ptolemy intended t”© 
contrast the two different posit bns of the epicycle, at apogee and perigee of the eccentre (cf t 3v  Sue 
TOUTtov Seoetov, H385,8-9). (H385,6) refers to Oea£ca(; (understood from above; for 
anoxzkziadai used with Oear^ cf. H 394 ,ll-12). The interpolation of dv(o^aX^aq is the work of 
someone who looked for something for tt)(; to refer to, but misunderstood this.
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producing a maximum equation of anomaly, and join BM. Then since 
/  AFR -  /  angles = 360°

~ [240°° where 2 right angles = 360°°.
Z DEL = 120°° (supplement).

Therefore in the circle about right-angled triangle DEL, 
arc DL = 120° 

and arc EL = 60° (supplement).
So the corresponding chords

a n d  DL h y p o .e n u s e  DE = I 2 ( f .

H387 Therelbre where DE = 10; 19'’ and DB = 49:41'*,
EL»«5:10P 

and DL = 8:56^.
And. since BL- = BD* -  D L‘,

BEL = 48;53^ 
and. by subtraction [ofEL], EB = 43:43'*, 
where MB. the radius of the epicycle, is 5:15’’.
Therefore in the circle about right-angled triangle BEM, 

where hypotenuse EB = 120'’,
BM = 14;25’’ 

and arc BM = 13;48°.
Therefore the maximum equation of anomaly,

Z BEM -  -f where 2 right angles = 360°°
\  6;54° where 4 right angles = 360°.

Thus, at this distance in elongation, the equation of anom aly differed from 
the 5; 1 ° [of maximum equation] at the apogee [of the eccentre] by 1 ;53°. But the 
total difference [between maximum equation at apogee and] at perigee [of the



eccentre] is 2;39°. So, where the total difi'ercnce is 6 0 ,1,53® will be 42;38. This is
the am ount which we will put in the sixth column corresponding to 120° of H388
[double] elongation.

In exactly the same way we computed, for the other tabulated arguments, the 
iractions of the diiierence between the two maximum equations of anomaly, 
obtained in the above manner, and entered them, expressed in sixtieths of that 
difference, opposite the corresponding argument. It is obvious that the total 60 
[sixtieths] correspond to the double of 90° of elongation, which is at 180° of the 
eccentre, the location of the perigee.

We also added a seventh column containing the position of the moon in 
latitude, on either side of the ecliptic, as measured along a circle through the 
poles of the ecliptic, i.e. the arc of the latter circle cut olfljetween the ecliptic 
and the inclined circle of the moon on the same centre [as the ecliptic], for each 
[tabulated] position of the moon on its inclined circle. For this we have used the 
same procedure as we did to calculate the arcs of the circle through the poles of 
the equator [which are cut oil] between the equator and the ecliptic [I 14].
Here, however, we took the arc between the ecliptic and the northern or 
southern limit of the inclined circle, as measured along the great circle through 
both their poles, as 5°. For, like Hipparchus, we I'md by calculation from the 
moon's most northerly and southerly apparen t positions that its greatest 
deviation either side of the ecliptic is approxim ately that amoimt.'® Further- H389 
more, almost all circumstances of observations of the moon, whether taken with 
respect to the stars, or taken with instruments, lit a maximum latitudinal 
deviation of that amount, as will become clear from subsequent demonstrations.

The table of the complete lunar anomaly is as follows.
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[Table of the complete lunar anomaly]''^ H390-1
[See p. 238.]

9. [On the complete calculation o f the moon's position] H392

So, whenev er we choose to calculate the moon's anomalistic position by means of 
the table set out, we take, for the moment in question at Alexandria, the mean

■*The only details of an obsenation which coniirm i 5“ for the lunar orbit are at V 12 p. 2-t7.
In general the entries in this table arc correct to within ±1 in the second place. Howe\ er, in col.

3. arguments 123-9.147-53 and 171-7 the error reaches- 3  o r -4 , possibly because of interpolation 
lietween computed values. In col. 5 the first 9 values (from arguments 6 to 54 inclusive) are all too 
big, and the first 7 of them fit a ratio (radius of epicycle; distance of epicycle centre) of. 136 (instead of 
. 133 5;I5 : 39;22 which Ptolemy's text requires and which underlies all values from argument 60 
on). This could l)e derived from a distance of 38;36’’ or an epicycle radius of 5:21'’, neither of which 
has any motivation. I cannot explain this discrepancy, but it is too consistent to be the result of mere 
inaccurate calculation. In col. 6 the calculation to two sexagesimal places gives a quite illusory 
accuracy, and Ptolemy’s results (for the second place) bear little relationship to what one gets with 
accurate calculation. However, this has a negligible effect on the accuracy ofcomfHitations carried 
out with the table. In the Handy Tables Ptolemy quite properly tabulated only one place in this and 
the corresponding column in the planetary tables.



238 V  8. Table o f  complete lunar anomaly

TABLE O F  T H E  CO M PLETE LUNAR ANOMALY

1 2

Common
Numbfi-s

3

Equation 
for [Mean 
to True] 
Apogee

4

Epicyclic
Equation

5

Incfement
in

Epicyclic
[Equation]

6

Sixtieths

7

Latitude

6 354 0 53 0 29 0 14 0 12 4 58 Northern
12 348 1 46 0 57 0 28 0 24 4 54 limit
18 342 2 39 1 25 0 42 1 20 4 45

24 336 3 31 1 53 0 56 2 16 4 34
30 330 4 23 2 19 1 10 3 24 4 20
36 324 5 15 2 44 1 23 4 32 4 3

42 318 6 7 3 8 1 35 6 25 3 43
48 312 6 58 3 31 1 45 8 18 3 20
54 306 7 48 3 51 1 54 10 22 2 56

60 300 8 36 4 8 2 3 12 26 2 30
66 294 9 22 4 24 2 11 15 3 2 2
72 288 10 6 4 38 2 18 17 44 1 33

78 282 10 48 4 49 2 25 20 34 1 3
84 276 11 27 4 56 2 31 23 24 0 32
90 270 12 0 4 59 2 35 26 36 0 0

93 267 12 15 5 0 2 37 28 12 0 16
96 264 12 28 5 1 2 38 29 49 0 32
99 261 12 39 5 0 2 39 31 25 0 48

102 258 12 48 4 59 2 39 33 1 1 3
105 255 12 56 4 57 2 39 34 37 1 17
I0« 252 13 3 4 53 2 38 36 14 1 33

111 249 13 6 4 49 2 38 37 50 1 48
114 246 13 9 4 44 2 37 39 26 2 2
117 243 13 7 4 38 2 35 41 2 2 16

120 240 13, 4 4 32 2 32 42 38 2 30
123 237 12 59 4 25 2 28 44 3 2 43
126 234 12 50 4 16 2 24 45 28 2 56

129 231 12 36 4 7 2 20 46 53 3 8
132 228 12 16 3 57 2 16 48 18 3 20
135 225 11 54 3 46 2 11 49 32 3 32

138 222 11 29 3 35 2 5 50 45 3 43
141 219 11 2 3 23 1 58 51 59 3 53
144 216 10 33 3 10 1 51 53 12 4 3

147 213 10 0 2 57 1 43 54 3 4 11
150 210 9 22 2 43 1 35 54 54 4 20
153 207 8 38 2 28 1 27 55 45 4 27

156 204 7 48 2 13 1 19 56 36 4 34
159 201 6 56 1 57 1 11 57 15 4 40
162 198 6 3 1 41 1 2 57 55 4 45

165 195 5 8 1 25 0 52 58 35 4 50
168 192 4 11 . 1 9 0 42 59 4 4 54
171 189 3 12 0 52 0 31 59 26 4 56

174 186 2 11 0 35 0 21 59 37 4 58
177 183 1 7 0 18 0 10 59 49 . 4 59 Sonthcm
180 180 0 0 0 0 0 0 )iO 0 5 0 limit



motions of the moon in longitude, elongation, anom aly and  latitude, in the way 
explained.^’ Then we always, first, double the figure com puted for the 
elongation, and (after subtracting 360®, if necessary), enter w ith this into the 
table of anom aly and take the corresponding am ount in the third column. If the 
double elongation is less than 180° we add the am ount [in the third column] to 
the m ean anomaly, but if the double elongation is greater than  180® we subtract 
the am ount from the mean anomaly. We enter w ith the resulting true anomaly 
into the same table, and take the corresp>onding equation in the fourth column 
and also the corresponding increment in the fifth column, and write [both] down 
separately. Next we enter with the doubled m ean elongation into the same 
table, take the sixtieths corresponding to it in the sixth column, multiply the 
increment which we wrote down separately by that num ber of sixtieths, and 
always add the result to the previously com puted equation from the fourth H393 
column. If the true anomaly is less than 180°, we subtract this sum from the 
mean longitude and mean [argum ent of) latitude, but add  it to them if the true 
anomaly is greater than 180®. Thus we have [two] numbers; we add the one for 
the longitude to the position [of the mean moon] at ejx>ch: the result will be the 
true position of the moon. W ith the one for the [argum ent ol] latitude, counted 
from the northern limit, we enter into the same table: the num ber correspond­
ing to it in the seventh column will be the distance of the m oon’s centre from the 
ecliptic, measured along the great circle through the poles of the ecliptic. If the 
argum ent falls within the first 15 lines, it will be to the north  [of the ecliptic], but 
if it falls below the first 15 lines, it will l)e to the south. Tile first column ol' 
argum ent comprises the moon's motion from north to south, and the sec ond 
column its motion from south to north.

V 9. Use o f  tables to calculate moon's position 239

10. {That the difference at the sy^ygies due to the moon’s eccentre is negligible}^^ H394

Now it is likely that some people will suspect that the moon’s eccentric circle 
might also have a considerable elfect at conjunctions and  oppositions and the 
eclipses occuiring at them, since the centre of the epicycle does not alwavs 
under all circumstances stand e.xactly at the apogee at those times, but can be 
removed from the apogee by an arc [of the eccentre] of considerable size, 
because location precisely at the apogee occurs a t the m ean syzygies, whereas 
the determ ination of true conjunction and opposition requires taking the 
anomalies of both luminaries into account. Therefore we shall try to show that 
this dift'erence cannot produce any considerable error in [calculation of] the 
phenom ena at syzygies, even if the correction due to the eccentricity is not taken 
into account.

’* Ptolemy has not in fact explained how to do this, but the essence of the procedure is the same as 
that explained for the sun at III 8. Note here, however, that the mean motions’ in elongationr 
anomaly and latitude must include the epoch positions, whereas, according to the procedure in the 
text, the ‘mean motion in longitude’ does not include the epoch position, which is added only at a 
later stage. For the procedure in general see HAM A  193-6, Pedersen 197-9 and, lor a worked 
example, HAM A  96 oi- my Appendix A Example 9.

' - S e e 98-9.



240 V  JO. Effect o f  second anomaly at true syzygy

Let [Fig. 5.8]^^ the moon’s eccentric circle be ABG on centre D and diam eter 
H395 ADG, on which the centre of the ecliptic is taken at point E, and the point of 

‘direction’,o p p o s i te  to D, as Z. C ut off arc AB from the apogee A, and draw 
the epicycle, H 0 K L , on centre B. Jo in  BD, HBKE and BLZ.

Now the size o f  the [equation of] anom aly can diifer from that o f the apogee 
situation of the epicycle (at A) in two ways:
[1] because the epicycle is removed towards the perigee, the epicycle 
subtends a larger angle at E;
[2] the direction in which the diam eter through mean apogee and f>erigee [of 
the epicycle] points is no longer towards E but towards Z.

G
Fig. 5.8

The elfect from the first factor is a maximum when the moon's equation of 
anomaly is a maximum, while the effect of the second factor is a maximum 
when the moon is near the apogee or perigee of the epicycle. Hence it is clear 
that when the maximum effect of the f'li-st factor occurs, the effect of the second 
factor will be quite negligible, since the moon's etjuation of anomaly hardly 

H396 varies for a considerable distance either side of its situation on the tangent to the 
epic\cle. However, [in this situation] the true syz\ g\- can differ from the mean 
by the sum of the equations of the two luminaries, if one is additive and the other 
subtractive. O n the other hand, when the maximum effect of the second factor, 
the difference due to the direction, occurs, then again the effect of the first factor 
is negligible, since the complete ecjuation of anomaly is either zero or very small 
when the moon is near the apogee or perigee of the epicycle. But [in this case] 
the true syzygv' will differ from the m ean only by the sun’s equation of anomaly.

“ Fiij. 5.8 is wronRly drawn in Heiberg's text, where D© has l>een connected instead ol tlie 
ian(j;ent EG. This is an error of Heil)erg's. unsupported by the mss., and corrected l)v Manitius. 

'^npoavEumc;. .See p. 227 n. 19.



Let us suppose, then, that the sun has a maxim um  additive equation of2;23°, 
and (first) tha t the moon too has a m axim um  (but subtractive) equation of5;l°.
Thus Z AEB contains twice the sum of the above, 7;24°, i.e. 14;48°. Draw E© 
from E tangent to the epicycle, and drop perpendicular B© on to it, and also 
perpendicular D M  from D on to BE. Then since

/  AFR -  -f where 4 right angles = 360°
~ \29 ;36°° where 2 right angles = 360°°, 

in the circle about right-angled triangle D EM  H397
arc DM  = 29;36° 

and arc EM  = 150;24° (supplement).
Therefore the corresponding chords

DM  = 30:39” I . __ ___
and EM = 1 1 6 ; ! '/

Therefore where DE, the distance between the centres, is 10; 19’’. 
and BD, the radius of the eccentre, is 49;41°,

DM = 2:38” 
and EM  = 9;59^.

And since BM* = BD' -  D M ',
BM = 49:37^

and. by addition [ofEM ],BM E = 59:36'’. 
where B 0, the radius of the epicycle, is 5; 15'’.
Therefore in the circle about right-angled triangle BE0, 

where hypoienuse EB = 120’’.
B0 = 10:34^ 

and arc B0 = 10:6°.
Therefore the angle of the maximum equation of anomaly,

Z BE© -f ''h e re  2 right angles = 360°°
\  5:3° where 4 right angles = 360°, 

instead of the 5;1° lor the apogee position of the epicycle at A. H398
Therefore the difference in the equation of anom aly due to this effect was found 
to be 2 sixtieths of a degree, which cannot produce an  error of even as much as 
i^th of an hour.^^

Next let the moon be at L, the m ean p>erigee. Thus ZAEB will contain, 
approxim ately, only double the sun’s [maximum] equation of anomaly, namely 
4;46°. W ith a figure [5.9] similar [to the preceding], draw  line EL, and drop 
perpendiculars LN (from L) and DM  (from D) on to BE, and ZX  from Z on to 
BE produced. Then, by the same kind of calculation as before, since the angle at
E,

r /  AFRl -  -f where 4 right angles = 360°
 ̂ L 9;32°° where 2 right angles = 360°°,

in the circles about right-angled triangles ED M  and  EZX, 
arc DM  = arc ZX  = 9;32° 

and arc EM = axe EX  = 170;28° (supplements). H399
C rd arc D M  = Crd arc ZX  = 9;58’*, 1 where hypotenuses DE and EZ 

and C rd arc M E = Crd arc EX  = 119;35” j  = 120’’.

In the time of an eclipse. See p. 136 n. 16.

V 10. Effect o f  epicycle being closer 241



Therefore where DE = EZ = 10;19'’ 
and DB, the radius of the eccentre, is 49;4I'’,

DM = ZX  = 0 ;5 r  
and M E = EX = 10; 17".

And since BM^ = BD^ -  D M ^
BM«== 49;41’’.
BE = [BM + M E =] 59;58^ 

and, by addition [of EX], BX = 70;15'’ where ZX = OiSl”.

242 V 10. Effect o f  direction o f  mean apogee

G
FiiJ. 5.9

Therefore by the same argum ent, hypotenuse BZ [ol' triangle BZX] will be 
approximately the same size [as BX], 70:15'’.

And BZ.ZX = BL;LN and  BZ.BX = BL;BX.
Tlieretbre where BL. the radius of the epicycle, is 5:15''. 

and BE. as was shown = 59:58'’,
LN = 0:4’’ and BN «  5:15^

H400 and. by subtraction [ofBN from BE]. NE = 54:43’’ where LN = 0:4'’.
And since, from the preceding, hypotenuse EL [of triangle ELX] is not 

noticeably different from this am ount 'of 54:43'’. it follows tfiat. wliere 
hypotenuse EL = 120’’.

L N « 0 ;8 '’.
and. in the circle about right-angled triangle ELX, 

arc LN = 0:8^.
Therefore the difference in the moon's position due to the direction towards Z,

0;8°° where 2 right angles = 360°°
0;4° where 4 right angles = 360°.^®

Z BEL =

'"Ptolemy's linal ri-sult is correct (to the nearest minute), but some ol the intermediate results are 
inaccurate. E.g. just alxjve in the computation ofLN , 0;4 x 120 54;43 is much closer to 0:9 than to
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Thus here too the difference in the moon’s equation of anomaly is [only] 4 
minutes of arc; and even this does not produce a significant error in the 
phenom ena at the syzygies, since it cannot reach as m uch a s h h  of an hour, an 
am ount one may expect to encounter frequently as a purely observational 
error.

We m ade the above argum entation, not to show that one cannot take these 
difl’erences into account, very small though they be, for the com putation of 
syzygies too, but to show that we com mitted no noticeable error in our previous 
demonstrations using lunar eclipses when we used the [simple hypothesis], and 
not that supplemented by introducing the eccentre.

11. [On the moon's parallaxes}^' H401

W ith the above we have about disposed of the [elements] necessary foi' fmding 
the true positions of the moon. However, in the case of the moon there is the 
additional problem that its apparent position does not coincide with its true 
position, even to the senses. For. as we said [IV 1 p. 173], the earth does not l)ear 
the ratio of a point to the distance of the moon’s sphere. Hence it is both 
necessary and appropriate to discuss the lunar parallaxes, especially in order to 
deal with the theory oi'solar eclipses, amongst other phenomena. By means of 
the lunar parallaxes it will be possible, given a true position [of the moon], [i.e. 
its position] with respect to the centre of the earth and df the ecliptic, to 
determine its position as seen from the standpoint of the ob.ser\er. that is from 
some point on the earth's surface, and. l ice versa  ̂ to determine the true position 
from the apparent position. Now it is a feature of this kind of enquiiy that one 
cannot fmd the amount of the parallax for individual situations unless one is 
lii-st given the ratio of the distance [of the body to the earth 's radius], nor can 
one lind the ratio of the distance without the paralla.\ for some particular 
situation being given. Hence for those bodies with no perceptible parallax, 
namely, those to [the distance ol] which the earth  bears the ratio of a point, it is. H402 
obviously, impossible to fmd the ratio of the distance. But in the case of those 
bodies, like the moon, which do exhibit a parallax, the only appropriate 
procedure is. first given some particular parallax, to find the ratio of the 
distance. For it is possible to make an observ’ation of a [particular] parallax of 
this kind by itself, but quite impossible to determ ine the am ount of the distance 
[by itseli].

Now Hipparchus used the sun as the main basis of his e.xamination of this 
problem. For since it follows from certain other characteristics of the sun and 
moon (which we shall discuss subsequently) that, given the distance to one of 
the luminaries, the distance to the other is also given. H ipparchus tries to 
dem onstrate the moon’s distance by guessing at the sun’s. First he supposes that 
the sun has the least perceptible parallax, in order to find its distance, and then

0;8. It looks as if he computed to two sexagesimal fractional places, and then fudged the results 
somewhat in the presentation.

‘’O n chs. 11 and 12 see HAMA 100-1. Pedersen 203-4.



he uses the solar eclipse which he adduces; at one time he assumes that the sun 
has no perceptible parallax, at another that it has a parallax big enough [to be 
observed]. As a result the ratio of the moon’s distance came out different lor him 
for each of the hypotheses he pu t forward; for it is altogether uncertain in the 
case of the sun, not only how great its parallax is, but even whether it has any 
parallax at all. *®

244 V 12. Construction o f  parallactic instrument

H403 12. {On the construction o f a parallactic inslrument]^^

We, in contrast, to avoid taking any uncertain factors into p u r examination of 
this topic, constructed an instrument to enable us to observe as accurately as 
possible the am ount of the moon's parallax, and us zenith distance, along the 
great circle through the [X)les of the horizon and the moon.

We m ade two rods [Fig. G.1.2], rectangular [in cross-section], no less than 4 
cubits long, so as to adm it liner graduation, and with a cross-section ofsuHlcient 
size that they were not distorted because of their length, but each side 
confoitned veiy strictly to a straight line. Then we drew a straight line along the 
middle of the broader side of each rod, and alHxed to one of them  [Fig. G.2], at 
each end. centred on the line, and perpendicular [to it], two rectangular plates, 
ol'cqual size and parallel to each other [Fig. G,a,b]; each plate had an aperture 
exactly in the centre, the aperture at the eye lieing small, and that towards the 
moon being greater, in such a way that when one eye was placed at the plate 

H404 with the smaller aperture, the whole of the moon would be visible through the 
aperture on the other plate, which was aligned [with the first aperture]. W'e 
made a perforation of equal size through both rods at the end o fthe m edian line 
near the plate with the larger hole, and  fitted a peg [Fig. G,c] through both 
perforations in such a way that the sides of the rods inscribed with the lines^® 
were fastened together round the peg as a centre, but the rod with the plates 
could rotate freely in all directions w ithout distortion. We wedged the rod with 
no plates on it [Fig. G, 1 ] into a base [Fig. G,4]. O n the m edian line of each rod, 
at the end by the base, we took a point as far as possible from the centre of the 
peg (the same distance from it [on both rods]), and, on the rod with the base, 
divided the line so defined into 60 sections, subdividing each section into as 
many subdivisions as possible. We also attached to the back of the same rod, at 
its end, [two] plates [Fig. G ,d,d] having their corresponding faces aligned with

'"This passage is supplemented by Pappus’ commentan- ad loc. (Rom e[l] 167-8), which extracts 
some details oi the two procedures oi Hipparchus from Books 1 and 2 respectively ofthe latter’s On 
sizes and distances’. For details of the important historical consequences which can be drawn see 
Toomei-[9] (showing that the solar eclipse referred to is that o f - 189 M ar. 14), which builds on the 
work of Swerdlow, Hipparchus’.

‘*On the instrument described in this chapter (known in the middle ages as a ‘triquetrum ’) see 
Price, Precision Instruments' 589-90 with Fijf. 344. My Fiij. G is based on the text ofthe Almagest 
rather than on the figure provided by Pappus in his commentary’ (Romc[ 1 ] I p. 71. with a modern 
reconstruction; see also Rome’s notes on pp. 70-5).

The faces of rods 1 and 2 inscribed with the lines cannot be Hush with one another, as is clear 
from Fig. G. Ptolemy seems to mean only that one views the inscribed faces of the two rods as radii of 
a circle* with centre peg c.
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each other/*  and each being equidistant in all respects from that same median 
line, so that when a plumb-line was suspended between them, the rod could be 
set up  exactly perpendicular to the plane of the horizon. W e also had a meridian 
line [Fig. G,e] ready draw n in the plane parallel to that of the horizon in an 
unshaded place. W e set the instrum ent upright in such a way that the sides of

H405

Excising the words Jtp5̂  ttj ypoMjiq at H404.J7-18. T hat would mean "each having that 
face which was on the same side as the [graduated] line aligned with the other'. But this is 
impossible, since the plates are not to one side ofthe face with the graduations, but ‘on the back’, i.e. 
on the face opposite the graduated line. This is also clear from Pappus’ detailed description (Rome



the rods which were held flush with each other by the peg lay in the meridian, 
being parallel to the m eridian line, and  the rod with the base was fixed exactly 
perpendicular, in a  firm and immovable position, while the other rod could 
move in the plane of the m eridian about the peg, responding to the pressure [of 
the user]/* W e also added another thin, straight rod, [Fig. G,3] attached by a 
small pin [Fig. G,f] a t the base end o f the graduated line, so that it too could be 
rotated, and long enough to reach the end of the line on the other rod 
equidistant [from the peg] when it was rotated to its maxim um  distance [from 
the base];'*^ thus by rotating it a t the same tim e as the latter, one could use it to 
show the straight-line distance between the ends [of the centre-lines on the two 
rods].

VVe made our observations of the moon as follows. T he moon had to be 
located on the meridian, and near the solstices on the ecliptic, since at such 
situations the great circle through the poles of the horizon and the centre of the 
moon very nearly coincides with the great circle through the poles of the 

H406 ecliptic, along which the moon’s latitude is taken. Furtherm ore the true 
distance [of the moon] from the zenith can also be conveniently determ ined 
from the same situation. W hen the moon was precisely in the meridian, we 
moved the rod with the [sighting-] plates on it round to the position in which the 
centre of the moon, when sighted through both apertures, was in the centre of 
the larger aperture. VVe marked on the thin rod the distance between the ends of 
the lines on the [two] rods, then applied the distance [m arked on the thin rod] to 
the line on the upright rod g ^ d u a te d  into 60 sections. Thus we found the 
amount of that distance in those units of which the radius ofthe circle described 
by the rotation [ofthe rod with the sighting-plates] in the plane of the meridian 
contains 60. By calculating the arc corresponding to that chord, we found the 
angular distance o fthe apparent centre o fthe  moon from the zenith, measured 
along the great circle through the poles o fth e  horizon and the moon’s centre, 
which coincided at that moment with the [great circle] through the poles ofthe 
equator and the ecliptic, [i.e.] the meridian.

In order, first, to determ ine the precise am oim t of the moon’s greatest 
H407 deviation in latitude, we m ade sightings when the moon was simultaneously

246 V 12. Observation w ith parallactic insinment

p. 75). Jtp6<; ai)T^ ypann^ is a stupid gloss on etu tci au ra  tiepr). which I have translated 
'corresponding’, but which literally means ‘in the same direction’. The interpolation is old, since it 
is tbund in the Arabic tradition.

I.e. the peg held the rods together tightly enough so that rod 2 would not move under its own 
weight, but loosely enough so that it could l)e rotated by the user.

This rt>d has indeitl to be ‘thin’, since it has to pass l>etween the two rods I and 2, the laces of 
which are supposed to l)e Hush. Pappus overcomes this dilliculty by saying that rod 2 has to i)e 
hollowed out along its length to the depth ol the thickness ol rod 3 (Rome p. 73). There is the further 
dilliculty that according to Ptolemy’s instructions rod 3 has to be long enough to reach to the end of 
rod 2 at the maximum rotation, presumably 90°: hence its length should be ( \/2  x length ol the 
graduated line). But since one measures the chord of the zenith distance, not directly on rod 3, but 
by marking it on ixxi 3 and then measuring it on the scale on rod 1, no zenith distance greater than 
60° (the chord ol'which is eO*") can be measured. Hence, presumably. Pappus (p. 73) says that rod 3 
should be less than the length of the graduated line. Rome (p. 73 n.O) suggests that Ptolemy 
delilierately chose this limit to avoid the complications of refraction near the horizon. It seems more 
likely that it is simply a by-product ofPtolem y’s construction, and that Pappus’shorten ingof the rod 
was done to avoid thedilllculties which would result from trying to apply rod 3 to the graduated line 
il' it were 60’’ oi' more.
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near the summ er solstice and near the northern limit of its inclined circle.'* For 
in the region o f those points the moon’s latitude remains sensibly the same over 
a considerable interval, and furthermore, since the moon is then very near the 
zenith at the parallel through Alexandria (at which we m ade our observations), 
its apparen t position is approxim ately the same as its true position. At such 
situations it was found that the distance of the centre of the moon from the 
zenith was always about 2i°. Hence by this method too the moon’s greatest 
latitude either side o f the ecliptic is shown to be 5®. For the zenith distance of the 
equator at Alexandria has been shown to be 30;58°; if we subtract from this the 
2 |°  (which is the apparent distance [of the centre of the moon from the zenith]), 
the result [28;505®] is about 5° greater than the distance from the equator to the 
summ er solstice, which was shown to be 23;51°.

Then, in order to attack the problem of the parallaxes, we observed the moon 
in the same way, but this time when it was near the winter solstice, both for the 
reason already mentioned [above] and because its distance from the zenith in 
that situation is the greatest of all such m eridian positions, and thus provides us 
with a greater and more easily determ inable parallax. We will set out one of a 
num ber of parallax observations which we m ade at such situations. By this 
means we shall display the m ethod of calculation and at the same time provide a 
dem onstration of the rest of what is to follow in the appropriate order.

H408

13. {Demonstration o f the distances o f the moon}^^

In the twentieth year of H adrian, A thyr [III] 13 in the Egyptian calendar [135 
Oct. 1], 5g equinoctial hours after noon, just before sunset, we observed the 
moon when it was on the meridian. T he apparent distance of its centre from the 
zenith, according to the instrument, was 50H°. For the distance [measured] on 
the thin rod was 5 III of the 60 subdivisions into which the radius of revolution 
had been divided, and a  chord of tha t size subtends an arc of 50n°. Now the 
time from epoch in the first year o f Nabonassar to the moment of the above 
observ'ation is

5| equinoctial hours reckoned simply .
5^ equinoctial hours reckoned accurately.882 Egyptian years 72 days

For this moment we find: 
mean longitude of the sun: 
true longitude o f  the sun: 
m ean longitude of the moon: 
elongation:

^ 7;31°
^  5;28°

T  25;44°
78; 13°

distance [in anomaly] from mean apogee of epicycle: 262;20° 
distance in [argum ent of] latitude from the northern limit: 354;40°.

H409

Since the revolution of the node takes place once in about 18^ years, this situation occurs 9l 
yeai-s earlier or later than the similar situation of the moon near the winter solstice, observed by ~ 
Ptolemy (V 13) in Oct. 135. Therefore these observations were made either in the summer of 126, or 
in the spring o f 145. This is the only useful conclusion that can be drawn from the confused 
discussion of .Newton, 184-6.

H AMA  101-3. Pedei-sep 204-7.
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Hence the complete equation of anom aly, derived from the appropriate table, 
was +7;26°, so that the true position of the moon a t that moment wzis:
in longitude:
in [argument ol] latitude on 
the inclined circle: 
in latitude on the great circle 

through the poles of the ecliptic 
(which almost coincided at that 
moment with the meridian):'*®

10»3;10“

2;6° from the northern limit

4;59° north of the ecliptic.
Now 3; 10° is 23;49° south of the equator on the same [meridian] circle, and 

the equator is, likewise, 30;58® south of the zenith at Alexandria. Therefore the 
true distance of the centre of the moon from the zenith was [23;49 + 30;58 -  
4;59 =] 49;48°. And its apparent distance was 50;55°. Therefore the moon’s 

H410 parallax at the distance [of the moon from the earth] corresponding to the 
position in question was I;7° along the great circle through the moon and the 
poles of the horizon, when its true distance from the zenith was 49;48°.

Now that we have established that, draw  [Fig. 5.10] in the plane of the great 
circle through the poles of the horizon and the moon the following great circles, 
on the same centre: 

that of the earth, AB;
that through the centre of the moon at the [above] obsei’vation, GD; 
the great circle to which the earth  hears the ratio of a point, E Z H 0 .

’For the moon was almost at the winter solstice (cf. p. 247).
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Let their common centre be K, and let the line through the points at the zenith 
be KAGE. Let us assume that the same distance of the moon, D, from the zenith 
at G is the am ount already determined, 49;48°. Jo in  K D H , A D 0, and H4I1 
furtherm ore from point A, which represents the observer’s eye, draw AL as 
perpendicular to KB, and AZ as parallel to KH.

T hen it is obvious that for an observer at point A the moon’s parallax was arc 
H 0 . So arc H© is 1;7°, according to the calculation from the observation. But 
since arc Z 0  is negligibly greater than arc H 0  (for the whole earth  bears the 
ratio of a  point to circle E Z H 0), arc Z H 0  is very nearly the same, 1;7°. And 
since, again, point A is negligibly different from the centre of circle Z 0 ,

/  7  AO /  where 4 right angles = 360°
[2 ; 14°° where 2 right angles = 360°°.

And Z ADL = Z Z A 0 = 2; 14°°.
Therefore in the circle about right-angled triangle ADL, 

arc AL = 2;14° 
and Crd arc AL = 2;21'* where hypotenuse AD = 120’’.

But LD is nesfligibly smaller than AD.
Therefore where LA = 2;21", LD «  120^.

Furtherm ore since, by hypothesis, arc GD = 49;48°, H412
the angle at the centre of the circle.

/  T K D  -  -f where 4 right angles = 360°
" t99-,36°° where 2 right angles = 360°°.

Therefore in the circle about right-angled triangle .ALK 
arc AL = 99;36° 

and arc LK = 80;24° (supplement).
Therefore the corresponding chords

and LK  = 7 7 1 2 ^ }  = 120'.
Therefore where AK, the radius of the earth, is I**,

AL = 0;46'’ 
and KL = 0;39^.

But where AL = 2;2 i'’, LD, as was shown, = 120'’.
Therefore where A L  = 0;46^ LD = 39;6‘’.

And, in the same units, K L = 0;39‘’. 
and the radius of the earth, KA = 1**.
Therefore where KA, the radius of the earth, is 1’’,
by addition, KLD, which represents the distance of the moon at the 
observ'ation, is 39;45’’.̂ ^

Now that we have dem onstrated this, let [Fig. 5.11] the m oon’s eccentre be 
ABG on centre D and diam eter ADG, on which E is taken as the centre of the 
ecliptic, and Z as the point towards which [the m ean apogee diam eter of] the H413 
epicycle is directed. Draw the epicycle, H 0 K L , on point B, and jo in  H B 0E , BD 
and BKZ. Let L represent the position of the moon at the observation in

There is an accumulated error here, due to a series of small inaccuracies and roundings. More 
accurate would be 39:50’’.



H414

question, and draw perpendiculars to BE, DM  from O'*® and ZN from Z.
Then since the am ount of the elongation at the tim e of the observation was 

78; 13° [p. 247], it follows from the theory previously established that 
Z AEB = 156;26° where 4 right angles = 360°;

_ f  23;34° where 4 right angles = 360°
\  47;8°° where 2 right angles = 360°°.
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hence its supplement, /  ZEN =ZD EM

PI

Therefore in the circles about the corresponding right-angled triangles, [ZEN, 
DEM ], since DE = EZ,

arc DM  = arc ZN  = 47;8° 
and arc EM = arc EN = 132;52° [supplements].

Therefore the corresponding chords
D M  = ZN = 47;59^ 1 ^

and EM  = EN = 110;0^ J hypotenuse DE = hypotenuse EZ = 120^.

Therefore where DE = EZ = 10;19‘’ and DB, the radius of the eccentre, 
is49;41^,

D M  = ZN = 4;8‘’ 
and EM  = EN = 9;2?p.

And since BM* = BD^ -  DM^,
BM = 49;3P.

And BE = [BM -  EM  =] 40;4^, 
and, by subtraction [of EN from BE], BN = 30;37’’ where ZN = 4;8’’.

And since BN^ -t- ZN^ = BZ^ 
hypotenuse BZ = 30;54‘’.

Heiberg rightly excised feKpXT|08Toav (‘extended’) at H413,7 as an unnecessary gloss which 
disturbs the sentence structure. Transferring it after BE (as H alm a and Manitius) is no 
improvement, since the perpendicular from Z is not on the extension of BE.



Therefore in the circle about right-angled triangle BZN, 
where hypotenuse BZ = I20‘*,

ZN = 16;2'’ 
and arc ZN = 15;21°.

■ /  ZRN -  -f where 2 right angles = 360°° H415
” \  about 7,-40° where 4 right angles = 360°.

T hat [7;40°], then, is the size of arc 0 K  of the epicycle.
Next, the distance of the moon from the m ean apogee of the epicycle at the 

moment of the observation was 262;20° [p. 247], and, obviously, its distance 
from K, the m ean perigee, was 82;20° (by subtraction of a semi-circle).

Therefore arc K L = 82;20°
and arc 0 K L  = [arc 0 K  + arc KL =] 90;0°.

So Z 0 B L  is a right angle.
EL2 = BL^ + EB ,̂ 

and where DB, the radius of the eccentre, is 49;41’’ 
and BL, the radius of the epicycle, is 5; I S'*,

EB, as we showed = 40;4‘’.
EL = 40;25'’.

Therefore the distance of the moon at the observation is 40;25'’, 
where BL, the radius of the epicycle, is 5:15’’
and where EA. the distance from the centre of the earth to the apogee of the 
eccentre, is 60*’.
and where EG, the distance from the centre of the earth  to the perigee of the 
eccentre, is 39;22'’.

But we showed that the moon's distance at the observation, that is EL. was 
39;45‘’ where the radius of the earth  is one. H416
Therefore where EL. the distance of the moon at the obsei’vation, is 39;45’’, and 
the earth’s radius is P ,

EA, the m ean distance at the syzygies = 59:0'’,̂ ^
EG. the mean distance at the quadratures = 38;43‘’, 

and the radius of the epicycle = 5; 10'’.
Q.E.D.
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14. {On the ratio o f the apparent diameters o f sun, moon and shadow at the

Now that we have dem onstrated the distances o f the moon in the above 
m anner, the appropriate sequel is to dem onstrate those of the sun as well. This

^*This result for the moon's mean distance agrees well with the facts (it is slightly greater than 60 
earth-radii). which means that Ptolemy's parallax at syzygies (i.e. at solar eclipses) is fairly 
accurate. Howe\er, the process by which it is reached contains a num ber of errors (in theobser\ed 
paiallax, the latitude, the declination etc.. and in the distance resulting from Ptolemy's model), 
which ’miraculously' cancel each other out. For details sec H AM A  102-3. This is no accident; 
Ptolemy knew (approximately) what the parallax had to be at eclipses, and chose anobseivatioa 
which produced that amoimt. For a suggestion that the figure of 59 earth-radii had already been 
derived by Hipparchus see Toomer[9] 131.

’"T he chapter heading is pJaced by most Greek mss. (and by H eiberg’s text) before H 416,2 0 .1 
have transferred it here (belbr* H416,9), following the Arabic mss. (cf. also D, which has it in the



too can readily be performed geometrically, if we are given, in addition to the 
distances of the moon at the syzygies, the sizes o f the angles formed a t the 
[observer’s] eye at the syzygies by the diameters o f the sun, moon and shadow.

O f the various methods used to solve the latter problem , we have rejected 
those claiming to measure the luminaries by m easuring [the flow oi] w ater or by 
the time [the bodies] take to rise at the equinox,®* since such methods cannot 

H417 provide an accurate result for the m atter in hand. Instead, we too constructed 
the kind of dioptra which H ipparchus described, which uses a four-cubit rod,^^ 
and, observing with this, found that the sun’s diam eter always subtends 
approxim ately the same angle, there being no noticeable difference due to [the 
variation in] its distance, but that the moon subtends the same angle as the sun 
only when it is a t its greatest distance from the earth  (i.e. the apogee of the 
epicycle) at fuii moon, m contradiction to the hypotheses of my predecessors, 
[who assumed that it subtends the same angle as the sun at full moon] when it is 
at mean distance.'’̂  Furtherm.ore, we find that the angles themselves are 
considerably smaller than those traditionally accepted.^'* However our com­
putation of the latter rests, not on measurem ent with the dioptra, but on certain 
lunar eclipses. For although it was possible to determ ine readily I'rom the 
dioptra, as constructed, when both diam eters subtend the same angle (since 
such a determ ination involves no actual m easurem ent), ihcamount [of the angle 
subtended] seemed utterly dubious to us, since the measurement"'^ involving the 
positioning of the width [of the plate] which covers [the body being sighted] on

252 V 14. Use o f  Hipparchan dioplra to observe apparent diameters

upper maixin), as a more appropriate break. Cf. Introduction p. 5. On ch. 14 see HAMA  103-8, 
Pedersen 207-9 (with the corrections Toomer [3] 140, 143, 149).

'.Vcording to Pappus ad loc. (Rome(l] I 87-9) the more ancient astronomers’ used water- 
clocks to measure the time taken by the sun to cross the horizon, a procedure criticised bv 
Hipparchus. He refers to a lost work ol'H eron, rrep'i uSp'iov upooKOjre'icov, on which see also 
Proclus, Hypotyposis IV 73-6 (ed. Manitius p. 120-2). At H416,21 Heiberg rightly accents 
u5po^eTpl5v (from the atjsiract u5pojietpla). There is no evidence for the existence of 
OSponeTpiov, vessel lor measuring flow of water’, conjectured by LSJ s.v. In the corresjXinding 
passage Proclus p. 120 line 14 we should read uSp0X.07\u>v. Cf. also HAMA  103 n. 1.

There are ancient descriptions of this instrument by Pappus in his commentary ad loc. 
^Rome(l] I 90-2) and by Proclus. Hypotyposis IV 87-96 (ed. Manitius pp. 126-30). See Price, 
Precision Instruments’ 591, and, for modern literature, HAAtA  103 n.2. The essential feature is a 

plate ,JtpiojidTiov. H417.22-3) which can be moved along a graduated rod until it appears to 
exactly cover the objcct being sighted by the eye placed at one end of the rod.

’^It was shown by Swerdlow, ‘Hipparchus’ 291-8. that Hipparchus was one of those who held 
this. .-\n important consequence of this hypxjthesis is that annular solar eclipses become p>ossible, 
whereas under Ptolemy’s assumption they are impossible.

Hipparchus 'see IV 9 p. 205) assumed that the moon at mean distance subtends a six hundred 
and fiftieth of its circle, or about 0:33,14°; hence his figure for the sun’s diam eter was the same. 
Ptolemy (below) finds that when moon and sun have the same apparent diam eter (at maximum 
distance) it is 0;31,20°, considerably smaller. This must be what he means here. However, his value 
for the lunar diameter at mean distance, 0;33,20°, is negligibly different from Hipparchus’.

”  Excising JtXeioTT|5 ouariq at H417,23, to which I can attach no meaning (it cannot mean very 
laborious’, as Manitius translates, nor, if it could, would it be true). The variant TtXc'tOTat  ̂ouaai<; 
found in D, part of the Arabic tradition (L) and Pappus (Rom e[I] I 93,21) can be translated 
( involving multiple positionings’), but it is not true that sighting the moon would require more 
than one positioning of the plate. Unless the corruption lies deeper (e.g. has replaced a
word meaning 'delicate’) one must assume that TtXe'tOTaK; ouCTai^ was an inept gloss intended to 
explain why the process was inaccurate, and that this was corrupted to the unintelligible nX.EioTr|(; 
oOoTiq by attraction to rtapanETptioEox;.



the length of the rod running from the eye to the plate can be inaccurate. 
However, once it was determined that the moon is at its greatest distance when H418 
it subtends the same angle at the eye as the sun, we com puted the size of the 
angle it subtends from observations of lunar eclipses in which the moon was 
near tha t [greatest] distance, and thence obtained immediately the size oi the 
angle subtended by the sun. We shall explain the method of procedure in this by 
means of two o f the eclipses used.

In the fifth year of Nabopolassar, which is the 127 th year from Nabonassar,
A thyr [III] 27/28 in the Egyptian calendar [-620 Apr. 21/22], a t the end of the 
eleventh hour in Babylon, the moon began to be eclipsed; the maximum 
obscuration was i of the diam eter from the south. Now, since the beginning of 
the eclipse occurred 5 seasonal hours after midnight, smd mid-eclipse about 6 
[seasonal hours after midnight], which correspond to 56 equinoctial hours 
at Babylon on that date (for the true position of the sun was T  27;3°), it is 
clear that mid-eclipse, which is when the greatest part of the diameter is 
immersed in the shadow, occurred 5i equinoctial hours after midnight in 
Babylon, and  exactly 5 [hours after midnight] at A lexandria.'’®

T he time from epoch is
, I 17 equinoctial hours reckoned simplv H419

126 Egyptian vears 86 davsS . , , 57^ I6i equmoctial hours m m ean solar days."^
Therefore the lunar position was as follows:

m ean position in longitude: — 25;32°
true position in longitude: — 27:5°

distance [in anomaly] from the apogee of the epicycle; 340:7°
distance [in latitude] from the northern limit on the inclined circle: 80;40°.

Thus it is clear that when the centre of the moon near its greatest distance is
9t° distant from the node, measured along its inclined circle, and the centre of
the shadow lies on the great circle drawn through the m oon’s centre at right
angles to the inclined circle (which is the situation a t which the greatest
obscuration occurs), i of the moon’s diam eter is immersed in the shadow.

Again, in the se\enth year of Kambyses. which is the 225th year from
Xabonassar, Pham enoth [M I] 17/18 in the Egy ptian calendar [-522 July
16/17], 1 [equinoctial] hour before midnight at Babylon, the moon was eclipsed
half its diam eter from the north. Thus this eclipse occurred about 11 equinoctial
hours before midnight at .Alexandria.'’® T he time from epoch is

’"Oppolzer no. 901: mid-eclipse 2:38 a.m. 1*= 4 :’’ after midnight at .Alexandria ), magnitude 1.6'̂ .
P .\ '. Neugebauer, Spezieii^r Kanon. gives about 5i'' after midnight (Babylon; lor mid-eclipse, 
magnitude 2.1 .

^ 'The e<iuation of time fo ra  solar lo n g itu d eo fT  27° is a b o u t-2 0  mins. rather th a n -1 5  mins. 
‘'“Oppolzer no. 1056; mid-eclipse 21 ;0*' (** 11 p.m. Alexandria), magnitude 6.1'“. P.V. 

N’eugebauer gives mid-eclipse as ca. 23.6*' Babylon, magnitude 6.1'*. T he time used by Ptolemy is 
clearly in error (although the computed positions of sun and moon must have seemed to him to 
confirm it), but the source of his error is too complicated to discuss here. The best treatment is in 
Britton[l] 81-4. For this eclipse (alone of those preserved in Almagest) there is also an extant 
cuneiform report (published by Kugler, SSB I p. 71). According to A. J . Sachs this text should be 
translated as follows: ‘Year VII, month IV, night of the fourteenth, 1J double hours in the night a 
“ total” lunar eclipse took place [with only] a little remaining [uneclipsed]. The north wind blew’.
Here the time agrees with modem computations (and disagrees with Ptolemy), but the magnitude 
disagrees with both.
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A ] 10  ̂ equinoctial hours reckoned simply 
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H420 (for the position of the sun was 22 18; 12°).
Therefore the lunar p>osition was as follows;

mean position in longitude: 20;22°
true position in longitude: 10“ 18; 14°®*

distance [in anomaly] from the apogee of the epicycle: 2B;5°®® 
distance [in latitude] from the northern limit on the inclined circle; 262; 1 2°. 
Hence it is clear that, when the centre of the moon, again near its greatest 
distance, is 7 5° from the node, as measured along its inclined circle, and the centre 
of the shadow has the same position relative to it as before, half of the moon’s 
diam eter is immersed in the shadow.

But, when the moon’s centre is 9?° from the node along the inclined circle, it is 
4 8 i' from the ecliptic along the great circle draw n through it at right angles to the 
inclined circle [the orbit]; and when it is 7?° from the node along the inclined 
circle, it is 40?' from the ecliptic along the great circle draw n through it at right 
angles to the inclined circle.®' Therefore, since the dilference between [the sizes 
oi] the two eclipses comprises i of the moon’s diameter, and the difference 

H421 between the above distances of the moon’s centre from the ecliptic (i.e. from the 
centre of the shadow) comprises [48i -  40? =] l l ' ,  it is obvious that the total 
diam eter of the moon subtends a great circle arc of [4 x l l  =] 31 j'.

From the same data it is easy to see that the radius of the shadow at the same 
greatest distance of the moon subtends 40!'. Forw hen the m oon’s centre was that 
distance [40f'j from the centre of the shadow, it was touching the edge of the 
shadow's circumference, because [in that situation] half of the moon’s diam eter 
was eclipsed. This is negligibly less than 2^ times the radius of the moon, which is 
15f'. T he values we derive for the above quantities from a num ber of similar 
observations are in agreem ent with these;'’̂  hence we use them, both in other 
parts of the theory, concerning e c lip s e s ,a n d  in the Ibllowing dem onstration of 
the solar distance, which will be along the same lines as that followed by 
Hipparchus. A further presupposition [ofthisdem onstration] isthat thecirclesof 

H422 sun, moon and earth enclosed by the cones are not noticeably less than great 
circles on their spheres, and the diametei-s too [not noticeably less than great 
circle diam eters].'’■*

Possibly one should read 18:11° with D ' (computed: 18:10).
Ptolemy has made a computing error here; correct is a  = 27:54°. Obviously, he has computed 

(here only) lor the uncorrected time cl 10;!'’. However, this has no serious consequences, since it is 
merely intended to show that the moon is near the apogee ol'the epicycle. The discrepancy in the 
true position (see n.59) cannot be explained by this error.

" 'O n  the computation of these amounts see HAMA  107. It seems probable that they were, 
properly, computed from a spherical triangle with the right angle at the moon’s orbit (rather than 
from a plane triangle or any ofthe other approximations suggested there). But the compulations are 
inaccurate: Ptolemy should have found 484'  a n d 4 0 |' respectively. For similar computations with 
the moon at the perigee of the epicycle see VI 5 pp. 284-5.

** .Although Ptolemy’s procedure for finding the apparent diameters ofmoon and shadow is lx)th 
elegant and theoretically correct, it suffers from serious practical disadvantages. O n these, and the 
inaccuracies involved in his actual computations, see HAMA  106-8.

'‘‘ Reference to VI 5-7 and VI 11.
I.e. in Fig. 5.12 the cones from points N and X enclosing the spheres of sun (ABG), m oon(EZH) 

and earth (KLM ) have bases (the circles on AG, EH and KM) which are not sensibly less than great
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15. [On the distance o f the sun and other consequences o f the demonstration o f that\^^

Now, given the above, and given that the greatest distance of the moon at the 
syzygies is 64; 10 units where the earth’s radius is 1 (tor we showed [p. 251] that its 
mean distance is 59 of those units, and the radius of the epicyle 5; 10), let us see the 
size of the sun’s distance which results.

[See Fig. 5.12.] Let there be the following great circles of the [various] spherical 
bodies ly ing in the same plane; circle ABG ofthe sun’s, on centre D, circle EZH  of 
the moon’s at its greatest distance, on centre 0 ,  circle K L M  of the earth ’s, on 
centre N. Let AXG be the plane through the centres [in the tangent cone] 
enclosing earth and sun, and ANG the plane through the centres [in the tangent 
cone] enclosing sun and moon, with D 0 N X  as common axis. Let the straight 
lines through the points oftangency, which are, obviously, parallel toeach other, 
and sensibly equal to diameters, be ADG on the sun’s circle, E 0 H  on the moon's 
circle, K N M  on the earth ’s circle, and O P R  on the circle ofthe shadow in which H423 
the moon is immersed at its greatest distance (thus 0 N  equals NP, and each ol 
them is 64; 10 units where NL, the earth’s radius, is 1).

Then we have to find the ratio between ND. the distance of the sun, and NL, 
the earth ’s radius.

Produce EH to [meet XG at] S.
Since we dem onstrated [p. 254] that the moon's diam eter at the distance in 

question, namely the greatest distance in the syzygies, subtends 0;3I,20° ofthe 
circle drawn through the moon about the earth’s centre,

Z ENH = 0;31,20° where 4 right angles = 360°, H424
and Z 0 N H  = ! Z ENH = 0;31,20°° where 2 right angles = 360°°.

Therefore in the circle about right-angled triangle N H 0 , 
arc 0 H  = 0;3l,20° 

and arc 0 N  = 179;28,40° (supplement).
Therefore the corresponding chords

H 0  = 0:32,48’’ 1 . . .  ,__p
j  xTi-w lonp ( where diam eter N H  = 120' .̂ and N 0  «  120^ J

Therefore where N 0  = 64; 10, 0 H  = 0; 17,33.
And NM , the radius of the earth, is 1 in the same units.

But P R :0 H « 2 ;3 6  : 1 [p. 254].
P R  = 0;45,38 in the same units.

0 H  + PR = I ;3 ,l l  where NM  = 1.
But PR + 0 S  = 2, since PR + 0 S  = 2NM 

(for, as we said, all [three] are parallel, and NP = N 0).
Therefore, by subtraction [of (PR + 0 H )  from (PR + 0S )],

HS = 0;56A9 where N M  = 1 . H425
And NM :H S = N G :H G  = N D ;0D .

circles in those spheres: thus AG. EH and KM  can be treated as diameters of the spheres. This 
simplifyinj? approximation is I'ully justified by the magnitude of the distances of the l)odies 
compared with iheir diameters.

«'‘O n chs. 15 and 16 see 109-12, Pedei-sen 209-13.
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Therefore where ND = i ,  D© = 0;56,49, and, by subtraction, 0 N  = 0;3,11. 
Therefore where N© = 64;10 and N M  = 1, 

the sun’s distance, ND*» 12 10 .
Similarly, as we showed, PR  = 0;45,38 where N M  = 1, 

and N M :PR  = N X;XP.
Therefore where N X  = 1, X P  = 0;45,38 

and, by subtraction, PN = 0; 14,22.
Therefore where PN = 64; 10 and NM , the earth ’s radius, = 1, 

X P « 2 0 3 ;5 0 , 
and, by addition, X N  = 268.

Therefore we have calculated that where the earth ’s radius is 1 
the mean distance of the moon at the syzygies is 59 
the distance of the sun is 1210  

and the distance from the centre of the earth  to the apex of the shadow cone is 
268.

V 16. Relative volumes o f  sun, earth and moon 257

16. [On the sizes o f sun, moon and earth} H426

T he ratios of the volumes of the bodies are immediately derivable from the 
ratios of the diameters of sun, moon and earth.

For, since we have shown that, where NM , the earth ’s radius, is 1, 
the moon’s radius. 0 H  = 0:17.33 

and N© = 64; 10, 
and since N © :0 H  = ND:DG, 

and ND was shown to be 1210 in the same units, 
the radius of the sun, DG*“ 5; in the same units.

So the diameters will have the same ratios.
Therefore where the moon's diam eter is 1, the earth ’s diam eter will be about 3s, 
and the sun’s I85.
Therefore the earth ’s diam eter is 3? times the moon’s 
and the sun’s diam eter is 18? times the moon’s
and 5! times the earth’s. H427
And. using the same numbers,

since 1  ̂ = 1 , 
and 3^*»  39i. 

and 18?'‘« 6 6 4 4 ! , 
we conclude that, where the moon’s volume is 1, 
the earth ’s volume is 39i and the sun’s 6644^.
Therefore the sun’s volume is about 170 times that of the earth.®®

®*There is no point in estimating the relative volumes of the bodies, but it was evidently , 
traditional in Greek astronomy, for Theon of Smyrna (ed. Hiller p. 197)andCalcidius(ed. Waszink 
p. 143) quote from Hipparchus’ work on sizes anddistances the statement that the sun is 1880 times 
the size of the earth and the earth 27 times the size of the moon; these ratios plainly refer to relative 
volumes. In his Planetary Hypotheses (ed. Goldstein p. 9) Ptolemy gives the volumes of all the planets 
relative to the earth.
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17. {On the individual parallaxes o f sun and moon\^^

H428

W ith the above as bzisis, the next problem is to dem onstrate, again brielly, how 
one may calculate the individual parallaxes of sun and moon from the am ount 
ol'their distances. First [we deal with] the parallaxes with respect to the great 
circle drawn through the zenith and the body.*’®

[See Fig. 5.13.] In the plane of that great circle, then, let the great circle 
representing the [surface of the] earth  again [as in Fig. 5.10] be AB, the great 
circle representing the [position of the] sun or moon GD, and the great circle to 
which the earth beai-s the ratio of a point E Z H 0 . Let K  be the centre of all

[these circles], and KAGE the diam eter through the zenith. Cut o il from the 
zenith point G arc GD; let it be, e.g., 30°, and again draw  K D H  and AD©, from 
A draw AZ parallel to K H , and drop perpendicular AL on to K H.

Now neither of the luminaries always remains at the same distance. But the 
resulting diflerence in the sun’s parallaxes will be very small and imp>erceptible, 
since the eccentricity of its circle is small, and its distance great. For the moon, 
however, the resulting difference will be very perceptible, both because of its

«’ See H AMA  112-15, Pedersen 213-17.
**ln contrast to the longitudinal and latitudinal components of this ‘total’ parallax: these are 

dealt with in V 19.



motion on the epicycle and because of the motion o f the epicycle on the 
eccentre, each of which produces quite a large difference in the distance. 
Therefore we shall dem onstrate the solar parallaxes for a single ratio, namely H429 
12 10 ; 1 , but we shall demonstrate the lunar parallaxes for the four ratios which 
will be most convenient for the methods we shall subsequently develop. The 
four distances we have chosen are as follows:

T he first two are
[1] when the epicycle is at the apogee of the eccentre,

[a] the distance to the apogee of the epicycle, which we concluded from our 
previous dem onstration [p. 255] to be 64; 10 earth-radii;

[b] the distance to the perigee of the epicycle, which we compute to be 
[59;0 -  5; 10 =] 53;50 earth-radii.

The second two are
[2 ] when the epicycle is at the perigee of the eccentre,

[a] the distance to the apogee of the epicycle, which we concluded from our 
previous dem onstration [p. 251J to be [38,43 + 5; 10 =] 43:53 earth- 
radii;

[b] the distance to the perigee of the epicycle, which we compute as 
[38;43 -  5;10 =] 33;33 earth-radii.

Then, since arc GD = 30°, by hypothesis,
/  T K D  -  I  where 4 right angles = 360°

" \  60°° where 2 right angles = 360°°.
Therefore in the circle about right-angled triangle AKL 

arc AL = 60°,
and arc KL = 120° (supplement). H430

Therefore the corresponding chords 
AL = 60^ 

and K L = 103;55‘’
Therefore where AK = l^  AL = 0;30’’ and K L = 0;52’’.

And, in the same units,
1210 ’’ for the sun's distance
64;10*’ for the moon's first limit [la]

K LD  = 53;50*’ for the moon’s second limit ' [^b]
43;53’’ for the moon’s third limit [2a]
33;33’’ for the moon’s fourth limit [2b].

And, by subtraction, LD [= KLD -  KL], which is the same as AD, since the 
difference is imperceptible.

1209;8’’ for the sun’s distance
63; 1 S’" for the moon’s first limit [la]

AD =■( 52;58‘* for the moon’s second limit [lb ]
43;!'’ for the moon’s third limit [2a]
32;41'’ for the moon’s fourth limit [2b].

Therefore, where hypotenuse AD = 120*’, then (assuming the same order, to 
avoid repetition)

[Sun] [Moon]
[ la ]  [ lb ]  [2a] [2b]

A L =  0;2,59^ 0;56,52'* 1;7,58'’ 1;23,41'’ 1;50,9".
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. ,p I where diam eter AK = 120'’.



Z ADB = 
H431 Z ZA© =

arc H 0  =

Therefore in the circle about right-angled triangle DLA®® 
a rc A L =  0;2,50° 0;54,18^ 1;4,54° about 1;20° about 1;45°.

b;2,50°° 0;54,18°° I;4,54°° 1;20°° 1;45°°
where 2 right angles = 360°® 

0;J;25» 0;27,9= 0;32,27= 0;40°'® 0;52,30=
where 4 right angles = 360° . 

So, since point A is negligibly different from centre K, and arc ZH© is 
negligibly greater than arc H© (for the whole earth  has the ratio of a p>oint to 
circle EZH©), in circle EZH© , the arc of the parallax 

0;1,25° for the sun’s distance 
0;27,9° for the moon’s first limit 
0;32,27° for the moon’s second limit 
0;40° for the moon’s third limit 
0;52,30° for the moon’s fourth limit.

Q .E.D.
In the same way we calculated the parallaxes for the other zenith distances (at 

interv’als of 6° up to the 90° of the quadrant) at each limit, and constructed a 
table to determine the parallaxes. T he table has, again, 45 lines, and 9 columns. 

H432 In the first column we put the 90 degrees of the quadran t, tabulating them, 
obviously, at two-degree interv’als; in the second column we put the minutes of 
solar parallax corresponding to each argum ent, in the third column the lunar 
parallax at the first limit; in the fourth column the increment in the [lunar] 
parallax at the second limit over the first limit: in the fifth column the [lunar] 
parallax at the third limit; and in the sixth the increment in the [lunar] parallax 
at the fourth limit over the third limit. Thus, for example, for an argum ent of 
30° we put 0;1,25° for the sun, then 0;27,9° for the fii-st limit of the moon; next 
0;5,18°, which is the increment of the second limit over the first; then 0;40°, for 
the third limit, and next 0; 12,30°, which is the increment of the fourth limit over 
the third.

We needed to provide a convenient method of calculating the parallax 
(corresponding to the appropriate argum ent) for distances [of the moon] at 
intermediate positions between apogee and perigee [of eccentre and epicycle] 
from the parallaxes tabulated at the above four limits, using minutes [of 
interpolation]. To this end we added the rem aining three columns, to account 

H433 for those differences. W e calculated these columns in the following manner.
Let [Fig. 5.14] the moon’s epicycle be ABGD on centre E, and let Z be the 

centre of the ecliptic and the earth. Jo in  [ZE with line] AEDZ, draw ZGB, join 
BE, GE, and drop perpendiculars on to AD, BH from B, and G© from G. Let us 
suppose, first, that arc AB, the moon’s distance from A, the true apogee [of the 
epicycle] as taken with respect to centre Z, is, e.g. 60°.

■ Z BEH -  where 4 right angles = 360°
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\  120°° where 2 right angles = 360°°.

“ From here on Ptolemy drastically rounds his computations for the moon’s third and fourth 
limits. His rationale, no doubt, is that in computing solar eclipses (for which the parallax table is 
principally designed) the moon is by definition near the apogee of the eccentre, and hence there is 
no use for the third and fourth limits. Cf. p. 264 n.73.

’“ Reading o (with D,Ar) for o o (0;40,0) at H431,4 and at H431.13.
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Z
Fig. 5.14

Therefore in the circle about right-angled triangle BEH
arc BH = 120®

and arc EH  = 60® (supplement).
Therefore the corresponding chords

B H =103;55M  . . . .  lonp
1 ,-TT r where diam eter EB = 120^.and EH  = 60^ J

But when centre E of the epicycle is at the apogee of the eccentre,
ZE.EB = 60 : 5;15.

Therefore, where EB = 5;15‘*,
BH = 4;33‘’
EH  = 2;38’’

and, by addition [of EH  to EZ], H E 2  = 62;38^
And ZB2 = ZH^ + HB2.

ZB = 62;48'*, where 
the distance of the first limit, ZA = 65;15'’ 
the distance of the second limit, ZD = 54;45’’ 
and  the difference between the two limits, AD = 10;30*’.
Therefore the difference at B with respect to the first limit is [65; 15 -  
62;48 =] 2;27'* where the total difference is 10;30‘*. Therefore where the total

H434



difference is 60**, the difference a t B will be 14;0*’. This [14;0], then, is the 
am ount which we shall enter in the seventh column on the line [corresponding 
to the argum ent] of half of the num ber 60, namely 30. T he reason for this is that 

H435 the 90 degrees comprised in the first column of the table contain half of the 180 
degrees from A to D.^‘

By the same reasoning, if we suppose arc G D to be the same size [as arc AB 
above], 60®, it will be shown that

and r a  = a-M '}
Hence, by subtraction [of E© from ZE], Z© = 57;22*’.̂ _____________
By thesam ereasoning[asabove],hypotenuseZG  = [\J51\22^ + 4;33^=] 57;33‘’. 
We again subtract this from the 65;15'* of the first limit, and find that the result,
7 ;42’’, is 44;0 sixtieths of the total difference. This is what we shall enter in the same 
[seventh] column opposite the argum ent 60, since arc ABO = 120°.

W ith the same arcs [AB and GD] as basis, let us suppose that centre E is at the 
perigee of the eccentre, which is the position defining the third and fourth limits. 
In this position

ZE:EB = 60:8.'2
Therefore where BE = S’”, and assuming both arc AB and arc GD as 60°, 

H436 BH = G 0  = 6;56’’ '
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and EH  = E© = 4:0'’ ' ZE _ 60 .
ZH = [ZE + EH =] 64” 

and Z 0  = [ZE -  EH  =] 56^ 
so, by the same reasoning [as above]

hypotenuse ZB = [V ZH ^ + BH^~ =] 64;23’’ 
and hypotenuse ZG = [ \ / Z 0 ‘ + G 0 ‘ =] 56;26’’, 

where the [distance oi] the third limit, ZA = 68’’, 
and the difference between the third and fourth limits, AD = 16'’.
And 68'* -  64:23’’ = 3;37’*, which is 13;33 sixtieths of the total difference, 16’’. 
W’e enter this am ount [ 13;33] in the eighth column opposite the argum ent 30, in 
the same way as before.

Also, 68’’ -  56:26’’ = 11:34’’, which is 43:24 sixtieths of the total difference, 
16’’. This am ount we enter, similarly, in the eighth column opposite the 
argument 60.

That, then, is the way we shall set out the corrections com puted for the 
motion of the moon on the epicycle. T he corrections for the motion ol the 
epicycle on the eccentre will be derived as follows.

H437 Let [Fig. 5.15] the moon’s eccentre be ABGD on centre E and diam eter AEG, 
on which Z is taken as the centre o f the ecliptic. Draw BZD, and let angles AZB 
and GZD both, again, be taken as 60°. These situations occur at elongations of 
30° (when the centre of the epicycle is at B), and 120° (when the centre of the 
epicycle is at D). Jo in  BE, ED, and drop perpendicular EH from E on to BZD.

’’The main part of Table V 18 (cols. 2 to 6) is a function of the zenith distance, which varies 
lietween 0“ and 90°. The interpolation columns 7 and 8, however, are a function of the anomaly a , 
which varies l>etween 0® and 180". In order to use the same argument column Ibr Iwth, Ptolemy 
tabulates cols. 7 and 8 as a function of ̂ a.

’■̂ Cf. V 7 p. 235.
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G
Fig. 5.15

Then, since Z BZA = 120°® where 2 right angles = 360°°,
in the circle aboiit right-angled triangle EZH, •

arc EH = 120°
and arc ZH = 60° (supplement).

Therelbre the corresponding chords
EH = 103:55'’ 1 , . ,onP
and HZ = 60" J  hypotenuse EZ = 1 2 r .

Therefore where the distance between the centres, EZ = 10;IQ** 
and the radius of the eccentre is 49;41'*,

EH = 8:56’’ 
and ZH = 5;10^.

And since BH^ = BE^ -  E H ^
BH = D H  = 48;53‘’ in the same units.

Therefore, by addition [ of ZH  to BH], ZB = 54;3‘’, 
and, by subtraction [of ZH  from DH], ZD = 43;43*’ 
where [the distance for] the first [two] limits, ZA = 60’’
[the distance for] last [two] limits, ZG = 39;22^ 

and the difference between them  = 20;38'’.
Now 60‘* -  54;3’’ = 5;57'’, which is 17 ;18 sixtieths of the total difference of 
20;38’’;
and 60’’ -  43;43'’ = 16; 17”, which is 47;21 sixtieths of the total difference of 
20;38‘’.
Therefore, obviously, we shall enter 17,18 in the ninth column opposite the 
argum ent 30° of elongation, and 47,21 opposite 120°, i.e. again opposite 60°; 
for, since the perigee [of the eccentre] lies a t 90° [of elongation], an elongation of 
60° is equivalent in distance to an elongation of 120°.

H438



H439 In the same way we calculated the minutes [of coefficient of interpolation] for 
the differences over the three intervals in question for the other arcs. W e 
performed the calculation at intervals of 12®, which corresponds to 6° in the 
arguments in the table, since the 180° from apogee [of the epicycle or eccentre] 
to perigee correspond to the 90° of [the zirgument column in] the table. We 
entered these minutes, calculated geometrically, opposite the appropriate 
argument. We derived the entries for the interm ediate argum ents by linear 
interpolation over the six-degree intervals: for the difference between the results 
so derived and [accurate] geometrical calculation is negligible over such a short 
inteival, both for the minutes and for the actual parallaxes.

The table is as follows.
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H442-3 18. [Parallax Table]'^^

[See p. 265.]

H444 19. {On the determination o f the parallaxes^*

So, when we decide to determ ine the am ount of the moon’s parallax at any 
given [lunar] position, (first) with respect to the great circle draw n through the 
moon and the zenith, we examine its distance (in equinoctial hours) from the 
meridian at the latitude in question. W'ith the distance found as argum ent, we 
enter the T able of Angles [II 13] for the appropriate latitude and zodiacal sign, 
and take the am ount in degrees in the second column corresponding to the 
hour, interpolating between integer hours if necessary.”  This gives us the 
distance of the moon from the zenith, measured along the great circle joining 
the two. W ith this as argument, we enter the Table of Parallaxes [V 18], 
determine on which line in the first column the argum ent is to be found, and 
taking the num bers corresponding to this in the four columns following the 
column of solar parallaxes, namely the third, fourth, fifth and sixth columns, 
write each one down separately. T hen  we take the corrected anom aly (i.e. with 
respect to the true apogee [of the epicycle]) at that moment: [if it is less than 

H445 180°,] we take the anom aly itself, but if it is greater than 180°, we take (360° 
minus anomaly); we always halve the am ount so obtained, and, entering with 
this into the same [colum n of] arguments, determ ine the num ber of minutes 
corresponding to it in both the seventh and eighth columns separately. We take 
the minutes found from the seventh column, multiply them  into the difference

” As Ptolemy says (pp. 260 and 264), the entries in this table are calculated at every 6° of 
arg;ument (i.e. eveiy third entiy), the intermediate valui-s Ijeing derived by linear inteipolation. 
Note that the values lor the third and fourth limits (cols. ^ and 6), though tabulated to 3 significant 
places, arc in fact calculated to only 2 places (for the reason see p. 260 n.69): the calculated values 
(for args. 6°, 12° etc.) always end in 0 or 30. They are therelbre rather inaccurate.

Correction to Heiberg: H443,41, entry in col. 9 for arg. 72°, read ve ko (with D,Ar) for ve na 
(55.41).

l\See HAMA  114-17. Pedei-sen 217-19.
’ Literally either in loin, or the amount proportional to the fraction of an hour'.
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PARALL.AX TABLE

265

1 2 3 4 5 6 r 8 c

Moon Moon Moon Moon Sixtieths Sixtieths
Parallaxes Difference Parallaxes Difference for for Sixtieths

Argu­ Sun’s at First at Second at Third at Fourth Epicycle Epicycle for
ments Parallaxes Limit Limit Limit Limit at Apogee at Perigee Eccentre

2 0 0 7 0 1 54 0 0 23 0 3 0 0 0 50 0 14 0 11 0 15
4 0 0 13 0 3 48 0 0 45 0 6 0 0 1 40 0  28 0 22 0 30
6 0 0 19 0 5 41 0 1 7 0 9 0 0 2 30 0 42 0 33 0 45

8 0 0 25 0 7 34 0 1 29 0 11 40 0 3 20 1 22 I 7 1 33
10 0 0 31 0 9 27 0 1 51 0 14 20 0 4 10 2 2 1 41 2 21
!2 0 0 37 0 !! !9 0 2 !2 n 17 0 0 5 0 2 42 2 15 3 9

14 0 0 42 0 13 10 0 2 33 0 19 40 0 5 50 3 35 3 13 4 22
16 0 0 48 0 15 0 0 2 54 0 22 20 0 6 40 4 28 4 11 5 35
18 0 0 53 0 16 49 0 3 15 0 25 0 0 7 30 5 21 5 9 5 48

20 0 0 58 0 18 36 0 3 36 0 27 40 0 8 20 6 39 6 25 8 25
22 0 1 4 0 20 22 0 3 57 0 30 20 0 9 10 7 57 7 41 10 2
24 0 1 9 0 22 6 0 4 18 0 33 0 0 10 0 9 15 8 57 11 39

26 0 1 14 0 23 49 0 4 39 0 35 20 0 10 50 10 50 10 29 13 32
28 0 1 20 0 25 30 0 4 59 0 37 40 0 11 40 12 25 12 1 15 25
30 0 1 25 0 27 9 0 5 18 0 40 0 0 12 30 14 0 13 33 17 18

32 0 1 30 0 28 46 0 5 37 0 42 20 0 13 20 15 52 15 22 19 23
34 0 1 35 0 30 21 0 5 55 0 44 40 0 14 10 17 44 17 11 21 28
36 0 1 40 0 31 54 0 6 13 0 47 0 0 15 0 19 36 19 0 23 33

38 0 1 44 0 33 24 0 6 30 0 49 0 0 15 40 21 36 20 59 25 40
40 0 1 49 0 34 51 0 6 47 0 51 0 0 16 20 23 36 22 58 27 47
42 0 1 54 0 36 14 0 7 4 0 53 0 0 17 0 25 36 24 57 29 54

44 0 1 58 0 37 37 0 7 20 0 55 0 0 17 40 27 40 27 1 32 0
46 0 2 3 0 38 57 0 7 35 0 57 0 0 18 20 29 44 29 5 34 6
48 0 2 8 0 40 14 0 7 49 0 59 0 0 19 0 31 48 31 9 36 12

50 0 2 12 0 41 28 0 8 3 1 0 40 0 19 40 33 52 33 14 38 9
52 0 2 16 0 42 39 0 8 16 1 2 20 0 20 20 35 56 35 19 40 6
54 0 2 20 0 43 45 0 8 29 1 4 0 0 21 0 38 0 37 24 42 3

56 0 2 23 0 44 48 0 8 42 1 5 20 0 21 20 40 0 39 24 43 49
58 0 2 26 0 45 48 0 8 53 1 6 40 0 21 40 42 0 41 24 45 35
60 0 2 29 0 46 46 0 9 3 1 8 0 0 22 0 44 0 43 24 47 21

62 0 2 32 0 47 40 11 ^ 9 13 1 9 20 0 22 20 45 50 45 13 48 49
64 0 2 34 0 48 30 ! 0 9 22 1 10 40 0 22 40 47 40 47 2 50 17
66 0 2 36 0 49 15 ' 0 9 31 1 12 0 0 23 0 49 30 48 51 51 45

68 0 2 38 0 49 57 0 9 39 1 13 0 0 23 10 50 56 50 24 52 57
70 0 2 40 ' 0 50 36 0 9 46 1 14 0 0 23 20 52 22 51 57 54 9
72 0 2 42 0 51 11 0 9 53 1 15 0 0 23 30 53 48 53 30 55 21

74 0 2 44 0 51 44 0 9 59 1 15 40 0 23 40 54 57 54 41 56 12
76 0 2 46 0 52 12 0 10 4 1 16 20 0 23 50 56 6 55 52 57 3
78 0 2 47 0 52 34 0 10 8 1 17 0 0 24 0 57 15 57 3 57 54

80 0 2 48 0 52 53 0 10 11 1 17 20 0 24 10 57 57 57 47 58 26
82 0 2 49 0 53 9 0 10 14 1 17 40 0 24 20 58 39 58 31 58 58
84 0 2 50 0 53 21 0 10 16 1 18 0 0 24 30 59 21 59 15 59 30

86 0 2 50 0 53 29 0 10 16 1 18 20 0 24 40 59 34 59 30 59 40
88 0 2 51 0 53 33 0 10 17 1 18 40 0 24 50 59 47 59 45 59 50
90 0 2 51 0 53 34 0 10 17 1 19 0 0 25 0 60 0 60 0 60 0



found from ihe Iburth column, and (always) add the result to the parallax from 
the third column. [Likewise] we take the minutes found from the eighth 
column, m ultiply them into the diil'erence found from the sixth column, and 
again (always) add the result to the parallax from the fifth column. Thus we 
have obtained two parallaxes; we take the diil'erence between these and write it 
down. Next we take the mean elongation of the moon from the sun, or else the 
mean elongation of the moon from the point opposite the [mean] sun, 
whichever of these two distances is the le s s e r ,a n d  entering with this too into 
the argum ents in the first column, take the minutes corresponding to it in the 
ninth and last column. We multiply these into the dillerence between the two 
parallaxes which we wrote down, and (always) add the result to the smaller 
(that is. the one derived from the third and fourth columns). This sum will give 
us the moon’s parallax as measured along the great circle through the moon and 
the zenith.

H446 The sun’s parallax lor a similar situation [i.e. as measured along an altitude 
circle] is immediately determined, in a simple fashion, (for solar eclipses), from 
the num ber in the second column corresponding to the size of the arc from the 
zenith [to the sun].”

Now, in order to determ ine the parallax with respect to the ecliptic, in both 
longitude and latitude, at the given time, we again enter, with the same dis­
tance of the moon from the m eridian in equinoctial hours [as l>efore], into the 
same part of the Table of Angles [II 13], and take the num ber of degrees 
corresponding to that hour, in the third column if the moon is to the east of the 
meridian, or in the Iburth column if it is to the west of the meridian. W e examine 
the result, and if it is less than 90° we write down the num ber itself; but if it is 
gi'eater than 90°, we write down its supplement, since that will be the size in 
degrees of the lesser of the two angles at the intersection [of ecliptic and altitude 
circle] in question. W e double the num ber written down, and enter with this 
[doubled] num ber, and also with its supplement, into the Table of Chords 
[I 11]. T he ratio of the chord of the doubled num ber to the chord of the 
supplement will give the ratio of the latitudinal parallax to the longitudinal 

H447 parallax (for circular arcs of such small size are not noticeably dilTerent from 
straight lines). So we multiply the am ounts of the chords in question by the 
parallax determ ined with respect to the altitude circle, and divide the products, 
each separately, by 120. The results of the division give us the separate 
components of the parallax. The following general rules apply.

For the latitudinal parallax, when the zenith is to the north of the point of the 
ecliptic then culminating, on the meridian, the [effect of the] parallax will be 
towards the south of it [the ecliptic]; but when the zenith is to the south of the 
culm inating point, [the effect of] the parallax in latitude will be towards the 
north.

For the longitudinal parallax: the angles tabulated in the Table [II 13] 
represent the northernm ost of the two angles cut off to the rear ofthe intersection

I.e. (sec HAM A  1 1 4 ) we take as argument n ' (which cannot exceed 90°). derived from the mean 
elongation ii according to the rules 0 <  n <  90: T| '= t i ; 9 0 < n <  1 8 0 : ti ' = 1 8 0 - i i ; 1 8 0 < i i < 2 7 0 :  
n '  = n  -  180 ; 2 7 0  <  n  ^  3 6 0 :  n '  = 3 6 0  -  n .

’’ For a parallax computation see Appendix A, Example 10.
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of ecliptic [and altitude circle].^® Therefore, when the latitudinal parallax is to 
the north, if the angle in question is greater than a right angle, the effect of the 
longitudinal parallax will be in advance [i.e. in reverse order] of the signs, but if 
the angle is less than a right angle, the effect will be towards the rear [i.e. in the 
order of the signs]. However, when the latitudinal parallax is to the south, the 
reverse will be true: if the angle in question is greater than  a right angle, the 
longitudinal parallax will loe towards the rear [i.e. in the order] of the signs, but H448 
if it is less than a right angle, the longitudinal parallax will be in advance.^®

O ur previous demonstrations concerning the sun proceeded on the assump­
tion that it has no perceptiljle parallax, though we are well aware that the 
parallax, which, as we subsequently showed, alTectsthe sun also, will makesome 
difference in them.®" However, we do not think that the resulting error in 
[predicting] the phenom ena will be of sufficient concern to necessitate changing 
any of the theorems constructed without taking such a small effect into, 
consideration. SimiJarJy, for lunar parallaxes, we considered it sufficient to use 
the arcs and angles formed l)y the great circle through the poles of the horizon 
[i.e. an altitude circle] a t the ecliptic, instead of those at the moon's inclined 
circle. For we saw that the difference which would result at syzygies in which 
eclipses occur is imperceptible, and to set out the latter would hav'e been 
complicated to dem onstrate and laborious to calculate; for the distance of the 
moon from the node is not fixed for a given position of the moon on the ecliptic, 
but undergoes multiple changes both in am ount and in relative position.

In order to make clear vv hat we mean, let [Fig. 5.16] ABG be a segment ofthe H449 
ecliptic, .AD a segment of the moon's inclined circle, point A the node, and D 
the centre ofthe moon. D raw  DB at right angles to the ecliptic. Let E be the pole 
of the horizon, and draw through E the great circle arcs EDZ through the 
moon’s centre, and EB through B. Let arc DH represent the moon's parallax, 
and through point H®‘ draw  H 0  at right angles to BD and H K  at right angles to 
BZ. Thus AB represents the true distance [of the moon] in longitude from the node, 
and AK the apparent distance, while BD represents the true distance in latitude 
from the ecliptic, and K H  the apparent. Furtherm ore an arc equal to 0 H  
represents the longitudinal component of parallax (with respect to the ecliptic) 
derived from DH, and an arc equal to D 0  represents the latitudinal component 
of parallax.

From  the preceding theorems, [we know that] parallax D H  can be found if H450 
arc ED is given, and both [components of] parallax, D© a n d 0 H , ifZ GZE is 
given. But what we determined previously was the arcs and angles formed at 
given points o f the ecliptic by the altitude circle; and  the only point on the 
ecliptic which is given in this situation is B. Hence it is clear that we are using arc 
EB instead of arc ED, and Z GBE instead of Z GZE.

'®Cf. II 10 p. 105.
” See the last part of Appendix A, Example 10.
“"I.e., nowhere in Bks. I l l  to \ '  were corrections made to the solar position to account loi‘ 

parallax, although in some cases it would theoretically make a di/l'erence (e.g. in obsei-vations made 
with the astrolabe in which both sun and moon were sighted, V 3).

*' Reading 8ict toC H (with Ar, 5ta to'u D) for Si ’ autoO at H449.16. Suggested by Heiberg and 
adopted by Manitius.
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H451

Now Hipparchus attem pted to correct this kind [of inaccuracy] too, but it is 
apparent that he attacked the problem in a ver>' careless and irrational way.®  ̂
For firstly, he does it for [just] a single value of the distance AD, instead of all 
[possible] values, or a num ber of values, as would have been appropriate in a 
situation where one has chosen to be nicely accurate about small [errors]. 
Furtherm ore, without realising it, he has fallen into a num ber ol'[even] stranger 
errors. Having also [like us] previously dem onstrated [the am ounts of) the arcs 
and angles with respect to [intersections ofaltitude circles with] the ecliptic, and 
shown that, if ED is given, D H  can be found (he shows this in Bk. I of his 'O n 
parallaxes’), in order to get ED as a given quantity , he assumes that arc EZ and 
Z EZG are given (in this way, in Bk. II, he calculates ZD and takes ED as 
rem ainder [of EZ-ZD]). However he was misled by his failure to notice that the 
given point of the ecliptic is not Z but B, and hence the given arc is not EZ, but
EB. and the given angle not EZG but EBG. Yet it is these [arc EZ andZ  EZG] 
which were the [necessary] starting-points for making even such a partial 
correction. For in many situations there is a  quite noticeable difference between 
the arc ED and the arc EZ,®  ̂w hereas the difference between BE (which really is

“•No one has given a satisfactor\- explanation of the procedure of Hipparchus which Ptolemy 
alludes to here. Pappus devotes a section of his commentar>- to it (Rome{l] I 151-5), but his 
reconstruction of Hipparchus’ method seems entirely fictitious (see HAM A  323-5); there arc errors 
in Rome's text and notes ad loc.

®̂ .At certain situations (cf Table II 13) the angle between altitude circle and ecliptic (Z EZA in 
Fig. 5.16) can lie close to 180°: then the angle betwen altitude circle and moon’s orbit (Z EDA) will 
also be close to 180°. and hence DZ will be a large arc. and the error of taking EZ for ED can be
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given) and ED is, at most, the am ount of the arc BD for any given distance [of 
the nnoon] I’rom the node.

T he logical procedure for m aking the correction by a [mathematically] 
sound method can be displayed as follows.

[First, see Fig. 5.17], let ABG be the ecliptic, and DEE at right angles to it. 
Let the moon be at either D or E, at a latitudinal distance from the ecliptic ABG 
which is a given arc, e.g. BD or BE. T hen  the zenith arcs and the angles are 
given at point B of the ecliptic, and the [corresponding arcs and angles] at D or 
E are to be found.

z
o

D

n B

E
Fig. 5.17

H452

Now if the position of the ecliptic is such that it is a t right angles to the great 
circle drawn through point Z (which we set as the pole of the horizon) and point 
B, i.e. ZB, it is obvious that this great circle will coincide with arc DE, and the 
angles at D and E will not differ from that given at B: for [arcs] drawn through 
these fKjints [from the zenith] are also at right angles to the ecliptic.

And ZD = ZB -  BD
ZE = ZB + BE, where both BD and BE are given.

[Second,] let the ecliptic *\BG coincide with the great circle through the 
zenith. Then if [see Fig. 5.18] we take A as the pole of the horizon and draw AD 
and AE, these [two arcs] will differ from arc AB, and angles BAD and BAE will 
differ from [the corresponding angle] in the previous cjise, which was zero.®^

H453

considerable, whereas the error of takins; EB for ED cannot exceed arc BD which (since Z DBA is 
right) cannot exceed the inclination ol'the moon’s orbit, 5°. After this I haveexciscd, at H451,12- 
13,5i6t Td JtoXu (laXXov feKeivwv auTOt  ̂ 5e5da6at, ‘because the former [ED] is even farther I'rom 
being given than the latter [EZ]’, as an interpolation which is a  (very lame) explanation of the 
preceding (in fact it is a consequence, not a cause). Heiberg’s punctuation of this passage makes it 
unintelligible; remove the stop after EZF (line 9) and insert a comma before JioJiXaxTi (line 10).

"^Literally ‘which did not exist’. The angle in question is Z BZD in Fig. 5.17.
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And AD and AE are given from the quantities AB and BD, BE (vve speak in 
terms of straight lines, since the din'erence [from arcs] is negligible), 

since AB~ + BD* = A D '
AB- + BE2 = AE.- 

And the angles BAD and BAE can thence be derived.
[Third,] let the ecliptic be inclined [to the altitude circle]. If [Fig. 5.19] vve 

take Z as pole of the horizon and draw  ZB, ZH D  and Z E 0 , arc ZB andZ  ABZ 
will be given, and so again, obviously, will be BD and BE. W hat we need to be 
given are arcs ZD and ZE, and angles AHZ, A 0Z . These too are given if 
pierpendiculars DK and EL are draw n to ZB.

H454 For since Z ABZ is given, and Z ABE is always a right angle, the right-angled 
triangles BKD and BLE are given, and so is the ratio of ZB to the sides 
containing the right angle, since [the ratio of ZB] to the hypotenuses DB and BE 
is given. Hence there will be given ZD, the hypotenuse [of right-angled triangle 
ZDK, of which sides ZK and K D  are given], and ZE, the hypotenuse [of right- 
angled triangle ZLE, of which sides ZL and LE are given], and also the angles 
DZK and EZL, which are the difl’erences from the required angles. For 

Z AHZ = Z ABZ + Z DZB 
and Z A 0 Z  = Z ABZ -  Z EZL.

It is clear that, for the same latitudinal distance, the greatest difference [with 
respect to the arcs and angles at B] will occur
[1] for the angles, when point B itself is the zenith. For if the angle [formed by 

the altitude circle through the moon] at B is zero, the [arcs] through D and 
E from the zenith form right angles with the ecliptic;
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[2] ibr the arcs
[a] in the same situation [i.e. when point B is in the zenith]. For when the 

arc [from the zenith] to B is zero, the arcs to D and E will be equal in size 
to the moon's latitude; also

[b] when the circle through the zenith is perpendicular to the ecliptic. For 
the difFerence between arc ZB and ZD or ZE will again l)e equal to the 
whole amount of the [lunar] latitude.

But in other situations, in which DE is inclined to ZB, the resultant 
dilFerences between the arcs and angles will l)e less. Thus, when the moon's 
distance in latitude IVom the ecliptic is 5°, the greatest diU'erence in the 
parallaxes [as computed at the ecliptic and at the m oon’s orbit] will Ije about 10 
minutes. For the 5°, representing the greatest difierence between the arcs, 
produces that num ber of minutes [when one enters Table V 18] at the least 
distance and the greatest diiference. But when the moon is at the maximum 
latitude which it can attain at a solar eclipse, which is about 1 the dill’erence 
between the parallaxes will be the same num ber, [i.e.] I5, of minutes. And this 
happens rarely.®^

H455

**’T o verily these ligures. take entries at 5° intei-val in Table V' 18. iising cols. 5 and 6 (whirh are 
chosen bcrausc they ^ive the maxinnum dillerence). The rateol'change is lastest near zero, hence: 
Ibr aiR. 0 .0  + 0 = 0; Ibrarg. 5°, 0;7,30+ 0:2,5 = 0:9,35 10'. For eclipses, which occur at conjunction, 
we have to take the \ alues from cols. 3 and 4. Here, lietween 0° and 13°, we find; 0 + 0 = 6,0 ; 1,25 + 
0;0,18 = 0;1,43 (which is closer to l i '  than H '). The maximum latitude oi'the moon at a solar eclipse 
is alx>ut 1 the sum ol the apparent radii oi'the Ijodies (each al)out 3°) and the maximum pai'aliax 
at conjunction (about 1®; see VI 6 p. 293). There is no reason to suspect an interpolation here, with 
.Vfanitius (p. 447): he has misunderstood the passage, notabiv mistranslatine; t 5 lo a  e^tiKOOTti. 
H455.15-16.
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A convenient method for making the above kind of correction of the angles 
and arcs, if anyone wants to make it when the [dillerences] involved are so small, 
would be as follows.

H456 As a general rule, we double the am ount of the angle [between altitude circle 
and ecliptic], and entering with this as argum ent into the Table of Chords take 
the chord corresponding to it, and also the chord corresponding to its 
supplement. We multiply both of the latter separately by the [moon’s] latitude, 
in degrees, divide each of the products by 120, and record the results 
[separately]. As for the result derived from the first angle, we subtract it from 
the relevant arc from the zenith [to the ecliptic] when the moon is on the same 
side [of the ecliptic] as the zenith, but add it when it is on the opposite side [of the 
cciiptic to the zeiiithj. 3Cj»jare the result, add that to the result denv'cd frGm 
the supplementary angle, also squared, and take the square root of the sum: this 
will give us the corresponding arc [ZE or ZD in Fig. 5.19] which is required.

Xe.xt we take the result which we recorded I’rom the [second,] supplementary 
angle, multiply it by 120. and divide the result by the arc we found [ZE or ZD]. 
With the resuiting [chord] we enter into the [body of the] Table of Chords 
[I 11], take the corresponding arc [in the column of argument], and halve it. If 
the corrected arc [ZE or ZD ] is greater than the original [ZB] we add the result 
to the amount of the original angle, but if [the coirected arc is] less [than the 
original], we subtract it: the result will lie the corrected angle.

H457 To give an e.xample, in the previous llgure [5.20] let arc ZB be 45°, 
Z .ABZ 30°. and both arc DB and arc BE 5° in latitude.

L

■G

Fig. 5.20



Now Crd (2 X 30)° = Crd 60° = 60^, 
and Crd (180 -  60)° = Crd 120® 104^

BL:LE = BK:DK*« = 60:104, where the hypotenuse [BE or BD] = 120**.
So we m ultiply each num ber by the 5° of the hypotenuse and divide by 120.

KB = BL = 2,-30° 
and DK = EL = 4;20°.

First let us suppose the moon to be at E:
so we subtract the 2;30° from the 45° of arc ZB, since the moon’s distance in 

latitude is in the same direction as the zenith (i.e. they are either both south or 
both north of the ecliptic).

Thus arc ZL = 42;30°.
Secondly, suppose the moon to be at point D. Then we add [2;30°] to the 45°, 

since the relative positions are reversed, and H458
ZK = 47;30°.

We form either Z L ' + E L ' = 42;30^ + 4;2Q2 
or ZK- + DK- = 47;3Q2 + 4;2Q2, 

and get either ZE 42:46° 
or Z D «47;44°.

W'e m ultiply 4;20 by 120 and divide by 42;46 and 47:44 separately.
Then EL*® 12;8‘’ where hypotenuse ZE = 120** 
and DK*=* lOg’’ where hypotenuse ZD = 120'*.

The arc corresponding to the chord 12;8’’ is about 11?° 
and the arc corresponding to the chord 10?’’ is about 10i°.
T aking half of these, we subtract /  EZL, [namely] 5?°, from Z ABZ, i.e. 30°, 
since arc ZE is less than arc ZB. H459

Thus Z A 0Z  = 24^ : 
and we add Z DZK, [namely] 5g°, to the same [Z ABZ, i.e.] 30°, 
since arc ZD is greater than arc ZB.

Thus Z AHZ = 35s°.
Such is the procedure which was required.®^
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“ Change the full stop after p6 at H457.7 to a comma.
“'A lthough one might expect that, as Neugebauer states {HAMA 116, which gives an incorrect 

account of Ptolemy’s procedure) that this method, which treats the large spherical triangles ZBD 
and ZBE as plane triangles, would lead to great inaccuracy, this is not so (as I have verified li\ 
taking the worst possible cases): the reason is that the bases of these triangles are small (BD and RE 
cannot exceed 5°, the maximum lunar latitude).





Book VI
1. {On conjunctions and oppositions o f sun and moonY H461

The next subject we have to treat concerns the syzygies of son and moon at 
which eclipses occur. The fu st topic of this, in turn, is the determ ination of the 
true conjunctions and oppositions. Now we do indeed think that the periodic 
and anomalistic motions which we have [already] established for each of the 
luminaries are sulllcient I’or the first detennination  of the above; for these 
[motions] enable one, il' he does not shrink from [the labour of) com paring the 
individual positions of the luminaries at every appropriate occasion,' to 
com pute the places and times of the resulting syzygies, both those taken with 
respect to the mean motions and the true syzygies, [i.e.] taking the 
anomaly into account. Nevertheless, in order to provide a more convenient way 
of iinding these [syzygies] too, by having set out in a readily available form the 
times and places of the mean conjunctions and oppositions, together with the 
position of the moon in anom aly and latitude at [these] mean times (which are 
the basis for the correction leading to the true syzygies and thence to the ecliptic 
syzygies), we constructed tables for this purpose. Their structure is as follows.

2. [Construction oj the tables o f mean H462

First, we want to begin the epoch of the [synodic] months, like all other ef>ochs, 
from the first yeai- of Nabonassar. So we divided the mean position [of the 
moon] in elongation at noon, Thoth  1̂  in the Egyptian calendar in that year, 
which we showed above [IV 8 p. 205] to be 70;37° by the m ean daily motion in 
elongation, and found 5:47,33**. Therefore the previous m ean conjunction 
preceded noon on Thoth 1 by that am ount. So the next [mean conjunction] 
occurred about [29;31,50 -  5;47;33 =] 23;44,17‘* after that noon, i.e. 0;44,17‘* 
after noon on the 24th.

In 23;44,17^

'O n  chs. 1 and 2 see HAMA  118-21, Pedersen 220-2.
■ I.e. at every s\ g\- (whereas PtoJem> 's tables \ '1 3 enable one to pick out the syzygies at which 

eclipses are possible with much less labour).
^H eie (H462,5) and elsewhere in this chapter (H462,9 and 16; H463.3) most Greek mss. anet 

Pappus' commentary give veonTivia (literally ‘new moon’) to express this date. As M anitius notes 
(338 n. d), the word is appropriate for the first day of the month in Greek luni-solar calendars, but 
not in the Egyptian calendar, Ahere the months bear no relationship to the phases of the moon. In 
all but the last of these places D has d  (‘1’), which may well have been Ptolemy’s designation.



mezin motion of’ the sun = 23;23,50° 
mean motion of' the moon in anom aly = 310;8,15° 
mean motion of the moon in latitude = 314;2,21°.

And the mean pjositions a t noon on T hoth  1 were: 
longitude of sun: X  0;45°
distance of sun from its ap>ogee (this is convenient to have): 265; 15° 
anomaly of moon, counted from the apogee of the epicycle: 268;49°

H463 [argum ent of] latitude of moon, counted from the northern limit on [the 
moon’s] inclined circle: 354; 15°.

Therefore, at the above-mentioned mom ent of the [first] mean conjunction 
after the first day [of Thoth],

the distance of the sun and moon in m ean longitude from the sun’s apogee, 
namely I I  5;30% was 288;38,50“
the distance of the moon in anom aly from the apogee [of the epicycle] was 
218:57,15°
the distance of the moon in latitude from the northern limit was 308; 17,21 
So we will set out, first, a table of conjunctions, containing, again, 45 lines, 

and 5 columns. O n the first line we will put, in the first column, year 1 of 
Nabonassar; in the second column, the days ofThoth . 24:44,17 (for the sixtieths 
[of a day] are after noon on the 24th);^ in the third column the distance 
from the sun’s apKJgee of the mean p>osition [of sun and moon], 288:38,50°; in 
the fourth column the m oon’s distance in anom aly from the apogee [of the 
epicycle], 218:57,15°; and in the fifth column the [m oon’s] distance in 
[argum ent of] latitude from the northern limit. 308:17,21°.

Now half a mean [synodic] m onth comprises approxim ately 14;45,55‘̂ , 
14;33,12° of solar [mean] motion, 192;54,30° of lunar anom aly, and 195;20,6° of 
[argum ent of] latitude; we subtract the above am ounts from the [corresponding 

H464 positions] for the conjunction in question, and  put the results, arranged in the 
same way as bef ore, at the beginning of the second table, which has a structure 
similar [to the first], but will serve for the oppositions.
The entries are;
days: 9;58,22^
distance from the sun’s ap>ogee; 274;5,38°
distance in anomaly from the moon’s apogee; 26;2,45°
distance in latitude from the northern limit: 112;57,15°.

Now 25 Egyptian years less 0;2,47,5‘* contain approxim ately an integer 
num ber of [mean synodic] months;^ and  [in 25 years] the mean motions 
(beyond complete revolutions) are:
sun: 353;52,34,13°
moon, anomaly: 57;21,44,1°
moon, latitude: 117; 12,49,54°.

^Although ihe conjunction is only 23;44,1T‘ after epoch, Ptolemy tabulates 24;44,17, i.e. he is 
hei e using inclusive reckoning for dates. The convenience of this to the user became so obvious that 
in his Handy Tables he adopted it generally.

^The relationship 25 Eg>'ptian years ** 309 synodic months was probably known in Egy'pt long 
before Ptolemy. For an example ofits use in Egypt, and the reasons for dating its origin to the fourth 
century B.C.. see HAMA  II 563-64. 309 x 29;31,50,8,20'' = 2,32,4;57,12,55, which is exactly (not 
approximately, as Ptolemy implies) 0;2,47,5" short of 25 x 365 = 2.32,5“.
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So we wiii increase [each iine in succession ol] the first columns of the two 
tables by 25 years, and decrease [those of] the second columns by 0;2,47,5, and 
increase [those of] the rem aining columns, the third by 353;52,34,13°, the 
fourth by 57;21,44,1°, and the fifth by 117; 12,49,54°.

Foliowing inis we construct a table of years, in 24 lines, and then beneath it 
another table, of months, in 12 lines, each having the same num ber of columns 
as the first [two tables]. In the table for m onths we will enter on the first line, in 
the first column, the first month; in the second column, the days in one [synodic] 
m onth, 29;31,50,8,20; in the third column, the [mean] motion of the sun during H465 
that period, 29;6,23,1°; in the fourth column, the motion of the moon in 
anom aly [in one synodic month], 25;49,0,8°; and in the fifth, the motion in 
[argum ent of] latitude. 30:40.14.9®. The [line to line] increments in this table 
will be the same as the entries in the first line.

In the table for years we will enter on the first line, in the first column, year 1; 
in the second column, the num ber of days [beyond 365] contained in 13 synodic 
months. 18:53.51.48;® in the third column, the increm ent in sun’s motion 
during that period, 18;22,59,I8°; in the fourth column, the moon’s motion in 
anomaly, 335;37,1,51°; and in the fifth column, the motion in latitude, 
38:43,3.51°. The [line to line] increments in this table will sometimes be the 
above 13-month increments, and a t other times the 12-month increments. The 
latter come to:

days: , 354;22,1,40*'
sun’s [mean] motion: 349:16.36.16°
moon’s anomalistic motion: 309:48,1,42°
moon’s latitudinal motion: 8;2,49,42°.

This [alternation between 12- and 13-month intervals] is in order that what 
appears in the table will be the first syzyg\' in each integer Eg>'ptian year.^

In the actual tabular entries it will be sufficient to go only as far as the second 
sexagesimal [fractional] place. The layout of the tables is as follows.

3. [Tables o f conjunctions and oppositions}'^ H466-71

[See pp. 278-80.]

4. [How to determine the mean and true H472

So when we want to find the mean syzygies for any given year, we calculate the 
num ber of the year in question in the era N abonassar.‘“ Then we determine 
w hat com bination of 25-year periods (taken from the first or second table, as the

“Reading TO for (18;53,52,48) a t H465,10, with D,Ar. Corrected by Manitius.
' For an explanation of how this principle works for the choice of 12- or 13-month increment see 

HAMA  120.
* As Ptolemy says, these tables arc computed to 3 sexagesimal fractional places, but rounded to 2 

in the actual tabulation.
The cclipse limits on p. 280 arc those derived later, VI 5 pp. 286-7.

»See H AM A  121-4, Pedersen 223-6.
'* I.e. we enter with the current year. Cf. p. 276 n.4.
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278 V I 3. Table o f  conjunctions o f  sun and moon

TABLE O F  CO N JU N C TIO N S

1 2 3 4 5
Distance of Anomaly of Latitude
Sun from Moon from from Northern
its Apogee Epicyclic Limit

25-vcar Davs of Apogee
periods Thoth O f ff O / // O t n

1 24 44 17 288 38 50 218 57 15 308 17 21
26 24 41 30 282 31 24 276 18 59 65 30 11
51 24 38 43 276 23 58 333 40 43 182 43 1

76 24 35 56 270 16 33 31 2 27 299 55 51
101 24 33 9 264 9 7 88 24 11 57 8 41
126 24 30 22 258 1 41 145 45 55 174 21 31

151 24 27 35 251 34 15 203 7 39 291 34 20
176 24 24 47 245 46 50 260 29 23 48 47 10
201 24 22 0 239 39 24 317 51 7 166 0 0

226 24 19 13 233 31 58 15 12 51 283 12 50
251 24 16 26 227 24 32 72 34 35 40 25 40
276 24 13 39 221 17 6 129 56 19 157 38 30

;501 24 10 52 215 9 41 187 18 3 274 31 20
326 24 8 5 209 2 15 244 39 47 32 4 U)
351 24 5 IB 202 54 49 302 1 31 149 17 0

376 24 2 31 196 47 23 359 23 15 266 29 30
401 23 59 44 190 39 57 56 44 39 23 42 39
426 23 56 57 184 32 32 114 6 43 140 33 29

451 23 54 10 178 25 6 171 28 27 258 8 19
476 23 51 22 172 17 40 228 30 11 15 21 9
501 23 48 35 1(36 10 14 286 11 55 132 33 59

526 23 45 48 160 2 49 343 33 39 249 46 49
551 23 43 1 153 55 23 40 55 23 6 39 39
576 23 40 14 147 47 57 98 17 7 124 12 29

601 23 ,37 27 141 40 31 155 38 5! 241 25 19
626 23 34 40 135 33 5 213 0 35 358 38 9
651 23 31 53 129 25 40 270 22 19 115 50 38

676 23 29 6 123 18 14 327 44 3 233 3 48
701 23 26 19 117 10 48 25 5 47 350 16 38
726 23 23 32 111 3 22 82 27 31 107 29 28

751 23 20 45 104 55 57 139 49 16 224 42 18
776 23 17 57 98 48 31 197 11 0 341 55 8
801 23 15 10 92 41 5 254 32 44 99 7 58

826 23 12 23 86 33 39 311 54 28 216 20 48
851 23 9 36 80 26 13 9 16 12 333 33 38
876 23 fi 49 74 18 48 66 37 56 90 46 28

901 23 4 2 68 11 22 123 59 40 207 59 17
926 23 1 15 62 3 5<> 18! 21 24 325 12 7
951 22 58 28 55 56 30 238 43 8 82 24 57

976 22 55 41 49 49 4 296 4 52 199 37 47
leoi 22 52 54 43 41 39 353 26 36 316 50 37
1026 22 .50 7 37 34 13 50 48 20 74 3 27

1051 22 47 20 31 26 47 108 10 4 191 16 17
1076 22 44 32 25 19 21 165 31 48 308 2!) 7
1101 22 41 45 19 11 56 222 53 32 41 57



V I 3. Table of oppositions of sun and moon 

TABLE O F O PPO SITIO N S

279

1 2 3 4 5
Distance oi' Anomaly of Latitude
Sun Irom Moon I'ram I'rom Northern
its Apogee Epicyclic Limit

25-year Days ol' Apogee
periods Thoth O / // O f ff O f

1 9 58 22 274 5 38 26 2 45 112 57 15
26 9 55 35 267 58 12 83 24 29 230 10 5
51 9 52 48 261 50 46 140 46 13 347 22 55

76 9 50 i 255 43 21 198 7 57 104 35 45
101 9 47 14 249 35 55 255 29 41 221 48 35
126 9 44 27 243 28 29 312 51 25 339 1 25

151 9 41 40 237 21 3 10 13 9 96 14 14
176 9 38 52 231 13 38 67 34 53 213 27 4
201 9 36 5 225 6 12 124 56 37 330 39 54

226 9 33 18 218 58 46 182 18 21 87 52 44
251 9 30 31 212 51 20 239 40 5 205 5 34
276 9 27 44 206 43 54 297 1 49 322 18 24

301 9 24 57 200 36 29 354 23 33 79 31 14
326 9 22 10 194 29 3 51 45 17 1% 44 4
351 9 19 23 188 21 37 109 7 1 313 56 54

376 9 16 36 182 14 11 166 28 45 71 9 44
401 9 13 49 176 6 45 223 50 29 188 22 33
426 9 1 1 2 169 59 20 281 12 13 305 35 23

451 9 8 15 163 51 54 338 33 37 62 48 13
476 9 5 27 157 44 28 35 55 41 180 1 3
.501 9 2 40 151 37 2 93 17 25 297 13 53

526 8 59 53 145 29 37 150 39 9 54 26 43
551 8 57 6 139 22 11 208 0 53 171 39 33
576 8 54 19 133 14 45 265 22 37 288 52 23

601 8 51 32 127 7 19 322 44 21 46 5 13
626 8 48 45 120 59 53 20 6 5 163 18 3
651 8 45 58 114 52 28 77 27 49 280 30 52

676 8 43 11 108 45 2 134 49 33 37 43 42
701 8 40 24 102 37 36 192 11 17 154 56 32
726 8 37 37 96 30 10 249 33 1 272 9 22

75 J 8 34 50 90 22 45 306 54 45 29 22 12
776 8 32 2 84 15 19 4 16 29 146 35 2
801 8 29 15 78 7 53 61 38 14 263 47 52

826 8 26 28 72 0 27 118 59 58 21 0 42 '
851 8 23 41 65 53 1 176 21 42 138 13 32
876 8 20 54 59 45 36 233 43 26 255 26 22

901 8 18 7 53 38 10 291 5 10 12 39 11
926 8 15 20 47 30 44 348 26 54 129 52 1
951 8 12 33 41 23 18 45 48 38 247 4 51

976 8 9 46 35 15 52 103 10 22 4 17 41
1001 8 6 59 29 8 27 160 32 6 121 30 31
1026 8 4 12 23 1 1 217 53 50 238 43 21

1051 8 1 25 16 53 35 275 15 34 355 56 11
1076 7 58 37 10 46 9 332 37 18 113 9 1
1101 7 55 50 4 38 44 29 59 2 230 21 51
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YEARLY [AND M ONTHLY] IN CREM EN TS lor CO N JU N C TIO N  and O PPO SITIO N

1

Single
yeai-s

2

Days

3
Sun i'rom 
Apogee

! 0 / /r

4
[M oon’s]
Anomaly

5

Latitude

1 18 53 52 18 22 59 335 37 2 38 43 4
2 8 15 53 7 39 36 285 25 4 46 45 54
3 27 9 45 26 2 35 261 2 5 85 28 57

4 16 31 47 15 19 11 210 50 7 93 31 47
5 5 53 49 4 35 47 160 38 9 101 34 37
6 24 47 40 22 58 47 136 15 11 140 17 41

7 14 9 42 12 15 23 86 3 12 148 20 30
8 3 31 44 1 31 59 35 51 14 156 23 20
9 22 25 36 19 54 59 11 28 16 195 6 24

10 11 47 37 9 11 35 321 16 18 203 9 14
11 1 9 39 358 28 11 271 4 19 211 12 3
12 20 3 31 16 51 10 246 41 21 249 55 7

13 9 25 32 6 7 47 196 29 23 i 257 57 57
14 28 19 24 24 30 46 172 6 25 296 41 1
15 17 41 26 13 47 22 121 54 26 304 43 50

16 7 3 28 3 3 59 71 42 28 312 46 40
17 25 57 19 21 26 58 47 19 30 351 29 44
18 15 19 21 10 43 34 357 7 32 359 32 34

19 4 41 23 0 0 10 306 55 33 7 35 23
20 23 35 14 18 23 10 1 282 32 35 46 18 27
21 12 57 i6 7 39 46 232 20 37 54 2! 17

22 2 19 18 356 56 22 182 8 39 62 24 7
23 21 13 10 15 19 22 157 45 41 101 7 10
24 10 35 11 4 35 58 107 33 42 109 10 0

[ECLIPSE] LIM ITS OF SUN IN M E .\N  [LATITUDINAL] M OTION:
Irom 69:19° lo 101:22° and Irom 258:38° lo 290:41°

[ECLIPSE] LIM ITS O F M O ON IN MEAN [LATITUDINAL] MOTION;
liom 74:48° to 105:12° and from 254:48° to 285:12°

Sun Irom [Moon's]
Months Days Apot(ce Anomaly Latitude

1 29 31 50 29 6 23 25 49 0 30 40 14
2 59 3 40 58 12 46 51 38 0 61 20 28
3 88 35 30 87 19 9 77 27 0 92 0 42

4 118 7 21 116 25 32 103 16 1 122 40 57
5 147 39 11 145 31 55 129 5 1 153 21 11
6 177 11 1 174 38 18 1 154 54 I 184 1 25

7 206 42 51 203 44 41 180 43 1 214 41 39
8 236 14 41 232 51 4 206 32 I 245 21 53
9 265 46 31 261 57 27 232 21 1 276 2 7

10 295 18 21 291 3 50 258 10 1 306 42 21
11 324 50 12 • 320 10 13 283 59 2 337 22 36
12 354 22 2 349 16 36 309 48 2 8 2 50



case may be [i.e. for conjunction or opposition]) and single years (taken from the 
third table) adds up to that num ber of years, take the entries corresponding to 
those lines [m the table], and add the entries from [each] successive column 
separately: for conjunctions we add the entries from the first and third tables, 
and likewise for oppositions we add the entries from the second and third tables.
T he sum derived from the entries in the second colum n will give us the moment 
of syzygy, counted from the beginning of tha t year; e.g., ifthesum  is24;44‘‘, [the 
syzygy will be] 44 sixtieths of a day after noon on T ho th  24; or, again, if it is 
34; 44**, it will be 44 sixtieths of a day after noon on Phaophi 4. T he sum derived 
from the entries in the third column will give us the [mean] position o f the sun 
in degrees counted from the apogee; the fourth column, the anomaly of the 
m oon counted from the apogee [of the epicycle]; the fifth column, the 
[argum ent of] latitude counted from the northern limit. A t the same time we H473 
can readily calculate the subsequent [syzygies of the year in question], either all, 
or some, as we choose, in logical fsishion, by adding the appropriate entries in 
the fourth, monthly table. For practical purposes we will always convert the 
time measurements from sixtieths of a day into equinoctial hours. However, the 
time in hours resulting from the addition [of the entries] will be expressed in 
mean solar days, whereas the time expressed in seasonal hours is not always 
identical with that, but is based on true solar days. So we will correct this too, by 
calculating the difference due to this efiect, by the m ethod indicated above: if 
the am ount of time-degrees corresp>onding to [the rising-time of] the apparent 
m otion is greater [than the interval in mean motion], we subtract the difference 
from the total [of hours] derived on the basis of m ean solar days, but if it is less, 
we add  it to that to ta l."

O nce we have deriv'ed, by the above procedure, the time of mean 
conjunction or opposition, and the position of each Ium inar\' in anomaly at that 
time, it will be easy to determ ine the time and place of the true syzygy, and also 
the moon’s p>osition in latitude, by com paring the anomalies of the two bodies.
For by applying each anomaly in turn, we calculate the true pxjsition of sun, moon 
and m oon’s latitude, at the mom ent defined by the m ean syzygy in question, by 
means of the equation thus found, and examine these positions. If we find that 
the bodies are still a t the same longitude [for conjunction], o r exactly opposite 
[for opposition], then the time of true syzygy will be the same [as that of mean H474 
syzygy]. If not, we take the difference between the bodies in longitude, 
expressed in degrees, and increase it by a twelfth part of itself,'^ to account 
approxim ately for the additional motion of the sun [between mean and true 
syzygy]. We then determine how long, in equinoctial houi-s, the moon in its 
anomalistic [i.e. true] motion, takes to cover that interval. If the tnie longitude

"  Ptolemy here echoes III 9 p. 171. There he expressed the rule in the form necessary for going 
Irom true to mean time. Here the case (and the rule) are reversed.

This i-ule is justified by a particular example at V I5 (p. 286); where Ptolemy, assuming the moon 
to move 13 times as fast as the sun, calculates that the extra distance required isT*J + r!rxi*j**i^ 
of the original. Hence Pedersen (224) assumes that Ptolemy found by summing the convergent ■ 
scries t*5 +  ( l l s ) '  +  .  . . Although the passage VI 5 supports him, one can also derive it 
without summing a series, as follows: if the moon starting from pomt A and the sun starting from 
point B meet at point C, euid the moon’s speed is 13 times the sun’s, then AC = 13BC, hence AB (the 
original distance between them) is 12 times BC (the extra distance travelled).
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of the moon [at mean syzygyj is less than the true longitude of the sun, we add 
the result to the time of mean syzygy, but if it [the moon’s longitude] is greater, 
we subtract the result Irom the time of mean syzygy. Similarly, if the true 
longitude of the moon at mean syzygy is less than the sun’s [true longitude], we 
add the interval in degrees (increased, again, by a twelfth) to both the longitude 
and the argum ent of latitude [at m ean syzygy], but if it is gi'eater we subtract it 
[from both]. Thus we get the time of true syzygy, and the approxim ate true 
position of the moon on its inclined circle. ‘ ’

The m ethod of finding the moon’s true hourly m otion at the syzygy for any 
given position is as follows. We enter the table of the moon’s anomaly [IV 10] 
with the anomaly at the moment in question, take the corresponding equation, 
and then determ ine the size of the increment in the equation [at that point] 

H475 corresponding to an increment of 1 degree in anomaly. W e multiply this incre­
ment by the mean motion in anom aly in 1 hour, 0;32,40°,‘  ̂and, if the anomaly 
[with which wo entered the table] as argum ent is in the lines above the greatest 
equation, we subtract the product from the mean hourly motion in longitude, 
0;32,56°, but if [the anom aly] is in the lines below [the greatest equation], we 
add the product to 0;32,56°. The result will be the moon’s ti-ue motion in 
longitude in one equinoctial hour at that p>osition.

iNow the above procedure will give us the tim e of true syzyg\- at Alexandria, 
since all epochs have been delined in terms of time as expressed in hours [i.e. 
counted from noon] with respect to the m eridian through Alexandria. But it is 
easy to lind the time of a given syzyg>' for any place whatever from the time of 
that syzygy at Alexandria. From the dill'erence in position between the two 
places, we determ ine the interval, in degrees, between the meridian through the 
place required and the meridian through Alexandria. If the meridian through 
the required place is to the east of the m eridian through Alexandria, the 
phenom enon will appear to be observ'ed there that am ount (in lime-degrees) 
later, but if it is to the west, that am ount earlier. (Obviously, as always, 15 time- 
degrees represent 1 equinoctial hour.)
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H476 5. {On the ecliptic limits o f sun and moonY^

Now that we have explained the above methods, it would be appropriate to 
follow up with the considerations pertinent to the ecliptic limits lor both solar 
and lunar eclipses. The purpose of this is that if we decide to compute, not all

'^For a year’s scries of computed mean and true oppositions see H AM A  121, 123-4. See ako 
Appendix A, Examples 11 and 12.

Reading o (I lo ro  ^ p o  (0;32.40.0) at H475.2.and sim ilarlyo>iP^ IbroX ^v^o (0;32.56,0) 
at H475,5-d. Supported by D,Ar.

‘^For a justification of this rule see Pedersen 226. He objects that it is approximately valid only if 
the lunar deferent has no eccentricity, i.e. if one uses the simple hypothesis of Bk. IV. But Ptolemy 
advocates its use only ‘at the syzygy’, and he has already shown that there is no significant dillerence 
between the two hypotheses at syzygy (V 10).

“ Omitting the clausc (H475,15-17) 5o0ivTO  ̂tow kot’ auxTjv TtXTidovx; tS v lcn (̂i£pivo>vd>pwv 
TTiq dno Tou êoT)}xPpivou dJtoxriq (‘once we are given the distance of it [the syzygy J from the 
meridian, expressed in equinoctial hours’), a clumsy and confusing interf>olation found in all mss.

HAM A  125-9, Pedersen 227-30.



mean syzygies [in a given year], but just those which could tall into the category 
concerning eclipse prognostications/® we may have a handy method of 
deciding which these are from the entiy  for the moon’s m ean position in latitude 
at each m ean syzygy.

Now in the preceding book [V 14, p. 254] we have shown that the moon’s 
diam eter subtends an arc which is 0;31,20° of the great circle draw n about the 
centre of the ecliptic at the moon’s greatest distance. W e calculated this by 
means of two eclipses which occurred near the apogee of the m oon’s epicycle. So 
now too, when we propose to determine the m axim um  limits of ecliptic syzygies 
(which limits are determined by the position of the moon at the perigee of the 
epicycle), we shall, in this situation too, dem onstrate in the same way the size of 
the arc subtended by the moon’s diameter, by means of two eclipses [this time] 
from am ong those which have been observ ed near the perigee [of the epicycle].
For it is safer to dem onstrate this kind of param eter from the actual phenomena.

In the seventh year of Philometor, which is the 574th from Nabonassar, on H477 
Pham enoth [VII] 27/ 28 in the Egyptian calendar [-173 M ay O /I], from the 
beginning of the eighth hour till the end of the tenth in A lexandria, there was an 
eclipse of the moon which reachcd a maximum obscuration of 7 digits from the 
north. So mid-eclipse occurred 2 i seasonal hours after midnight, which 
corresponds to 2  ̂ equinoctial hours, since the true position of the sun was
8 65°.** And the time from epoch to mid-eclipse is

, J 14{ equinoctial hours reckoned simplv 
5 / i  E g \p tian  years 206 davs i  . . . .  , , .  ,' 1̂ 14 equinoctial hours reckoned in mean solar

days.
At this moment the position of the centre of the moon was as follows: 

mean longitude: nt 7;49°
true longitude: 6; 16°^°
distance [in anomaly] from the apogee ot the epicycle: 163;40° 
distance from the northern limit on the inclined circle; 98;20°.
Hence it is clear that when the moon’s centre is 8;20° from the node 

(measured along the inclined circle), while the moon is near its least distance [at 
syzygy], and the centre of the shadow is on the great circle draw n through the 
moon’s centre at right angles to the inclined circle (which is the position of

'"T he word used here, ^7TiaTi(iaoiai. means ‘prognostication [concerning weather]’ or 
'sifi^ilicance in prognostication' at H Il 5i04, / and HI 536,21: 537,8; 540,7. This is a traditional 
meaning (e.g. Ptolemy, Phaseis, Op. Alin. 11,4: 20,5), also applying to the verb ̂ nioimaivEiv (ibid.
31,10; cf. Apolrlfsmalica II 14, ed. Boll-Boer 100,17). I therefore assume that meaning wherever it 
oixui-s in the Almagest, except in the phrase ̂ Tnarmaotaq a ^ ia i jioXek;, H I 188,3, where it means 
merely desei-v ing note’. There is a good discussion of fejrtOTinaiveiv and related terms in Pfeiffer,
SUidien zum aniiken Sternglauben 84-93.

‘^Reading S 'S ' fo r^  5 (6;4°) at H477,10. The reading is assured by computation (X0  = b 
16; 13,25°) and by the position of the true moon just below. 6 i is the reading of AD, Ar and probably 
all mss. (i.e. the error is Heiberg’s). Corrected by Manitius.

^"This implies an equation o f-l;3 3 ° , which agrees fairly well with that derived from an anomaly 
of 163;40° (below : accurate would be -1;32°), if one uses the simple lunar hypothesis. However, if 
one computes with the full accuracy of the tables V 9, one finds X j  = 216;23° (for at true syzygy 2f\_
** 5i°, which produces a changc in a  of +50', and hence a decrease in the equation o f4 ' (precisely the 
maximum amount by which, according to E*tolemy in V 10 p. 243, the full hypothesis can differ 
from the sunple at syzygy). i'hic also affects the moon’s position on its orbit, which should be 8;22"
(rather than 8;20°) from the node.
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greatest obscuration), (i + n )th  of the moon’s diam eter is immersed in the 
shadow.^’

Again, in the thirty-seventh year of the Third  Kallippic Cycle, which is the 
H478 507th Irom Nabonassar, Tybi [V] 2 /3  in the Egyptian calendar [-140 Jan . 

27/28], at the beginning of the fifth hour [of night] in Rhodes, the moon began 
to be eclipsed; the maximum obscuration was 3 digits from the south.

Here, then, the beginning ol the eclipse was 2 seasonal hours before midnight, 
which corresponds to 2j equinoctial hours in Rhodes and in Alexandria, since 
the ti-ue position of the sun w a s ^  5;8°. And mid-eclipse, at which the greatest 
obscuration occurred, was about U  equinoctial houi^s before midnight. The 
time irom epoch to mid-eclipse is
606 Egyptian years 121 days lOg equinoctial hours, whether reckoned simply or
I k. J  —

At this moment the position of the centre of the moon was as follows: 
mean longitude: ^  5; 16®
true longitude; ^  5;8°^^
distance [in anomaly] from the apogee o l'the epicycle: 178;46° 
distance from the northern lim it on the inclined circle: 280;36°.

Hence it is clear that when the moon’s centre is 10:36° (measured along the 
inclined circle) from the node, while the moon is (as be(bre) near the least 
distance, and the centre of the shadow is at the intersection of the ecliptic and 
the great circle drawn through the m oon’s centre at right angles to the [moon's] 
inclined circle, then a quarter of the moon’s diam eter will be immersed in the 
shadow .'’

H479 But-^ when the moon’s centre is 83° from the node on its inclined circle, it is 
43is ', measured along the great circle draw n through the poles of the inclined 
circle, from the ecliptic; and when it is IO5® from the node on its inclined circle, 
it is 54g', measured along the great circle drawn through the poles of the 
inclined circle, from the ecliptic. Now the difference [in m agnitude] between 
the two eclipses comprises ird  of the m oon’s diam eter, and the difl'erence in the 
above two distances of its centre, measured along the same great circle, from the 
same point of the ecliptic (i.e. the centre of the shadow) is 0; 11,47°. So it is clear 
that the whole diam eter of the moon subtends an  arc of about 0;35,20° of the 
great circle drawn on the centre of the ecliptic at the m oon’s least distance [at
syzygy]-

Furtherm ore, in the second eclipse, in which i of the moon’s diam eter was

Oppolzcr no 1587: mid-eclipse 23;44*' (*“ l ;45 a.m. Alexandria, which is ver> closc to the time 
of true conjunction one finds from Ptolemy tables), magnitude 7.4 digits.

.Again (of. p. 283 n.20) the equation implied, ~0:8°, agrees well enough with that derived from 
the anomaly of 178;46° according to the simple hypothesis, but application of the full hypothesis 
produces a significant diffcrcnce in the true longitude of the moon (H  5; 13°) and its position on the 
orbit (10;42° from the node instead of 10;36°).

That this eclipse was observed by Hipparchus, as one would expect from the date and place, is 
confirmed at V I 9 (p. 309). It is Oppolzer no. 1638: time 20;l‘’ (*• 10 p.m. Alexandria),magnitude 
3.2^, half-duration 58 mins. Ptolemy assumes 30 mins., which is only about half of what he would 
derive from his own eclipse tables, VI 8. T he difllculties associated with the observation and 
reduction of this eclipse have been much discussed: see Fotheringham [3] 579, with references to 
older literature, and Britton [1 ] 94.

-^For the following calculations see HAMA  105-8, and cf. p. 254 n.61.
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obscured, the moon’s centre was 54?' from the centre of'the shadow and i of the 
moon’s diam eter (i.e. 8^') from the point at which the line joining the centres [of H480 
moon and shadow] iniersecis the perim eter of the shadow. Hence it is 
immediately obvious that, by subtraction, the radius of the shadow at the 
m oon’s least distance is 46'. This is negligibly greater than 2? times the moon’s 
radius, which is 17!'. Moreover, the sun’s radius subtends 0; 15,40® ol the great 
circle draw n through the sun about the centre of the ecliptic. For, as we 
dem onstrated [V 14], the sun covers the same am ount of its circle [i.e. subtends 
the same angle] as the moon does when it is at its greatest distance at syzygy. 
Therefore, when the apparent centre of’ the moon is [0; 17,40 + 0; 15,40 = ]
0;33,20‘̂ from the centre of the sun, [measured orthogonally to the moon’s orbit] 
on cither side of the ecliptic, that is the limiting position in which the moon can 
just be in apparent contact with the sun.

For example [see Fig. 6.1] let us imagine AB as an arc of the ecliptic and GD 
as an arc of the moon’s inclined circle. These are sensibly parallel to each other, 
at least as far as concerns the positions [of the bodies] at the time of eclipses. We

V I 5. Eclipse limits fo r  solar eclipses 285

D

fl
Fig. 6.1

8

draw  the arc of the great circle through the poles of the [moon’s] inclined circle. 
AEG, and imagine the semi-circle of the sun on centre A, and the semi-circle of 
the apparent moon on centre E, in such a position that it is just touching the sun 
at point Z. Then arc AE, which is the distance of E, the apparent centre of the 
moon, from A. the centre of the sun, can at times be as much as 0;33,20®, as 
established above. But in the regions stretching from Meroe, where the longest 
day is 13 equinoctial hours, up  to the mouths of the Borysthenes, where the 
longest day is 16 equinoctial hours, the maximum northw ard effect of the lunar 
parallax for the moon at least distance in the syzygies (if we subtract the solar, 
parallax) is about 0;8°, and the maximum southward effect, under the same 
conditions, is 0;58°. W hen its [latitudinal] parallax is 0;8° northwards, it has a 
maximum longitudinal parallax of about 0;30®, round about Leo and Gemini; 
and when its [latitudinal] parallax is 0;58° southwards, it has a maximum

H481



longitudinal parallax of about 0;15°, round about Scorpius and  P is c e s .S o  if 
we suppose tha t the true centre o f the moon is at D, and draw  line DE, which 
represents the total parallax, D G  will (approximately) represent the parallax in 
longitude, and  GE the parallax in latitude.

Therefore, when the moon is to the north of the sun and has a maxim um  
southward parallax,

H482 arc DG will be 0;I5°, and arc AEG [0;33,20'’ + 0,58° =] about 1;3P .
Now the ratio  between the arc from the node to G and the arc GA is about 
1U : 1 for distances between the eclipse limits: this can easily be seen from our 
previous dem onstration of the inclination of the lunar orbit.'® So the distance 
from the node to G will be 17;26®, and G D  added to this makes 17;41°.

And when the moon is to the south of the sun and has its maxim um  
northw ard parallax, arc DG will be 0;30°, and the whole of arc AEG. 
[0;33,20°+ 0;8° *** ] 0;41°. By the same kind of calculation as before, the 
distance from the node to G will be 7;52°, and the total distance, including arc 
GD, 8;22°.

Therefore, the limiting positions, in which the moon can just be in apparent 
contact with the sun, for the above regions of our part of the inhabited world, 
are when the true distance of the centre of the moon from either of the nodes on 
its inclined circle is 17;41° towards the north, or 8;22® towards the south.

Furtherm ore, since, as we showed, the maxim um  equation of anom aly is 
2;23° for the sun and 5; 1° for the moon near the syzygies, it will at times be 
possible for the true distance of the moon from the sun at mean syzygies to reach 

H483 7;24°. But, in the time the moon takes to traverse the distance [7;24°], the sun 
will travei-se an extra distance of alx)ut n th  of that am ount, i.e. 0;34°; and 
again, while the moon is traversing that extra 0;34°, the sun will traverse an 
c.xtra n th  of that, or about 0;3° (a ijth  o fthe latter is negligible). So ifwe add the 
sum. 0;37° (which is n th  of the original 7;24°)'^ to the 2;23° of the solar 
[equation ol] anomaly, we get 3°, which is, approxim ately, the maximum 
dilference in longitude and [argum ent ol] latitude between mean position [of 
the bodies] at mean syzyg>' and their tm e position [at true syzygy]. So the 
limiting positions in which the moon can just be in apparent contact w ith the 
sun, for the above regions, are when the m ean distance ofthe centre oi'the moon 
from [either ot] the nodes on its inclined circle is 20;41 ° to the north, or 11 ;22° to 
the south. And by the same argum ent, the above elfect can take place in the 
regions in question only when the am ount o fthe  distance o fthe  moon from the 
northern limit corresponding [in the fifth column of Table V'l 3] to the mean 
syzygy falls between 69; 19° and 101;22°, or between 258:38° and 290:41°. 

H484 Next, to obtain the m oon’s ecliptic limits; since, as we showed [p. 284], the 
moon’s radius at its least distance [at syzygy] subtends 0; 17,40°, and the
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-■’Ptolemy computes the maximum effect of the parallax on ecliptic limits for the region 
embracing the standard ‘7 clim ata’ (see Introduction p. 19). There are some serious problems in his 
(unsupported) statements here, for which see H AM A  127-9.

I.e. taking the inclination as 5° (V 12 p. 247), and taking the small spherical triangle Ibrmed by 
the latiiude. the ecliptic and the moon’s orbit as plane, we compute to : P = Crd 110° : Crd 10° = 
119:32,37 : 10;27,32 = 11.43 : 1 l l i  ; 1.

” Cf. p. 281 n.l2 .
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shadow’s radius, being about 25’ times that, comes to 0;45,56°,^“ it is clear that 
when the true distance of the moon’s centre is 1;3,36° from the shadow’s centre 
on either side ol the ecliptic (as measured along the great circle draw n through 
the poles of the moon’s inclined orbit), or about 12; 12® from either of the nodes 
on its inclined circle (according to the ratio 1 : 1H), that is the limiting position 
in which the moon can just touch the shadow. And by the same argum ent as was 
deduced above from the anomaly, the limiting position for the moon to touch 
the shadow will be when the distance o f the mean moon’s centre from the node 
on its inclined circle is 15; 12°. Hence the [mean moon], in distance from the 
northern limit, must fall within the boundaries 74;48® to 105;12°, or 254;48® to 
285; 12°.

We will, then, include these numbers for the moon’s [argum ent ol] latitude at 
solar and lunar [eclipse] limits in the preceding table of syzygies, in order to H485 
provide a convenient method o<’ determ ining whether [a giv en syzyg> ] could 
fall into the categorv- o f an eclipse.

6. {On the interval o f months between eclipses}29

In addition to the above, it would al.so be useful to discuss the problem of the 
intervals at which, in general, it is possible for ecliptic syzygies to occur, so that, 
once we have determined a single example of an ecliptic syzygy, we need not 
apply our examination of the [ecliptic] limits to every succeeding syzygv' in 
turn, but only to those which are separated [from the first] by an interval of 
months at which it is possible for an eclipse to recur.

Now it is immediately obvious that eclipses of both sun and moon can occur 
at 6-month inteivals, since the increment in the m oon’s mean motion in 
[argum ent ol] latitude over 6 months comes to 184; 1,25°, and the arcs l^etween 
the ecliptic limits [at opposite nodes], for both sun and moon, comprise less than 
the above am ount if they are less than a semi-circle, and more than the above 
am ount il they are greater than a semi-circle.^”

For, in the case of the sun, the ecliptic limits cut oif20;41° (as we showed 
[p. 286]) to the north of both nodes on the moon’s inclined circle, and 11;22° to 
the south. Thus^' the arcs on which eclipses cannot occur comprise 138;38° to the 
north [of the nodes], and 157; 16° to the south. H486

And, in the case of the moon, the ecliptic limits cut off 15; 12° [above] of the 
circle [of the moon’s orbit] from the nodes on both sides of the ecliptic. Thus 
each of the arcs on which eclipses cannot occur comprises 149;36°.

.Note that Ptolemy takes precisely 2^ times the moon’s radius, instead of the value which he had 
actually derived from the observations, 0;46°.

'̂*See HAMA  129-34. Pedersen 230-1 is too summary to be useful.
'“For what follows refer to Fig. H, and, for the increments in motion, to Table VI 3. For the 

moon, DA = BC = 149;36° <  184;1,25°, and AD = CB = 210;24° >  184;1,25°. For the sun, BC =
138:38° <  184; 1.25°; AD = 202;44» >  184;1,25°; DA = 157;16° <  184;1,25°; and CB = 221;22° >
184; 1,25°. It is necessary that both conditions be fulfilled for it to follow that when the (mean) moon 
is on one of the ecliptic arcs (AB, CD) at the beginning of the interval it will be on the o ther (at a 
distance of 184; 1.25°) at the epd.

“  Omitting Kol (with D) at H485,22.
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MOON

SUN

O n the basis of the theories developed above, it is possible for eclipses of the 
moon to recur at a 5-nnonth interval which is the longest possible, i.e. an interval 
in which the sun has the greatest possible motion and the moon the least. We 
can see that as follows.

In the mean 5-montH interval we find the following increments in the 
motions:

mean motion in the longitude of both luminaries: 145:32° 
motion of the moon on the epicycle in anomaly; I29;5°.

The sun’s 145;32°, when its [true] m otion is greatest, [i.e. distributed



symmetrically] either side of the perigee, produce an addition to the mean 
motion of 4;38°.^^ The 129;5° of the moon’s anom aly on the epicycle, when its 
[true] motion is least, [i.e. distributed symmetrically] either side of the apogee, 
produce a decrement from the m ean motion of 8;40®. Therefore over the period 
of 5 m ean synodic months during which the sun has its greatest possible motion 
and the moon its least, the moon will still be in advance of the sun by the sum of 
both [above equations of] anom aly, i.e. 13; 18°. We take i^th of this (for the 
reasons explained above [p. 286]), and get about 1;6° for the additional motion 
of the sun before the moon overtakes it. So, since it has an additional 4;38° of H487 
motion from its own anomaly, and another 1;6° from the motion needed for 
overtaking [the sun] at true syzygy, the greatest possible 5-m onth interval will 
be greater than the mean by 5;44° of longitude. Hence the moon’s additional 
motion in latitude on its inclined circle will be about the same am ount [5;44°] 
over the mean motion in latitude in 5 months, which comes to about 153;21°.
Thus the true motion in latitude over the greatest possible 5-month interval 
comes to 159;5°.

But the ecliptic limits of the moon for the moon's mean distance enclose alxjut 
1° (either side of the ecliptic) of the gi eat circle drawn through the poles of the 
moon’s inclined circle; lor at the moon’s least distance [the corresponding 
am ount] is 1;3.36°, and at its greatest distance 0;56,24°;-^^ thus [the ecliptic 
limits enclose] 11;30° of the inclined circle either side of the nodes, and hence 
the anerliptic arc i^etween them comprises 157;0°. This am ount is2;5° less than 
the I59;5° of the [moon's] inclined circle which is the increment over the 
greatest possible 5-month inteival. From these considerations it is clear that, if H488 
one takes the longest possible 5-month interv^al, the moon can be eclipsed at the 
opposition at the beginning of that interval, while it is receding from either of 
the nodes, and then be eclipsed again at the opposition at the end of the interval, 
while it is appi oaching the opposite node. The obscuration will take place from 
the same side of the ecliptic (never from opposite sides) in both eclipses.

Thus we have shown that the longest possible 5-month interval can produce 
two lunar eclipses. However, it is impossible for this to occur if 7 months 
interv'ene, even if we assume the shortest possible 7-month interval, namely that 
in which the sun has its least motion and the moon its greatest. We can see this 
by the same m ethod as above.

For in the mean 7^month interval the increments in motion are as follows: 
mean motion in longitude of both luminaries: 203;45° 
moon’s motion on the epicycle: 180;43°.

T he sun’s 203;45°, when its [true] motion is least, [i.e. distributed symmetrically] 
either side of the apogee, produce a decrem ent from the mean motion of 4; 42°, 
while the 180;43° of the moon’s [anomaly] on the epicycle, when its [true] 
motion is greatest, [i.e. disti'ibuted symmetrically] either side of the perigee, 
produce an addition to the m ean motion of9;58°. Therefore over the period of 7

I.C. the solar equation is -2;19° at a solar anomaly of 180°-(145;32+2)°, or I07;14“, and +2;19“ 
at the symmetric position of 252;46°. T he corresponding true longitudes arc 65;30® greater, or 
about US 20° and ^  20°, cf. p. 290.

See pp. 287 and 254. The amount is the sum of the radii of moon and shadow. At greatest 
distance this is 0; 15,40° + (2̂  x 0; 15,40)° = 0;56,24°.

.....-
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H489 mean synodic months in which the sun has its least possible motion and the 
moon its greatest, the moon will be beyond the sun by the sum oflx)th [above 
equations ol] anomaly, 14;40°. For the same reason [as belbre], we take n th  of 
this, [1;13°], and add it to the decrem ent due to the sun’s anom aly, 4,42°. T he 
result, 5,55°, gives us the approxim ate am ount by which [the bodies’] m otion in 
longitude over the shortest possible 7-month interval falls short o f that over the 
mean 7-month interval. The m oon’s motion in latitude will lall short of that 
over the mean 7-month inteival, 214;42°, by the same am ount [5;53°]. So in the 
least possible 7-month interval the increment in the m oon’s la titudinal motion 
on its inclined circle will be 208;47°. But the total am ount of the greatest arc 
between the [ecliptic] limits ol th e  moon at mean distance, that is the arc 
between the limit preceding one node and the limit lollowing the other node, is 
only [180° + 2 x 1 1;30° =] 203°. Therefore it is impossible for the moon to be 
eclipsed at the first opposition of a 7-m onth interval and then to be eclipsed 
again, in any way whatever, at the last opposition of’that interval, even if it is 
the shortest possible.

We must now prove that, over the greatest possible 5-month interval, the sun 
too can be eclipsed twice for obseivers in the same place, and in all regions of our 
part of the inhabited world.

In the longest possible 5-month interval, the moon's increment in [argum ent 
of] latitude is, as we have shown [p. 289], 159;5°. And the arc on which solar 

H490 eclipses cannot occur, for the m oon’s m ean distance, is 167;36°; for the sun's 
ecliptic limits are 0;32,20° from the ecliptic, as measured along the gi eat circle 
through the poles of the ecliptic, and about 6; 12°, as m easured along the moon's 
inclined circle. So it is clear that, if the moon has no paralla.\. the event in 
question [solar eclipses at a 5-m onth interval] will be impossible, since the 
anecliptic arc exceeds the motion over the longest possible 5-month interval by 
8;31° counted along the [moon's] inclined circle, which corresponds to about 
0;45° on the [great circle] orthogonal to the ecliptic. Howevei, at any place 
where the moon can attain  a parallax so great that the parallax at either of the 
conjunctions at the two ends [of the interval], o r the sum of the parallaxes at 
both conjunctions com bined, exceeds 0;45°, it is possible for the conjunctions at 
both ends to produce an eclipse at that place.

Now we have shown [p. 289] that, over the period of that m ean *̂ 5-month 
interval in which the moon has its least possible motion and the sun its gi eatest, 
[which is] from two-thirds through Virgo up to two-thirds through Aquarius, 
the moon is still in advance of the sun by the sum of both [equations of] anomaly, 
13; 18°. It takes the moon, in m ean motion, 1** 21*' to move (13; 18° + t: x 13;18°).^’

^*The ecliptic limits of the sun are, in latitude, the sum of the radii of the sun (0; 15,40°, p. 285) 
and the moon a t mean distance (mean between 0; 15,40°, p. 254, and 0; 17,40°, p. 285, i.e. 0;16,40°). 
0; 15,40° + 0; i 6,40“ = 0;32,20°. T he corresponding distance from the node is 11 j x 0;32,20° = 6; 11,50°

6;12°. So the anecliptic arc.U (180° -  2 x 6;12°) = 167;36°.
^*It is essential to read (with D,Ar) »tevTan»ivou at H490,16 for t?|(; jiEYiorTTiq

JtevranTivou (‘the greatest 5-month interval’). T he meaning is ‘the interval of 5 mea/i synodic 
months’. The change to neylOTTi? was probably m ade by someone who compared i v  neyiatTj 
TtEvrajiiivtp (H489,25), where the phrase is in order only because it infers to true synodic months. 
However, for a purely mechanical confusion between neoov/jieyioTov compare p. 292 n.43.

See p. 289 n.32.
” In 1 2i'' the moon moves 14;24,42° in longitude. 13;18° + 1;6° (p. 289) = 14;24°.
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Hence it is clear, since the period of the m ean 5-tnonth interval is about 
HT* that the period of the longest possible 5-m onth interval will be
148** 18*'. Therefore the last conjunction, which takes place about two-thirds H491 
through Aquarius, will be earlier [in the day] than the first conjunction, which 
takes place about two-thirds through Virgo, by 6 hours (which is the difference 
[of the above period] from an  integer num ber of days). So we have to search for 
a place and time at which, if the moon is in Virgo [ca. 20°] and also, 6 hours 
earlier, in Aquarius [ca. 20°], its parallax exceeds the above-mentioned 0;45°, 
that is, either its parallax in one of those signs taken singly, or the combined 
parallax in both of those signs.

Now we find that the moon’s northw ard parallax never reaches that amount 
(under the prescribed conditions) in any place in our part of the inhabited 
world. Hence it is impossible for the sun to be eclipsed twice in the longest 
possible 5-month interval when the m oon’s position is to the south of the 
ecliptic, that is when it is receding from the descending node at the fn-st 
conjunction and approaching the ascending node at the last. However, it can 
achieve a southward parallax of this am ount, in all regions (beginning almost at 
the equator, and going northwards), if one takes the com bined parallax at both 
the above signs with a 6-hour difference. This occurs when n? 20° is at the 
setting-point at the fust conjunction, and ^  20° in the m eridian at the second 
conjunction. For in those situations we find the following approximate 
southward parallaxes, for the moon at m ean distance (subtracting the solar H492 
parallax):’̂

D in ni? ]) in -2?
at the equator 0;22° 0;14°
where the longest day is 12:^ 0;27° 0:22°.

Thus already in latter region the com bined paralla.xes exceed the 0;45° in 
question by 4 minutes. And since the southward parallax increases as one takes 
regions farther north, it is obvious that there will be an increasing possibility, [as 
one goes to regions farther north,] for the sun to be eclipsed for the inhabitants of 
those regions twice in the longest possible 5-m onth intei'val. However, this can 
happen only while the moon's position is to the north of the ecliptic, that is when 
it is receding from the ascending node at the first eclipse and approaching the 
descending node a t the second.

I say, furthermore, that it is possible for the sun to be eclipsed twice for 
obsei-vers in the same place also in the shortest 7-m onth interval. For, as we 
have shown [p. 290], the moon’s motion in [argum ent of] latitude over the 
shortest 7-month interval is 208;47°. And the greatest arc of the [moon’s] 
inclined circle intercepted between [two] ecliptic limits (which is the arc 
between the limit preceding one node and the limit succeeding the opposite 
node) is, for the sun when the moon is a t m ean distance, 192;24°.^®Soitisagain H493 
clear that, if the moon has no parallax, the event in question cannot take place, 
since the arc of the [moon’s] inclined circle covered in the shortest 7-month

^•Result of multiplying 29;31;50,8.20^ by 5. More accurate would be ISj".
'®Thc details of the computation of these are given in the commentary of Pappus (Rome [1] I 

225-9), who linds 0;29“ instead of 0;27‘>.
♦®I.e. 180° + 2x6;12°. Cf. p. 290 n.34.
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interval exceeds the greatest arc cut off between the sun’s ecliptic limits by 
16;23°, as measured on the inclined circle, [which corresponds to] 1 ;25° on the 
circle through the poles of the ecliptic. But in any place where the moon’s 
parallax is great enough so that the parallax at either of the conjunctions at the 
two ends [of the interval], or the sum of the parallaxes a t both conjunctions 
combined, exceeds 1;25°, it is possible for the conjunctions at both ends to 
produce an eclipse at that place.

Now we have shown [p. 290] that, over the period of that mean 7-month interval 
in which the moon has its greatest [true] motion, and the sun its least, [which is] 
from the end of Aquarius to the middle ol’Virgo,^* the moon, in true motion, has 
already overtaken the sun by 14;40°. T he moon in m ean motion traverses 
(14;40 + T5 X I4;40)° in I'' 7-month
interval comprises about 206*̂  n**. the period of the shortest possible 7-month 
interv.'al will be 205̂ * 12 .̂ Therefore, the last conjunction, which takes place 

H494 about the middle of V’irgo, will be 12 hours later, [in the day] than the llrst 
conjunction, which takes place al>out the end of Aquarius. So we have to search 
for a place and time at which the moon’s parallax can e.xceed 1;25®, either at 
one of those situations singly or at both situations com bined, when the two 
situations are separated by 12 hours, i.e. one sign is setting and the other rising 
(for otherwise it will be impossible for both eclipses to occur above the horizon).

Now, again, it is impossible for the moon to achieve a northw ard parallax of 
that am ount for any region in our part of the inhabited world, since, even ibr 
those living directly below the equator, the [northw ard] parallax in latitude at 
the [moon's] mean^-* distance never exceeds 23 minutes. Hence it is impossible 
for the sun to be eclipsed twice in the shortest 7-month interval when the moon’s 
position is to the south of the ecliptic, i.e. when it is approaching the ascending 
node at the first conjunction and receding from the descending node at the last 
conjunction. But we find that a southward parallax of that am ount [i.e. greater 
than 1;25°] is achieved [for regions north of a latitude which is] approxim ately 
the parallel through Rhodes, when the end of Aquarius is rising and the middle 
of \'irg o  is setting. For in Rhodes, and those regions beneath the same parallel, 

H495 at both of the above situations the parallax of the moon at m ean distance (with 
the solar parallax subtracted) is about 0;46° southwards.^'* Thus already in 
these regions the sum of the parallaxes at both conjunctions is greater than 
1;25°. And since for regions yet farther north than this parallel the southward 
parallax is greater, it is obvious that for the inhabitants of those regions an

Cf. p. 289 n.32. Here the longitudes are given by
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65:30° T  i(203;45° -  4;42") = s r  25;58i°
T̂iB 15;1K

in 1'* S" = 15:55,17°. \\ x 14;40» = 15:53,20°.
Reading ^eaov (with Ar) for peyiOTOv (‘greatest distance’) at H494,I2. The reading is 

muitiply guaranteed: Ptolemy uses the moon’s mean distance throughout this section (ct. pp. 289, 
290); taking the greatest distance decreases the parallax (which is in conflict with the argum ent here). 
Numerically, from Table V 18, for a zenith distance of 24° (the maximum zenith distance of the 
ecliptic at the terrestrial equator) the parallax (lunar minus solar) at mean distance is 0;22,6 -t- j x 
0;4,18 -  0;I,9 = 0;23,6° (likewise at minimum distance it is 0;22,6 + 0;4,18 -  0;1,9 = 0:25,15°, cf. 
p. 294). Corrected by Manitius.

‘■•A somewhat unsatbfactory numerical verification of this (using the Handy Tables) is in 
Pappus’ commentary (Rome(l] I 232-4).



eclipse oi' the sun can be observed twice in the shortest 7-month interv’a!. 
However, this is, again, possible only when the moon’s position is north of the 
ecliptic, i.e. when it is approaching the descending node at the iirst eclipse and 
receding from the ascending node a t the second.

It remains for us to prove that it is impossible for the sun to be eclipsed twice 
at one m onth’s interval in our part of the inhabited world, either [for observers] 
a t the same latitude or a t dillerent latitudes, even if one assumes a combination 
of conditions which could not in fact ail hold true at the same time, but which 
may be lumped together in a vain attem pt to provide a possibility of the event in 
cjuestion happening. These assumptions are, that the moon is a t least distance 
(to make its parallax greater); that the month is the shortest possible (so that the 
am ount by which the m onth’s motion in latitude exceeds the distance between 
the sun’s ccliptic limits be as small as possible);^^ and that we use, without 
analysis [of whether it is a possible situation], those times and zodiacal signs in H496 
which the moon’s apparent parallax is greatest.

Now in 1 mean synodic month the mean motions of the bodies are as follows: 
increment of motion in longitude for both luminaries: 29:6® 
m oon’s [anomaly] on the epicycle: 25;49°.

The 29;6° of the sun’s motion, [when distributed symmetrically] either side of 
the apogee to produce its least [true] motion, result in an  equation o f - 1 ;8® from 
the mean. And the 25;49° of the moon’s motion, [when distributed symmetri­
cally] either side of the perigee to produce its greatest [true] motion, result in an 
equation of +2;28° to the mean. In accordance with our previous 
dem onstration, we take the sum of lx>th equations of anomaly, 3;36°, and add 
n th  of this, 0;18°, to the am ount by which the sun was behind [i.e. 1;8°]. This 
gives us 1;26° for the am ount by which the motion over the shortest month in 
longitude and [argum ent of] latitude is exceeded by that in 1 mean synodic 
m onth. Therefore, since the motion in latitude during one m ean synodic month 
is 30;40°, that in the shortest m onth is 29;14®, which corresponds to about 2;33® 
on the great circle perpendicular to the ecliptic. But the total am ount of [the 
corresponding distance at] the sun’s ecliptic limits when the moon is at least 
distance is 1;6°,^® which the shortest-month distance exceeds by 1;27®. H497 
Therefore, if the sun is to be eclipsed twice at an interval of 1 month, it would be 
absolutely necessary either for the moon to have no p>arallax at one conjunction 
and more than 1;27° at the other, or, secondly, for the parallax at both 
conjunctions to be in the same direction and for the difference between the 
parallaxes to be greater than 1:27°. or. [thirdly], for the parallax at one 
conjunction to be towards the north and the parallax a t the other to be towards 
the south, while their sum exceeded that am ount [1;27°]. But nowhere on earth 
does the moon at syzygy, even at its least distance, have a latitudinal parallax of 
more than  1° (when the solar parallax is subtracted). Therefore it will not be 
possible for a solar eclipse to occur twice at the interval o f the shortest month

As Ptolemy implies, these two conditions cannot both hold: for the moon, to achieve greatest 
parallax, has to be at the perigee of the epicycle, but to produce the shortest m onth (see below) has 
to be at symmetrical positions either side of the perigw.

The sum o f the radii of sun and moon at least distance is 0;33,20® (p. 285). Ptolemy rounds this 
to 0;33° and doubles it (since we are dealing with two eclipses).
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either when the moon has no parallax a t one conjunction or when its parallax is 
in the same direction at both conjunctions. For the difference between the 
parallaxes cannot exceed 1°, and we need 1;27°. Hence the event in question 
could occur only under the condition tha t the two parallaxes are in opposite 

H498 directions, and that the sum of both exceed 1 ;27°. This could happen for parts of 
the inhabited zones in different [parts of the earth], since it is possible for the 
southward parallax of the moon in the regions north of the equator, in our part 
of the inhabited world, and the northw ard parallax in the regions south of the 
equator, among the so-called ‘antipodes’, to reach as much as 1° (with 
subtraction of the solar p a ra llax )/’ However, it could never happen in the same 
part of the inhabited world, since in both [oikoumenai] alike, for those situated 
directly beneath the equator, the maxim um  parallax of the moon, both to the 
north and to the south, does not exceed 25','*® and for those a t the extreme north, 
or extreme south [respectively of their oikoumene] the parallax in the opposite 
direction does not exceed the above-mentioned 1°, so that even in this case [i.e. 
taking the equator and the extreme northern or southern limits] the sum of the 
parallaxes is still less than 1;27°. And since both opposite parallaxes become 
progressively much smaller in regions between the equator and the other 
extreme [of each oikoumene], the impossibility becomes ever greater for such 
regions. Therefore it is impossible for the sun to be eclipsed twice in one month 
for the same observers anywhet e on earth, or for different observers in the same 
part of the inhabited world. This was what we intended to prove.
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H499 7. [Construction oj eclipse tables]*^

By means of the above it has become clear to us which inter\’als between 
syzygies should be taken into account when we are exam ining for eclipses. Now, 
after having determined the times of mid-eclipse at these [syzygies], and 
com puted the moon’s positions at that moment, (the apparen t positions at 
conjunctions and the true positions at oppositions), we want to have a 
convenient means of determining, from the moon’s position in latitude, which 
of those syzygies will defmitely produce an eclipse, and the magnitudes and 
times of obscuration for these eclipses. To solve this problem  we have 
constructed tables, two for solar eclipses and two for lunar eclipses ([in each 
case] one for the moon’s greatest distance and one for its least distance). The 
interval which we establish [between successive entries in the tables] is

”  This wa.s already shown by Hipparchus, as is clear Irom Pliny, N H I I 57. a passai?e which shows 
that Hipparchus had anticipated Ptolemy in the investigation of the topic of eclipse intervals. Cf. 
HAMA  322. The word I have translated ‘antipodes’ isdvTix^ovec; (‘[people in] the opposite [part oi 
the] earth’). See LSJ s.v. 2 .1 have excised drto o  ic? at H498,8. This would have to mean ‘to be be­
tween the limits of 0;25° and 1°’, which is nonsense, since the lower limit is zero. The phrase was 
interpolated l>y someone who misunderstood this use ofpexpt, and look the 25' (senseless in this 
ronifxt) from just l>eiow.

^*Cf. p. 292 n.43.
’̂’See HAMA  134-41, Pcdenten 231-5.



determ ined by the am ount of obscuration, being I'jth o f the diam eter of 
whichever of the luminaries is eclipsed.*®

T he first table for solar eclipses, which covers the interval between the limits 
of eclipses a t the moon’s greatest distance, will be arranged On 25 lines in 4 
columns. T he first two columns will contain the apparent position of the moon 
in [argum ent of] latitude on the [moon’s] inclined circle for each [unit ol] 
obscuration. Since the sun’s diam eter is 0;31,20°, and, as was proven[p. 254], the H500 
moon’s diam eter at its greatest distance is also0;3I,20®, it follows that when the 
moon’s apparen t centre is 0;3l,20° from the sun’s centre on the great circle 
through both their centres, (and thus is 6° from the node along its inclined 
circle, according to the previous ratio, 1I;30 : 1), that will be the situation in 
which the moon just touches the sun. So in the first line of the first column we 
put ‘84°’, and in the first line of the second column, ‘276°’; again, in the last line 
of the first colum n we put ‘96°’, and in the last line ofthe second column, ‘264°’.

Furtherm ore, since the am ount of the [moon’s] inclined circle which 
corresponds to n  th of the solar diam eter is about 0;30°,^‘ we increase or decrease 
the entries in the above-mentioned two columns by that am ount, beginning 
from the lines at both ends and going towards the middle. O n the middle line we 
put ‘90°’ and ‘270°’.

T he third column will contain the magnitude of the obscuration. O n the two 
lines at top and  bottom we put the “O’ representing the touching position, on the 
two lines next to those ‘1 digit’ (representing n th  o fthe  diam eter), and so forth 
for the rest, w ith ah increment [from line to line} of 1 digit up to the middle line, 
which will receive the entr\- ‘12 digits’. H501

'fh e  fourth column will contain the distance travelled by the centre of the 
moon corresponding to each [tabulated] obscuration, withovit however taking 
into account either the sun's additional motion [during the phase ofthe eclipse] 
or the moon’s epiparallax [i.e. the change in the moon’s parallax].

The second table for solar eclipses, which covers the interval between the 
limits of eclipses at the moon’s least distance, will be arranged in the same way 
as the first, e.xcept that it will have 27 lines in 4 columns. T he m oon’s radius at its 
least distance is, as we have shown [p. 284], 0; 17,40° where the sun’s radius is 
0; 15,40°. So when the moon [at least distance] is just touching the sun, its 
apparent centre is 0;33,20° from the sun’s centre, and 6;24° from the node along 
its inclined circle. So’  ̂the entries for the apparent [argum ent of] latitude in the 
top and  bottom  lines are ‘83;36°, 276;24°’, and ‘96;24°, 263;36°’ [respectively].
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’“ I.e. the intervals between successive arguments in the tables (cols. 1 and 2 in Table VI 8) is 
determined by taking integer values of the magnitude (col. 3), in contrast with the normal 
procedure, in which one takes the argument at purely arbitrary intervals. This is more of a 
convenience for the compiler of the tables than for the user, but it persisted in eclipse tables ofthe 
Handy Tables and in many of the mediaeval tables derived from them (sec e.g. Toomer[IO] no. 59 p.

Heiberg’s text in this paragraph is in disarray. To produce a logical sequence, insert a 
strong stop at the end of 501,9, l>egin the next sentence <Kai> 5id (with Ar), remove the strong 
stop at the end of 501,17, and*excise the yap (with D,Ar) in 501,18.



and the entry for the digits on the middle line, if we use linear extrapolation, will 
be 1 ^  digits. For this entry there will also be a duration of totality.

H502 Each of the lunar [eclipse] tables will be arranged in 45 lines and  5 columns. 
In the first table we will tabulate the f argum ent of] latitude for greatest distance 
of the moon. T he m oon’s radius at its greatest distance is, as we showed [p. 254], 
0:15,40®, and the radius of the shadow, 0;40,44°. So, when the moon is just 
touching the shadow, the moon’s centre is 0;56,24'’ from the shadow’s centre 
along the great circle through both centres, and 10;48° from the node along the 
[moon’s] inclined circle. So we put, on the first line, ‘79; 12°’ [in the first column] 
and ‘280;48°’ [in the second column], and on the last line ‘100;48‘” and 
259; 12°’. By the same reasoning as in the first [solar table], we increase or 
decrease each line by 0;30°, which corresponds to rith  of the lunar diam eter for 
that distance.

In the second table we will tabulate the [argum ent of] latitude for the moon 
at least distance, at which, as was shown [p. 284], its radius is 0; 17,40°, and the 
radius of the shadow 0;45,56°. Therefore, when the moon just touches the 
shadow, its centre is, by the same argum ent as before, I ;3,36° from the centre of 

H503 the shadow, and 12; 12° from the node along the moon’s inclined circle. Hence 
we put. on the first line, ‘77:48°’ and ‘282;12°’, and, on the last line, ‘102:12°’ 
and ‘257;48°’. and again increase or decrease the entries by the am ount 
corresponding to n th  of the lunar diam eter for that distance, [namely] 0;34°.

T he third column [in cach table], for the digits, will be arranged in the same 
way as that in the solar tables. So too will be the succeeding columns, which 
contain the travel of the moon for each [tabulated] obscuration, namely [the 
fourth column] for both immersion and emersion, and also [the fifth column] for 
half of totality.

We com puted the travel of the moon tabulated for each obscuration 
geometrically, but as if [the problem were confined to] a single plane and 
straight lines, since such small arcs do not differ sensibly from the corresponding 
chords, and furtherm ore the moon’s motion on its inclined circle is not 
noticeably different from its motion with respect to the ecliptic.

[I say this] in case anyone should suppose that we do not realise that, in 
general, the moon’s motion in longitude is affected by the use of arcs of the inclined 

H504 circle instead of arcs of the ecliptic, and also that it does not f ollow that the time 
of syzygy is exactly the same as the time of mid-eclipse. [To illustrate this, see 
Fig. 6.2], we cut off from the node A two equal arcs of the circles in question 
[orl)it and ecliptic], AB and AG, join BG and from B draw  BD perpendicular to 
AG. Then it is immediately obvious that, if we suppose the moon at B, when we 
use arc .AG of the ecliptic instead of arc AD, then, since motion with respect to 
the ecliptic is determined by [the great circle] through the poles of the ecliptic, 
the difference [in longitude] due to the inclination of the lunar orbit will be GD.
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The intcival ol'argument corresponding to 1 digit of eclipse magnitude is 0;30° elsewhere in the 
table. Since the interval here is 0;24°, the corresponding amount in digits is ?. Accurate 
computation IVom the radii 0; 17,40° and 0; 15.40" gives the magnitude of the maximum solar eclipse 
as 12;46^. The amount !>eyond 12 digits represents the duration of totality’ (novii), as in lunar 
eclipses. See also p. 305 n.63.
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Fig. 6.2

O r again, if we imagine the sun or the centre of the shadow at the time of 
syzygy wiii occur when ihe moon is a t G ([we can say thisj since the difierence 
due to the two circles [ecliptic and orbit] is negligible), but the time of m id­
eclipse when the moon is a t D, since, again, the time of mid-eclipse is defined by 
the circle through the poles of the moon’s orbit. And [thus] the time of syzygy 
will diiTer from the time of mid-eclipse by arc GD.

F ig -J

T he reason that we did not take these arcs into account in our derivations of 
the individual [entries] is that the differences they cause are small and 
imperceptible. W hile it would be absurd not to recognise any of these effects, on 
the other hand, when one considers the resulting com plication in the methods 
necessary to deal w ith each of them, deliberate neglect of effects small enough to 
be overlooked both in theory and observation evokes [in the reader] a  strong 
feeling of the advantage of greater simplicity, and no regret, or little, for the 
resulting error in representing the phenomena. In any case, we find that the arc 
corresponding to GD does not, in general, exceed 0;5®. This can be 
dem onstrated by means of the same theorem which we used [ 1 16] to calculate 
the difference between arcs of the equator and  corresponding arcs o f the 
ecliptic, as defined by a [great] circle draw n through the poles of the equator. 
And in eclipses [the arc corresponding to GD] does not exceed 2 '. For, if we take -

I.e. the two arcs are now interchanged, AB being the ecliptic and AG the moon’s orbit. Instead 
of using the same figure, Ptolemy should have drawn another one, in which GB is perpendicular to 
.\B  (i.e. A B ^  AG). Compare Fig. J  (taken from Manitius 452-53), which shows that the true syzygy 
(at G) precedes the eclipse-middle (at D) before the node, but succeeds it after the node.

H505
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arc AB = arc AG = 12®, which is the maximum am ount ofthe m oon’s distance 
[I'rom the node] at eclipses, then BD is about 1®. And hence AD is about 11;58°, 
and, by subtraction, GD is 2 ', which corresponds to less than rsth of an 
equinoctial hour.^'’ Scrupulous accuracy about such a small am ount is a sign of 

H506 vain conceit rather than love of truth.
For the above reasons we have com puted the travel o fthe  moon during the 

obscurations in question as if the circles [of ecliptic and orbit] were sensibly 
identical. The method of calculation, to give one or two examples, is as follows.

Let [Fig. 6.3]'’*’ A be the centre ofthe sun or the shadow, and BGD the straight 
line representing the arc of the moon's [inclined] circle. Let the points 
representing the moon’s centre when it is just touching the sun or the shadow 
i)e, at the moon’s approach [i.e. at fii'st contact] B, and al its recession [i.e. at last 
contact] D. Jo in  AB and AD, and drop perpendicular AG from A on to BD.

H507

Now it is clear that eclipse middle and greatest obscuration occur when the 
centre of the moon is al G, because [1] AB equals AD, and hence the distances 
travelled, BG and GD, are also equal, and because [2] AG is the least of all lines 
joining the two centres [when the moon is] on BD. It is also clear that AB and 
AD each comprise the sum of the radii of moon and sun or [moon and] shadow, 
and that each of them e.xceeds AG by that part o fthe diam eter o fthe  eclipsed 
body which is cut off by the obscuration.

This being the case, let the obscuration be, e.g., 3 digits. Fii'st let A represent 
the sun's centre.
Therefore,”  when the moon is a t its greatest distance,

AB = 31;20 minutes [p. 295].
AB2 = 981;47.

And AG = 23;30 minutes, since it is less than AB byi^ths 
of the sun’s diam eter, i.e. 7;50 minutes.

Cf. HAMA  83 n.5, estimating a maximum error of 6 ' as a result of neglecting the inclination of 
the lunar orbit in computing longitudes. Using the formula tan X = tan to cos i, I find, lor i = 5°, the 
maximum difference tetw een X, and (o as about 6 i ' for o) *• 45;3°. Using the same formula foroa = 
12 ,̂ I fmdX. = 11;57,20°, hence GD = 0;2,40°, which still leads to less th a n n th  of an hour’s d ilference 
in the time of mid-eclipse. Ptolemy computes crudely B D ~  A B / I l i “  I, AD = \ / l 2 ‘' -  ll;58.

Figs. 6.3 and 6.4 are elucidated by Figs. K. and L respectively, in which the cu'cles representing 
the sun, moon and shadow arc drawn in. These are taken from Manitius, but are also very similar to 
the alternative diajerams found in ms. D.

Reading fewi nev fipa (with D) for fen’i nev oov fipa at H507,3.
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So AG- = 552,15.
Hence BG' = 429;32,

and BG**20;43 minutes.
This is the am ount which we will enter in the fourth column of the first tai)le for 
solar [eclipses] opposite ‘3 digits'.
For the moon's least distance ,

AB = 33;20 minutes [p. 295].
AB- = 1I11;7.

And AG = [0:33,20° -  0;7,50° =] 25;30 minutes, 
so A G ' = 650; 15.

And. by subtraction, BG' = 460;52,
and so BG = 2l;28 minutes.

This is the am ount which we will enter in the fourth column of the second table 
for solar [eclipses] opposite '3 digits'.

Next let A represent the centre of the shadow, and let the obscuration be the 
same fraction as before, i, [but now] of the lunar diameter.
Then, for the moon’s greatest distance,

AB = 56;24 minutes [p. 296], 
so AB^ = 3180;58. H508

and AG = 48;34 minutes, since it is less than AB by i*of 
the lunar diam eter, i.e. (for the moon's 
greatest distance) 7;50 minutes.

So AG- = 2358;43.
Hence, by subtraction, BG^ = 822; 15,

and BG = 28;4l minutes.
This is the am ount which we will enter in the fourth column of the first table for 
lunar [eclipses] opposite ‘3 digits’. It represents the travel during immersion, 
which is sensibly equal to that during emersion.

For the [m oon’s] least distance
AB = 63;36 minutes [p. 296],

*so AB2 = 4044;58.
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H509

And AG = 54;46 minutes, since the difl'erence [between 
AB and AG], 8;50 minutes, is, aga in ,! of the 
moon’s diam eter, [here] a t least distance.

AG^ = 2999;23.
So, by subtraction, BG‘ = 1045;35,

and BG = 32;20 minutes.
This is the am ount which we will enter opposite ‘3 digits’, as before, in the 
fourth column of the second table for lunar [eclipses].

Next, to represent those [phases of] the lunar obscurations comprising the 
duration of totality, let [Fig. 6.4] A be the centre ol'the shadow, and BGDEZ the 
straight line standing for the arc of the moon’s inclined circle. Let B represent

the place of the centre of the moon when it is just e.xternally tangent to the circle 
of the shadow, at approach, G the place of the centre of the moon when ii is just 
internally tangent to the circle of the shadow at the beginning of totality, E the 
place of the centre of the moon when it is just internally tangent to the circle of 
the shadow as [the moon] recedes [at the end of totality], and Z the place of the 
centre of the moon when it is externally tangent to the shadow at the very end of 
its emersion [from obscuration]. Again drop perpendicular AD from A on to 
BZ. The same conclusions as before remain valid, and it is furtherm ore clear



that AG and AE each comprise the am ount by which the i-adius of'the shadow 
exceeds the radius of the moon. Hence the distance GD is equal to the distance 
DE, and each represents hall'of totality, while BG, the rem ainder [of BD-GD], 
which represents the immersion, is equal to EZ, the rem ainder [of DZ-DE], 
which represents the emersion.

So let us take [for an example] an eclipse for which the entr>' [in the table] is 
‘15 lunar digits’, i.e. one in which D, the moon’s centre [at mid-eclipse], lies 14 H510 
lunar diameters inside the boundary set by the limits of the eclipse. T hat is to 
say, when

(AB -  AD) = (AZ -  AD) = l i  lunar diameters 
and (AG -  .4D) = (AE -  AD) = i lunar diameter.

Then, for the moon’s greatest distance,
as before [p. 299], AB = 56;24 minutes and  AB^ = 3180;58.

And AG = 25:4 minutes, since the moon’s diameter at 
greatest distance is 31;20 minutes.

AG^ = 628;20,
and, by a similar argument, AD = [56;24 -  (31;20 7;50) =] 17; 14 minutes and

AD^ = 296;59.
So, by subtraction [of AD^ from AB^], BD‘ = 2883;59, 

and BD = 53;42 minutes.
And, by subtraction [of AD‘ from AG '], GD^ = 331;21, 

and GD = 18; 12 minutes.
So, l>y subtraction, BG = 35;30 minutes.

So we will put, opposite the entry ‘15 digits’ in the first table for lunar eclipses, in 
the fourth column ‘35;30 m inutes’ for the immersion (which will be the same for 
the emersion), and, in the fifth column '18; 12 minutes’ for half the duration of 
totality.

For the moon’s least distance, H511
as before [p. 299], AB = 63;36 minutes 

and AB-̂  = 4044;58;
AG = 28; 16 minutes, since, as was shown, the 

m oon’s diam eter at least distance is 35;20 
minutes, 

and A G ' = 799;0.
And, bv a similar argument. AD = [63;36 -  (35;20 + 8:50) =] 19;26 minutes, 

so AD- = 377;39.
Therefore, by subtraction, BD^ = 3667; 19,

and BD = 60;34 minutes.
And, by subtraction, GD^ = 421,21

and GD = 20;32 minutes.
So, by subtraction, BG = 40;2 minutes.

Therefore we will put, opposite the entry ‘ 15 digits’ in the second table for lunar 
eclipses, in the fourth column ‘40;2 m inutes’ for the immersion (which will 
again be the same for the emersion), and, in the fifth column, ‘20;32 minutes’ for 
half the duration of totality.

In order to have a convenient way of obtaining the fraction of the difference 
[between values derived from the first and second tables] for positions of the

V I 7. Computation o f  duration o f  totality 301



moon on the epicycle in between greatest and least distances ([which we do] by 
the method of sixtieths [of inteqx>lation]), we have draw n up, below the above 
tables, another little table. This contains, as argum ent, the position [in 
anomaly] on the epicycle, and, [as function], the corresponding num ber of 

H512 sixtieths to be applied [as interpolation coefficient] in every case to the 
difference [between values] derived from^® the first and second eclipse tables. 
W e have already com puted the am ounts of these sixtieths for the table of the 
moon’s parallax [V 18]: they are set out in the seventh colum n [of that table], 
since the epicycle has to be taken a t the apogee of the eccentre to represent [the 
situation at] syzygy.

But most of those who observe the [weather] indications derived from eclipses 
measure the size of the obscuration, not by the diam eters of the disks [of sun and 
moon], but, on the whole, by [the am ount of] the total surface of the disks, 
since, when one approaches the problem  naively, the eye compares the whole 
part of the surface which is visible w ith the whole of that which is invisible. For 
this reason we have added to the above table yet another little table with 12 
lines and 3 columns. In the first column we put the digits from 1 to 12, where 
each digit represents n th  of the diam eter of each luminary, as in the actual 
eclipse tables. In the other two columns we put twelfths of the whole surface- 
area corresponding to these [linear digits], those for the sun in the second, and 
those for the moon in the third. W e com puted these am ounts onlv for the sizes 
[of the apparent diametei's] for the moon at mean distance, since very nearly 
the same ratio will result [at other distances], given so small a variation in the 
diameters. Furtherm ore, we assumed that the ratio of the circumference to the 

H 513 diam eter is 3;8,30 : 1, since this ratio is about half-way between 3 ?: 1 and 3 ??: 1, 
which Archimedes used as rough [bounds].®®

First, to represent solar eclipses, let [Fig. 6.5] the sun's disk be ABGD on 
centre E, and the disk of the moon at m ean distance AZGH on centre 0 ,  
intersecting the sun’s disk at points A and G. Jo in  B E 0H , and let us suppose 
that i of the sun’s diam eter is eclipsed.

Thus ZD = 3 where diam eter BD = 12, 
and the moon’s diameter, ZH  12;20 in the same units, according to the ratio

15;40 : 16;40.®‘
H514 Hence E 0  = [i (12 + 12;20) -  3 =] 9; 10 in the same units.

Therefore the circumferences of the disks are, according to the ratio 1 ; 3;8,30,
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“̂Reading yivojievtov lor (paivo^evuv (‘which appear from’) at H 512,l. Although found in all 
Greek mss. and part of the Arabic tradition, the latter is without parallel in the Almagest, and must 
l)e replaced by a word like ytvonevtov (palaeographically close), or ouvayonEvcov . Cf. e.g. 
H384.21-2. x(3v yivonevtov 5ta(popo}v tK Tff(; SeuTEpa? d v u ^ a X ia q ,  H385,5-7, t S v  a o v a Y o n e v w v  
UJiepoxSv £K Ttiq . . . dvo>|iaXlaq. Is has ‘allati tukraju', which supports my emendation.

’^Although there is no reason to doubt Ptolemy’s statement, I know of no surviving ancient 
eclipsc magnitude which is unambiguously given in these ‘area digits’.

Archimedes, 'M easurement of the Circle’, ed. Heiberg I 232-42, tr. H eath 91-8.
The sun’s radius is 0:15.40° (p. 285). The moon’s radius at mean distance is the mean l)etween 

0;l5,40“ and 0:17.40®, i.e. 0;16,40“. But Ptolemy has made a calculating error (cf. Manitius p. 
385 n. b) and Pappus, Rome [ 1 ] 1261): 12 x (16;40/15;40) ••  12;46, not 12;20. This aiTects the accuracy 
of every entry in the second column, but the results are so crudely rounded that it is of little 
im|M)r(an(T.
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sun’s circumference: 37;42'’ 
m oon’s circumference: 38;46’’.

Similarly, since the product of the radius and the circumference is twice the 
area of the circle, the areas of the whole disks are:

■ sun’s area; 113;6‘’ ,
moon’s area: 119;32‘’.

W ith the above as given quantities, let the problem be to fmd the area of the 
surface enclosed by ADGZ, where the total area of the sun’s surface is 12 parts.

Jo in  AE. A 0 , GE, G 0 , and also draw perpendicular AKG.
Now, where E 0  = 9; 10*’,

AE = EG = 6'’ 1 . 
a n d A 0 = 0 G  = 6 ; l O ' j ‘’’' " “ “ " 'P ‘'° '’- 

Furtherm ore, the angle at K is right.
Therefore, if we divide (0 A ’ -  AE'), or 2;2, by E 0 . we will get (K 0  -  EK) as 
0:131'’.'’-

Hence EK  comes out to 4;28‘* and K 0  to 4;42*’.
Therefore AK = KG «  4 .̂

Accordingly the area of triangle AEG = 17;52‘’ H5I5
and the area of triangle A 0 G  = 18;48‘*.
Furtherm ore, where diam eter BD = 12’’ and ZH  = 12;20‘*, AG = S'*; 

so where diam eter BD = 120'’, AG = 80'’, 
and where diam eter ZH = 120*’, AG = 77;50'’.

Therefore the corresponding arcs are:
arc ADG = 83;37° of circle ABGD 

and arc AZG = 80;52° of circle AZGH.

“ For ©A^ -  AK^ = K 0 ^  AE^ -  AK" = EK ^ subtracting, 0A^ -  AE‘ = K©^ -  EK^ = 
(K© + EK) (K© -  EK) = E© (K© -  EK).
At H514.20 I read iy y ' (with«A,D-, Is) forTy y (13;3'). Corrected by Rotnefl]! 262 n. (3), whence 
Nfugel)auer in the 2nd edn. o( Manitius.



So, since the ratio of a circle to one of its arcs equals the ratio of the area of the 
whole circle to the area of the sector beneath tha t arc,

area of sector AEGD = 26; 16** where area of circle ABGD = 113;6'’, 
as was shown, 

and, in the same units, area of sector A 0 G Z  = 26;5V  
(for circle AZGH was shown to be 119;32’’).

And, in the same units, we showed that 
area of triangle AEG = 17;52'’ 

and area of triangle A 0G  = 18;48‘*.
Therefore, by subtraction, area of segment A DGK = 8;24’’ 

and area of segment AZGK = 8;3’*.
So, bysdditiG r.,areaofA ZG D  = 15;27” where area of circle ABGD = il3 ,6 ^  

Therefore where the area of the sun’s disk equals 12’’,
H516 the area of the eclipsed p a r t l i* * .

This is the am ount which we will enter in the above-mentioned table in the 
second column on the line with ‘3 digits’ [as argum ent].

Again, in the same figure [Fig. 6.5], to represent lunar eclipses, let the moon's 
disk be ABGD. and the shadow’s disk at mean [lunar] distance AZGH, and, as 
before, let i of the diameter of the moon be eclipsed.

Hence, where diam eter BD = 12”, the eclipsed section, ZD  = 3^.
And, according to the ratio 2;36 : 1, 

the diam eterofthe shadow, ZH = 31;12’’.
There.rore E K 0  comes to [!(I2 + 31;12) -  3 =] 18;36p.
So the circumferences are as follows: 
moon’s disk: 37;42’*
shadow's disk: 98;P
and the areas are:
moon’s disk: 113;6‘’
shadow’s disk: 764;32‘’.

Here again, where E 0  = I8;36*’,
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AE = EG = 6’’\ ^ ^  
a n d A 0 = 0 G =  1 5 :3 6 '/

.. .K 0  -  EK', = ^0A- -  AE-) E 0  = II;8 '’.
H517 So EK comes out to 3;44'* and K 0  to 14;52**.

Hence AK = KG = 4;42^
.Accordingh. the area of triangle AEG = 17;33‘’ 
and the area of triangle A 0G  = 69:52’’.

Furtherm ore, where diam eter BD = 12’’ and ZH = 31; 12'’, AG = 9:24’’.
So where diam eter BD = 120’’, AG = 94’’, 

and where diam eter ZH = 120’’, AG = 36;9‘’.
Therefore the corresponding arcs are:

arc ADG = 103;8° of circle ABGD 
and arc AZG = 35;4° of circle AZGH.

Therefore, by the previous argum ent, 
area of sector AEGD = 32;24‘’ where, as was shown, area of circle ABGD= 113;6‘’ 
and, in the same units, area of sector A G 0Z  = 74;28'’, 
since area of circle AZGH was shown to be 764;32’’.



And, as we showed, in the same units 
area of triangle AEG = 

and area of triangle A 0G  = 69;52‘*.
Therefore, by subtraction, area of segment A DGK  = 14;51'’ 

and area of segment AZGK  = 4;36*’.
So, by addition, the area enclosed by AZGD is 19;27‘’
where the area of circle ABGD is taken as 113;6’’. H513
Therefore, where the area of the lunar disk is 12'*,
the area comprised by its eclipsed section will be about 2t5'’--
This is the am ount which we will enter in the above-mentioned table in the
third, lunar, column, on the line with ‘3 digits’ [as argument].

T he layout of the tables is as follows.
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8. [Eclipse tables]^ H 519-22

[See pp. 306-8.]

9. {Delemination o f lunar eclipses}*’* H523

Having set out the above as a preliminar>’, we can predict lunar eclipses in the 
following manner.

VVe set down the amounts in degrees, com puted for the required opposition at 
the time of mid-syzygy a t Alexandria, of the so-called anomaly, [counted] from 
the apogee of the epicycle, and the [argum ent ofj latitude, [counted] from the 
northern limit. Having corrected the latter by means of the equation [of 
anomaly], we first enter with this corrected [argum ent ol] latitude into the 
tables for lunar eclipses. If it falls within the range of the numbers in the first two 
columns, we take the amounts corresponding to the argum ent of latitude in the 
columns for the [lunar] travel and the column for the digits [of magnitude] in 
both tables, and write them down separately. Then, with the anomaly as

There are a number of individual errors in these tables, but it is not always certain which arc 
due to corruption and which to Ptolemy's faulty computation. Certain scribal errors (corrected in 
the translation) are:
Solar eclipse, least distance col. 4. arg. 90:0. Heiberg H519.20> prints this 'followingmost Greek 
mss.) as /.y k(} o . i.e. 33:22.0. It was originally two entries, 33:20 correctly computed) and 2:0. 
where the iirst represents the immersion, and the second the duration of totality ((iovn), computed 
irom the diirerence between lunar and solar radii, 17:40' and 15:40'. There is a reference to this on 
p. 296 (H501.23), but I suspect both that remark and the entry 2;0 here of being interpolations. 
Most Arabic mss. have just 33:20.
Lunar eclipse, least distance col. 5, args. 89;8 emd 90;52, read Kij v(J for Kij n|3 (27;42) at H521,27 (with 
D. Ar) and H521.31 (with Ar). Same col., for arg. W;0. readKti k; for kt] i; (28:6) at H521.29, with 
D,Ar.
Lunar eclipse, col. 3, for a>-g. 90;0, text has TeXeia (all mss. except P. which has ‘21’). From the 
ratio shadow to moon of2^ : 1 one finds the maximum magnitude ofalunareclipseas2I:36digits 
in all cases. From Ptolemy’s interpolation method (cf. p. 296 n.53) one finds 21;36 at greatest 
distance and about 21;32 at least distance.

See H AMA  138-9 (with computed examples), Pedersen 234-5, and Appendix A, Example 11.
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argument, we enter into the correction table, and take the corresponding 
num ber of sixtieths. W e then take this fraction of the difference between the 
[two sets of] digits, [derived from] the two tables, which we wrote down, and 
also of the difference between the [two sets of] minutes of travel, and  add  the 
results to the am ounts derived from the first table. If, however, it happens that 
the argument of latitude falls within the range of the second table only, we take [as 

H524 final result] the appropriate fraction (determ ined by the num ber of sixtieths 
found [from the correction table]) of the digits and  m inutes [of travel] 
corresponding [to the argum ent o f latitude] in the second table alone. T he 
num ber of digits which we find as a result of the above correction will give us the 
magnitude of the obscuration, in twelfths of the lunar diam eter, a t mid-eclipse.

As for the minutes [of travel] resulting from the same correction, we always 
increase them by n th , to allow for the sun’s additional motion [during the phase 
of the eclipse], and divide the result by the moon’s anomalistic [i.e. true] hourly

TABL1-: FOR S()L .\R  tCM.lPSl'S

(JRK.VrMS l- DIS TANCl-: LE.VS r  DIS TA.NCU-:

1 2 3 4 1 2 3 4
.Miiuiii'N Miniitfs

Ai s{unHMits (il (il .\i t;iinn nts ol of
Latitiidr Im n u 'is io n Latiliicic Dibits Immersion

83 3() 276 24 0 0 0
84 0 276 0 0 0 0 84 6 275 54 1 12 57
84 ;5o 275 30 1 12 32 84 3(i 275 24 2 17 54

85 0 275 0 ■> 17 19 85 6 274 54 3 21 28
85 30 274 30 3 20 43 85 36 274 24 4 24 14
86 0 274 0 4 23 27 86 6 273 54 5 26 27

8fi 30 273 30 5 25 38 86 36 273 24 6 28 16
87 0 273 0 6 27 8 87 6 272 54 7 29 45
87 30 272 30 7 28 29 87 !>(> 272 24 8 30 55

88 0 272 0 8 29 32 88 (i 271 54 9 31 51
88 30 271 30 9 30 20 88 3(i 27 ! 24 10 32 33
89 0 271 0 10 30 54 89 (i 270 54 11 33 1

89 30 270 30 11 31 13 89 36 270 24 12 33 16
90 0 270 0 12 31 20 90 0 270 0 12^ 33 20
90 30 269 30 11 31 13 90 24 269 36 12 33 16

91 0 269 0 10 30 54 90 54 269 6 11 33 1
91 30 268 30 9 30 20 91 24 268 36 10 32 33
92 0 268 0 8 29 32 91 54 268 6 9 31 51

92 30 267 30 7 28 29 92 24 267 36 8 30 55
93 0 267 0 6 27 8 92 54 267 (i 7 29 45
93 30 266 30 5 25 38 93 24 266 36 6 28 16

94 0 266 0 4 ■ 23 27 93 54 266 6 5 26 27
94 30 265 30 3 20 43 94 24 265 36 4 24 14
95 0 265 0 2 17 19 94 54 265 6 3 21 28

95 30 264 30 1 12 32 95 24 264 36 2 ' 17 54
96 0 264 0 0 0 0 95 54 264 6 1 12 57

96 24 263 36 0 0 0

2 0
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LUNAR ECLIPSES

307

G REA TEST DISTANCE LEAST DISTANCE

1 2 3 4 5 1 2 3 4 5
Minutes Minutes

Arguments ol‘ of H air Arguments ol' of H alf
Latitude Digits Immei'sion Totality Latitude Digits Immersion Totality

79 12 280 48 0 0 0 77 48 282 12 0 0 0
79 42 280 18 1 16 59 78 22 281 38 1 19 9
80 12 279 48 2 23 43 78 56 281 4 2 26 45

80 42 279 18 3 28 41 79 30 280 30 3 32 20
81 12 278 48 4 32 42 80 4 279 56 4 36 53
81 42 278 18 5 36 6 80 38 279 22 5 40 42

82 12 277 48 6 39 1 81 12 278 48 6 43 59
82 42 277 18 7 41 34 81 46 278 14 7 46 53
83 12 276 48 8 43 50 82 20 277 40 8 49 25

83 42 276 18 9 45 48 82 54 277 6 9 51 40
84 12 275 48 10 47 35 83 28 276 32 10 53 39
84 42 275 18 11 49 9 84 2 275 58 11 55 25

85 12 274 48 12 50 31 84 36 275 24 12 56 59
85 42, 274 18 13 40 35 11 9 85 10 274 50 13 45 47 12 34
86 12 273 48 14 37 28 15 20 85 44 274 16 14 42 15 17 17

86 42 273 18 15 35 30 18 12 86 18 273 42 15 40 2 20 32
87 12 272 48 16 34 6 20 22 86 52 273 8 16 38 28 22 58
87 42 272 18 17 33 7 22 0 87 26 272 34 IJ 37 20 24 49

88 12 271 48 18 32 23 23 14 88 0 272 0 18 36 37 26 1
88 42 271 18 19 31 51 24 8 88 34 271 26 19 35 55 27 13
89 12 270 48 20 31 32 24 43 89 8 270 52 20 35 34 27 52

89 42 270 18 21 31 22 25 1 89 42 270 18 21 35 22 28 12
90 0 270 0 entire 31 20 25 4 90 0 270 0 entire 35 20 28 16
90 18 269 42 21 31 22 25 1 90 18 269 42 21 35 22 28 12

90 48 269 12 20 31 32 24 43 90 52 269 8 20 35 34 27 52
91 18 268 42 19 31 51 24 8 91 26 268 34 19 35 55 27 13
91 48 268 12 18 32 23 23 14 92 0 268 0 18 36 37 26 1 .

92 18 267 42 17 33 7 22 0 92 34 267 26 17 37 20 24 49
92 48 267 12 16 34 6 20 22 93 8 266 52 16 38 28 22 58
93 18 266 42 15 35 30 18 12 93 42 266 18 15 40 2 ' 20 32

93 48 266 12 14 37 28 15 20 94 16 265 44 14 42 15 17 17
94 18 265 42 13 40 35 11 9 94 50 265 10 13 45 47 12 34
94 48 265 12 12 50 31 95 24 264 36 12 56 59

95 18 264 42 11 49 9 95 58 264 2 11 55 25
95 48 264 12 10 47 35 96 32 263 28 10 53 39
96 18 263 42 9 45 48 97 6 262 54 9 51 40

96 48 263 12 8 43 50 97 40 262 20 8 49 25
97 18 262 42 7 41 34 98 14 261 46 7 46 53
97 48 262 12 6 39 1 98 48 261 12 6 43 59

98 18 261 42 5 36 6 99 22 260 38 5 40 42
98 48 261 12 4 32 42 99 56 260 4 4 36 53
99 18 260 42 3 28 41 100 30 259 30 3 32 20

99 48 260 12 2 23 43 101 4 258 56 2 26 45 ,
100 18 259 42 1 16 59 101 38 258 22 1 19 9
100 48 259 12 0 0 0 102 12 257 48 0 0 0
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Table of Correction
Table for Magnitudes 

of Solar and Lunar [Eclipses]

1 2 3
Common Common [Area] [Area]
Numbers Numijers [Linear] Digits Digits

(Anomaly; (.\nomaly) Sixtieths Dif^ts of Sun of Moon

6 354 0'  21 1 oj 0^
12 348 0 42 2 1 U
18 342 1 42 3 l i 2 t̂

24 336 2 42 4 25 3^
30 330 4 1 5 3f 4)[
36 324 5 21 6 4? 5i
AO Q10 7 IS 7  ̂S 6j
48 312 9 15 8 7 8
54 306 11 37 9 8i 9i

60 300 14 0 10 9? iOi
66 294 16 48 11 10« iH-o 288 19 36 12 1 9 • 2

78 282 22 36
84 276 25 36
90 270 28 42

96 264 31 48
102 258 34 54
108 252 38 0

114 246 41 0
120 240 44 0
126 234 46 45

132 228 49 30
138 222 51 39
144 216 53 48

150 210 55 32
156 204 57 15
162 198 58 18

168 192 59 21
174 186 59 41
180 180 60 0

motion at that point.®® The results of the division will give us the duration  of 
each phase of the eclipse in equinoctial hours; the result derived from the fourth 
column will give the duration of the immersion (and also that of the emersion 
likewise); and the result derived from the fifth column will give the duration of 
half of the totality. The times of entry and exit a t beginning and end [of the 
various phases] can be derived imm ediately by adding or subtracting the 
individual durations to o r from the time of the middle of totality, tha t is, 
approximately, the time of true opposition. W e can also imm ediately find the 
area digits by entering with the digits of the diam eter into the final small table

”*This will already have been determined in the computation ofthe time ol the true syzvg>' (cf.p. 
282).



and taking the corresponding am ount in the third colum n (and simiiariy for 
solar eclipses by taking the corresponding am ount in the second column).

Now reason informs us tha t the time interval from the beginning of an eclipse H525 
to its m iddle is not always equal to the time interval from mid-eclipse to the end, 
because of solar and lunar anomaly, the effect of which is that equal distances 
are covered [by the bodies] in unequal times. However, as far as the senses are 
concerned, no noticeable error with respect to the phenom ena would result 
from supposing these intervals equal in time. For, even when [the luminaries] 
are near mean speed, where the change [in speed] resulting from an [equal] 
increment [in the argum ent] is greater [than  elsewhere], the motion over the 
num ber of hours represented by the whole duration of [even] the ma.ximum 
possible eclipse does not exhibit the least noticeable difference [in duration] due 
to the change [in speed].

Furtherm ore, we can [now] see, by examining the m atter on the above basis, 
that we were quite right to reject as erroneous the period for the moon's [return 
in] latitude which Hipparchus dem onstrated. [As we saw, p. 207,] the 
increm ent [in argum ent of latitude] between the [two] eclipses which he set out 
appeared smaller according to his hypothesis, whereas according to our 
calculations it was found to be greater.®®

T o dem onstrate his thesis [of the period of return  in latitude], he chose two 
eclipses with an interval between them of 7160 [synodic] months, in both of 
which it happened that a quarter of the moon’s diam eter was eclipsed, at the H526 
same distance from the ascending node. T he first of these was observ'ed in the 
second year of M ardokem pad and the second in the thirty-seventh year of the 
Third  K allippic Cycle.®^ In order to dem onstrate the return  [in latitude], he 
makes the assumption that each eclipse exhibits the same position in mean 
argum ent of latitude,®® on the grounds tha t the first eclipse occurred when the 
moon was a t the apogee of the epicycle, and the second when it was at the 
perigee, and hence, he thought, the anom aly had no effect. However, his first 
mistake is in this very point, since there indeed was a considerable effect from 
the anomaly: the mean motion was greater than the true a t both eclipses, [and] 
not by an equal am ount, but by about 1° in the first eclipse, and?® in the second 
eclipse. Thus, in this respect, the period in latitude [between the two eclipses] 
falls short of an integer num ber of returns by o f the moon’s orbit. 
Furtherm ore, he failed to take into account the effect of the lunar distance on 
the size of the obscuration, although the difference [due to this effect] was the 
greatest possible between [precisely] these eclipses, since the first occurred when 
the moon was at its greatest distance, and the second when it was a t its least. For H527

“ The increment in argument of latitude over the 211438^ 23*’ between the two eclipses 
mentioned below is, according to Hipparchus’ value for the mean motion, only about 3' beyond 
complete revolutions, but about 12' according to Ptolemy’s value.

•’’ These are the eclipses o f -719  Mar. 8 a n d -140  Jan . 27, both of which have been used before: 
see IV 6 p. 191, IV 9 p. 208, and VI 5 p. 284, q.v. for details of the anomaly. See also, for the f irs t, 
eclipse, Apf>endix A, Example 11.

“ Literally ‘the same position in latitude is coihprised at each of the eclipses, from uniform 
[motion] {1% 6(iaXdC)’. On the assumption that the moon was precisely at apogee and perigee of the 
epicycle, then (in Hipparchus’ simple lunar hypothesis) the true position of the moon coincides with 
the mean.

V I 9. Computation o f  lunar eclipse 309



the same obscuration, o f * [of the diam eter], m ust necessarily result a t a lesser 
distance from the ascending node a t the ilrst eclipse, and a greater distance at 
the second. W e have shown that the difference between these distances comes to 
I Hence, in this respect, the period o f latitude exceeds an  integer num ber of 
returns by that am ount [1 i°]. Thus, with respect to the absolute error, the 
return in latitude would have been out by about two degrees (the sum of the 
[above] two errors), if it happened that the effect of both had been 
subtractive or additive. However, since one had the effect of falling short of a 
return and the other o f exceeding a return, by a  chance stroke of good luck 
(perhaps H ipparchus too noticed that these effects counterbalance each other 
somewhat) it turns out that the [motion in latitude] exceeds an  [exact] return  by 
only the difference between the [two] errors, [or] a third of a degree.

310 V I 9. Error in Hipparchus' determination o f  latitude period

10. {Determination o f solar eclipses] '̂^

Correct prediction of lunar eclipses can be achieved merely by the above, if the 
com putations are carried out accurately in the way described. Solar eclipses, 

H528 however, with which we deal next, are more com plicated to predict because of 
lunar parallax. We will do it as follows.

We determine the num ber of equinoctial hours by which the time of true 
syzyg>' at Alexandria precedes or follows noon. Then, if the geographical 
position in question, [i.e.] that of the required place, is different [from that], i.e. 
if it does not lie l>cneath the same m eridian as Ale.xandria, we add or 
subtract the dilference in longitude between the two meridians, expressed in 
equinoctial hours, and [thus] decide how many hours before or after noon the 
true syzygy occurred a t that place too. Then we determ ine, first, the time of 
apparent syzygy (which will be approxim ately the same as mid-eclipse) at the 
required geographical location, by applying the m ethod of com puting 
parallaxes which we explained previously [V 19], [as follows].

We enter the Table of Angles [ I I 13] and the Table of Paralla.xes [V 18], using 
[as arguments] the appropriate latitude, distance in hours from the meridian, 
point on the ecliptic where the conjunction occurred, and also distance of the 
moon. We thus find, fii-st, the moon’s parallax along the great circle drawn 
through the zenith and the moon’s centre. We always subtract from this that 
solar parallax which is on the same line, and from the result determine, in the way 

H529 indicated, the component of parallax in longitude by itsell’ which is computed 
by means of the angle we found [from the table] between the ecliptic and the great 
circle through the zenith. We always add to this [longitudinal parallax] the incre­
ment of ‘epiparallax’ corresponding to the num ber of equinoctial houi-s 
lepresented by the longitudinal parallax. This epiparallax is determined as 
follows. We take the dilference (as determ ined li om the same table) l:>etween the 
parallax corresponding to the original zenith distance and the parallax

’’̂ From Table VI 8, moon, enu irs Ibr m a ^ itu d c  3 dii^its: greatest distance, O) -  80:42°, leasi 
distame, (O = 79;;̂ 0°; dill'erenre I; 12°.

"See Appendix A, Example 12.
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corresponding to the zenith distance after the passage of the num ber of 
equinoctial hours [represented by the longitudinal parallax]. W e take the 
longitudinal component of this by itself, plus an additional am ount (if it is 
significant) which is the same fraction of the latter as the latter is of the original 
[longitudinal] parallax.^' T o the total parallax in longitude, com puted in this 
way, we add T^th of itself, to account for the additional m otion o f the sun, and 
convert the total to equinoctial hours by dividing it by the m oon’s true hourly 
motion at the conjunction. If the longitudinal parallax we found is towards the 
rear [i.e. in the order] of the signs (we explained previously [p. 267])how to 
determ ine this), we subtract the am ount in degrees which we had converted 
into equinoctial hours from the moon’s position, as previously determined, at H530 
the mom ent of true conjunction, in longitude, latitude and anom aly (each 
separately): this gives us the [corresponding] true positions of the moon at the 
moment of apparent conjunction, while the num ber of hours itself [resulting 
from the above com putation] tells us by how much the apparen t conjunction 
precedes the true. But if the longitudinal parallax we found is in advance [i.e. in 
the reverse order] of the signs, contrariwise, we add the am ount in degrees to the 
position, as previously determined, at the moment of true conjunction, in 
longitude, latitude and anomaly (each separately); and the num ber of hours 
will give us the am ount by which the apparent conjunction is la ter than the true.

Next, using the same methods, we determine from the distance in equinoctial 
hours of the apparent conjunction from the meridian, first, w hat the moon's 
parallax is measured along the great circle through the m oon,and the zenith.
From the result we subtract the solar parallax for the same argum ent, and use 
this result to determine, as before, (by means of the angle Ibrmed between the 
circles [of ecliptic and altitude] at that moment), the latitudinal parallax [i.e. 
the parallax] along a circle orthogonal to the ecliptic. W e convert the result to a 
distance along [the moon’s] inclined circle, i.e. we m ultiply it by 12.^  ̂ If the 
elfect of the latitudinal parallax is northwards with respect to the ecliptic, we H531 
add the result to the previously determined true p>osition in [argum ent of] 
latitude a t the moment of apparent conjunction when the moon is near the 
ascending node, but subtract it when the moon is near the descending node. 
Contrariwise, if the effect of the latitudinal parallax is southwards with respect 
to the ecliptic, we subtract the distance derived from the parallax from’ the 
previously determ ined p>osition in [argum ent of] latitude a t the moment of 
apparen t conjunction, when the moon is near the ascending node, but add it 
when the moon is near the descending node.

We thus obtain the am ount of apparent [argum ent ol] latitude at the 
moment of apparent conjunction. W ith this as argum ent, we enter the solar 
eclipse tables, and if our argum ent falls within the range of the numbers in the

' ' I.e. suppose the original longitudinal parallax to be 1,; this gives us a correction to the time of 
conjunction (for the method of computing which see below), and hence a new zenith distance, 
which will lead to a new longitudinal parallax U- Ptolemy’s rule is: form I2 -  1, = e. Then the 
‘epiparallax’ e ' is given by e' = e + c (c /1,), and the final longitudinal parallax by
1 = li + e ' = li  + (ls ~ l |)  + ( l2 -  l |)V l, .

’*From Ptolemy’s earlier practice (e.g. VI 5 p. 286 with n.26) one would expect ‘l l i ’, and 
this is indeed Ibund in the Arabic tradition (Q, Ger). However, the crudity ofthe approximation to 
1/sin 5° is almost negligible wh^n one considers that the latitudinal parallax is usually small.



first two columns, we can say that there will be a solar eclipse, and that its 
middle coincides approxim ately with the m om ent defining apparent conjunc­
tion. So we set down separately the am ounts o f the [m agnitude in] digits and the 
mmutes of immersion and emersion corresponding to the argum ent of latitude, 
as derived from each of the two tables, then enter, with the distance of the moon 
in anomaly from the apogee [of the epicycle] at the apparent conjunction, into 
the table of correction, take the corresponding num ber of minutes, and take the 
corresponding fraction of the difference between each [pair ol] results we wrote 

H532 down. In every case we add the result to the num ber derived from the first table. 
The digits found by this procedure give us, again, the am ount, in twelfths of the 
sun’s diameter, which will lie obscured a t approxim ately mid-eclipse. We 
increase the minutes of travel [found by this procedure] for both [stretches, i.e. 
irr.rr.ersicn and eiriersion] by I'sth, lo account for the sun's additionai motion, 
and convert the result into equinoctial hours [by dividing] by the moon’s true 
[hourly] motion. Thus we have the length of both immersion and emersion: 
this, however, is on the assumption that the [change in] parallax has no eiVect on 
these time-intervaii.

Now there is in fact a noticeable inequality in these intervals, due, not to the 
anomalistic motion of the lu m in a r ie s ,b u t to the m oon’s parallax. The effect of 
this is to make each of the two intervals [immersion and emersion], separately, 
always greater than the am ount derived by the above m ethod, and, generally, 
unequal to each other. We shall not neglect to take this into account, even if it is 
small. This phenomenon is due to the fact that the eifect of the parallax on the 
moon’s apparent motion is alw ays to produce the appearance of motion which 
would be in advance (if one were to disregard the moon’s proper motion 
towards the rear). For suppose, first, that the moon’s apparen t position is before 
[i.e. to the east of] the meridian: then, as it gradually rises higher [above the 
horizon], its eastward parallax becomes continually smaller than at the 

H533 moment preceding, and thus its motion towards the rear appears slower. O r 
suppose, secondly, that its apparent position is after [i.e. to the west of] the 
meridian: then, again, as it gradually descends [towards the horizon], its 
westward parallax becomes continually greater than a t the moment preceding, 
and thus, as before, its motion towards the rear appears slower. For this reason 
the intervals in question are always greater than those derived by the simple 
procedure described. Furthermore, the difference between successive parallaxes 
[at equal interv'als of time] becomes greater as one approaches the meridian; 
hence those intervals [of immersion or emersion] which are nearer the meridian 
must necessarily become more drawn-out. For this reason, the only situation in 
which the time of immersion is approxim ately equal to the time ol'emersion is 
when mid-eclipse occui-s precisely at noon, for then the appearance of motion in 
advance resulting from the parallax is about equal on both sides [of mid­
eclipse]. But when mid-eclipse occurs before noon, then the in te n a l of 
emersion is closer to the meridian and [thus] longer, while if mid-eclipse occurs 
aftei' noon, then the interval of immersion is closer to the m eridian and longer.

So in order to correct the time-inter\'als lor this effect, we [first] determine, in

I.e. to the fact that the true speed ol both sun and moon does not remain constant over the 
course of the eclipse. Cf. p. 309.

312 V I 10. Inequality o f  phases in solar eclipse



the way explained, the uncorrected length of each of the intervals in question, H534 
and the zenith distance a t mid-eclipse. Suppose, for example, that each interval 
is 1 equinoctial hour, and the zenith distance 75°. In the Parallax Table [V 18] 
we look for the minutes of parallax corresponding to the argum ent 75° (for, e.g., 
the moon’s greatest distance, ibr which one takes the entries in the third 
column). W e find, corresponding to 75°, 52'. Since, by hypothesis, the time- 
intervals of both immersion and emersion, in the mean, is 1 equinoctial hour, or 
15 time-degrees, we subtract these 15° from the 75° of the zenith distance, and 
find the minutes of parallax in the same column corresponding to the resulting 
60°, [namely], 47'. Hence the displacement in advance resulting from the 
parallax at the (average)^^ position nearer the m eridian comes to 5'. We also 
add the [15°] to the 75°, and find the m inutes of total parallax corresponding to 
the resulting 90° in the same column, 53i'. Thus here the displacement in 
advance resulting from the [parallax at] the position nearer the horizon is 1 
We take the longitudinal components of these increments we have found, and 
convert each [separately] into a fraction of an equinoctial hour by means of the H535 
moon’s true motion, as described, and then add each result to the appropriate 
m ean interval, calculated simply, ol'immersion or emersion; that is, we add the 
greater to the intesval bounded by the position nearer to the meridian, and the 
lesser to the interval bounded by the position nearer the horizon. It is obvious 
that the dilference between the two intervals in the above example is 3 ; ',  or 
about ^th of an  equinoctial hour, which is the time taken by the moon in mean 
motion to traverse that distance.'^

There remains only the readily accomplished task, if we wish, of converting 
the time in equinoctial hours a t each inteixal into the seasonal hours particular 
[to the given latitude and date], by the m ethod explained in the earlier part of 
our treatise [II 9].

V I 10. M ethod o f  correcting solar eclipse phases 313

11, { On the angles o f inclination at eclipses}^^

T he next topic is the examination of the inclinations'^ which are formed at 
eclipses. This kind of investigation is based both on the inclination of the

'^H^crnv. Ifn o t an interpoJation, this must mean, taking the position obtained bv applyini^the 
15° o fthe  motion o fthe heavens in 1 hour directly to the zenith distance. In fact 15° is the maxumm 
possible change in the zenith distance in 1 equinoctial hour. Cf. n.75.

Ptolemy’s procedure here is, to say the least, crude. Instead ot computing the actual zenith 
distances of the bodies at begirming and end of the eclipse, he simply applies the 15® of one hour’s 
motion of the heavens to the zenith distance at mid-eclipse. Finding the total parallax from the 
zenith distance, he applies it as if it were the longitudinal parallax. The procedure is perhaps 
explicable as illustrating the maximum possible effect of this factor: the longest possible solar eclipse is 
about 2 hours; to get the maximum parallactic difference between the two intervals we have to take 
the zenith distance as great as possible. Allowing 15° hourly motion (cf. n.74), 75® is the maximum 
zenith distance which permits the whole eclipse to be visible. The total parallax is the maximum 
possible value of the longitudinal parallax. To be consistent, however, Ptolemy should have taken 
the moon at least distance (for which the difference between parallaxes is greater), i.e. coL 3 + col. 4 
in V 18. This would have given him corrections of 6'  and 2 ', with a  difference of 4 ' (still only ith  of an 
hour).

'■*On Chs. 11-13 see HAMA  141-4.
O r dirertions’, npooveuoEic;. For other uses of this word sec p. 43 n.38 and p. 227 n.l9. The 

purpose of computing these angles was presumably weather prediction; sec HAMA  II 999.



eclipsed part [ol'the body] to the ecliptic and on the inclination of the ecliptic 
itseir to the horizon. Both of these angles, during the course of every eclipse 

H536 phase, undergo great changes as a result of'the shift in position [of the !)odies], in 
a way which could not be controlled if one wanted to undertake the task of 
com puting the inclinations throughout the whole of the duration  [of the 
eclipse], a superfluous task, since predictions on such a scale are not in the least 
necessary or useful. For, since the situation of the ecliptic relative to the horizon 
is determ ined from the position on the horizon occupied l)y its rising or setting 
points, the angle formed by the ecliptic at the horizon must necessarily change 
continuously during the course ol' an eclipse, as those points on the ecliptic 
which are rising or setting change continuously. Similarly, since the inclination 
of the eclipsed part [of the l)ody] to the ecliptic is determ ined from the great 
circle drawn through the two centres, [i.e.] the centres of moon and shadow or 
the centres o f moon and sun, it is, again, a necessary consequence ol the motion 
of the moon's centre during the course of an eclipse that the circle through the 
two centres occupy a continuously varying p>osilion relative to the ec liptic, and 
[hence] that the angle formed at their intersection vary continuously. Therefore 
[the need for] this kind of examination will be satisfied if it is carried out only for 
those points in [the piogress ol] the eclipse which have some significance, and 
only roughly for the inclinations with respect to the horizon. [To achieve this 
kind of accuracy] people who actually observe the eclipse as it occurs could, 

H537 merely by eye, estimate the imp>ortant inclinations by looking at the relative 
fKjsitions in both cases [at eclipse and horizon], since, as we said, a rough notion 
[of the am ount] is sulllcient in such mattei's. Nevertheless, not to pass over this 
topic altogether, we shall try to set out some ways of achieving the kind of result 
desired as conveniently as possible.

The points in [the progress ol] the eclipse which we too take into 
consideration as deserving to be thought significant arc:
[1] the point of the start of obscuration, which coincides with the very 

beginning of the whole eclipse;
[2] the point of the completion of obscuration, which coincides with the 

beginning of the phase of totality;
[3] the p>oint of greatest obscuration, which coincides with the middle of 

totality;^®
[4] the point of the start of emersion, which coincides with the end of the whole 

total phase;
[5] the point of the completion of emersion, which coincides with the end of the 

whole eclipse.
T he inclinations [with respect to the horizon] which we take into considera­

tion as being more reasonable and more significant are those bounded by the 
meridian and also those bounded by the rising and setting points of the ecliptic 
at the equinoxes and at summer and winter solstices. As for the points bounding
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’'R ead ing  fev xff iieoQ) xpovto jiovrii; Yivexai (with D,Ar) for fjTic fevtS  neotoxpovo) 
TT̂ q ^KXelyeox; fiveu n iq  novfi<; ylvETai at H537, 12-13. The latter would mean ‘which coincides 
with the middle of the eclipse [for those eclipses] in which there is no total phase’. T he interpolation 
is presumably the remains of a  feeble attem pt to list all possible cases.



the various ‘wind-directions’,̂ '* they may be understood in many dilVerent ways 
by many p>eople; nevertheless, il’desired, they can be indicated by means of the 
angles we set out along the horizon.

Considering the intersections of meridian with horizon, let us make the H538 
Ibllowing definitions:

the northern intersection is the ‘northpoint’; 
the southern intersection is the ‘southpoint’.
Considering the rising and setting [points of the ecliptic, let us make the 

following definitions]:
the intersections of the beginning of Aries or Libra with the horizon are 

known as ‘equinoctial rising’ and ‘equinoctial setting’; these are always the 
same distance, [i.e.] a quadran t, from the point where the meridian intersects 
[the horizon];

the intersections of the beginning of Cancer [are known] as ‘summer rising’ 
and ‘summ er setting’, and the intersections of the beginning of Capricorn as 
winter rising' and ‘winter setting’.

The distances [from the m eridian intersection] of these last [four] points vary 
according to the latitude in question. The inclinations are sulllciently 
characterised by saying that they are at one of the above situations or between 
some pair oi them.

To enable one to determ ine the position ol the ecliptic relative to the horizon 
Ibr any gi\ en situation, we com puted, by the method indicated in the lii'st books 
of our treatise,***’ the distance along the horizon, at rising and setting, of the 
beginning of each zodiacal sign from the points where the equator intersects 
[the horizon, com puting them] on either side of it [i.e. north or south]. VVe did 
this for each of those latitudes from M croe to Borysthenes fbrwhich we [earlier] 
tabulated the angles [II 13]. To provide a means of readily sun  eying these.”' 
instead of a table, we drew a diagram  [Fig6.7] consisting of'8 concentric circles, 
conceived as lying in the plane of the horizon, to contain the [various] distances 
and nom enclature for the 7 climata. Then we drew two lines, at right angles to H539 
each other, through all the circles: a horizontal one representing the 
intersection of the planes of horizon and equator, and another, vertical one 
representing the intersection of the planes of horizon and meridian. O n the 
innermost®^ circle we wrote, at the ends of the horizontal line ‘equinoctial rising’ 
and ‘equinoctial setting', and at the ends of the vertical line ‘north’’ and ‘south’. 
Similarly we drew [four] straight lines through all the circles at equaj

Greek astronomy sometimes adopted the popular way of indicating the points of the compass 
l)v v\ ind-names. These do not occur in the Almagest, except for d 7niA.i(0TTi(; and XiV in V III 4 to 
designate the general directions ‘east’ and ‘west’, and in the diagram Fig. 6.7, where they are a later 
inter{x>latton in the mss., not mentioned in the text (see below n.82). O n the systems of wind-names 
(which do indeed varv) see Rehm. Griechischf IVindrostn.

II 2 p. 77.
*' KOta TO Ei)0Ec5pTiTOv. One would rather expect 8id to euOewpriTOV, which is implied by Ishaq’s 

translation.
In the figures in the Greek mss. these designations are on the outermost circle; hence Heiberg(at"’

H539.7; d .  ibid. p. \ 'I )  emended ^VTO?, the reading of all mss., to îCTÔ  (‘outermost’). But in- the 
Arabic tradition they do appear, all or in part, on the inmost circle, and it seems likely that they 
were translerred to the outermqjt circle when the names of the winds were (after Ptolemy) added in 
the inmost circle (cf. above n.79).

V I 11. Drawing horizon diagram 315



inclinations either side oi'the equator [i.e. liie horizoniai iine], and wrote along 
these, in the seven interlinear spaces, the horizon distance of thesolsticial point 
from the equator which we found for each latitude (in units where one quadrant 
contains 90°). At the ends where these lines meet the inmost circle we wrote, for 
the southern ones, ‘winter rising' and ‘winter setting', and for the northern ones, 
‘summer rising’ and ‘summer setting’. To indicate the signs in between 
[equinoxes and solstices] we inserted two more lines in each of the four segments, 
and [wrote] along these the horizon distance from the equator of [the beginning 
of] the appropriate zodiacal sign, adding the nam e of each sign on the 
outermost circle. We also wrote, along the m eridian line, for [each] parallel, its 

H540 name, the length [of the longest day] in houi-s, and the elevation of the pole. In 
writing in [the data for all of the above], we began with the largest, outermost 
circle for the northernmost data, [and so on].^*

In order to have tabulated the apparent inclinations of the actual phases to 
the ecliptic, i.e. the angles formed between the ecliptic and the great circle 
joining the centres in question at each of the significant points mentioned 
above, we com puted these too, lor [successive] positions of the moon 
corresponding to a dilference of 1 digit in obscuration. However, we did this 
only for lunar positions at mean distance (since that is suilicient), and under the 
assumption that those arcs of the ecliptic and the moon's inclined circle which 
we consider for the obscurations are sensibly parallel to each other.

For example, let [Fig. 6.6] line AB represent the arc of the ecliptic, with A as 
the centre of the sun or the shadow, and let line GDE represent the moon's 
inclined circle, with G as the point a t which the m oon’s centre is at eclipse 
middle, and D as the point at which the centre is when it is just totally eclipsed 

H541 or just about to begin emerging from totality (i.e. when the moon is internally 
tangent to the circle of the shadow). Let E be the jx)int at which the moon's
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D
Fig. 6.6

“  O n this figure sec HAM A  38-9. As Ptolemy drew it, it is, as he says, a schematic representation 
of a table. But it closely resembles a representation in polar coordinates. If it were truly such, 
however, all the straight lines except the horizontal and vertical ones would become curves (sec 
H AM A  p. 1216 Fig. 32). 1 have omitted the wind-namcs found in' the Greek and some Arabic 
mss., and in Heiberg’s figure. Cf. p. 315 n.82. The figure is on p. 320.

Correction to Heiberg: for the latitude of Clima VI read a  (with AD, Is) (or A.5 (45;34°). 
Corrected by Heiberg ad loc.



centre is when either sun or moon is just beginning to be eclipsed or has just 
compieted emersion (i.e. when the circles are externally tangent). Jo in  AG, AD,
AE.

It is obvious tha t angles BAG and AGE, which correspond to the time ol'mid- 
eclipse, are l ight angled to the senses, and that Z BAE .>-epresents the angles at 
the !>cginning and end of the eclipse, while Z BAD represents the angles at the 
end ol [the partial phase ol] the eclipse and a t the beginning ofemersion. And it 
is immediately clear that AE represents the sum ol’ the radii ol'both circles, and 
AD their dillerence.**^

Then let us take as an example an eclipse in which half the sun’s diameter is 
obscured at mid-eclipse. Let A be the sun’s centre. T hen  in all cases (since we 
assume the moon at mean distance) AE comes to [0; 15,40° + 0; 16,40° =]
0;32,20°, and AG. which is less than that by half the sun’s diam eter, comes to 
0a6 ,40°

Therefore, since AG = 16:40'’ where hypotenuse EA = 32:20'* H542
^according to the magnitude of obscuration assumed), 

where hvpotenuse AE = 120*'
AG = 6 1 ;5 r , 

and, in the circle about right-angled triangle AGE 
arc AG = 62:2°.

62:2°° where 2 right angles = 360°°
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Z AEG = Z BAE = , u i u i acno31:1 where 4 right angles = 360°.
Asrain, to take the case of a lunar eclipse, let A be the centre of the shadow.

Then, since, as iielbre. we assume the moon at mean distance, AE will always be 
the same am ount, namely [0:43.20° + 0; 16.40°=] 60 minutes, and AD, likewise, 
will always lie [0:43,20° -  0:16,40° =] 26:40 minutes. Let the moon be eclipsed 
in a situation such that the m agnitude is 18 digits. Thus AG is again less than 
AD by half the diam eter [of the moon]“'’ and, by subtraction [of 16:40' from 
26;40'], AG comes to 10;0 minutes.
Then, where hypotenuse AE = 120’’, AG = 20;0‘*, 

and, in the circle about right-angled triangle AGE.
arc AG = 19:12°.

• /  A P r  /  RAF -  /  ^^*^2°° where 2 right angles = 360°°
.. ^  AbLx = Z BAt, -  26° vvhere 4 right angles = 360°. H543

Similarly, where hypotenuse AD = 120**, AG = 45' ,̂ 
and, in the circle about right-angled triangle AGD. 

arc AG = 44:2°.

• /  A n n  /  RAn -  I ^.. ^  ^  OAU -  where 4 right angles = 360°.
In the same way we com puted the sizes of the angles for the other [integer] 

digits [of magnitude], [always taking] that angle which was less than a right 
angle, in units where one right angle equals 90° (corresponding to the 
graduation of the quadrant of the horizon). We constructed a table with 22 lines

»"Cf. H AMA  Fig. 124 p. 1244.
“ See Fig. M (copied from the figure on p. 409ofM anitius). Since the eclipse has a niagnitude of

18 digits, by definition XY = 6̂  = radius of moon. Therefore AX = AY -  XV = radius of shadow 
minus radius of moon = AD. Therefore AG = AX -  X G  = AD minus radius of moon.



T
Fig. M

and 4 columns. The lust column contains the digits of actual obscuration, 
measured along the diameter, ibund lor mid-eclipse; the second contains the 
angles occurring at solar eclipses at the moment of the beginning of the eclipse 
and the m oment of the end of emersion; the third contains the angles occurring 
at lunar eclipses at the moments of the beginning of the eclipse and o lth een d  of 
emersion; and the fourth also contains the angles occurring at lunar eclipses, at 
the moment of the end of [the partial phase ol] the eclipse and the moment of the 
beginning of emersion. The layout ol'table and circle [diagram ] are as ibliovvs.

H544 12. {Display of diagrams for the inclinations]^^ 

[See pp. 319,320.]

H545 13. {Detennination oj the inclinations}

Thus, as a preliminary, we determine, by the method explained [ \T  9-10], the 
time of each significant point [in the eclipse] listed above, and, from the times, 
those points on the ecliptic which are rising and setting at those moments, and, 
from the diagram  [Fig. 6.7], the situation [of ecliptic] w ith respect to the 
horizon. T hen, when the centre of the moon (the apparen t centre at solar 
eclipses and the true centre at lunar eclipses) is exactly on the ecliptic, we get the in­
clination for a  solar eclipse a t the beginning of the eclipse, and the inclination for

** Corrections to Heiberg:
Arg. 4 digits, col. 3, read v8 X8 for v8 ic  ̂ (54,'27®) at H544,13. All mss. have the incorrect reading, 
but it is obviously repeated in error from the line above.
Arg. 14 digits, col. 4, read vP ko for vP k6 (52;24°), with D,Ar, at H544,23.
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1

Digits

2 
Sun 

Beginning 
of Eclipse 

and End of 
Emersion

3
Moon 

Beginning 
of Eclipse 

and End of 
Emei-sion

4
[Moon] 

End of Partial 
Phase and 

Beginning of 
Emersion

0 90° 0 90° 0
1 66 50 72 30
2 56 59 65 10

3 49 16 59 27
4 42 36 54 34
5 36 35 50 14

6 31 1 46 15
7 25 46 42 31
8 20 44 39 2

9 15 51 35 42
10 11 6 32 29
11 6 25 29 23

12 1 47 26 23 90° 0
13 23 28 63 37
14 20 36 52 21

15 17 48 43 26
16 15 1 35 41
17 12 18 28 38

18 9 36 22 1
19 6 55 15 43
20 4 15 9 36
21 1 36 3 35

a lunar eclipse at the end of the partial phase and also at the end of emersion, from 
the situation on the horizon oi the pomt ol the ecliptic setting at the moment m 
question; vve get the inclination for a solar eclipse at the end of the eclipse, and 
the inclination for a lunar eclipse at the beginning of the eclipse and the 
beginning of emersion [i.e. end of totality], from the [horizon situation] of the 
rising-point of the ecliptic. W hen the moon s centre is not exactly on the 
ecliptic, vve take from the table the angles corresponding to the relevant 
m agnitude [of the eclipse] in digits, and apply those angles to the intersection of 
hoi izon and ecliptic. If the moon’s centre is north of the ecliptic, vve set oil’the 
angle to the north of the setting-point for eclipse-beginning in solar eclipses and 
for the end of the partial phase in lunar eclipses; vve set it off to the north of the 
rising-point for the end ol' emersion in solar eclipses and the beginning of 
emersion in lunar eclipses; furthermore vve set it ofi' to the south oi' the rising- 
point for eclipse-beginning in lunar eclipses, and to the south of the setting- 
point for eclipse-end in lunar eclipses. If the moon’s centre is south of the 
ecliptic, we set the angle ofi’ to the south of the setting-point for eclipse- ,̂ 
beginning in solar eclipses and for end of the partial phase in lunar eclipses; to 
the south of the rising-point I'or the eclipse-end in solar eclipses and for the 
beginning of emersion m lunar eclipses; to the north of the rising-point for

H546
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F ig . 6 .7

eclip.se-beginning in lunar eclipses; and to the north of the setting-point for 
eclipse*end in lunar eclipses. The result of this procedure will give us the point on 
the horizon towards which (speaking roughly, as we said;, are inclined those 
points of the luminaries comprising the significant [moments of the phases], 
namely the beginning and end of eclipse and of total phase.®'

“^Literally 'the beginnings and ends of the eclipse and emersion’, i.e. beginning of eclipse, end of 
partial phase (= beginning of totality), beginning of emersion (= end of totality), end of emersion.



Book VII

In the preceding part of this treatise, Syrus, we discussed the phenomena 
associated with sphaera recta and sphaera obliqua, and  also the details of the 
hypotheses for the motions of sun and moon and the combinations of positions 
which are seen to result from them. Now, to deal with the next part of the 
theory, we shall begin discussing the stars, and first, in accordance with the 
logical order, the so-called fixed stars.

First of all we must make the following introductory point. Concerning the 
terminology- we use, in as much as the stars themselves patently maintain the 
formations [of their constellations] unchanged and their distances from each 
other the same, we are quite right to call them ‘fixed’; but in as much as their 
sphere, taken as a whole, to which they are attached, as it were, as they are 
carried around, also [like the other spheres] has a regular motion of its own 
towards the rear and the east with respect to the first [daily] motion,^ it would 
not be appropriate to call this [sphere] too ‘fixed’. For we find that both these 
statements are true, at least on the [observ-ational] basis afforded by the am ount 
of' time [preceding us]: even before this H ipparchus conceived of both these 
notions on the basis of the phenom ena available to him, but under conditions 
which ibrced him, as far as concerns the effect over a long period, to conjecture 
rather than to predict, since he had found very few observations of fixed stars H3 
before his own time, in fact practically none besides those recorded by Aristyllos 
and Timocharis, and even these were neither free from uncertainty nor 
carefully worked out; but we too come to the same conclusions by comparing 
present phenom ena with those of that time, but with more assurance, both 
because our examination is conducted [with m aterial taken] from a longer 
time-interval, and because the fixed-star observations recorded by Hipparchus, 
which are our chief source for comparisons, have been handed down to us in a 
thoroughly satisfactory form.

First, then, no change has taken place in the relative positions of the stars 
even up to the present time. O n  the contrary, the configurations observed in

' On. chs. 1 and 2 see Pedci-scn 237-45.
- Note that the motion which in modern terminolog\- is ‘precession ol'the equinoxes' (i.e. a motion 

in the direction of decirasing longitudes of the tropical points with respect to the fixed stars) is 
described b>- PtoJemv as a motion of the fixed stars with respect to the tropical points in the direction 
of increasing longitudes. This accords with his taking the tropical points as the primarx- reference 
points (III 1 p. 132). Hipparchus, however, seems at times to have adopted the modem convention, 
to Judge from the title of his work ‘O n the displacement of the solsticial and equinoctial points' (III 1 
p. 132 and VII 2 pp. 327 and 329).

1. I That the fixed stars always maintain the same position relative to each otherY H2



H ipparchus’ time are seen to be absolutely identical now too. This is true not 
only of the positions of the stars in the zodiac relative to each other, or of the 
stars outside the zodiac relative to other stars outside the zodiac (which would 
[still] be the case if only stars in the vicinity of the zodiac had a rearw ard motion, 
as H ipparchus proposes in the first hypothesis he puts forward); but it is also 
true of the positions of stars in the zodiac relative to those outside it, even those 
at considerable distances. This can easily be seen by anyone who is willing to 
make an inspection of the m atter and examine, in the spirit of love of truth, 

R 4 whether present phenom ena agree with those recorded for H ipparchus’ time.
In any case, to provide a convenient test of the m atter, we too will adduce 

here a few of his observations, [namely] those which are most suitable for easy 
comprehension and also for giving an overview of the whole method of 
comparison, by showing that the configurations formed by stars outside the 
zodiac, both with each other and with stars in the zodiac, have been preserved 
unchanged.^

Slars in Cancer. [Hipparchus] records that the star in the southern claw of 
Cancer [a Cnc], the bright star which is in advance of the latter and of the head 
of H ydra [P Cnc], and the bright star in Procyon [a CM i] lie almost on a straight 
line.^ For the one in the middle lies 1! digits^ to the north and east of the® 
straight line joining the two end ones, and the distances [from it to each of them] 
are equal.

Stars in Leo. [He records] that the easternmost two [^, e Leo] of the four stars in 
the head of Leo [̂ i, £, K, X], and the star in the place where the neck joins [the 
head] of H ydra [to Hya], lie on a straight line.' Also, that the line drawn 
through the tail of Leo [P] and the star in the end of the tail of Ursa M ajor [r] 

H5 UM a] cuts olF the bright star under the tail ofU rsa M ajor [a CVn] 1 digit to the 
west [i.e. passes 1 digit to the east of it].® Similarly, [he records] that the line 
through the star under the tail of Ursa M ajor and the tail of Leo passes through 
the more advanced of the siars in Coma [Berenices].^

 ̂In the following lists I give in brackets the modern desig;nation ofthe stars in question, when the 
identilkation is reasonably certain, and, in footnotes, the equivalent in Ptolemy’s catalogue. 
Several of the stars mentioned by Hipparchus are not recorded in that catalogue, and his 
descriptions of those that are often differ from Ptolemy’s. In Ptolemy’s own alignments which 
follow, the descriptions also vary somewhat from the catalogue. The alignments are discussed in 
detail by Manitius, Fixsiembeobachtungen’.

* Catalogue XXV' 6 and 9 and X X X IX  2. Like M anitius, I do not understand ‘to the north and 
east’. In the given situation, the only possible deviation is to the north-west or the south-east. I 
calculate that in Hipparchus’ time it was about 5 ' to the north and west.

’ The 'digit' (5diCTuX.o<;) and ‘cubit’ see p. 323) as astronomical measurements were taken
by Hipparchus from Babylonian astronomy (in the Almagest they are found only in the Babylonian 
observations IX  7, pp. 452-3, and X I 7, p. 541, and in passages derived from Hipparchus). 
The cubit in Babylonian astronomy can represent either 2^° or 2° (the latter normal in the 
Hellenistic period: see HAMA  II 591-93). Strabo, 2.1.18, quotes data  from Hipparchus in which 
the 2° norm is certain. It is also found in H ipparchus’ commentary on Aratus, where Vogt, 
‘Wiederherstellung’, col. 30, argued for the norm. In the passage below, a 2° cubit produces a 
smaller error in the estimated distance (inaccurate in either case). The ‘digit’ in Babylonian 
astronomy is jjth  of the 2“ cubit or i>th of the 2 i° cubit, 5 ' in either case.

^Reading Tff<; forti^v (misprint in Heiberg) a t H4, 14.
'C atalogue X X V I 3 and 4 and XLI 6.
® Catalogue XXV'127, I I 27 and I I 28. By my calculation, the line passed more like half a degree 

to the east of a  CVn.
*The latter are probably catalogue X X V I 33 and 34, doubtfully identified as 15 and 7 Com.

322 V I I 1. Hipparchus on precession o f  zodiacal stars



V I I 1. Hipparchus' star oLignments 323

Stars in Virgo. [He records] that between the northern foot of Virgo (ji Vir] 
and the right loot of Bootes Boo]‘“ lie two stars; the southern one of these [109 
Boo], which is equally bright as the [right] foot of Bootes, lies to the east of the 
line jo in ing the feet, while the northern one [31 Boo], which is half-bright, lies 
on a straight line with the feet. Furtherm ore, of these two stars, the half-bright 
one is preceded by two bright stars, which form, together with the haJf-bright 
one, an  isosceles triangle of which the half-bright one is the apex.“  These [two 
bright stars] lie on a straight line with Arcturus [a Boo] and the southern foot of 
Virgo [X V ir].‘  ̂Also, tha t between Spica [a Vir] and the second star from the 
end of the tail in H ydra [y Hya]*^ lie three stars, all on one straight line [57,63,69 
Vir].'"* The middle one of these [63] lies on a straight line with Spica and the 
second star from the end of the tail in Hydra.

Stars in Libra. [He records] that the star [^ Ser] which is very nearly on a 
straight line towards the north with the [two] bright stars in the claws [a, P Lib] 
is bright and triple: for on both sides of it lie single small stars [36,30 Ser].'^

Stars in Scorpius. [He records] that the straight line draw n through the 
rearmost o f  the stars in the sting of Scorpius [X Sco] and through the right knee of H6 
O phiuchus [r) O ph] bisects the interval between the two advance stars in the 
right foot of O phiuchus [36,9 O ph]‘® and that the fifth and seventh joints [in the 
tail of Scorpius, 9, K Sco] lie on a straight line with the bright star in the middle 
of A ra [a Ara].'^ Furtherm ore, that the northernm ost star [a] o f  the two in the 
base of Ara [a , 0]*® lies between and almost on a straight line with the fifth joint 
and the star in the middle of Ara, being almost equidistant'from  both.

Stars in Sagittarius. [He records] that to the east and south of the Circle under 
Sagittarius [i.e. of Corona Australis] lie two bright stars [a, P Sgr], quite some 
distance (about 3 cubits) from each other.'® T he southernmost and brighter of 
these [P], which is on the foot of Sagittarius, lies very nearly on a straight line 
with the midmost [a CrA] of the three bright stars in the Circle (which lie 
furthest towards the east in that [constellation]) [y, a , P CrA], and with the 
rearmost [^ Sgr] of the [two] bright stars [^, o  Sgr] at opposite angles of the 
Q uadrila tera l [in Sagittarius, T, O, <p]: the two intervals [between these three 
stars] are equal. The northernm ost [of the two stars to the east o f the Circle, a  
Sgr] lies to the east of this straight line, but is on a straight line with the,[two] 
bright stars [^, a] at opposite angles of the Quadrilateral.^®

' “Catalogue X X V II 26 and V 19.
”  M anitius ideniifies these two stars as nos. 43 and 46 of Bootes in the catalogue of Heis (Koln,

1872). I have not tracked these down in a more recent catalogue, since any identification seems 
utterly uncertain.

“'C atalogue V 23 and X X V II 25.
’’ Catalogue X X V II 14 and XLI 24.
'^This seems preferable to Manitius’ identification (61, 63, 69).

The first three are catalogue XIV  11 and X X V III1 and 3. My identification of the ‘triple star’ 
is far more likely than Manitius’ o Ser plus k . 29 Ser.

'* Catalogue X X IX  20 and X III 12, 14 and 15.
•’ Catalogue X X IX  17 and 19 and XLVI 3.

Catalogue XLVI 1 and 2.
’’ C auiogue X X X  24 and 23. On the cubit see p. 322 n.5.
*®The equivalents in Ptolemy’s catalogue a rc  o, fi S g r X X X  24,23; y, a ,  |i CrA: X L V II8,7 ,6;
T, o , ip S g r X X X  22, 21, ■6, 7 {not described as a quadrilateral).



Stars in Aquarius. [He records] tha t the two stars close together in the head of 
Pegasus [8, v Peg] and the rear shoulder of Aquarius [a Aqr] are almost on a 

H7 straight line,^* to which the line from the advance shoulder of Aquarius [P Aqr] 
to the star in the cheek of Pegasus [e Peg] is parallel.^^ Also, tha t the advance 
shoulder of Aquarius [P], the bright star Peg] of the tv,o in the neck of Pegasus 
[C. ^], and the star in the navel of Pegasus [a And] lie on a straight line, with 
equal intervals between them.^^ Furtherm ore, tha t the line through the muzzle 
[e] of Pegasus and the easternmost [t| Aqr] of the four stars in the vessel [of 
Aquarius, t], Ji, y]^^ bisects, almost a t right angles, the line through the two 
stars [0, v] close together in the head of Pegasus.

Stars in Pisces. [He records] that the star [|i Psc] in the snout of the southern­
most fish [of Pisces], the bright star in the shoulders of Pegasus [a Peg], and the 
bright star in the chest of Pegasus [P Peg] lie on a straight line.'®

Stars in Aries. [He records] that the advance star [P T ri] in the base of 
T riangulum  lies I digit to the east of the straight line draw n through the star in 
the muzzle of Aries [a Ari] and the left foot of Androm eda [y And]. Also, that 
the most advanced of the stars in the head of Aries [P, y Ari] and the m idpoint of 
the base of Triangulum  [i.e. halfway between P and y T ri] lie on a straight 
line.^^

Stars in Taurus. [He records] tha t the [two] easternmost stars of the Hyades [a, 
£ T au] and that star [ti* O ri] in the pelt held in O rion’s left hand which is sixth, 
counted from the south, lie on a straight line.^® And that the line draw n through 

H8 the advance eye of Taurus [e T au] and the seventh star from the south in the 
peit [o' O ri] cuts off the bright star in the Hyades [a T au] I digit to the north.'® 

Stars in Gemini. [ He records] tha t the heads of Gemini [a, P Gem] lie on a 
straight line with a certain star [^ Cnc] which lies to the rear of the rearmost 
head by a distance three times that between the heads, and that the same star 
also lies on a straight line with the [two] southernm ost [0,5 Cnc] of the four stars 
[0, 5, y, f|] round the nebula [Praesepe].^®

In these alignments, and similar alignments which enable us to carry out
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2*Cataloi?ue X IX  15 and 16 and X X X II 2.
' ‘ Catalogue X X X II 4 and X IX  17.
• 'Cataloifuc X IX  11. 12 and 1.

Catalogue X X X II 12. 11. 10. 9.
Catalogue X X X III I and X IX  4 and 3.

' “Catalogue X X I 2, X X II 14 and XX  15. Using the coordinates for these 3 stars computed by 
Peters-Knobel pp. 81-2) lor the time oi'Hipparchus, I find P T ri well over a degree to the east oi the 
line connecting a  .Ari and y .And. There is no doubt alwut the identification o f  the stars.

Catalogue X X II2 and 1 and X X I 2 and 4 .1 have dubiously adopted M anitius’ identifications 
here. However, it seems possible that by ‘the midpoint of the base of the triangle’ Hipparchus may 
have been referring to the star 5 Tri. This lies approximately on a straight line with X and P Ari. 
While y  Ari is ‘more advanced’ than either of these, H ipparchus may, like Ptolemy, have put that 
‘on the horn’ rather than ‘in the head’. X Ari is not included in Ptolemy’s catalogue.

Catalogue X X III 14 and 15 and X X X V  20. Ptolemy counts the stars in the pelt from the 
opposite direction, the north.

■’ Catalogue X X III 15, X X X V  19 and X X III 14. M anitius identifies the first star with 5 Tau, 
but not only is this discrepant from Ptolemy’s catalogue, but it produces a  deviation from the lineof 
about 1° to the north, whereas, if one takes the line from s T au too^ Ori, a  Tau lies about 8'  to the 
north, in good agreement with the equivalence, 1 digit = 5'.

' “Catalogue X X IV  1 and 2; X X IV  25; XXV 3, 5, 4, 2; and X X V  1.



comparisons practically throughout the sphere [of the fixed stars], we sec thai 
no change has occurred up to the present time. Yet very noticeable changes 
would have occurred in the 260 or so years between [Hipparchus and now] if 
the stars near the ecliptic were the only ones to perform an eastward motion.

But, in order to provide those who come after us with a means of comparison 
over a longer interval [than was possible for usj, from an even larger num ber of 
alignments of the above kind, we shall add the most easily recognisable from 
am ong those which we have observed but which were not previously recorded.
We begin from the

Stars in Aries. T he two northernmost [a, P Ari] of the three stars in the head of 
Aries [a, P, y] and the bright star m the southern knee of Perseus [£ Per] and the H9 
star called Gapelia [a Aur] lie on a straight line.^'

[.S7an in Taurus.] The line drawn through the star called Capella [a Aur] and 
the bright star in the Hyades [a T au] cuts off^^ the star in the advance leg of 
Auriga [i Aur] a little to the east.^^ Also, the star called Capeila [a Aur], the star 
which is common to the rearmost foot of Auriga and the tip of the northern hom 
of Taurus [P Tau], and the star in the advance shoulder o fO rion [yO ri] lie on a 
straight line.^^

[Stars in Gemini.] Furtherm ore, the [two] bright stars in the heads of Gemini 
[a, P Gem] and the bright star in the neck of H ydra [6 Hya] lie ver>’ nearly on a 
straight line.^^

[S/arj in Cantor.]-Furthermore, the two stars close together in the front leg of 
Ursa M ajor [i, k UM a], the star on the tip of the northern claw of Cancer [i 
Cnc], and the northernmost of the [two] ‘Aselli’ [y Cnc] lie on a straight line.̂ ® 
Similarly, the southern Asellus [5 Cnc], the bright star in Procyon [a CM i], and 
the bright star between them (which is in advance of the head of H ydra) [P 
Cnc]), lie almost on a straight line.”

[.SVa/i in Leo.] Furtherm ore, the straight line draw n from the midmost star [y 
Leo] of the [three] bright stars in the neck of Leo y, n ] to the bright star in 
H ydra [a Hya] cuts off the star on the heart of Leo [a Leo] a little to the east.^®
The [line] from the bright star in the rum p of Leo [5 Leo] to the bright star [y 
U M a] in the back of the thigh ofUrsa M ajor (which is the southernmost star on HIO 
the rear side of the quadrilateral), cuts off, a little to the west, the two stars which 
are close together in the rear paw of U rsa M ajor [v, £ UM a].^'

[Stars in 17/-^o.] Furtherm ore, the line from the star in the back of the thigh of

‘‘Catalogue X X II 14. 2. 1; XI 23: and X II 3.
Reading dTtoXanPdvei (with DG) for XanPdvei at H9, 4. Corrected by Manitius and by 

Keibcrg himself (Op. Min. p. XIV).
“ Catalogue X II 3, X X III 14 and X II 10.

Catalogue X II 3, X II 11 and X X X V  3.
Catalogue X X IV  1 and 2 and XLI 7.
Catalogue I I 12 and 13 and XXV' 7 and 4. The identifications are certain, but the line through i 

and K U M a passes far to the east ofy and i Cnc, both now and (according to the coordinates of 
Peters-Knobel) in Ptolemy's time. I have not computed whether m odem proper motions sulTice to. 
account for this discrepancy. If  Ptolemy had written ‘the northernmost erf the two stars close 
together’ the alignment would be more plausible.

^’ Catalogue XX V  5, X X X IX  2 and X X V  9.
“ Catalogue X X V I 5, 6, 7 (;, y, n  Leonis); XLI 12; and X X V I 8.
”  Catalogue X X V I 20, II 19, II 23 and 24.
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Virgo K ^***] to second star from the tip of H ydra’s tail [y Hya] cuts off the 
star called Spica [a Vir] a little to the west. T he line from Spica to the star in the 
head of Bootes [P Boo] cuts off A rcturus [a Boo] a little to the east. Spica and the 
[two] stars on the wings of Corvus [6, y  Crv] lie on a straight line. Spica, the star 
in the back of Virgo’s thigh Vir], and the northernm ost, bright star [ti Boo] of 
the three in the advance knee of Bootes [r|, t , u] lie on a straight line."*” 

[.v/ajj in Libra.] Furtherm ore, the [two] bright stars in the claws [a, p Lib] and 
the star on the tip of H ydra’s tail [n Hya] are very nearly on a straight line. The 
bright star in the southern claw [a Lib], Arcturus [a Boo], and the midmost 
U M a] of the three stars in the tail of U rsa M ajor [6, t^] lie on a straight line. 
T he bright star in the northern claw [P Lib], Arcturus [a Boo], and the star in 
the back of the thigh of Ursa M ajor [y U M a] lie on a straight line.^‘

[6Van in S'corpius.] Furtherm ore, the star on the rear shin of O phiuchus [^ 
Oph], the star in the fifth tail-joint of Scorpius [9 Sco], and the more advanced
[u] of the two stars close together in its sting [X, u] lie on a straight line. T he most 
advanced [a] of the three stars in the breast of Scorpius [a, a , tJ, and the two 

H 11 stars in the knees of Ophiuchus [r |, ̂  O ph], fonn an isosceles triangle, the apex of 
which is the most advanced of the three stars in the breast.

[S/ars in Sagittarius.] Furtherm ore, the star on the front, southern hock of 
Sagittarius (which is of second m agnitude) [p Sgr], the star on the arrow-head 
[Y Sgr], and the star in the rear knee of O phiuchus [r| O ph] lie on a straight line,. 
T he star [a Sgr] in the knee of the same [front] leg of Sagittarius (which lies near 
Corona [Australis]), the star on the arrow-head [y Sgr], and the star in the 
advance knee of O phiuchus [  ̂ Oph] lie on a straight line.^^

[.V/«/-.» in Capricorn.] Furtherm ore, the line draw n I'rom the bright star in L\ ra 
[a Ly r] to the stai-ŝ "* in the horns of Capricorn [a. p. v, ̂  Cap] cuts off the bright 
star in Aquila [a Aql] a little to the east. The line from the bright star in Aquila 
to the first-magnitude star in the mouth of Piscis Austrinus [a PsA] bisects, 
approximatelv, the interval between the two bright stars on the tail of Capricorn 
[y ,5 C ap ].^ ^ '

[.S'/a/j in .Ujuarius.] Furtherm ore, the line from the lirst-m agnitude star in the 
mouth of Piscis Austrinus [a PsA] to the star in the muzzle of Pegasus [e Peg] 
cuts off the bright star in the rear shoulder of Aquarius [a Aqr], a little to the 
east.̂ **

[.SVa/5 in Pisces.] Furtherm ore, the stars in the mouths of Piscis Austrinus [a

^C atalogue X X V II 15 (C Vir), XLI 24 (y Hva), X X V II 14 (a Vir), V 6 and 23 (p, o Boo), 
XLIII 5 and 4 (5, y Cor); and V 20, 21, 22 (t), t ,  u Boo).

Catalogue X X V III 1 and 3 (o, P Lib); XLI 25 (Jt Hva); V 23 (a Boo); II 25, 26. 27 (e, C. ^  
UMa); and II 19 (y UMa).

« Catalogue X I I I 13 (^ Oph); X X IX  17,20,21 (0, X, u Sco); X X IX  7 ,8,9  (o .a , t  Sco) and X III
12 and 19 (n, C Oph).

«  Catalogue X X X  23 and 1 (P, y Sgr); X I I I 12 (ti Oph); X X X  24 (a Sgr); and X I I I 19 (C Oph).
“  Reading too^, with D, Ar (other Greek mss. Totj) for Heiberg’s emendation to v  ‘the star’ at 

Hll, 10. Corrected by Manitius, who supposes the stars to be a  and P Cap. But these would not give 
the correct alignment, and in the catalogue Ptolemy puts both these stars on the same horn. I 
therefore suppose that he is referring to the general direction from Vega of the group of stars.

«  Catalogue V I I I 1 (a Lvr); X X X I1 ,2 ,3 , 4 (a, v, p, ^ Cap); X V I3 (a Aql); X L V III1 (o PsA); 
and X X X I 23, 24 (y, 8 Cap).

' “Catalogue X LV III 1, X IX  17 and X X X II 2.
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PsA] and the southern fish [of Pisces, ^  Psc] and the [two] advance stars of the 
quadrilateral in Pegasus [a, P Peg] lie on a straight Hne.*^

If one were to m atch the above alignments too against the diagrams forming 
the constellations on H ipparchus’ celestial globe/® he would find that the H12 
positions of the [relevant stars] on the globe resulting from the observations 
made a t that time [of H ipparchus], according to w hat he recorded, are very 
nearly the same as at present.

V II2. Hipparchus on precession 321

2. {Thai the sphere o f the fixed stars, too, performs a rearward motion along the ecliptic]

From these considerations, and others like these, we can be assured that 
absolutely all the so-called fixed stars m aintain one and the same p>osition 
relative [to each other], and share one and the same motion. But the sphere of , 
the fixed stars also performs a motion of its own in the opposite direction to the 
revolution of the universe, that is, [the motion ol] the great circle through both 
poles, that of the equator and that of the ecliptic.^^ We can see this mainly from 
the fact that the same stai-s do not m aintain the same distances with respect to 
the solsticial and equinoctial points in our times as they had in fonner times: 
rather, the distance [of a given star] towards the rear with respject to [one ot] 
those same p>oinis is Ibund to be greater in proportion as the time [of 
observation] is later.

For H ipparchus too, in his work ‘O n the displacem ent of the solsticial and 
equinoctial points', adducing lunar eclipses from am ong those accurately 
observed by himself, and from those obsetA cd earlier by Timocharis, computes 
that the distance by which Spica is in advance of the autum nal [equinoctial] 
point is about 6° in his own time, but was about 8° in T im ocharis’ time.’® For his H I 3 
fmal conclusion is expressed as follows; ‘If, then, Spica, for example, was 
formerly 8°, in zodiacal longitude, in advance of the autum nal [equinoctial] 
point, but is now 6° in advance’, and so forth. Furtherm ore he shows that in the 
case of almost all the other fixed stars for which he carried out the comparison, 
the rearw ard motion was of the same am ount. And we also, comparing the 
distances of fixed stars from the solsticial and equinoctial points as they appear 
in our tim e with those observed and recorded by H ipparchus, find that their 
motion towards the rear w ith respect to the ecliptic is, proportionally, similar to 
the above am ount. We conducted this type of investigation by means of the 
instrum ent which we constructed previously [see V I ]  for the observations of

’̂ Catalogue X LV III 1, X X X III 1, and X IX  4 and 3. The ‘quadrilateral’ in Pegasus (not 
mentioned in the catalogue) is formed by the stars a Peg, P Peg, a And and y Peg.

^®I interpret this to mean that Hipparchus published a description of the constellations to be 
drawn on a celestial globe (literally ‘solid sphere’, axEped a<paipa, cf. V I II3). What relationship, if 
any. this had to Hipparchus’ putative ‘Catalogue’ is obscure. O n the general problem see HAMA 
284-92.

*  Reference back to 1 8 pp. 46-7. This makes it obvk>us that we must delete eiq xd ̂ no^eva (omittecT 
by al-yajjaj) at H I2 , 12: it is senseless to talk about a motion ‘towards the rear’ with respect-to a 
circle which is itself in motion. The motive for the interpolation was to gloss ‘in the opposite 
direction’.

^®Cf. I l l  1 p. 135 with n .l4  for the lunar eclipses involved.



328 V ll 2. Hipparchus’ and Ptolemy’s positions of Regulus compared
individual moon-sun distances. [In this case] we set one ot'the astrolabe rings to 
the apparent position of the moon (com puted for the m om ent of observation), 
then adjusted the other astrolabe ring to align it with the star being sighted, so 
that both moon and star would be sighted simultaneously in the prop>er 
positions. Thus we obtained the position o f every one of the bright stars from its 
distance from the moon.'’*

To [illustrate this procedure] by a single example. In the second year of 
H14 Antoninus, on Pharm outhi [VIII] 9 in the Egyptian calendar [139 Feb. 23], 

when the sun was just about to set in Alexandria, and the last degree ofTaurus 
was culminating, i.e. equinoctial hours after noon on the ninth, we observed 
the apparent distance of the moon from the sun (which was sighted a t about K  
3®) as 92i°. H alf an hour later, the sun new having set, and the [firsi] quarter of 
Gemini [i.e. E[ 7;30°] culminating, the apparent moon was sighted in the same 
position [with respect to the astrolabe ring], and the star on the heart of Leo [a 
Leo, Regulus]] had an apparent distance from the moon, [as measured] by 
means of the other astrolabe [ring], of57s° towards the rear along the ecliptic.

Now at the first [observation] the true position of the sun was very nearly X  
3!o°. Hence the apparent position of the moon, since it was 92s° towards the 
rear [of the sun], was approxim ately HI 5^°, which is also the position it ought to 
occupy according to our hypotheses. H alf an hour later the moon should have 
moved about i° towards the rear, and have a parallax in advance, relative to the 
fn-st situation, of about T!°. Therefore the apparent position of the moon half an 

H i5 hour later was El 55' .̂ Hence the star on the heart, since its apparent distance 
from the moon was 5 li°  to the rear, had a position o f^ l 2i°, and its distance 
from the summ er solstice was 32^°.^^

But in the 50th year of the Third  Kallippic Cycle [-128 /7 ], as Hipparchus 
records from his own observations, [that star] had a distance to the rear of 
the summer solstice of 296°. Therefore the star on the heart of Leo has moved 
2*° towards the rear along the ecliptic in the 265 or so years from the 
observation ofH ipparchus to the beginning [of the reign] ofAntoninus[137 8], 
which was when we made the majority of our observ'ations of the positions of the 
fixed stars. From this we find that 1° rearward motion takes place in 
approximately 100 years, as H ipparchus too seems to have suspected, according 
to the following quotation from his work ’O n the length of the year’: ‘For if the 
solstices and equinoxes were moving, from that cause, not less than  TSSth of a 

H I 6 degree in advance [i.e. in the reverse order] of the signs, in the 300 years they 
should have moved not less than 3°’.̂ ^

In the same way we took sightings of Spica and the brightest am ong those 
stars near the ecliptic, from the moon, and then [having done that], were in a

’' See \ '  1. with notes, for a detailed explanation of the use oithe instrument. Ptolemy's procedure 
explains why the mean error in the longitudes ofhis star catalogue, about 1°, is the same as the mean 
error of his lunar and solar positions, derived from his faulty equinox (sec III I p. 138 with n.21).

’^This obseivation is discussed in some detail by Pedersen. 240-5, with a computation of the 
parallax. Unfortunately he has made erroi-s, notably in the angle between ecliptic and hour-circle 
in the first observation (see Toomer [3] p. 143).

The ‘300 years’ is a reference to the interval between the solstice observation of Meton (-431, 
cf. I l l  i p. 138) and Hipparchus’ own time. This was obvioi'sly one of the comparisons which 
Hipparchus made.



Ijeiter position to use those stars to take sightings of the rest. VVe[thusj find that 
their distances relative to each other are, again, very nearly the same as those 
observed by H ipparchus, but their individual distances from the solsticial or 
equinoctial points are in each case about 2j° farther to the rear than those 
derivable from what H ipparchus recorded.

V ll 3. Hipparchus' doubts about precession 329

3. {Thai the rearward motion o f the sphere o f the fixed stars, too, takes place 
about the poles o f the ecliptic}'^^

From the above it has become clear to us that the sphere ol the tlxed stars, too, 
perlbrms a  rearw ard motion along the ecliptic, of approxim ately the am ount 
indicated. O ur next task is to determ ine the type of this motion, that is to say, 
whether it takes place about the poles of the equator o r about the poles of the 
inclined circle of the ecliptic. Since great circles draw n through the poles of 
either one of the above [equator or ecliptic] cut olf unequal arcs on the other,
[the answer to] the above [question] would become apparen t merely from the 
motion in longitude, were it not for the fact that the m otion in longitude over the H I 7 
time available [for comparison ol'observations] is so extremely small that the 
dilference due to the above effect would be, as yet, imperceptible. The easiest 
way to detect [the answer] is through [comparison of] the p>ositions[of the stars] 
in latitude^'^ in ancient times and now. For it is obvious that whichever of the 
two circles, equator and ecliptic, it is I’rom which they can be shown to m aintain 
a constant distance in latitude, that is the circle about the poles of which the 
motion of their sphere will take place.

Now H ipparchus agi ees with [the idea ol] the motion taking place about the 
poles of the ecliptic. For in 'O n  the displacement of the solsticial and equinoctial 
points’ he deduces from the observations of Timpcharis and  himself that Spica 
(again) has m aintained the same distance in latitude, not with respcct to the 
equator bu t with respect to the ecliptic, being 2° south of the ecliptic at both 
earlier and later periods. T hat is why in ‘O n the length of the year he assumes 
only the motion which takes place about the poles of the ecliptic, although he is HI 8 
still dubious, as he himself declares, both because the observations of the school 
of Tim ocharis are not trustworthy, having been m ade very crudely, and 
because the dilference in time between [Tim ocharis and  himself] is not 
surticient to provide a secure result. We, however, find the [latitudinal distances 
with respect to the ecliptic] preserv-ed over the much longer interval [down to 
our times], and  that for practically all fixed stars. We can therefore with good 
reason consider the motion about the poles of the ecliptic as now more firmly 
established. For when we observe the latitudinal distance of any star with 
respect to the ecliptic, as measured along the great circle through the poles of 
the ecliptic, we find that it is practically the same as tha t com puted from the

^♦See Pedersen 246-9.
** “latitude’ is ambiguous here and below. It means ‘direction orthogonal to the circle in 

question’, i.e. ‘latitude’ (in the modem sense) with respect to the ecliptic, and ‘declination’ with 
respect to the equator. Cf. Introduction p. 21 and p. 63 n.74.



records of H ip p a r c h u s ,o r  if there is a discrepancy, it is of very small size, such 
as can be accounted for by small observational errors. But when we consider the 
distances [of the stars] from the equator, as measured along great circles 
through the poles of the equator, we find [1] that those observed by us do not 
agree with those recorded in the same way by H ipparchus, and [2] that the 
latter do not agree with those recorded even earlier by Tim ocharis and  his 
associates; rather, the constancy of their latitudes with respect to the ecliptic is 
confirmed even more by these very observations, since the distances from the 

H19 equator of the stars located on the hem isphere from the w inter solstice through 
the spring equinox to the summ er solstice are found to be ever more northerly 
com pared to those [of the same stars] in earlier periods, while for stars located 
on the opposite hemisphere they are ever more southerly. Furtherm ore the 
differences [between earlier and later observations] are greater forstai-s near the 
equinoctial points, and less for stars near the solstices, and these dilTerences are 
just about the same as the am ount by which that section of the ecliptic to the 
rear [of the earliest longitude of any particular star] defined by the correspond­
ing motion in longitude [during the period in question] produces a displace­
ment to the north or south of the equator.

In order to illustrate this point for a few easily recognisable stars we will set 
out. for each of the two hemispheres mentioned, their vertical distances Irom 
the equator, as measured along the great circle through the poles of the equator, 
as recorded by the school of Timocharis, as recorded by H ipparchus, and also as 
determined in the same fashion by ourselves.^^ [See p. 331.]

In the case of all the above stars, which are located (to speak of their 
longitudinal position) on that one of the above-defined hemispheres which 
contains the spring equinox, the vertical distances from the equator which are 
later in time are all more northerly than the earlier, and for those stars ver\- near 
the solsticial points [the diiference] is very small, while for those near the 
equinoxes^® it is quite considerable: this accords with a rearw ard motion about 
the p>oles of the ecliptic, for if one takes successive sections of this semi-circle [of 
the ecliptic] going towards the rear, each is more northerly than the one in 
advance of it, and the diiference [between successive equal sections] is again 
greater near the equinoxes and less near the solstices.

[See p. 332.]

330 V I I 3. Latitudes o f stars constant

K a ra  t o v  "Innapxov dlvaYeYPa^l^£''al(; Ka'i au v o Y o n e v a iq , literally ‘those recorded and 
computed according to Hipparchus’. 1 take this to mean that Hipparchus recorded certain stellar 
positions (mainly declinations), from which Ptolemy computed the latitudes. All the evidence 
(including this passage) is in favour of the hypothesis that H ipparchus did not record stellar 
positions in latitude and longitude (except lor a lew special cases like that ofSpica mentioned above, 
for the specific purpose of determining the precession). Otherwise it is impossible to explain why 
Ptolemy went through the cumbersome process of comparing declinations (pp. 331-2), instead of 
simply comparing latitudes observed by Hipparchus and himself.

These stars are listed in Ptolemy’s catalogue as follows, I . X VI 3:2. not listed, but cf. X X III30- 
2; 3, X X III 14; 4,X II 3; 5,X X X V  3; 6,X X X V  2;7, X X X V III I; 8, X X IV  1; 9,X X IV  2. I have 
followed Manitius in arranging Ptolemy’s continuous text in tabular form.

‘‘̂ Sic (plural, although only the spring equinox is involved). T he inaccuracy is probably 
Ptolemy’s, caused by his thinking of the general situation (dilTerences large near either equinox, 
small near either solstice).
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Thus in the case of all these stars, the reverse [of the above] is true, as one 
would logically expect; the later vertical distances from the equator are more 
southerly than the earlier, in proportion [to the time intervals and locations].

Furtherm ore one can conclude from these data  that the rearward motion in 
longitude of the sphere of the lixed stars is, as we said previously [p. 328], 1° in 
about 100 years, or 2j° in the 265 years between H ipparchus’ and our 
observations. It is particularly [easy to do this] from the differences in 
declination found for those stars near the equinoctial points.

For the middle of the Pleiades, which was found to be 156° north of the 
equator in H ipparchus’ time, and 16|° in our time, has [thus] moved ln °  
northw ard in the interval between us: this is nearly the same as the difference in 
ucclinaiion from the equator between [both ends of] the o» the ecliptic near H2^ 
the end of Aries which represents the rearw ard motion in longitude over that 
interval.®’ And the star called Capella, which was found to be 40?° north of the 
equator in H ipparchus’ time, and 416° in our time, has [thus] moved northward 
3̂ : this is, again, the same as the difference in declination from the equator of 
[the ends ot] the [intervening] 2!° of the ecliptic near the middle of Taurus.
Also, the star on the advance shoulder of Orion, which was found to be 1?° 
north of the equator in H ipparchus’ time, and 2 in our time, has [thus] moved 
northw ard about which is nearly the same as the dilference in declination 
from the equator of [the ends oi] the [intervening] 25° of the ecliptic two-thirds 
through Taurus.®'

The situation is similar on the opposite hemisphere. Spica, which was found 
to be 5° north of the equator in H ipparchus' time, b u t!°  south in our time, has 
[thus] moved southwards 1to°, which is, again, the am ount of the difference in 
declination from the equator of the [ends of the] 2 |° of the ecliptic near the end 
of Virgo. And the star in the tip of the tail of Ursa M ajor, which was found to be H25 
604° north of the equator in H ipparchus’ time, but 5%° in our time, has [thus] 
moved southwards ln ° , which is the am ount of the difference in declination 
from the equator of the 2!° of the ecliptic near the beginning of the sign of 
Libra. Also, Arcturus, which was found to be 31° north of the equator in 
H ipparchus’ time, but 29^° in our time, has [thus] moved southward li®, which 
is, likewise, approxim ately the am ount of the difference in declination from the 
equator of the 2l° of the ecliptic near the beginning of Libra.

A= 0:57.30°.

'» From Table I 15.
5 ;30») = 11:39.59 

5 (325°) = 12;36,29 .
which is considerably less than Ptolemy 's 1 r!°. Perhaps he has carelessly computed 5 (30°) 11 ;40°, 
2 f /3 0 x  11;40°«  1;2°.

In the catalogue these two stars have very nearly the santje loni^itude. Capella being placed in 
y 25 (X II3) and the star in Orion in 8 24 (X X X V  3). Yet here they are placed ‘in the middle of 
I'aurus’ and ‘two-thirds through Taurus’ respectively, and this is the basis of Ptolemy’s 

calculations. For, from table 1 15, the diflerence in declination of2f° near 45° is about 49', and near 
55° is about 41'. Thus the statement regarding Capella seems to rest on an error.

“ .Vic! The longitude of the star in question is H  29^ in the catalogue ( I I27), so one would expect 
‘ the beginning of Virgo’ here. But the mss. are unanimous, and I hesitate to emend, both because of 
the other gross inaccuracies in this passage, and bccause a diflcrcncc in declination of I t!j° is too 
great for the beginning of Virgo (from Table I 15 one finds about 57' for an argument of 30°). 
However, Ptolemy gives the same amount. 1 t5°, for the ‘end of .Aries’ (aljove, with n.6l).

m



T he point in question will become even clearer to us from the following 
observations.®'*

[Firstly] Timocharis, who observed a t A lexandria, records the following. 
In the 47th year of the First K allippic 76-year period, on the eighth of 
Anthesterion,®* which is A thyr 29 in the Egyptian calendar, towards the end of 
the third hour [of night], the southern half of the moon was seen to cover exactly 

H26 either the rearmost third or [the rearmost] half*® of the Pleiades. T h a t moment 
is in the 465th year li-om Nabonassar, A thyr [III] 29/30 in the Egyptian 
calendar [-282 Jan . 29/30], 3 seasonal hours before midnight, or 3 5 equinoctial 
hours (since the sun was in about ^  7°). T he interval reckoned in m ean solar 
days comes to about the same num ber of equinoctial hours [3?] before mid­
night. At that moment, according to the hypotheses we dem onstrated pre­
viously, the position of the moon was as follows: 

true longitude: y 0;20°
(i.e. distance from the spring equinox: 30;20°)

[latitude]: 3;45° north o( the ecliptic 
apparent longitude 29;20°

I in Alexandria 
apparent [latitude]  ̂ 3;35° north  of the ecliptic®^

(for the culm inating |X)int was frds through Gemini).
Tlierelbre at that lime the rearmost end of the Pleiades was about 29j° towards 
the rear from the spring equinox (for the moon's centre was still in advance of 
it), and was about 3 f° north of the ecliptic (for, again, it was a little north o( the 
moon's centre).

H27 [Secondly] Agrippa, who observed in Bithynia, records that in the twelfth 
year of Domitian. on the seventh of M etroos according to the calendar of that 
region.'’” at the l)eginning ol the third hour of night, the moon occulted the 
rearmost, southern part of the Pleiades with its southern horn. T h a t moment is 
in the 840th year from Nabonassar, Tybi [V] 2/ 3 in the Egyptian calendar 
[92, Nov. 29/30], 4 seasonal hours before midnight, or 5 equinoctial hours 
(since the sun was in about ^  6°).*’̂  Therefore, reduced to the m eridian of

334 V I I 3. Precession: the Pleiades

'’̂ Tlieie are numerous dilllculties connected with the following observations ol occultations. 
Ptolemv's interpretations ol' them, and his calculations. To deal with them here would require too 
lengthy a discussion. .Although they have lieen much discussed (e.g. by Schjellenip. Recherches’ 
III. Fotheringham [I] and Fotheringham [2]), the only satisfactory treatment is in Britton [I], 107- 
28. to which the reader interested in Ptolemy's (ol'ten strange) interpretation of the data is referred. 
However, Britton does not consider the aspect of the errors resulting from Ptolemy's miscomputa- 
tions on the basis of his own theory. The more gross of these are noted below. These only reinforce 
Britton's conclusion that the observations could not have been selected at random.

These and similar dates (pp. 335, 336 and 337) attributed to Timocharis must be dates in the 
artilkial Metonic/Kallippic calendar. See Introduction p. 12.

It is most unclear what is meant here. Were there discrepancies in Timocharis’ rep>ort (or in the 
mss. of it available to Ptolemy)? O r does this represent variations in the.-l/wa^jY ms. tradition? The 
translation of al-Hajjaj has ‘a h a lf  only.

Computed from Ptolemy's tables: X ©  ~  7;8°, X ^  30; 11 P ^  +3;45°. Apparent longitude and 
latitude at Alexandria 29;0° and +3;38°.

“ Metroos is the month of the Bithynian calendar. See Introduction p. 14. Agrippa is 
unknown apart from this passage.

"’'T h is implies that the longest day was about that of Clima V' (Hellespont), which is 
approximately coirect Ibr Bithynia. But Ptolemy’s correction o f -2 0  mins. lor reduction to the
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Alexandria, the observation occurred 5^ equinoctial hours before midnight, or 
5 4 hours with respect to mean solar days. At this m om ent the positions of the 
centre of the moon were as follows: 

true longitude: 8 3;7°
[latitude]: 4 |°  north of the ecliptic 

apparent longitude  ̂ 8  3; 15°
I in Bithynia 

apparent [latitude] J 4° north of the ecliptic 
(for the culm inating p>oint was two-thirds through Pisces).^®

Therefore at that time the rearmost section of the Pleiades was, in longitude, 3Si° 
towards the rear from the spring equinox, and, [in latitude], 3f° north of the 
ecliptic.’’

Hence it is clear that the rearmost part of the Pleiades was, both then and H28 
now, the same distance in latitude, 3f°, north of the ecliptic, as measured along 
the great circle through the poles of the ecliptic, while in longitude it has moved 
3;45° towards the rear liom the spring equinox (since it was 29:° from the 
equinox at the first obseivation and 33i° at the second) in the inteival of 375 
years comprised lietween the two obseivations.'■ Therelbre in 100 )ears the 
rearmost part o l'the Pleiades has moved 1° towards the rear.

Again, [firstly] Timocharis, who obseiA'ed at Alexiindria, records that in the 
36th year of the First Kallippic Cycle, on Elaphebolion 15, which is Tybi 
5, at the beginning of the third hour, the moon coveied Spica with the middle of 
that edge of its disk which is towards the equinoctial rising-pbint [i.e. the east], 
and that Spica, in passing through, cut off exactly the northern third of [the 
moon's] diameter.

This moment is in the 454th year from Nabonassar, Tybi [V] 5 /6  in the 
Egy ptian calendar [-293 M ar. 9/10], 4 seasonal hours before midnight, which 
is also 4 equinoctial hours approximately, since the sun was in about K  15°; 
and reckoning with respect to mean solar days leads to about the same number 
of hours before [midnight]. At that moment the positions of the moon’s centre H29 
were as follows:

true longitude: TTB 21 ;21°
(i.e. distance from the summer solstice was 81;21° towards the rear) '

meridian of .Alexandria implies that .Agrippa was observing at a place 5° to the east: in (act no place 
in Bithynia was more than 3° to the east of .Alexandria; moreover, in the Geography (8.17.3-7) 
Ptolemy puts all the cities in Bithynia west of Alexandria.

There are some gross erroi-s here. Computed (for 6; 15p.m. Alexandria): X.([ =  32; 13° (0;54® less 
than the text!), P ([ =  +4;53°. One might think that Ptolemy computed lor 8 p.m., i.e. took at the 
beginning of the third hour' as i/' it were equinoctial hours at Alexandria, were it not that the 
culminating point he gives is approximately correct (for 7 p.m. local time Bithynia I find K  18:5°). 
His parallax corrections are also inaccurate (I find p>̂  = +0;19°, pP - -0 ;38“, and hence, for the 
apparent position of the moon, X =  32;32®, P =  + 4 ;I5 “. O ne need hardly say that this error is- 
disastrous for the ‘verification’ of Ptolemy’s prcccssion constant.

”  AsM anitius points out (p. 402), in hiscatalogue (X X III32) Ptolemy assigns a latitude of+3il to 
the rearmost end of the Pleiades. But the discrepancy can easily be explained by the fact 
that he is referring, not to a specific star, but to part of the general mass.

From Nabonassar 465 to Nabonassar 840.



true [latitude]: i 6 ' south oi' ecliptic 
apparent longitude: 82t'5° from the summ er solstice”  
apparent [latitude]: about 2° south ol' the ecliptic 

(lor the middle ol' Cancer was culminating).
Thereibre, Irom the above, [we conclude that] Spica was at that mom ent 8 2 r  
in longitude from the summer solstice, and just about 2° south of the ecliptic.

Likewise, [secondly] in the 48th year of the same [First Kallippic] Cycle, 
he says that on the sixth day from the end of the last third of Pyanepsion,’  ̂
which is T hoth  7, when as much as half an hour of the tenth hour had gone by, 
and the moon had risen above the horizon, Spica appeared exactly touching the 
northern point on [the moon].

This moment is in the 466th year from Nabonassar, T hoth  [I] 7 /8  in the 
Egyptian calendar [-282 Nov. 8/9]; [the hour is], according to Timocharis 
himself, 3 2 seasonal hours after midnight, or approxim ately 3 s equinoctial 

H30 hours, since the sun was near the middle of Scorpius; but, according to logical 
reasoning, [it must have been] 2 ; hours after midnight. For that is the time 
when n  22;° is culminating, and 7TU 22!° (approximately) is rising:'® and that 
[tT5 22:°] was the longitude of the moon at that moment when, as he says, it was 
rising. Reckoning with respect to mean solar days, we I'md that only 2 
equinoctial hours had passed since midnight. At this time the positions of the 
centre of the moon were as follows:

true [longitudcj: distance from the summ er solstice: 81;30° 
true [latitude]: 2,1° soutii of the ccliptic 

apparent longitude: 82i° [from the summ er solstice] 
appaient [latitude]: 2i° south [of the ecliptic]."

Therefore, according to this obscnaiion  too, Spica was the same distance of 
about 2° south of the ecliptic, and was 82:° from the summ er solstice. So in the 
12 years between the two observations it moved ai)outh° towards the rear from 
the summer solstice.

[Thirdly] the geometer Menelaus says that the following obser\’ation was 
made [l)v him] in Rome. In the lirst year of T ra  jan. M echir 15 16. when the 
tenth hour [of night] was completed. Spica had been occulted by the moon (for 
it coidd not l)c seen), but towards the end ol the eleventh hour it was seen in

336 V ll  3. Precession: Spica

‘' Readirn( i(5 ’ (with .-\'BCD') lor rrji (82; 12°, the reading ol Ar) at H29.7. In the circum­
stances ol' the ohser\ation this seems more likei> to lead to the position of 82;° which Ptolemy 
deduces lor Spica ; below). It is also closer to my computation (X. (J , apparent, 172;7°'i, thousfh thisis 
no argument. Corrected by Manitius.

'■*T̂  i;' (pG'ivovro^, i.e. the 25th of the month. For this way of counting days see Introduction p. 
13. The true Attic form ol the month name is IItxivo»)/i(ov, but the spelling with epsilon is found 
outside .\ttica (see LSJ s.v.). and is probably that used by Timocharis himself.

Since the length of 1 seasonal night-hour was 16:38°, the length of3i h o ^  was 58; 13°, or about 
3? equinoctial hours. Hence I considered emending the text at H29.21 to 5 X.Ei7touaa(; i] (4 -  I). 
However, it seems more probable that Ptolemy simply made the error ol computing day-hours 
instead of night-hours, which docs indeed lead to 3ii equinoctial hours. The error has no 
consequences, since Ptolemy takes a quite dillerent time.

''’For calculations of these see .Appendix .A Examples 4 and 5.
"C alculated (cf. .Appendix .A E.\amples 9 and 10): X<[ =  171;39°, P d  =  -2;7°. .Apparent 

positions: X =  173:1°. P =  -2:20°.
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advance ol’the moon’s centre, equidistant I'rom the [two] horns by an am ount H31 
less than the moon’s diameter.

This m om ent is in the 845th year from Nabonassar, M echir [VI] 15/16 in the 
Egyptian calendar [98 Jan . 10/11], 4 seasonal hours after m idnight when the 
moon's centre was approxim ately covering Spica, which corresponds to 5 
equinoctial hours, since the sun was in about 10“ 20®; when reduced to the 
m eridian through Alexandria this is 6  ̂ equinoctial hours,’® and [this], with 
respect to mean solar days, is 6 i houi^s (or a little more). A t this moment the 
positions of the centre of the moon were as follows:

true [longitude]: 854° from the summ er solstice 
true [latitude]: about 15° south of the ecliptic 

apparent longitude: 864° I’rom [the summ-er <;olstirpl 
apparent [latitude]: 2° south [of the ecliptic]

(for the culm inating point was about a quarter of the way through Libra). 
Therefore that was the position of Spica too at that moment.

It is clear that Spica was, again, the same am ount south of the ecliptic, 
namely 2 ^  both in Timocharis' time and in our time, and  that its movement 
towards the lear in longitude is 

3;55^ in the 391 years from the observation in the 36th year [oi the First 
K allippic Cycle to the observation of Menelaus], and 

3;45° in the 379 years®' from the observation in the 48th year. H32
Hence from these data too we conclude that the motion of Spica towards the 
rear in 100 years is about I ’ .

Again, Timocharis, who obser\ ed in Alexandria, says that in the 36th year 
of the First Kallippic Cycle, on Poseideon 25, which is Phaophi 16, at the 
beginning of the tenth hour, the moon appeared to occult the northernmost of 
the stars in the forehead of Scorpius ver\' precisely w ith its northern rim.

This m om ent is in the 454th year from Nabonassar, Phaophi [II] 1 6 /17 in the 
Egyptian calendar [-294 Dec. 20/21], 3 seasonal hours after midnight, or 3? 
equinoctial hours, since the sun was in about t  26°. Reduced to mean solar 
days this is 3 g hours. At this moment the position of the centre of the moon was 
as follows:

in true [longitude]: 31 i° from the autum nal equinox [towards the rear]
[in true latitude]: 1 north of the ecliptic‘s

' ** I.e. the loni^itudinal diilerence between Rome and .Ale.\andria is taken as about 20°. In lact it is 
about 17!°. In ihc Ceography the error is even moree.xaggerated. There : 8.5.3 Xobbe l Ptolemy states 
that Rome is 1S to the west of .Alexandria, in accordance with the assigned longitudes of 36t® and 
60;° (ibid. 3.1.61 and 4.5.9). Heron, Diopt ra, took the diilerence as 2 hours (Xeugebauer [3], 22).

Here too my computations show signilicant discrepancies: A. ([ 175;27°,(i ([ -1 ; 19,30°. Apparent 
positions at Rome. X 175:39°, P -2:10°. Ptolemy’s parallaxes, -t-30' in longitude an d -4 0 ' in latitude, 
imply a total parallax of 50', which is approximately conect, and an angle between altitude circle 
and ecliptic o ff. 140°, which is impossible at the situation in question (moon roughly j'' west of 
meridian, as his culminating point shows). Could he have taken the eastern angle in error?

In the catalogue (XXV’II 14) Spica has coordinates of 265° and -2 ° , in agreement with the 
data here (allowing for a movement ol' 25' in longitude in about Ibrty years).

Reading TO0 (with D,Ar) for foe (‘375’) at H32,1. Corrected bv M anitius, and bv Heiberg, Op. 
Min. p. X I\'.

Computed: X([ 21l;23°. p d  +1;17°.
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in apparent longitude:**’ 32° [from the autum nal equinox]
in apparent [latitude]: I t?° north of the ecliptic 

(for the culm inating point was the middle of Leo).
Thei’efore at that moment the northernmost of the stais in the Ibrehead of 

H33 Scorpius was the same amount, 32°, from the autum nal equinox in longitude, 
and about 1 j° north of the ecliptic [in latitude].

Similarly, Menelaus, who obscived in Rome, says that in the lirst year of 
Trajan, M echir 18/19, towards the end of the eleventh hour, the southern horn 
of the moon appeared on a straight line with the middle and the southernmost 
of the stars in the forehead of Scorpius, and its centre was to the rear of that 
straight line, and was the same distance liom the middle star as the 
middle star was from the southernmost; it appeared to have occulted the 
northernmost of the stars in the forehead, since [this star] was nowhere to be 
seen.

This moment is, again, in the 845th year from Nabonassar, M echir [VIJ 
18/19 in the Egyptian calendar [98 Ja n . 13/14], 5 seasonal hours after mid­
night, or 6g equinoctial hours, since the sun was in about 10“ 23°. Reduced to 
the meridian of Alexandria this is I 5 equinoctial hours, and it is about the same 
with respect to mean solar days. At this m oment the position of the centre of the 
moon was as follows;

true [longitude]: 35i° from the autum nal equinox [towards the rear] 
true [latitude]: 2i°  north of the ecliptic’̂'’ 

apparent longitude: 35:55° [from the autum nal equinox] 
apparent [latitude]: 1 t° north [ol‘ the ecliptic]
(for the culm inating point was the end of Libraj.^”

Therefore the northernmost of the stars in the forehead of Scorpius had 
approxim ately the same position at the moment.

H34 Hence it is clear that for this star too its distance in latitude irom the ecliptic 
has l)een obseiAed to be the same in ibrmer times and in our times, while its 
position in longitude has moved away from the autum nal equinox towards the 
rear by an am ount of 3;55° in the time between the obseivations, which 
comprise 391 years, from which it follows that in 100 years the motion of the star 
towards the rear am ounts to 1°.

“^Reading OTtEXOv (with D ,.\r) for enexov here (H32,18) and at the similar place H33,20.
Corrected by Manitius. _

Reading a iP ' (with Ar) for a iP (1;12°) at H32,19. This gives better agreement with the 
observational data if a latitude of lj°  is to be dcduced (below). Corrected by Manitius. 
Computed apparent position: X(^ 2!2:30°, P([ +1;I°.

"'Com puted: Xd 2i5;21°, p d  +2;5°.
“  Neugebauer has displayed all the computations leading up to this in various places in HAMA  I, 

culminating in bis remark-son pp. 117-18 about the impossibility ofassigning a specific cause to the 
error in the final result. He also suggests (117 n.7) that one should read 2:6° and 1 ;3° for the true and 
apparent latitude. .-Mthough these numbers agree better with the calculation. 11° is certainly the 
correct reading, for it agrees with the latitude found from Timocharis' observation, and also with 
that assigned to this star in the catalogue (XXIX I).



4. {On the method used to record [the positions oj'\ the fixed stars]

Thus, from our observations and comparisons of the above stars, from similar 
observations and comparisons of the other bright stars, and from the fact that 
we found the distances of the other stars with respect to the [bright stars] which 
we had established to be in agreement [with the results of our predecessors], we 
have coniirmed that the sphere of the fixed stars, too, has a movement towards 
the rear with resp>ect to the solsticiai and equinoctial points o f the am ount 
determ ined (in so far as the time [for which oljservations are] available allows); 
furtherm ore, [we have confirmed] that this motion of theirs takes place aljout 
the poles of the ecliptic, and not those of the equator (i.e. the poles of the first 
motion). So we thought it appropriate, in making our observations and records 
of each of the aI)Ove fixed stars, and of the others too, to give their pxDsitions, as H35 
observed in our time, in terms of longitude and latitude, not with respect to the 
equator, but with respect to the ecliptic, [i.e.] as determ ined by the great circle 
draw n through the poles of the ecliptic and each individual star. In this way, in 
accordance with the hypothesis of their motion established above, their 
positions in latitude with respect to the ecliptic must necessarily remain the 
same, while their positions in longitude must always traverse equal arcs towards 
the rear in equal times.

Hence, again using the same instrument [as we did for the moon, V 1], 
(because the astrolal)e rings in it are constructed to rotate about the poles of the 
ecliptic), we observed as many stars as we could sight dbwn to the sixth 
m agnitude. [VVe pro< eeded as follows.] W e always arranged the first of the 
above-mentioned astrolabe rings [Fig. F,5] [to sight] one of the bright stars 
whose position we had previously determined by means of the moon, setting the 
ring to the proper graduation on the ecliptic [ring (Fig. F,3) for that star], then 
set the other ring [Fig. F,2], which was graduated along its entire length and 
could also be rotated in latitude towards the poles of the ecliptic,®^ to the 
required star, so that at the same time as the control star was sighted [in its 
proper position], this star too was sighted through the hole on its own ring. For H36 
when these conditions were met, we could readily obtain both coordinates of 
the required star at the same time by means of its astrolabe ring [Fig. F,2]: the 
position in longitude was defined by the intersection of that ring and the ecliptic 
[ring], and  the position in latitude by the arc of the astrolabe ring cut off 
between the same intersection and the upper®® sighting-hole.

In order to display the arrangem ent of stars on the solid globe®® according to 
the above method, we have set it out below in the form of a table in four sections.
For each star (taken by constellation), we give, in the first section, its description 
as a part of the constellation;^® in the second section, its position in longitude, as

If the text is sound, Ptolemy is speaking carelessly here. As is clear from the description at V 1, 
ring no. 2 is indeed graduated, but cannot perform a latitudinal movement; that is done by ring no.
1, which fits inside no. 2 and has the sighting-holes attached to it.

“ Literally ‘above the earth’. Cf. p. 219 n.6.
®*For a description of this instrument see VIII 3.

Literally ‘the shapes’ (Td<; nop<p(OOEi<;), i.e. its position as a part of the mythological figure 
(animal, anthropomorphic or inanimate) which was delineated on the globe and (notionally) in 
the heavens.

V I I 4. M ethod o f  determining star positions 339



derived from observ-ation, for the beginning of the reign of Antoninus-* ([the 
position is given] within a sign o f the zodiac, the beginning of each quadrant of 
the zodiac being, as before, established a t [one o(] the solsticial or equinoctial 
points); in the third section we give its distance from the ecliptic in latitude, to 
the north or south as the case may be lor the particular star; and in the fourth, 
the class to which it belongs in m agnitude. T he latitudinal distances will remain 
always unchanged, and the positions in longitude can provide a ready means of 
determining the [corresponding] longitude at other points in time, if we 
[calculate] the distance in degrees between the epoch and the time in question 
on the basis of a motion of 1° in 100 years, [and] subtract it from the epoch 

H37 position for earlier times, but add  it to the epoch position®^ for later times.
For the same reasons, our indications [of relative positions] in the descriptions 

must also be understood to accord w ith the above kind of hypothesis about the 
arrangement ol'the stars, and with the definition [of position] by [circles drawn] 
through the poles of the ecliptic. Thus, when we speak ofa star a s ‘in advance oi' 
or to the rear o f another, we mean that it occupies the relative position in 
question as defined by the ecliptic position [of the two stars, ‘in advance ol’] 
referring to the section of the ecliptic which is in-advance, and [‘to the rear'] 
referring to the section of the ecliptic which is towards the rear;^^ and by 'more 
to the south’ or ‘more to the north’, we mean nearer to the pole of the ecliptic 
(southern or northern as the case may be). Furtherm ore, the descriptions which 
we have applied to the individual stars as parts of the constellation are not in 
every case the same as those of our predecessors (just as their descriptions dilFer 
from their predecessors’): in many cases our descriptions are different because 
they seemed to be more natural and to give a lietter proportioned outline to the 
figures described. Thus, lor instance, those stars which H ipparchus places ‘on 
the shouldej-s of V irgo’ we descril>e as ‘on her sides’, s i n c e  their distance from 
the stars in her head appears greater than their distance from the stai's in her 
hands, and that situation fits^ [a location] ’on her side’, but is totally 
inappropriate to [a location] ‘on her shoulders’. However, one has a ready 
means of identifying those stars which are descnljed differently [by others]; this 
can be done immediately simply by com paring the recorded positions.

The layout of the catalogue is as follows.

340 V I I 4. Principles o f  Ptolemy’s star catalogue

* 'I.e. according to the Canon Basileon (sec Introduction p .II) , Thoth 1 of Nabonassar 
885 (= 137 July^20).

Reading zaiq Tfjq tm  t o o  ^eTayeveorepou (with D,Ar) at H37,2 for t a i t ;  ro u
|ieTa7EveoTepou. Corrected by Manitius.

’^.A,lthough this is in general true, there appear to be exceptions. See Introduction p. 20, p.344 
n.llO  (on c a ta lo ^ e  III 15-18) and p. 377 n.35 (on catalogue X X X II 23-4).

’’ Thus 5 V'ir is described by Hipparchus {Contm. in Aral. 2.5.5., ed. Manitius p. 190.10) as ‘the 
northern shoulder of V'irgo', and by Ptolemy (catalogue XXX'II 10) as the star in the right side 
under the girdle".

342 V I I 5 . Constellation I I :  Ursa M ajor
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H48

[Number in 
consteUation]

6
7
8 
9

10
11

12
13

Description

'I'ho one iindcr that cIImjw, wliicli also toiu lics it 
The star in the chest 
The star on the lelt arm
The southernmost ol the 3 stars on the tiaia'* '
The middle one of the three 
The northernmost ol' the three
111 stars, 1 or the third magnitude, 7 of the lourih, 3 ol'the lilthj

Stars aroimd Cepheus outside the constellation;
The one in advance ol'the tiara 
The one to the rear of the tiara
|2 stars outside the constellation, 1 ol'the I'otnth mai'nitude, 1 ol'the

nrthj

[V] Constellation ol B(«)tes 
The most advanced of tl»e three in tlie left arm 
The middle and southernmost ol the three 
The rearmost ol the three 
I'he star on the left elbow 

The star on the leli shoulder 
The star on the head 
The star on the right shoulder 
The one to the north of these,"’ on the stall'"*

Longitude 
in degrees

K 10 
K 2Hi 
T  7l 
K  I6l 
K  17t 
K  19

n  2i

nc 54 
TIB 9! 
nj I9 | 
nB 26i
^  5i 

5?

Latitude 
in degrees

+74 
+65 i 
+62! 
+60] 
+611"" 
+61 i

+64 
+59 4

+585 
+58 i 
+60 i 
+54 J 
+49 
+53? 
+485 
+53 i

Magnitude

4
5 

> 4
5
4
5

5
5
5
5
3 

> 4  
> 4

4

[Modern
designation]

0 Cep 
^Cep 
t Cep 
£ Cep 
CCep 
X Cep

M Cep
8 Cep

K Boo 
I Boo 
6 Boo 
X Boo 
y Boo 
P Boo 
8 Boo 
|i Boo

Os

‘‘^Cepheus was represented wearing the tiara, the high h.-ad-dress ol the Persian king, because in many versions ol' the myth (involving Perseus, 
Andromeda and her father Cepheus) he was said to Ik; an oriental ruler. See Boll-Gundel, ‘Sternbilder’ cols. 884-5, with illustration from Vat. Gr 1087 

Ih e  variant 641 occurs m the earlier Arabic tradition ac cording to S 9.
" ’ The star is to the north only ol no. 7, not of no. fi. Hence Manitius enu-nds aikoiv at H48.18 toau tou , ‘of this’. However, it seems probable that 

Ptolemy was careless, Ix:mg misled by the lact that the decimation of no. 8 is greater than that of both the other stars.
iCoXXopoPov a kind ol curved stick traditionally applied to the object held by Bootes, and also to that wielded by O rion (XXXV 11) Variously 

translated as shepherd s stall or club . 7’he lormer would Ik: more appropriate to the herdsman Bootes, the latter more plausible for the hunter Orion. 
However, the object carried by ljx,tes is^called by Ptolemy (no. 10) a club (AonaXov), and that is what is represented on the Farnese globe (Thiele PI. VI 
top). The object in Thiele 1-ig. 22 p. 96 resembles a .shepherd’s crook.

H50

H52

[Number in 
constellation]

9
10
11
12
13
14
15
16
17
18
19
20 
21 
22

23

Description

The one farther to the north again of this, on the tip ol the siall
The northernmost of the two stars bi low the shoulder, in the i lub
'I’he southernmost ol them
'I'he star on the end of the right arm
The more advaiu ed of the two stars in the wrist
'I'he rearmost of them
The star on the end of the handle ol the stall 
The star on the right thigh, in the 
The rearmost of the two stars in the Ix it 
The more advat>ced of them 
'I'he star on the right heel
'I'he northernmost ol the 3 stars in ihe l«'lt lower leg 
I'he  middle one of the thi'ee 
'I'he .st)uthernmosl of tlu ni
{22 stars, 4 of the third magnitude, 9 ol tin; fourth, 9 ol the I'lfthj

Star under [Bootes] outside the constellation:
'I'he star between the thighs, called ‘A rctuius’, reddish 
|1 star of the first magnitude!

(VI) Constellation of ( ’orona Borealis 
The bright star in the crown 
The star most in advance of all 
The one to the rear and to the north ol this 
'I'he one to the rear and north again ol this  ̂ ^
The one to the rear of the bright star from the south '
The one to the rear again of the latter, close by_______________

LonKitude 
in degrees

5
7\
8i
8ji
65

:Ct 7
:Ct 7i

0
n 25 ̂
W  25

5i
TIB 2 l i
"B 20
HB 21

145
W \
111
13̂
17jl
19il

Latitude 
in degrees

+57 
+46 
+45 J 
+41 i 
+41 j 
+42l 
+40 i 
+40i 
T415 
+42i 
+28 
+28 
+26 i 
+25

+3l!

+445 
+461 
+48 
+501
+44J
+44̂

M agnitude

4 
> 4

5 
5 
5 
5 
5
3
4 

> 4
3
3
4

>2
> 4

5
6 
4 
4

[Modern
designation]

V Boo 
•t | CrB 

o CrB 
•45(c) Boo 

*\\f Boo 
•46(b) Boo 

*03 Boo 
e Boo 
o  Boo 
p Boo 
CBoo 
T) Boo 
T Boo 
u Boo

a  Boo

a  CrB 
pCrB 
eCrB 
n C iB  
Y CrB 
8 CrB

§

"*n£DiC(Dua a kind of girdle. In the representations I have seen (e.g. Thiele, as in n. 118) Bootes wears a n ^ o p iq , a tunic which leavesone shoulder bare 
■“ The latUu’de of this star (+44?’°), if the text is correct, is in fact more norlherly than that of no. I (44i°). Perhaps Ptolemy n^erely means (o contrast 

it withl^he lr^^^^^^^^^ s ta rU . 4 (tiso ‘to the rear’ of no, 1). It seems unlikely that he descrilKs it as ‘to the south’ l^cause no. 5 has a lesser dcehnation

thpn no. 1 .



H44

[Numl)cr in 
constellation I

1
2
3
4
5
6

7
8 
9

10

11
12
13
14
15
16 
17

DcM'ription

loDsicllalion of Draco
'I'hc star on the t<>n l̂lc 
Tlie slai in the inoiiili 
The slai' ahove llu- eye 
The star on the jaw"’"
The stai' al)ove the head
The northernmost ol the 3 stars in a straight line in the first bend of the

IK < k
The sonlheinniost of these 
i'he middle one
The star to the rear and due east of the latter
The southern star of the |lwo) lorming tlie advan<e side of the 

(|iiadrilateial in the next bend 
'I'he it«»r«- northerly star of the advance side 
The non hern star ol the rear side (of the t|uadrilateral]
I'he southern star of the rear side

The southern star ol (those limnin)'] the triangle in (he next U nd  
Tl>e more ailvanc ed of the other two stars of tlie triangle 
I ’he oiu- lo the real
1 he most advanced"" ol the three stars in the next triangle, which is in 

advance (of (he last |

Longitude 
in degrees

26j +76i
nu iU +781
HI, I3i ■*755
nt 27 i ^80j
ni, 295 +75i
/  245 ♦821

kV 2 j +78 J
;  28l +80 j
\0> 19i +81 i
X  8 +815

X  20i +83
T  75 +78i
K  22l +77j
T  105 ^80j
T 2 l j •+ail'"*
T 261 +>wi
n  13i +»4t

l.atitude 
in di-’grces Magnitude

[Modern
designation]

4 |i Dra
> 4 V Dra

P Di a
4 ^ Dra

y Dra
4 39(b) Dra

4 46(c) Dra
4 45(d) Dra
4 o Ih a
4 n Etra

4 5 Dra
4 e Dia
4 p Ih a

a  Dra
5 u Dra

T Dra
4 v|/ Dra

‘yevix;, which coiikl also Ix- translated ‘cheek’.
“F -K  adopt 811, from the Arabic (all niss. which I have examined).
“Reading JtpoiiY()rj,i.;vo<; (with l)L !• (Jer) li.r enoncvo^ (other Greek mss., FT), ‘rearmost’, at H44,19. Although no. 17 has a greater ecliptic 

longitude than no. 18, an. thus would normally be ‘to (he rear’ ol it, lor stars w.lh extreme northern latitudes, (heir declinations may be greater than that of 
tfie |)ole ol the ecliptic (.W»‘’ c), m which ( ase the normal rule may not ap|)ly. Indeed, on Fiolemy’s star gloln- the c iuatorial coordinates of nos 15-18 
would be

a 6
15 291,9° 67.9°
16 294.7° <i8.7°
17 274,9° 71.4°
18 282,6° 70.7°

§

Manitius.

[Numlier in 
constellation]

H4 6

18
19
20 
2J 
22
23
24
25
26
27
28
29
30
31

Description

The southernmost of the other (wo forming the triangle 
The nortliernmost of the oilier two
The rearmost of the two small stars to the west of the triangle 
I 'h e  one in advan( e
The southernmost of the next 3 stars in a straight line
The middli! one of the three
The norlhi-rnuKist of them
I'h e  nortlu-rnmost of the next 2 to the west
The southcrninost of these
The star to the west of these, in the bend by llie tail 
The advance star of the 2 quite some distance from the latter 
The rear s(ar of these [two]
The star close by these, by the tail 
The remaining star, on the lip of the tail
|31 stars, 8 of (he third magnitude, 16 of (he fourth, 5 of the liiih, 2ol the 

sixth)'"

[IV] Constellation of Cepheus 
The star on the right leg 
The one on (he left leg 
The s(ai under (he l)elt on the right side 
7 'he star over (he right shoulder, which touches it 
The star over the rigiu ell>ow, which touches it

Longitude 
in degrees

B 20l 
8 lU 

28} 
21» 

UK 9 
TIB 9 i 
m? 8 l 
ns 10 
n  13" 
HB 125 
n  7i
n  Hi

19ii 
•-= I3l

B 5 
B 3 
T  7i 
K 165 
K  9l

Latitude 
in degrees

S 8 3 l"  
+84 E 
i87i 
i86|
• 8U
i83"^ 
.84  ̂
+78 
f74j 
v70 
+64 J 
+651 
î >li 
+56 i

+755 
+1)4 i 
+7li 
+69 
+72

Magnitude

4
4
6
6
5 
5 
3 
3

> 4
3
4 
3 
3 
3

[Mo<lcrn
designation]

X I »i a
<p Dra 

27(0 I>*a 
0) Dra 

18(g) Dra 
19(h) Dra 

i  Dra 
t] Dra
0 1 >ra
1 Dra 

10(i) Dra
a  Dra 
K Dra 
X Dra

K < Jep 
Y ‘ ’*:p 
pCep 
a Cep 
^  Cep

*" Readingny Z ' (with B, Ar) for n(, L ' (87i) at H45,20. Corrected by F -K .,8;}i lits both Ftolemy’s dest:i ipiion and the actual location ofx Dra much 
better.

'** Reading K7 (with Ar) forn y ’ (^ 1 )  H47,4. 80l must l>e wrong, since Ftoleiny’s description ensures that the lai itude of no. 23 lies betwecnthat ol 22 
(81 ij  and that of 24 (84l). C’orrccted by Manitius and P -K .

" ’ Reading ly (with Ar, a<lop(cd by F -K ) for i y ’ (lOl) a( H47,7. According to S 8 the Arabic tradition of n«..27 is unanimous for 13J®; the con­
text makes it clear that he has mistakenly attributed the coordinates of no. 26 to no. 27. ‘I3 i’ is probably a scribal error in ibn as-^alah fot ‘13*. 

Deleting 6(100 X.a ('31 altogether’), with D, at H 46,13.
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H58

[Numl)cT in
constellation]

6
7
8 
9

lb

1
2
3
4
5
6
7
8 
9

10
II

Dcsciiptiori

The soutliemmost oCilR-tn
The one to the rear of these, in In-tw een the |)oints where the horns |ol' 

the lyrej'*' are attached 
The northernmost ol' the 2 stars close together in the region to the east ol 

the shell 
The southernmost of them
The northernmost of the two advance stars in the bridge"^
The southernmost of them
The northernmost of the two rear stars in the bridge 
The southernmost of them
{10 stars, 1 ol the first magnitude, 2 of the third, 7 ol the l()iirlii|

|IX | Constellation of Cygnus'
The star on the Ixak 
The one to the rear of this, on the head 
The star in the middle of the neck 

The star in the breast 
I'he bright star in the tail 

The star in the liend of the right wing 
'I’he southernmost of the 3 in the right wing-li atlu rs 
The middle one of the thiee
The northernmost of them, on the ti|i ol the wing-li adu rs 
I 'h e  star on the lx;nd of the left wing 
1 he star noi th ol th is ," ’ in the middle oi the same wing

I.ongitude
in degrees

20}
231

2

I!
21
20i
24i
24^'"

k> 4i 
9

k> Hi} 
k> 28 < 
^  9i 

19} 
k>> 22! 

2li 
V> \6\
~  oi

3̂

I.atitude
in ticgrecs

+61
+(iO

+611

+60l 
+56i 
+55 
+55 j 
+54i

•+49 
+50| 
+54] 
+57} 
+()0 
+641 
+69 i 
+71 i 
+74 
+49} 
+52 i

Magnitude

> 4
4

4
3

< 4
3

< 4

3
5

> 4
3
2
3
4 

> 4  
> 4

3
> 4

[Modern
designation]

CLyr 
*5 Lyr

n Lyr

e Lyr
P Lyr

*v Lyr 
Y Lyr 
X Lyr

P C yg 
(p Cyg 
n Cyg 
Y Cyg 
a  Cyg 
5 Cyg 
0 Cyg 
t Cyg 

K Cyg 
e Cyg 
^  Cyg

Conceivably a reference to the version ol the myth in which Mi'i incs used ihe horns ol the cattle lu’ stole from A|)ollo to make this part ol the lyre 
(scholion on Gcrmanicus, ed. Breysig 84). C f th<- deiiiction in \ 'a i . (;r, I0H7, reproduicd in Boll-(;undcl <ol. 9(H, and I'hiele Fig. 38 p. 114.

the ‘cross-bar’ of the lyre.
‘^R eading  k5 q' (with D) at H59.3. Heiberg has k6 (24), whi( h is the reading of Ar. But all other (ireek m.ss. have ku (21).
*̂ 6̂pviq, literally bird . It is not idenlilicd with a swan (('ygnus) or an) particular bird in the earlier (jrcek tradition (e.g. Aratus 278), but the extant, 

pictorial representations (e.g. 'I’hiele Fig. 39 p. 114) mostly resemble a swan. For the origin of the appellation 'swan' see Gundel, art. ‘Kyknos’. RE 11.2, 
2442-3.

Reading auxou (with Is) for auTWV (‘ol these’) at H58,lfi. The change is necessary, since the star is north only of no. 10.

O

§

I
I

1

[Number in
constellation]

H60

H62

12
13
14
15
16 
17

18
19

1
2
3
4
5
6
7
8
9

10 
11 
12 
13

Des( ription

Longitude 
in degrees

The star in the tip of the feathers ol the lelt wing 
The star on the left leg
The star on the lelt knee ■ , i
The more advanced of the 2 stars in the right leg 
'Fhe one to the rear
The nebulous sta r'“  on the right knee .
117 stars, I of the second magnitude, 5 ol the thud, J  ol the loiiith, -  

the flit hi

Stars around [Cygnvis] outside the constellation 
The southernmost of the 2 stars under the lelt wing 
The northernmost of them 
(2 stars of the fourth magnitudel

[X] Constellation of Cassioix ia 
The star on the head 
The star in the breast 
'Fhe one north of that, on the belt 
The star over the throne, just over the thighs 
The star in the knees 
The star on the lower leg 
'Fhe star on the end of the leg 
The star on the left upper arm 
The star below the left elbow 
The star on the right fore-arm 
The star al)ove the foot of the throne 
The star on the middle of the back of the throne
Fhe star on the top of the throne-back , , .. ,
113 stars, 4 of the third magnitude, 6 ol the lourtli, I ol the hith, 2 ol

sixihl __________ _______

6i 
10 
14< 
11 
25 

12i

T  7s

<p 13 
T  lti5 
T  201
cp 27 

* b  15 
T  I4i 
T  171 
T  2i 

15
T
T  3i

Latitude 
in degrees

+44
+55i
+57
+64
+(i4i
+<i4j

+49 \ 
+515

+45}
+46̂
+47j
+49
+451
+475
+47 i
+44}
+45
+50
+525
+515
+515

Magnitude
[Modern

designation]

3 
> 4  
> 4

4
4
5

> 4
> 4

CCyg 
V Cyg 
^Cyg 

o ' Cyg 
o'̂  Cyg 
w Cyg

TCyg 
a  Cyg

> 4 ;C a s
3 a  ( ’as
4 Cas

> 3 y Cas
3 8 Cas
4 e Cas
4 t Cas
4 *0 Cas
5 *<p Cas
6 a  Cas

< 4 K Cas
3 P Cas
6 p Cas

Cvff is not a nebula, but a multiple star syst»’m. i .... k
, - ’ The variant occurs in lx>th ('.reek (D) and the later Arabic tra.litions (-s.c S 17).



H54

[Number in
ccnstcllation

1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15

Dcscripiion

T hf one lu ilic rear again ol llicst- 
The star lo tlic rear uCall (ilie oiliers) in tlie ( rmvn 
|8 stars, 1 ol jhe se< one! niaf'nitiule, 5 ol ilie loiirili, 1 ol'ilic lilili, 1 o( ilie 

sixlh)

(VIII ('onstellalion oi’Hcrculcs'^'
The star uii the head
The star on the righl slioulder l>y ihe armpit
The star on the right upper arm
The star on the right cIImw
The star on the left shoulder
The star on the lel't upper arm
The star on the left elbow
The rearmost ol the '3 stars in the lel't wrist
The northernmost of the other 2
The southernmost of them
The star in the righl side
The star in the left side
The one north of the latter, on the left buttcx:k
The one on the place where the thigh joins the same [butto( kj
The most advanetd of the 3 in the left thigh

Longitude
in degrees

211 
21J

m  17} 
ni. 3i 
m, ij 
^  28 
HL 16i
in. 22 
in .27i 
f  5 
/  1 
t  Ij 
m, 3i'^* 
m, loi'^^
ni, 10 
in lU 
ni, 14

Latitude
in degrees

ri'jl

+37j
+43
+40i
+37i
+‘18
+49j
+52
+52|
+54
+53

•+53i'
+53i
+ 5 (ij
+5«j
+5!)J

Magnitude

3
3
3
4
3 

> 4  
> 4  
> 4  
> 4

4 
3

•512s
5
3
4

(Modern
designation]

E CrB 
I (VB

a  Her 
() Her 
y Her 
K Mer 
5 Her 
X Her 
H Her 
o Her 
V H< r 
4 Her 
C Her 
e Her 

59(d) Her 
61(c) Her 

It Her

G crltn ic t« 'L * ‘S m  ^  t  with any n.ythological personage in the earlierGreek tra.lition, or by

‘K oirs in the (Jreek tra.lition (A'BC, written ‘6+i + i ’!), and, according to S 10, the earlier Arabic tradition.
ReadmgV7  q , with Is (coni.rnud by S 10). lo.nul as a va. iant in 1„ lorv f. ' (50!) at H55.5 (D and al F.lajjaj have5(.i, derived from thecorrec t reading 

by a common scribal error). I>- K also adopt 53i (from a.s-Suli). i 'eauing
l^ p ’he variant 16 <x:curs in the tradition of both (ireek (A'D) and Arabi< (.see S 11).

D,Ar have the magnitude >4, in belter agreement with modern estimates of the magnitude oft; I ler (3.9). As Manitius (p. 401) says, adopting this
.... ..........................................................
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H56

(Number in 
onstellation

16
17
18
19
20 
21 
22
23
24
25
26
27
28

29

neserijJlion

The one to the rear ol this 
The one yet further to the rear of this 
The star on the left knee 
The star on the left shitJ
The most advanced of the 3 stars in the left foot 
The middle one of the three
The rearmost o( them , , ,
The star 01. the place where the right thigh joins (the butto. k)
The star north of it in the same thigh 
The star on the righl knee
The s o u th e r n m o s t  of the 2 stars under the right knee 
The northernmo.st of them 
The star in the right lower l(-g
I'he star ..n the end of the right leg is the same as the one on the 

t i p  of the Stan (of Bootes, V 9]
(Not counting the latter, 28 stars, 6 of the third magnitude, 17 ol the 

fourth, 2 of the lilih, 3 of the sixth)

Star outside this constellation:
The star south of the one in the righl upi>er arm 
(1 star of the fifth magnitude)

IVIII] Constellation of Lyra 
The briuhl star on the s h e l l ,c a l le d  Lyra 
The northernmost of ihe 2 stars lying near the latter, close

Longitude 
in degrees

nv 15! 
nv. 16: 
f  Oi 
nu22 
nv 15; 
nV 16( 
nv 19 
nv 0 
^  25 
^  15 

13 
10: 
11

m- 2]

17i
20}

Latitude 
in degrees

►+60i'“  
+611 
+61 
+69j
+70I ''’
+7li 

•+72l'““ 
•+60i'^“ 
+()3 
+C)5i 
+631 
+64l 
+<>0

+38i

+62
+(>2i

Magnitude

1
> 4

[Modern
designation]

4 69(e) Her
> 4 p Her

4 e Her
4 i Her
6 74(x) Her
6 77(y) Her
6 82(z) Her

> 4 n Her
4 o Her

> 4 T Her
4 (p Her
4 o Her
4 X Her

*0) Her

a  1 yr 
e l.yr

§
Ol

i

'2*D,Ar have 72, adopted by P -K . ..onieriure but it is in fact the reading of almost all the later Arabic tradition (^‘c S 14).
All Greek mss. have ^8 (64).  ̂ i„fLm Hermes ( onstructed the first lyre. See e.g. the Homeric Hymn to Hermes 33. Aratus

.- T h e  shell of the tort.use from winch i he modern name for the star is Vega.
268-9, and  (for o ther ancient relereiues) Boll-C.undcl cols. :>■
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H68

[Number in 
constellation] IX-M ription

Longitude 
in degrees

Latitude 
in degrees M agnitude

[Modern
designation]

14 The small star over the left l(M>t
114 stars, I of the first magnitude, I of the second, 2 of the tliird, 7 of the 

Iburth, 2 of the fifth, I of the sixth)

(X llI] Constellation of Ophiiiclius

• 8  20!“ - • + io l" ’ 6 •14 A ur‘«

1 The star on the head n t 24iE +36 > 3 o O ph
2 The more advanced of the 2 stars on the right shoulder m. 28 +27i > 4 P O ph
3 The rearmost of them m, 29 +26i 4 y O ph 

t O ph4 The more advanced of the 2 stars on the left shoulder n i I3j +33 4
5 The rearmost of them n i 141 +31i' 4 K Oph
6 The star on the left ellxjw nv, 8} • +24ji« 4 X O ph 

5 Oph7 The more advanced of the 2 stars in the li fl hand in. 5 + 17 3
8 The rearmost of them HI, 6 + I6i 3 £ O ph
9 The star on the right elbow in. 26j + 15 4 (1 Oph

10 The more advanced of the 2 stars in the right hand I  2\ + 13! < 4 V Oph
11 The rearmost of them t  3j + 14l 4

r
T Oph 
n Oph12 The star on the right knee ni 2 li +7i 3

13 The star on the right lower leg •nv. 23J'^“ +2i > 4 *4 O ph 
•36(A) Oph14 'I'he most atlvanced of the 4 stars on the right foot nw 23 • -2 . 4

15 The one to the rear of this ni. 24l * - l > 4 *0 Oph
16 I ’he one to the rear again ol that m. 25 •-0{ 4 •44(b) Oph
17 The last and rearmost of the 4 ni.25^ • - o j 5 •51(c) O ph'^ '

‘■"’P -K  adopt the reading 23 iiom tl»e laic Creek ins. Far. 2394. 'I'liere is no good authority Ibr it.
Reading t y ' (with A' and part of tlie Arabic tradition, see S 20) lor k; (16) at H(i7,19. 'I hc related variant ty (13) is also found, in D and the later 

Arabic tradition (ibid.). F -K  adopt lOi.
'"“The identification is very uncertain and depends on the (ooidinates adopted. Kiniit/s»h (ibn as-Sala^ 86 ti.d) suggests 5 Aur, adopting the 

coordinates b 20f, + 16. I retain that of F -K . H  A in , which is supported by the loc ation with respect to ilie Milky Way, described in VIII 2 p. 402 (this 
virtually excludes M anitius’ identification, 2 Aur).

' ” 24i is the reading of DL, adopted by Heilx;rg. Most Greek mss. have336'. F -K  aflopt 23i, claiming that it is the reading of some Greek and one Arabic 
ms. (it appears to be that of T).

‘“ Reading icy p  (with A'DAr) for Kq (26j) at H69,13. 'I he same correction was made by Manitius and P -K .
'*‘ The uncertainty connected with nos. J 4 to 17 is whether the latitudes are south or north (Ibr details of the variations see P -K  p. 186 nos. 247-50). 

Consequently the identifications are uncertain {pace P -K , n. on p. 99).

OSOi
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H70

[Number in 
constellation] Description

Longitude 
in degrees

Latitude 
in degrees M agnitude

[Modern
designation]

18
19
20

21
22
23
24

The star to the rear of these, which touches the heel 
The star in the left knee
The northernmost ol the 3 stars in a straight line in the lelt 

lower leg 
The middle one of these 
I'he southernmost of the three 

The star on the left heel 
The star touching the hollow of the lelt loot
(24 stars, 5 of the third magnitude, 13 ol the Iburth, 6 ol the lillh)

m 27i 
in, I2l 
in, iH

nv lOi 
ni, 9^ 
nu 12j 
m, lo i

+ 1
+ I II  
+5j

+3i
*+H

+0!
-o j

5
3 

> 5

5
> 5

5
4

•51 O ph 
;O p h  
if Oph

X Oph 
\{f O ph 
0) Oph 
p O ph

25
26
27
28 
29

Stars around Ophiiu hus outside the constcllatioa:
'I’he northernmost ol the 3 to the east ol the right shoulder 
The middle one of the three 
The southernmost of them
I ’he star to the rear of these 3, approximately over the niiddli- one 
The lone star north of (these] 4 [ i k j s  25-28]
|5 stars of the Iburth magnitude)

f  t  
T 2j 
t  3'"^ 
f  3j 
^  4!

+28i
+26}
+25
+27
+33

4
4
4
4
4

66(n) O ph
67 O ph
68 O ph 
70 O ph 
72 Oph

1-5
1
2
3
4
5
6

' ’ .... -

[XIV] Constellation of Serpens'^^
Stars on the quadrilateral in the heads: 

the one on the end ol the jaw 
the one touching the nostrils 
the one in the temple 
the one where the neck joins [the head] 
the one in the middle of the quadrilateral, in the moiuh 

The star outside the head, to the north ol it 
The one after the first bend in the nei k

^  18^
^  21!

24]**' 
^  22 
^  2 H

2 3 i‘”  
^  21!

+38
+40
+36
+34i
+37i
+42 j
+29i

4
4
3
3
4 
4

, .

I Ser 
p Ser 
y Ser 
p Ser 
K Ser 
71 Ser 
5 Ser

T h e  later Arabic tradition is solid for the variant Oj (see S 20). j  .u . . .
‘“ Literally ‘of the snake of the snake-liolder [Ophiuchusl’. ri.is is to distinguish it Irom Draco and Hydra (the big snake and the water-snake)_ 

The Greek tradition is uniform for 21 j. Heilx rg adopted 24 j as an emeiulation by Bode. However, it is well-attested in the Arabic tradition: sec . 
, ‘“ Reading Ky q ' (with BCD and the later Arabic tradition, see S 23) for Kq q ' (26i) at H71,18.

PI
o '
S'a

J"



H64

[Number in 
comicllatiun]

1
2
3
4
5
6 
7 
8'
9

10
11
12-15
12
13
14
15
16
17
18
19
20 
21 
22
23
24
25

Dcs<'ri[)lion

IXI) Conslcllation of Perseus 
The nebulous mass on ihe right hand 
The slar on ilie ri^hl elbow 
The star on the right shoulder 
The star on the Icii shoulder 
The star on the head
The star on the place l>etwe»‘n the shoulders'^**
The bright star in the right side
The most advanced ol the 3 stars next to the one in the side 
The middle one of the three 
The rearmost of them 
The star on the lelt cIIkjw 
Stars in the Gorgon-head; 

the bright one 
tl»e one to the rear ol' this 
the one in advance ol the bright star 
the remaining one, yet again in advance ol this 

The star in the right knee 
The one in advance ol this, over the knee 
The more advanced ol the 2 stars alwve the bend in the kni e 
The rearmost ol them, just over the Ix-nd in the knee 
The star on the right calf 
The star on the l ight ankle 
The star in the left thigh 
The star on the left knee 
I 'h e  star on the left lower leg 
The star on the left lu el

Longitude
in degrees

T  26j
B U 
8 2 j 
TP27i
8 oi
8 l i
8 4l
8 5}
8 7
8 7j
8 Oj

T  29i 
T  29i 
T 27 i
qp 26
8 14
8 13
8 12i
8 14
8 Hi
8 16i
8 6|
8 si
8 8j
8 4l

Latitude
in degrees

+40 J
+371
+34}
+32 j
+341
+3li
+30
+27̂
+27i
+271
+27

+23
+21
+21
+22i,+2(,m.
+2«i 
+25 
+2(ii 
+24j 
+18i 
+211 
+l‘ii 
+ Ml 
+ 12

Magnitude

neb.
4

< 3
4
4
4
2
4
4
3
4

2
4
4
4
4
4
4
4
5 

•5
> 4

3
4 

< 3

[Modern
designation]

03
to

CGal 884 + 869'“ ]  
t1 IVr
V J'er 
0 I’er 
T l \  r 
t I'cr 

a  J*er 
a Fit
V I'tT
5 Per 
K Per

|J Per 
(1) Per 
p Per 
It Per 

72(b) Per 
X Pi-r 

48 Per 
(I Per 

53(d) Per 
58(e) Per

V P(. r 
E Per 
^Per 
<) P<;r

T ’ ' " " “ I "<!<■■. »> 'hat ol his lack  i. visiWc.
Ihe  head ol Medusa, cairietl in Perseus lelt hand (see the depiction in Boll-Gundel col. 914).

‘^'28 is the reading of all Greek m.ss., 28i that of .some Arabic inss. (I.,L,1‘), adopted by P -K .

g

I

[Numt>er in 
constellation]

H66

26

27
28 
29

1
2
3
4
5
6
7
8
9

10 
11

12
13

Description

The one to the rear of this, on the left foot
|26 stars, 2 of the secontl magnitude, 5 ol the third, 16 ol the Ibiirth, 2 of 
the fifth, [ I ) nebulous)

Stars around Perseus outside the coastellatioii:
The star to the east of the one on the lelt knee [no. 23)
The star to the north of the one**‘ in the right knee [no. 16)
The star in ailvan* e of those in the Gorgon-head [nos. 12-15]

(3 stars, 2 of the lifih magnitude, 1 faint)

[XIIJ Constellation of Auriga 
The southernmost of the two on the head 
The northerrunost [of these], over the head 
The star on the left shoulder, called Capella 
The star on ihe right shoulder 
The star on the right elbow 
The star on the right wrist 
The star on the left cIIk)w
The rearmost ol the two stars on the left wrist, which are calK d ‘Haedi’ 
The more advanced of these 
The star on the left ankle
The star on the right ankle, which is [applied in) common In the horn 

[of Taurus)'^^
The one to the north of the latter, in the lower hem (ofihegarm eni]‘^̂  
The one north again of this, on the buttock ____

Longitude 
in degi ees

8 6)

8 tU
8 15 
T  24!

n  2
n  2
8 25
n  2i
n  li
I I  2i
8 22
8 22i
8 22
8 19i
8 25!

8 26
8 26j

Latitude 
in degrees

+ 11

+ 18
+31 
+20 j

+30 
+31| 
+22i 
+2.0 
+ 15 
+ 13 
+20! 
+ 18 
+ 18 
+ I0i!‘ 
+5

+8j 
+ I2i

M agnitude

> 3

4
4
1
2 
4

> 4
> 4
> 4

4 
< 3  
> 3

5 
5

[Modern
designation]

52(0 I'er 
•BSC 1.H14 

16 I'er

5 Aiir 
^ Aur 
a  Aur 
P Aur 
V Aur 
9 Aur 
e Aur 
n Aur 
C Aur 
t Aur 
P I'au

X Aur 
(p Aur

§

6
| -

e

I -

*^*Rcading to u  fev (with D,E,T,Ger) for xSv iv  (‘those in') at H64,19.
The variant 16 is found in the later Arabic tradition according to S 19.

*^^Sce X X III 21. The magnitude there is given as 3. The star is also known as y Aurigae, but today is included in the constellation Taurus. 
“ ‘ nepindSiov. Auriga ('the charioteer’) is depicted as wearing a long tunic reaching to the feet, like the well-known bronze Delphic charioteer (see e.g. 

Richter, Handbook o f Greek Art, Fig. 113 p. 85).

03Ol
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H78

[Number in
Description

Longitude Latitude [Modern
r.onstellation] in degrees in degrees Magnitude designation]

8 The southernmost of the 3 staii. between the tail and the rhombus \0> 17l *+30j'« 6 n Del
9 The more advanced of the other 2 to the noi ih I7i +3 Is' 6 (, Del

10 The remaining, rearmost one
(10 stars, 5 of the third magnitude, 2 of the fourth, 3 ol the sixth| 

[XVIII] Constellation of E(|uuleus"’̂

19 +3li 6 e Del

1 The more advanced of the 2 stars in the head \0> 2(il +‘20i f. a  Ec|u
2 The rearmost of them 28 +20 i 1. P E(|u
3 The more advanced of the two stars in the moiuh V> 2(il +‘2.5 j f. Y Equ
4 The rearmost of them k)> 21 i +25 I. S Equ

|4  stars, [all] laintj

[XIX] Constellation of Pegasus"’'’
K  17^1 The star on the navel, which is [applied in] tonimon to the head of 

Andromeda
+2(i < 2 a And"“‘

2 The star on the rump and the wing-lip X  I2il + I2 i < 2 Y Peg
3 The star on the right shoulder and llie plac e where the l< g joins jitj X  2l +31 < 2 P Peg
4 The star on the place between the shoulders and the shoulder-part ol ~  2()5 + 195 < 2 a  Peg

the wing
X  4i5 The northernmost of the two stars in the IxMly under the wing +25 j 4 T Peg

6 The southi rnmost of them K +25 4 u Peg
7 The northernmost of the two stars in the i ighl knei‘ i r  29 +35 3 1  Pi-S
8 The southernmost of them ~  28i +34] 5 o Peg

**’ Thc variant 34 occurs in tlic Gicck (C; ‘31’ in D) and Arabic iraditions (see S
Literally ‘bust’ or ‘figurehead’ (npoTonti) ‘o( a horst-’. In lact only the head appi'ars to have l)een represented. I'here arc noancicnt illustrations (see 

Boll-Gundcl 927-8), and indeed most ancicnt authorities ignore this consiellat ion. Ihe designation is confusing, sin< e Pegasus too is represented as only the 
forepart of a horse.

Literally ‘the hor.se’; but the references lo its wings make it clear that it is depicted as I’egasus. I'hc idcntilication was made as early as Aratus (216-24). 
“"’The star is also known as 6 Fegasi, but in nxKlern times is defuied as being in Andromeda.

Ol00

§
I
I
I

I
S ’

J ?
1

H80

[Numlier in 
constellation] Description

Longitude 
in degrees

Latitude 
in degrees Magnitude

[Modern
designation]

9 The more advanced of the two stars dose together in the ( hest ~  26i! +29 4 X Peg

10 I 'h e  rearmost ol them ~  27 +29] 4 M Peg
11 The more advanced of the 2 stars close together in the neck ~  18« + 18 3 C Peg
12 I 'h e  rearmost of them 20. + 19 4 K Peg
13 The southernmost of the two stars on the mane 21 + 15 5 P Peg
14 The northernmost of them + 16 5 a  Peg
15 The northernmost of the two stars close together on the head + 16< 3 GPeg

16 The southernmost of them i r  8 + 16 4 V Peg

17 The star in the mu/./le ; r  5} +22 i 
+4U

> 3 e Peg

18 The star in the right lux k i r  231 > 4 n Peg

19 The star on the left knee 17[ +.34i > 4 t Peg

20 The star in the left hock
{20 stars, 4 of the second magnitude, 4 of the third, 9of thelburth, 3 of the 

I'lfthl

[XX] Constellation of Andromeda

sr 12 l +36| > 4 K Peg

1 The star in the place iH twcen the shouldins K  251 +24 j 3 8 And

2 I'he star in the right shoulder K  26 J +‘27 4 n And
3 The star in the left shoulder K  24l +23 4 e And

4 The southernmost of the 3 stars on the right tipi>er arm X  ‘23 { +32 4 o  And
5 The northernmost of them K  ‘24 J +.33 i 4 0 And

6 The middle one of the three K  25 +32i 5 p And

7 The southernmost of the 3 stars on the right hand K  19i +41 4 t And

8 The middle one of these K  201 +42 4 ic And

9 The northernmost of the three K  22l +44 4 X And

10 The star on the left upper arm K  24i + I7j 4 C, And
11 The star on the left elbow K  ‘25 i + L5« 4 11 And
12 The southernmost of the 3 stars over the girdle T  31 +26 [ P And
13 The middle one of these T  a +30 4 ^ And

A J
14 The northernmost of the three cp 2 +321 4 V And

’ Most Greek mss (A'BC) and Is have 9<l. Heil)erg adopts the reading of I),I.



H72

[Number in
constellation]

8
9

10
11

12
13
14
15
16
17
18

DcMTiption

The norllif-miDosi of the 3 lullowinf' this 
The n)i(l<llc oni- ol the three 
The s«>iilli<-rninost orthem
The star alter the n«:xl bend, whit h is in advance of the leit hand of 

Ophiuchiis
The star to the rear of those in the hand (oK)phiuchus, nos. X lll 7-8) 
The one alter the bark ol the rixht thigh ofOphiiic hits 
The sonlhernniost ol the 2 to the rear ol‘ ihe latter 
The northernmost ol them
The one alter the ri^lit hand [olOphiuchusJ, on the bend in the tail 
The one to the rear ol this, likewise on the tail 
The star on the tip ol' the tail
(18 stars, 5 of the ihird magnitude, 12 of ihe lourlh, 1 of the lilih)

[XVJ Constellation ol'Sagitta 
The lone star on the arrow-head 
The rearmost ol the ^hree stars in the shaft 
The middle one
The most advanced ol' the three 
The star on the end ol' the notch
|5  stars, 1 ol'the Iburth magnitude, 3 ol'the lilth, 1 of the sixih)

[XVI] Constellation of Acjuila 
The star in the middle ol'the head 
The one in advance of this, on the neck
The bright star on the place Ix iween the shoidders, called Afpiila'

Longitude 
in degrees

24i 
^  24j 

26j 
^  28i

in, 8l 
m, 23t 
in. 27 
nu27|

3!
8!

18j

10“ 5l 
4!

k>* 3j

k>' 7i 
4i

10“ 3 |

Latilude 
|in degrees

+26l 
+25 j 
+24 
+ 16]

•+I3i'
+ioj
+«)
+ 10i 
+20 
+21 i 
+27

+39j
+39i
+39i
+39

•+38J'

+26ii
+27i
+29i!

Magnitude

4
3
3
4

5 
4

> 4
4
4

> 4
4

4
3

>2

[Mo«lern
designation]

X Ser 
a Ser 
£ Ser 
(1 Ser

u ( >ph 
V S«T 
 ̂ S.T 

o Ser 
c S.T 
n Ser 
eScr

Y Sge
C
5 Sge 
a  Sge
P Sge

I  A<ll
P A«|l
g Aql

“ *13j is Heiberg’s emendation (lollowing Bode, who in la< t conjectured ‘13’). All mss. have lb]. Sec the discussion of P -K , pp. 99-100.
'^’ The variant 16 is lound in the (Jrcek ms. I) and in the later Aral)ic tradition (see S 24).
' “ This is the reading ol D, adopt.^d by Heilieig, where most (Jreek mss. have 37J. The Arabic tradition varies between 38] and 38J (see S 25).
*** The phrase ‘place b.:iwcen the shoulders’ is my translation ofnETd(ppevov. This seems more acciu ate than LSJ’s ‘ broad of the back’, which is ccTtainly 

impossible here because of the iconography. It is < lear from the orientation (‘K It’, ‘right’ and ‘head’) that one is supposed to see iheunJersiWeoflhc bird (in 
agreement with the depiction on the I'arnese glol>e, I’hiele PI. i l l  ixjilom, where one is looking at ihe cf. Intioduction p. 15). Therefore one can
have at best only a glimpse of the back. The modern name of this star is Ahair.

tno>

a

CfQ

H 7 4

H 7 6

[Number in 
constellation] De.si ri|)tion

Longitude 
in degrees

l.atitude 
in degrees Magnitude

[Modern
designation]

4 The one close to this towards the north 10* 4! +30 < 3 •o Aql

5 The more advanced of the 2 in the lelt shoulder 10> 3i +311 3 Y Aql

6 The rearmost of them 6 +3li 5 <p Aql

7 The m o ie  advanced o f  the Iw o  in the right shoulder /  29} +‘J8| 5 H Aql

8 The rearmost of them li +26j > 5 o  Aql

9 The star some distance under the tail of Aquila, touching the Milky Way T 22l 4 36j 3 C Aq*

10

|9  stars, 1 ofthe second magnitude, 4 of the third, 1 of the fourdi, 3 of the 
lifthl

The stars around Acjuila, to which the name ‘Anlinous’ is given"'" 
I’he more advanced of the 2 stars south of the head of Acpiila V/> 35 +21 j 3 n Aql

11 The rearmost of them 10“ 8| + I9i 3 0 Aql

12 The star lo the south and west o fth e  right shoulder of Acjiiila T 26 +25 > 4 8 Aql

13 I 'h e  ont‘ lo the south of this t  28l +‘20 3 I Aql

14 The one; lo the south again of the latter f  29! + I5l 5 *K Aql

15 The star most in atlvance of all • f  2 U + ia i 3 X Aql

1

|6 stars, 4 of the third magnitude, 1 of the fourth, 1 of the lifthl

jX V Il] (\)nslellation of Delphinus 
The m<jst advanced of the 3 stars in the tail V> 17! +29i! < 3 e Del

2 The noi lherninosi of ihe other 2 V> 18! +29 < 4 t Del
3 The southernmost ol them k> 18j <27i 4 K Del

4-7
4

The stars in the rhoml)oitl"’' cjuadrilateral:
the sonlherninoit one on the advance side V> 18j +32 < 3 P Del

5 the northernmost one on the advance side •V>‘ 20i" ’* *+33i < 3 a  Del

6 the southermnost one on the rear side o fth e  rhombus 2 l j ^32 < 3  . 8 Del
7 ihe norlhernmost one on the rear side V> 2‘i i +33i < 3 y Del

§
Ol

5

Antinous was the emperor I iadrian’s favourite, who died by drowning in the Nile in A.D. 130. This ‘catasterism’ is conFirmation ol the statement in 
Dio Cassius (69,11,4) that Hadrian claimed to have himself seen the star into which the soul of Antinous was transformed. Could Ptolemy have had 
anything to do with this identification? It turned out to be ephemeral.

I.e. with only Iwo of its lour sides parallel.
'“ All Greek mss. have Kq (26). Heiberg adopted K q' (20i) as an emendation of liode, but it is in fact found in all Arabic mss. I have examined.



H88

[Number in 
consteiiation]

3
4
5
6
7
8
9

10
11-15
11
12
13
14
15
16

17
18
19
20 
21

Description

The one close again  lo the laUer 
The southernm ost o f the 4
The one to the rear of these, on the right shoulder-blade 
The star in the chest 
The star on the right knee 
The star on the right hock 
The star on the left knee 
The star on the left lower leg 
I 'he  stars in the face, called ‘the Hyades’; 

the one on the nostrils 
the one between this and the northern eye 
the one between it (no. 1 1 ] and the southern eye 
tlie bright star ol the Hyades, the reddish one on the southern eye 
the remaining one, on the northern eye 

The star on the place where the southern horn and the ear join (the 
head]
The southernmost of the 2 stars on the southern horn
The nortliernmost ol these
The star on the tip of the southern horn
The star on the place where the northern horn joins (the head]
The star on the tip of the northern horn, which is the same as the one on 
______ the right foot of Auriga (XII no. 11]

Longitude 
in degrees

• T  2 4 l‘ 
T  24j 
T  29} 
8 3j

6}
3.76

12i
13'”

9
lOj
U)l
12}
111
17i'“̂

8 20j
8 20
8 27 j
8 15J
8 25 !

Latitude 
in degrees

-8i
- 9 i
- 9 i
-8
-121
-1 4 j
-10
-1 3 ” “

- 5 i
-4 jn »
-5«'
-5j
-3
- 4

- 5
-3 j
- 2 j

*-0{““
+5

M agnitude

4
4
5
3
4 
4 
4 
4

< 3
< 3
< 3

1
< 3

4

5 
5
3
4 
3'

[Modern
designation]

4 Tau 
o Tau 

30(c) Tau 
X Tau 
M Tau
V Tau 

90(c') Tau 
88(d) Tau

Y Tau 
5* Tau 
O' Tau 
a  Tau 
e Tau

97(i) Tau

104(m) Tau 
106(1) Tau 

C Tau 
T Tau 
P Tau

§

r
r
I

P -K  adopt 24}, the reading of Ar, which is no d(jubt the origin of the corruption 21? in D.
” ®The variant Oj is Ibund in part of the Arabic tradition according lo S 28.
‘” Manitius (p. 401) changes to lOi (t y ' for ty), with no ms. authority.
*’*The variant lOj occurs in the later Arabic tradition (see S 29).
” *The variant U  is found in the earlier Arabic tradition according to S 30.
‘“ Reading t^ (;' (with D,Ar, adopted by P -K ) for t^ Z ' (I7 j) at H«9,4.

1 he variant 4 is Ibund in some Greek mss. (BC) and in ibe whole of ihc Arabic tradition according toS 32. Oi is undoubtedly correct, bui the latitude 
might l)e north instead of south (see P -K  on no. 399 p. 101, Manitius pp. 401-2).

‘**In Auriga (X II,11) the magnitude is given as >  3.

H90

[Number in Longitude Latitude [Modern
I

constellation] Description in degrees in degrees Magnitude designation]

22 The northernmost of the 2 stars close together in the northern ear 8 12 +01' “̂ 5 u Tau
23 The southernmost of them 8 i t ! +ol‘“̂ 5 K Tau
24 'I'he more advanced of the 2 small stars in the neck 8 7 +o| 5 37(A') Tau
25 The rearmost of them 8 9 #_| 1B5 6 0) Tau
26-29 The (|uadrilateral in the neck:
26 the southernmost star on the advance side *8 8 +5 5 44(p) Tau
27 the northernmosl star on the advance side *8 8<'“ *+7j"” 5 *V Tau
28 the soulhernmost star on the rear side 8 12 +3 5 X Tau
29 the northernmost one on ihe rear side 8 1 1 ! +5 5 9 Tau
30-33 riie Pleiades:

8 2 i +4l30 the northern end of the advance side 5 •19 Tau

31 the southern end ol the advani e side 8 2 i +3! 5 •23 Tau

32 the rearmost and narrowest end ol ihc Pleiades 8 3i + 3 l'““ 5 •27 Tau"*«
33 the small star outside''"' the Pleiades, towards the north 

(32 s t a r s , 1 of the first magnitude, 6 of the third, 11 ofthelburih, 13 of 
the fifth, 1 of the sixthl

8 3! +5 *4i«i •BSC 1188

P
g

I
| -

' “̂ 'I’he variant 6 occurs in the earlier Arabic tradition according to S 33.
“*n'hc variant 4 occurs in the Greek (B) and iii ihe Arabic tradition (see S 34).
' “̂ The latitude is north in the Greek mss. A 'D  and in almost the whole Aral>ii tradition according to S 35.
***On the longitudes of nos. 26 and 27 see Manitius j). 402, who interchanges tlicm.
*“’ D,Ar have the variant l i ,  adopted by P -K . ^
‘“ As Manitius notes (p. 402) the rearmost part of the Pleiades is said to havcthe latitude + 3 f  at V ll 3 p. 335. See n.71 there Ibr the explanation of the

discrepancy. - • u
***The identifications of nos. 30-2 arc those of P -K . However, 1 do not believe that Ptolemy was referring to specific stars, but rather to pomts on the 

general outline of the group. Nevertheless, the stars,named are conveniently placed to serve as reference points.
Reading £kt6<; (with D,Ar, c f Kunitzst:h, Der Almagesl no. 293 p. 270) for EKToq (‘the sixth small star’) at H90,5. Corrected by Manitius.
If the identification adopted here (which is that of P -K , Piazzi 111 170) is corrcct, the magnitude of this star is 5.38, which casts doubt on the reading 

‘4’, particularly since Ptolemy emphasises that this is a small star. The reading 4 is confirmed by the sub-total for Taurus, but since that is probably an 
ir^terpolation it proves only that the reading is ancient. Cl. p. 348 n.l25.

‘“ ‘32’ is correct, since no. 21 is not counted, having already l)ccn recorded as part of Auriga.



H82

H84

[Number in 
constellation]

15
16
17
18
19
20 
21 
22 
23

Description

The star over the l« li loot 
The star in the rifrht foot 
The one south of the latter
The northerninost ol the 2 stars on the left knee-l)end 
The southernmost ol' them 
The star <m the right knee
The northernmost ol'the two stars in the lower hcm [ol'tlu garment] 
The soulhernniost ol' them
The star in advance ol'the three in the right hand, outside |o f it]
(23 stars, 4 ol' the third magnitude, 15 ol the Iburth, 4 ol' the lilih)

[XXI] Cilonstellation of'I'riangulum  
The star in the apex of the triangle 
The most advanced ol the 3 on the base 
The middle one ol' these 
The rearmost ol the three
14 stars, 3 ol' the third magnitude, 1 ol' the l'ourth|
[Total for the northern segment: 3(50 stars, 3 of the first magniiude, 18 of 

thesecond,8 l of the third, 177 of the Iburth, 58 of the fifth, 13of 
the sixth, 9 laint, 1 nebnlous|

|C Constellations in the zodiac)

[X X II] Cohsiellation of Aries 
The more advanced »>l the 2 stars on the horn 
The rearmost of them
The northernmost of the 2 stars on the muzzle 
The southernmost of them

Longitude 
in degrees

T  16| 
T  17i 
T  I5i 
T  12}  
T  12 
T  loi 
T  I2i 
T  H i 
K i l l

T  n  
T  16 
T  16j

T  6! 
T  7i 
T  11 
T  H i

Latitude 
in degrees

+28
+37j
+35?
+29
+28
+35l
3̂4̂

+32j
+44

+ 16i 
+20i 
+ 19J 
+ 19

+7}
+8i
+7j
+6

Magnitude

3 
< 4  
> 4

4
4
5 
5 
5 
3

< 3
3
5
5

[Modern
designation]

y And 
<p I'er 

51 A nd '“
0 And
1 And 
<p And

•49(A) And 
*X And 
o And

a  I’ri 
P I ri 
5 Tri 
y Tri

y Ari 
P Ari 
11 Ari 
0 Ari

§

I
I'

g
I
3I-
S
I

Also known as u Peisei, but within the constellation Andromeda according to the modern boundaries.

H86

[Number in 
constellation] Description

Longitude 
in degrees

Latitude 
in degrees Magnitude

[Mcwlern
designation]

5 The star on the neck •cp 6j'®* +5} 5 t Ari

6 The star on the rump T  17! +6 6 V Ari

7 The star on the place where the tail joins [the body] T  2 l i +4«' 5 t; Ari

8 The most a«lvanced of the 3 stars in the tail T  ‘23| + ii 4 8 Ari

9 The middle one of the; three T  251 +2 ] 4 C Aii

10 The rearmost of th«:m cp 27 +1«' 4 T Ari

11 The star in the back of the thigh” ® T  i9 i .+  ljl7l 5 p Ai i

12 The star under the knee-bend T  18 - l i 5 o  Ari

13 The star on the hind lnK)f T  15 -5 j > 4 •H Cet

14

13 stars, 2 of the third magnitude, 4 of the fourth, 6 ol the filth, 1 ol the 
sixth)

Stars around Aries outside the constellation;
The star over the head, which Hipparchus (calls) ‘the one on the T  >01 *+10' " > 3 u Ari

15-18
15

muzzle"”
The 4 stars over the rump;

the real most, which is brighter [than the others) T  2 1 ! +ioi 4 41(c) Ari
16 the northernmost of the other 3, fainter stars T  2 l i +r^j 5 39 Ari
17 the middle one of these three T  19! + i i i 5 35 Ari
18 the southernmost of them T  I9i + 10! 5 33 Ari

I

[5 stars, 1 of the third magniiude, 1 ol'the fourth, 3 of the fifth)

[X X III] Constellation of Taurus 
The northernmost of the 4 stars in the ciit-oll^’^ T  26} -6 4 5(0 Titu

2 The one close by this T  26 -7 J 4 4(s) I'iiu

§

as-St

' “ Manitius (sec his note p. 401) changcs to 6|  without ms. authority.
B has 6nia0i<p nt^pv (‘the hind thigh’), which is also possible. However, the Arabic translations are based on drtia0oni^p<p, the reading adopted by 

Heiberg (see Kunitzsch, Der Almat>esl no. 261 p. ‘264).
•’ 'T h e  variant l i  is found in D,Ar, and is adopted by P -K .
*” VII 1 p. 324 (which has, however, ‘in (iv) the muzzle’), and Hipparchus, Comm, in Aral. 1.6.9 (ed. Manitius 58,22-3).

Reading i (with D,Ar, adopted by P -K ) for t Z ' (lOi) at H85,18.
' ” dn0T0pTi. Only the front half of the bull is represented. See e.g. Thiele PI. IV, and compare the similar phrase for Argo (XL 32).

03
Oi



H96

[Number in
constellation]

1

2-5
2
3

10
11
12
13

Dcst:ri|)tion

[XXV] Constellalion of C a n a  i 
The middle of the nebulous mass in (he < h< si, ( ailed Piacse|x -"’

The quadrilateral containing the nebula |no. 1 1:
the northernmost of the two stars in advance 
the southernmost of the two stars in advan< c- 
the northei'nmost ol the rear 2 stars on tlie (|uadrilaleral, vviiich 
are called ‘Aselli’ “̂* 
the southernmost of thes<r two 

The star on the southern claw 
The star on the northern claw 
The star on the northern back leg 
The star on the southern back leg
|9  stars, 7 of the fourth magnitude, I of tlie fifih, 1 n(;bulous|

Stars around Cancer outside the constellation;
The star over the joint in the soiithern ( law
The star to the rear of the tip of the southern claw
The more advanced of the two stars over the n(rbulaand to the rear of it
I’he rearmost of tliese |two]
|4 stars, 2 of the Iburth magnitude, 2 (jf the iilihj

Longitude
in degrees

=5 lOi

=3 11
=  16
=  8
== 25
=  7il

• s  191- 
=  2 \ l  
=  14 
s  17

l.atitude
in degrees

+li 
-U  
+ 21

-Oi 
- 5 j  
+ 11̂  
+1

- 2 l

*+7i'-'‘'-
*+4s

Magnitude

neb.

< 4
< 4
> 4

> 4
4
4
5 

> 4

< 4
< 4

5
5

[Modern
designation]

CGal 2632 
(Messier 44)

Cnc 
0 Cnc 
y Cnc

8 Cnc 
a  Cnc 
t Cnc 

M Cnc 
P Cnc

•n  Cnc 
K Cnc 

*v Cnc 
Cnc

Ol

2#’(paxvT) (‘manger’). Manitius and P -K  identify this as t Cnc, wiiich is indeed in the middle ol'tlie galactic cluster, but Ptolemy is clearly not referring to 
an individual star.

^®*The variants 3 (B) and 0 |,  i.e. (Ar) are found. The latter is adopted by P -K .
“̂’ ovot (‘asses’).

*'*On the large error in latitude see P -K  no. 4.57 j). 102.
The variant I9i is found in some Greek mss. (B(’) and in ihe earlier Arabi( tradition. According to S 40 ilu; Ishaq translation and Thabit’s revision of it 

had 15^ Extant Arabic mss. (except Ibr ai- riisT’s revision, whi( h has 1.“);!) exhibit 1‘H’. II we a( cept the latter, the most probable identification isjt Cnc 
(adopted by Manitius). P -K  adopt I5i(!) and identify the star a s o ‘ + o ' Cnc.

*’*Following P -K  and Manitius (who d<xrs it witlioui comment), 1 have dubiously transposed the latitudes of nos. 12 and 13, which then fit the actual 
positions of v and ^ Cnc fairly well. There is no ms. authority lor this.-

§
f

H 98

H lO O

[Number in 
constellation] Desi;ription

Longitude 
in degrees

Latitude 
in degrees Magnitude

[Modern
designation]

1
[XXVI] Constellation of Leo 

The star on the tip of the nostrils I8j + 10 4 K Leo
2 The star in the gaping jaws =  2l<! +7l 4 \  Ix'O
3 I'he northernmost of the two stars in the head =  24l + 12 3 p Leo
4 The southernmost of these ss  24i +9i > 3 t  1^0
5 'I'lie northernmost of the 3 stars in the neck f l  oî -‘‘ + 11 3 C Leo
6 The one close to this, the middle one of ihe three n  2l +8] 2 y Leo
7 The southernmost of them n  Of +4j 3 r] Leo
8 The star on the heart, called ‘Regulus’ a  2 i +oi

- H
1 a Ix'o

9 The one south of this, about on the chest a  3] 4 31(A) Leo
10 The star a little in advance of the star on the heart |no. H| n  0 -o i 5 V Leo
11 I'he star on the right knee =  271 0 5 V Leo
12 I 'he  star on the right front ( law-( luK l r ‘^ =  24l -35 •5"-' ^ Leo
13 The star on the left front claw-< lut( h =  27} - 4 i 4 o Leo
14 The star on the left [front] knee n  2 i - 4 i 4 n Leo
15 The star on the left armpit a -0^ 4 p Leo
16 The most advanced of the three stars in the belly a  7 t4 6 46(i) U-o
17 The northernmost of the other, rearmost 2 a  loj-"* +5j 6 52(k) U-o
18 The southernmost of these [two] a +2 j 6 53(1) U 'o
19 The more advanced of the two stars on the rump a  H i + 12i 60(b) Leo
20 I'he  rearmost of them a  14(1 + 135 < 2 5 Leo
21 The northernmost of the 2 stars in the buttiK-ks • a + lU 5 *81 Leo'**
22 The southernmost ol them a  i«i +95 3 0 Leo

*‘*The variant 4 i occurs in the early Arabic traditicjn according to S 41. .
‘̂^8pd^, literally ‘grasping hand’. 'I’he lion is represented with claws out and hooked, as in Thiele Fig. 26 p. 99.

All mss. except D give magnitude 6 here. Heilierg adopts 5 to reach ugrienient with the sub-total for the constellation. P - K adopt 6 here and 5 at no.
19 (from the Arabic), perhaps rightly.

**‘®The variant 13 occurs in the Arabic tradition (see S 42).
Cf. n. 215 on no. 12. All Greek mss. have 6, but the Aral»ic tradition is unanimous for 5. If co rrm ly  identified as 60 Leonis, this star has, by modern 

definition and measurement, magnitude 4.4.
*'*The identification is extrejnely uncertain: see P -K  on no. 482, pp. 102-3. 81 Leonis is (xissibleonly il the longitude is emended to be greater than that 

of no. 22, for which there is no authority.

§

| -



H92

(Number in 
constellation]

34
35
36
37
38
39
40-44
40
41
42
43
44

Dcs( ription

Stars around Taurus outside the constellation:
T he star under the right f«)Ol and"** the shouldi-r-i)lade 
The most advanced ol the 3 stars over the southern horn 
The middle o i k -  of the three 
The rearmost of them
The northernmosl ol the 2 stars imdi r (he lip ol the soulh< i n horn 
The soulhcrnmost ol' them
The 5 stars under and to the rear of the northern horn: 

the most advanced 
the one to the rear ol this 
the one to tin- rear again of the latter 
the norihernmost of the remaining, rearmost 2 
the soulhernniost ol these two 

(11 stars, I or the Ibin th ntagnilnde, lO ol'the lll'thl

IXXIV] Constellation ol'Cjemini 
The star on the hca<l of the advance twin 
The reddish stai on the head ol the rear twin 
The star in the Idt lorcarm of the advance twin 
'Die star in the same (icrt) upper arm
The one to the rcai of that, just over the place between the shoulders 
The one lo the rear of this, on the right shoidder ol tlie same | advance) 

twin
The star on the rear shoulder ol the rear twin 
The star on the right side of the advance twin 
The star on the left side of the rear twin

Longitude 
in degrees

T  25 
8 20 '»* 

•8  24‘»* 
8 26 
8 29 
8 29

8 27 
8 29
n  1
n  2 j
I I  3l

n  23j 
n  261 
n  16!
I I  18f
n  22 
n  24

n  26j 
n  21 i 

* n  23 i‘

Latitude 
in dirgrees

-171
-2
- l i
-2
-6j
- n

+0J
+1
+ lj

+ lj

+(»1 
+ 10
+7j

+4iS

+2J
+2J

Magnitude
[Modern

designation]

10 I'au 
I I'au 

109(n) Tau 
114(0) Tau 

•126 la u  
•129 la u

•121 la u  
•125 I'au 
•132 Tau 
•136 Tau 
•139 I'au

a ( Jem 
P < Jem 
0 ( Jem 
T ( Jem 
t (Jem 
I) (Jem

K ( Jem 
57(A) (Jem 

•58 (Jem

2

Tallgren (see Kimitzsch, Der Almagesl no. 295 p. 270) suggested emending ica'i at H ‘H),8 to Kdid (‘op|K)site the shoulder-blade’), Ibllowing 
translation ol al-yaijaj. Ihis may be correct, but the rest of the Arabic tradition is based on Ka't (see Kunit/.s< h, ibn a^-Salah p. 59 n.91).

The variant 16 is Ibimd in the earlier Arabic tradition according to S 37. * ’
Reading ic8 (with A 'D  and the later Arabic tradition, see S 38) for ku (21) at H9I,10. Corrected by Manilius.

***D,Ar have the variant 9j, a<lopted by P -K .
198̂ ^** have 2(»i. Heiberg s text is the reading of D,Ar. The identilication of this star is very uncertain.

Most mss., both CJrcrek an<l Arabic, have 3. y ' (j) apjx;ars in C and as a variant in A', and is adopied by H. iberg and P -K .

the

H94

[Number in 
constellation] Description

Longitude 
in degrees

Latitude 
in degrees Magnitude

[Modern
designation]

10 The star on the left knee of the advance twin n  13 + H 3 e (!Jem

11 The star under'''*' the left knee of the rear twin •n i8i''"' -2l 3 ^ Gem

12 The star in the left groin of the rear twin n  2ii -oi 3 5 ( icm

13 The star over the bend in the right knee^“‘ ol the same [rear] twin *n 211“"' 3 X. ( Jem

14 The star on the forward foot̂ '*̂  of the advance twin n  6j -ll > 4 r| ( Jem

15 The one to the rear ol this on the same foot •n 8V'‘“'’ -ll > 4 p ( Jem
16 The star on the right f<K)t o f  the advance twin n  lol - 3 i > 4 V (Jem

17 The star on the left loot of the rear twin El 12 -7 i 3 y (Jem
18 The star on the right lixjt of the rear twin

j 18 stars, 2 of the second magnitude, 5 of the third, 9 of the fourth, 2 ol 
the fifthl

Stars around Gemini outside the constellation:

n  14! - lO i 4 ^ Gem

19 The star in advance of the foi-ward foot of the advance twin n  4i! -01 4 1(H) (Jem

20 The bright star in advance of the advance knee I I  6i +5^ > 4 K Aur

21 The star in advance of the left knee of the lear twin I I  is j - 2i 5 36(d) ( Jem

22 The noi thcrninosl of the three stars in a straight line to the n a ro l the 
right arm of the rear twin

I I  28 j - l l 5 •85 ( Jem

23 The middle one of the three I I  26j - 3 j 5 •81(g) ( Jem

24 The southernmost of them, near the forearm of the [right] arm I I  26 - 4 i 5 •74(1) ( Jem

25 The briglit star to the rear »)f the above-mentioned 3 
{7 stars, 3 of the fourth magnitude, 4 ol the I'llthl

*12 -25 4 •^ I 'nc

‘**D has UJifcp (‘over’), and this was the reading behind the Arabic ( lawfia’).
P -K  emend to I8i (the reatling of Ger; the rest of the Arabic tradition has 18i), on the grounds that the fractioni is not used in the longitudes (the only 

other examples are XXVII 17 and 29and X X X III 36), But in X I (p. 469) Ptolemy gives the longitude o( thisstaras 1«J°, and that position isconlirmed by
his subsequent computations. . . • u i

*®'<iyKuXn. This would normally rnean‘ell)ow’, and is so translated by Manitius. But the position ol the star on the ligure shows that it must be on the leg,
and therefore we mtist reler it to the lx;nd in the leg (as in animal figures, e.g. Aries, X X II 12).

*** The variant 21 i is Ibund in D,Ar. , .
*®^This is the reading t>f D,Ar (‘5’, F). Most CJreek mss. have Z q ' (J + i), which is very strange, as J is normally written as K

‘forward foot’: np6nouq, also usetl e.g. as the spur of a mountain. The twin is depicted with one loot (or leg) advanced before the other, nponouq was 
used as a name for this particular stai, see Hipparchus, Comm, in Aral. 3.4 12 (ed. Manitius 268,28).

*®*8i D,Ar, adopted by P -K .
*®*D has 3, adopted by Manitius. P -K  adopt 5l (from Ger). All the Aiabic mss. I have seen have 01.

5^

pa
I
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[Number in
constellation IX'scripiion

l-ongiiu(le 
in degiecs

Latitude
in degrees Magnitude

[Modern
designation] o

20
21
22
23
24
25
26

27
28
29
30
31
32

The star on the lel't knee
'I'he star in the back uf the right thigh
The middle star of the 3 in the ganncnt-hem round ihe led
The southernmost of them
The northernmost ol the three
'I’he star on the left, soul hern loot
The star on the right, northern fool
|26 stars, 1 of the first magnitude, 6 ol the third, 7 olthe lourth, lOolthe 

nith, 2 of the sixiii)

Stars around Virgo outside the constellation:
The most advanced of the three in a straighi line under the left (brearm 
The middle one of these 
I 'h e  rearmost of the 3
The most advanced of the 3 stars almost on a straight line under Spica 
The middle one of these, which is a double star 
The rearmost of the three
{6 stars, 4 of the lifth magnitude, 2 ol the sixihj

I !
Its 28 

•:0: 6j 
^  7j 
^  8j 

10 
^  12j

nc H i  
nj} 19 
•iiB 22l 
nn 27i 
n( 28i 
^  5

_lj-M»
+8i
^7jm
+2!
+ 111 
+oi
+9*'

- 3 i
- 3 i
- 3 j

•-7P^
-8j
-7i

86 Vir 
•90(p) Vir 

I Vir 
K Vir 
<p Vir 
X Vir 
H'Vir

X Vir 
y  Vir 

49 Vir 
53 Vir 

•6 1 + 6 3  Vir^« 
89 Vir

§

I

*^*In part of the Arabic tradition the latitude is northerly (see S 52).
Longitude: 6|  is the reading of D,Ar. Most (Jreek mss. havc6i. Laiiiude; Ibllowing 1*-K, 1 read^ Z ' (with all mss. except D) fo r^ ^ ' (7 i)a t H105,7. 

*'“ This is the reading of the CJreck mss. H-K adopt 7i, found as u variaiu in the Arai>ic (L,K,T', (Jer).
^^*For this identification of the ‘double star’ (which it is not), see I '-K  no. 527 on p. 104. Ii is extremely dubious.

VI I I 1. Constellation X X V I I I : Libra

1 {Tabular layout o f the conslellalions in the southern hemisphere]

H108

[Number in 
constellation] Description

Longitude 
in degrees

Latitude 
in degrees Magnitude

[Modern
designation]

1 -2
1

[X X V Ill] Conslellation of Libra* 
Stars on ihe tip of ihe southern claw: 

the bright one i i  18 +0! 2 a  Lib
2 the star to the north of this and fainter than it ^  17 +2 j 5 H Lib
3-4
3

Stars on the tip of the northern claw; 
the bright one 22i +8«’ 2 p Lib

4 the faint star in advance of this ^  17 j +8j 5 S Lib
5 The star in the middle of the southern claw 24 - l i 4 t Lib
6 The one in advance of this on the same claw 2 l j + l i 4 V Lib
7 The star in the middle of the northern claw 2 ll +4i 4 Y Lib
8 The one to the rear of this on the same daw in, 3 +3i < 4 e Lib

9

{8 stars, 2 of the second magnitude, 4 ol the fourth, 2 of the lil'thj

Stars around Libra outside the constellation:
The most advanced of the 3 stars north oi'lhe northern claw ^  26i +9 5 37 Lib

10 The southernmost of the rearmost 2 [of these) nv. 3j +6i < 4 48 Lib
11 The northernmost of them nV 4i +9i < 4 k  Sco
12 The rearmost of the 3 stars between the claws nw 3j +ol 6 X Lib
13 The northernmost of the other 2 in advance fof the latter] m, oi •+0j^ 5 •41 Lib*

Woo
? r

literally ‘claws’ (of Scorpius). Both (‘balance’, hence Libra) and found in the Greek texts, but Ptolemy always uses the latter
exccpt at IX 7 (H267,14), which is a quotation from an earlier observation. See Boll-Gundcl cols. 963-5.

*Thc variant 3 is found in the Greek ms. B and in part of the Arabic tradition (see S 53).
’ The identification of nos. 13 and 14 is highly uncertain. The stars I have designated are in approximately the same relative positions as Ptolemy 

indicates. But, if the identifications are correct, why does Ptolemy mention tc Lib? P -K  identify as K Lib and O’* Arg 14782 (which is BSC 5810, adopted 
by me), Manitius as 41 Lib and K Lib. Another problem is the magnitudes: k is 4.72, 41 is 5.38, and IISC 5810 only 5.94.



H102

(Number in
constellation

23
24
25
26 
27

28
29-
30
31
32
33

34
35

Description

The star iu the hind tliijjhs^'^
The star in the hind lcg-l>cnds
The one south ol this, alM)ut in the lower Icĵ s
The star on the hind claw-chilchcs
The star on the end ol the tail
127 stars, 2 of the lirst magnitude, 2 of the second, 6 ol the third, Hof the 

linirth, 5 of the llftli, 4 of the sixthj

Stars around Leo outside the constellation:
The more advanced of the 2 over the hai k
The rearmost of them
The northcrimiost of ihe 3 under the Hank
The middle one of ihcse
The southernmost of ihein
The norlli<-i nmosi part of the nebulous mass between the edt^cs ol I.eo 

and Ursa |M ajor|, called C’oma [Bi'ienices)''’
The most advaiueil of the southern outrunners of (x)ina
'I'he rearmost of them, sha|>ed like an ivy leaf
|5  stars, 1 of the Iburth magnitude, 4 of the llfth, plus Coma|

(XXVIII Constellation of V'irgo 
The southernmost of ihe 2 stars in the top of the skull 
The northernmost of them

Longitude
in degrees

a  2o{ 
a  2it'-“
a  24!
a  27i 
a  24i

a
a  si 
a  17] 
a  n i  
a  18
a  24s'

a  24j 
a  28j

• a
• a  27

Latitude
in degrees

+5̂
+ l i  
-0«'

+ IU'

+ I3j 
+I5j 
+ li 
-Oj 
-2! 
+30

+25
+25i

+4j
+5'i

Magnitude

3
4
4
5 

<1

5
5

< 4
5
5

[Mod<.‘rn
designation]

t Leo 
o  Leo 
T Leo 
u Leo 
p Li‘o

41 LMi
54 Leo
X 1^0

59(() Leo 
58(d) Leo 

•15(c) Com

•7(h) C:om 
•23(k) C:om

V Vir 
^ Vir

^'“The lion is representi-d wiiii boih hind legs logether. Cf. nos. 24 to 2(i, and e.g. Tlii<-le Fig. 2(i p. 99.
i(2UThe variant 24  ̂ iH'.i urs in the (ireek (A'D) and later Arabic traditions (see S 43).

Reading Y (with 1), adopted by Manilius) lory £ ' (j}) at HI0l,(). I'lu latter fraction would Ix.- iini<iue in the whole catalogue. The Arabic tradition 
(see S 44) varies between 0 | and 3. I '-K  adoj)! the latter, whii h might Ije <orrcct.

'̂’̂ 'I’he variant Oi occurs in the later Arabic tradition (.see S 45).
^^^One can make out many of the siais of I his cluster with the naked eye. But it is dubious whether one should identify the )x>ints named by Ptolemy with 

individual stars, as 1 have done li)llowing Manilius and P -K . For here Ptolemy uses the neuter (to Ptjpciotarov), not the masculine (which would imply 
(ioTilp, ‘star’). The group was named nXotcupoi; (‘lock’) in honour of the 1(m k of Berenice by Conon: see the poent of C>allimachus, Aetia fr. 110.

the |K.‘culiar designation of the magniiude in mosi (ireek n»ss., namely dnaiJp6(; (‘laint’) with Xapnpoq (‘bright’) over it, see P -K  j>. 103.
^^*The longitude of no. 1 should Ik; greater than that of n<j. 2, but the only alternative ms. reading Ibr the longitude of no. 1, 25 (A'BC) is even :>inaller. 

Hence P -K  interchange ihe longitudes of llu; two stars. Manitius (p. 403) would prefer to c orrect the longitude ol no. 2 to 26.

S.s-a

H104

[Number in 
constellation] Description

Longitude 
in degrees

Latitude 
in degrees Magnitude

[Modern
designation]

3 The northernmost of the 2 stars to the rear of these, in the f.i< e n oi +8 5 0 Vir
4 The southernmost of them nc oj +5i 5 n Vir
5 I'he  star on the tip of the southern, left wing a  29 •+0i!““ 3 p Vir
6 I'he  most advanced of the 4 stars in the left wing nj 8j •+ ii!«’ 3 n Vir
7 The one to the rear of this m  I3l +2iS 3 y Vir
8 The one to the rear again of tliis W  17l •+2^m 5 *46 Vir
9 I'he  last an<l rearmost of the 4 nv 21 + 1? 4 8 Vii

10 The star in the light siih; under tin- girillc np 14l'-’-* +8j 3 8 V ii
11 I'he  most advaiu ed of the 3 stars in the right, northern wing m  8i * + l3 jm 5 p Vn
12 'Fhe southernmost of the other 2 nc 10i« ' 6 32(d“) Vir
13 I'he  northernmost of lhes<;, called ‘Vindemiatrix’ '̂^ nc 12^ *+15l^'’ > 3 £ Vll
14 The star on the left hand, called ‘Spica’“'̂ nB 261 -2 1 a  Vn
15 The star under the a p ro n ," 'ju s t about over the right buiio< k UK ‘24iS +8J 3 c V ii
16-19 'I'he (|uadrilateral in the left thigh:^"'
16 the northern star on the advance side iiB ‘26 j +3l 5 •74(l“) Vii
17 the southern star on the advance side •iiB 27l +ol“' 6 •76(h) Vir
18 the northernmost of the 2 stais on the rear side ^  0 + l j < 4 •82(m) Vii
19 the southernmost star on the rear side HB 28 -3'/i» 5 •68(i) Vir

R ead ing^ ' at H 103,7 lo ry ' (Oj), the reading of D. Oi is the reading of the Creek mss. BC (conlirmed by CCAG I cod. 12 f .l4 2 \ 13) and the later 
Arabic tradition (see S 46). It is adopted by P -K . A and the rest of the Arabic tradition have 6.

Reading a  q' (with ail mss. except D) for a  Z ' ( l i )  at H103,8. Corrected by P -K .
“ “Reading P Z ' y ' (with all m.ss. except 1), ‘2 i’ and '1', ‘2;10’) Ibr P Z ' (2.1) at H103,10. Corrected by P -K .
^̂ “'I’hc variant 11 j occurs in the early Arabic tradition according to S 47.
*̂ “'rhe  variant 13|, adopted by P -K , is the reading of Ar.
^^'The variant 16 is found in the Cireek (A'BC) and later Arabic traditions (see S 48).
‘'^^npotpuyntT^P. ‘tlw; harbinger of vintage’.
“■‘’ This is the reading of l),Ar. The other (ireek mss. have 20l. P -K  adopt 16 on no ms. authority.
*^*Oxdxu^, an ear of wheat or other cereal.
^^^Jiep't^upa (clothing worn al>uut the loins), probably dilferent liom the 4«ivr| (girdle) in no. 10
““ P -K  and Manitius agree on the identilication of these lour stars, but as Manitius |X}ints <»ut (p. 403), it is hard to see them as forming any kind ofa 

‘quadrilateral’. To remedy this P -K  (n<>. 515 p. 104) suggest an implausible interchange in the cooniinatcs of nos. 19 and 20.
“’’ The variant 6 is Ibuntl in part of the Arabic tradition (see S 49).
*’“The variant Oj is Ibuml in the Arabic tradition (see S 51).

§
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I
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H U4

[Number in
constellation]

10
11
12
13
14
15
16
17
18
19 
20-22
20 
21 
22
23
24
25
26

Description

The
The
The
riie
ih e
The
The
The
riie
Ihe
I 'he

The
ri.e

The
The

middle one of these 
rearmost ol the three
sodthcrnmost of the 3 stars in the northern ( loak-atia< h incnt"
middle one ol' these
northernmost ol' the tl)r<;e
faint star to the rear ol these three
northernmost of the 2 stars on the southern ( loak-attachmcnt
southernmost ol’ them
star on the ri^ht shoulder
star on the right elbow
three stars in the back:

the one just alx)ve the place between the sliouldcis 
the middle one, just above the shoiddcr-bladc 
the other one, under the armpit 

star on the front left hock 
one on the knee of the same lej{ 
star on the front ri^ht hock 
star on the left thiijh

I.on){ilude
in decrees

171 
1‘jjl 
2M 
221 
22l 

t  255'  ̂
I  29! 
f  27 i 
I  22i‘“ 
T 24̂

/  20
17 s 
I6S 
17i 
17 
(ii 

271

l.atitiide 
in degrees

+ ll 
+2 
+2* 
.4}

+b\
+5?
+2
-1^
-2^

-2i
-4 l
- 6 l
-23
-18
-13
- I 3 j

Magnitude

4
4
5
4
4>.
6
5
6 
5
4

5 
> 4

3
2

<2.7
3
3

[Modern
designation]

o Sgr 
It Sgr 

43(d) Sgr 
P Sgr 
V Sgr 

55(e) Sgr 
61(g) Sgr 

*57 Sgr 
*x‘ Sgr 

*51(h') +52(h^)Sgr

V Sgr 
tS g r  
CSgr 

•P ' + P* Sgr 
a  Sgr 
n Sgr 

*k‘ +tc^ Sgr

'^fetpajiTt^. This word is mistreated in the dictionaries. It is a piece of cloih which was attached (lu-uce the name) to a mounted soldier’s cloak at the 
shoulder, and which was, in theory, used to wrap round the arm as a guard (dcllned by Pollux IV 116, ed. Bethe I 235, auaTpe|i|xdTiOV noptpupdCv x\ 
(potviKoDv, 6 iiept Tiiv EI^OV o't itoXcpotJvTEi; tj o't OripCSvTt^), but in practice was largely decorative, being often of purple or embroidered (sec 
Athenaeus V 194f and 1961, passages from Hellenistic authors), and streaming lice Irom the shoulder as the wearer galloped. 'I'his is how it (or they, one on 
each shoulder) appeared in the depictions of Sagittal ius (e.g. I'hicle Fig. 42 on p. 117), where they ntay be a ( Jreck adaptation of the wings of a Babylonian 
original (see e.g. King, Habylonian boundary Stones PI. X XIX A; but it is only a plausible conjet lure tliat this figure represents a constellation. See SeidI, 
Kudurru-Reliefs 177, with further literature). This attribute of Sagil tarius is as early as Mippar< luis (e.g. Cumm. in Aral. 2.5.16, ed. Manitius 198,27). I do not 
know whether Hephaestion (ed. Pingree 1,3,10), in referring lo "wings or cloak-aliachiueiits', prcscives a Babylonian tradition or is misinterpreting a 
picture of Sagittarius.

'^S 56 records the variant 1 
**25i in some Greek mss. 25

!) in the earlier Arabic traditicjn. 
in AD,Ar.

‘*Ar has 22j, adopted by P -K .
*’ For the variants 3 and 4 in the Arabic tradition see S 58.

H116

Reading Z ' y '  (with Ar, adopted by P -K ) lor icy Z ' y ' (23^) at HI 15,18.
**Most Greek mss. have K<; (26). 20i is the reading of Ar (except lor I ', which agrees with D in 4^).
*®This is the reading of D,Ar. Most Greek mss. have 27 i.
*‘ This is the reading of D and most of the Arabic tradition (L, r,F). The other Greek mss. and some Arabic (Ger) have 9. 
**This is the reading of D,Ar. O ther Greek mss. have Z ' q ' (i + i), but that is not the way j is normally written.

Compare Thiele Fig. 4l«on p. 116, where, liowever, it is the niilil knee which is doubled up (cl. Introduction p. 15).

I

[Number in Longitude Latitude [Modern
constellation] Description in degrees in degrees Magnitude designation]

27 I ’he star on the right hind lower leg V  26^'“ *-20^'” 3 t Sgr
28-31 The lour stars [Ibrming a (|uadrilateral J in the place where the lail joins

[the l)ody]:
27 i-" o S g r28 the advance star on the northern sidi' -4^ 5

29 the rear star on the northern side 1  28^ 5 60(A) Sgr
30 the advance star on the southern side f - 5 l 5 59(b) Sgr
31 the rear star on the southern sidc 

{31 stars, 2 of the second magnitude, 9 of the third, 9 of the Iburth, 8 of 
the fifth, 2 of the sixth, [11 nebulousj

T 29 i -6 j 5 62(c) Sgr
i

Pa
[X XXIJ Constellation of C’.aprii onuis

]0> 7j +7i a* + a “ Cap1 The northernmost of the 3 stars in the rear horn 3
12 I'he middle one of the.se ]/> 7\ +6< 6 V Cap

3 'I'he southernmost of the three 74 +5 3 P Cap
4 The star on the tip of the advance horn *k)“ 5 -' +8 6 Cap
5 The southernmost of the 3 stars in the m u//le 9 +05 6 o Cap

><
6 The more advanced of the other two y>- 8i + 13 6 Jt Cap >< 1.

7 The rearmost of these 8^ + l i 6 p Cap
8 I'he star in advance of the [alM)ve] 3, under the right eye +0i 5 a  Cap

O S
9 'I'he northernmost of the 2 stars in the net k 115 +3j 6 T Cap

i10 The southernmost of them \ \ l *+0l" 5 I) Cap
11 The star on the left, doubled-up knee '' ^  115 -85 4 (1) Cap s *

12 The star under the right knee lOl -b i 4 y  Cap 3
13 The star on the left shoulder k>> 165 -75 4 24(A) Cap 5
14 The more advanced of the 2 stars close together under the bdly V> 201, -6ii 4 C Cap

I

I



H llO

(Niiml>er in 
constellation] Description

Longitude 
in degrees

Laiilude 
in (legrees Magnitude

(Mo<lem
designation]

14 The southernmosi of them n t U - l i 4 •BSC 5810
15 Ttie most advanced of the 3 stars south of the southern claw 23 - 7 } 3 20 1 ,ib
16 The northernmost of the other, rear 2 nv, l i •-8 i^ 4 39 l .ib
17 I 'he  southernmost of them

|9  stars, 1 of the third magnitude, 5 of the fourlh, 2 of the lifih, 1 of the 
sixihl

|X X 1X ) Constellation of Scorpius

nu 2 “ 9j 4 4 0 1 . i b

1 I he northciniiiost of the 3 bright stars in the forehead m , 6 j . l i 3 p  S. O
2 The middle one of these m , 5j 3 8  S. O
3 The souihcrninost of the three m , 5} --5 3 Jt S i O
4 The star south again of this, on one of the legs nu  6 3 p  Sco
5 The norllK'rnniost ol the 2 stars adjacent to the northernmost of the [3] 

bright ones |no, 1]
n t  7 , \ i 4 V Si O

6 The southernmosi of these lU, 6 j lOi 4 • a ) ‘ + io * S c o
7 The most advanceil of ihe 3 bright stars in the liody n t lO j - 3 i ' 3 o S( o
8 The middle one of these, which is reddish and called ‘Antares’ nv 12 j - 4 2 a  S i o
9 The rearmost of the 3 n t  H i -5i 3 T Si:o

10 The advaiu e star of ihe 2 under these, approximately on the last leg ni, 9 j • - e l - 5 13(c^) Si o
11 The rearmost of the.s<- n t  lOj -6j 5 d Sco = liSC 6 0 7 0
12 The star in the fust [tail-] joint from the body nvl8i -11 3 e Si o
13 The one after this, in the 2nd joint nu 18| -1 5 3 H* + n* Si:o
14 The northern star ol the double-star in the 3rd joint *nu20i •-1 8 4 Sco’
15 The southern star of the double-star *nv20 *-18} 4 *C Sco
16 The one Ibllowing, in the 4th joint nv 23i - I 9 j 3 r| Sco

09

ro

^This is the reading ol all Greek mss. except D, which has Si (so too Ar; adopted by P-K ).
*S 54 records the variant fii in the Syriac version.
‘ The variant 6 i is found in l^,Ar.
’ It is generally agreed that nos, 14 and 15 are to lie identified with and Sco, but it is not clear which is which. Kurthermore what Ptolemy calls the 

southern one has (in the mss.) a more northerly latitude (-18°) than what he calls the northern o n e ( - l8  j°). 1 have there lore, dubiously, reversed the data of 
14 and 15. Manitius reverses the latitudes only. P -K  (no. 560 on p. 105) identify 14 as and 15 as emending -18  to -19. Everything is uncertain.

f

I
S '

H112

[Number in
Description

Longitude 
in degrees

Latitude
Magnitude

[Modi.Tn
designation]constellation]

17 The one afler that, in the 5th joinl Tli28i -1 8 | 3 0 Sco

18 'I’he next one again, in the 6lh joinl t  oi -16 j 3 t ' Sco

19 The star in ihc 7th joinl, the joint next to ihe sling nu29 -L 5j 3 K S< 0
20 The rearmost of the 2 stars in the sting nv 27i - I 3 l 3 X. Sco

21 The more advanced of these
[21 stars, 1 ofihc second magnitude, 13 of the third, 5 ol lhc fourth, 2 of 

the fifthi

Stars around Scorpius outside the conslcllaiion;

JIV27 - I 3 i 4 I) Sco

22 The lu'buliiiis star lo the rear of ihe sling T Ij - I 3 i neb. G Sco + C(;io6441*
23 The mosl advanced of ihc 2 stars lo the noiih of ihc sting nv25j -i>i > 5 45(d) Oph
24 The rearmost ol llicni

|3  stars, 2 of the fltlh magniliide, 1 nebulousi

(X X X 1 C^mstellation of Sagiliarius"

•nv 29]* • - 4 l ‘« 5 *3 Sgr

1 The star on the |>oiiii of the arrow f  4l -6 i 3 y Sgr
2 The star in the jlM)w-|grip held by ihe left hand t  7j -6} 3 8 Sgr
3 The star in ihe southern |M)itioii of the I j o w t  8 -10^ 3 e Sgr
4 The soiilh< rninosl of ihe |2] stars in the northern portion of ihe bow t  9 - l i 3 XSgr
5 The noilhernmosi ol ihese, on the lip ol the Ik)w T 65 +2^ 4 p Sgr
6 The star on the left shoulder t  15j - 3 1'o 3 a  Sgr
7 The one in advance of this, just over the arrow t  13 •-3 ! '^ 4 9  Sgr
8 The star on the eye, whic h is nebulous and double f  15i +oJ neb. v‘ + V* Sgr
9 The mosl advanced «>f ihe 3 stars in the head t  151 +2i 4 e  Sgr

i

I
r

■i.
5

‘ Manitius identifies this as ('• Scorpii, P -K  as y I'elescopii, an obsolete designation which is the same as G Scorpii {BSC66i0). But the description 
‘nebulous’ obviously in< hides ihe globular t luster (cf. P -K  no. 567 p. 105 and Burnham III 1689).

’'R eading k0 Z ' (with Ar) lor KC L '  (25j) at 11113,7. This jorrection, atlopied by I’-K , is confirmed by the description (‘to the rear’, cl. no. 23). 
'•T his is the reading of D,Ar. Most Greek mss. have 1 i. The ideniiiication dejxtnds on the co<»rdinaies cue adopts W ith those of the translation, 3 Sgr 

(adopted by P -K ) stnrins right.
" T h e  archer, renresenled as a c« n(aiir.
'*The variant 3 ^  f«»nd in the Arabic {I.,TMi, C;er), is adopted by P -K ,

03
09



HI 22

H124

[Numbci' in
constellation]

24
25
26
27
28
29
30
31
32
33

34
35
36
37
38
39
40
41
42

Dt-M'i'ipiion

the one next to the latter towaids the south
the one next to this, after (the Ix-t'iiiniiii' (j| | the hend'^
the one to the rear again ol this
the one in the Ix-'nd to the south ol this
the northernmost ol the 2 stars to the south ol this
the southernmost of the two
the lone star at sonie dist;in( e Irom tlu se [two) towards the south 
the more advanretl ol the 2 stars dose toi'ether alier the iatlt r 
the rearmost ol tliem
the northernmost ol the 3 stars in the next I'roup

the middle one of the three 
the rearmost ol'them
the northernmost ol'the next 3 [arrani'ed | lik<‘v\ise 
the southernmo'st of the three 
the middle one of the three
the most advanced ol'the 3 stars in the remaining group 
(he southernmosi ol (he other 2 
the northernmost of them
the star at the end of the water and on the mouth ol Piscis 
Austrinus

{42 stars, 1 ol'the first magnitude. 9 ol the third, IH ol tlie lourth, 13 ol 
the filth, I ol' the sixih|

Longitude
in degrees

l.atitude
in degrees

~  14̂ +oii 4
~  17i - U 4
2? 20 -o l 4
~  2 0 |” -15 4
2T 19 -3 i 4
2? 19il -4 i 4

20j -8 i 5
*— 22 i '’* -11 5
^  23i -lO l 5
~  215 -14 5

~  22jl -14i 5
; r  23^ -15i 5
~  17 -14^ 4
~  I8l -15j 4
~  17i -15 4
~  lU *-14^“ 4
-r  I2i -15} 4
~  I3il -14 4
5? 7 -201^' 1

Magnitude
[Modern

designation]

A, Aqr 
83(h) Acjr 

<p Aqr 
X Aqr 

V|>' Aqr 
Aqr 

•BSC 8958*®
(I)' Aqr 
(1)̂  Aqr 

*103(A‘) + 104(A^) 
Aqr 

106(i‘) Aqr 
*108(i’) Aqr 

98(b*) Aqr 
101 (b ‘) Aqr 
99 (b^) Aqr 
86(c‘) Aqr 
89(c‘) Aqr 
88(c-) Aqr 

a  PsA

‘̂ This is the l)cst sense 1 can make ol netci xiiv Kunniiv. ntxd here ( aunot l>e the e(|iiivalent or)i;n6Mev()(;, as in Pisces (X X X III) no. 29, and the situation 
of the star forbids us to translate ‘after the iK-nd’, li:)r the star ac tuaily in the Ih ikI < omes later (no. 27).

’̂ The variant 10j was in the Syriac version according to S 62.
This identification is my projjosal. P -K  preler 94 A(|uarii, but this inv(j|vcsso great a longitudinal error that Peters had to emend the longitude to 17 

on no authority.
^*This is the reading of D,Ar; most (Jivck ims. hav'e 221.
“̂The identification ol nos. 39-41 is not in doubt. But the latitude ol H6 Acjr is considerably to the south ol'89 Aqr. Hence M anitius (p. 405) interchanges 

the latitudes of nos. 39 and 40. P -K , mor<; plausiiily, emend the latitude ol 39, but their emendation, 16j, is palaeographically implausible as well as 
without authority (the only i)lausible variant is 14s in D, Ar, whi( h is st ill loo small). Against making any change is Ptolemy’s description. If no. 39 is indeed 
south of no. 40, why did he not simply <le.scribe it as the souihei nmost ol the three? Probably he got the latitude of no. 39 wrong.

‘̂The variant 23 is found in the Greek (I)) and Arabic traditions (see S 63).

(M
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[Number in 
constellation]

H126

43
44
45

1
2
3
4
5
6
7
8

9-18
9

10 
11 
12
13
14

Description

Stars round Acjuarius outside thif constellation;
The most advanced of the 3 stars to the rear ol the l>eii(l in the water 
I'he norihernmost of the other 2 
The southernmost of them 
(3 stars of magnitude greater than the lourih|

[X X X Ill] (lonsteilation ol Pistes 
The star in the mouth ol'the aflvance lish 
I'he southerniTiost of the 2 stars in ihe lop of its iicad 
The northci nmosl of them 
The more advanced ol tin- 2 stars in the ba< k 
riie  rearmost of them
The moie advanceil ol the 2 stars in the belly 
The real most of them
The star in the tail of the same [advance| fish 
The stars Ibrming its fishing-line:" 

the first after the tail 
the one to the leai^^
the most advanced of tlu' 3 ibilowing bright stars 
the middle one of these 
tiie rearmost of the three
the northernmost of the 2 small stars under these, in the bend

Longitude 
in degrees

Latitude 
in degrees Magnitude

[Modern
designation]

sr 265 -1 5 l > 4 2 Get
^  29? -145 > 4 6 Get

29 -181 > 4 7 Get

215 +9i P Psc
24| 4 y Psc
26 4 7(b) Psc

^  28i +9} 4 0 Psc
H  05 +7! 4 I Psc

2() +4< 4 K Psc
2T 295 +31 4 X Psc
H  6 +6} 4 0) Psc

K  11 +5j 6 41(d) Psc
K  13 +3j 6 51 Psc
K  I7il +2i 4 8 Psc

*K 20i^*’ + li 4 e Psc
K  23 *-o i^’ 4 CPsc

*K 221'“ -2 6 80(e) Psc

son the fishing-line

A and most Arabic mss. have >  4.
^^Thc variants ?4 and 9 i are found in the Arabic tradition (see S 64). .
■•^The line joining the tails of the two fishes: see 'I'hiele Fig. 35 on p. 110. In laet there are two lines joined in a knot (see no. 19).

Perhaps one should emend au tS v  at HI 24 ,19 Iouv)tw ( 'ihcone n> ihe rear of the latter’). For no. 10 is not the rearmost ol all the stars or 
(nos. 9-18), but only of the first two.

D ,A r ,  20l the other (Ireek mss. . . .  w .  j- c c c  ^ ’u
’’ The Greek mss. have 6. H eilx ig  adojjted Oi from a conjecture of Bode. It was in fact the reading ol the older Ma mtln version according to So5. 1 he 

reading i j ,  found in some mss. of both the al-Hajjaj and I'haliii versions (ibid.), and in (ier, is also |X)ssible.
« 2 2 i BC,F,T; 22 i A'D,E;Ger.

I
S ’
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18

20

[Nunil>c-r in 
(onsicllation j

15
16
17
18
19
20 
21 
22
23

24
25
26
27
28

I)(-s( riplioi)

Tlic i'<':irin<tsl of'llit'M-
'I 'lic  rcan iio s i o i 'i l ic  Niiirs in i Ik- n iiiid ic  o f  (lie body
'I 'h c  soiiiiiciTiinosi ol (lu- o thci., ad v a iu T  2
'I h f  norllK-iiiniosi of liit-ni
'I 'lic  m o re  ad v a n c e d  o f  (he 2 stars  in (lie l>a< k
r i i e  n  a i inosi o( tiu  in
r i i e  m o re  ad v a n c e d  ol (lie 2 stars  in llie so iitlie rn  spine'*' 
r i ie  rea rm o st ol llic in

T h e  m o re  a d v a n c e d  ol tlic 2 stars  in tlic  section  [of th e  iMxIy | next lo  tlic 
la il
'I 'llc  rea i inost ol' tliem
'I ’lic m ost ad v a n c e d  of tIu- 4 stars  o n  tlie iid itl ie r i i |)oi(i(>i\ ot the  ta il 
'I'lie so iitlie rnm ost o f  (he o ilie r  
r i i e  m id d le  one  o f  tliese
r i i e  n o rtlie rn m o st o f  tli<'in, on  the  e n d  o f  th e  ta i l- l i ir ''

|2 8  stars , 4 o f  the th ird  n ia ^ n itn d i',  9  o f th e  l i in it li, 9  of tln ' tilth , i io f th e  
six th j

(X X X llj Constellation of Aquarius 
'I’he star on the head ol A(|uarius 
The hi i^htcr of the 2 stais in the riiihl shoulder 
The faintci' one, under it 
The star in the left shoulder

Loiif'itude 
in decrees

20 
18j 
16| 

10" w>j 
16?’ 
21

Yr 2;il 
25
24r'’

k>> 261 
26« 

k> 281 
271 
281

Ol 
^  61 
~  si 
10* 26 i

Latitude 
in decrees

-6
-4 j
- 4

-O--’ 
-Oi 
-4] 
-41
-2i

-2
iOl
<0
.2«'
i4i

+I5i“
fll
t9i

Magnitude
[Modem 

desit^nai ton]

36(b) Cap 
<p ( a p  
X ( ’i‘P 
n ('.ap
0 Cap
1 Ciip 
£ Cap 
K Cap
y ( “‘P

8 (3ap 
42(d) Cap 

( âp 
X C^ap 

46(c‘) Cap

25(d) A.]r 
a  Aqr 
o A<|r 
P A q r

oo

^^The variant 23 occurs in the lat«T Arabic tradition (see S 59).
**Thc direction ‘soiiih’ attached to the coordinate ‘0’ perhaps indicates that the star is very sli^>h(ly south of the ecliptic. Contrast no. 26.
**‘Spine’ (oKdvGi)) here means a projection Irom the lish-tail. Maniiius (p. 404) emends voxuji (‘southern’) to vtoTiatft ‘the spine on [projecting 

from] the back’), comparing H128,1 tn \ Tî i; vo)Ttuiaq dicdvOtK, and H I66,22 em in(; vwTiaiaq vonou dKdvOnq. Although the conjecture issupeilicially 
attractive, the location of this projet lion on the ligiiie seems indeed to he south of the main tail; see Thiele Fig. 41 on p. 116.

” 211 all Greek mss. ex»i pt A. 24^ Ar.
*"For this meaning of oupaTov < I. Cetus (XXXIV) nos. 21 and 22, and l .SJ s.v. ouputoc, 2.
**The variant 5 j (mcuis in the earlier Arabic tradition according to S 60.
^®The Syriac translation had tlur variant I8 i according to S 61.

a

g
2 .
8
3

[Numlx'r in 
constellation] Description

l.oiigitude 
in degrees

l.atitiide 
in degri'es Magnitude

[M<Hlem
designation]

5 The one under that, in the bai;k, approximately under the armpit 27i +6i 5 ^ A q r
6 'I'he rearmost of the three stars in the left arm, on the coat 175 +5l 3 V Aqr
7 The middle one of these I6ii +8 4 p A(p-
8 The most advanced of the three 141 +85 3 £ Aqr
9 The star in the right l(>rearm 9i +8i 3 y Aqr

10 The northernniosl of the 3 stars on the right hand •r l l j -ilOi 3 71 Aqr
11 I'h e  more advaiu ed of the other 2 to tiu; south" 12 +9 3 ;A q r
12 The realmost of them 13i +8i 3 n -^‘1'
13 The mon- advanced of the 2 stars clo.se togethci in the hollow of the 6^ +3 4 0 Aqr

14
right |h i|) |

'I’he rearinosl of ihem ^  7 5 P Aqr
15 'I'he star on the right buttock 85 -0^ 4 O Aqr
16 The southernmost of the 2 stars in the left buitock . r  15 - 11 4 t Ac)r
17 The northernniosl of them 3J1 *tO i" 6 38(e) A<ir
18 riur souilierninosi of (he 2 stars in the right lower leg ^  111 -7 i 3 5 Atir
19 The northernniosl of them, under tlie knee-bend . r  H i -5 4 T Aqr
20 'I'he star in the back of the left thigh . r  41 -51 5 53(1) Aqr
21 The soiilhcrnniosi of the 2 stais in the left low«-r leg .r  8\ - 10 5 68(g^) Aqr
22 'I'he noi therninost of these, under the knee l l -9 5 66(g‘) Aqr
23-42
23

'i'he stars on (he How of wa(er;
(he mosi advaiKcd (in (he section] beginning at tiu hand‘d . r  15 4 2 4 *K Acjr*'’

2 .^'Reading voTiwv Hir popr.uov (‘to the north’) at HI20,I0. Although all (ireek mss. have (iopciwv, the seiiie requires the emendation, which is 
confirmed unanimously by the Arabic translations.

’*p A<|r should have a latitude somewhat totlu-soiithofO A(|r(no. 13). lli iit e Manitiiis (p.404) interchanges the latitudes of 13 and 14. Perhaps it would 
be preferable to adopt, I<ji 14, the latitude 2i, l<>iind in li, (ier.

" I ) T  have ‘southerly’ for the latitudinal direction (adopted by Manitiiis). The rea<ling 4 is loiind in all Arabic mss. 1 have examined.
1 take this to mean ‘the most advanced in the section up lo the l>end’; lor it cannot mean ‘the m(J t̂ advanced in the whole How of water’, sinie the stars 

at the bottom of the How (e.g. no. 42) are certainly ‘in a<lvance’ of no. 23. Kut perhaps one should read nptUTOi; (‘llist’); A has n p ', BC itQ', cf. the exactly 
similar Ibrmulation Pisces (XXXIII) no. 20, where npoiiYoOpcvoq cannot be interpreted as here (see n.5l there).

If this star iscorreclly identiliedasic A<|i-, the coordinates are considerably in error. For the various solutions whiirh have been proposed see Manitius p. 
404 and P -K  p. KMi nos. 651 and (i52. Although no. 23 lias a greater longitude than no. 24 it is ‘the most advanced’ of nos. 23-6. For when oii<r converts 
Ptolemy’s coordinates to right a.scension and declination (with £ = 23;51,1!0") one finds a(23) = 3I6;56° and a(24) = 317;20°. C f p. 340 n.!)3.

03«vl



H132

[Number in
constellation]

7
8-11
8 
9

II
11
12
13
14
15
16
17-20
17
18
19
20 
21-22 
21
22

Description

The one in advance of this, alxjut on the mane 
The quadrilateral in the chcsi;

the northernmost star on the advan(c side 
the southernmosi one on the advance si<le 
the northernmost one on the rear side 
the southernmost one on ihe rear side 

The midmost of the 3 stars in the Iwdy 
The southernmosi of them 
The northernmosi ol the ihrce
The rearmost ol the 2 stars by the section next lo ihe tail 
The more advanced ol them 
The quadrilateral in the section next to the lail; 

the northernmosi star on ihe rcai side 
the southernmost one on the rear side 
the norlhernmost one on the advance side 
the southernmost one on ihe atlvance side 

The 2 stars at ihe ends of the tail-lins: 
the one on the norihein jiail-lln] 
the one on the end ol' the southern lail-lin 

{22 stars, 10 ol ihe third magniiudc, 8 of ihc loin th, 4 ol ihc filihj

[XXXV'] Constellation of Orion 
The nebulous slar in the head ol O rio n  
I ’he bright, reddish slar on the right shoulder

l.ongilude
in degiees

*cp 75'"

T  3 
T  3j 
T 61 
T  7 
K  22 
K  23 
X  25 
K l»i 
K  15

K  II 
K lOi 
X  9i 
X  9

K  4l
X 55

8 27
n  2

Latitude
in degrees

- 4 i

-241 
-28  
-25j! 
-27} 
-25  J 
-30^ 
-20 

*-151'’- 
-151

-131
_l4j«<
-13
-14

-91
-2 0 i

• - 1 
-17

M agnitude

4
4
4
3
3
4
3
3
3

5 
5

> 5
> 5

< 3
3

neb.
<1

[Modern
designation]

V C c l

p Cel 
a  Cet 
e Cet 
n Cet 
T Cel 
u Cel 
CCei 
e C c t 
ti Cel

Cet“  
*BSC 227 

*tp' Cet 
*BSC 190

t Cet 
(3 Cel

*X Ori" 
a  O ri

(M
poN>

“ So D,Ar; C Y' f7  (?i.e. 7i or 7ii) ABC. P -K  adopt 7j.
**15l D,Ar, adopted by P -K .

1 have adopted the idem it ical ions ol P -K  lor nos. 17 to 20, but ilicy seem hiifhl) dubious, particularly l)ccaiise of I he errors in the relative magnitudes. 
Manitius has dilTerent identifications (see his note on Wallisch 17, p. 405) which would re(]uire considerable errors in the coordinates.

The variant 11 j is attested in the earlier Arabic tradition (sec S 68).
I T ;  Arabic tradiiion: Ixsl ailesicd is I3j (adopted by P -K ), but 16  ̂and 18  ̂ (also in (Jer.) are Ibund loo.

Ihis IS the identification ol Manitius and P -K , but perhaps one should icienlily it wiih the dilluse nebula surrounding k and (p‘ Ori.

i
P

[Number in 
constellation]

H134

3
4
5
6
7-10
7
8
9

10
11
12
13
14
15
16
17-25
17
18
19
20 
21 
22
23
24
25
26

Description

The star on the left shoulder 
The one under this to the rear 
The star on the right ellM)w'’’
The Slar on the right lorearm 
The quadrilateral in ihe right hand:

the rear, double slar on the .southern side 
the advance star on ihe southern side 
the rear one on the northern side 
the advance one on the northern side 

The more advanced of the 2 stars in ihe siall'''
The rearmost of them
The rearmost of the 4 stars almost on a straight line just over the 1)U( k 
The one in advance of this 
The one in advance again ol this 
The last and most advanced ol the 4 
Stars in the |x;li”  on the lefl arm: 

the northernmost 
the 2nd from the northernmosi 
the 3rd from the northernmosi 
the 4th from the northernmost 
the 5th from the nonhcrnmost 
the 6th from the northernmosi 
the 7lh from the northernmost 
the 8th from the northernmosi 
the last and southernmost of those in the [>eli 

The mosl advanced of the 3 stars on the Ik-1i ~

Longilude 
in degrees

B :24
b :25
n 4l
n 6l

n 6i
n 6
n 7}
n 61
n 11

* n 41’“
B 27i
B 26j
B 25l
B 241

B 20]
B 19 j
B 18
B I6j
B I5il
B I4l
B 14s
B 15i
B I6j
B 25 J

Latitude 
in degrees M agnitude

[Modern
designation]

- I 7 i 2 Y O ri
-18 < 4 32(A) Ori
- I4 i 4 p Ori
-11^ 6 74(k) Ori

-1 0 4 *^ Ori'’"
- 9 i 4 V Ori
-8J 6 72(1") Ori
-8j 6 69(1') Ori

5 X' O ri
-4 i 5 X^Ori
-195 4 to Ori
-2 0 6 38(n^) Ori
-20i! 6 33(n‘) Ori
-201 5 V)/ Ori

-8 4 15(y^) Ori
-8i 4 ll(y ')  Ori
-lO i 4 o* Ori
-12s' 4 n ' Ori
-1 4 i 4 n 'O r i
- I 5 l 3 Ori
- I 7 l 3 7t' O ri
-2 0 l 3 Ori
-211 3 71* Ori
-2 4 i 2 6 Ori

5 and 6 which are north of no. 4, are descril)ed as being on the arm Ix-caiise the right arm is raised, holding the stalT.
“ As Manitius notes (p. 405, c f P -K  no. 740 p. 108), ^ O ri is not a double slar, but there are two small stars close togetherjust Ir Io w  it, which may have

led to this description. ,
‘*KoXX6poPov. c f  p. 346 n .ll8 . Thiefe Fig. 45 on p. 120 shows a curvcd slick, more like a ^aYw(loA.ov.

aI  a tu n t J ^ I n .^ S n 1 : i7 r ie s  an animal pelt as a garment or an arm-guard. C f riiiele Fig. 45 on p. 120, and PI. IV (lower).

p
a
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H128

[Niiml>cr in
ranslellatiun

15
16
17
18
19
20-23
20 
21 
22
23
24
25
26
27
28 
29

30
31

i)cs( ripiioii

ilu- s(>iiitu-riiiii(»i ordx 'in
llu- niosi a(lvaiu'('<l <i('ilic 3 slais alit-r »1r- 1 h - i h 1 
iIk- niidcilc one of ilicsc 
tlif uaitiiosl ()1 till- iliKc 

The star t>n llic knot joiniiif; the 2 (isliin>{-liiu s 
Stars in tlic iKirilu-rii llsiiing-linc:

llu- Hist'’ in llu- scition li< i{iiiiiini{ at llic knot 
tin- soiitlu rnnuisl o( tin 3 stars lollowing a liir that 
llic nii(l<ll<- oni- o( tliisf

'I'lu- soutliernniosl ol'tlicin 
'I'lu: rcarniosl ..1 llu- 3 small stars in tin- luad 
riic middle one nl tln-sc 

The most advanced ol' the three

j x x  no. III  
1 he middle one ol' the three 
The learniosl ol'the three

Longitude 
in di-grei-s

l.atitude 
in dt grees Magnitude

(Modern
designation]

*K 23^" -5 6 89(0 I’sc
K  2(iJ -2 l 4 ji I’sc

•K  28i'"‘ -41 4 V Psc
T  05 - 7 i 4 ^ Psc
T  2i 3 a  Psc

T  oi ... 1 4 o Psc
T  oi. .11 5 71 Psc

* T  o i" i5l 3 Psc
1 Ilf the tail T  oj ^9 4 p Psc
lish (p  2 +2li 5 82(g) P.SC

T  l i 42li 5 T Psc
K  28i 4 20 6 68(h) Psc
K  271 + 19* 6 67(k) Psc

L, Ibllowing
K  27 •i20|^< 6 65(i) Psc
K  251 4 141 4 V' Psc

liidniiiieda

*K  26 i -' *(131'’" 4 Psc
K  27 i t l2 4 #X p̂ j.57

1 be so here ,;̂ in(e no. 20 is 'to the real’ of no. 21. Perhaps one should emend to

‘“So D ,L ',T ,F ,G ci; 20 iA, 23 j BC.LM:.
'̂’So AD,Ar; 28j BC.

^npOTiyounevoq, which is normally ‘the most atlvant ed’. But that c 
npwTO;, ci: Aquarius (XXXIJ) no. 23, with n.34.

*^The variant ‘northern’ is Ibnnd in the CJreek (IKI) and Arabic tiaditions (see S ()(i)
“ So ABC. Oj D, Ar, ado|.led l,y P -K .

‘J.*' f o n f  ■■ * il'i» as-Salah (S 67) all the A.al>ic l.anslalions except the original Ishiq
v en io n  h a d  ^O j, l)u t in ih c  t x la n l mss. L\ is also  Ibuiu l (see K iiint/s<  li's k  p u rls  ) ’

« 2 6 iA B C r-’, ado ,,ted l,y l* -K . 26lD ,I.,E ,F ,(;er.
AD, 13 BC,Ar.

”  ̂  '^-"t'ficat'ons ol nos. 31 and 34 arc very nncerlain. V- K  identily 3 1 as y  ’ l‘,sc and 34 as x Psc, M anitins as x Psc and 99 (Hevelius) respectively. The 
idcmtlicalion of 34 as x I m lits the desi ription hut mvolves a serious enoi in die longitude riiere ate in any case hatl <nois in the coordinates of all nos. 31

I

I

H130

[Numl>er in 
constellation! l)es<ripiion

l.ongitiide 
in degrees

Latitude 
in d« grees Magnitude

[Modern 
designal ionl

32
33
34

The northernmost of the 2 stars in the belly
The southernmost of them
The star in the reai spine, near the tail
|34 stars, 2 of the third magnitude, 22 ofthe fourth, 3 oi the filth, 7 ol the 

sixth}

T  2l 
K  29^ 
qp 0

+ 17 
+ 15? 
+ l l l

4
4
4

u Ps. 
<p Psc 

*V* Psc

35-38
35
36
37
38

Stais round Pisces onlside the constellation:
The (|uadrilateral nnder the advaiK e lish:

iIk' more advanced ol the 2 noiliiern stars 
the rearmost ol them
the more advanced star on the soiithcrn side 
the rearmost one on the southern side 

|4 stars of the fourth inagniliide|
j Tolal lor the widiac; 34(i stars, 5 of the first magnitude, 9 of llie sei oiid, 

64 o ftheth ird , 133 of the luiii th, 105 of the liflh, 27 of ilie sixth, 
3 nebulous, and Cloma [BerenicesD

K  l i  
K  2j 
K  01 
K  2i

-21
-2 \
-5 i
-5 i

4
4
4
4

27 Psc
29 Psc
30 Psc 
33 Psc

1
2-4
2
3
4
5
6

(XXXIVJ tlonstellation of (Vtus 
The star on the tip of the nostrils 
The three stars in die snout:

the rearmost, on the end ol the jaw 
tlie middle one, in the middle of die moutli 
the most ailvaiiced ol the 3, on the < lieek 

The star on the eyebrow and the eye 
The one to the north of this, about on the hair'‘“

T  I7i

T  »7s 
T  12! 
T  lo i 

• T  lo l'"  
T  I2i

- 7 l

- I2 \
- H i
-14
-Hi
-6 i

4

3
3
3
4 
4

X {^et

a  ( let 
Y ( ’-ct
5 Cot 

•v (A t̂ * 
•i^^Cet

107.
^*So Ar and most (Jreck mss.; K»| B(].
^»The identilieations of nos. 5 anti 6 are extremely uncertain. See 1*-K nos. 7Hi, 717, p.
«*0pit. Manitius takes this as ‘the hair on the li.rehead.’ It is in any case distinct Iron, the ‘mane’ (xaiiil) ol no. 7.1  he

.............................. the original, l or ancient representations ofserpents wiili manes125 is little help un less one  supiK)ses that the long ears are a distortion of hiovv-hair in the original. Ft . , , - r r
Laching over.he brow see e.g. Allinson, iMrian, photo opp. p. 108 (the serpent (ilykon of Alexander of Abono.ite.chos); a remarkable l.fe-stze statue of 
Glykon found at Tomis is illuslrated in Robert, A Iravtrs I’Asu Mineure, Fig. 8 on p. 398.

I
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H142

[Number in
constellation]

28
29
30
31
32
33
34

1-4
1
2
3
4
5
6
7
8 
9

10
11
12

Dcscriptioi)

The ^>outhcl'nmost ol' them
The rearmost ol the next 2 stars alter the heiul
The more advanced of them
The rearmost ol' the 3 stars in the next interval
Fhe middle one
The most advanced of the three 
The last star of the river, the bright one
{34 stars, I of the first magnitude, 5 of the third, 26 of the loin ih, 2 ol 

the llltlil

[XXXVIIJ Constellation ol Lepus 
The quadrilateral just over the ears:

the northern star on the advance side 
the southern star on the advance side 
the northern star on the rear side 
the southern star on the rear side 

The star in the che(,*k 
riie star on the lelt liont li)ot 

'I'he star in the middle of the body 
The star under the belly
The northernmost of the 2 stai s in the hind legs 

The southernmost ol' them 
I'h e  star on the rump 
The star on the tip ol the tail
{12 stars, 2 of the third magnitude, 6 of the lourih, 4 of the lllthl

Longitude
in degrees

B 5 
T  28j[ 
T  
T
T  14* 
T  11̂
T  Oi

8 I9i
8 19̂
8  2 l i
8 2 \\
8 i9i
8 I6i
8 25̂

• 8  241“
n  1
8  29
n  0 
n  21

Latitude
in degrees

-5U
-53j
-5 3 i
-53
-531
-52!
-531

-35
-3 6 l
-3 5 i
-36J
-3 9 i
-451
-411
-4 4 i
-4 4 i
-45^
-3 8 l
-3 8 i

Magnitude

5
5
5
5

> 4
> 4

3
3

> 4
> 4
> 4
> 4

[Modern
designation]

Eri 
Eri 

u* Eri 
*g Eri“ 
• f  Eri 

•h Eri 
0 Eri

t Lep 
K Lep
V Lep 
X Lep 
H Up 
e Lep 
a Lep 
P Lep 
5 Lep
Y Lep 
CUp 
n Lep

(M
00<T>

I

“ O n alternative identifications Ibr nos. 31-3 see P -K . Their identifications correspond to /iV(';i2l4 (Lacaille i), M'6'1195 (Lacaille k) and M C I 143 
(Lacaille h).

0 Eri is not of 1st magnitude, but a double star ol 3rd and 4th magnitudes (combined magnitude 2.9). Hence F -K  suggest emending I to 4 (A to A). 
This is contradicted by the subtotal, but see p. 363 n.l91.

“‘ This is the reading of all Greek niss., E, F and Ger. I'he variant 241, Ibund in T,L, is adopted by P -K .

[Number in 
constellation] Description

Longitude 
in degrees

Latitude 
in degrees Magnitude

[Modern
designation]

1
[X X X V III] Constellation of Canis Major"’

The star in the mouth, the brightest, which is called ‘the Dog’ and is n  17J -39i 1 a  CM a

2
reddish“

The star on the ears n  195 -35 4 0 CM a
3 The star on the head n  2il -36} 5 H CM a
4 The northernmost of the 2 stars in the neck n  23l -37l 4 Y CM a
5 The southernmost of them *n  25l“* -40 4 tC M a
6 The star on the chest n  20} -425 5 n CM a
7 The northernmost of the 2 stars on the right knee n  i6i -4lJ 5 CM a

8 The southernmost of them n  16 -42} 5 v'' CM a
9 The star on the end of the front leg n  11 -41 jl 3 P CM a

10 The more advanced of the 2 stars in the left knee n  145 -46} 5 V CM a
11 The rearmost of them n  i6i -45^ 5 CM a

12 The rearmost of the 2 stars in the left shoulder n  245 -46i 4 CM a

13 I’he more advanced of them n  2ii -47 5 o ' CM a

14 The star in the place where the left thigh joins [the body) n  265 -48i <3 5 CM a

15 The star below the l)elly, in the middle ol the thighs n  235 -51} 3 E CM a

16 The star on the joint of the right leg • n  23’'“ -6 5 i 4 icCM a
17 The star on the end of the right leg n  9i -53 J 3 CCM a
18 The star on the tail G  2i -505 <3 T1 CM a

19

(18 stars, 1 of the first magnitude, 5 of the third, 5 ol the I'ourth, 7 ol the 
lifthi

Stars round Canis Major outside the constellation:
The star to the north of the top of Canis n  i9l -25i*" 4 *22 Mon»*

•’ Ptolemy calls it simply ‘the dog’ (Kutov), since to the constellation now known as ‘Canis M inor’ he gives the name ‘Procyon’.
*• Ptolemy calls this star KOtov (‘the dog’), not £cipiO(; (‘Sirius’), although the latter name is as old as Hesiod ( H^orks and Days 587). By ‘brightest’ he means 

‘brightest of all fixed stars’. Although Sirius is not a red star today, there is considerable evidence that it was in antiquity (cf. Sec, ‘Change in the Color of

' **This coordinate is greatly in error, but is found in all mss. Manitius adopts 21 i, on no authority, P -K  20l, from as-Suli. The error may be Ptolemy s. 
*®This is the reading of all mss. P -K  emend to 21.
*,*The variant 65l is found in the Arabic tradition (see S 71).
“ So P -K . M anitius has 19 Monocerotis.
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H136

[Numlier in 
constellation]

27
28
29
30
31
32
33
34
35

36
37
38

ri|»tion

The niiddit- one
The learniosl of the three
The star near the handle ol' the dagf^er”
The noi dK-rnniost o( the 3 stars joined together at tlie tipol ihe dagger 
The middle OIK!

The soijihcrnniost ol the three
The rearuiosl of the 2 stars under the tip ol' the dagger 
The more advanced ol' them
The bright star in the lel't li«M, which is [applied in] eomn.on to the 

water joi' Kridanus]
The star to the north ol’ it’*” in the lower leg, over the ankli -joint 
The star under the 1« It heel, outside 
The star under the right, rear knee
138 stars, 2 of the liist magnitiule, 4 olthe second, 8 olthe third, 15 olthe 

li)urth, 3 ol the liflh, 5 ol the sixth, [I] nebulous)

[XXXVIJ (Constellation of ICridaniis”
The star alter the one in the loot ol'O rion [XXXV no. 35), at the 

Ix ginning of the l iver 
The one north of (his, in the curve near the shin o lO rion 
The rearmost of the 2 stais next in order alter this 
The more advanced ol ljiem

Longitude 
in degrees

« 271 
0 28l 
H 2ii 
9  26j 
8 265 
8 27 
8 27j 

• 8  26{" 
8 I9|

8 21 
8 231
n  ol

8 I8i

8 I8i
8 18
8 H i

L.atitude 
in degrees

-24
-25
-25

*-2tt

-29
-29
-3 0
-30,
-31

-30 i
- 3 l i
-3 3 i

-3U ’“

-2 8 i
-29i!
~28{

Magnitude

2
2
3
4 

< 3
3
4 
4 
1

> 4
4

> 3

> 4

[Mo<icrn
designation]

E Ori 
COri
T| Ori

•42 + 45 Ori^* 
•e '+ e*  Ori 

•t Ori 
49(d) Ori 

u Ori 
p Ori

I  O ri
29(e) Ori 

1C Ori

\  I '.ri 

p i:ri
V)/ l>i
10 l>ri

00

’*paxa’ipa, a hunting-knile or shoi t sword.
” P -K  adopt 28j, the reading (.f l),Ar (2H;I2 L)

” 26i D,Is., adopted by P -K . 2li;20 L.
« Reading adxou (with li,Ar) at 11136.8 lor m nSv (‘to the north ol then.')- Corre. te.l by Man.iius.

I • I itOxap6(; ( river ). 1 he identilicat ion with a particular river I :ri<lanus is at least as earls as Ai at us (359 II.) This was the mvthii al river into
vf'ln c hariol ol I haethon plunged. It was later identilieil with the Fo. See Boll Gund< I cols. 989-92

I he variant 30j was in the Syriac version according to S 70.
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H138

H140

(Number in 
constellation) Description

Longitude 
in degrees

Latitude 
in degrees Magnitude

(Mutlem
designation]

5 The rearmost o( the next 2 in order again 8  13J -2 5 | 4 p I'̂ ri

6 The more advanced ol ihem * 8  1 0 ^ “ -251 4 V 1‘ri

7 'I'he rearmost of the 3 stars alter this 8 -26 5 ^ i : r i

8 The middle one ol' tlu'se 8  5i -27 4 0  ̂ I'̂ ri

9 The most a<lvanced ol the three 8  2l -2 7 l 4 o ' I'̂ ri

10 The rearmost ol the lour stars in the next inlerval cp 27 ~.i2i 3 Y l-.i i

11 riie one in advaim- ol this T  241 - 3 1 4 n I'ri.

12 The one in advaiu <• again ol this T  24| -28^ 3 5 l''i i

13 The most ailvanced of the 4 cp 22 -28
-2 5 l

3
3

£ l-̂ ri

14 The rearmost ol the 4 stars in the next interval again T  I7l C I'' ‘
15 'I'he one in advaiii <- ol this T  14i -23  J 

-2 3 i
4 *p' + p'̂  l-.ri™

16 The one in advance again ol this T  I2i 3 *T) I'.ri

17 The most advanced ol the 4 T -23} 4 •BSG 859

18 I'he first star in the IkiuI'" ol the river, whi( h [star) iou( lies llic < lu st ol T  ■‘ii -32 l 4 t ' r . r i

Get us
l>i19 The one to the rear ol this T  s* -34s

-38!
4

2 0 I ’he most advaiu ed of the next (group of] three T  «s 4 T * l>i 
t '  i : r i

21 The midillc one ol these T -  3H(, 4

22 The rearmost of the three T  17! -39 4 t'  Lri

23-26 The next l<)ur stars, nearly forming a trajxrzium:
T  2 li -41!

- 42!
-431 
-43  i

23 the iiorthein one on the advance side 4 T** l l r i

24 tin' southernmost on the advance side T  211 5 x’ Kri 
x" Kri25 the more advanced one on the rear side T  22i 4

26 the last of the 4, the rear one on that side T  24 i 4 x“ I'a i

27 The northei nmost of the 2 stars close together at some distance to the 
east

8 4i *-.50l“- 4 u' i:ri“'

” This is the reading of A. iq (Hi), the reading ol the other Greek mss., cannot Ik- right, since that would not In more advanced .
“ The identifications ol nos. 15 to 17 are of the utmost uncertainty. I give those dubiously propo.sed by P -K  (see th.;ir discussion pp. 108 9). Manitius 

gives; 15 = p^ 16 = p’ (these are tertainly wrong, but one might reverse them), 17 = x\. O ne might also cimsidei , lor 17, tiS(. 7B4.
*“ bend’, fentOTpotpii, i.e. a change ol'direction (see Bayer Tab. 36), in contrast to t7iiKd|tniov ‘curve’, in no. 2.
“ So D,Ar (50;30 T ‘, F); 531 the other Greek mss. / p ic '700 qaa
“ Considerable conl'usion arist-s in the identifications ol'nos. 27-33 Iromdillciences in the modern nomenclature ol these stars (see " “ K-on 

p. 110). Thus M anitius’ i.lentifications apj)ear to l>e completely dilFerent li om ihose ol P -K . but in la. t areonly partly so. To avoid lh« confû ^̂ ^̂ ^̂
£:ST;and (where applicable) the FI [ a m s te e d ]  nos. of my identifications, which are thoseol P -K , though named tlillerenlly; 27 =«S(. 1453 = H.)0,
H 6 4 ^  FI W r29 = V - 1.393 = FI 43; 30 = JtSC 1347 = FI 41; 31 = /isr; 119.-.; 32 = rtsr; 1143; 33 = /AT; 1190.
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H150

[Numl>er in l.ongiliide Latitude (Modem
constellation] Description in <legiees in degrees Magnitude designation]

18 the more advanced of the 2 faint stars untler the bright one I8i -()0 5 a Pup

19 the rearmost of them -.591
(BSC 3080)

=  21 5 BSC 3162
20 the more advanced ol the 2 stars over the above-mentioned *ES 23 i""* -565 5 h ' Pup

21
bright one (BSC 3225)
the rearmost of them 24i -5 7 j 5 h* Pup

n  5?
(BSC 3243)

22 The northernmost ol the 3 stars on the little shields, about on the mast- 
holder

-51 < > 4 BSC 3439

23 The middle one n  6i -551 > 4 d Vel 
(BSC 3477)

24 The southernmost of the three f l  4 -57 i > 4 e Vel 
(BSC 3426)

25 The northernmost ol' the 2 stars close tf)gether under diese n -(iO > 4 *a Vel 
(BSC 3487)'“*

26 The southernmost of them n  9 -61 i > 4 •b  Vel 
(BSC 3445)

27 The southernmost ol' the 2 stars in d»e middle ol the mast n  oi * -5 U " “ 3 P Pyx
28 The northernmost of them =  29 i -49 3 a  Pyx
29 The more advanced ol the 2 stars by the (i|> of die mast 28 -4 3 1 4 Y Pyx
30 The rearmost of them 29 -43! 4 5 Pyx
31 I'he star below die 3rd and rearniosi little shield n  I4i -.54? 2 X Vel
32 The star on the cut-o(l^" of the deck a  i7i -511 < 2 V Vel
33 The star between the steering-oars,"' in thi- keel s  H i -<i3 4 *o Pup
34 'I'he faint star to the rear ol this =  19 -64  i 6 *P Pup

35
(BSC 3055)

The bright star to the rear of this, under the dec k n  0 -63 s 2 Y Vel

'“ This is ihe reading ol A,Gcr (mosi Aral>i<: mss. liavt- 2H;0). Tlu- oilu r (Jnck  mss, havr 2(i, a(lo|)ti(l by 1*-K.
*®*The identifications ol nos. 25 and 2() an- ilioso «( P -K , hut it is possible iliat llu y arc insn-ad t  V«-l (/iSr. ;{f)20) and a Vcl rcsix-ctivflv 
‘"’S l U r ,  adopted by P -K . ' I X-
" 'T h e  constellation is represented as only the sK in-lia iror du' ship. Cl. riiiclc Fii{. 4H on p. I2H and PI. II, and p. ;W1 n.l74.
" “Two steering-oars are clearly visible in the illustration riiiele Fit;. 67 on p. I.')?, less dearly in Fit;. 48 on p. 123.

I

I

H I 52

[Numlier in 
constellation] DescTij)lion

I.ongitude 
in ilegrees

Latitude 
in degrees Magnitude

(Modern
designation]

36 The bright star to the south of thi.s, on the lower (part ol'the) keel -691 2 *X Car
37 The most advanced ol the 3 stars to the rear ol this a  «5i -65 J 3 •o  V e l'"
38 The middle one n  21 j -(i5s 3 *8 Vel
39 The rearmost of the three a  26 -6 7 1 2 •rC a r

40 The more advanced ol the 2 stars to the rear ol these, near the <;ut-oll K1? 1 -62« 3
(BSC 3498) 

K Vel
41 The rearmost of them nS 8 -(i2 i 3 N Vel

42 The more advanced of the 2 stars in the northern, advance sieeriiig-oar n  4 -65 i > 4
(BSC 3803) 

t| Col
43 The rearmost of them n  20l -651 > 3 V Pup
44 The more advanced of the 2 stars in the odier steei ing-oar, called n  i7jl -75 1 a Car

45
C'anopus 

The other, rearmost star n  29 - 7 l l > 3 T Pup

1-5
1

{45 stars, 1 of the first magnitude, li ol'the second, 11 <>l die third, 19 ol 
the fourth, 7 ol'the filth, 1 of the sixihl

(XLI) Constellation ol' Hydia"^
The 5 stars in the head:

the southernmost of die 2 advance ones, which is on the nostrils =  14 -15 4 a  Hya
2 the northernmost ol'these (2], which is alH)ve the eye c  13l -1 3 i 4 8 Hya
3 the northernmost ol'the 2 to the rear ol these, whii h is al>oui on Si I5i -111 4 E Hya

4
the skull
the southernmost ol' them, on the gaping jaws I5j * - l 4 i " ' 4 n Hya

5 the rearmost ol'all, aliout on the cheek I7l *-12l"'- 4 C Hya

a

"*Thc identincations I give for nos. 37-9 arc those of P -K . But the actual magnitude ol I C'arinac is much too small, and the positions are in poor 
agreement. Manitius gives 8, k , ip Vel, which produces better agreement for the magnitudes but even worse lor the positions.

' “ The water-snake. Ptolemy, like Hipparchus (e.g. Comm, in Aral. I I 1.9, ed. Manitius 116,5) calls il iiSpoq (masculine); but it is feminine (08pa) in 
Aratus, 444. Somewhat confusingly, there is a dilferent modern constellation called Hydrus (far south ol’ this).

"* I4 i Ar, adopted by P -K .
," ‘ 12 Ar, adopted by P-K ?

03



H146

[Niitnber in 
constellation] Description

Longitude 
in tiegiees

Latitude 
in degrees Magnitude

[Modern
designation]

20 The southernmost ofthe 4 stars almost on a straight line under ihe hind 
legs

• n  lO’" -611 4 e Col

21 The one north of this n  H i -5 8 j 4 K Col
22 'I'he one iioi th again of this n  13 -57 4 5 C<il
23 The last and northernmost of the 4 n  i4 i -56 4 \  CM a
24 The most advanced ofthe 3 stars almost on a straight line to the west o( 

the |alMive| Ibnr'*^
b 28 -55} 4 M Col

25 The middle one n  oi -571 4 \  Col
26 The rearmost o fthe  three n  2 l -5 9 j 4 Y Col 

p Col27 ' The rearmost of the 2 bright stars imder these b 29 -591'*' 2
28 The nu)re advanced of them b 26 -5 7 i 2 a Col
29 The last slar, to the south of the al)ove

|11 stars, 2 o fth e  second magnitude, 9 o fthe  lourthj

(X X X IX ) Constellation ofC'anis Mini)!**’

b 22i -5 9 j 4 c C..1

1 I he star in the neck n  26 -14 4 p CMi2 The bl ight star just over the hindquai ters, called Procyon 
(2 stars, 1 o fth e  llrst magnitude, 1 o fth e  Iburth)

[XL] Constellation ol' Argo'-'"

* n  29l” -16^ 1 a CM i

1 The more advanced ol the 2 stars in the stern-ornament =  io i”« -4 2 i 5 11(e) Pup 
P P»P

2 The rearmost ol them =  |4 j -431 3

03

*^P-K adopt 7 on no aiiihority.
There is no doubl that ihe CJicck must mean this. Accordingly Maniiiiis (p. 405) emends loTi; tcaoupo iv  at H146.2 lo iffiv XEaodpuv, to restore the 

genitive normal after directions. But the use of the dative here may he exolai.u-d l.y the desire lo avoid tl.c double genitive Ttov . . . T(5v 
*^59j Ger, adopted hy l*-K, All Arabic mss. examined hy me have .Wj.

Ptolemy calls this ‘Hnx yon’ (jtpoKutov, ‘harhniger of Sirius’), alicr its piiiu ipal star.
*’ This is the reading ol J),Ar. ’Ihe other (ireek mss. have 29J.
**This large constellation has in modern times been subdivided into the three constellations Fuppis, Vela and ('arina.
**The variant 13 is Ibund in the lalcr Arabic tradition (see S 72).
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H148

[Numlier in 
constellation] Des< ription

Longitude 
in degrees

Latitude 
in degrees Magnitude

[Modern
designation]

3 The northerninost of the 2 stars close together over the G  8^ -45 4 \  Pup
litlle shi< ld in ihe poop

•--46"*“ o Pup4 riie southeinmosi ol them 85 4
5 The slar in advance of ihese 5i -45} 4 in Pup 

(BSC 2944)
6 The bright star in the inidclle of the little shield ^  6i -47 i 3 BSt.1 2'>48 + 2949
7 The mosi advanced of the 3 stars iiiuler the little shield 5i *--49}"“ 4 p Pup

(BSC 2922)
8 The rearmost of them 9l *-49} '“ 4 3 Pup
9 The miildli' one of the three c  8i ~49l 4 1 Pup

10
II

The slar on the g(H»sc(-neckJ‘“  ̂
riie noi lhcrninosi of ihe 2 stars in the stern-keel

14
e ; 4

-49^
-53

4
4

BSC 3113'“'

12 The s o u i I k ' i ninost of ihem 4 -585 3 K Pup
13-21 Stars in ihe |>oop-de<'k:

G  loi"'" -55} f Pup13 the norlhernmost 5
(BSC 2937)

14 the mosi advanced ol the next 3 =  12i -585 5 •BSC 2961 +2964'“’

15 the middle one 13i -57 J 4 c Pup
(BSC .3017)

16 the rearmost o fthe  three IS 16l -57^ 4 b Pup

2 l i -581
(BSC .1084)

17 the bright star on the dec k to the rear of these 2 C Pup

•®®ReadingH(; (with all mss., (Jreek and Arabic, except D) for t̂(; (46i), the reading of D, at H147,I8. Corrected by P -K .
**' Reading pB L ' (with AD.Ar, a«lopted by P -K ) at H149.4 Ibr jiG Z ' ft' (49j) of the other CJrcek mss.
‘“̂ This is the reading of D,Ar; the other (ireek mss. have 4 9 i
'®*The top of the |K)sI on the stern, which was often given this shape. See I.SJ s.v. II for other references.
*®^This seems the only likely candidate in the right region. P -K  assign to the star they identify (Piazzi VII 277) the magnitude 6.5. Perhaps Peters 

confui^ed the two stan* (very close together) m :  3113 (mag. 4.78) and iViV. :M)99 (mag. 6.36, which is too faint lo be considered).
' “‘ This might l>e any ol the 5th-magnitude stars (all close together) bSC 2819, 2823, 2834, or .some ( ombination of them. Allany

constellation Canis Maj»>r.
' “ The variant 16 occurs in the (Jreek (AD) and later Arabic traditions (see S 73).
'•’ This may include more of the numerous small stars close together (P- K give d'+d*+<l^).

are in the modern
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H158

H160

(Number in
constellation]

1 The
2 The
3 The
4 The
5 The
6 The
7 I'he

8-11 The
8
9

10

11

12 The
13 The
14 The

Description

The star in the breast
The star in the advance, right wing
The more advanced of the 2 stais in the rear wing
The rearmost ol' them
'I'he star on the end ol the leg, which is (applied in (common to Hydra 
|7 stars, 5 of the third magnitude, I of the I'ourdi, I ol' the IHthl

|X LIV ( Constellation ol'Centaurns

the northernmost of the advance 2 
the southernmost ol these

that one ol the other two which is at the tip ol the thyrsus' 

the last one, south ol' the latter

Longitude
in degrees

n 165 - I 8 i
13l -1 4 |
16j -12}

nc 17 - I H
m 20 \ -1 8 i

lOj
10
9i

10
6ji

I5i
9ii

18i
19i

22

221

I3i
14
15i

Latitude
in degrees

- 2 M
-18̂
-201
-20
-25i
- 22 *
-27i

-22i
-Zil

-18i

-2 0 i

-281
-29}
-28

Magnitude
[Modern

designation!

CCiv 
y Crv 
5 Crv
r| Crv 
pCrv

> 5 2(g) Cen
> 5 4(h) Cen
> 4 l(i) Cen
> 5 3(k) Cen

3 t Cen
3 0 Cen
4 BSC 5089

(d Cen)

4 V)/ Cen
4 BSC 5378

(a Cen)
4 BSC 5485 + 5

(c* + ĉ  Cen)
4 BSC 5471

(b Cen)
> 4 V Cen
> 4 p Cen
> 4 (p Cen

***The thyrsus was a branch carried by followers of Dionysus, tipped with vine-leaves, pine-cone, or other Dionysiac emblems. See A.J. Reinachs.v. in 
Daremberg-Saglio V, 287-96, with illustrations. 'I'he attribution to a centaur is rare, but attested (ibid. 293 n.20).

Manitius and P -K  identify this as c‘ Cen, but c  ̂and c* are so close together that one cannot decide Ixrtween them: it is lx;iter to assume that Ptolemy 
refers to both.

o'a

I

H162

(Number in Longitude Latitude [Modern
constellation] Description in degrees ill degrees Magnitude designation]

15 The star on the right upper arm ^  I6l -2 6 l > 4 X Cen
16 The star on the right Ibrearm ^  22i -251 3 Cen
17 I'h e  star in the right hand ^  27! -2 4 l 4 K Cen
18 The bright star in the place where ihc human Ixxly joins |thc horse's| ^  18 -33 i > 3 ;C e n
19 The rearmosi of the 2 laint star.s to the north of this ^  I7i -31 5 u ' Cen
20 The more advanced of them — 16s *-30} '“ 5 i>‘ Cen
21 The star on the place where the back joins |tlu' horse’s 1)ody 1 ^  12i -34^ 5 u  Cen'
22 I'he star in advance of this, on the horse’s bac k ^  9 -37 i 5 •BSC 4940 

(fCcn)
23 The rearmosi of the stars on the rump ^  5« -4 0 3 y Cen
24 The middle one 5 * -4 0 } '” 4 T Cen
25 The most advanced of the three ^  25 -41 5 a  Cen
26 The more advanced of the 2 stars dose together on the right thigh 25 -4 6 i 3 5 Cen
27 The rearmosi of them 3l 4 p Cen
28 The star in the chest, under the horse’s armpit 18} -4 0 j 4 BSC 5172

16}
(M Cen)"^

29 The more advanced of the 2 stars under the belly -43 2 e Cen
30 The rearmost of them ^  175 -4 3 i 3 Q C e n
31 The star on the knee-bend of the right |h ind j leg 10 -5 U 2 y Cru
32 The star in the hock of the same leg ^  15} -51} 2 P Cru
33 The star under the knee-bend of the left (hind) leg — 6} -5 5 i 4 5 Cru
34 The star on the frog of the hoof'*^ on the same leg ^  lU -.55} 2 a  Cru
35 The star on the end of the right front leg nu 8} . - 4 l | ' i b 1 a  Cen

Reading X y ' at H I61,8 (with Ar, adopted by P -K ). I'he Creek mss. havelhe reading Xy (33), but, with these identifications of nos. 19 and 20, the 
Arabic tradition is almost certainly the correct one. Manitius identilies 19 as u ‘ and 20 as u ', but is definitely “to the rear’ of u*.

*^^As P -K  note, O) is not a single star, but a globulai cluster (no. 5139).
Reading |i y ' (40l), which is abundantly attested in the Arabic tradition (see S 81) at H I61,12 Ibrpy (43) of the Greek tradition. P -K  also adopt 40l. 

'^^For the itlentificationsofnos. 28-37 see P -K . nos. 962-71 on p. 112. The identifications they suggest are probably correct, in spite of the large errors in 
the coordinates, which are perhaps due to the dillkulty of observing stars with extreme southern declinations.

*^*PaTpdxtov. The Oxford English Dictionary defines ‘frog’ (s.v. 2) as 'an elastic, horny substance growing in the middle of the sole of a horse’s hoof. 
*^*This is the reading of D,Ar and an alternative reading in A. ()ther (ireck mss. have 44i. -41 i is more correct, but all other stars in this group are 

assigned too great a southern latitude, so -4 4 i may have l)een Ptolemy’s measurement, h  is adopted by P -K .
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H154

[Numljer in 
consiellaliunj

7
8 
9

10
11
12 
13.
14
15
16
17
18
19

20 
21 
22
23
24

Dcs(:i'i|)(iun

'1 he inon- iulvaiKrd oClhe 2 stars in llic placc wlicic (he ntt k joins lilic 
head)

T h e  iv a n iiiis l ol llicn i
The niidillc slar ol the luliowin^' three in the bend o( the n< i k 
The rearniosl <j( llie II 
I 'he  soiiiiiernniosi ol'ihein
The I'ainl, norllternniost slar of the 2 close together to the south 
The hriglit one ol these two c lose stars
The most ailvaiiceil ol the 3 stars to the rear, alter the l)eud (in the neck]
The middle one
The rearmost of tlu; three
The most advanced of the next .i stars almost on a straight line
I'h c  middle one
The rirarmost ol the three
The northernmost ol the 2 stais alter [i.e. to the rear ol] the base ol 

Ciater'^'
The soiithei nmost of them
The most advanc eil of the 3 stars alter these, as it were in a triangle 
The middle and iiouthernntost oni- 
The rearmost ol the three
The star alter C'4)rvns, in the section by the tail

Longitude 
in degrees

=i20l

G  23i 
G  28^
n  Oj 
=i28l 

29il
n  0 
f l  6 
n  3! 
p  111 
f l  18 
n  20
a  23‘̂ ' 
np l i

up 2l 
n» 121 
ny H i 
np I6 | 

0

Latitude 
in degrees

- I I I " ’

-13i'"*
-1 5 i
-I4i!
- I 7 l
-I9 l

•-20i'““
-2el
-26

*-231*=''
-245
-2 3l
-22i‘‘‘
-25j

-301
-311
-3 3 l
-311
- I 3 j

Magnitude

4
4
4
4
6
2
4
4
4
3
4
3 

> 4

4 
4 
4
3

> 4

[Modern
designation]

(0 Ilya

6 Mya 
I* Uya 
I Hya 

T* Hya 
•BSC 3750"* 

a  Mya 
K Hya 

u' Hya 
Hya 

^ Hya 
(p Hya 
V Hya 
P Crt

X* Hya 
4 Hya 
o Hya 
P Hya
y Hya

03

“ ’ The variant 14| occurs in the later Arabic tradition (see S 74).
"*T he variant 19} is attested lor the later Arabic tradition by S 75.

3750 is P -K  s W.!)''439. Another |x>.ssible identilication is 28 Hya. 2!) Hya, adopted by Manitius, is impossible, since it is south ofa Hya (no. 12). 
**®P-K’s emendation, icy (23) liji k Z ',  is very plausible.

1 he Greek mss are unanimous li>r 26l (so too 1 *). Heilx.‘rg adopts 23l Irom an emendation by B(j<le, which is however found in the Arabic tradition 
(L,T*,E,F).

***The variant 20i was Ibund in the margin of isi.iaq's autograph according to S 78.
'*^The variants 29l and 22i were Ibund in the Arabic tradition according to S 78.

The figures of Crater (the mixing-bowl) and C^oivus (the raven, cf. no. 24) were depicted as sitting on the back ol Hydra: see Thiele Fig. 54 on p. 129 
and PI. V (lower).

a

£
f

[Numl>er in 
constellation]

25

26
27

Description

The star on the tip of the tail
[25 stars, I of the s«;cond tnagnitude, 3 of the third, 19 ol the fourth, 1 ol 

the filth, I of the sixth)

Stars rouml Hydra outside the constellation;
The star to the south of the head
The star some <listance to the rear ol those in the neck [nos. () -15)
{2 stars of the third magnitude)

(XI,II] (Constellation of Crater 
The star in the base of Im)wI, which is [applied in j common to Hydra 
The soutl«'rnmost ol the 2 stars in the middle ol the bowl 
'I'he northernmost ol llutm 
The slar on the southern rim of the mouth 
I’he star on the noi them  rim 

The star on the southern handle 
The star on the northern handle

|7 stars of the Iburth magnitude)

[X I.Ill] (Constellation of Corvus 
The slar in the beak, whi( h is [applied in] common to Hydr a* 
The star in the neck, by the head

Longitude 
in degrees

I3l

I2l
n  11

n  23i
TIB 2l 
m 0 
nU 7 
n  29l 
np 9i 

•iTB 15

HB 15l 
ni? I4l

Latitude 
in degrees

*-175*

-2 3 i
•-I(>1

-23
- l ‘li
-IH
-III!
-135
-Kil
- H i

-215
-195

Magnitude

> 4

[Mo<lerii
designation]

71 Hya

BSC 3314"'* 
•e Se^'*’

a  Cl I 
y ( ’it 
8 Cl I 
C Cii 
e C rt 
T) Crl 
0 Crl

a Ci v 
£ Civ

Since there is no doubt about the identifu atioii, the latitude is so wrong tlial one should consider t niendai ion. Manitius (p. 405) suggests 13;40,onno

authority. • ■ . ■ u
‘**l'his identifKation is the same as that of Manitius and P -K , who use the obsolete nomenclature 30 Monocerotis (the star is now included m the

constellation Hydra). . . • . • i i t D t '
I ’he identification is highly uncertain. My suggestion has coordinates not impossibly dillerent from Ptolemy’s, but its magnitude is less than 5. P -K  

suggest 24 Sex, but this involves emending the latitude to lOl (adopting the vaiiant found in l),Ar of ic; (16) forii; y'), and the magnitude is still bad Their 
alternative, a  Sex, is not much better. Should one emend the magnitude to (> (q for y)?

'**For the description of nos. I and 7 < f. p. 392 ii.l24 and I'hiele fig. 54 on p. 129, which depiets the raveit standing on and pecking the water snake.
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H168

[Number in 
constellation I Dcscripiion

I.ongiiude 
in (legiees

Latitude 
in degrees Magnitude

[Mt)dern
designation]

4 'I’he one to the real' again of this f  14s -20 4 C CrA
5 The one after this, iM-fbi e the knee of .Sagittarius 7' Hii -184 5 5 CrA
6 The one after this, whi< h is north of the bright star in tlu- knee |of 

Sagittarius. XXX no. 2 4 1
?  17 -17il 4 P CrA

7 'I'he star lo the north of this -1() 4 a  CrA
8 The one to ihe north again of this f  Ifil -1.5i 4 y CrA
9 I'h e  rearmost of the 2 stai>> aliei this, in advan< e, in tin- northern rim ?  l.'ii -15! 6 £ CrA

10 i'he more advan( ed of thest- 2 laint siars T I4i -14s 6 RSC 7129''”
11 The star (juile some distance in advan< <' of this ^  \ \ l - H i 5 X CrA
12 The one in advance again of this f  91 -1.5^ 5 *B.SC (i942' '-
13 The last one, whic h is south of the aloremenlioned star

|13 stars, 5 of the louilh magniiude, 6 of the lildi, 2 of the sixihj

[X LV lIIj (ionsiellaiion of Piscis .\usirinus

T ut -18! 5 0 CrA

1 'I’he star in the mouth, which is the sanu' as ihe ix-ginning of the water 
(= X X X II no. 421'”

, r  7 -2 0 i 1 a PsA

2 The most advanced of the 3 stars on the southern rim of the head ; r  ()-; -20  5 4 P PsA
3 I’he middle one ~  4i -22  J 4 y PsA
4 The rearmost of ihe three .-ii 4 8 PsA
5 'I'he stai’ by the gills ~  4t - I ( i i > 4 e PsA
6 The slai on the southei imiosl spine on the bai k 251, -195 5 M PsA
7 'I'he rearmosi of ihe 2 stars in the Im'IIv ~  l i -1 5 i 5 (, PsA
8 The more advanced of them 2Hi -141 4 I  PsA
9 The rearnjost of the 3 siars on the norihern spine 25 i -15 4 n PsA

10 I'he middle one ^  21s -  Kii 4 0 PsA
11 The most a<lvanced of ihe three 21 - I 8 i 4 t PsA

Oo
00

I
f

' “ The variant 2 0 | was (ouncl in llie carlic.si Arabic iradilion a(Tordini{ lo S Hf).
'^ 'This is ihe star which P -K  call ‘v Coronae Australis’; I do not know whai ilicir auilioriiy l(>r this a|>|H'ila(ion is. 
'^^This is P -K ’s Lac. 7748. Manitius suggests k C r̂A, whii li is cfriaiiily possihlc.

In Aquarius (XXXII 42) this is calkd  "the end ol' the water'.

[Number in 
constellation] Description

Longitude 
in degrees

Latitude 
in degrees Magniiude

[Modern
designation]

12 'I'he star on the tip of the tail
|11 stars,''^ 9 of the fourth magniiude, 2 of the fifthl

Stars roimd Piscis Auslrinus outside the conslellaiion:

10“ 20|‘'-' -2 2 i 4 y Gru

13 I'he rnosi advanced of ihe 3 bright stars in advance ol Piscis j.Aiisir in us | [O' H -22 S <3 *x] Mic' ̂’'̂
14 The middle one ^  11s -2 2 i <3 *0' Mic
15 'I’he rearmost of the three Vj- 14'" -2 1 i <3 Cru
16 The faini star in advance of this 12 -20s 5 ♦O'" Mic
17 I'he southernmost of the ri inaining 2 siars lo ihe norlh I3s -1 7 4 *Y Mic
18 'I'he norlhernmosl of them

|6 slai's, 3 of the third magniiude, 2 of llu‘ loui lh, 1 ofilie llflh|

{'I'olal lior the soulhern legion 316 siars, 7 of ihe lirsl magniiude, 18 ol. 
the sei'ond, 63 of the third, 164 of ihe fourlh, 54 of llu- lifili, 9 of 
the sixth, 1 nebulousl

I'l'olal Ibr all stars 1022, 15 of ihe llisl magnitude, 45 of the second, 208 
of the third, 474 of the fourth, 217 of ihe llhh, 49 ol ihe sixih, 9 
faint, 5 nebulous, plus (loma (Berenices]!

Vj- I3s -14s 4 *a Mic:

§

g

I
I
z-

5

**^The variant 26 occurs in the Arabic tradition (see S 88).
‘^^Only 11, because no. 1 has already been counted as A(juarius (X X X Il) no. 42. t'.onipare the remarks ol ibn as-Salah on pp. 74-75 of Kunitzsch s 

edition.
'*®The identifications of nos. 13-18 are mine, but are very uncertain. P -K  propose (13) a M i(, (14) Y Mi<. (15) e Mic, (l(i) Piazzi XX 445 = Mf.'8076, 

(17) Piazzi X X I 12 = KVt.'Sl 10, (18) 24(A) Cap. I  hese may be right, sint e they are in approximately corrcct relative posiiious, but they involve huge errors 
in the coordinates and (for no. 18) takinf' a star which has already Ih'cu identiticd as C.apricorn (XXXI) no. 13, where it has completely dillerent 
coordinates.

Reading i8 (with Ar, fouqd as a correction in A) at H I69,12 for tu ( 11) or 6 (4) of the other (Jieek mss. 'I'he correction is certain, since no. 16 is ‘in 
advance’ of no. 15. It is adopted by P -K  and Manitius. 8



H164

[Numl>cr in
constellation i

36
37

9
10
11
12
13
14
15
16

l)cs<'i'i|)ti<>n

'I’hc star on ilw km c of ihc Icll llroiill leg 
'r iu ‘ star oiiisidc, nndri ihc rij^lil hind leg
|37 stars, I <il tlii-lirst nia^nitndc, f) ol'llic second, 7 ol tiic third, lliol the 

fourth, H of the lilih|

|X I.V | Constellation ol l.iipiis'*"
The star at the eud oC the hind le],', by the (right | hand olC.t niatn ns 
The star on the iM'nd in the same leg
The more advanced of the 2 stars just over the shoiilder-hladc 
The rearmost oC them
The star in the niid<lle of the body ori.n|>iis 
The stai' in (he belly, under the Hank 
The star on the thigh
The northernmost ol'the 2 stars near the place where the thi^h joins 

|lh<- Uxlyl 
'I'he southernmost ol'theni 
The star on the end ol the runi|)
I'he sonthcrnmosl of the 3 stars in the end ol tlie tail 

'I'he mid<lle one ol die dn<-e 
'I'hc northernmost of them 
'I’he southernmost ol'the 2 stars in the neck 
I 'h e  norlheiiimost ol dicm 
The more advancetl ol'the 2 stars in the snout

Longitude 
in degrees

24 i 
I4i‘

2H 
2r)S 

nu I 
iiL 4i 
nu 3 
ni, (tii 
nj, o4 
nu 4i

m. 3j 
nu 5 5

21s 
23 

nu Hi 
nu
nu r)!

I.alitude 
in degrees

-4 ;.\
-4!)i

-2\i
-2‘»Jl
-21 i
-21
-2^4
-27
-2U
-2(ti

-3(lil 
-33i 
-3 1 1 
-3(11 
-2!i< 
-17
-iM
- \ i \

Magnitude

3
3
4 
4
4
5 
5 
5

5
5
5
4

> 4
4

> 4
4

[Modem
designation]

fi ( !en 
jt Cm

\\ I.np 
u l.np
5 I.np 
y I "P 
C I.np 
A. Lup 
n I.np 
H I.np

k; I.np 
C I-"P 

*p I.np 
t I.np 

t '  + I.np 
T| I.np
6 Lup 

*v' +»)/■ I,up'

Ooto05

has l l i :  as P -K  remark (no. K7I on p. 112), this woidd i)e more consistent than I4li with the errors of the other stars in this group.
Ptolemy docs not identify this as a woll or any particular animal. i)iit calls it the ‘Ix-asi’ (Otip'tov). ll is depi( ted as being held by its hind legs in tlie right 

hand of Centaurus: see riii< le Fig. 53 on p. 128, and cf. no. 1 here.
The mss. are unanimous lin 22 (including the Arabic, despite the statement o fP -K , no. f«12 on j.p 112-13, that they have 20 i). Peters emends to 26 

without authority. The idi'iitillcation ol this star is dubious: see P -K ’s discussion, I.e. Manitius’ identilicalions, here and elsewhere in Lupus, are mostly 
unaceeptable.

'^“For the identilicalions ol nos. 16 and 17 P -K  preler % and ^ l.ii|»i, but mine (whi< h are also proposed by Manitius) seem more in accord with the 
relative positions.

I
D

I

H166

[Number in 
constellation) I)es( ription

Longitude 
in degrees

Latitude 
in degrees M agnitude

[Mod«‘in
designation]

17 The rearmost of them nu 65 - l U 4 *X Liip
18 'I'he soiilhcrnmost ol'the 2 stars in the Iront leg 27i'^' •-11^^'^ > 4 l(i) Lnp
19 'I'he northcrniiiost of them

|19 stars, 2 of the third magnitude, 11 ol the Ibiirth, 6 ol die lllth| 

(X l.V l] Constellation of A ra " ‘

^  265 -10 > 4 2(1) l.up

1 The northernmost of die 2 stars in the base nu 27 i -22  \ 5 o  Ara
2 The soiilhci nniost of them 3 '" -25 j 4 0 Ara
3 The star in the iniildk' ol'the litile altar nu 261'^ ’ -26  J > 4 a Ara
4 The nortlK'rnniost of the 3 stars in the bra/ier nt 20 i -3oW " 5 t;‘ Ara
5 'I'he soulhernmost ol the other 2 w hidi are close togctlu'r nu 25i -3 4 i > 4 y Ara
6 'I'he norllicrnmost of these |2 | nu 25 -331 4 p Ara
7 The star on the end of the biirning-apparalns 

|7 stars, 5 ol'the I'oiiiih magiiitiide, 2 of the llfth|

[X l.V ll 1 (ionstellation of C'orona Australis

nu 20 j •-34V ^’ 4 Q Ara

1 The most advanced of the staison the southern rim, outside (the crown| -2 U 4 •u T e l'«
2 The star lo the rear of this,''*'* on the crown t  l l i -21 5 ri' + nM  IrA
3 The one lo tin- rear of this f  13jl -23 5 BSC 7122

**' L,T,E, Ger have 271, atlopteil by P -K .
'^^L,T^,E, Ger have 11 j, adopted by P -K .
‘^^OujitOTilptov, actually an inci’iise-burner. It is depicted u|)side-down (i.e. base towards the north).

have 3i. Much ol'the Arabic tradition, and (Jer, have Oi, but 3 is also Ibimd (sec S 84).
*^*26i is found as an alternative reading in A, aiul in Is. It is adopted by P -K . The ‘little a ltar’ (P(6|itaK:0(;) is evidently the same as the ‘brazier’ 

(iniTiupov) in no. 4: s»-e p. 4(K) n.KiO.
'^‘■Reading X y '  (with Ar) at H 165,13 Ibr tt y ' (11), the unanimous reading ol the Greek mss. HeilK i g(ad Ux;.) realized that this correction should l>e 

made, and M anitius made it.
’’’ This is the reading of A; 31 ] lUM), 34 Ar, adopted by P -K .
•**This is Manitius’ idciitilication. P -K  preler 8‘ + 8  ̂Telescopii.
*^*Rcading aiiT^ (ini|)li«<l by Ar) at II16(>,2 l(>r ai’ixSv ‘that one of those’, which has no relereiue.



H170 2. \0 n  the siluaiion of the circle of the Milky II ar}*'’**

Such, then, is the way in which we may set out the ordej’ of the Jixed stars. To 
this we shall join, as the logical order demands, our discussion of’the disposition 
ol' the circle oi the Miiky Way, to the Ijest oi'our aiaility, with our observations ol 
each of its sections: we shall try to descrilje the torm which the individual parts 
appear to take.

Now the Milky Way is not strictly speaking a circle, but rather a licit ol'a sort 
ol milky colour overall (whence it got its name); moreover this belt is neither 
uniform nor regular, l)ut varies in width, colour, density and situation, anfl in 
one section is bifurcated. [All] that is very apparent even to the casual eye. but 
fhe details, whirh can onl'^ be determined b '’ s, more careful examination we 
lind to be as Ibllows.

The biliircated part oi'the belt has one ol its Ibrks'. so to speak, near.Ara. and 
the other in Cygnus. But, whereas the advance [part oi'the] belt is in no wav 
attached to the othei- part, since it Ibrms gaps both at the fork !)y .Ara and at the 

H lT i iork by Cygnu>. the leaiTnost part is joined to the rem ainder oi'the Milky Way 
and forms [with it] a single I)elt. through which the great ciicle drawn 
approximately along the middle of it would pass. It is this belt which wr shall 
describe first, beginning with its southernmost section.

This [section] goes through the legs ofCcntaurus, and is rather less den.se and 
less bright [than the rest]. The star on the knee-bend of the right hind leg [X L I\' 
31] is a little larther south than the iine [bounding] the milk lo the north, and so 
are the star on the left front knee [X L I\ ' 36] and the star under the right hind 
hock [X L I\’ 32]. But the star in the left hind lowei' leg [X L I \’ 33] lies in the 
middle of the milk, and the stars on the hock of the same leg [X L I \’ 34]'^^ and 
on the right front h o ck [X L I\' 35] are to the noith of its southern rim, layabout 
2° (where the great circle is 360°). It is slighth' denser in the region near the hind 
legs.

-\ext in order, the northern rim of the milk is about 1:° from the star on the 
rump of Lupus [X L \’ 10], and the southein rim encloses the star on the 
burning-apparatus of .Ara [X L \T  7], but just grazes the northernmost of the 
two stars close together in the brazier [X L \T  6] and the southernmost of the two 
stars in the base [X L \ '12]. wh ile the star in the northern pari of the brazier and 

HI 72 the one in the middle of the brazier [X L \’I 4. 3 ]’"'’ lie right in the miik. These 
sections are rather less dense.

Next, the northern p a n  of the milk encloses the three joints before the sting 
of Scorpius [X X IX  17, 18. 19] and the nebulous mass to the rear of the sting 
[XX IX  22], while the southern rim touches the star in the right front hock of 
Sagittarius [XX X  25]. and encloses the star on his left hand [X X X  2]. The star 
on the southern portion of the bow [X X X  3 ] '”' is outside the milk, but the star

I have appended to the stars named in this chapter reterences to their place in the catalogue 
(VII 5 and VIII 1).

‘"’’ In the catalogue this star is described, not as "on the hock', but as ‘on the frog oi'the hoof.
'""In the catalogue this last star is called "the star in the middle oi'the little altar'.

Reading to^ou lor Tocotou ( Sagittarius') at H172.8, with Is. The same correction has to be 
made for the next star (H172.11). Corrected by Manitius. In the catalogue (HI 12,12-14) Heiberg 
rightly prints To^ou. although there too all or most Greek mss. have tocotou in all three places.

400 V l l l  2. Location o f  the M ilky  Way



on the point of the arrow [X X X  I ] lies in the middle of it. while the stars in the 
northern part of the how [X X X  4, 5] also lie in it, cach of them l)cins a little 
more than 1 ° removed from one of the rims, the southern star from the southern 
rim, the northern star i'rom the oj)posite rim. 'I’he area [oi'the Milky Way] near 
the three joints fol Scorpiusl is somewhat denser, while the area round the point 
[of the arrow of Sagittarius] is very dense indeed and app>eai's smoky.

I ’he following section is a little less dense. It extends along [the eonstellation]
Acjuila, m aintaining about the same width throughout. T he star on the tip of 
the lail of the snake [Serpens. X I \ ' 18] held by O phiuchus lies in the open,"’- a 
little more than one degree away from the advance l im of the milk, while the H173 
two most advanced of the bright stars below it lie right in the milk: the southern 
one [XVI 15] is 1° hom  the rear rim, and the northern yne [XVI 12], 2° [Irom 
it |. The rearmost ol the [tup] stars in the rigiit siiouider ofA tiuila [X \ 'I  8] 
touches the same rim, while the moie advanced one [XVI 7] is cut otl inside it, 
as is also tiie more advanced, bright star of those in the left wing [X \’I 5],
Furthei more, the I>right star on the place between the shoulders [X \’I 3] and 
tile two stars which lie on a ><li aight line with it''’̂  fall a little .short oi touching 
the same lim. .\cxt. Sagitta i.s enclosed entiiely within the milk. The star on the 
arrowhead [ X \’ 1 j lies one degree iiom the eastern rim. while the stai' on the 
notch [X \ ' 5] lies two degrees li om the western l im. I'he section round A(|uila is 
slightly denser, and the rem ainder slightly less dense.

.\ex t the milk extends towards Cygnus. Its north-western rim is defined 
in a reentrant a n g l e 'b y  the star in the southern shoulder of Cygnus 
[IX 11 the star under it in the same [southern] wing [IX iO], and the two 
stars on the southern leg [IX 13. 14]. Its south-eastern rim is defined by the 
star in the tip of the southern wing-feathers [IX 12], and encloses the two stars 
under the same wing outside the constellation [IX  18, 19], which are about 
2° i'rom it [the l im]. The scction around the wing is slightly denser. The next H I 74 
section is continuous with that belt, but is much denser and seems to have a 
dillcrent starting-point.'”' For it points towards the end parts of the other 
belt.’'’” but leaves a gap between it [and itsell]: on its southern side it joins the 
belt u hich u e  are currently describing, which is very rarefied at the jtmction; 
but after the point where it forms a gap with the other belt it gets denser.

VIII 2. Location of the Milky Way 401

Liierally 'in the open air', i.e. out.side the Milky Way.
In the catalogue these stars are described as being in the Ici'i shoulder'.
This does not torrespond to any desc ription in the catalogue. Manitius identilies the two stars 

as X \ ’I 2 and 4 p and o .Aql). These are indeed approximately on a straight line with XVI 3 (a 
Aql), but they hardly lit the rest ol' the description, 'ince |3 .\q l lies well outside the Milky Way as 
\ iewed by Ptolemy. .More appropriate would be (p .\q l (X \'I  6) and u Aql. However, the latter star 
seems not to be mentioned in the catalogue.

'"’ iv  8JiiKa|i7ticp. Explained by what follows: this is where the other (western) branch of the 
Milkv \Vay joins; since, according to Ptolemy, the part north of this is aligned with the end of that 
branch, it ibrms a reentrant angle with the present, eastern branch. This is best seen on a star globe. 

‘“ In the catalogue this is callcd ’the star in the middle of the left wing’.
Translating Heil)erg's emendation. 6pH(6^lEva (supported by Is: ‘ibtada’a ’) for the 6poi)(ieva 

of the Greek mss. and L. The latter could perhaps be translated as and is seen, as it were, from a 
different starting-point’, but this is very harsh.

I.e. the other branch of the Milky \Vay which is mentioned above (p. 400) and described below 
(p. 403).



beginning from the bright star in the rum p ofCygnus [IX  S]"*® and the nebulous 
mass in (he northern knee [IX 17]. Then it makes a slight bend as far as the star 
on the southern knee [IX  14], and  continues, gradually dim inishing in 
density, up to the tiara of' Cepheus. T he northern side is delimited by the 
southernmost of" the three stars in the tiara [IV 9] and the star to the rear of those 
three [IV 13], at which it also forms two outrunners, one verging to the north 
and east, the other to the south and ezist.

Next the milk encloses the whole ofCassiopeia except for the star in the end of 
the leg [X 7]. The southern rim is defined by the star in the head ofCassiopeia 
[X 1 ], and the northern rim by the star in the foot of the throne [X 11 ] and the 
star in the lower leg ofCassiopeia [X 6]. T he other stars [ofCassiopeia] and all 

H I 75 those round about this [constellation] lie in the milk. T he areas near the rims are 
of thinner consistency, but those at the middle ofCassiopeia display a dense 
patch running the length [of the Milky Way].

Next, the l ighthand parts of Perseus are enclosed in the milk. Furtherm ore, 
its northern edge, which is very rarefied, is defined by the lone star outside the 
right knee of Perseus [ X I 28], and its southern edge, which is very dense, by the 
blight star on his right side [XI 7] and by the two rearmost stars of the three to 
the south of that [bright star, XI 9.10]. Enclosed in it also are the nebulous mass 
on the hilt [ X I 1 ],''* 'the star in the head [XI .5], the star in the right shoulder [XI 
3] and the star on the right ellww [ X I2]. T he quadrilateral in the right knee [XI 
l(). 17. 18. 19] and also the star on the same [right] calf [X I20] lie in the midst of 
(he milk, while the star in the right heel [XI 21]*'* is also inside it. a little 
distance I'rom the southern border.

Next the belt goes through Auriga, displaying a slightly thinner consistency. 
The star on the left shoulder, called Capella [XII 3], and the two stars on the 
right forearm [X II 5, 6] fall just short of touching the north-eastern rim  of the 
milk, while the small star o\ er the left loot in the lower hem [ofthe garm ent, X II 
14] defines the south-western edge. The star over the right foot [XII 12] lies half 

HI 76 a degree within the same edge, and the two stars close together on the left 
forearm, called Haedi [XII 8, 9], lie fti the middle of the belt.

Next the milk goes througli the legsofGem ini, displaying a certain am ount of 
density in elongated form just over the stars at the ends of the legs. Now the 
advance edge of the milk is defined by the rearmost of the 3 stars on a straight 
line under the right foot of Auriga [X X IV  19], by the rearmost star of the two in 
the stalfofO rion [XXXV' 12] and by the northernm ost [two] of the lour stars on 
his [Orion's] hand [X X X \' 9. 10]; the brilliant star under the right hand of 
Auriga [X X IV  20] and the star in the rear foot of the rear twin [X X IV  18] are 
approximately 1° inside the rear edge, while the stars in the other feet [XX IV  
14, 15, 16. 17] lie in the midst of the milk

Thence the l)elt passes by Canis M inor [Procyon] and Canis M ajor; it leaves 
the whole of Canis M inor outside the milk no small distance to the east, and

'"^This is called 'the star in the tail’ in the catalogue.
' ’®In the catalogue this conglomeration is said to be 'on the right hand’. Perseus holds his 

weapon, the apJtii (cf. Hipparchus 2.5.15, ed. M anitius 198,10), the hilt of which Ptolemy refers to 
here, in his right hand.

Tn the catalogue this is described as 'on the right ankie’.
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leaves Canis M ajor too outside to the west, almost in its entirety; for the star on 
its ears'^^ [X X X V III 2] is caught by a sort of cioud which projects [from the 
Milky W ay] and which then almost touches the three stars in the neck of Canis 
M ajor next to that [star] towards the rear [X X X V III 3, 4, 5], while the lone 
star over the head of Canis M ajor, outside it and at some distance [X X X V III 
19], is about inside the eastern rim. T he consistency in this whole region'^^ is 
somewhat thinner.

After that the milk passes through Argo. T he western rim of the belt is defined H177 
by the northernm ost and most advanced of the stars in the little shield in the poop 
[XL 5]. T he star in the middle of the little shield [XL 6], the two stars close 
together under it [XL 8, 9], the bright star at the beginning of the deck near 
the steering-oar [XL 17] and the midmost of the three stars in the keel [XL 38] 
are just short of touching the same [western] edge. The northernmost of the three 
stars in the mast-holder [XL 22] defines the eastern rim, while the bright star in 
the stern-ornam ent [XL 2] is 1 ° within the same [eastern] edge, and the bright ’ 
star under the rearmost little shield in the deck [XL 31 ] is the same amount, 1 
outside the same [eastern] edge. The southernmost of the two brilliant stars in the 
middle of the mast [XL 27] touches the same edge, and the two bright stars at 
the point where the keel is cut oil'' [XL 35, 36] are about 2° inside the advance 
rim. At that point the milk joins the belt through the legs ofC entaurus.* '’ The 
consistencN’ in this area too. throughout Argo, is somewhat rarefied, but the 
sections of it around the little shield, the mast-holder and the point where the 
keel is cut off aie -more dense. ,

T he belt we mentioned previously ''” forms a gap, as we said, Ijetween [itsell' 
and] the one we have [just] descrii>ed, at Ara. Beginning at that point, it 
encloses the three joints of Scorpius' [tail] nearest the body [X X IX  12, 13, 14], H178 
but leaves the rearmost star ol the thiee in the body [X X IX  9] 1° outside its 
western rim. The star in the fourth jo in t [X X IX  16] lies in the open space 
between the two belts, alxjut the same distance from each, a little more than I 

After that the advance belt turns aside to the east, in the shape of a segment of 
a circle, defining the advance edge of the milk by the star on the right knee of 
O phiuchus [X III 12], and the rear edge by the star on the same [right] shin 
[X III 13], while the most advanced o fthe stars a t the end ofthe same [right] leg 
[X III 14] touches that same [rear] edge. Subsequently the western rim is 
defined by the star under the right elbow ofO phiuchus [X III9], and the eastern 
rim by the more advanced o fth e  two stars in the same [right] hand [ X I I I10].

Reading eni tS v  (otcov (with An D ' h a s  erti tfiSv vootcov) for em vwtq) (‘on the back’) at 
HI 76,18. The correction was made by Kunitzsch, Der Almagest no. 533 on p. 322. It is confirmed by 
the whole context, and especially by the position of the star, 0 CM a. Manitius identifies the star 
here with X X X V III 12, which is said in the catalogue to be 'in the left shoulder', but this star (o’
CM a) Jies welJ outside the Milky Way as viewed by PtoJemy.

Reading to  xun“  6X.ov to ij to  npena d p a io T e p o v  (with D) at H I76,24, to get a normal word 
order, for t o  x»uo  ToiJto lipeua oXov dpaiotepov.

Reading ev dTtoton^ (with D ‘,Ar) at HI 77,13-4 foriv  trj a u i^  dnoTO|iQ (‘in the same cut­
off of the keel’), which is senseless.

I.e. the point where Ptolemy began the description, p. 400.
I.e. the western ‘fork’ mentioned on p. 400. But it is tempting to follow Is, who has ‘advance’

(i.e. itporiYOOnevTj) here and ‘mentioned previously’ below at HI78,7 (i.e. npoetpi^Mevii for 
JtpoiiYooMevri, ‘advance’, of .the Greek mss.)
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From that pKjint on there is a considerable gap of'open space, in which lie the 
two stars on the tailofSerp>ens[XIV 16,17] next to the star in the tip [of the tail, 
X IV  18]. The whole of the section of'this belt which we have [just] finished 
describing consists of an extremely line and almost aery substance, except for 
the area enclosing the three joints [of Scorpius]. which is somewhat more 
concentrated.

H I 79 After the gap the milk again makes a fresh beginning at the four stars to the 
rear of the right shoulder of Ophiuchus [X II I25,26,27,28]. The eastern rim of 
this belt is defined (l>eingjust grazed) l)y the lone brilliant star u n d e r ' t h e  tail 
of A(|uila [XVI 9], while the opposite rim is defined by the star which is some 
distance to the north of the four just mentioned [XIII 29]. From there on this 
l)elt, besides being rarefied, is also contracted into a narrow space in the area 
wuii i'l i.> in advance oi the star in the beak ufCv gnus [IX  I ], so as lo produce the 
appearance of a gap. However, the rem ainder of it. from the star in the beak up 
to the star in the breast ofCygnus [1X4], is wider and considerably denser. The 
star in the neck of Cygnus [IX 3] lies in the middle of the dense section. A 
rarefied section branches oil'to the north from the sta r’'* in the i^rcast as far as 
the star in the shoulder of the right wing [IX (j] and the two stars close together 
in the right foot [IX 1.5, 16]. From tliis point, as we said, occurs a c lear gap to the 
other l)elt. [a gap] stretching from the above-mentioned stars in Cygnus up to 
the bright star in the rum p [IX .5],

404 V I I I 3. Construction o f  star-globe

{(Jn ihe co/iMiiiciton (jf a i^iuheY'^

Such. then, is the disposition ol the phenom ena associated with the Milky Way. 
But we also wish to provide a representation [of the fi.xed stars] In means of a 

HIBO solid glol)e in accordance with the hypotheses which we have demonstrated 
concerning the sphere of the fixed stars, according to which, as we saw. this 
sphere loo. like those of the planets, is carried around i)y the prim ar\ [daily] 
motion from cast to west al)out the poles ol the equator, but also has a proper 
motion in the opposite direction about the poles of the sun's, ecliptic circle. To 
this end we shall carry out the construction of the solid globe and the delineation 
ol the constellations in the following fashion.

We make the coloiu' of the globe in ([uestion somewhat deep, so as to 
resemble, not the daytime, but rather the nighttime sk\. in which the stars 
actually appear. We take two points on it precisely diametricalK opposite, and 
with these as poles draw a great circ le: this will at all times l)e in the plane ol the 
ecliptic. .\ t  right angles to the latter and through its poles we draw another 
[great] circle, and starting from one of the intersections of this with the first

‘■'Reading urto (with D,.\r} for Jtapd ('by') at H I79,4. Compare the description o fX \ 'I  9 (p. 
357i.

Rcadinsf diTO tou ev t63 OTTi0ei (with .\r) at H 179.14-15 Ibi Ka't tS vev  twaTti0£i. Corrected l)y 
Manitiiis vCtTto already suggested by Heiberg ad loc.)

‘'’ On this preccssion-glo))e' sec HAMA  II 890-92, with Figs. 79-80 on p. 1399 (i'or an error in 
NViigebauer's account see p. 405 ii. 181). On the history ol'the siar-glotje in antic|uity set* Si hlachter.
/>»• (.ilohus.
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circle we divide the ecliptic into the [conventional] 360 deo^rees, and write by it 
the numbers at intei^’als cl'however many degrees seems convenient. Then we 
make, from a tough and unw arped‘““ material, two rings with rectangular 
cross-section, accurately turned on the lathe in all dimensions: one should l)e 
smaller [than the other], and lit closely to the globe on the whole of its inner 
surface, while the other should be a little larger than this. In the middle of the H181 
convex face of each ring we draw  a line accurately bisecting its width. Using 
these lines as guides, we cut ou t““ one of the latitudinal sections"*^ delined by 
the line over hall’ol'the circumlerence, and divide [each of] the semi-circular 
recessed sections [thus created] into 180 degrees. W hen this is done, we take the 
smaller of the rings as the one which will always represent the circle through 
Ijoth poles, that of the equator and that of the ecliptic, and also through the 
solstitial points ([this circle runs] along the plane suri'ace of the aix)vc- 
mentioned recessed section), and. l)oring holes through the middle of it at the 
diametrically opposite points at the ends of the recessed section, we attach it, by 
means ol pins [through those holes], to the poles of the ecliptic which we took on 
the sriobe. in such a way that the rin^can revoive ireei\ over the whole spherical 
surface.

Since it is not reasonable to mark the solstitial and etiuinoctial points on the 
actual zodiac of the globe i lor the stars depicted [on the globe] do not retain a 
constant distance with respect to these points), we need to take some fixed 
starting-point in the delineated fixed stai'S. So we m ark the brightest of them, 
namely the star in the mouth of Canis M ajor [Sirius], on the circlc drawn at 
right angles to the ecliptic at the division forming the beginning of the 
graduation, at the distance in latitude from tfie ecliptic towards its south pole HI82 
recorded [in the star catalogue]. Then, for each of the other fi.xed stars in the 
catalogue in order, we mark the position l)y rotating the ring with the 
graduated recessed face about the poles of the ecliptic: we turn  the face of its 
recessed section to that point on the [globe's] ecliptic which is the same distance 
from the ijeginning of the numbered graduation (at Sirius) as the star in 
question is from Sirius in the catalogue;***' then we go to that point on the

' ““eutovoo icai TETOHEvrii;. The meanini? of both adjectives is disputable. The context i-equires 
that the material i certainly wood, although u/.ii does not mean wood here, pace Manitif', be strong in 
the sense that it can be cut into thin strips and bored through. Cl'. Heron. Belopoeica 94. ed. Marsden 
p.30.12. where the side-pieces of a catapult must be made ec euTOvoi; cO.od. euTOvoc occurs 
frequently in that work, and is usually applied to sinews or elements requiring Waj/zf strength ,e.g. 
110. ibid.p.38.2: cf. Heron. Pneumaitca. ed. Schmidt p. 200. where it is used of pieces ofhorn). But it 
seems improbable that Ptolemy means llexible' wood here and the meaning rigidly strong’ is 
certain in one passage of Heron's Mechanics. preser\ed in Pappus. Synagoge 1132. 6-14.
TETaiiEVTn; means literally stretched'. I know of no real parallel, but take it to be a synonym of 
daxpaPil^, ’unwarped’, found frequently in Theophrastus, Historia Plantarum, e.g. 5.2.1.

I.e., cut out along the central line so that half the width j f  the ring is removed for half the 
circumference of the ring. The purpose of this is that the graduated face may be flush with the 
surface of the globe, and coincide with a great circlc. The result is depicted in HAM.-i Fig. 80A p. 
1399. lower part, .\eugebaiier is wrong (p. 891) in saying that the text implies the making of a 
central slit in the rings: he ha.s been misled by Manitius’ translation.

Reading rtXeupSv (with D) for TrXeupdt; at HI81.5. Corrected by Manitius.
Since Sirius has in the catalogue (X X X V IIl 1) the longitude I I  17f°, this means that one 

subtracts 77;40° from the catalogue longitudes. Wherever my translation has Sirius’, Ptolemy has 
Kucav (‘the Dog’). Cf. p. 387 n.88.



graduated lace which we have [thus] positioned which is, again, the same 
distance from the ecliptic as the star is in the catalogue, either towards the north 
or towards the south pole of the ecliptic as the particular case may he, and at 
that point we mark the position of'the star; then we apply to it a spot of yellow 
colouring (or, for some stars, the colour they are noted [in the catalogue] as 
having), of a size appropriate to the m agnitude of each star.

As for the configurations of the shap>es of the individual constellations, we 
make them as simple as possible, connecting the stars within the same figure 
only by lines, which moreover should not be ver\' dilferent in colour from the 
general background of the gloije. T he purpose of this is, [on the one hand], not 
to lose the advantages of this kind of pictorial description, and [on the other] not 

H183 to destroy the resemblance of the image to the original by applying a variety of 
colours, l)ut rather to make it easy Ibr us to remember and com pare when we 
actually come to examine [the starry heaven], since we will be accustomed to 
the unadorned appearance of the stars in their representation on the globe too.

W'e also, then, mark the location of the Milky W ay on [the globe], in 
accordance with its positions, arrangem ents, densities and gaps as descril>ed 
above. Then we attach the larger of the rings, which will alwa\ s represent a 
meridian, to the smaller ring which fits around tiie globe, on poles coinciding 
with those of the equator. These points [the |x>lesofthe equator] are, in the case 
of the larger, meridian [ring], attached, again, at the diam etrically opposite 
ends of the recessed and graduated facc (which will represent the [section of the 
meridian] above the earth); but in the case of the smaller ring, [which passes] 
through both poles, they will be (Ixed at the ends of the diametrically opposite 
arcs which stretch the 23;51° of the obliquity from each of the poles of the 
ecliptic. We leave small solid pieces in the recessed parts ol the rings, to receive 
the bore-holes for the attachm ents [of the pins representing the poles].

Now the lecessed face of the smaller of the lings must, clearly, always 
coincide with the meridian through the solstitial points. So on any occasion 

H 184 [when we want to use the globe], we set it to that point of the ecliptic graduation 
whose distance from the starting-point defined by Sirius isecjual to the distance 
of Sirius from the summer solstice at the time in question (e.g. at the beginning 
of the reign of Antoninus. 12 in advance). Then we fix the meridian ring in 
position perpendicular to the horizon defined by the stand [of the globe], in 
such a way that it is bisected by the visible surface of the latter, but can be 
moved round in its own plane: this is in order that we may, for any particular 
application, raise the north pole from the horizon by the appropriate arc for the 
latitude in question, using the graduation of the meridian [to place the ring 
correcth].

We shall suffer no disadvantage from our inability to m ark the equator and 
the solstitial points on the globe itself. For since the face of the meridian is 
gi aduated, the point between the poles of the equator which is 90° of the 
([uadrant distant from both will be equivalent to points on the equator, while 
the points 23;51° distant f rom that point will be equivalent to points on the two 
solstitial circles, the one to the north to those on the summer solstitial circle, and

This has not been described. For a schematic representation, with a suggestion for how the 
motion in the plane of the meridian may lie achieved, see HAMA  p. 1399 Fig. 80C.
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the one to the south to those on the w inter soktitial circle. Thus, when any 
required star is rotated with the prim ary, east-to-west rotation to the graduated 
face of the meridian, we can again, by means of that same graduation, 
determ ine its distance from the equator or the solstitial circles, as measured on 
the great circle through the poles of the equator.

HI 85

4. {On the configurations particular to the fixed stars}

Now that we have dem onstrated the distinctive features of the pictorial 
representation of the fixed stars, it remains to discuss their configurations. The 
configurations involving the fixed stars, then, are, apart from those fixed 
configurations with respect to each other (e.g. such and such stars lie on a 
straight line, form a triangle, and the like), as follows:
[1 ] those considered with respect to the planets, sun and moon, or the parts of 
the zodiac alone;
[2] those considered with respect to the earth alone;
[3] those considered with respect both to the earth and at the same time to the 
planets, sun and moon, or the parts of the zodiac.

[1] Those configurations of the fixed stars with the planets and the parts of 
the zodiac alone which are accepted are
[a] for all stars in general, when fixed star and planet come to be on the same 
circle through the poles of the ecliptic, or on circles which ara dilferent, but at 
intervals [of a regular polygon] with three, four or six a n g l e s , i . e . ,  which 
enclose an angle which is either a right angle or a third oi'a right angle greatei’ or 
less than a right angle;
[b] for some stai-s in particular, those for which one of the planets can pass 
directly below it (these are the stars fi.xed in that narrow  band*’**’ of the zodiac 
containing the latitudinal motions of the planets) -  for these, [configurations] 
with the five planets concern their apparent contacts***  ̂ or their occultations, 
and with the sun and moon, their last visibilities, conjunctions and first 
visibilities. VVe give the name ‘last visibility’ to the situation when a star falls 
within the rays of [one ol] the luminaries and begins to become invisible; 
‘conjunction’, when it is covered by the centre of [one oi] them;"*“ and ‘lli-st 
visibility’,***® when it escapes their rays and begins to be visible.

H186

‘“ These are the relationships trine, quartile and sextiie, commonly applied in astrology: see 
Bouche-Leclercq, e.g. 165-79.

'**7tp^o^a, literally ‘a sawn-out section’. This is probably the term that Ptolemy used for the 
‘drum s’ containing the planetary models in Bk. II of his Planetary Hypotheses (preserved only in 
Arabic translation); see e.g. Op. Min. p. 113. The word has nothing to do with the geometrical 
‘prism’ here.

KoXXiiaet^. This is a  technical term in astrology. It includes certain kinds of close approach, 
besides actual occultations. For details see Bouche-Leclercq 245, quoting Porphyrius. See also 
Vettius V^alens, index p. 380, s.v. At Atmagest IX 2 (H213,3), it app>ears to mean actual contact.

‘“ Reading autCJv (with D) for auTot) at H186,13.
Literally ‘rising’ (fe7tiToA.ti). For the planets Ptolemy uses the more appropriate word tpdoi^. 

For an explanation of the full panoply of terms associated in traditional Greek astronomy with the 
risings and settings of stars see below pp. 409-10, and cf. Autolycus Ttepl fertiToXffiv I introduction 
(ed. Mogenet 214).



[21 T he configurations of the fixed stars with the earth  alone are four in 
numl>er. The term applied by some people to all in common is ‘cardines’.'®" 
T heir individual titles are ‘ascendant’, ‘culm ination above the ea rth ’, ‘de­
scendant’ and ‘culm ination below the earth ’.*®' Now in the region where the 
equator is in the zenith all the fixed stars rise and set and once in ever%’ 
revolution reach culmination above the earth, and once culm ination below the 

H187 earth; for in that situation the poles of the equator lie on the horizon, and do not 
make any of the parallel circles either always visible or always invisible. And in 
the regions where [one ol] the poles is in the zenith, none ofthe fixed stars either 
rises or sets. For in that situation the equator assumes the position of the 
horizon, and one o fthe  hemispheres into which it divides [the heavens] rotates 
always alxjve the earth, while the other rotates always below the earth. Hence 
each star repeals the same type of culm ination twice in one revolution, some 
reaching culmination above the earth  twice, the others culm ination below the 
earth twice. But at the other, intennediate. terrestrial latitudes, some o fth e  
[parallel] circles are always visible, and some always invisible: so the stars cut olf 
between these and the poles neither rise nor set. and perfoiTn two culminations 
in each revolution; those stars in the region which is ajways visible [culm inate 
twice] above the earth, and those in the region which is always invisible 
[culminate twice] below the earth. T he rem aining stars, which lie on parallels 
greater [than the always visii)le and invisil)le parallels], both rise and set. and 
culminate once above (he earth and once below the earth in ea< h revolution. 
For these stars the time [ol'travel] liom  any one ofthe cardines back to the same 
one is the same at every place: it comprises one revolution, to the senses.‘“-T he  

H 188 time from one cardine to the one diametrically opposite is the same at every place 
when one considei's meridian [passage], since it comprises half a revolution. 
When one considers horizon [passage] it is again constant where the cfiuator is 
in the zenith: each ol’the two intervals [li om rising to setting and from setting to 
rising] comprises half a revolution, since in that case all the parallel circles are 
bisected, not only by the meridian, but also by the horizon. However, at all other 
terrestrial latitudes, if one takes separately the time spent above the earth  and 
the time spent below the earth [by a star], neither is the same for all stars [at a 
given latitude]; nor is the time spent above the earth  for any particular star 
equal to the time it spends below the earth, except for those stars which happen 
to lie precisely on the equator, for the latter is the only circle which is bisected by 
the horizon at sphaera ohlit/na too. whereas all the other [parallels] are divided 
[b\ the horizon] into arcs which are neither similar nor ecjual. Furtherm ore, in 
accordance with this, the time i'rom lising or setting to one or other o fth e  
culminations is equal to the time from the same culmination to setting or rising, 
since the meridian bisects those segments o fth e  parallels which are above and 
below the earth; but the times from rising or setting to the two [opposite] 
culminations are unequal a.tsp/iaera obliqua. I)ut equal at sphaera recta, since only

‘'"KEVxpa. The primary importance of these points is in astrology: see Bouche-1 .cclercq 257-9.
The two types of culmination are usually known in modern times as 'upper' and 'lower' 

culmination (sec Introduction p. 19). I retain the literal terminology here for obvious reasons.
‘**The qualification ‘to the senses’ is inserted because of prccession {the eflect of which is 

negligible over one daily revolution ).
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in the latter situation are the whole segments [of the parallel circles] above the 
earth equal to the segments below the e a r t h .H e n c e ,  for sphaera recta, 
[heavenly bodies] which culm inate simultaneously always rise and set simul­
taneously too (in so far as their motion about the p>oles of the ecliptic is H189 
imperceptible};''^'* but. for sphaera obUqua. [heavenly iDodies] which culminate 
simultaneously neither rise nor set simultaneously, but the more southerly ones 
always rise later and set sooner than the more northerly.

[3] T he accepted conllgurations of the fixed stars considered with respect to 
the earth  and at the same time to the planets or the parts of 4,he zodiac are;
[a] in general, their risings, culminations or settings which are simultaneous 
with those of one of the planets or with some part of the zodiac;
[b] in particulai'. their configurations with respect to the sun, which are of 9 
types.

The first type of configuration is that called ‘dawn easterly’, when the star is 
on the eastern hoiizon together with the sun. One variety of this is called ‘dawn 
invisible later rising’, when the star, which is just at last visil)ility, rises 
immediately after the sun; another is called 'daw n true simultaneous rising', 
when the star arrives at the eastern horizon at preci.sely the same time as the sun; 
the thii d is called ‘dawn visible earlier rising', when the star, which is just at fiiNt H190 
visibility, rises before the sun.

The second type ol'conllguration is that called ‘dawn culm ination’, when the 
sun is on the eastern horizon while the star is at the meridian, either above or 
below the earth. O f this too there are varieties: one is called ‘dawn invisible later 
culm ination', when the star culminates immediately after sunrise; a second is 
called ‘dawn true simultaneous culm ination’, when the star culminates at the 
same time as the sun rises; and the third is called ‘dawn earlier culm ination', 
when the star culminates immediately before sunrise. W hen the latter is a 
culmination alx)ve the earth  it is visible.

The third type ol'conllgiu ation is that called ‘dawn westerly’, when the sun is 
on the eastern horizon and the star on the western. This too has varieties: one is 
called ‘dawn invisible later setting', when the star sets immediately aftei- 
sunrise; ’ a second is called ‘dawn true simultaneous setting', when the star sets 
at exactly the same time as the sun ri.ses; and the third is called ‘dawn visible 
earlier setting', when the sun lises imm ediateh after the star has set.’*'"’

T he fourth type of configuration is that called ‘meridian easterly', when the H191 
sun is on the meridian and the star is on the eastern horizon. This too has 
varieties: one during the da\- and in\ isible. when the sun is culm inating above 
the earth  as the star is rising; the other during the night and visible, when the 
sun is culm inating below the earth as the star is rising.

T he fifth t\ pe of configuration is that called ‘meridian culm ination', when 
sun and star both reach the meridian at the same time. This too has varieties;
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If a is the time from rising to upper culmination, b from upper culmination to setting, c from 
setting to lower culmination, and d from lower culmination to rising, then a =  b and c =  d

but (at sphaera obliqua) c and b 5  ̂ d. 
'®^This implies that Ptolemy is thinking of planets as well as fixed stars.

Reading dvaTEi^.avToq (with D) for dvaTeX>.ovTO<; at H190.18. Corrected by Manitius. 
Reading KOTaSuvavTO*; (with D) for icaTa6uvovTO(; at H190.22.



two are during the day and invisible, when the sun is culm inating above the 
earth and the star is either culm inating alxjve the earth  together with the sun, or 
else culm inating below the earth  opposite it; and two are during the night, 
when the sun is culm inating lielow the earth; ofthese one is invisible, when the 
star too culminates below the earth  together with the sun, and the other is 
visii)le, when the star culminates alxjve the earth  opposite it.

T he sixth type of configuration is that called ‘m eridian westerly’, when the 
sun is on the meridian and the star is on the western horizon. This too has 

H192 varieties; one during the day and invisible, when the sun is culm inating above 
the earth as the star is setting; the other during the night and visible, when the 
sun is culm inating below the earth  as the star is setting.

T he seventh tyf>e of configuration is that called ‘evening easterly’, when the 
sun is on the western horizon and the star on the eastern. This again has 
varieties: one is called ‘evening visible later rising’, when the star rises 
immediately alter the sun has set; another is called ‘evening true simultaneous 
rising’, when the star rises at the same time as the sun sets; the third is called 
‘evening invisible earlier rising’, when the sun sets immediately alter the star 
has risen.

T he eighth type of configuration is that called ‘evening culm ination’, when 
the sun is on the western horizon and the star is on the meridian either above or 
below the earth. This too has varieties: one iscallcd ‘evening later culm ination’, 
when the star culminates immediately alter sunset (when the culmination is 
above the earth, this is visible);*’*’ another is called ‘evening true simultaneous 

H193 culm ination’, when the star culm inates at the same time as the sun sets; the 
third is called ‘evening invisible earlier culm ination', when the sun sets 
immediately alter the star has culm inated.

The ninth type of configuration is that called ‘evening westerly’, when the 
star is on the western horizon together with the sun. This too has varieties: one is 
called 'evening visible later setting’, when the star, just at last visibility, sets 
immediately alter the sun; another is called 'evening true simultaneous setting', 
when the star sets at exactly the same time as the sun; and the third is called 
‘evening invisii)le earlier setting’, when the star, which is just at fii’st visibility, 
sets [just] belore the sun.
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5. {On simuUaneous risings, culminations and settings oj the Jixed starsY'^^

Given the alx>ve definitions, the times of the tm e simultaneous risings, 
culminations and settings, which are taken with respect to the sun’s centre, can 
be lound by us immediately from the position of [the stars in question] in the 
delineation of the stars [on the solid globe], by purely geometrical methods. 

H194 For the points on the ecliptic with which each fixed star simultaneously

Adopting the reading of D,Ar, which omits(paivoMCvov at H192,19 and addsKoi to  UTtep yriv  
TOOTOU (paivojiEVOV Yivetai alter neooupaviiaTj at H I92,20. The text printed by Heiberg falsely 
implies that both uf>per and lower culminations are visible.

'**See HAMA  32-4, 39.



culminates, rises or sets can l)e derived geometrically by means of the theorems 
[already] established.

Fii-st, to dem onstrate the simultaneous culminations, let [Fig. 8.1]“̂°* the 
circle through both poles, that of the equator and that o f the ecliptic, be ABGD. 
Let AEG be a semi-circle of the equator alx>ut pole Z, and BED a semi-circle of 
the ecliptic about pole H. D raw  through the poles of the ecliptic the great circle 
segment H O K L, and take on it point 0  as the required fixed star (for it is with 
respect to such circles [i.e. great circles through the poles of the ecliptic] that we 
have observed and recorded the positions of the llxed stars). Also, draw  through 
the poles of the equator and the star at 0  the great circle segment Z 0M N .
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Now it is obvious that the star at 0  culminates simultaneously with points M 
and N of the ecliptic and equator [respectively]. But these points, and arc 0 N , 
a ie  given, as will be clear from the Ibllowing considerations. From what we 
proved at the beginning of our treatise [I 13], since the [two] great circle arcs 
HL and NZ have been draw n to meet the two great circle arcs AH and AN, 
Crd arc 2HA:Crd arc 2AZ =

(Crd arc 2HL:Crd arc 2L 0).(C rd  arc 2N 0 :C rd  arc 2ZN). [M .T. I] 
But, immediately by hypothesis, each of the arcs AZ, ZN  and H K  are given as 
quadrants; from the catalogue, arc K 0  is given from the star’s latitude and arc 
KB from its longitude; and arc ZH  and arc K L are given li om the demonstrated 
obliquity of the e c l ip t ic .H e n c e  it is clear that, of the arcs in cjuestion, arc HA 
[ = arc AZ + arc ZH], arc AZ, arc H L [= arc H K  + arc KL], arc L 0

H195

•’’ In I 13, I 16 and II 7-8.
Heiberg’s version of Fig. 8.1, derived from ms. A, b  defective, since it contains a redundant 

point S . I follow the correct version in D.Ar. 
arc ZH = e, arc KL = 5 of point K.



[ = arc KL + arc K 0 ]  and also arc NZ are given. Hence the rem aining arc, 
N 0 , will also be given.

Again, since 
Grd arc 2ZH:Crd arc 2HA =

H196 ^Crd arc 2Z 0:G rd  arc 20N }.(C rd arc 2XL;Crd arc 2LA), [M .T. II]
and, by the above, ol'the arcs in question, arc ZH , arc HA, arc Z 0  [= arc ZN -  
arc N 0 ] and arc 0 N  are given, and arc LA is given from [the given] arc KB, by 
means of [the arcs of] the equator which rise together with [those ol] the ecliptic 
at sphaera recta, the rem aining arc, NL. will also be given. Similarly [by means of 
the rising-times at sphaera recta] arc MB of the ecliptic will be given liom  arc NA, 
the sum [of arc NL + arc LA].

Moreover the points on the equator and ecliptic which rise or set 
simultaneously with a fixed star can readily be found by means of the 
simultaneous culminations, in the following manner.

Let [Fig. 8.2] *\BGD be a m eridian, AEG a semi-circle of the equator about 
pole Z, and BED a semi-circle of the horizon. Let the star rise at point H of the 
horizon, and draw  the great circle quadrant 2H ©  through points Z. H.
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Then again, since [two] great circle arcs Z 0  and EB have been draw n to meet 
H I97 two great circle arcs AZ and AE.

Grd arc 2ZB:Grd arc 2BA =
(Grd arc 2ZH :G rd arc 2H 0).(G rd  arc 20E :G rd  arc 2AE). [M .T . II] 

But, of the arcs in question, arc ZA, arc Z 0  and arc EA each comprise a 
quadrant, arc ZB [and hence arc BA = arc ZA -  arc ZB] is given from the 
elevation of the pole, and point 0  of the equator and arc 0 H  [and hence 
arc HZ = arc Z 0  -  arc 0 H ]  from the simultaneous culm ination. Therefore 
the remaining [arc], 0 E , will be given.

For the simultaneous settings, too, it can  easily be seen that if we cut off an 
arc, 0 K , in advance o f0  equal to arc 0 E , the star will set together with point K
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of the equator. For in that situation the setting takes place on an  arc [of the 
horizon measured from the meridian] equal to arc BH, and cuts off an angle in 
advance of the meridian equal to that enclosed to the rear [of it] by arc AZ and 
arc Z 0  in the present situation.

Furtherm ore, from the arcs of the equator and ecliptic which rise and set 
together which we have com puted for each clima [II 8], there will immediately 
be given that point on the ecliptic which rises together with point E of the 
equator and the star, and that point which sets together w ith point K  and the H I 98 
star. It is clear that at the moment when the sun is exactly in those points of the 
ecliptic, there will come to pass the risings, culminations and settings of the fixed 
star [in question] taken with respect to the sun’s centre which are called ‘true 
simultaneous cardinal posit ions’.

6. [On first and last visibilities o f the fixed stars]^^^

However, in the case of the first and last visibilities [of the fi.xed stars], we lind 
that the geometrical method exf>ounded [above], using only their position [in 
latitude and longitude], is no longer adequate. For it is not possible'®^ to find the 
size of the arc by which the sun must be removed below the horizon in order for 
a given star to have its first or last visibility by methods similar to the 
geometrical procedures by which, e.g.. one dem onstrates the point on the 
ecliptic with which that star rises. For that arc [the ara/s risionis] cannot be the 
same for all stars nor the same for a given star at all places [on earth], but varies 
according to the magnitude of the star, its distance in latitude from the sun, and 
the change in the inclinations of the ecliptic [with respect to the horizon].

For if we imagine [Fig. 8.3] a meridian circle ABGD, a semi-circle of the H199 
ecliptic AEZG, and a semi-circle of the horizon BED about pole H. it is clear 
that, given a star rising simultaneously with point E of the e c l ip t ic . i f a s ta r o f  
greater m agnitude has its first visibility when the sun is a t a distance of, e.g., arc 
EZ below the earth, a star of lesser magnitude, even one at an equal distance in 
latitude from the sun. will have its first visibility when the sun is at a greater 
distance than arc EZ, and [thus] the effect of its rays is weaker. Again, for stars of 
equal magnitude, if a star which is closer in latitude to point E has its first 
visibility at a distance [of the sun from the horizon] of arc EZ. a star which is 
farther than that [from point E in latitude] will have its first visibility at a lesser 
[solar] distance. For. given the same distance of the sun below the horizon, the 
rays in the vicinity of the ecliptic and of the sun itself are denser'^® than those

-“’̂ auyKEVTptooeiq, cf. p. 408 n.l90, on KEvtpa.
2 ® ^ S e e I I  927-8.

Reading Suvaxov a v a l  with the mss. at H I9 8 .1 8 .  Heiberg deletes « v a i, since one expects ah 
indicative verb. But for the infinitive after words like fejtEiSii in oralio obliqua see Kiihner-Gerth II 
5 5 1 , quoting Xenophon, 1 .2 .1 3 , e S a i ip a ^ E . . . ETtel Ka'i t o Cx;  (lEyiorov (ppovouvra; ou TaOtd 

dX-XiiXoK;.
Ptolemy says ‘of those stars which rise simuhaneousiy with point E’. However, he does not 

mean to compare a number of stars rising simultaneously with some fixed point of the ecliptic; for 
that would not allow the third situation envisai^d, in which two different stars with the same 
latitude cross the horizon together with point E. and the angle at E is different in the two cases.

Literally ‘more numerous’.
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H

farther away. [Finally], in the case of the stars of equal m agnitude which rise at 
H200 equal distances in latitude [from the sun], the more the ecliptic is inclined to the 

horizon, [thus] making angle DEZ smaller, the greater the [solar] distance EZ 
at which the star will have its first visibility.

For if, as in the I’ollowing figure [Fig. 8.4], we also draw  in the semi-circle 
H 0 Z K  through the poles ol‘ the horizon and the sun at Z,'*’̂  which will, 
obviously, be perpendicular to the horizon, the [vertical] distance of the sun 
below the earth will always remain equal to Z 0  for the same star, since, for an 
equal interval so taken, the [eti'ect ol] the rays above the earth  will be similar; 
but if arc 0 Z  is kept constant, arc EZ will, as we said, become less as the ecliptic 
is raised more towards a perpendicular position, and greater as it is more 
inclined'”® [to the horizon].

Therefore we need observations for each individual fixed star in order to 
determ ine the [required] distance of the sun below the earth  as measured along 
the ecliptic. And if even the distance vertical to the horizon (for instance, in the 
present figure [8.4], Z 0 ) does not rem ain the same for the same stars at all 

H201 locations on earth, because the rays of similar density do not have the same 
obscuring eftect'*”  in the thicker air of the more northerly terrestrial latitudes, 
we will need observations, not merely at one terrestrial latitude, but at each of 
the others alike. However, if the arc corresp>onding to Z 0  remains constant 
ever>'where on earth for the same stars (as seems likely, since the fixed stars too 
m ust be affected by the variation in the atm osphere in the same way as the rays 
are), the distances observed a t a single terrestrial latitude will suffice us to 
determ ine those at the other latitudes; [we can do this] by geometrical methods.

Taking the reading of D at HJdOO, 6, Toi) icaTCt to  Z (for to  KOTd to Z), and at H200,7, H 0Z K  
(also in Ar) for ©ZK. Corrected by Manitius.

Reading eyicXivonevou (with D) for kekXi^ evou at H200,13.
“̂*KaTaX.djiiteiv, ‘shine on so as to obscure’. See p. 470 n.8.
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H

K
Fig. 8.4

whether the variation in the inclination of'the ecliptic is due to the terrestrial 
loc ation or to the demonstrated motion of'the sphere ol'the fixed stars towards 
the rear with respect to it [the ecliptic].

I To show this], in the figure described [Fig. 8.4], let the distance EZ he given 
f rom an observation at any one terrestrial latitude whatever. Then since, again, 
the [tv%-o great circle aics] B0 and ZA have been draw n to meet the two great 
circle arcs HB and HZ.
Crd arc 2AB:Crd arc 2BH =

(Crd arc 2AE:Crd arc 2EZ).(Crd arc 2Z 0 :C rd  arc 20H ). [M .T. II] 
But. of'the arcs in question, arc BH and arc 0 H  are imm ediately [given, being] 
each a quadrant; and since point E, with which the star rises, is given by 
hypothesis. A, the culminating point, is also given, by means of'the section on 
rising-times [II 9, p. 104]; thus arc AE too is given by this means, and arc EZ by 
the observation; and arc AH too [and hence arc AB = arc BH -  arc AH] is 
given, being deri\ ed from the distance o f point A from the equator (which is 
given f rom the Table ofTnclination [I 15]) and I'rom the distance of the equator 
from the zenith along the same meridian (w hich equals the elevation of the 
pole). Therefore the remaining [arc], Z 0 , will be given;

Once this [arc Z 0 ] has been found, and provided that it remains the same for 
all locations, we can use it to derive the am ounts of arc EZ at [all] other 
terrestrial latitudes from the same considerations. For again [in Fig. 8.4]
C rd arc 2HB:Crd 2AB =

(Crd arc 2H 0 :C rd  arc 2Z 0).(C rd  arc 2ZE:C rd arc 2EA). [M .T. II]~ 
And, of the arcs in question, arc Z© is now given by hypothesis; and since E, the 
point which rises together with the star at the terrestrial latitude in question, is 
given by the procedure dem onstrated above [V I I I5 p. 412], and similarly arcs

H202



EA and BA are g iven ,'"  the rem aining arc, which is arc EZ of the ecliptic, is 
also given.

H203 We shall take the same method of operation for granted for the last 
visibilities, which occur near the setting-point. Practically the only difference 
will be that in the same figure [Fig. 8.4] the ecliptic will be drawn on the other 
side [of BED], in accordance with the way it is inclined when the horizon [arc] 
BD is taken as the western part [see Fig. N].

H
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K
Fig. N

We think that the above sullices as an indication of the methods in this type ot 
theoretical investigation, enough [at least] so that it cannot be said that we have 
neglected this topic. However, seeing that the com putation of this kind of 
prediction is of great complexity, not only because of the great num ber of 
dirt’erent terrestrial latitudes and inclinations of the ecliptic involved, but also 
because of the sheer m ultitude of the fi.xed stars: seeing, too. that, in respect of 
the actual obsen’ations of the phases"'* it is laborious and uncertain, since 
[dilTerences between] the obseners themselves and the atmosphere in the 
regions of observ’ation can produce variation in and doubt about the time of the 
first suspected occurrence, as has become clear, to me at least, from my own 
experience and from the disagreements in this kind of observations; seeing, 
furthermore, that because of the motion [through the ecliptic] of the sphere of

■'® .\s before, (p. 415), from £, the horoscope, we find A, the culminating point, by the procedure
II 9 (p. 104). Thus we have arc EA. arc AB = arc BH -  arc .AH. where arc BH = 90° and 
arc ,\H  = (p -  5 (A).

Reading k o t’ ootok; tS v  (pdoetov TripTioen;, with D, at H203.I4, i.e. uk ing  it as following 
evEKEV and understandingTou before^py(o5e<; te Eivat. Heiberg printsxo k o t ’ ouTdi; tou; tS v  (tSv) 
doteptov «pdoco>v TiipTioev<;, presumably understanding napd before it, but this is very harsh. By 
phases (<pdae\.c,) Ptolemy means here both first and last visibilities.
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the fixed stars, even for the individual terrestrial latitudes the simultaneous 
risings, culminations and settings cannot remain forever identical with the 
present ones, which would take such a vast am ount of numerical and 
geometrical com putations to calculate, we have decided to dispense with such a H204 
time-consuming operation. For the time being we content ourselves with the 
approxim ate [phases] which can be derived either from'*^ earlier recocds^'^ or 
from actual m anipulation of the [star-]globe for any particular star. Moreover, 
we notice that the prognostications concerning the states of the atmosphere 
deriv'ed from first or last visibiliiies (if indeed one assigns these as the cause [of 
changes in the weather], and not rather the f)ositions [of the sun] in the ecliptic), 
are almost always approximations, and do not exhibit a perfect regularity and 
invariability: it seems that this causal factor has only general application, and 
derives its strength, not so much from the actual times of the llrst or last 
visibility, as from the configurations with respect to the sun, taken as intervals in 
round numbers, and, in part, the in c l in a t io n s -o f  the moon at those 
configurations.

Reading died, with D, for cut’ auTfflv at H204.3.
In his later work, Phaseis, of which only Bk. II is preserved. Ptolemy lists many of these. 

■*^rtpoaveikrei(;. From the Telrabiblos (II 13, ed. Boll-Boer 100,7-9) it appears that Ptolemy 
means the direction (‘wind’) towards which the moon ‘points’ in its motion in [argument of] 
latitude. But sec also ibid. II 14,5 (ed. Boll-Boer 102,2-3) where it seems to be the direction towards 
which the sickle or gibbous moon points.





Book IX
1. {On the order o f the spheres o f sun, moon and the 5 planets]

Such, then, more or less, is the sum total of the chief' topics one may mention as 
having to do with the fixed stars, in so far as the phenom ena [observed] up to 
now provide the means of progress in our understanding. There remains, to 
[complete] our treatise, the treatm ent of the five planets. To avoid repetition we 
shall, as far as possible, explain the theory of the latter by means of an exposition 
common [to all live], treating each of the methods [for all planets] together.

First, then, [to discuss] the order of their spheres, which are all situated [with 
their poles] nearly coinciding with the poles of the inclined, ecliptic circle: we 
see that almost all the foremost astronomers agree that all the spheres are closer 
to the earth  than that of the fixed stars, and farther from the earth than that of 
the moon, and that those of the three [outer planets] are farther from the earth 
than those of the other [two] and the sun, S aturn’s being greatest, Jup iter's  the 
next in order towards the earth, and M ars' below that. But concerning the H207 
spheres of \'en u s  and Met cur\’, we see that they are placed below the sun’s by 
the more ancient astronomers, but by some oftheirsuccessors these too are placed 
above [the sun’s],' for the reason that the sun has never been obscured by them 
[Venus and M ercury] either. To us. however, such a criterion seems to have an 
element of uncertainty, since it is possible that some planets might indeed be 
below the sun, but nevertheless not always be in one of the planes through the 
sun and our viewpoint, but in another [plane], and hence might not be seen 
passing in front of it, just as in the case of the moon, when it passes below [the 
sun] at conjunction, no obscuration results in most cases.-’

And since there is no other way, either, to make progress in our knowledge of 
this m atter, since none of the stars^ has a noticeable parallax (which is the only 
phenom enon from which the distances can be derived), the order assumed by 
the older [astronomers] appears the more plausible. For, by putting the sun in 
the middle, it is more in accordance with the nature [of the bodies] in thus

' There is a good deal of evidence for the identity of some of those who held the sccond opinion, 
including Plato, Eratosthenes and Archimedes. For details on this and other ancient arrangements 
see H AM A  II 690-3.

 ̂Le. no transits of Venus or Mercury had been observed. Neugebauer has shown {HAMA 227-30) 
that transits are in fact predictable from Ptolemy’s own theory. Ptolemy later seems to have realized 
this, for in the Planetary Hypotheses (ed. Goldstein 2,28,10-12) he says: ‘ifa body of such small size (aS 
a planet) were to occult a body of such l a i ^  size and with so much light (as the sun), it would 
necessarily be imperceptible, because of the smallness of the occulting body and the state of the parts 
of the sun’s body which remain uncovered.’ (Goldstein’s translation here, p.6, is inaccurate).

 ̂This includes both fixed stars and planets.



separating those which reach all jxwsible distances ii"om the sun and those 
which do not do so, but always move in its vicinity; provided only that it does 
not remove the latter close enough to the earth  that there can result a parallax of 
any size/

H208 2. {On our purpose in the hypotheses o f the ptanels]

So much, then, for the arrangem ents of the spheres. Now it is our purpose to 
demonstrate for the five planets, just as we did for the sun and moon, that all 
their apparent anomalies can be represented by uniform circular motions, since 
these are prof>er to the nature of divine beings, while disorder and non­
uniformity are alien [to such beings]. Then it is right that we should think 
success in such a purpose a great thing, and truly the proper end of the 
mathem atical part of theoretical philosophy.'* But, on many grounds, we must 
think that it is diiiicult, and that there is good reason why no-orie before us has 
yet succeeded in it.” For, [firstly], in investigations of the f>eriodic motions of a 
planet, the possible [inaccurac\] resulting from comparison of [two] obser­
vations (at each of which the observ^er may have com mitted a small 
observational error) will, when accum ulated over a continuous period, produce 
a noticeable difference [from the true state] sooner when the interval [between 
the obser\ ations] over which the examination is made is shorter, and less soon 
when it is longer. But we have records of planetary observ'ations only from a 
time which is recent in comparison with such a vast enterprise: this makes 
prediction for a time many times greater [than ihe in te r\a l ibr which 
observations are available] insecure. [Secondly], in investigation of the 
anomalies, considerable confusion stems from the fact that it is apparent that 
each planet exhibits two anomalies, which are moreover unequal both in their

H209 amoimt and in the p>eriods of their return: one [return] is observed to be related 
to the sun, the other to the position in the ecliptic; but both anomalies are 
continuously combined, whence it is dilficult to distinguish the characteristics 
of each individually. [It is] also [confusing] that most of the ancient [planetary] 
observations have been recorded in a way which is difilcult to evaluate, and 
crude. For [1] the more continuous series of observations concern stations and 
phases [i.e. first and last visibilities].’ But detection of both of these particular

* In his Planftarr Hypolfieses (see Goldstein’s edition) Ptolemy proposes a system in which the 
sphei-es of the planets are contiguous; thus the greatest distance Irom the earth attained by a planet 
is equal to the least distance attained by the one next in order outwards. This appears to provide 
supfX)rt for the order he adopts here, since it results in a solar distance very nearly the same as that 
obtained by a ditl'erent method in Almagest \ ’ 15. Since this system also brings Mercury. at its least 
distance, to the moon’s greatest distance (64 earth-radii). Mercury ought to exhibit a considerable 
parallax, contrary to what is enunciated here.

’Cr. l i p .  35.’
" We cannot doubt that not only planetary theories but planetary tables had been constructed 

Ijelbre Ptolemy: the prool is supplied by Indian astronom \, which is based on Greek theories which 
arc largely, if not entirely, pre-Ptolemaic, and indeed by Ptolemy's own reference to the ‘.Aeon- 
tables' l)elow (p. 422). W hat he means is that all previous efforts were, by his criteria, 
unsatisfactory

‘ Ptolemy is certainly thinking of the Babylonian planetary observations, which are characteristi­
cally of this type. They have liccome available to us through the diaries’ (see Sachs[2]). but to 
Ptolemy were probably known only through Hipparchus’ compilation (see p. 421).
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phenom ena is fraught with uncertainty: stations cannot be fixed a t an  exact 
moment, since the local m otion of the planet for several days both before and 
after the actual station is too small to be observable; in the case of the phases, not 
only do the places [in which the planets are located] immediately become 
invisible together with the bodies which are undergoing their first o r last 
visibility, but the times too can be in error, both because of atmospherical 
differences and because of differences in the [sharpness of] vision of the observers.
[2J In general, observations [of planets] with respect to one oi the fixed stars, 
when taken over a com paratively great distance, involve difllcult computations 
and an element of guesswork in the quantity  measured, unless one carries them 
out in a m anner which is thoroughly com petent and knowledgeable. This is not 
only because the lines joining the observed stars do not always form right angles 
with the ecliptic, but may form an angle of any size (hence one may expect 
considerable error in determ ining the position in latitude and longitude, due to H210 
the varying inclination of the ecliptic [to the horizon frame of reference]); but 
also because the same interval [betw'een star and planet] appears to the observer 
as greater near the horizon, and less near mid-heaven;® hence, obviously, the 
inteival in question can be measured as at one time greater, at another less than 
it is in reality.

Hence it was, I think, that H ipparchus, being a great lover of truth, for all the 
above reasons, and especially because he did not yet have in his possession such 
a groundwork of xesources in the form of accurate observations from earlier 
times as he himself has provided to us.® although he investigated the theories of 
the sun and moon, and, to the best of his ability, dem onstrated with every 
means at his com m and that they are represented by uniform circular motions, 
did not even make a beginning in establishing theories for the five planets, not at 
least in his writings which have come down to u s .A l l  tha t he did was to make a 
compilation of the planetary observations arranged in a more useful w ay," and 
to show by means of these that the phenom ena were not in agreement with the 
hypotheses of the astronomers of that time. For, we may presume, he thought 
that one must not only show that each planet has a twofold anomaly, or that 
each planet has retrograde arcs which are not constant, and are of such and 
such sizes (whereas the other astronomers had constructed their geometrical 
proofs on the basis of a single unvarying anom aly and retrograde arc); nor [that 
it was sufficient to show] that these anomalies can in fact be represented either

®This appears to be the only relerencc to the effect ol’ rei'raciion (if that is what it is) in the 
Alnrjagest. despite its obvious relevance e.g. to the observ ations ofMercurv 's greatest elongations in 
IX 7. Ptolemv discusses it (as a theoretical problem) in some detail in Optics \ '  23-30 (ed. Lejeune 
237-42).

*This seems to imply that Hipparchus recorded planetary observations of his own, which 
Ptolemy used to establish his theories. This may be true, but it is strange that Ptolemy cites not a 
single such observation by Hipparchus. Could Ptolemy mean merely that Hipparchus had not 'yet’ 
assembled the compilation of earlier planetary observations which he mentions just below?

The circulation of books in antiquity was so fortuitous that, even for one, like Ptolemy, who had 
access to the great resources of the libraries a t Alexandria, this was a necessary caveat.

“ I have little doubt that all the older planetary observations cited in the Almagest are derived 
from this compilation (cf. p. 452 n.66), and that part of Hipparchus’ ‘rearrangem ent’ was to give 
their dates in the Egyptian calendar. For a similar service he rendered for the listing of lunar eclipses 
see HAMA  320-21.
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H21I by means of eccentric circles or by circles concentric with the ecliptic, and 
carrying epicycles, or even by com bining both, the ecliptic anom aly being of 
such and such a size, and the synodic anom aly of such and such (for these 
representations have been employed by almost all those who tried to exhibit the 
uniform circular motion by means of the so-called ‘Aeon-tables’,*̂  but their 
attem pts were faulty and a t the same time lacked proofs: some of them  did not 
achieve their object a t all, the others only to a limited extent); but, [we may 
presume], he reckoned that one who has reached such a pitch of accuracy and 
love of tru th  throughout the m athem atical sciences will not be content to stop at 
the above point, like the others who did not care [about the imperfections]; 
rather, that anyone who was to convince himself and his future audience must 
demonstrate the size and the period of each of the two anomalies by means of 
well-attested phenom ena which everyone agrees on, must then combine both 
anomalies, and discover the f)osition and order of the circles by which they are 
brought about, and the type of their motion; and finally must make practically 
all the phenomena fit the particular character of the arrangem ent of circles in 
his hypothesis. And this, I suspect, appeared diiricult even to him.

The point of the above remarks was not to boast [of our own achievement]. 
Rather, if we are at any point compelled by the nature of our subject to use a 
procedure not in strict accordance with theory (for instance, when we carry out 
proofs using without further qualification the circles'^ described in the 

H212 planetary spheres by the movement [of the body, i.e.] assuming that these 
circles lie in the plane of the ecliptic.'^ to simplify the course of the proof); or [if 
we are compelled] to make some basic assumptions which we arrived at not 
from some readily apparent principle, bu t from a long period of trial and 
application,** or to assume a type of motion or inclination of the circles which is 
not the same and unchanged for all p la n e ts ;w e  may [be allowed to] accede 
[to this compulsion], since we know that this kind of inexact procedure will not 
affect the end desired, provided that it is not going to result in any noticeable 
error; and we know too that assumptions m ade without proof, provided only 
that they are found to be in agreem ent with the phenomena, could not have 
been found without some careful methodological procedure, even if it is difficult

‘-5id Tî c; tcaXounevtii; aitoviou KavovoJtoiio(;. In my opinion, Ptolemy is referring t a a  type of 
work in which the mean motions of the planets were represented by integer numt>ers of revolutions 
in some huge period, in which they all return to the beginning of the zodiac, and the planetary 
equations were calculated by a combination of epicycles or of eccentre and epicycle which was not 
reducible to a geometrically consistent kinematic model, i.e. to a class of Greek works which were 
the ancestors oi'the Indian siddhantas. In this 1 am in agreement with \'an der W aerden, 'Ewige 
Tafeln’, except that I believe that the aiciv implied by the title of these tables does not mean 
‘eternity’ (cf. the conventional translation, ‘Eternal Tables’, which is philologically possible, but 
not necessary ), but rd ’ers to the immense common period in which the planets return (cf. the Greek 
inscription of Keskinto, HAMA  698-705, and the Indian M ahayuga). The other two references to 
these tables in antiquity (P. Lend. 130, see Neugebauer-van Hoesen, Greek Horoscopes p. 2 1 ,1 12-13, 
and V'ettius V’alens VI I, ed. Kroll 243,8} are consistent with, but do not require, this 
interpretation.

Literally ‘as if the circles were bare [circles]’.
Ptolemy in fact carries out all the proofs involving the longitudinal motions of the planets (in 

Bks. IX -X II) as if the motions lay in the plane of the ecliptic.
'*Thc paradigm case of this is the introduction of the equant.

E.g. the special model for the longitudinal motions of Mercury, or the special inclinations 
attributed to the inner planets for their latitudinal motions.
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to explain how one came to conceive them  (for, in general, the cause oi'first 
principles is, by nature, either non-existent o r hard to describe); we know, 
finally, that some variety in the type ofhypotheses associated with the circles [of 
the planets] cannot plausibly be considered strange or contrary to reason 
(especially since the phenom ena exhibited by the actual planets are not alike 
[for all]); for, when uniform circular motion is preserved for all without 
exception, the individual phenom ena are dem onstrated in accordance with a 
principle which is more basic and more generally applicable than that of 
similarity of the hypotheses [for all planets].

The observations which we use lor the various demonstrations are those H213 
which are most likely to be reliable, namely [ 1 ( those in which there is observed 
actual contact or very close approach to a star or the moon, and especially [2] 
those m ade by means ol'the astrolabe instruments. [In these] the observer’s line 
of vision is directed, as it were, by means of the sighting-holes on opposite sides 
of the rings, thus observing equal distances as ecjual arcs in all directions, and 
can accurately determ ine the position of the planet in question in latitude and 
longitude with respect to the ecliptic, by moving the ecliptic ring on the 
astrolabe, and the diametrically opposite sighting-holes on the rings'' through 
the poles of the ecliptic, into alignment with the object observed.

3. [On the periodic ref tons o f the five planelsY^

Now tliat we liave completed the above discussion, we will first set out. foi each 
of the 5 planets, the smallest period in which it makes an approxim ate return in 
both anomalies, as computed by H ip p a rc h u s .T h e s e  [periods] have been 
corrected by us. on the basis of the comparison of their positions which bccame 
possible alter we had dem onstrated their anomalies, as we shall explain at that 
po in t.'” However, we anticipate and put them here, so as to have the individual 
mean motions in longitude and anom aly set out in a convenient form for the H214 
calculations of the anomalies. But it would in fact make no noticeable dillerence 
in those calculations"' even if one used more roughly com puted mean positions.

”  It is not d e a r  why the plural (‘rings’) is used (contrast the singular at V 1, H354,13). Although 
the sights are attached only to ring 1 in Fig. F (p. 218). Ptolemy is presumably referring to both 
ring I and ring 2, smce ring 2 has first to be moved to the correct sighting position on the ecliptic 
ring (no. 3).

‘®See HAAJA 150-2, Pedersen (270) has fallen into some confusion about Ptolemy’s procedure: 
see Toomer[3] 144-5.

** If Ptolemy means, as we may presume, that the periods ‘computed by Hipparchus’ are the 
relationships in integers, '51 returns in anomaly correspond to 59 years and 2 revolutions in 
longitude’, etc., then he seems ignorant of the fact that these are well-known (to us) Babylonian 
period relationships (for details see HAMA  151).

^®This is a reference to the chapters on the ‘corrections of the mean motions’, I X 10, X 4, X9, XI 
3 and XI7. The ‘comparison’ refers to the use in these chapters of two positions, separated by a long 
time-interval, to derive the mean motions. O n the problem of the actual derivation of the 
corrections given here, and of the mean motions, see Appendix C.

Ptolemy means that where he uses the mean motions in determining the eccentricity (e.g. X  X 
p. 484) over the short periods involved (a few years) one could use quite crude parameters (e.g. the 
mean motions given by the uncorrected Babylonian periods) without seriously aflecting the final 
result. He is right (see p. 484 n.33). The corrected mean motions are given here merely for 
convenience. Cf. the procedure for the lunar mean motion table, p. 179.
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As a general definition, we m ean by ‘motion in longitude’ the motion of the 
centre of the epicycle around the eccentre, and by ‘anom aly’ the motion of the 
body around the epicycle.

We find, then, that
[1] for Saturn, 57 returns in anom aly correspond to 59 solar years (as defined 
by us, i.e. returns to the same solstice or equinox), plus about U days, and to 2 
revolutions [in longitude] plus 1;43° (for in the case of the 3 planets which are 
always overtaken by the sun^^ the num ber of revolutions of the sun during the 
period of return is always, for each of them, the sum of the num ber of 
revolutions in longitude and the num ber of returns in anom aly of the planet);
[2] for Jupiter, 65 returns in anom aly correspond to 71 solar years (defined as 
above) less about 4i^ days, and to 6 revolutions of the planet from a solstice back

H215 to the same solstice, less 4s°;
[3] for Mars, 37 returns in anom aly correspond to 79 solar years (as defined by 
us) plus about 3; 13 days,'^ and to 42 revolutions of the planet from a solstice 
back to the same solstice, plus 3a°:
[4] for Venus, 5 returns in anom aly correspond to 8 solar years (as defined by 
us) less about 2;18 days,'^ and to a num ber of [longitudinal] revolutions of the 
planet equal to that of the sun, 8, less 2 i ';
[5] for M ercury, 145 returns in anom aly correspond to 46 of the same kind of 
years plus about I m days, and to a num ber of [longitudinal] revolutions which 
is, again, equal to that of the sun, 46. plus 1°.

But if. for each planet, we reduce the period of return to days, in accordance 
with the length of the year as dem onstrated by us, and the num ber of returns in 
anomaly to degrees according to the system in which a circle contains 360°, 
we will get:

for Saturn, 21551; 18  ̂ and 20520° of anom aly 
H216 for Jup iter, 25927;3T* and 23400°'^ of anom aly 

for Mars, 28857;43‘̂ "'’ and 13320° of anom aly 
for Venus, 2919;40‘* and 1800° of anom aly 
for M ercury, 16802;24'^-’ and 52200° of anomaly.
So we divide the degrees of anom aly proper to each by the appropriate 

num ber of days, and get the following for the approxim ate m ean daily motions 
in anomaly:*®

Saturn ’ 0:57.7,43,41,43,40°
Jup iter 0;54,9,2,46,26.0°

--rteplKaTaX.a^3avo^£V(ov. Cf. 7t£piKaTdXTiv|/i<; HI 24,13. This feature distinguishes the three 
outer planets Irom the two inner ones, since the latter (usually) overtake the sun.

Expressed by Ptolemy as 3 +  i +  50.
Expressed by Ptolemy as 2 + J  +  ’b.
Reading,yu, with D '.Ar, (br.^u (27400) at H216,l. Corrected by Manitius.

■*’Reading jly for (7 (53)at H216.2. Multiplying the Ptolemaic length ofthe year, 365; 14,48^, by 
79 and adding 3;13 produces 28857;42,12, of which 28857;43 is the rounding. The ms. tradition is 
solid for 53, but nothing in the previous or subsequent calculations favours it.

Precise calculation (cf. n.26) gives 16802;22,48. Possibly we should change 1 5b days (above) to 
l5(3 days (reading k ' for X' at H 215,ll).

■* For the problem of precisely how Ptolemy arrives at the parameters he gives for the planetary 
mean motions, which is not as simple as it appears here, see Appendix C.



M ars 0;27,41,40,19,20,58=
Venus 0;36,59,25,53,11,28°
M ercury 3;6,24,6,59,35,50®.
For each of these we take j'jth to get the following m ean hourly motions in H217 

anomaly:
Saturn  0;2,22,49,I9,14,19,10°
Ju p ite r 0;2,15,22,36,56,5®
Mar^ 0; 1,9,14,10,48,22,25°
Venus 0; 1,32,28,34,42,58,40^
M ercury 0;7,46,0,17,28,59,35°.

Then we multiply the daily motion of each by 30 to get the following mean 
monthly motions in anomaly:

Saturn 28;33,51,50,51,50,0°
Ju p ite r 27;4,31,23,13,0,0°
M ars 13;50,50,9,40,29,0°
Venus 18.29,42,56,35,44.0°
M ercury 93; 12,3,29,47,55,0°.
Similarly, we multiply the daily motions by 365, the num ber of days in one 

Egyptian year, to get the following mean yearly motions in anomaly:
Saturn 347;32.0,48,50,38.20° '
Ju p ite r 329:25,1,52,28.10,0°
Mars . 168:28,30,17,42,32,50°
Venus 225:1.32.28.34.39.15°29
M ercury 53;56,42,32,32,59,10° (increment[overcompletecircles]).
In the same way, we multiply each ofthe annual motions by 18 (just as we did H218 

in the construction of tables for the luminaries), to get the following increments 
in mean anom aly for the period of 18 Egy ptian years:

Saturn " 135;36,14,39,11,30,0°
Ju p ite r 169;30,33,44,27,0,0°
M ars 152;33,5,18,45,51,0°
Venus 90;27,44,34,23,46,30°
M ercury 251;0,45,45.53,45,0°.
We can also find the mean motions in longitude corresponding to the above 

without reducing the num ber of [longitudinal] revolutions to degrees and 
dividing them  by [the num ber of days in] the period set out above for each 
planet. For Venus and in M ercury, it is obvious that we can do this by taking 
the same mean motions as we set out previously for the sun; for the other three 
planets, by taking the difference between the [mean m otion in] anomaly and the 
corresponding solar [mean] motion for each individual entry.^“ By this method 
we get the following mean motions in longitude:
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-*This corresponds to a mean daily motion of0;36,59.25,53,ll,27°, i.e. one less in the last place 
than that given above. Thus the mean motion table of V'enus is based on diflerent parameters in 
diflerent parts: on 28 in the last place for hours, days and months, and on 27 in the last place for 
years jin d  18-year periods. O n the possible significance of this see Appendix C p. 671 n .l l .

Venus and M ercuryliave the same mean motion in longitude as the sun. For the other planets, 
for any length of time, the sum of anomaly and mean motion equals the sun’s mean motion, bccause 
of the relationship stated at p. 424.
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Daily:

I X  3. M ean motions o f  the planets

H219

Saturn 0;2,0,33,31,28,51°
Ju p ite r 0;4,59,14,26,46,31°
Mars 0;31,26,36,53,51,33°.

Hourly:
Saturn 0;0,5,1,23,48,42,7,30°
Jup iter 0;0,12,28,6,6,56,17,30°
M ars 0;1,18,36,32,14,38,52,30°.^'

Monthly:
Saturn 1;0,16,45,44,25,30°
Jup ite r 2;29,37,13,23,15,30°
Mars 15;43,18,26,55,46,30°.

Yearly:
Saturn 12;13,23,56,30,30,15°
Jup iter 30;20,22,52,52,58,35°"2

Mars 191;16,54,27,38,35,45°.
For 18 years:

Saturn 220; 1,10,57,9,4,30° in m ean motion
Jup ite r 186;b,51,51,53,34,30° 1 increment [over
M ars 203:4.20,17,34,43,30° J complete circles].

So once again, lor the user’s convenience, we shall set out. for each of the planets 
in order, tables of the above mean motions deriv ed by successive summation [of 
the motions for the appropriate time-interval]. Like the other [m ean motion 
tables], these will be in 45 lines and 3 sections: the first section will contain the 
entries (obtained by successive summation) for the 18-year p>eriods; the second 
will contain those for the years and hours, and the third those for the months 
and days.

The tables are as follows.

H 220-49 4. { Tables o f I he mean motions in longitude and anomaly o f the five planets]^^

[See pp. 427-41.]

H250 5. \Prelimina>y notions [necessary'\ for the hypotheses o f the 5 planetsY^

Now that these [mean motions] have been tabulated, our next task is to discuss 
the anomalies which occur in connection with the longitudinal positions of the 
five planets. The way we have approached it, to give the general outlines, is as 
follows.

Reading Xt] ^  X (38,52,30) forX!S (39) at H219,2, with D,Ar. .Although the figure is rounded to 
39 in the table, there is no reason why it should be (for Mars alone) here.

^-Reading vt̂  ^  for ^  Xt\ (52,38,35) a t H219,7, with D,Ar. Corrected by Manitius. 
Corrections to Heiberg:

H235,24 (Mars, longitude, 3*', last place) read V(; for q (6). Misprint.
H238,3 (Venus, epoch in longitude) read o jle for [Ie (45°), with D^.

Corrected by Manitius, but this is not {pace Manitii) a misprint in Heiberg.
^^On chs. 5 and 6 see HAMA  149-50.
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Saturn

18-Year 
Periods

[Epoch] Position in [Mean] 
Longitude : l>26;43° 

Longitude

[Epoch] Position in 
Anomaly : 34,2° 

[Epoch] Position of Apogee : 
Anomaly

HI 14; 10“

18 220*’ 1 10 57 9 4 30 135° 36 14 39 11 30 0
36 80 2 21 54 18 9 0 271 12 29 18 23 0 0
54 300 3 32 51 27 13 30 46 48 43 57 34 30 0

72 160 4 43 48 36 18 0 182 24 58 36 46 0 0
90 20 5 54 45 45 22 30 318 1 13 15 57 30 0

108 ’ 240 7 5 42 54 27 0 93 37 27 55 9 0 0

126 100 8 16 40 3 31 30 229 13 42 34 20 30 0
144 320 *"9 27 37 12 36 0 4 49 57 13 32 0 0
162 180 10 38 34 21 40 30 140 26 11 52 43 30 0

180 40 11 49 31 30 45 0 276 2 26 31 55 0 0
198 260 13 0 28 39 49 30 51 38 41 11 6 30 0
216 120 14 11 25 48 54 0 187 14 55 50 18 0 0

234 340 15 22 22 57 58 30 322 51 10 29 29 30 0
252 200 16 33 20 7 3 0 98 27 25 8 41 0 0
270 60 17 44 17 16 7 30 234 3 39 47 52 30 0

288 280 18 55 14 25 12 0 9 39 54 27 4 0 0
306 140 20 6 11 34 16 30 145 16 9 6 15 30 0
324 0 21 17 8 43 21 0 280 52 23 45 27 0 0

342 220 22- 28 5 52 25 30 56 28 38 24 38 30 0
360 80 23 39 3 1 30 0 192 4 53 i 50 0 0
378 300 24 50 0 10 34 30 327 41 7 43 1 30 0

396 160 26 0 57 19 39 0 103 17 22 22 13 0 0
414 20 27 11 54 28 43 30 238 53 37 1 24 30 0
432 240 28 22 51 37 48 0 14 29 51 40 36 0 0

450 100 29 33 48 46 52 30 150 6 6 19 47 30 0
468 320 30 44 45 55 57 0 285 42 20 58 59 0 0
486 180 31 55 43 5 1 30 61 18 35 38 10 30 0

504 40 33 6 40 14 6 0 196 54 50 17 22 0 0
522 260 34 17 37 23 10 30 332 31 4 56 33 30 0
540 120 35 28 34 32 15 0 108 7 19 35 45 0 0

558 340 36 39 31 41 19 30 243 43 34 14 56 30 .0
576 200 37 50 28 50 24 0 19 19 48 54 8 0 0
594 60 39 1 25 59 28 30 154 56 3 33 19 30 0

612 280 40 12 23 8 33 0 290 32 18 12 31 0 0
630 140 41 23 20 17 37 30 66 8 32 51 42 30 0
648 0 42 34 17 26 42 0 201 44 47 30 54 0 0

666 220 43 45 14 35 46 30 337 21 2 10 5 30 0
684 80 44 56 11 44 51 0 112 57 16 49 17 0 0
702 300 46 7 8 53 55 30 248 33 31 28 28 30 0

720 160 47 18 6 3 0 0 24 9 46 7 40 0 0
738 20 48 29 3 12 4 30 159 46 0 46 51 30 0
756 240 49 40 0 21 9 0 295 22 15 26 3 0 0

774 100 50 50 57 30 13 30 70 58 30 5 14 30 0
792 320 52 1 54 39 18 0 206 34 44 44 26 0 0
810 180 53 12 51 48 22 30 342 10 59 23 37 30 0
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S insole 
VcaiTi

Sal urn 
Longitude

Saturn
Anomaly

1 12= 13 23 56 30 30 15 347° 32 0 48 50 38 20
2 24 26 47 53 1 0 30 335 4 1 37 41 16 40
3 36 40 11 49 31 30 45 322 36 2 26 31 55 0

4 48 53 35 4(i 2 1 0 310 8 3 15 22 33 20
5 61 6 59 42 32 31 15 297 40 4 4 13 11 40
6 73 20 23 3*̂ 3 I 30 285 12 4 53 3 50 0

7 85 33 47 35 33 31 45 272 44 5 41 54 28 20
8 97 47 11 32 4 2 0 260 16 6 30 45 (i 40
y 110 0 35 28 34 32 15 247 48 7 19 35 45 0

10 122 13 59 25 5 2 30 235 20 8 8 26 23 20
II 134 27 23 21 35 32 45 222 52 8 57 17 1 40
12 146 40 47 18 6 3 0 210 24 9 46 7 40 0

i;i 158 54 11 14 36 33 15 197 56 10 34 58 18 20
14 171 “ 11 7 3 30 185 28 11 23 48 56 40
15 183 20 59 / 37 33 I 173 0 12 12 39 j 35 0

Hi 195 34 23 4 8 4 0 160 32 13 1 30 1 20
17 207 47 47 0 38 34 15 148 4 13 50 20 51 40
18 220 1 10 57 4 4 30 135 !56 14 39 11 30 0

Horn's LDnijiiutic Anomaly

1 0° i  0 I 5 1 23 48 42 0° 1 2 i1 22 49 19 I  14 19
o 0 0 10 2 1 47 37 24 0 4 45 38 38 28 38
J 0 0 15 4 11 26 6 0 7 8 27 57 42 57

4 0 0 20 5 35 14 48 0 9 31 17 16 57 17
5 0 0 25 6 59 3 31 0 11 54 6 36 11 36
6 0 0 30 8 22 52 13 0 14 16 55 55 25 55

7 0 0 35 9 46 40 55 0 16 39 45 14 40 14
8 0 0 40 11 10 29 37 0 19 2 34 33 54 33
9 0 0 45 12 34 18 19 0 21 25 23 53 8 52

10 0 0 50 13 58 7 1 0 23 48 13 12 23 12
11 0 0 55 15 21 55 43 0 26 11 2 31 37 31
12 0 1 0 16 45 44 25 0 28 33 51 50 51 50

13 0 1 5 18 9 33 8 0 30 56 41 10 6 9
14 0 1 10 19 33 1 -* 50 0 33 19 30 29 20 28
15 0 15 20 57 ! 10 32 0 35 42 19 48 34 47

16 0 1 20 22 1 20 59 14 0 i 38 5 9 7 49 7
17 0 1 25 23 44 47 56 0 i 40 27 58 27 3 26
18 0 30 25 1 8 36 38 0 1 42 50 47 46 17 45

19 0 1 35 26 32 25 20 0 45 13 37 5 32 4
20 0 1 40 27 56 14 2 0 47 36 26 24 46 23
21 0 1 45 29 20 2 45 0 49 59 15 44 0 42

22 0 1 50 30 43 51 27 0 52 22 5 3 15 2
23 0 1 55 32 7 40 9 0 54 44 54 22 29 21
24 0 2 0 33 31 28 51 0 57 7 43 41 43 40
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Months
Saturn

Longitude
Satum

Anomaly

30 1° 0 16 45 44 25 30 28° 33 51 50 51 50 a
60 2 0 33 31 28 51 0 57 7 43 41 43 40 0
90 3 0 50 17 13 16 30 85 41 35 32 35 30 0

120 4 1 7 2 57 42 0 114 15 27 23 27 20 0
150 5 1 23 48 42 7 30 142 49 19 14 19 10 0
180 6 1 40 34 26 33 0 171 23 11 5 11 0 0

210 7 1 57 20 10 58 30 199 57 2 56 2 50 0
240 8 2 14 5 55 24 0 228 30 54 46 54 40 0
270 9 2 30 31 39 49 30 257 4 46 37 46 30 0

300 10 9 47 37 24 15 0 285 38 38 28 38 20 0
330 11 3 4 23 8 40 30 314 12 30 19 30 10 0
360 12 3 2 ! Q 53 6 0 342 46 22 10 9 0 0 0

Days Longitude Anomaly

1 0° 9 0 33 31 28 51 0° 57 7 43 41 43 40
9 0 4 1 7 9 57 42 1 54 15 27 23 27 20
3 0 6 1 40 34 26 33 9 51 23 11 5 11 0

4 0 8 2 14 5 55 24 3 48 30 54 46 54 40
5 0 10 2 47 37 24 15 4 45 38 38 28 38 20
6 0 12 ! 3 j 21 8 53 6 5 42 46 22 10 22 0

7 0 14 3 54 ! 40 21 57 6 39 54 5 52 5 40
8 0 16 4 28 11 50 48 7 37 1 49 33 49 20
9 0 18 5 1 43 19 39 8 34 9 33 15 33 0

10 0 20 5 35 14 48 30 9 31 17 16 57 16 40
11 0 22 6 8 46 17 21 10 28 25 0 39 0 20
12 0 24 6 42 17 46 12 11 25 32 44 20 44 0

13 0 26 7 15 49 15 3 12 1 9 9 40 28 2 27 40
14 0 28 7 49 2 0 43 54 13 19 48 11 44 11 20
15 0 30 8 9 9 52 12 45 14 16 55 55 25 55 0

16 0 32 1 8 1 56 23 41 36 15 14 3 39 7 38 40
17 0 34 9 29 55 10 27 16 11 11 22 49 22 20
18 0 36 10 3 26 39 18 17 8 19 6 31 6 0

19 0 38 10 36 58 8 9 18 5 26 50 12 49 40
20 0 40 11 10 29 37 i 0 19 9 34 33 54 33 20
21 0 42 11 44 1 5 1 51 19 59 ! 42 1 1 36 1 17 0

22 0 44 1 2 17 32 34 1 42 20 56 50 1 18 i 0 i 40
23 0 46 12 51 4 3 33 21 53 57 44 59 i 44 1 20
24 0 ! -^8 ! 13 24 35 32 24 22 51 5 i 28 ! 41 ' 28 j 0

25 0 50 13 58 7 1 15 23 48 13 12 23 11 40
26 0 52 14 31 38 30 6 24 45 20 56 4 55 20
27 0 54 15 5 9 58 57 25 42 28 39 46 39 0

28 0 56 15 38 41 27 48 26 39 36 23 28 22 40
29 0 58 16 12 12 56 39 27 36 44 7 10 6 20
30 1 0 16 45 44 25 30 28 33 51 50 51 50 0



430 I X  4. Jupiter’s mean motion tables

Jupitei

18-Year 
Periods

[Epoch] Position in [Mean] 
Lon^tudc : s£i:4;41° 

Longitude

[Epoch] Position in 
Anomaly : 146;4° 

[Epoch] Position of Apogee 
Anomaly

: H52;9°

18 186° 6 51 51- 53 34 30 169° 30 33 44 27 0 0
36 12 13 43 43 47 9 0 339 1 7 28 54 0 0
54 198 20 35 35 40 43 30 148 31 41 13 21 0 0

72 24 27 27 27 34 18 0 318 9 14 57 48 0 0
90 210 34 19 19 27 52 30 127 32 48 42 15 0 0

108 36 41 11 11 21 27 0 297 3 22 26 42 0 0

126 222 48 3 3 15 I 30 106 33 56 11 9 0 0
144 48 54 54 55 8 36 0 276 4 29 55 36 0 0
162 235 1 46 47 2 10 30 85 35 3 40 3 0 0

180 61 8 38 38 55 45 0 255 5 37 24 30 0 0
198 247 15 30 30 49 19 30 64 36 11 8 57 0 0
216 73 22 22 22 42 54 0 234 6 44 53 24 0 0

2;54 259 29 14 14 36 28 30 43 37 IB 37 51 0 0
252 85 36 6 6 30 3 0 213 7 52 22 18 0 0
270 271 42 57 58 23 37 30 22 38 26 6 45 0 0

288 97 49 49 50 17 12 0 192 8 59 51 12 0 0
306 283 5<i 41 42 10 46 30 1 39 33 35 39 0 0
324 110 3 33 34 4 21 0 171 10 7 20 () 0 0

342 296 10 25 25 57 55 30 340 40 41 4 33 0 0
360 122 17 17 17 51 30 0 150 n 14 49 0 0 (»
378 308 24 9 9 45 4 30 319 41 48 33 27 0 0

3% 134 31 1 1 38 39 0 129 12 22 17 54 0 0
414 320 37 52 53 32 13 30 298 42 56 2 21 0 0
432 146 44 44 45 25 48 0 108 13 29 46 48 0 0

450 332 51 36 37 19 22 30 277 44 3 31 15 0 0
4(i8 158 58 28 29 12 57 0 87 14 37 15 42 0 0
486 345 5 20 21 6 31 30 25(i 45 11 0 9 0 0

504 171 12 12 13 0 6 0 66 15 44 44 36 0 0
522 357 19 4 4 53 40 30 235 46 18 29 3 0 0
540 183 25 55 56 47 15 0 45 16 52 13 30 0 0

558 9 32 47 48 40 49 30 214 47 25 57 57 0 0
576 195 39 39 40 34 24 0 24 17 59 42 24 0 0
594 21 46 31 32 27 58 30 193 48 33 26 51 0 0

612 207 53 23 24 21 33 0 3 19 7 11 18 0 0
630 34 0 15 16 15 7 30 172 49 40 55 45 0 0
648 220 7 7 8 8 42 0 342 20 14 40 12 0 0

666 46 13 59 0 2 16 30 151 50 48 24 39 0 0
684 232 20 50 51 55 51 0 321 21 22 9 6 0 0
702 58 27 42 43 49 25 30 130 51 55 53 33 0 0

720 244 34 34 35 43 0 0 300 22 29 38 0 0 0
738 70 41 26 27 36 34 30 109 53 3 22 27 0 0
756 256 48 18 19 30 9 0 279 23 37 6 54 0 0

774 82 55 10 11 23 43 30 88 54 10 51 21 0 0
792 269 2 2 3 17 18 0 258 24 44 35 48 0 0
810 95 8 53 55 10 52 30 67 55 18 20 15 0 0



I X  4. Jupiter’s mean motion tables 431

Single
Yeai^

Jupiter
Longitude

Jup iter
Anomaly

1 30° 20 22 52 52 58 35 329° 25 1 52 28 10 0
2 60 40 45 45 45 57 10 298 50 3 44 56 20 0
3 91 1 8 38 38 55 45 268 15 5 37 24 30 0-

4 121 21 31 31 31 54 20 237 40 7 29 52 40 0
5 151 41 54 24 24 52 55 207 5 9 22 20 50 0
6 182 2 17 17 17 51 30 176 30 11 14 49 0 0

7 212 9 9 40 10 10 50 5 145 55 13 7 17 10 0
8 242 43 3 3 3 48 40 115 20 14 59 45 20 0
9 273 3 25 55 56 47 15 84 45 16 52 13 30 0

1 0 303 23 48 48 49 45 50 54 10 18 44 41 40 0
11 333 44 11 41 42 44 25 23 35 20 37 9 50 0
12 4 4 34 34 35 43 0 353 0 22 29 38 0 0

13 34 24 57 27 28 41 35 322 25 24 22 6 10 0
14 64 45 20 20 21 40 10 291 50 26 14 34 20 0
15 95 5 43 13 14 38 45 261 15 28 7 2 30 0

1(> 125 26 6 6 7 37 20 230 40 29 59 30 40 0
17 155 46 28 59 0 35 55 200 5 31 51 58 50 0
18 186 6 51 51 53 34 30 169 30 33 44 27 0 0

Houi^ Longitude Anomaly

1 0 ° 0  , 12 28 6 6 56 0° o 15 22 36 56 5
9 0 0 24 56 12 13 52 0 4 30 45' 13 52 10
3 0 0 37 24 18 20 48 0 6 46 7 50 48 15

4 0 0 49 52 24 27 45 0 9 1 30 27 44 20
5 0 1 2 20 30 34 41 0 11 16 53 4 40 25
(S 0 1 14 48 36 41 37 0 13 32 15 41 36 30

7 0 1 27 16 42 48 34 0 15 47 38 18 32 35
8 0 1 39 44 48 55 30 0 18 3 0 55 28 40
y 0 1 52 12 55 9 26 0 20 18 23 32 24 45

1 0 0 2 4 41 1 9 22 0 22 33 46 9 20 50
11 0 2 17 9 7 16 19 0 24 49 8 46 16 55
1 2 0 2 29 37 13 23 15 0 27 4 31 23 13 0

13 0 2 42 5 19 30 11 0 29 19 54 0 9 5
14 0 2 54 33 25 37 8 0 31 35 16 37 5 10
15 0 3 7 I 31 44 4 0 33 50 39 14 1 15

16 0 3 19 29 37 51 0 0 36 6 1 50 57 20
17 0 3 31 57 43 57 56 0 38 21 24 27 53 25
18 0 3 44 25 50 4 53 0 40 36 47 4 49 30

19 0 3 56 53 56 11 49 0 42 52 9 41 45 35
20 0 4 9 22 2 18 45 0 45 7 32 18 41 40
21 0 4 21 50 8 25 42 0 47 2 2 54 55 37 45

2 2 0 4 34 18 14 32 38 0 49 38 17 32 33 50
23 0 4 46 46 20 39 34 0 51 53 40 9 29 55
24 0 4 59 14 26 46 31 0 54 9 2 46 26 0



432 I X  4. Jup iter’s mean motion tables

Months
Jupiter

Loni^itude
Jup iter

Anomaly

30 2= 29 37 13 23 15 30 27° 4 31 23 13 0 0
60 4 59 14 26 46 31 0 54 9 2 46 26 0 0
90 7 28 51 40 9 46 30 81 13 34 9 39 0 0

120 9 58 28 53 33 2 0 108 18 5 32 52 0 0
150 12 28 6 6 56 17 30 135 22 36 56 5 0 0
180 14 57 43 20 19 33 0 162 27 8 19 18 0 0

210 17 27 20 33 42 48 30 189 31 39 42 31 0 0
240 19 56 57 47 6 4 0 216 36 11 5 44 0 0
270 22 26 35 0 29 19 30 243 40 42 28 57 0 0

300 24 56 12 13 52 35 0 270 45 13 52 10 0 0
330 27 25 49 27 15 50 30 297 49 45 15 23 0 0
360 29 55 26 40 39 6 0 324 i 54 16 38 36 0 0

Days Longitude Anomaly

1 0° 4 59 14 26 46 31 0° 54 9 2 46 26 0
2 0 9 58 28 53 33 <> 1 48 18 5 32 52 0
3 0 14 57 43 20 19 33 2 42 27 8 19 18 0

4 o ' 19 56 57 47 6 4 3 36 36 11 5 44 0
5 0 24 56 12 13 52 35 4 30 45 13 52 10 0
6 0 29 55 26 40 39 6 5 24 54 16 38 36 0
7 i 0 '! 34 54 41 7 ! 25 !! 37 6 !9 3 19 25 O 0
8 0 39 53 55 34 12 8 7 13 12 22 11 28 0
9 0 44 53 10 0 58 39 8 7 21 24 57 54 0

10 0 49 52 24 27 45 10 9 1 30 27 44 20 0
11 0 54 51 38 54 31 41 9 55 39 30 30 46 0
12 0 39 50 53 21 18 12 10 49 48 33 17 12 0

13 1 4 50 7 48 4 43 11 43 57 36 3 38 0
14 1 9 49 22 14 51 14 12 38 6 38 50 4 0
15 1 14 48 36 41 37 45 13 32 15 41 36 30 0

16 1 19 47 51 8 24 16 14 26 24 44 22 56 0
17 1 24 47 5 35 10 47 15 20 33 47 9 22 0
18 1 29 46 20 1 57 18 16 14 42 49 55 48 0

19 1 34 45 34 28 43 49 17 8 51 52 42 14 0
20 39 44 ' 48 1 55 30 20 18 3 0 55 1 28 40 0
21 I I * 44 44 i1 3 1 22 16 51 18- 1 57 9 ! 58 11 15 6 0

22 49 43
i"

17 49 3 22 19 51 19 I i1 1 32 0
23 1 1 54 42 32 15 49 53 20 45 28 3 !I 47 58 0
24 1 1 59 41 i 46 i 42 36 i1 24 21 39 i 37 1 ^ 34 24 0

25 0 4 41 1 9 22 55 22 33 46 9 20 50 0
26 2 9 40 15 36 9 26 23 27 55 12 7 16 0
27 2 14 39 30 2 55 57 24 22 4 14 53 42 0

28 2 19 38 44 29 42 28 25 16 13 17 40 8 0
29 2 24 37 58 56 28 59 26 10 22 20 26 34 0
30 2 29 37 13 23 15 30 27 4 31 23 13 0 0



I X  4. M ars’ mean motion tables 433

Mai-s

18-Year 
Periods

[Epoch] Position in [Mean] 
Longitude : T  3;32° 

Longitude

[Epoch] Position in 
Anomaly ; 327; 13° 

[Epoch] Position ol' Apogee ;
Anomaly

=  16;4<r

18 203° 4 20 17 34 43 30 152° 33 5 18 45 51 0
36 46 8 40 35 9 27 0 305 6 10 37 31 42 0
54 249 13 0 52 44 10 30 97 39 15 56 17 33 0

72 92 17 21 10 18 54 0 250 12 21 15 3 24 0
90 295 21 41 27 53 37 30 42 45 26 33 49 15 0

108 138 26 1 45 28 21 0 195 18 31 52 35 6 0

126 341 30 22 3 3 4 30 347 51 37 11 20 57 0
144 184 34 42 20 37 48 0 140 24 42 ;io 6 4H 0
162 27 39 2 38 12 31 30 292 57 47 48 52 39 0

180 230 43 22 55 47 15 i 0 85 30 53 ji 7 1i 38 i  30 I 0
198 73 47 43 13 21 58 30 238 3 58 26 24 21

i
216 276 52 3 30 56 42 0 30 37 3 45 10 12 0

234 ii9 J O 23 48 31 25 30 183 iO 9 3 56 3 0
252 323 0 44 6 6 9 0 335 43 14 22 41 54 0
270 166 5 4 23 40 52 30 128 16 19 41 27 45 0

238 9 9 24 41 15 36 0 280 49 25 0 i 13 i 36 ! 0
.'506 212 13 44 58 50 19 30 73 22 30 18 1 59 1 27 0
324 55 IB 5 16 25 3 0 225 55 35 37 ! 45 i 1 8 ; 0

342 258 22' 25 33 59 46 30 18 28 40 56 i 31 0
360 iOl 26 45 51 34 ! 30 0 171 1 i 46 ! 15 I  17 ' 0 ; 0
378 304 31 6 9 9 13 30 323 34 51 34 2

i 0

396 147 35 26 26 43 57 0 116 7 56 52 48 1 42 0
414 350 39 46 44 18 40 30 268 41 2 11 34 33 0
432 193 44 7 1 53 24 0 61 14 7 ;’)0 20 24 0

450 36 48 27 19 28 7 30 213 47 12 49 6 15 0
468 239 52 47 37 2 51 0 6 20 18 7 52 6 0
486 82 1 7 54 37 34 30 158 53 23 26 37 57 0

304 286 I 28 12 12 18 0 311 26 28 45 23 48 0
522 129 5 48 29 47 1 30 103 59 34 4 I 9 39 0
540 332 10 8 47 21 45 0 256 32 39 22 55 30 0

558 175 14 29 4 56 28 30 49 5 44 41 41 1 21 0
576 18 18 49 22 31 12 0 201 38 50 0 27 1 12 0
594 O O  J 23 9 40 5 55 30 354 11 55 19 13 1 3 0

1

612 64 27 29 57 40 39 0 146 45 0 37 58 1 34 i 0

630 267 31 50 15 15 22 30 299 18 5 56 44 45 i ®
648 110 36 10 32 50 6 0 91 51 11 15 I  30 36 1 0

666 313 40 30 50 24 49 30 244 j 24 16 34 16 27 0
684 156 44 51 7 59 33 0 36 57 21 53 2 18 0
702 359 49 11 25 34 16 30 189 30 27 11 48 9 0

720 202 53 31 43 9 0 0 342 3 32 30 34 0 0
738 45 57 52 0 43 43 30 134 36 37 49 19 51 0
756 249 2 12 18 18 27 0 287 9 43 8 5 42 0

774 92 6 32 35 53 10 30 79 42 48 26 51 33 0
792 295 10 52 53 27 54 0 232 15 53 45 37 24 0
810 138 15 13 11 2 37 30 24 48 59 4 23 15 0



434 I X  4. M ars’ mean motion tables

Single
Yeare

Mars
Longitude

Mars
Anomaly

1 191° 16 54 27 38 35 45 168“ 28 30 17 42 32 50
2 22 33 48 55 17 11 30 336 57 0 35 25 5 40
3 213 50 43 22 55 47 15 145 25 30 53 7 38 30

4 45 7 37 50 34 23 0 313 54 1 10 50 11 20
5 236 24 32 18 12 58 45 122 22 31 28 32 44 10
6 67 41 26 45 51 34 30 290 51 1 46 15 17 0

7 258 58 21 13 30 10 15 99 19 32 3 57 49 50
8 90 15 15 41 8 46 0 267 48 2 21 40 22 40
9 281 32 10 8 47 21 45 76 16 32 39 22 55 30

10 112 49 4 36 25 57 30 244 45 2 57 5 28 20
11 304 5 59 4 4 33 15 53 13 33 14 48 1 10
12 135 22 53 31 43 9 0 221 42 3 32 30 34 0

13 326 39 47 59 21 44 45 30 10 33 50 13 6 50
14 157 56 42 27 0 20 30 198 39 4 7 55 39 40
15 349 13 36 54 38 56 15 7 7 34 25 38 12 30

16 180 30 31 22 17 32 0 175 36 4 43 20 45 20
17 11 47 25 49 56 7 45 344 4 35 1 3 18 10
18 203 4 20 17 34 43 30 152 33 5 18 45 51 0

Houi-s Longitude Anomaly

1 0° 1 18 36 32 14 39 0° 1 9 14 10 48 22
2 0 9 37 13 4 29 18 0 2 18 28 21 36 44
3 0 3 55 49 36 43 56 0 3 27 42 32 25 7

4 0 5 14 26 8 58 35 0 4 36 56 43 13 29
5 0 6 33 2 41 13 14 0 5 46 10 54 1 52
6 0 7 51 39 13 27 53 0 6 55 25 4 50 14

7 0 9 10 15 45 42 32 0 8 4 39 15 38 36
8 0 10 28 52 17 57 11 0 9 13 53 26 26 59
9 0 1! 47 28 50 11 49 0 10 23 7 37 15 21

10 0 13 6 5 22 26 28 0 11 32 21 48 3 44
U 0 14 24 41 54 41 7 0 12 41 35 58 52 6

12 0 15 43 18 26 55 46 0 13 50 50 9 40 29

13 0 17 1 54 59 10 25 0 15 0 4 20 28 51
14 0 18 20 31 31 25 4 0 16 9 18 31 17 13
15 0 19 39 8 3 39 43 0 17 18 32 42 5 36

16 0 20 57 44 35 54 22 0 18 27 46 52 53 58
17 0 22 16 21 8 9 0 0 19 37 1 3 42 21
18 0 23 34 57 40 23 39 0 20 46 15 14 30 43

19 0 24 53 34 12 38 18 0 21 55 29 25 19 5
20 0 26 12 10 44 52 57 0 23 4 43 36 7 28
21 0 27 30 47 17 7 36 0 24 13 57 46 55 50

22 0 28 49 23 49 22 15 0 25 23 11 57 44 13
23 0 30 8 0 21 36 54 0 26 32 26 8 32 35
24 0 31 26 36 53 51 33 0 27 41 40 19 20 58



I X  4. M ars' mean motion levies 435

Months
Mars

Longitude
Mars

Anomaly

30 15° 43 18 26 55 46 30 13° 50 50 9 40 29 0
60 31 26 36 53 51 33 0 27 41 40 19 20 58 0
90 47 9 55 20 47 19 30 41 32 30 29 1 27 Q

120 62 53 13 47 43 6 0 55 23 20 38 41 56 0
150 78 36 32 14 38 52 30 69 14 10 48 22 25 0
180 94 19 50 41 34 39 0 83 5 0 58 2 54 0

210 110 3 9 8 30 25 30 96 55 51 7 43 23 0
240 125 46 27 35 26 12 0 110 46 41 17 23 52 0
270 141 29 46 2 21 58 30 124 37 31 27 4 21 0

300 157 13 4 29 17 45 0 138 28 21 36 44 50 0
330 172 56 22 56 13 31 30 152 19 11 46 25 19 0
360 188 39 41 23 9 18 0 166 10 1 56 5 48 0

Days Longitude Anomaly

1 0° 31 26 36 53 51 33 0° 27 41 40 19 20 58
2 1 2 53 13 47 43 6 0 55 23 20 38 41 56
3 1 34 19 50 41 34 39 1 23 5 0 58 2 54

4 2 5 46 27 35 26 12 1 50 46 41 17 23 52
5 2 37 13 4 29 17 45 2 18 28 21 36 44 50
6 3 8 39 41 23 9 18 2 46 10 1 56 5 48

7 3 40- 6 18 17 0 51 3 13 51 15 26 46
8 4 11 32 55 10 52 24 3 41 33 22 34 47 44
9 4 42 59 32 4 43 57 4 9 15 2 54 8 42

10 5 14 26 8 58 35 30 4 36 56 43 13 29 40
11 5 45 52 45 52 27 3 5 4 38 23 32 50 38
12 6 17 19 22 46 18 36 5 32 20 3 32 11 36

13 6 48 45 59 40 10 i 9 6 0 1 44 11 32 34
14 7 20 12 36 34 1 42 6 27 43 24 30 53 32
15 7 51 39 13 27 53 15 6 55 25 4 50 14 30

16 8 23 5 50 21 44 48 7 23 6 45 9 35 28
17 8 54 32 27 15 36 21 7 50 48 25 28 56 26
18 9 25 59 4 9 27 54 8 18 30 5 48 17 24

19 9 57 25 41 3 19 27 8 46 11 46 7 38 22
20 10 28 52 17 57 11 0 9 13 53 26 26 59 20
21 11 0 18 54 51 2 33 9 41 35 6 46 20 18

22 11 31 45 31 44 54 6 10 9 16 47 5 41 16
23 12 3 12 8 38 45 39 10 36 58 27 25 2 14 «
24 12 34 38 45 32 37 12 11 4 40 7 44 23 12

25 13 6 5 22 26 28 45 11 32 21 48 3 44 10
26 13 37 31 59 20 20 18 12 0 3 28 23 5 8
27 14 8 58 36 14 11 51 12 27 45 8 42 26 6

28 14 40 25 13 8 3 24 12 55 26 49 1 47 4
29 15 11 51 50 1 54 57 13 23 8 29 21 8 2
30 15 43 18 26 55 46 30 13 50 50 9 40 29 0



436 I X  4. Venus’ mean motion tables

Venus

18-Year
Periods

[Epxjch] Position in [Mean] 
L on^tudc : K  0:45° 

Longitude

[Epoch] Position in 
Anonnaly : 71;7° 

[Epoch] Position of Apoeee • 
Anomaly

y 16:10°

18 355° 37 25 36 20 34 30 90° 27 44 34 23 46 30
36 351 14 51 12 41 9 0 180 55 29 8 47 33 0
54 346 52 16 49 1 43 30 271 23 13 43 11 19 30

72 342 29 42 25 22 18 0 1 50 58 17 35 6 0
90 338 7 8 1 42 52 30 92 18 42 51 58 52 30

108 333 44 33 38 3 27 0 182 46 27 26 22 39 0

126 329 21 59 14 24 1 30 273 14 12 0 46 25 30
'.44 324 59 24 50 44 35 0 3 4! ZC 35 1 0 12 0

162 320 36 50 27 5 10 30 94 9 41 9 33 58 30

180 316 14 16 3 25 45 0 184 3/ 25 43 57 45 0
198 311 5i 41 39 to i9 30 275 3 iO 18 21 31 30
216 307 29 7 16 6 54 0 5 32 54 52 45 18 0

234 303 6 32 52 27 28 30 96 I 0 39 9 7 ! 9 I 4 30
252 298 43 58 28 48 3 0 186 28 24 1 32 51 0
270 294 21 24 5 8 37 30 276 56 8 35 56 37 30

288 289 58 49 41 29 12 0 7 23 53 10 20 24 0

;>06 285 Mi 15 17 49 4«i 30 97 51 37 44 44 10 30
324 281 13 40 54 10 21 0 188 19 22 19 7 57 0

342 276 51 6 30 30 55 30 278 47 6 53 31 43 30
360 272 28 32 6 51 30 0 9 14 51 27 55 30 0

378 268 5 57 43 1 2 4 30 99 42 36 2 iy 16 30

396 263 43 23 19 32 39 0 190 10 20 36 43 3 0
414 259 20 48 55 53 13 30 280 38 5 11 6 49 30
432 254 58 14 32 13 48 0 n 5 49 45 30 36 0

450 250 35 40 8 34 22 30 101 33 34 19 54 22 30
468 246 13 5 44 54 57 0 192 1 18 54 18 9 0
486 241 50 31 21 15 31 30 282 29 3 28 41 55 30

504 237 27 56 57 36 6 0 12 56 48 3 5 42 0
522 233 5 22 33 56 40 30 103 24 32 37 29 28 30
540 228 42 48 10 17 15 0 193 52 17 11 53 15 0

558 224 20 13 46 37 49 30 284 20 1 46 17 I 30
576 219 57 39 22 58 24 0 14 47 46 20 i! 40 48 0
594 215 35 4 59 18 58 30 105 15 30 55 i 4 1 34 ‘1 30

612 211 12 30 35 39 33 0 195 43 1 15 29 1 28 i 21 ;1 0
630 206 49 56 12 1 0 7 30 286 11 I 0 3 ! 52 -  1 30
648 202 27 21 48 ii 20 42 i 0 16 38 I 44 38 i 15 54 1 0

666 198 i 47 24 41 16 30 107 6 29 12 39 40 30
684 193 42 13 1 1 51 0 197 34 13 47 3 27 0
702 189 19 38 37 22 25 30 288 1 58 21 27 13 30

720 184 57 4 13 43 0 0 18 29 42 55 51 0 0
738 180 34 29 50 3 34 30 108 57 27 30 14 46 30
756 176 11 55 26 24 9 0 199 25 12 4 38 33 0

774 171 49 21 2 44 43 30 289 52 56 39 2 19 30
792 167 26 46 39 5 18 0 20 20 41 13 26 6 0
810 163 4 12 15 25 52 30 110 48 25. 47 49 52 30



I X  4. Venus' mean motion tables 437

Single
Years

Venus
Longitude

Venus
Anomaliy

i 359- 45 24 45 21 3 35 0050 1 32 28 34 39 15
2 359 30 49 30 42 17 10 90 3 4 57 9 18 30
3 359 16 14 16 3 25 45 315 4 37 25 43 57 45

4 359 1 39 1 24 34 20 180 6 9 54 18 37 0
5 358 47 3 46 45 42 55 45 7 42 22 53 16 15
6 358 32 28 32 6 51 30 270 9 14 51 27 55 30

7 358 17 53 17 28 0 5 135 10 47 20 2 34 45
8 358 3 18 2 49 8 40 0 12 19 48 37 14 0
9 357 48 42 48 10 17 15 225 13 52 17 11 53 15

10 357 34 7 33 31 25 50 90 15 24 45 46 32 30
11 357 19 32 18 52 34 25 315 16 57 14 21 11 45
12 357 4 57 4 13 43 0 180 18 29 42 55 51 0

13 356 50 21 49 34 51 35 45 20 2 11 30 30 15
!4 356 35 46 34 56 0 10 270 21 34 40 5 9 30
15 356 21 11 20 !7 8 45 135 23 7 8 39 48 45

16 356 6 36 5 38 17 20 0 24 39 37 14 28 0
17 355 52 0 50 59 25 55 225 26 12 5 49 7 15
18 355 37 25 36 20 34 30 90 27 44 34 23 46 30

Hours Longitude Anomaly

1 0° 2 27 50 43 3 1 0° 1 32 28 34 42 58
o 0 4 55 41 26 6 o 0 3 4 57 9 25 57
3 0 7 23 32 9 y 3 0 4 37 25 44 8 56

4 0 9 51 22 52 12 5 0 6 9 54 18 51 54
3 0 12 19 13 35 15 6 0 7 42 22 53 34 53
6 0 14 47 4 18 18 7 0 9 14 51 28 17 52

7 0 17 14 55 1 21 9 0 10 47 20 3 0 50
8 0 19 42 45 44 24 10 0 12 19 48 37 43 49
9 0 22 10 36 27 27 11 0 13 52 17 12 26 48

10 0 24 38 27 10 30 12 0 15 24 45 47 9 46
11 0 27 6 17 53 33 14 0 16 57 14 21 52 45
12 0 29 34 8 36 36 15 0 18 29 42 56 35 44

13 0 32 1 59 19 39 16 0 20 2 11 31 18 42
14 0 34 29 50 2 42 18 0 21 34 40 6 I 41
15 0 36 57 40 45 45 19 0 23 / 8 40 44 40

16 0 39 25 31 28 48 20 0 24 1 39 37 15 27 38
17 0 41 53 22 11 51 21 0 26 12 5 50 10 37
18 0 44 21 12 54 54 23 0 27 44 34 24 53 36

19 0 46 49 3 37 57 24 0 29 17 2 59 36 34
20 0 49 16 54 21 0 25 0 30 49 31 34 19 33
21 0 51 44 45 4 3 27 0 32 22 0 9 2 32

22 0 54 12 35 47 6 28 0 33 54 28 43 45 30
23 0 56 40 26 30 9 29 0 35 26 57 18 28 29
24 0 59 8 17 13 12 31 0 36 59 25 53 11 28



438 I X  4. Verms’ mean motion tables

Months
Venus

Longitude
Venus

Anomaly

30 29° 34 8 36 36 15 30 18° 29 42 56 35 44 0
60 59 8 17 13 12 31 0 36 59 25 53 11 28 0
90 88 42 25 49 48 46 30 55 29 8 49 47 12 0

120 118 16 34 26 25 2 0 73 58 51 40 22 56 0
150 147 50 43 3 1 17 30 92 28 34 42 58 40 0
180 177 24 51 39 37 33 0 110 58 17 39 34 24 0

210 206 59 0 16 13 48 30 129 28 0 36 10 8 0
240 236 33 8 52 50 4 0 147 57 43 32 45 52 0
270 266 7 17 29 26 19 30 166 27 26 29 21 36 0

300 295 41 26 6 2 35 0 184 57 9 25 57 20 0
330 325 15 34 42 38 50 30 203 26 52 22 33 4 0
3(iO 354 49 43 19 15 6 0 221 56 35 19 8 48 0

Days Loni^iiude Anonnaly

I 0» 59 8 17 13 12 31 0° 36 59 25 53 11 28
•> 1 58 16 34 26 25 2 1 13 58 51 46 22 56
3 2 57 24 51 39 37 33 I 50 58 17 39 34 24

4 3 36 33 8 52 50 4 2 27 57 43 32 45 52
5 4 55 41 26 6 2 35 3 4 57 9 25 57 20
6 5 54 49 43 19 15 6 3 41 56 35 19 8 48

7 6 53 58 0 32 27 37 4 18 56 1 12 20 16
8 7 53 6 17 45 40 8 4 55 55 27 5 31 44
y 8 52 14 34 58 52 39 5 32 54 52 58 43 12

10 9 51 22 52 12 5 10 6 9 54 18 51 54 40
11 10 50 31 9 25 17 41 <) 46 53 44 45 6 , 8
12 11 49 39 26 38 30 12 7 23 53 10 38 17 36

13 12 48 47 43 51 42 43 8 0 52 36 31 29 4
14 13 47 56 1 4 55 14 8 37 52 2 24 40 32
15 14 47 4 18 18 7 45 9 14 51 28 17 52 0

16 15 46 12 35 31 20 16 9 51 50 54 11 3 28
17 16 45 20 52 44 32 47 10 28 50 20 4 14 56
18 17 44 29 9 57 45 18 11 5 49 45 57 26 24

19 18 43 37 27 10 57 49 11 42 49 11 50 37 52
20 19 42 45 44 24 10 20 12 19 48 37 43 49 20
21 20 41 54 1 37 22 51 12 56 48 3 37 0 48

22 21 41 2 18 50 35 22 13 33 47 29 30 12 16
23 22 40 10 36 3 47 53 14 10 46 55 23 23 44
24 23 39 18 53 17 0 24 14 47 46 21 16 35 12

25 24 38 27 10 30 12 55 15 24 45 47 9 46 40
26 25 37 35 27 43 25 26 16 1 45 13 2 58 8
27 26 36 43 44 56 37 57 16 38 44 38 56 9 36

28 27 35 52 2 9 50 28 17 15 44 4 49 21 4
29 28 35 0 19 23 2 59 17 52 43 30 42 32 32
30 29 34 8 36 36 15 30 18 29 42 56 35 44 0



I X  4. Mercury’s mean rrmtion tables 439

Mercury

18-Year
Periods

[Epoch] Position in [Mean] 
Longitude : >€ 0;45° 

Longitude

[Epoch] Position in 
Anomaly: 21;55° 

[Epoch] Position of Apogee ; = 
Anomaly

S: l ;10°

18 355° 37 25 36 20 34 30 251° 0 45 45 53 45 0
36 351 14 51 12 41 9 0 142 1 31 31 47 30 0
54 346 52 16 49 I 43 30 33 2 17 17 41 15 0

72 342 29 42 25 22 18 0 284 3 3 3 35 0 0
90 338 7 8 1 42 52 30 175 3 48 49 28 45 0

108 333 44 33 38 3 27 0 66 4 34 35 22 30 0

126 . 329 21 59 14 24 1 30 317 5 20 21 16 15 0
144 324 59 24 50 44 36 0 208 6 6 7 10 0 0
162 320 36 50 27 5 10 30 99 6 51 53 3 45 0

ISO 316 14 16 3 25 45 0 350 7 37 38 57 30 0
198 311 51 41 39 46 19 30 241 8 23 24 51 15 0
216 307 29 7 16 6 54 0 132 9 9 10 45 0 0

234 303 6 32 52 27 28 30 23 9 54 56 38 45 0
252 298 43 58 28 48 3 0 274 10 40 42 32 30 0
270 294 21 24 5 8 37 30 165 11 26 28 26 15 0

288 289 58 49 41 29 12 0 56 12 12 14 20 0 0
306 285 36 15 17 49 46 30 307 12 58 0 13 45 0
324 281 13 40 54 10 21 0 198 13 43 46 7 30 0

342 276 51 ,6 30 30 55 30 89 14 29 32 1 15 0
360 272 28 32 6 51 30 0 340 15 15 i t 55 0 0
378 268 5 57 43 12 4 30 231 16 1 3 48 45 0

396 263 43 23 19 32 39 0 122 16 46 49 42 30 0
414 259 20 48 55 53 13 30 13 17 32 35 36 15 0
432 254 58 14 32 13 48 0 264 18 18 21 30 0 0

430 250 35 40 8 34 <>2 30 155 19 4 7 23 45 0
468 246 13 5 44 54 57 0 46 19 49 53 17 30 0
486 241 50 31 21 15 31 30 297 20 35 39 11 15 0

504 237 27 56 57 36 h 0 188 21 21 25 5 0 0
522 233 5 22 33 56 40 30 79 22 7 10 58 45 0
540 228 42 48 10 17 15 0 330 22 52 56 52 30 0

558 224 20 13 46 37 49 30 221 23 38 42 46 15 .0
576 219 57 39 22 58 24 0 112 24 24 28 40 0 0
594 215 35 4 59 18 58 30 3 25 10 14 33 45 0

612 211 12 30 35 39 33 0 254 25 56 0 27 30 0
630 206 49 56 12 0 7 30 145 26 41 46 21 15 0
648 202 27 21 48 20 42 0 36 27 27 32 15 0 0

666 198 4 47 24 41 16 30 287 28 13 18 8 45 0
684 193 42 13 1 I 51 0 178 28 59 4 2 30 0
702 189 19 38 37 22 25 30 69 29 44 49 56 15 0

720 184 57 4 13 43 0 0 320 30 30 35 50 0 0
738 180 34 29 50 3 34 30 211 31 16 21 43 45 0
756 176 11 55 26 24 9 0 102 32 2 7 37 30 0

774 171 49 21 2 44 43 30 353 32 47 53 31 15 0
792 167 26 46 39 5 18 0 244 33 33 39 25 0 0
810 163 4 12 15 25 52 30 135 34 19 25 18 45 0
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Sin^e
Years

Mercury
Longitude

Mercury
Anomaly

1 359^ 45 ‘.;4 45 21 8 35 53° 56 42 32 32 59 10
2 359 30 49 30 42 17 10 107 53 25 5 5 58 20
3 359 16 14 16 3 25 45 161 50 7 37 38 57 30

4 359 1 39 1 24 34 20 215 46 50 10 11 56 40
5 358 47 3 46 45 42 55 269 43 32 42 44 55 50
6 358 32 28 32 6 51 30 323 40 15 15 17 55 0

7 358 17 53 17 28 0 5 17 36 57 47 50 54 10'
8 358 3 18 2 49 8 40 71 33 40 20 23 53 20
9 357 48 42 48 10 17 15 125 30 22 52 56 52 30

10 357 34 7 33 31 25 50 179 27 5 25 29 51 40
li 357 19 32 18 52 34 25 233 23 47 58 2 50 50
12 357 4 57 4 13 43 0 287 20 30 30 35 50 0

13 356 50 21 49 34 51 35 341 17 13 3 8 49 10
14 356 35 46 34 56 0 10 35 13 55 35 41 48 20
15 356 21 11 20 17 8 45 89 10 38 8 14 47 30

16 356 6 36 5 38 17 20 143 7 20 40 47 46 40
17 355 52 0 50 59 25 55 197 4 3 13 20 45 50
18 355 37 25 36 20 34 30 251 0 45 45 53 45 0

Houi-s Longitude Anomaly

1 0° 2 27 50 43 3 1 0° 7 46 0 17 28 39
2 0 4 55 41 26 6 9 0 15 32 0 34 57 59
3 0 7 23 32 9 9 3 0 23 18 0 52 26 58

4 0 9 51 22 52 12 5 0 31 4 1 y 55 58
5 0 12 19 13 35 15 6 0 38 50 1 27 24 57
6 0 14 47 4 18 18 7 0 46 36 1 44 53 57

7 0 17 14 55 1 21 9 0 54 22 2 2 22 57
8 0 19 42 45 44 24 10 1 2 8 2 19 51 56
9 0 22 10 36 27 27 11 1 9 54 2 37 20 56

10 0 24 38 27 10 30 12 1 17 40 2 54 49 55
11 0 27 6 17 53 33 14 I 25 26 3 12 18 55
12 0 29 34 8 36 36 15 1 33 12 3 29 47 55

13 0 32 1 59 19 39 16 1 40 58 3 47 16 54
14 0 34 29 50 2 42 18 1 48 44 4 ' 4 45 54
15 0 36 57 40 45 45 19 1 56 30 4 i 22 14 53

16 0 39 25 31 28 48 20 2 4 16 4 39 ^ 43 ! 53
17 0 41 53 22 11 51 21 2 12 2 4 57 I ^ 2 52
18 0 44 21 12 54 54 23 2 19 48 5 14 11 41 52

19 0 46 49 3 37 57 24 2 27 34 5 32 10 52
20 0 49 16 54 21 0 25 2 35 20 5 49 39 51
21 0 51 44 45 4 3 27 2 43 6 6 7 8 51

22 0 54 12 35 47 6 28 2 50 52 6 24 37 50
23 0 56 40 26 30 9 29 2 58 38 6 42 6 50
24 0 59 8 •17 13 12 31 3 6 24 6 59 35 50
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Months
Mercury

Longitude
Mercury
Anomaly

30 29® 34 8 36 36 15 30 93° 12 3 29 47 55 0
60 59 8 17 13 12 31 0 186 24 6 59 35 50 0
90 88 42 25 49 48 46 30 279 36 10 29 23 45 0

120 118 16 34 26 25 2 0 12 46 13 59 11 40 0
150 147 50 43 3 1 17 30 106 0 17 28 59 35 0
180 177 24 51 39 37 33 0 199 12 20 58 47 30 0

210 206 59 0 16 13 48 30 292 24 24 28 35 25 0
240 236 33 8 52 50 4 0 25 36 27 58 23 20 0
270 266 7 17 29 26 19 30 118 48 31 28 11 15 0

300 295 41 26 6 2 35 0 212 0 34 57 59 10 0
330 325 15 34 42 38 50 30 305 12 38 27 47 5 0
360 354 49 43 19 15 6 0 38 24 41 57 35 0 0

Days Longitude Anomaly

1 0° 59 8 17 13 12 31 3° 6 24 6 59 35 50
2 1 58 16 34 26 25 2 6 12 48 13 59 11 40
3 2 57 24 51 39 37 33 9 19 12 20 58 47 30

4 3 56 33 8 52 50 4 12 25 36 27 58 23 20
5 4 55 41 26 6 2 35 15 32 0 34 57 59 10
6 5 54 49 43 19 15 6 18 38 24 41 57 35 0

7 6 53 58 0 32 27 37 21 44 48 48 57 10 50
8 7 53 6 17 45 40 3 24 51 12 55 56 46 40
9 8 52 14 34 58 52 39 27 57 37 2 56 22 30

10 9 51 22 52 12 5 10 31 4 1 9 55 58 20
11 10 50 31 9 25 17 41 34 10 25 16 55 34 10
12 11 49 39 26 38 30 12 37 16 49 23 55 10 0

13 12 48 47 43 51 42 43 40 23 13 30 54 45 50
14 13 47 56 1 4 55 14 43 29 37 37 54 21 40
15 14 47 4 18 18 7 45 46 36 1 44 53 57 30

16 15 46 12 35 31 20 16 49 42 25 51 53 33 20
17 16 45 20 52 44 32 47 52 48 49 58 53 9 10
18 17 44 29 9 57 45 18 55 55 14 5 52 45 0

19 18 43 37 27 10 57 49 59 I 38 12 52 20 50
20 19 42 45 44 24 10 20 62 8 2 19 51 56 40
21 20 41 54 I 37 22 51 65 14 26 26 51 32 30

22 21 41 2 18 50 35 22 68 20 50 33 51 8 20
23 22 40 10 36 3 47 53 71 27 14 40 50 44 10
24 23 39 18 53 17 0 24 74 33 38 47 50 20 I 0
25 24 38 27 10 30 12 55 77 40 2 54 49 ! 55 50
26 25 37 35 27 43 25 26 80 46 27 1 49 31 40
27 26 36 43 44 56 37 57 83 52 51 8 49 7 30

28 27 35 52 2 9 50 28 86 59 15 15 48 43 20
29 28 35 0 19 23 2 59 90 5 39 22 48 19 10
30 29 34 8 36 36 15 30 93 12 3 29 47 55 , 0



There are, as we said,^* two types of motion which are simplest and at the 
same time sufficient for our purpose, [namely] that produced by circles 
eccentric to [the centre of] the ecliptic, and that produced by circles concentric 
with the ecliptic but carrying epicycles around. There are likewise two apparent 
anomalies for each planet: [1] that anomaly which varies according to its 
position in the ecliptic, and [2] that which varies according to its position 
relative to the sun.

For [2] we find, from a series of difierent [sun-planet] configurations observed 
round about the same part of the ecliptic,^® that in the case of the five planets^^ 
the time from greatest sp>eed to m ean is always greater than the time from mean 
speed to least. Now this feature cannot be a consequence of the eccentric 
hypothesis, in which exactly the opposite occurs, since the greatest speed takes 

H 251 place at the perigee in the eccentric hypothesis, while the arc from the perigee to 
the point of m ean speed is less than the arc from the latter to the apogee in both 
[eccentric and epicyciic] hypotheses. But it can occur as a consequence ol the 
epicyclic hypothesis, however only when the greatest speed occurs, not at the 
perigee, as in the case of the moon, but a t the apogee; that is to say, when the 
planet, starting from the apogee, moves, not as the moon does, in advance [with 
respect to the motion] of the universe, but instead towards the rear. Hence we 
use the epicyclic hypothesis to represent this kind of anomaly.

But for [ I ], the anomaly which varies according to the position in the ccliptic, 
we find from [observations ol] the arcs of the ecliptic between [successive] 
phases or [sun-planet] configurations of the same k ind’® that the opp>osite is 
true: the time from least speed to m ean is always greater than the time i'rom 
mean speed to greatest. This feature can indeed be a consequence ol'either of 
the two hypotheses (in the way we described in our discussion of the equivalence 
of the hypotheses at the beginning of our treatise on the sun [III 3]). But it is 
more appropriate to the eccentric hypothesis,^" and that is the hypothesis which 
we actually use to represent this kind of anom aly, since, moreover, the other 
anom aly was found to be p>eculiar, so to speak, to the epicyclic h\ pothesis.

Now from prolonged application and comparison of observations of 
individual [planetary] positions with the results com puted from the combin- 

H252 ation of i)oth [the above] hypotheses, we lind that it will not work simply to 
assume^' [as one has hitherto] that the plane in which we draw  the eccentric

'M il 3 p. 141.
This eliminates the ell’cct ol' the ecliptic anomaly. Examples would be observations ol' Mars at 

opposition, station and (by interpolation) conjunction all near the same point in the ecliptic.
*' Excising Ka'i belbreEjr'iTMV Jievre TtXavtoneviov at H250.17. (Ka'i was apparently omitted in the 

text translated by al-Hajjaj). One would have to translate Heiberg’s text 'in the case of the five 
planets too’ (as well as the sun and moon). But the situation is precisely the opposite for the sun and 
moon (see e.g. I l l  4 p. 153). Perhaps the whole phrase ica't . . . itA.ava)neva)v is an ancient 
interpolation.

**^e Ptolemy’s discussion of this point at III 3 p. 144-5. However, as Neugebauer points out 
{HAMA  149-50) it is perfectly possible for an eccentric model to represent the planetary motions, 
provided the apsidal line is allowed to move, and precisely this kind of eccentric model is described 
at X II 1, though even there Ptolemy restricts its applicability to the outer planets.

'*This eliminates the effect of the synodic anomaly. Examples would be observations of 
oppositions of Mars in different parts of the ecliptic (as in X 7).

*“Cf. I l l  4 p. 153, where Ptolemy prefers it on the ground that it is ‘simpler’.
Literally ‘that the assumption that . . . cannot progress so simply’.

442 I X  5. Representation o f  planetary anomalies by eccentre and epicycle



circles is stationary, and that the straight line through both centres (the centre of 
the [p lane t’s] eccentre and the centre o f the ecliptic), which defines apogee and 
perigee, remains a t a constant distance from the solstitial and  equinoctial 
points; nor [to assume] that the eccentre on which the epicycle centre is carried 
is identical w ith the eccentre with respect to the centre of which the epicycle 
makes its uniform revolution towards the rear, cutting  off equal angles in equal 
times a t [ that centre]. Rather, we find that the apogee of the eccentre p>erformsa 
slow m otion towards the rear with respect to the solstices, which is uniform 
about the centre of the ecliptic, and comes to about the same for each planet as 
the am ount determined for the sphere of the fixed stars, i.e. 1° in 100 years (at 
least, as far as can be estimated on the basis of available evidence). We find, too, 
that the epicycle centre is carried on an eccentre which, though equal in size to 
the eccentre which produces the anomaly, is not described about the same 
centre as the latter. For all planets except M ercury the centre [of the actual 
deferent] is the point bisecting the line joining the centre of the eccentre 
producm g the anomaly to the centre ol trie ecliptic. For M ercury alone, [the 
centre of the deferent] is a point whose distance from the centre of the circle 
about which it rotates is equal to the distance of the latter point towards the 
apogee from the centre of the eccentre producing the anom aly, which in turn is 
the same distance towards the apogee from the point representing the observ'er; 
for also, in the case of this planet alone, we find that, ju st as for the moon, the H253 
eccentre is rotated by [the movement ol] the above-m entioned centre in the 
opposite sense to the epicycle, [i.e.] in the advance direction,'one rotation per 
year. [This must be so] because the planet itself appears twice in the perigee in 
the course of one rev^olution, just as the moon appears twice in the p>erigee in one 
[svnodicl month.
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6. I On the type oj and difference between the hypotheses]

O ne may more easily grasp the type of the hypotheses whicli we infer on the 
basis of the preceding [phenomena] from the following description.

First for that of the [four planets] other [than  M ercury], imagine [Fig. 9.1] 
the eccentre ABG about centre D, with ADG as the diam eter through D and the 
centre of the ecliptic: on this let E be taken as the centre of the ecliptic, i.e. the 
viewpoint of the observer, making A the apogee and G the perigee. Let DE be 
bisected at Z, and with centre Z and radius DA draw  a circle H 0 K , which 
must, clearly, be equal to ABG. Then on centre 0  draw  the epicycle LM, and H254 
join L 0 M D .

First, then, although we assume that the plane of the eccentric circles is 
inclined to the plane of the ecliptic, and also tha t the plane of the epicycle is 
inclined to the plane of the eccentres, to account for the latitudinal motion of 
the planets, in accordance with w hat we shall dem onstrate concerning that 
topic, nevertheless, for the motions in longitude, for the sake of convenience, let 
us imagine that all [those planes] lie in a single [plane], that of the ecliptic, since 
there will be no noticeable longitudinal difl'erence, not at least when the 
inclinations are as sm all^s those which will be brought to light for each of the
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K
Fig. 9.1

planets. Next, we say that the whole plane [of the eccentre] moves uniformly 
about centre E towards the rear [i.e. in the order] of the signs, shifting the 
position of apogee and perigee 1° in 100 years, and that diam eter L 0 M  of the 
epicycle rotates uniformly about centre D, again towards the rear [i.e. in the 

H255 order] of the signs, with a speed corresponding to the p lanet’s return in 
longitude, and that it carries with it points L a n d  M  of the epicycle, and centre©  
of the epicycle (which always moves on the eccentre H 0 K ), and also carries 
with it the planet; the planet, for its part, moves with uniform motion on the 
epicycle LM  and performs its return always with respect to that diam eter [of the 
epicycle] which points towards centre D, with a speed corresponding to the 
mean period of the synodic anomaly, and [a sense of rotation] such that its 
motion a t the apogee L takes place towards the rear.

We can visualise the pjeculiar features of the hypothesis for M ercury as 
follows. Let [Fig. 9.2] the eccentre producing the anom aly be ABC about centre 
D, and let the diam eter through D and centre E of the ecliptic be ADEG, 
[passing] through the apogee at A. O n AG take DZ towards the apogee A, equal 
to DE. Then everything else remains the same, nam ely the whole plane, 
[revolving] about centre E, shifts the apogee towards the rear by the same 
am ount as for the other planets, the epicycle is revolved unilbrmly about centre 
D towards the rear, as [here] by the line DB, and furtherm ore the planet moves 
on the epicycle in the same way as the others. But in this case the centre of the 
other eccentre, which is, again, equal in size to the first eccentre, and on which 

H256 the epicycle centre is always located, is carried around point Z in the opposite 
sense to the motion of the epicycle, nam ely in advance [i.e. in the reverse order] 
of the signs, but uniformly and with the same speed as the epicycle, as [here] by 
the line Z H 0 . Thus in one year each of the lines DB and Z H 0  performs one
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Fig. 9.2

return with respect to a [given] point of the ecliptic, but, with respect to each 
other, obviously, two returns. And [the centre of that eccentre] will always be at 
a constant distance from point Z. and that distance too will be equal to both ED 
and DZ (as [here] ZH). Thus the small circle described by its motion in 
advance, with centre Z and radius ZH, always has on its boundary the point D 
(the centre of the first, fixed eccentre) too; and the moving eccentre, at any 
given moment, can be described with centre H and radius H 0  equal to DA (as 
here 0 K ) ,  the epicycle always having its centre on it (as here at point K).

VVe shall get an  even clearer graspof these hypotheses from thedemonstrations 
we shall make [in determining] the parameters for each planet individually. In 
those demonstrations will also frequently become clear, [at least] in outline, the 
motives which somehow led us to adopt these hypotheses.

However, one must make the preliminary point that the longitudinal p>eriods 
do not bring the planet back to the same position both w'ith respject to a jx)int on 
the ecliptic and [simultaneously] with respect to the apogee or perigee of the 
eccentre; this is due to the shift in position which we assign to the latter. Hence 
the mean motions in longitude which we tabulated above represent, not the 
returns [of the planets] defined with respect to the apogees of the eccentres, but 
the returns defined with respect to the solstitial and equinoctial p>oints, agreeing 
with the length of the year as we have determ ined it."*̂

Now we must prove first that from these hypotheses too it follows that, for 
equal distances of the planet in m ean longitudinal motion on opposite sides of 
apogee or perigee, the equation of ecliptic anom aly on one side [of apogee or

In other words, the mean motions tabulated by Ptolemy are tropical, not sidereal mean motions, 
and since the apogees are, by his deluiition, sidereally fixed, a  return in longitude (to the same point 
in the ecliptic) must differ slightly from a return to the apogee.

H257
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H258

perigcej is equal to that on the other side, and that the greatest elongation on 
the epicycle Crom the mean position [on one side is equal to that] in the same 
direction [on the other s id e ]/‘

Let [Fig. 9.3] the eccentric circle on which the epicycle centre movies be 
ABGD on centre E, with diam eter AEG, on which Z is taken as the centre ol’the 
ecliptic, and H as the centre of the eccentre producing the anom aly, i.e. the 
point about which we say the unilbrm motion ol'the epicycle takes place. Draw 
B H 0 and D H K  at equal distances from apogee A (so that Z AHB =  Z AHD), 
draw on points B and D epicycles ol'equal size, and join BZ and DZ, From Z. 
the obser\'cr, draw ZL and ZM as tangents to the [two] epicycles in the same 
direction [i.e. both towards the perigee j.

G
Fig. 9.3

I say [1] that the angles of the equation of ecliptic anomalv 
Z Z B H = Z H D Z

[2] similarly, that the greatest elongations on the epicvcle 
Z B Z L  =  Z D Z M .

(For, [if these statements are true], the am ounts of the greatest elongations from 
the mean [position] resulting from the com bination [of the hypotheses] will also 
be equal [on opposite sides of the apsides])."*^
[Proof:] D rop perpendiculars BL and DM  from B and D on to ZL and ZM , and 
perpendiculars EN and EX  from E on to DK. and B0.

By ’in the same direction’ is meant 'both towards apogee' or ‘both towards perigee'. This is 
explained by Fig. 9.3. Ptolemy is carry ingout the proof of symmetry analogous to that performed 
for the models of the sun and moon (III 3 pp. 151-3).

Z BZL etc. are the true maximum elongations (as seen f rom the earth). In what follows Ptolemy 
is going to compare the mean maximum elongations, and it is es.sential io his proof that these too be 
symmetrical about the line of the apsides. Since the latter differ from the angles BZLctc. by an angle 
equal to the equation of centre, or Z ZBH etc., the symmetry is guaranteed bv the equations [ I ] and 
[2].



Then, since Z X H E  =  Z N H E « 
and the angles a t N and X  are right
and EH  is common to the equiangular triangles [NH E, X H E],

N H  =  X H
and perpendicular EN =  perpendicular EX.

Therefore lines B© and D K  are equidistant from centre E.
Therefore they are equal to one another/®
and their halves are equal to one another [i.e. BX =  DN].

Therefore, by subtraction [ol X H  from BX and N H  from DN],
BH =  DH.

But HZ is common [to triangles BHZ, DHZ] 
a n d Z  BHZ =  Z DHZ^'.

Therefore base BZ =  base DZ 
a n d Z H B Z  =  Z HDZ.
But also BL =  DM  (radii of the epicycle), 

and the angles at L and M  are right.
•• Z BZL =  Z DZM .

Q.E.D.
Again, to represent the hypothesis for Mercur\% let [Fig. 9.4] ABG be the 

diam eter through the centres and apogee of the [eccentric] circles, and let A be 
taken as the centre of the ecliptic. B as the centre of the eccentre producing the 
anomaly, and G as the point about which rotates the centre of the eccentre 
carrying the epicycle. Draw, again on both sides [of the apogee], lines BD and 
BE, representing the uniform motion of the epicycle towards the rear, and lines
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H259

n
Fig. 9.4

Because thev are vertically opposite the equal angles AHB and AHD.
«  Euclid III 14.

Excising ̂ 1 urto xaq laaq nXeupdq at H259.4-5. Heiberg emended to 6n6 tfflv loojv nXeupwv 
(the normal expression). It would mean ‘the angles enclosed by the equal sides', and was presumably 
interpolated to make explicit the condition of Euclid 14, ‘If two triangles have two sides equal to two  ̂
sides, and have the angles enclosed by the equal straight lines equal, they will also have the base 
equal to the base'. The reason for the equality of the angles is that they are the supplements of the 
equal angles AHB and AHD.-



GZ and G H  representing the revolution of the eccentre in advance with a sp>eed 
equal [to the epicycle’s]. (So it is clear that the angles a t G and B must be equal, 

H260 and BD must be parallel to GZ, and BE to GH). O n GZ and G H  take the 
centres of the [moving] eccentres -  let them  be 0  and K  -  and let the eccentres 
drawn on those centres (on which the epicycles are located), pass through points 
D and E. O n points D and E draw  epicycles (again equal), jo in  AD and AE, and 
draw AL and AM tangent to the epicycles on the same side [of the epicycles].

Then we must prove that in this situation too the angles of the equation^® of 
ecliptic anomaly

Z ADB =  Z AEB, 
and that the angles of greatest elongation on the epicycle 

Z D A L  =  Z E A M .
[Proof:] Jo in  B 0, BK, 0 D  and KE, 

and drop perpendiculars GN and GX from G on to BD and BE,
perpendiculars DZ and EH  from D and E on to GZ and GH, 

and perpendiculars DL and EM  from D and E on to .\L  and AM. 
Then, since Z GBN =  Z GBX [by hypothesis]

H261 and the angles at N and X are right
cuid line GB is common [to triangles GBN, GBX],

GN =  GX 
i.e. DZ =  EH.^®

And  also 0 D  =  KE^" 
and the angles at Z and H are right.

So Z D 0 Z  =  Z EKH.
And because [in triangles G 0B , GKB]

©G =  GK (by hypothesis) 
and GB is common 

and Z 0G B  =  Z KGB, 
hence Z G 0B  =  Z GKB.

Therefore, by subtraction, Z B 0D  =  Z BKE,^‘ 
and base BD =  base BE.^- 

But again [in triangles BAD, BAE]
BA is common 

and Z DBA =  Z EBA [by hypothesis].
So base .AD =  base AE 
and Z .ADB =  Z .AEB.

By the same reasoning [as before]
since DL =  EM  [epicycle radii] 

and the angles at L and M are right,
Z DAL =  Z EAM.

Q.E.D.
Reading xoC itapd tf |v  i^(p5iaKiiv dv<»)naX.'iav dtatpopou at H260.8. Heiberg, following the 

Greek mss., omits the last word,’which was restored by Halma (followed by Manitius), apparently 
without authority. It was in fact read by Is.

** UZDN and GHEX are parallelograms.
^  .^though one can see that this must be so by symmetry, the proof is quite intricate. For the radii 

of the deferent in its two positions are not ©D and KE, but KD and 0 E . Cf. Manitius p. 435.
I'J. B0D =  180® -  (Z D 0 Z  +  Z GOB). Z BKE =  180° -  (Z EK H  +  Z GKB).

In the congruent triangles B0D, BKE.
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7. {Demonstration o f [the position of\ the apogee o f Mercury and o f its displacement}^^

After establishing trie above theorv-, we determined, first, in what part of the 
ecliptic M ercury’s apogee lies, by the following method. H262

We sought out observations of greatest elongations in which the distance [of 
M ercury] as moming-star from the mean longitude of the sun (i.e. from the 
mean longitude of the planet) is equal to its distance as evening-star. For once 
we had found such a situation, it necessarily follows from our [above] 
demonstrations that the point on the ecliptic halfway between the two positions 
[of M ercury as m om ing-star and evening-star] occupies the ajx)gee of the 
eccentre.

The observations which we used for this purpose are few in number, because 
precisely such combinations [of planet and sun positions] rarely occur: 
nevertheless they are sufficient to exhibit the desired result. The more recent of 
them are the following.

[1] In the sixteenth year of H adrian, Phamenoth [VTI] 16/17 in the 
Egyptian calendar [132 Feb. 2 '3], in the evening, we observed Mercury, by 
means of the astrolabe instrument, at its greatest distance from the mean 
longitude of the sun. Also, from a sighting with respect to the bright star in the 
Hyades, it was seen then to occupy a longitude of K  1°. At the time in question 
the sun’s mean longitude was ^  9i°. So the greatest elongation from the mean 
as evening-star comes out as 2U °.'’̂

[2] And, in the eighteenth year of Hadrian, Epiphi [XI] 18/19 in the 
Eg\’ptian calendar [134 June 3/4], at dawn, \Iercur\- [was observed] at greatest 
elongation, appearing very small and dim: from a sighting with respect to the H263 
bright star in the Hyades it was seen to occupy B 185°.^^ Now at that time the 
mean sun was in I I  10°. Here too, then, the greatest elongation from the mean
as morning-star was 21 i°, equal [to the elongation in [1]].

So, since the mean position of the planet was ̂  9i° at one of the observations, 
and n  10° at the other, and the jxjint of the ecliptic halfway between these 
occupies T  9§°, the diam eter through the apogee must lie in that position at 
that time.

[3] Again, in the first year of Antoninus, Epiphi [XI] 20/21 in the Egyptian 
calendar [138 June 4/5], in the evening, we observed Mercury' by means of the 
astrolabe at its greatest distance from the sun's mean longitude. From a sighting

See HAMA  159-61, Pedersen 309-312. \ n  acute critique of the method employed by Ptolemy 
for determining the apsidal line of the inner planets was made by Sawyer, ‘Ptolemy's 
Determination of the Apsidal Line for Venus’. He shows that mere equality of mean maximum 
morning and evening elongations is an insufficient criterion for positing symmetry to the apsidal 
line, although the observations Ptolemy actually chose are in fact [grosso modo) symmetric. For other 
criticisms see Wilson, 'Inner Planets’, 225 ff.

*■* The star in question is a  T au, which has in the catalogue (X X III14) a longitude of 8 12!°. In 
order to find the result he does, Ptolemy should have observed on the instrument a  longitudinal 
dilTerence of 715'’, which is so large as to cast doubt on the validity of the observation. But, by using 
the same star as reference-point in both observations [ I ] and [2], Ptolemy may have thought that he 
was minimizing any error resulting from faulty determination of the star’s ccliptic position.

”  I.e. on this occasion the observ’ed longitudinal difference was only (sec n.54).



a t that m oment with respect to the star on the heart of Leo it was seen to occupy 
23 7®.̂ * But a t the time in question the m ean sun was in I I  10i°. Therefore the 
greatest elongation [of M ercury] as evening-star comes out as 26i®.

[4] Similarly, in the fourth year of Antoninus, Pham enoth [VII] 18/19 in the 
Egyptian calendar [141 Feb. 1/2], a t daw n, [M ercury was observed], again, at 
greatest elongation; from a sighting with respect to the star called Antares it was 
seen to occupy 13^°,^’ while the m ean sun was in ^  10®. Here too, then, the 
greatest elongation from the m ean as m orning-star was 26i®, equal [to the 
elongation in [3]].

So, since the m ean position of the planet was El 10 5° a t one of the 
observations and ^  1 0 ® a t the other, and the point of the ecliptic halfway 
between them occupies ^  lOi®, the diam eter through the apogee must lie in 
that position at that time.

From these observations, then, we find that the apogee falls at about 10° of 
Aries o r Libra, whereas from the ancient observations m ade near the greatest 
elongations we find it at about 6® of the same signs, as can be calculated from the 
following kind [of data].

[5] In the 23rd year in Dionysius’ calendar, H ydron 21,^“ at dawn, 
Stilbon'’® was 3 moons to the north of the brightest star in the tall of Capricorn. 
At that time the star in question had a position, according to [the coordinate 
system defined by] our origin, nam ely that beginning with the solstitial or 
equinoctial points, of 10* 22̂ ®.*’“ M ercury, obviously, had the same longitude,

H265 and®* the m ean sun was in ^  18i®: for that mom ent was in the 486th 
year from Nabonassar, C hoiak[IV ] 17/18 in the Egyptian calendar [-261 Feb.
11/12], dawn. Therefore the greatest elongation from the m ean [of Mercury ] as 
m om ing-star was 25s°.

Now we did not find a greatest elongation from the mean as evening-star 
which was precisely equal to that, at least in the observations which have 
reached us: but we calculated the [position with] equal [elongation] by means of 
two observations which were very close [to the required situation], in the 
following manner.

[6] [Firstly], in the same 23rd year in Dionysius’ calendar, Tauron 4,

^ T h e  star (Regulus, o Leo) has in the catalogue (XXVI 8) the longitude Thus the
observed difference should have been 34^°.

'’’ The star (o Sco) has in the catalogue (X X IX  8) the longitude ni 12l°. Thus the observed 
longitudinal difference should have been the large one of 60?°.

’“Reading < a ' (with D-’G,Ar) at H264.18 for k0 ' (29). The correction was made by Bockh, 
following Lepsius, in his discussion of the calendar of Dionysius (Sormenkreise 294-95), on which see 
Introduction pp. 13-14.

”  Mercury. The names (Dot'vtov, OaeBtov, riupoei^, 4>coo(p6 po(; and IxiXptov for Saturn, 
Jupiter, Mars, V'enus and Mercury are found in Hellenistic texts (and occasionally later, as an 
archaism). An e.xcellent discussion of the evidence for their use and the reason for their introduction 
(the nomenclature used by Ptolemy, ‘star of Kronos [Saturn]’, etc. is undoubtedly earlier) is given 
by Cumont, Les noms des planetes’. The occurrences in the Almagest (here and at H288.11, both 
connected with Dionysius, i.e. earlier third century B.C.) are the earliest dated examples of the 
nomenclature.

“’The star in question is identilied by Ptolemy with no. X X X I24 in his catalogue (8 Cap). The 
longitude there is 10* 26i°, from which he subtracts 4° to account for precession in the intervening 
398 or so years. A ‘moon’, as measurement, is about half a degree.

Reading 8e (with D,Ar) at H264.24 for 5r)X.ov6Ti (‘and, obviously’). The position of the mean 
sun is not obvious, but has to be computed.

450 I X  7. Location o f  Mercury's absidal line in Ptolemy’s time



mrnmmrnmmlmmmlM
I X  7 . E a r lie r  o b serveU u m s o f  g r e a te s t e U n tg a iim ts  M e r c u r y  4 5 1

in the evening, [Mercury] was 3 moons behiiiid [i.e. to  the rear the straight 
line through the horns of Taurus, and it seemed as if it was going to be tnore 
than 3 moons to the south of that one common [to Auriga and Taurus] when it 
passed by it.®̂  Thus its position according to our coordinates was B 235°. T hat 
m om ent was again in the 486th year from Nabonassar, [M echir [VI]] 30/ 
Pham enoth [VII] 1“  in the Egyptian calendar [-261 Apr. 25/26], evening, at 
which time the longitude of the m ean sun was 2 9 So the greatest 
elongation from the mean as evening-star was 24i®.

[7] [Secondly], in the 28th year in Dionysius’ calendar, Didymon 7, in the 
evening, [M ercury] was practically on a straight line with [the stars in] 
the heads of Gemini, and lay to the south of the southern one by? of a moon less 
than twice the distance between [the stars in] the h e a d s . T h u s  at that time, 
according to our coordinates. M ercury was in El 29;?°. This moment is in the 
491st year from Nabonassar, Pharm outhi [VIII] 5 /6  in the Egyptian calendar

H266

The stars in question are. in the catalogue, X X III 19 and 21 (î  and p Tau). The latter is also 
counted as Auriga [XII] no. 11. Subtracting 4° from the catalogue longitudes for precession, we get 
the coordinates at the observation as: southern horn, X. B 23?°, P -2 i° ; northern horn, X y 2 1 P 
+5°. Ptolemy concludes that the longitude of Mercury was the same as that of the southern horn.

There is no doubt that this is what is intended. The Greek mss. have, a t H265,16, <Ha^EV(o0 \ ' 
Etc TTiv o ' ,  which seems hardly possible. Petavius, followed by Ideler and Bockh, emended to 
Mex'ip X' ei<; t t |v  a ' <I>ojievd)0; Halm a, followed by Manitius, to e’lq "rfiv a '  <^^evo>6. The 
Arabic translations suggest that one must read OajievtbS etq tt^v d, i.e. simply excise. A.'. For the 
expression cf p. 456 n.84.

** These are, in the catalogue, X X IV  1 and 2 (a and p Gem), with coordinates (corrected for 
precession): northern head, X I I  I9i°, P +  9i°; southern head, X El 22^“, P +64°. Sec Fig. O, which 
shows that M ercury's ‘distance to the south’ is measured along the line between the stars.



[-256 M ay 28/29], evening, a t which tim e the longitude of the m ean sun was 
n  2i®. Thus this [greatest] elongation was 26i°.

Now, when the mean position was in ^  29i®, the greatest elongation was 
24i®, and when the mean position was in I I  2l®, the [greatest] elongation was 
2 6 r ;  and the [greatest elongation] as m om ing-star, to which we were seeking 
the corresponding [greatest elongation as evening-star], was 256°. So we 
derived the location of the mean position for a [greatest] evening elongation of 
251® from the difference between the above two observations: the difference 
between the mean positions at the two observations is 33 and the dilference 
between the greatest elongations 2?°. Thus to l5° (which is the am ount by 
which 256° exceeds 24ii°) correspond approxim ately 24°.*’̂  If we add this 
am ount to HP 29^°, we shall get the m ean position a t which the greatest evening 
elongation is calculated to be equal to the greatest m orning elongation of 25^°:

H267 this point is 8 23^°. And the point halfway between ^  181° and 8 23i° is at

[8] Again, in the 24th year in Dionysius’ calendar. Leonton 28, in 
the evening, [Mercur> ] was a little more than 3° in advance ofSpica, according 
to Hipparchus’ reckoning.*^ Thus a t that moment its longitude according to 
our coordinates was 19i°. T hat moment is in the 486th year from Nabonassar, 
Payni [X] 30 in the Eg>'ptian calendar [-261 Aug. 23], evening, a t which time 
the longitude of the m ean sun was H. 27g°. Therefore the greatest elongation 
from the mean as evening-star was 21 We again calculated [the position of] 
the morning elongation precisely corresponding to that from two of the available 
[observations].

[9] In the 75th year in the C haldaean calendar,®^ Dios 14, a t dawn, 
[M ercury] was half a cubit [ca. 1°] above [the star on] the southern scale [of 
Libra]. Thus at that time it was in ^  141°, according to our coordinates.‘’"This 
moment is in the 512th year from Nabonassar, Thoth  [I] 9 /10 in the Egyptian 
calendar [-236 Oct. 29/30], dawn, a t which time the longitude of the m ean sun 
was n t 5i°. Therefore the greatest m orning elongation was 21°.

H268 [10] In the 67th year in the C haldaean calendar. Apellaios 5, at dawn, 
[Mercury] was a half a cubit [ca. 1°] above the northern [star in the] 
forehead of Scorpius. Thus at that tim e it was in 2j°, according to our 
coordinates.®® This m om ent is in the 504th year from Nabonassar. Thoth  [I] 
27/28 in the Egyptian calendar [-244  Nov. 18/19], dawn, a t which time the

452 I X  7. Earlier observations o f  greatest elongations o f  Mercury

”  This is a crudely rounded result. In fact 33i X 23:49°, so a reasonable approximation
would have been 23 !i. Howex-er, linear interpolation is itself a crude procedure here.

■^This is proof that this observation (?by Dionysius) was one of those which Hipparchus 
‘arrangt-d in a more useful way’ (see IX 2 p. 421, with n .l 1), and it is a plausible surmise that all of 
these Mercury obscr\'ations were derived by Ptolemy from that compilation. The longitude of 
Spica (catalogue XXV'II 14) was. according to Ptolemy, TI5 225° in Dionysius' time; thus he takes 
Mercury as being 3i° in advance of Spica.

“̂ The Seleucid era. See Introduction p. 13.
“  The star is catalogue X X V III1 (a Lib, there said to be on the ‘southern claw’) to which Ptolemy 

assigns the longitude ^  18° in his own time. Here, then, he has subtracted 3?° to account for the 
precession in 373 years (one would have expected 3i°).

The star is catalogue X X IX  1. Its longitude there is nt, 6i°, so Ptolemy has subtracted 4° for the 
precession in 381 years, again more than one would have expected.
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longitude of the m ean sun was TTu 24|°. Therefore this [greatest morning] 
elongation was 22^®.^“

In these two observations again, then, since the difference between the two 
mean positions is 19|°, and the difference between the greatest elongations is 
15°, it follows that to r  (which is the am ount by which the 2 15 ° of the required 
elongation exceeds the 21° of the lesser [of these two]) corresponds about 9°.”  If 
we add the latter to Tiv 5^®, we get the m ean position a t which the greatest 
m orning elongation becomes equal to the greatest evening elongation of 21 i®: 
this point is Til, Hi®. And the point halfway between 271® and TIL. 14̂ ® is, H269 
again, about — 6°.^^

From  the above, and also because the phenom ena associated with the other 
planets individually fit [the assumption], we find it consistent [with the facts to 
assume] that the diameters through the apogees and perigees of the five planets 
shift about the centre of the ecliptic towards the rear through the signs, and that 
this shift has the same speed as that of the sphere of the fixed stars. For the latter 
moves about 1® in 100 years, as we dem onstrated [p. 328]; and here too the 
inten.'al from the ancient observations, in which the apogee of M ercury was in 
about the 6th degree [of the signs in question],^'* to the time of our 
obser\ations, during which it has moved about 4® (since it [now] occupies the 
10th degree), is found to comprise approxim ately 400 years.

8. ( That the planet Mercury, too, comes closest to the earth twice in one revolution]^^

In accordance with the above we investigated the size of the ^ ea tes t 
elongations which occur when the m ean longitude of the sun is exactly in the 
afxjgee, and again, when it is diam etrically opp>osite that point. We cannot H270 
derive this from the ancient observ'ations, but we can do so from our own 
observations m ade with the astrolabe. For it is in this situation that one can best 
appreciate the usefulness of this way of making observations, since, even if those 
stars with previously determ ined positions which are visible are not near the 
planet being observed (which is generally the case with M ercury, since, for the 
m ajority of the fixed stars, it is rare that they are visible when they are [only] as

Observations [9] and [10] are proven to be Babylonian by several marks: use of the Seleucid era 
(called by Ptolemy according to the Chaldaeans’); the use of the ‘cubit’ as an astronomical 
measurement; and also the fact that both the stars used as markers belong to the small group used in 
Babylonian texts for precisely this purpose and known as ’normal stars’ (sec H AM A  545; Sachs [1 ]
46).' ^

This linear interpolation, like the earlier one (see p. 452 n.65) is inaccurate. 8l “ would be much 
more reasonable.

’^O n this occasion the half-way point is at precisely 6°.
One would expect, at H269,12, Ka0’ &<;. referring to TTipT^oetov, rather thanica0’ 6v, referring 

to xpovov, since the latter means ‘interval’. But apparently, since xpovo^ can also mean 'epoch’, 
Ptolemy has somewhat illogically assimilated the relative pronoun to it (cf. t6 v [sc. xpovov] in the 
next line, where it certainly means ‘epoch’).

It has not yet been decided whether the apogee lies in Aries or Libra.
” See H AMA  161, Pedersen 314-15. ‘too’ refers to the moon (picking up Ptolemy’s remark IX 5 

p. 443). O n the term 7tEpiYei6TaTO<; as applied to Mercury see p. 461 n.94.
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H271

far from the sun as M ercury is),’® one can still determ ine positions of the planet 
in question accurately in latitude and longitude, by sighting stars which are at a 
considerable distance.

[Firstly] then, in the nineteenth year of H adrian , A thyr [III] 14/15 in the 
Egyptian calendar [134 Oct. 2 /3], a t daw n, M ercury, which was around its 
greatest elongation, was sighted with respect to the star on the heart of Leo, and 
was seen to have a longitude of Tip 205°.’’ T he m ean sun was a t about — 91°, so 
the greatest elongation was 195U°.

[Secondly], in the same year, Pachon [IX ] 19 [135 Apr. 5], in the evening, 
[M ercury], which was again around its greatest elongation, was sighted with 
respect to the bright star in the Hyades, and was seen to have a longitude of 8 
43°.̂ ® The mean sun had a longitude of ^  11t̂ °. Hence in this case one 
calculates the greatest elongation as 23i°, and it is immediately obvious that the 
apogee of the eccentre is in Libra and not in Aries.

W ith these data, let [Fig. 9.5]’® the diam eter through the apogee be ABG. Let 
B be taken as the centre of the ecliptic, at which the observer is, A as the point at 
^  10°, and G as the point a t ^  10°. Describe equal epicycles with points D and

Fig. 9.5

Since Mercury’s maximum elongation from the sun is never much more than 20°, it is only 
visible for a short time after sunset or before dawn, when the sky in its region is too illuminated for 
any but very bright stars to be visible. The ‘ancient observations’ (i.e. those by Babylonians or 
earlier Greeks) were made by giving the position with respect to nearby stars; but in some regions of 
the ecliptic there is a scarcity of bright stars.

”  The star had a longitude of H  2j° according to Ptolemy’s catalogue (X X V I8), so the observed 
interval was 47; 42°.

’“The star had a longitude of B 125°, according to the catalogue (X X III 14), so the observed 
interval was only 8i°.

Heiberg has made an error in the figure on p. 271: Z is on the wrong side of B, Corrected by 
Manitius.
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E [on their circumferences] about A and G [respectively], and draw from B 
tangents to them, BD and BE. D rop perpendiculars AD and GE from the 
centres to the points of tangency.

Now since the greatest elongation from the m ean as m om ing-star in Libra 
was observed as 195g°,

/  ARD — /  w here 4 righ t angles =  360°
[ 38;6®° where 2 right angles =  360°°. ‘ 

Therefore in the circle about right-angled triangle ABD 
arc AD =  38;6° 

and its chord, AD 39;9‘’ where hypotenuse AB =  120'’.
Again, since the greatest elongation from the mean as evening-star 
in Aries was observed as 23 i°,

/  P R F  — /  w here 4 righ t angles =  360°
I 46;30°° where 2 right angles =  360°°. 

Therefore in the circle about right-angled triangle GBE 
arc GE =  46;30° 

and its chord, GE =  47;22‘* where hypotenuse BG =  120'*.
Therefore where GE =  39;9*’ and AB =  120*’

(for AD =  GE, radii of the epicycle),
BG =  99;9^

and, by addition [of AB to BG],ABG =  219;9'’.
So if it is bisected at point Z,

its half, A Z =  109;34‘’ 
and the distance between points B and Z =  10;25‘’ f

Now it is clear that either point Z is the centre of the eccentre on which the 
centre of the epicycle is always located, or else the centre of that [eccentre] 
moves about point 2. For those are the only conditions under which the centre 
of the epicycle could be equidistant from Z at both the above diametrically 
opposite situations, as dem onstrated. But if Z were the actual centre of the 
eccentre on which the epicycle centre is always located, tha t eccentre would be 
stationary, and the situation in Aries would be the closest to the earth  of all 
situations [i.e. the perigee], since BG is the shortest of [all] lines draw n from B to 
the circle described on centre Z.®“ However, we find that the situation in Aries is 
not the closest to the earth  of all, but the situations in Gemini and Aquarius are 
even closer to the earth than that, and approxim ately equal to each other. 
Hence it is clear that the centre of the eccentre in question rotates about point Z, 
in the opposite sense to the revolution of the epicycle (i.e. in advance with 
respect to the signs), it too m aking one rotation in one revolution [of the 
epicycle]. For if this is so the epicycle centre will be closest to the earth twice [in 
one revolution] on the eccentre.

As for the fact that the epicycle is closer to the earth  in Gemini and Aquarius 
than in the [above] situation in Aries, this is easily seen to be an immediate 
consequence of the observations already detailed. For in the observation of the 
16th year of H adrian, Pham enoth 16 [p. 449 no. 1 ], the greatest elongation from 
the m ean as evening-star was 211°, and in the observation of the 4th year of

in the same units.

H272

H273

“"Euclid III 7.



Antoninus, Pham enoth i9 “‘ [p. 450 no. 4], the greatest elongation from the 
mean as m orning-star was 2 6 while in both observations the mean sun was 
near 10°. Again, in the observation of the 18th year of H adrian , Epiphi 19 [p. 
449 no.2], the greatest elongation from the m ean as m orning-star was 21 and 

H274 in the observ-ation of the 1st year of Antoninus, Epiphi 20 [p. 449 no. 3], the 
greatest elongation from the m ean as evening-star was 26:°, the m ean sun in 
both these observations being near El 10°. Thus both in Aquarius and in 
Gemini the sum of the opposite greatest elongations comes to 473°, while the 
sum of the two [greatest] elongations in Aries is [only] 46^°, since the evening 
elongation (which is equal to the m orning elongation) was observed as 231°.

456 I X  9. Location o f  Mercury’s equant and centre o f  eccentre

9. [On the ratio and the amount o f the anomalies o f Mercury]’̂'̂

H a\ing  completed the above preliminarv' investigation, we have still to 
dem onstrate the position of the point on line AB about which takes place the 
annual revolution of the epicycle in uniform motion towards the rear with 
respect to the signs, and the distance from Z of the centre of that eccentre which 
peri'orms its revolution in advance in the same period [as the epicycle]. For this 
investigation we used two obser\'ations of greatest elongations, one as morning- 
star and one as evening-star, but in both of which the mean position was a 
quadrant from the apogee on the same side: that is the situation in which.

H275 approximatel\-. the greatest equation of ecliptic anomaly occui's.
[1] In the fourteenth year of H adrian, Mesore [XII] 18 in the Egyptian 

calendar [130 July  4], in the evening, as we found in the observations we got 
from Theon,®* he says that [M ercury] was at its greatest distance from the sun, 
3 |°  behind [i.e. to the rear of] the star on the heart of Leo. Thus, according to our 
coordinates, its longitude was about H  65°, while the longitude of the mean sun 
at that moment was about 23 10t!°. Thus the greatest evening elongation was 
26i°.

[2] In the second year of Antoninus, Mesore [XII] [2 0 ]/2 1 “̂  in the Egyptian 
calendar [139 July 4 /5 ], at dawn, we observed its greatest distance by means of 
the astrolabe: sighting it with respect to the bright star in the Hyades, we found 
its longitude as I I  20 t!°. The mean sun was, again, near 23 10j°. Thus the 
greatest morning elongation was 201°.

W ith the above as data, let [Fig. 9.6] the diam eter through — 10° and 10° 
again be AZBG, and, as in the previous figure [9.5], let A be taken as the point

Reading i0 ' (with D, Ar) for ir |' (18) at H273,I9. Ptolemy gives a  double date (18/19) in the 
passage in question. Since the observation was taken a t dawn, the second date is preferable, and 
agrees with the practice just below (Epiphi 19, for the earlier 18/19 at dawn).

HAMA  161-2, Pedersen, 318-19.
O ther observations by this m an are used by Ptolemy in X  1 and X  2. There (p. 469) he says that 

they were ‘given to us by the mathematician Theon’, implying personal contact. He has often been 
identified with Theon of Smyrna. This is chronologically p>ossible, but given the frequency of the 
name, especially in Roman Egypt, the identification is highly uncertain.

Reading MEOopn ciq tfiv Ka' (with D,Ar) for M coopii ei(; ti^v k 5 ' (24th) at H275,13. The 
date is determined by the longitude of the mean sun (computed for Nabonassar 886 X I I 20/21 ,6 
a.m., as 100;19“). Neugebauer {HAMA 162 n.3) suggests reading M ecopii <k')  elq tiiv  k o  ' ,  but for 
the above fonn cf. p. 451 n.63.
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Fig. 9.6

at which the epicycle centre is found when its longitude is— 10°, G as the point 
at which it is found when its longitude is T  10°, B as the centre of the ecliptic, 
and Z as the point about which the centre of the eccentre rotates in advance.

Let the first problem be to find the distance from p>oint B of the centre about 
which we say the uniform motion of the epicycle towards the rear takes place.

Let that centre be H, and draw  a straight line through H  at right angles to 
AG, so that its [angular] distance from the apogee is a quadrant. O n this line 
take 0 ,  the centre of the epicycle at the above observations (for at those 
observ'ations the mean longitude of the sun was a  quadran t from the apogee, 
since it was near 213 10°). Draw the epicycle K L on centre 0 ,  and draw the 
tangents to it from B, BK and BL. Jo in  0 K , 0 L  and B 0.

Then, since a t the mean position in question the greatest m orning elongation 
from the m ean is given as 204°, and the greatest evening elongation as 26i°, 

Z KBL =  [20i° +  26i° = ]  46;30° where 4 right angles =  360°.
Therefore its half. Z K B 0 =  46;30°° where 2 right angles =  360°°.®*

Therefore in the circle about right-angled triangle B 0 K  
arc 0 K  =  46;30° 

and its chord, 0 K  =  47;22'’ where hypotenuse B© =  120*’.
Therefore where 0 K , the radius of the epicycle, is 39;9‘’ 

and, as was shown, BZ =  10;25'*,
B 0 =  99;9^.

Again, the difference between the above greatest elongations, 6°, comprises 
twice the equation of the ecliptic anomaly; and the latter is represented by 
Z B 0H , as we proved previously.®*

H276

H277

Note that this is cxactly equal to Z GBE in IX  8 (p. 455), which implies that the distance of the 
cpicycle from the observ-er is the same at quadrature (here) and at 180“ from apogee (there). 

IX 6 p. 448. But it is assumed rather than ‘proven’ there.
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Therefore Z B 0 H  =

H278

3® where 4 right angles =  360®
6®° where 2 right angles =  360°®. 

Therefore in the circle about right-angled triangle BH© 
arc BH =  6®

and BH =  6;17’’ where hypotenuse B© =  120'*. 
Therefore where B© =  99;9‘’, and likewise BZ =  10;25‘’,

BH =  5;12’’.
Therefore BH is approxim ately half BZ,

and BH HZ** 5; 12'̂ , where the radius of the epicycle is 39;9'’. 
Again, in the same figure [Fig. 9.7], draw  line Z M N  through Z at right angles 

to AG, but on the opposite side to H©. Because lines H© and ZN perform their 
returns to the same point in the same period, but in opposite senses, the centre of

fl
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that eccentre on which the epicycle centre 0  is located will, obviously, lie on 
ZM N at that moment. Let ZN be equal to ZA: thus ZN, like AZ, is the sum of 
the radius of the eccentre and the distance between the centres ([i.e.] between the 
centre of the eccentre and point Z). Take on ZN the centre of the eccentre, M, 

H279 and join Z 0 .
Now Z M ZH  is right, andZ  0 Z H  is practically a right angle (hence N Z 0 , too, 

is practically a straight line);®’ 
and it has been dem onstrated that where the epicycle radius is 39;9‘’

NZ =  AZ =  109;34‘’ 
and Z© =  B© =  99:9".“

This simpliFication is necessary in order to solve the problem at all: for one does not know a priori 
where on ZM the point M lies, only that it lies on a circle with center Z.

“ See p. 455.



Therefore, by addition, N Z 0  =  208;43'* 
and its half, NM , the radius of the eccentre, is about 104;22’*, 

and by subtraction [of N M  from NZ],
ZM , the distance between the centres, is 5; 12'’.

But we showed that both BH and H Z were the same am ount, 5; 12*’.
Thus we have com puted that

where the radius of the eccentre is 104;22*’
each of the distances between the centres [BH, HZ, ZM ] is 5; 12'’ 
and the radius of the epicycle is 39;9‘’.
Therefore where the radius of the eccentre is 60'’, 
each of the distances between the centres is 3;0’’ 
and the radius of the epicycle is 22;30'’.

Q.E.D.
W ith the above [elements] given, the [computed] greatest elongations at the 

points closest to the earth are in agreem ent with those observed (i.e. when the 
m ean position is at ^  lO'^or O  10°, and [thus] its distance from the apogee is the 
side of the [inscribed] triangle [i.e. 120°], the angle subtended by the epicycle at 
the eye is about 474°), as we can deduce by the following.

fl
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H280

H

Fig. 9.8

Let [Fig. 9.8] the diam eter through the apogee be ABGDE, on which point A 
is taken as the apogee, B as the point about which the centre of the eccentre 
performs its motion in advance, G as the point about which the epicycle centre- 
p>erforms its [uniform] motion towards the rear, and D as the centre of the 
ecliptic. Let each of the [above] motions have gone through the side of the 
[inscribed] triangle [i.e. *120°] (performed uniformly and with equal speed



about its own centre) from the apogee A on opposite sides of it. Let the straight 
H281 line rotating the epicycle be GZ, and that rotating the centre of the eccentre be 

BH, and let the centre of the eccentre be H  and the centre of the epicycle, Z. 
W ith the latter as centre describe the epicycle, draw  tangents to the epicycle, 
D 0  and DK, join G H , DZ, Z 0  and ZK, and drop perpendicular DL from D on 
to GZ.

We have to show that
Z © DK  =  47 4° where 4 right angles =  360°.

Now both Z ABH and Z AGL subtend the side of the [inscribed] triangle 
and are equal to 120° where 2 right angles =  180°;

so Z  GBH =  Z DGL =  60°; 
and Z BHG = Z  BGH (BG =  BH, by hypothesis).

But Z BHG +  Z BGH =  120° (supplement [to Z GBH =  60°]).
Z BHG =  Z BGH =  60°.

So triangle BGH is equiangular and equilateral.
And Z DGL =  Z BGH.

So points H, G and Z lie on a straight line.
Hence HZ, the radius of the eccentre =  60*

where GH (which equals GD) =  3’’. the distance between the centres. 
Therelbre, by subtraction [of GH from HZ], GZ =  57’’ in the same units. 

.Again, since
/ _  f  ^0° where 4 right angles =  360°

H282 1 120°° where 2 right angles =  360°°,
in the circle about ngnt-angle triangle GDL

arc DL =  120°
and arc GL =  60° (supplement).

Therelbre the corresponding chords
DL = I0 3 :5 5 " 1  ,  , , r-r> -  low  

and CL =  eO' hypotenuse GD -  120-.

Therefore where DG =  3” and GZ =  57”
DL =  2;36” 

and G L =  hSO”; 
and. by subtraction [of GL from GZ], LZ =  55:30*’.

And since LZ" +  DL- =  D Z ',
DZ =  55;34‘’'*‘*

where the radius of the epicycle (i.e. Z 0  and ZK) =  22:30’, by hypothesis. 
Therefore where hypotenuse DZ =  120'’

0 Z  =  ZK =  48:35'’; 
and Z Z D 0  =  Z ZD K  =  47;46°° where 2 right angles =  360°°. 

Therelbre, by addition [of Z Z D 0  to Z ZDK], Z 0 D K  =  47;46° where 4 right 
angles =  360°.

Q.E.D.

460 I X  9. Geometrical verification o f  accuracy o f  Mercury's model

“’T his is, according to Ptoiemy, the least distance ofthe centerofMcrcurx-'s epicycle (cf. X I 10 p. 
546). It was -shown l)v Hartner. .Vlercury Hoi-os< ope' 109-17 (cl'. Pedersen 321-4) that, with the 
pai-amciei-s of Ptolemy’s model, the least distance actually occurs at about 120^° from apogee, and is 
less than 5.5:;54 :alx>ut 55:33.38). These dillerences are utterly negligible for practical purposes.



10. {On the correction o f the periodic motions o f Mercury}^ H283

T he sequel to the above is the establishment of the periodic motions of M ercury 
and their epochs.'^ Now the [motion and epoch] in longitude, that is, of the 
epicycle in its uniform motion about point G, are given immediately from those 
of the sun. As for the [motion and epoch] in anomaly, that is, of the planet in its 
[uniform] motion on the epicycle about the epicycle centre, we have derived it 
from two reliable observations, one from am ong those recorded in our time, and 
the other from the ancient observations.

[Firstly], we observed the planet M ercury in the second year of Antoninus 
(which was the 886th year from Nabonassar), Epiphi [XI] 2 /3  in the Egyptian 
calendar [139 M ay 17/18], by means of the astrolabe instrument. It had not yet 
reached its greatest elongation as evening-star. W hen sighted with respect to 
the star on the heart of Leo it was observed at a longitude of El 17;°; and at that 
moment it was also U° to the rear ofthe moon’s centre. T he time at Alexandria 
was 4! equinoctial hours before m idnight of [Epiphi 2/]3,®' since, according to 
the astrolabe, the 12th degree of Virgo [i.e. ITB 11°-12°] was culminating, while 
the sun was in about 8 23°. Now at that moment, the positions according to the 
hypotheses we have dem onstrated were as f o l l o w s : H 2 8 4  

mean longitude of the sun y 22;34°
mean longitude of the moon I I  12:14°
anomaly of the moon from the apogee o fth e  epicycle 281;20°
hence, by com putation, true position o fthe  moon's centre O  17; 10°
apparent position o fth e  moon’s centre I I  16:20°.

Thus from this [computation] too we find that M ercury’s longitude was I I  172°
(since it was U° to the rear of the moon’s centre).

W ith this as datum , let [Fig. 9.9] the diam eter through the apogee and 
p>erigee^  ̂ be ABGDE, on which point A is taken as the apogee, B as the point 
about which the centre of the eccentre performs its motion in advance, 0  the 
point about which the centre of the epicycle performs its [uniform] motion 
towards the rear, and D the centre of the ecliptic. Let the epicycle centre, Z, 
have been carried by the line GZ about point G through the angle AGZ, and let H2B5 
the centre of the eccentre. H, have been carried by line BH about point B 
through the angle ABH, which will, obviously, be equal to Z AGZ because of 
the equal speed of the motions. Draw the epicycle, 0 K L , on centre Z, and let 
the planet be situated at L. Jo in  GH. HZ, DZ, ZL and DL, extend G Z 0 and 
drop perpendiculars H M  and DN on to it from H and D, and drop 
perpendicular ZX from Z on to DL.

See//.-lA/.-l 165-8.
** Reading auTUv (with D,L) for auToO (‘its epochs’) at H283,4.

Literally ‘of the midnight towards the 3rd’.
These positions are computed for 7;7 p.m. Alexandria, i.e. Ptolemy has applied the ̂ u a tio n  ol , 

time (I find -25  mins. with respect to era Nabonassar). For this moment the computations are 
accurate (I find a longitudinal parallax o f -5 3 ' where Ptolemy applies -50 ').

‘perigee’ (to  TtEpiYEiov) here and at H285.I2 and 14 is taken, somewhat loosely, as the point 
180° from the apogee, and not the point where Mercury ’s center is closest to the earth. For the latter 
Ptolemy always uses the superlative form to  TtepiyeiOTaTOV (H273.11, at.)

I X  10. Observation o f  Mercury by Ptolemy 461



462 I X 10.  Geometrical determination o f  anomaly from  observation

L

Z GBH =

Let us consider the problem , to find the arc of the epicycle between 0 ,  the 
apogee [of the epicycle], and the planet at L.

Now at that moment the longitude of the mean sun was y 22;34°, and the 
perigee of the planet was at about 10°.^^
Thus its distance from the perigee in m ean longitude was 42;34°.

42;34° where 4 right angles =  360°
85;8°° where 2 right angles =  360°°.

And since BG always equals BH
Z BHG =  Z BGH =  I37;26°° in the same units.

So, in the circle about triangle BGH®® 
arc HG =  85;8° 

and arc BG =  137;26°.
Therefore the corresponding chords

H286 ^ ^ ^ j ^ p 'l j J i 'g p j w h e r e t t e d i a m e e e r o f t h e c i r c l e i s  120'.

Therefore where BG =  3^ G H  =  2 ; l l^
Again, since Z BGH =  137;26°°1 , o • i — Qcnoo

and Z BGM =  85;8°' /  ^ ^  '
by subtraction, Z H G M  =  52;18°° in the same units.

Therefore in the circle about right-angled triangle G H M

®*Cr. IX 7 p. 450 and IX 8 p. 454.
®*This is one of the rare cases where Ptolemy applies the equivalent of the sine theorem in a 

triani^le which is not right-angled. See Introduction p. 7 n.lO.
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arc H M  =  52;1B°
and arc GM  =  127;42° (supplement).

Therefore the corresponding chords
H M =  52;53‘’l  ^ ,onP

and GM  =  107;43'’J  hypo.enuK  G H  =  120'.

Therefore where G H  =  2; 11", 
and HZ, the radius of the eccentre carrying the epicycle, is 60’’,

H M  =  0;58’’ 
and G M = 1 ;5 8 ’’.

Hence M Z, being a negligible am ount less than  H Z , the hypotenuse [of triangle 
H M Z], is the same, 60^,
and, by subtraction [ofGM  from M Z], GZ =  58;2’’.

Similarly, since Z DGN =  85;8°° where 2 right angles =  360°°, 
in the circle about right-aneled triangle GDN 

arc DN =  85;8° 
and arc GN =  94:52° (supplement).

Therefore the corresponding chords

and GN =  hypotenuse C D  =  120'.

Therefore where GD =  S'* and, as was dem onstrated, GZ =  58;2’’,
DN =  2:2’’

and GN =  2:13'’; H287
and, by subtrartion  [of GN from GZ], NZ =  55:49*".

Hence hypotenuse DZ [=  \ /D N ' +  N Z '] 55:51’’ 
where the radius of the epicycle =  22:30’’.

Therefore in the circle about right-angled triangle DZN, 
where hypotenuse DZ =  120*’,

DN =  4:22” 
and arc DN =  4; 11°.

••• Z DZN =  4; 11 °° where 2 right angles =  360°°, 
and, by addition [ofZ DZN and Z DGN], Z EDZ =  89; 19°°.

And the whole angle EDL =  135°° in the same units, since the planet was
observed a t 67;30° from the perigee. '

Therefore by subtraction [of Z EDZ from Z EDL], Z ZDL =  45;41°°.
Therefore in the circle about right-angled triangle D ZX , 

arc ZX =  45:41°
and ZX =  46:35’’ where hypotenuse DZ =  120’’.

Therefore where hypotenuse DZ =  55;51‘’ and the radius of the epicycle,
ZL =  22;30’’,

ZX  =  21;4F.
And, in the circle about right-angled triangle ZLX, 

where hypotenuse ZL =  120’’,
ZX =  115;39”. 

arc ZX  =  149;2°'''

®’ The arc corresponding to 115;39’’ is in fact 149;3'’. But if one takes the chord as 115,38,40 
(which is an accurate transformation of 46;35 X 55;51/120), one linds as arc 149:1,56°. .As often,
Ptolemy computes with more'accuracv than he displays.



H288 and Z ZLX  =  149;2®° where 2 right angJes =  360°°
But we showed that Z ZD L =  45;41°° in the same units.

Z LZK  =  Z ZLX  +  Z ZDL =  194;43°°.]
And Z 0 Z K  [=  Z DZN] =  4;11°° likewise.

Therefore, by addition [of Z 0 Z K  -r Z L ZK l,
Z 0 Z L  =  -f where 2 right angles =  360°°

[ 99;27° where 4 right angles =  360°. 
Therefore arc 0 K L  of the epicycle, which was the distance of the planet 
M ercury from the ap>ogee © at the observation, is 99;27°.

Q.E.D.
Secondly, in the 21st year of Dionysius’ calendar (which was in the 

484th year from Nabonassar), Scorpion 22, [which is] T ho th  [I] 18/19 in the 
Egyptian calendar [-264  Nov. 14/15], a t dawn, Stilbon [i.e. M ercury] was 1 
moon to the rear of the straight line through the northern [star in the] forehead 
of Scorpius and the middle [star in the forehead], and was 2 moons to the north 
of the northern [star in the] forehead. Now according to our coordinates at that 
time the midmost of the stars in the forehead of Scorpius had a longitude of TTl 
1!°, and is the same am ount [ 11°] south of the ecliptic, while the northernmost 
star had a longitude of Til, 2 and is 1 r  north of the ecliptic.^® So the planet 

H289 M ercury had a longitude of about 3 Furtherm ore it is clear that it had 
not yet reached its greatest elongation as m orning-star, since 4 days later, on 
Scorpion 26, it is recorded that its distance from the same straight line towards 
the rear was 1! moons: for [by that time] the elongation had become greater, the 
sun having moved about 4 degrees, but the planet [only] half a moon. And on 
Thoth 19 at dawn the longitude of the m ean sun, according to our tables, was nt 
20ft°. while the longitude of the apogee of the planet was about ^  6°, since the 
400 or so years between the observations produce a displacement of the apogee 
of about 4°.

With the above as data, then, let u sd raw ailg u re  [Fig. 9.10] similar to the one 
preceding [Fig. 9.9], but in which, because of the dilference in the positions, the 
angles towards the apogee A [i.e. Z .A,GZ. Z ABH] are to be draw n as acute, the 
straight lines joining [points] to the planet [i.e. ZL, DL], as in advance of the 
epicycle [centre], and perpendicular ZX  as beyond ZL, the radius of the 
epicycle."'”

Then, since the mean position of the planet was [TT\, 20s° -  6° = ]  44;50° 
from the apogee.

/  ARH —-f "  here 4 right angles =  360°
l89-.40°° where 2 right angles =  360°°. 

Therefore its supplem ent.Z GBH =  270;20°°
and Z BGH =  Z BHG =  44;50°° in the same units.

®*See catalogue nos. X X IX  2 and 1. Ptolemy has subtracted 4° from the longitudes there to 
account for precession.

** It is diiricult to see how Ptolemy arrives at this position from his data; sec the discussion HAMA  
166. with Fig. 151. This was an observation of a  station. Cf. Ptolemy’s remark about ancient 
observations IX  2 pp. 420-1.

‘“® There is the additional difference (as noted by Manitius) that the significations of points 0  and 
K has been interchanged: in Fig. 9.9 © was the mean apogee and K the true, while in Fig. 9.10 K is 
the mean perigee and 0  the true.

464 I X 10. Ancient observation o f  station o f  Mercury
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where the diam eter is 120'’.

Fig. 9.10

And, by the same reasoning [as belbre] H290
in the circle about triangle BGH the corresponding chords 

G H = 8 4 ;3 6 ‘’ ' 
and BG =  BH =  45;46'’

Therefore where BG =  BH =  S'*,
GH=5;33^

Again, by hypothesis,
Z AGZ =  8y;40°° where 2 right angles =  360°° 

and L  BGH =  44;50°° in the same units, 
so, by addition, Z ZGH =  134;30°°, 

and, in the circle about right-angled triangle G H M  
arc H M =  134;30° 

and arc G M  =  45;30° (supplement).
Therefore the corresponding chords

and GM  =  hypotenuse G H  =  120^ H291

Therefore where G H  =  5;33‘’ (i.e. where ZH, the radius o f the eccentre, is 60’’),
H M  =  5;7” 

and GM  =  2;10^.'“‘

lui 2-91’ would be more accurate by any method of computation



466 I X 10. Derivation of Mercury’s rruan motion from observations

Hence we com pute ZM  [=  yjZ H ^  -  HM^] as 59,•47’’, 
and, by addition [of M G to ZM ], ZM G  as 61;57'’ in the same units. 
Similarly, since Z DON [=  Z AGZ] =  89;40°® where 2 right angles =  360°°, 
in the circle about right-angled triangle GDN, 

arc DN =  89;40° 
and arc GN =  90;20° (supplement).

So the corresponding chords

and GN =  hypoienuse C D  =  120'.

Therefore where GD =  y ,
DN =  2;7” 

and GN =  2;8^ 
and, by addition [of ZG to GN], ZGN =  64-.5’’.
Hence hypotenuse ZD [=  \/Z N - +  DN'“] =  64;7’’ in the same units. 
Therefore, in the circle about right-angled triangle ZDX, 

where ZD = 1 2 0 ’’,
DN =  3;58'’ 

and arc DN =  3;48°.“’'
Z DZN =  3;48°° where 2 right angles =  360°°, 

and, by subtraction [of Z DZN from Z AGZ],
Z ADZ =  85;52°° in the same units.

But Z ADL is given as 54;40°° in the same units 
(for the planet was [til, 3 t — — 6° = ] 27:20° from the apogee at the observation). 

H292 Hence, by subtraction. Z ZDL =  31:12' '̂^ where 2 right angles =  360“'̂ . 
Therefore in the circle aboiu right-angled triangle ZDX. 

a rc Z X  =  31;12°
and ZX =  32:16'’ where hy[)otenuse DZ =  120’’. 

Therelore w here DZ =64;7’’ (i.e. where ZL, the radius of the epicycle. is22;30‘’), 
X Z = 1 7 ;1 5 ’’.

And, in the circle about right-angled triangle ZLX. 
where hypotenuse Z L =  120*’,

ZX«=92’’. 
arc Z X =  I00;8°,'"‘ 

and Z Z L X =  100;8°° where 2 right angles =  360°°.
And we showed that, in the same units, Z ZDL =  31;12°°,

[hence Z 0 Z L  =  Z ZLX  -  Z ZDL =  68;56°°), 
and that Z 0 Z K  =  3;48°°.

Therefore, by subtraction [of Z 0 Z K  from Z ©ZL],
. „  _  f65;8°° where 2 right angles =360°°

[32;34° where 4 right angles =  360°.
•\t this observation, then, the planet was 32;34° from the epicycle perigee K, 

and, obviously, 212;34° from the a|X)gee. But we showed that at the moment ol

3;47° would be more accurate by any method of computation.
'" ‘The nearest one can get to this by any method of computation is 100;7°. More accurate 

calculation would give 100;4°.



our observation it was 99;27® from the apogee of the epicycle. Now the interval H293 
between the two observations is approxim ately 

402 Egyptian years 283 days 13 i hours.
This interval contains 1268 complete returns of the planet in anomaly (for 20 
Egyptian years produce very nearly 63 returns, so 400 years produce 1260, and 
the rem aining 2 years plus the additional days another 8 complete returns).
Thus we have shown that in 402 Egyptian years 283 days 13j hours the planet 
M ercury moved in anomaly, beyond 1268 com plete revolutions, 246;53°, 
which is the am ount by which the position a t our observation is beyond the 
previous one. And just about the same increment [in anom aly] results from the 
tables we set out before: for it was on the basis of these very same calculations 
that we m ade our correction to the periodic motions of M ercury, by reducing 
the above interval to days, and the above revolutions in anom aly plus the 
increm ent to degrees. For when the total of degrees is divided by the total of 
days, there results the mean daily motion in anom aly which we set out for 
M ercury in our previous discussion [IX  3].’“̂

I X  11. Epoch positions o f  Mercury in mean motion 467

11. [On the epoch o f its [Mercury's] periodic motions}

Then in order to establish the epochs of the five planets, as we did for the sun 
and moon, for the first year of Nabonassar, Thoth  1 in the Egy'ptian calendar, H294 
noon, we took the inter\-al between that mom ent and the more ancient of the 
observations, which is closer to it: this is very nearly 

483 Egyptian years 17 days 18 hours.'"^
The increm ent in mean anomaly corresponding to that inter\'al is 190;39°. If we 
subtract the latter from the 212;34° (counted from the apogee) derived from the 
observation, we get the following epoch positions for Nabonassar 1, Thoth 1 in 
the Egyptian calendar, noon:

anom aly counted from the apogee of the epicycle 21;55°
[mean] longitude the same as the sun’s, i.e. K  0:45° ,
apogee of the eccentre in about — 1 i°

(for TWth [of a degree for each] of the above years comes to about 46°, which, 
subtracted from the [longitude] 6 ° at the observation, gives [:iii:] li®).

' “̂ For the actual derivation of the mean motion in anomaly see .Appendix C. In thederivatitinof 
the two positions in anomaly on w hich the mean motion is allegedly based Ptolemy has committed a 
num ber of small computational and rounding errors. These result in a  compounded error which is 
not negligible, as accurate computation from his initial values reveals:

Ptolemv Computed
Ohs. I 2I2;34° 212;29,18°
Obs. II 99;27° 99;33,31°

Increment 246;53° 247; 4,13°.

The difference of + 11 ', distributed over about 400 years, leads to +0;0,0,0,16 % in the mean 
motion.

'“ Reading irj (with Ar) for itf y ' (18l) at H294,5. 18  ̂ is shown to be correct both by the 
increment in mean motion below (181'' would give 190;42° instead) and by the interval between the 
two observations given above. Corrected by Manitius.





Book X

Such, then, was the method by which we found the hypotheses for the planet 
M ercury, the sizes of its anomalies, and also the precise am ounts of its periodic 
motions, and their epochs. For the planet Venus, again, we first investigated the 
position in the ecliptic of the apogee and perigee of the eccentre by [finding] 
greatest elongations which are equal and in the same direction.* The available 
ancient observations did not supply us with exact pairs of p>ositions [suitable] for 
this putpose, but we used contemporary observations for our approach, as 
Ibllows.

[1] Among the observations given to us by the m athem atician Theon. we 
found one recorded in the sixteenth year of Hadrian, on Pharmouthi [VIII] 21/22 
in the Egyptian calendar [132 M ar. 8/9], at which, he says, the planet Venus 
was at its greatest elongation as evening-star from the sun, and was the length of 
the Pleiades in advance of the middle o( the Pleiades; and it seemed to be 
passing it a little to the south. Now. according to our coordinates, the longitude 
of the middle of the Pleiades at that time was 8 3°, and its length is about
so clearly V enus’ longitude at that moment was 8 1 i°. So, since the longitude H297 
of the m ean sun at that moment was K  14i°, the greatest distance from the 
mean as evening-star was 47i°.

[2] In the fourth^ year of Antoninus. Thoth [I] 11/12 in the Egyptian 
calendar [140 July  29/30], we obsened Venus at its greatest elongation from 
the sun as morning-star. It was [the breadth oi] halfa full moon to the north-east 
of [the star in] the middle knee of Gemini. At that moment the longitude of the 
fixed star, according to us. was I I  18i°,^so \ ’enus was in about E[ 18^“. And the

I. {Demonstration o f [the position of] the apogee o f the planet VenusY H296

‘O n chapters 1-3 see HAMA  152-6. Pedersen 298-306 and (for a criticism of Ptolemy’s 
procedure) Sawyer. 'Ptolemy's determination of the apsidal line for V^enus’ 'cf. p. 449 n.53).

■ See p. 446 n.43. Many of the dates of greatest elongations of \'enus given here by Ptolemy are in 
error, some by as much as three weeks ( s e e 153 n.1). We cannot doubt that hewasawareof 
this, but he was forced by the lack of suitable observations during the limited period available to 
take those positions of Venus close to greatest elongation which gave the required positions of the 
mean sun with respect to V^enus’ apsidal line. The point is discussed in detail by Swerdlow and 
Neugebauer, Ch.5.

’ In the catalogue (X X III30-32) the group ol the Pleiades has longitudes between 8 2i° and 8 
3f°. The length of this is indeed 1 but its midpoint is y 2;55°, which Ptolemy has rounded to 3° (a 
correction for precession would make it even less than 2;55°).

* R e a d in g s ' (with D,Ar) for i5 ' (I4th) at H297.5. The date is confirmed by the computations 
below. Corrected by Manitius.

 ̂Catalogue XXIV^ 11, where the description is somewhat dilfcrent. O f the three knees mentioned 
(nos. 10, 11 and 13) this is the middle one.



mean sun was in Ci So the greatest distance as m orning-star was the same 
am ount as before, 47i°.

Therefore, since the m ean position was K  Hi® at the first observation, and H  
54° at the second, and the point on the ecliptic halfway between these falls in 
[either] 8 25® [or] 25®, the diam eter through apogee and perigee must go 
through the latter [points].

[3] Similarly, in the [observations we got] from Theon, we found that in the 
twelfth year of H adrian, A thyr [III] 21/22 in the Egyptian calendar [127 Oct. 
11/12], Venus as morning-star had its greatest elongation from the sun when it

H298 w as to the rear o f  the sta r o n  th e tip  o f  th e  so u th ern  w in g  o f  V ir g o  b y  th e le n gth  

o f  the P le ia d es, or less th a n  th a t a m o u n t b y  its o w n  d ia m e ter; a n d  it seem ed  to  

be p assin g th e star on e m o o n  to th e n orth . N o w  the lo n g itu d e  o f  the fixed  star at 

th a t tim e, a c c o r d in g  to  us, w asH  2811®: h e n c e  th e  lo n g itu d e  o f  V e n u s  w as a b o u t  

TT? Oj®." A n d  th e m e a n  sun w as i n ^  1715®. S o  the g rea te st e lo n g a tio n  from  the  

m ea n  as m o r n in g -s ta r  w as 4755®.

[4] In the twenty-first year of H adrian , M echir [VI] 9 /10  in the Egyptian 
calendar [136 Dec. 25/26], in the evening, we observed Venus at its greatest 
elongation from the sun. It was in advance of the northernm ost star of the four 
which almost form a quadrilateral (behind the star to the rear of and on a 
straight line with the [two] in the groin of Aquarius):' [its distance from the star 
was] about two-thirds of a full moon, and it seemed about to obscure the star 
with its light.® Now the longitude of the fixed star at that time, according to us, 
was ^  20°; hence Venus was in about ^  19?°,® and the m ean sun’s longitude 
was V> 2t5°.

Hei e too. then, the greatest elongation as evening-star was the same [as in [3] 
as morning-star], 47 tS°. And the points on the ecliptic halfway between the — 

H299 17 ffl® of the fii-st observation and the 2t?° of the second are again about nv 25® 
and 8 25°.

470 X 1. Determination o f  Venus' absidal line from  greatest elongations

2. [On the size o f [Venus'] epicycle]

By these means, then, we determ ined tha t in our time the apogee and perigee of 
[\'en u s’] eccentre lie in 8 25° and TI|, 25°. Accordingly, we again looked for 
greatest elongations from the mean which occur when the sun is near 8 25® and 
%  25®.

" Literally a third of the lli-st degree of \ 'irg o ’. The longitude in the catalogue (X X \’II 5) is 
29°. Ptolemy subtracts 5 ' for 11 years' precession, adds 1 for the length of the Pleiades, and then 
subtracts 5 ' Ibr the diameter of Venus. (In the Planetary Hypotheses, ed. Goldstein p. 8 § 5, he 
estimates the apparent diameter of \ ’enus as listh of the sun's, i.e. 3').

' The stars in (juestion are (according to M anitius' identification): the quadrilateral, catalogue 
nos. X X X II 26-9; the two in the groin, nos. 15 and 16. The differences in the description herefrom 
the catalogue are so great that we must assume that this was originally written before the catalogue 
existed (as the date of the ohseivation suggests).

“ Reading KaTaA.ctn\|/eiv (with GD) for KataXdnTreiv ('seemed to be obscuring’) at H 298,14-15. 
The word is a technical term for one bright body (the sun, as at \ 'I I I  6, H201,1, of. KaTaA.onvt/ei(; at 
X III 7, H591.11. or the moon, as here) coming so close to another that it 'outshines' it and makes it 
no lf)nger visible.

'^'two-rhirds of a moon’ is only 20', whereas Ptolemy subtracts 24'. Is the difference to account 
lor the diameter of Venus?
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[1] In the [observations] given to us by Theon we find that in the thirteenth 
year ol H adrian , Epiphi [XI] 2 /3  in the Egyptian calendar [129 May 19/20],
Venus was at its greatest elongation from the sun as m om ing-star, and was 1 
in advance of the stmight line through the foremost of the 3 stars in the head of 
Aries and the star on the hind leg, while its distance from the foremost star of 
those in the head was approxim ately double its distance from the star on the leg.
Now at that time, according to us, the foremost star of the 3 in the head of Aries
had a longitude of [SP] 65° and is 7 3° north of the ecliptic, while the star in the H300 
hind leg of Aries had a longitude of 14i°, and is 5i° south of the ecliptic.’® 
Therefore the longitude of Venus was and it was south of the
ecliptic. Hence, since the longitude of the m ean sun at that time was y 25?°, the 
greatest elongation from the mean was 44^°.

[2] In the twent\-first year of H adrian, Tybi [V] 2 /3  in the Egyptian 
calendar [136 Nov. 18/19], in the evening, we ol)served Venus at its greatest 
distance from the sun; when sighted with respect to the stai's in the horns of •
Capi icorn it was seen to occupy 121°, while the longitude of the mean sun 
was ni, 253°. Hence in this position the greatest elongation from the mean comes 
out as 47j°.

Hence it is clear that the apogee lies in 8 25°, and the perigee in nj, 25°. 
Furtherm ore, it has also become plain to us that the eccentre of Venus carrying 
the cpicycle is li.xcd, since nowhere on the ecliptic do we llnd the sum of the 
gicatest elongations fiom the mean on both sides to be less than the sum of both H301 
in Taurus, or g ieater than the sum of Ijoth in Scorpius.

W ith the alxjve as data, let [Fig. 10.1] the eccentric circle, on which W nus’ 
epic\ clc is always carried, l>e ABG on diam eter AG, on which D is taken as the 
centre of the eccentre, E as the centre of the ecliptic, and A as the point at 8 25°.
About points A and G let there be draw n equal epicycles, on which lie points Z 
and H [respectively]. Draw the tangents EZ and EH, and join AZ. GH.

Then, since Z AEZ, which is at the centre of the ecliptic, subtends the gieatest 
elongation o f  the planet at the apogee, which is, by hyp>othesis, 44?°.

44:48° where 4 l ight angles = 360°
89;36°° where 2 right angles = 360°°.

Therefore in the circle about right-angled triangle AEZ 
arc AZ = 89:36°

and its chord AZ** 84:33’’ where hypotenuse AE = 120'’. H302
Similarly, since Z G EH  subtends the greatest elongation at the p>erigee, 

which is, by hypothesis, 47?'^
47;20° where 4 right angles = 360°
94;40°° where 2 right angles = 360°°

Therefore in the circle about i ight-angled triangle G EH  
arc G H  = 94;40° 

and its chord G H =“ 88:13’’ where hypotenuse EG = 120’’.

‘®The stars in question are catalogue X X II 1 and 13 (note the din'erent descriptions there), with 
longitudes of 6!° and 15°. The dill'erence in the longitudes given here is - 4 ' and -1 5 ' respectively.
One would expect alx)ut - 5 '  for the precession in 8 years. Hence M anitiiisemended 14i to 14|^; but”" 
it is implausible to change, as he does. ^ ' 5 ' to 5 ' (t +1); for ’ is w rittenZ ' y ' ip ' (i +1 + r'!), e.g.
H303,7. The stars in the alignment are too far apait to allow us to use it to check the text, so in the 
absence ol' any ms. variation I merely note the possibility oi some corruption.

Z G EH  =
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Therel'oi-e where G H  (= AZ), the radius of the epicycle, is 84;33'', and 
AE = 120^

EG = 11 5 ;r,
and obviously, by addition, AG = 235;!'’ 

and its hall', AD*^ 117;30’’, 
and, by subtraction, the distance between the centres, DE = 2:29'’.

Therelbre where the radius of the eccentre, AD = 60'’, 
the distance between the centres, DE *=* l i ’’, 
and the radius ol’the epicycle. AZ = 436’’.

3. [On the ratios o f the eccentricities o f the planet [IVwwi]}

But since it is not clear whether the unilbrm motion of the epicycle takes place 
H303 alx>ut point D, here too we took two greatest elongations, in opposite directions 

[i.e. one as evening-star and the other as morning-star], in each of w hich" the 
mean motion of the sun was a quadran t from the apogee.

[1] We observ'ed the first in the eighteenth year of H adrian, Pharm outhi 
[VIII] 2 /3  in the Egyptian calendar [134 Feb. 17/18]. In this Venus was at

"R ead ing  fe<p’ ^K aTEpac; (with CDG,Is) at H303,2 for iip' t K d t e p a  (‘in both directions’ .̂ 
Corrcctcd bv Manitius.
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greatest elongation from the sun as m orning-star, and when it was sighted with 
respect to the star called Antares [catalogue X X IX  8], its longitude was 10*
11 a t which time the longitude ol’the mean sun was ^  25j°. So the greatest 
elongation from the mean as m om ing-star was 43

[21 We observ ed the second in the third year of Antoninus, Pharmouthi [V lll] 
4 /5  in the Egyptian calendar [140 Feb. 18/19], in the evening. In this Venus 
was at its greatest elongation from the sun, and when it was sighted with respect 
to the bright star in the Hyades [catalogue X X I I I 14], its longitude was‘P  ISl®, 
while the longitude of the m ean sun was again ^  255°. Hence, in this case the 
greatest elongation I'rom the m ean as evening-star was 48

W ith the above as data, let [Fig. 10.2] the diam eter through the apogee and 
perigee of the eccentre be ABG; let A represent the point a t 8 25°, and let B 
represent the centre of the ecliptic. Let our task be to find the centre about 
which we say that the uniform motion of the epicycle takes place. Let that

Fig. 10.2

centre be point D, and draw DE through D perpendicular to AG, in order for H304 
the mean position of the epicycle to be a quadran t from the apogee, as in the 
observations. O n DE take E to represent the centre of the epicycle at the 
observations in question, draw  the epicycle Z H  on it as centre, draw  the 
tangents to it from B, BZ and BH, and jo in  BE, EZ and EH.

Then since, at the mean position in question, the greatest elongation from the 
m ean as m om ing-star is, by hyjxjthesis, 4 3 and the greatest as evening-star 
48i°,

by addition, Z ZBH = 91;55° where 4 right angles = 360°.
Therefore its half, Z ZBE = 91;55°° where 2 right angles = 360°°.

Therefore in the circle about right-angled triangle BEZ
arc EZ = 91;55° H305

and EZ = 86; 16’’ where hypotenuse BE = 120*’.



Therefore where the radius ol the epicycle, EZ = 43; lO*”
BE = 60;3^

Again, since the difference between the above greatest elongations (which is 
4;45®) comprises twice the equation of the ecliptic anom aly at that point, which 
is represented by Z BED,

/  R F n  -  /  ̂ ’22,30° where 4 right angles = 360°
~ \  4;45°° where 2 right angles = 360°°. 

Therefore in the circle about right-angled triangle BDE 
arc BD = 4;45°

and BD®®4;59*’ where hypotenuse BE = 120**. 
Therefore where BE = 60:3’’ and  the radius of the epicycle is 43; 10'’, 

B D « 2 i ’’.
But we showed [p. 472] that the distance between B, the centre of the ecliptic, 
and the centre of the eccentre on which the epicycle centre is always carried, is 
1 i ” in the same units; thus it is half of BD.

Therelbre, if we bisect BD at ©, we have dem onstrated'^ that 
H306 where 0 A , the radius of the eccentre carrying the epicycle, is eO**,

each of the distances between the centres, B 0  and 0 D  = l l ’’, 
and EZ. the radius of the epicycle, is 43:10'*.

Q .E.D.

474 X  3. Bisection o f  eccentricity demonstrated fo r  Venus

4. {On the correction oj the periodic motions o f the planet [I'enus]}^'

Such, then, is the method by which we determ ined the type of [V'enus’] 
hypothesis and the ratios of its anomalies. For the periodic motions and 
epochs of the planet, once again [as for M ercury], we took two relial)le 
observations, [one] from am ong ours, and [one] of the ancient ones.

[1] In the second year of Antoninus, Tybi [V’'] 29 /30  in the Egyptian 
calendar [138 Dec. 15/16], we observed the planet Venus, after its greatest 
elongation as morning-star, using the astrolabe and sighting it with respect to 
Spica: its apparent longitude was in, 6j°. At that m om ent it was also between 
and on a straight line with the northernm ost of the stars in the forehead of 
Scorpius and the apparent centre of the moon, and was in advance of the 
moon's centre 11 times the am ount it was to the rear of the northernm ost of the 
stars in the forehead. Now the [latter] llxed star had at that time, according to 
our coordinates, a longitude of HI, 6;20°, and is 1;20° north ofthe ecliptic.‘‘‘The 

H307 timt^ was 4i ecjuinoctial houi-s after m idnight, since the sun was in about 23,

‘̂ This is the only ‘demonstration’ of the 'bisection ofthe eccentricity’ in t h e a l t h o u g h  it 
is also assumed lor the outer planets. However, this does not prove {contra HAMA  155) that 
observations of Venus were the historical origin of Ptolemy’s introduction of the equant. It seems far 
more likely that it arose from the considerations Ptolemy himself outlines a t X  6 (see p. 480, with 
n.24), for which Mars must have provided the most opportune observations.

" O n  chs. 4 and 5 see HAMA  156-8.
'"See catalogue X X IX  I.



and the second degree of Virgo [i.e. TIR was culm inating according to the
astrolabe. At that moment the positions were as follows:'®

mean longitude of the sun J  22 ;9®
mean longitude of the moon TH, 11 ;24®
anom aly of the moon, counted from apogee 87;30°
[argum ent of] latitude of the moon, from the northern limit 12;22?
hence, true position of the moon’s centre in, 5;45®
[m oon’s latitude] 5° north of the ecliptic
apparen t position [of the moon] a t A lexandria in longitude IH, 6;45° 
[apparent position of the moon in latitude] 4;40° north  oi the ecliptic.
From  these considerations too, then, V enus’ longitude was Vi\, 6;30°, and it 

was 2;40° north of the ecliptic.
W ith the above as data, let [Fig. 10.3] the diam eter through the apogee be 

ABGDE. Let A represent the point a t 8 25°, B the point about which the 
epicycle moves uniformly, G the centre of the eccentre carrying the epicycle ’ 
centre, and D the centre of the ecliptic. Since the mean sun had a longitude of J:
22;9° a t the observation, the mean position of the epicycle is [ f  22;9°-ni, 25° =]
27;9° towards the rear from the perigee a t E. So let the epicycle centre be 
located at Z, and draw the epicycle H 0 K  on Z as centre. Jo in  DZH, GZ and H308 
B Z 0, and drop perpendiculars GL and DM  from G and D on to BZ. Let the

fl
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'*The rollowing data  are caJculated, accuraicly, not for 4;45 a.m ., but for 4;30 a.m. Since the 
equation of time for a solar longitude ol' f  23^ is about -  17 mins., Ptolemy’s (silent) correction is 
pistiiied. For 4;45 a.m. local (ime I find the culminating point as a little past HR I*', in agreement 
with the text.



planet be located at point K, join D K  and ZK, and drop perpendicular ZN [on 
to DK]. Let the problem be, to find the arc 0 K , which is the distance of the 
planet from the epicycle apogee © [at the observation].

Now since
27;9® where 4 right angles = 360°
54; 18°® where 2 right angles = 360°^, 

in the circle about right-angled triangle BGL 
arc GL = 54; 18° 

and arc BL = 125;42° (supplement).
Therefore the corresponding chords

476 X  4. Geometrical determination o f  anomaly from  observation

and BL = 1 0 M 7 '}  hyP->‘enuse BG = 120',

ihereiore where BG = l;15‘’and GZ, theradiusoftheeccentre, is60'’, 
H309 GL = 0;34'’

and BL =
And since Z G ' -  GL^ = ZL%

ZL ** 60’’ in the same units.
And since BG = GD

iML = LB [= I;?”], 
and DM = 2GL.

Therefore, by subtraction [of M L from ZL], ZM = 58;53’’ 
and DM = 1;8  ̂ in the same units.

Hence hypotenuse ZD[= \/Z M - + D M ‘] ** 58;54'’.
Therelbre, where ZD = 120^, DM  = 2; 18'’, 

and, in the circle about right-angled triangle DZM, 
arc DM = 2;12°.
Z BZD = 2:12°° where 2 right angles = 360°°, 

and, by addition [of Z EBZ and Z BZD], Z EDZ = 56:30°° in the same units. 
And, since the planet was 18:30° in advance of the perigee at E (i.e. TTl, 25°) at 
the observation.

/  FDK -  -f where 4 right angles = 360°
\  37°° where 2 right angles = 360°°.

Therefore, by addition [of Z ED K  to Z EDZ],
Z KDZ = 93;30°° where 2 right angles = 360°°, 

and, in the circle about right-angled triangle DZN. 
arc ZN = 93;30°.

H310 Therefore its chord, ZN = 87:25” where ZD = 120^.
So where ZD = 58:54’’, i.e. where the epicycle radius ZK  is 43:10^.

ZN = 42;54^
••• ZN =119:18'’ where hypotenuse ZK  = 120^ 

and, in the circle about right angled triangle ZKN, 
arc ZN = 167;38°.‘®

Z ZKD = 167;38°‘’ where Z ZD K  has already been found as 93;30°°.

"’The accumulated rounding error here is considerable. ZN should be about 1 IQilS** rather than 
1 1 9 :18 '’. Since this chord is so close to the maximum ol’ 120’’, the resulting error in the arc is great: 
accurate computation would give ZN = I6 7 ;2 2 ° ,  resulting in a not negligible change o f 8 '  in the final 
result (2 3 0 :4 0 °1 .



So, by addition, I  K ZH  = 261;8®°.
And we showed that Z BZD (= Z HZ©) = 2;12®® in the same units.

- , /  n 'y v  /258;56°° where 2 right angles = 360^
Therefore, by subtraction, Z 0 Z K  = i  ooo u • u* i icno'  129;28° where 4 right angles = 360®.

So the pianet Venus, at the time in question, was the above distance, 129:28°, in 
advance of the epicycle apogee and, [therefore], in the motion [on the 
epicycle] assigned to it in the hypothesis, [namely] towards the rear, it was the 
difierence of the above from one revolution, 230;32°, which was what we had to 
determine.

[2] From the ancient observations we selected one which is recorded by 
Timocharis as follows. In the thirteenth year of Philadelphos, Mesore [XII]
17/18 in the Egyptian calendar [-271 Oct. 11/12], a t the twelfth hour, Venus 
was seen to have exactly overtaken*' the star opposite V indemiatrix. T hat is the 
star which, in our descriptions [catalogue X X V II 6], is the one following the H311 
star on the tip of t.Ke southern wing of Virgo, and which had a longitude of 
TTR 84° in the first year of Antoninus. Now the year of the observation is the 
476th from Nabonassar, while the first year of Antoninus is 884 [years] Irom 
Nabonassar;'* to the 408 years of the interval corresponds a motion of the fixed 
stars and the apogees of about 4y’:°. Hence it is clear that the longitude of Venus 
was TTB 4s°, and the longitude of the perigee of its eccentre TT], 20H°. And here too 
Venus was past its greatest elongation as morning-star; for 4 days after the 
above obsen.^ation, on Mesore 21/22, as one can deduce from what Timocharis 
sass. its longitude was TTJ 86° according to our coordinates: and the mean 
position of the sun was ̂  17;3° at the fiJ-st observ'ation and— 20;59° at the next: 
thus its elongation at the first obsei-v'ation comes to 42;53° and a t the next 42;9°.

W ith the above as data, let there be drawn [Fig. 10.4] a figure similar [to the 
preceding], but which has the epicycle in advance of the perigee, since the mean 
longitude of the epicycle is — 17;3°, while the longitude of the perigee is %  H312 
20;55°. Now for that reason

Z EBZ [ -n i  20,-55» -  ^  17;3»] = { 4  right a n g l«  = 3 6 ^
 ̂ [ 6 / ;44°° where 2 right angles = 360°^.

Therefore, in the circle about right-angled triangle BGL, 
arc GL = 67:44° 

and arc BL = 112;16° (supplement).
Therefore the corresponding chords

and BL I  m Is S '}  ^
Therefore where BG = l:15’’and therad iusoftheeccentre .G Z  = 60’’,

GL = 0;42‘’ 
and BL = 1;2 .̂

’’ Most translations interpret this word (KatetX-Titpca;) as ‘occulted’. M odem  calculations show 
that no occultation occurred, since Venus passed about 12' to the south ofT| Vir. Nevertheless, since 
another observation where no occultation could have occurred is unambiguously described as an 
occultation (sec p. 522 n.l6), and KoraXanBdveiv denotes occultations by the moon at H28,15,
H31,5, H32,7 and H33,9, the same is probably intended here.

"* Rcadinij to  5b a ' sto<; tfi? ’Avrtovivoo ^m X eia^  tonS fetrriv and  NaPovaoodpou with 
DG.Ar) at H311, 4-5, lor to  8e l»expi tfjq ’Avrmvivou paoiXeiaq coTtS' of the other mss. The first 
year of Antoninus is the 885th in the era Nabonassar, but since this observation is towards the endot 
the Egy ptian year. Ptolemy correctly counts to the end of Nabonassar 884.

X  4. Observation o f  Venus by Ximocharis 477
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R

And since ZG'^ -  GL~ = ZL^
Z L ^ e o " .

And by the same reasoning [as before]
H 3I3 BL = LM

and D M  = 2GL.
Therelbre, by subtraction [oI LM  from ZL], ZM  = 58;58'’ 

and DM  = 1;24'* in the same units.
Hence hypotenuse ZD[= \ /Z M ' + D M '] 58;59'’.
Therefore, where ZD = 120’’, DM  = 2:51’’, 

and, in the circle about right-angled triangle ZDM , 
arc DM  = 2;44°
L BZD = 2;44°® where 2 right angles = 360°°.

And, by addition [ofZ B Z D andZ  EBZ],Z EDZ = 70;28°° in the same units. 
And the distance of the planet in advance from the perigee,

76;45° where 4 right angles = 360° 
153;30°° where 2 right angles = 360°°. 

Therefore, by subtraction, Z ZDK = 83;2°° in the same units, 
and, in the circle about right-angled triangle DZN, 

arc ZN = 83;2°.
So its chord ZN = 79;33'’ where hypotenuse DZ =120'*, 

and where DZ = 58;59*’, i.e. where the epicycle radius Z K  = 43;10‘’, 
ZN = 39; 7^

Therefore, in the circle about right-angled triangle ZKN, 
where hypotenuse ZK  = 120"

ZN = 108;45'’

Z E D K [= m  20;55°- 1T5 4; 10°] =
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and arc ZN«* 130®.
Z D K Z = 130°° where Z ZD K  has already been found as 83;2®°. 

And, by addition, Z © Z K  = 213;2°° in the same units.

At that moment, then, the distance of the planet Venus, [in the sense of 
rotation] towards the rear, from the epicycle apogee H  was the difference from 
one revolution, 252;7°, which was what we had to determine.

Now its distance from the af>ogee of the epicycle, in the same sense, at the 
moment of our observation was 230;32°. And the interval between the two 
observations comprises 409 Egyptian years and about 167 days, and 255 
complete revolutions in anom aly (for 8 Egyptian years produce approximately 
5 revolutions, so the 408 years produce 255 revolutions, while the remaining 
year plus the additional days do not complete the period of one revolution). So 
we have dem onstrated that in 409 Egyptian years 167 days the planet V^enus 
travels on the epicycle, beyond 255 complete revolutions in anom aly ,338 ;25°, 
which is the am ount by which the position at our observation exceeded the 
earlier one. And approxim ately the same increment results from the mean 
motion tables which we set out above. For our correction of the mean motions 
was derived irom the increment over complete revolutions we have found 
[above]: the tim e-in ter\al was reduced to days, and the revolutions plus the 
increment to degrees. For then, when the total in degrees is di<'ided by the total 
in days, there results the m ean daily motion of Venus in anom aly which we set 
out previously.’’

H314

H315

5. {On l/ie epoch oj [^\'enus'\ periodic motions]

Here, too, the task remains to establish the epochs of the periodic motions for 
the Hrst year of the reign of Nabonassar, Thoth 1 in the Egyptian calendar, 
noon. We again took the interval between the latter mom ent and the moment of 
the more ancient observation. This comes to 

475 Egyptian years 3464 days approxim ately."
T he increm ent in mean motion corresponding to that interval in the columns

‘®The accumulated rounding error here amounts to 4 ' (one finds 107;49®).
Reading dv(l)^<xX^a(; (with DG) for dvo)naA,t£5v at H 314,22. Corrected by Manitius.
O n the actual derivation ol'the mean motion lor Venus see Appendix C. Ptolemy’s increment 

in mean motion, 338;25°, is the motion from 252;7° (above) to 230;32® (p. 477). The accumulated 
rounding errors in those figures (see p. 476 n. 16 and above n. 19) lead to a difference in the increment 
o f+4', which would have an ell'ect on the resulting mean motion. Furthermore it is unclear what 
interval in days Ptolemy is actually using. He gives the round num ber 409* 167^. But the time ol' 
Ptolemy’s observation is given as 4;45 a.m., and of Timocharis’ as ‘at the 12th hour’ (interpreted as 
6 a.m. in X  5, see below n.22). So the interval should be l i  hours less than the above, or, i f o n f . 
corrects for the equation of time at Ptolemy’s observation, (cf. p. 475 n .l5) i j  hours less.

If one assumes that the observation of Timocharis (p. 477) was made just a t dawn, and applies 
the equation of time with respect to the epoch of eraNabonassar (ab o u t- i hour), the interval given is 
approximately correct. But see n.23.



H316 for anomaiy is approximately 181®.  ̂’ Subtracting the latter from the 252;7° [of 
the position] at the observation, we get for the first year ofNabonassar, T hoth 1 
in the Egyptian calendar, noon: 

epoch in anomaly; 71;7° from the apogee of the epicycle.
The mean position in longitude is again, by hypothesis, the same as the sun's 
namely

longitude: K 0;45°.
And it is obvious that, since the apogee [of the eccentre] was at about 8 20;55° 
at the observation, and to the intervening 476 years correspond approximately 
44° [of motion of the apogee], at the moment of epoch the apogee will be in 
about 8 16; 10°.

6. {Preliminaries for the demonstrations concerning the other [3 outer] planets]

Such, then, were the methods which we successfully used for these two planets, 
Mercury and Venus, to establish the hypotheses and dem onstrate [the sizes ol] 
the anomalies. For the other three, M ars, Ju p ite r  and Saturn, the hypothesis 
which we tlnd for their motion is the same [for all] and like that established for 
the planet Venus, namely one in which the eccentre on which the epicycle 
centre is always carried is described on a centre which is the point bisecting the

H317 line joining the centre of the ecliptic and the point about which the epicycle has 
its uniform motion; for in the case of each of these planets too, using rough 
estimation, the eccentricity one finds from the greatest equation of ecliptic 
anomaly turns out to i)e about twice that derived from the size oJ the retrograde 
arcs at greatest and least distances of the epicycle. However, the demonstrations 
by which we calculate the amounts of lx)th anomalies and [the p>ositions ol] the 
apogees cannot proceed along the same lines for these planets as for the previous 
two, since these reach ever\' possible elongation from the sun, and it is not 
obvious from observation, as it was from the greatest elongations for Mercury 
and \ ’enus, when the planet is at the point where the line of our sight is tangent 
to the epicycle. So, since that approach is not available, we have used 
obser\'ations of their oppositions to the m ean position of the sun to demonstrate, 
fii-st of all, the ratios of their eccentricities and [the positions ol] their apogees. 
For only in such positions [of the planet],'^ considered from a theoretical point of 
view, do we find the ecliptic anomaly isolated, with no effect from the anomaly 
related to the sun.

H318 For let [Fig. 10.5] the planet’s eccentre, on which the epicycle centre is 
carried, be ABG on centre D, and let the diam eter through the apogee be AG, 
on which point E is the centre of the ecliptic, and Z the centre of that eccentre 
with respect to which the epicycle’s m ean motion in longitude is taken. Draw 
the epicycle H 0 K L  on centre B, and jo in  ZL B 0 and HBKEM .

I say, first, that when the planet is seen along line EH through the epicycle

-^Computing from the table (IX 4) one finds for the stated interval 180:58,34°. Ptolemy has 
either rounded unjustifiably, or computed for a slightly longer interval. A motion of half an hour 
more (i.e. neglecting the equation of time. of. n.22) produces I80;59,20°.

See HAMA  172. An ingenious analysis of the way in which Ptolemy arrived at the notion of the 
equant lor the outer planets was made by Swerdlow. ‘The Origin of Ptolemaic Planetary Theory’.

480 X  6. Methodology fo r  isolating ecliptic anomaly o f  outer planets
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H

Fie. 10.5

centre B, then the mean position of the sun, too, will always be on the same line, 
and that when the, planet is at H it will be in conjunction^ with the mean sun 
(which will also, in theory. !)e seen towards H). and when the planet is at K it 
will be in opposition to the mean sun (which will be seen, in theory, towards M). 
[Prooi:] For each of these [outer] planets, the sum of the mean motions in 
longitude and anomaly, counted from the apogee [of eccentre and epicycle 
respectiveh], equals the mean motion of the sun counted from the same 
starting-point. And the dill'erence between the angle at centre Z (which 
comprises the mean motion of the planet in longitude), and the angle at E 
(which comprises the apparent motion in longitude),'® is always the angle at B 
(which comprises the mean motion on the epicycle). Hence it is clear that when 
the planet is at H, it will fall short of a return to the apogee 0  by Z HB©; but 
Z HB© added to Z AZB produces the angle comprising the sun’s mean motion, 
namely Z AEH. which is the same as the apparent motion of the planet.^^ And 
when the planet is at K. its motion on the epicycle, again, will beZ 0B K , and 
Z 0 B K  + Z AZB equal the mean motion of the sun counted from the apogee A.

H319

-’ Reading ouvodeOoEi (with G. and possibly .\r. but the translations are ambiguous) for 
aDVoSeOei (‘is in conjunction') at H318.18.

By this expression (i^ (paivonevr) Katd ^ f |K O (;  k i v t i o i i ; )  Ptolemy means, not the true position of 
the planet, but the position ol the epicycle center as seen from the earth. Compare the expression 
(paivonevTi em toO eKiKOKXou ndpoSot; at X II 2 (H 470.il) to denote the ‘true anomaly’ (i.e. as 
counted Irom true and not mean perigee of the epicycle).

In fact Z AZB -  Z H B0 = Z .AEH. But what Ptolemy means is illustrated by Figs. PI and P2: in 
Fig. PI planet and mean sun are in conjunction. In Fig. P2 (= Fig. 10.5) they a r t  again in 
conjunction. The epicycle has travelled through the angle R (Z AZB), the planet on the epicycle has 
travelled through a , and the mean sun through tc * 360°. Then (from the figure) K =if -  (360“ -  ff) = 
K + d  -  360". Hence the mean sun's motion k  + 360° = K + d. Failing to understand this, an inter­
polator has inserted touteotiv  XcitpBeioa On’ aOTf^(; at H319,8. producing the strange result 
Z H B 0 added to Z AZB. i.e. subtracted from it.’

■Mil
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Thus the latter comprises 180® + (Z AZB -  Z LBK) = 180® + Z G EM , i.e. the 
m ean position of the sun will be opposite the apparent position of the planet.

Hence, furthermore, in such configurations [i.e. m ean conjunctions and 
oppositions], the line joining the epicycle centre B to the planet, and the line 
from E, our point of view, to the m ean sun, will coincide in one straight line, but 
at all other [sun-planet] elongations [those vectors] will always be parallel to 
each other, although the direction in which they point will vary.

X  5. Reason fo r  using planetary oppositions as observational basis 483

H320

fl

Fig. 10.6

[Proof:] In the above figure [see Fig. 10.6], if we draw  the line BN from B to the 
planet in any situation, and the line EX from E to the m ean sun, for the reasons 
stated above

Z AEX = Z A Z 0  + Z NB©,2» 
and Z A Z 0 = Z A EH  + Z H B 0.

[••. Z AEX = Z AEH + Z N B0 + Z H B 0.]
If we subtract Z AEH from both sides,

Z H EX  = Z HBN.
Therefore line EX is parallel to line BN.

Thus we find that in the above configurations of conjunction and opposition 
with respect to the mean sun, the planet is viewed, in theory, [along th6 line] 
thi ough the centre of the epicycle, just as if its motion on the epicycle did not 
exist, but instead it were itself situated on circle ABG and were carried in 
uniform motion by the line ZB, in the same way as the epicycle centre is. Hence 
it is clear that it is possible to isolate and dem onstrate the ratio of the ecliptic^ 
eccentricity by [both] such types of [planetary] positions, but since the

H321

”  I.e. the mean motion of th^ sun equals the mean longitudinal motion ol' the planet plus the 
mean anomaly of the planet.



conjunctions are not visible, we are ieft w ith the oppositions^® on which to build 
our demonstrations.

484 X  7. The three oppositions observed fo r  M ars

7. [Demonslration o f the eccentricity and apogee {position] o f Mars]^°

In the case of the moon we took the positions and times of three lunar eclipses, 
and demonstrated the ratio of the anom aly and the position of the apogee 
geometrically. So too, here, in the same way, for each of these [outer] planets, 
we observed the positions of three oppositions to the m ean sun, as accurately as 

H322 possible, using the astrolabe instruments, com puted, too, the time and position 
for the precise 180° elongation^' from the position of the mean sun at [each of] 
the observations, and thence dem onstrate the ratio of the eccentricitv and [the 
position ol] the apogee.

First, then, for Mars, we took three oppositions, which we observed as 
foilows.^'
[1] The first in the fifteenth year of H adrian . Tybi [V̂ ] 26/27 in the Egyptian 

calendar [130 Dec. 14/15], 1 equinoctial hour after m idnight, at about I I  
21°.

[2] The second in the nineteenth year of H adrian, Pharm outhi [VIII] 6 /7  in 
the Egy ptian calendar [135 Feb. 21/22], 3 hours before midnight, at about 
a  28:50°.

[3] The third in the second year of Antoninus. Epiphi [XI] 12/13 in the 
Egy ptian calendar [139 M ay 27/28]. 2 equinoctial hours beibre midnight, 
at about ^  2;34°.

The intervals between the above are as follows:
From oppositions [1] to [2] 4 Egyptian years 69 days 20 equinoctial hours. 
From [2] to [3] 4 years 96 days I equinoctial hour.
For the lirst interval we com pute a [mean] motion in longitude, beyond 
complete revolutions, of 81 ;44° 
and for the second interval, 95;28°.

H323 Even if we used the crude periods of return, which we listed above, to com pute 
the mean motions, it would make no significant dill'erence over such a short 
inter\'al.^^

-*4kp(6vi)1ctoi oxTlMatiojio'i, litcraily ‘configurations [at which the planet rises and sets] a t the 
beginnini? and end of night’.

’®On the method used to find the eccentricities of the outer planets s e c 172-7,  Pedersen 
273-83.

Reading SianETpou OTOoeox; (with DG.Ar) for S taardoeaq  ‘elongation' at H322.1.
The times arc arrived at by computing the position of the mean sun. Therefore the computed 

position of the mean sun at the time stated ought to be exactly 180° different from the longitudes 
given. 1 find, from the solar mean motion tables, 260;58,55° (instead of 261°), 328;50,22° (for 
328;50°) and 62;31,45° (for 62;34°). The latter discrepancy represents about half an hour in solar 
motion. Could Ptolemy have applied the equation of time (which is about -25^ mins. compared 
with epoch) here? If so, he was mistaken, since all the computations arc in terms of mean solar days.

Ptolemy is referring to the crude periods of IX  3. Thus for Mars (cf. p. 424) in 79 solar years 
occur 37 returns in anomaly and 42 returns in longitude. Assuming Ptolemy’s year-length of 
365;14,48^, one finds from this, for 69^ 20*, a longitudinal increment-of 81 ;39°, and, for 4*' 96^ l", 
95;23°. Using Ptolemy’s procedure, and carrying out three iterations, I find from the above data 2e 
”■ 11;57’’, distance of 3rd opposition from perigee ** 44°. Comparison with Ptolemy’s results from 
the more accurate data, 1 ?  and 44;21°, shows that the differences are indeed negligible.
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It is obvious that the apparen t motion of the planet, beyond complete 
revolutions, is
lor the lirst interval 67;50°
and for the second interval 93;44°.

Then [see Fig. 10.7] let there be draw n in the  plane oi the ecliptic three equal 
circles: let the circle carrying the epicycle centre ol M ars be ABG on centre D, the 
eccentre of uniform motion EZH  on centre© , and the circle concentric with the 
ecliptic K L M  on centre N, and let the diam eter through all [three] centres be 
X O PR . Let A be the point a t which the epicycle centre was at the first 
opposition, B the point where it was at the second opposition, and G the 
point where it was at the third opposition. Jo in  ©AE, ©BZ, © HG, NKA, NLB 
and NGM . Then arc EZ of the eccentric [equant] is 81;44°, the am ount of the 
first interval of mean motion, and arc ZH  is 95;28°, the am ount of the second H324

Fig. 10.7



486 X  7. Argument fo r  approximation procedure

H325

interval. Furtherm ore arc K L  of the ecliptic is 67;50®, the am ount o f the first 
interval of apparent motion, while arc LM  is 93;44°, the am ount of the second 
interval.

Now if arcs EZ and ZH  of the eccentric [equant] were subtended by arcs KL 
and LM  of the ecliptic, that would be all we would need in order to dem onstrate 
the eccentricity.^^ However, as it is, they^^ [arc K L  and  arc LM ] subtend arcs 
AB and BG of the middle eccentre, which are not given; and if we jo in  NSE, 
NTZ, NHY, we again find that arcs EZ and ZH  of the eccentric [equant] are 
subtended by arcs ST and TY of the ecliptic, which are, obviously, not given 
either. Hence the diflerence arcs,^® KS, L T  and MY, must first be given, in order 
to carry out a rigorous dem onstration of the ratio of the eccentricity starting 
from the corresponding arcs, EZ, Z H , and ST, TY. But the latter [arcs ST and 
TY] cannot be precisely determ ined until we have found the ratio of the 
eccentricity and [the position ol] the apogee; however, even without the 
previous precise determ ination of eccentricity and apogee, the arcs are given 
approxim ately, since the dilference arcs are not large. Therelbre we shall first 
carry out the calculation as if the^^ arcs ST, TY  did not difier significantly from 
the arcs KL, LM.

For [see Fig. 10.8] let the eccentre of m ean motion of M ars be ABG, on which 
A is taken as the point of the first opposition, B of the second, and  G of the third. 
Inside the eccentre take D as the centre of the ecliptic, which is our point of 
view, draw  in every case [where one has to carry out this kind of calculation] the 
lines joining the points of the three oppositions to the observ'er (as here AD, BD

Fig. 10.8

^^For the situation would be identical with that of the lunar hypothesis (IV 6).
Reading au ta i (with A,B [not reported by Heiberg], Ar) for auToi at H324,8.
The arcs forming the differences between arc K L and arc TS, and between arc LM and arc TY. 

”  Reading Jtapd tom ; KAM t S v  ETY 7cepi<pepei(3v, at H324.22, for Ttapd xaq KAM, ZTY 
7iepi(pepeiQv (‘as if arcs did not differ significantly from fares] KLM  and STY’, which is senseless). 
.My text is the reading of'all mss., Greek and Arabic. Heiberg omitted tSJv through a slip or a 
misprint. Because Manitius did not realize this, his translation here is badly Hawed.
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and GD), and, as a universal mle, produce one of the three lines so draw n to 
meet the circumference of the eccentre on the other side (as here ODE), and 
draw  the line joining the other two opposition points (as in this case AB). Then, 
from the point where the straight line produced intersects the eccentre (as E), 
draw  the lines joining it to the other two opposition points (as here E A and EB), 
and drop p>eipendiculars [from the point corresponding to E] on to the lines 
jo in ing the above-mentioned two points to the centre of the ecliptic (in this case, 
drop EZ on to AD, and EH  on to BD). Also, drop a perpendicular from one of H326 
those two points on to the line joining the other with the extra point generated 
on the eccentre (as here, perpendicular A 0  on to line BE). If we always observe 
the abo\ e rules when draw ing this type of figure, we will fmd that the same 
numerical ratios result however we decide to draw it.^* T he rem ainder of the 
dem onstration will become clear as follows, on the basis of the above arcs for 
Mars.

Since arc BG of the eccentre is given as subtending 93;44° of the ecliptic, the 
angle at the centre of the ecliptic^

93;44° where 4 right angles = 360°
187:28°° where 2 right angles = 360°°,

and its supplement, /L EDH = 172;32°° in the same units.
Therefore, in the circle about right-angled triangle DEH, 

arc EH = 172:32°
and EH = 119:45'’ where hypotenuse DE = 120’’.

Similarly, since arc BG = 95:28° 
the angle at the circumlerence. Z BEG = 95:28°° where 2 right angles = 360°°.

But we found that Z BDE = 172:32°° in the same units.
Therefore the remaining angle [in triangle BDE],

Z EBH = 92°° in the same units.
Therefore, in the circle about right-angled triangle BEH, H327

arc EH = 92°
and EH = 86:19*’ where hypotenuse BE = 120’’.

Therefore where EH, as we showed, is 119:45’’, and ED = 120^,
BE = 166;29^.

Again, since the whole arc ABG of the eccentre is given as subtending 
[93;44° + 67;50° =] 161;34° of the ecliptic (the sum of both intervals),

Z ADG = 161;34° where 4 right angles = 360°, 
and, by subtraction [from 180°],
/  ADF -  { "here 4 right angles = 360°

"  \36 ;52°° where 2 right angles = 360°°.
Therefore, in the circle about right-angled triangle DEZ, 

arc EZ = 36;52°
and EZ = 37;57'* where hypotenuse DE = 120^. 

Similarly, since arc ABG of the eccentre is, by addition [of 81;44° to 95;28°], 
177; 12°,'

Z AEG = 177; 12°° where 2 right angles = 360°°.
But we found that Z ADE = 36;52°° in the same units.

I.e. whichever of the lines AD, BD, GD we decide to produce.



Therefore the rem aining angle [in triangle ADE],
Z DAE = 145;56°® in the same units.

Thereibre, in the circle about right-angled triangle AEZ, 
arc EZ = 145;56° '

H328 and EZ = 1I4;44^ where hypotenuse AE = 120'’.
Thereibi-e, where EZ, as was shown = 31;5T, and ED = 120'’,

AE = 39;42^
Again, since arc AB of the eccentre = 81;44°,

Z AEB = 81;44°° where 2 right angles = 360°°.
Therefore, in the circle about right-angled triangle A E 0 , 

arcA ©  = 81;44°
------------- ------ r -  ^ ------ ------

Thereibre the corresponding chords 
^0  ^  78' 31*̂1 

and ES I  90;45'’/  = 120"-
Therefore where AE, as was shown, is 39;42‘’, and DE is given as 120*’,

0 A  = 25:58'’ 
and E 0  = 30:2'’.

But the whole line EB was shown to be 166;29*’ in the same units. 
Therefore, by subtraction, 0 B  = 136;27'’ where 0 A  = 25;58‘’.

And 0B-’ = 18615;16,^’
0 A ' = 674; 16, 

so AB- = 0B - + 0.A ' = 19289:32.
AB = 138:53'* where ED = 120'’ and AE = 39:42”.

H329 But, where the diam eter of the eccentre is 120'’. AB = 78:31’’, 
since it subtends an arc of 81:44°.

Therefore where AB = 78:31'’, and the diameter ofthe eccentre is 120'’, 
ED = 67:50'’ 

and AE = 22:44^
Therefore arc AE of the eccentre is 21:41°.^®
And, by addition, arc EABG = [177;12° + 21;41° =] 198:53°.

Therefore the remaining arc GE = 161 ;7°
and the corresponding chord GE = 118:22'’ where the diam eter ofthe eccentre

is 120”.
Now if GE had been found equal to the diam eter ofthe eccentre, it is obvious 

that the centre would lie on GE, and the ratio of the eccentricity would 
immediately be apparent. But, since it is not equal [to the diameter], but makes 
segment EABG greater than a semi-circle, it is clear that the centre of the 
eccentre will fall within^' the latter. Let it be a t K  [Fig. 10.9], and draw  through

The square of 136;27 is I8618;36 to the nearest minute. The error has no significant effect on the 
size of AB below.

^  There are some serious errors here. For the chord AE one should find, from Ptolemy’s figures, 
22:27'’, and this is indeed thereadingofG er (but not the rest of the Arabic tradition) at H329,6. The 
arc o fth e  latter, however, is not 21;41°, but 21;34°. Ptolemy’s result (guaranteed by his further 
calculations), 21;41°, is the arc of 22;^^'’. It looks as if the errors are. Ptolemy's own (hence the 
reading of Gcr is a misguided emendation). Did Ptolemy compute 22:27'’ — 21;34°, and then, 
misreading his own notes, 22;34^ — 21;41°?

Reading^vt6(; toutou (with DG) at H329,17 for itp6<; Totittp (‘at the latter’). Corrected by 
Manitius.

488 X  7. Preliminary determination o f  M ars' apogee and eccentricity
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M
Fig. 10.9

D and K the diam eter through both centres, LK D M , and drop perpendicular 
K N X  from K  on -to GE.
T hen, since, as we !ihowed. EG = I18;22‘’ where diam eter LM = 120’’. H330

and DE = 67;50*’ in the same units, 
by subtraction, GD = 50;32'* in the same units.

Then, since ED.DG = LD.DM,^^
LD.DM  = [67;50 x 50;32 =] 3427;51.

But (LD.DM ) + D K ‘ equals the square on half the whole line [LD + DM],^^ 
i.e. (LD.DM ) + DK2 = LK ^

Now the square on the halfis3600,and (LD.DM ) = 3427:51, 
so DK- = 3600 -  3427;51 = 172;9, 

and the distance between the centres,
D K  ** 13;7'’ where the radius of the eccentre, KL =

Furtherm ore, since
GN = iG E = where diam eter LM  = 120*’,

and, as we showed, GD = 50;32‘’ in the same units, H331
by subtraction, DN = 8;39’’ where D K  was com puted as 13;7‘*.

Therefore in the circle about right-angled triangle DKN,
DN = 79;8'’ where hypotenuse D K  = 120*’, 

and arc DN = 82;30®.
r 82;30°° where 2 right angles = 360°°

" ^  ^ t4 1 ;1 5 °  where 4 right angles = 360°.
And since Z D K N  is an  angle a t the centre of the eccentre, 

arc M X  = 41; 15° also.

«  Euclid III 35.
Euclid II 5.
Accurate computation from Ptolemy’s original da ta  gives about I3;2i'’.



H332

490 X  7. Correction to account for equant: 1st opposition

But the whole arc G M X  = { arc G X E [= i  161 ;7°] = 80;34°.
Therefore, by subtraction, the arc from  the third opposition to the perigee, 

arc G M  = 39; 19°/*
And it is obvious that, since arc BG is given as 95;28°, 

by subtraction, the arc from the apogee to the second opposition, 
arc LB [= 180° -  (95;28® + 39; 19°)] = 45; 13°, 

and that, since arc AB is given as 81;44°, 
by subtraction, the arc from the first opposition to the apogee, 

arc AL [= arc AB -  arc LB] = 36;31°.
Taking the above quantities as given, let us investigate the differences which 

can be derived from them  in the ecliptic arcs which we seek to determ ine a t each 
of the oppositions [in turn]. O ur investigation proceeds as follows.

H333

Z EO X  =

Fig. 10.10

[See Fig. 10.10.] From the previous figure [10.7] for the three oppositions let 
us draw separately the part representing the first opposition, draw  the 
additional line AD, and drop perpendiculai-s DF and N Q from  points D and N 
on to A 0 produced.

Then, since arc X E  = 36;31°,
36;31° where 4 right angles = 360°
73;2°° where 2 right angles = 360°°.

And the vertically opposite angle D 0 F  = 73;2°° in the same units also. 
Therelbre, in the circle about right-angled triangle D 0 F , 

arc D F = 73;2° 
and arc 0 F  = 106;58° (supplement).

Therefore the corresponding chords 
D F = 71-25'’

and F 0  = 96;’27‘’J hypotenuse D 0  = 120^.

Therelbre where D 0  = 6;33^’’ and the radius of the eccentre, DA = 60'’, 
DF = 3;54’’ 

and F 0  = 5; 16'’.

Accurate computation from Ptolemy’s data  gives 39;10“.
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And since DA^ -  DF* = FA^,
AF = 59;52^, 

and, since Q F  = F 0 , 
by addition [of Q F  to FA], QA = 65;8’’

where NQ,= 2DF = 7;48‘’.
Hence hypotenuse [of right-angled triangle NAQ]

NA = 65;36'* in the same units.
Therefore, where NA = I20^ N Q =  14;16P, 

and, in the circle about right-angled triangle ANQ, 
arc NQ.= I3;40°

■. Z N A Q =  13;40°° where 2 right angles = 360°°.
Again, since Q N  was shown to be 7;48'* and Q 0  [= 2 F 0] to be I0;32‘*, 

where the radius ol the eccentre, 0 E  = 60’’,
by addition, Q 0 E  = 70;32'* in the same units, 

and hence the hypotenuse [of right-angled triangle QNE]
NE 71'’ in the same units.

Therefore, where NE = 120^ Q N  = 13;10P,̂ *̂  
and, in the circle about right-angled triangle ENQ, 

arc Q N  = 12;36°.
Z N E Q =  12;36°° where 2 right angles = 360°°.

But we Ibund that Z N A Q =  13;40°° in the same units.
Therefore, by subtraction [ofZ  N E Q fro m  Z NAQ],

'l ;4 ° °  where 2 right angles = 360»°
0;32° where 4 right angles = 360°.

T hat [0;32°], then, is the am ount of arc KS of the ecliptic.
Next, draw  a similar figure containing [the part of] the diagram for the 

second opposition [Fig. 10.11].

H334

Z ANE =

Fig. 10.11

The roundings here are particularly crude: from the immediately preceding numbers one finds 
NE = 70;57,48^ whence Q N  = 13;11,24^. Even NE = 71'’ leads to Q N  = 13;I0,59^.



Then, since arc X Z is given as 45; 13°/’
Z X 0 Z  -  /  where 4 right angles = 360°

\  90;26°° where 2 right angles = 360°°,
and the vertically opposite angle D 0 F  = 90;26°° in the same units, also.

Therefore, in the circle about right-angled triangle D©F,
arc DF = 90;26=

and arc F 0  = 89;34° (supplement).
Therefore the corresponding chords

DF ~ 85*10^1 
and F 0  = 84;32'’J hypotenuse D© = 120”.

H335 Therefore where D 0  = 6;33!’’and the radius of the eccentre,DB = 60’’,
DF = 4:39” 

and F 0  = 4;38”.
And since DB^ -  DF‘ = BF‘,

FB = 59;49”, 
and. since FQ,= F 0 , 

by addition. QB = 64;27'* where XQ(= 2DF) is computed as9; IB”.
Therefore hypotenuse [of right-angled triangle NQB]

NB = 65;6‘’̂ “ in the same units.
Therefore, where NB = 120”, N Q =  17;9”. 

and. in the circle about right-angled triangle BXQ, 
arc N Q =  16;26°
Z X B Q =  16:26°° where 2 right angles = 360°°.

Again, .since N Q w as shown to be9;18”, and Q© [= 2F 0] = 9; 16”, 
where the radius of the eccentre, Z 0  = 60”.

by addition, Q 0 Z  = 69; 16” in the same units.
Hence hypotenuse NZ [of right-angled triangle NQZ] = 69:52”.
Therefore, where hypotenuse NZ = 120”, 16”,
and. in the circle about right-angled triangle ZXQ, 

a rc N Q = 1 5 ;2 0 ° .
H336 ••• Z N Z Q =  15;20°° where 2 right angles = 360°°.

But we found that Z N B Q =  16;26°° in the same units.
1;6°° in the same units

492 X  7. Correction to account fo r  equant: 1st and 2nd oppositions

Therefore, bv subtraction. Z BNZ , , • . .[0:33° where 4 right angles = 360°.
T hat [0:33°], then, is the am ount of arc LT  of the ecliptic.

Now, since we found arc KS as 0;32° for the first opposition, it is clear that the
first inteival. taken with respect to the eccentre.^^ will be greater than the
intei-val of apparent motion by the sum of both arcs, [namely] 1 ;5°, and [hence]
will contain 68;55°.

Then let [the part of] the diagram  for the third opposition be draw n [Fig.
10.12]. Now, since arc PH is given as 39; 19°,

Z P 0 H  -  -f where 4 right angles = 360°
\  78;38°° where 2 right angles = 360°°.

^'Cf. arc LB on p. 490. _
Reading (with D, Ar) for ̂ 0 (69;6) at H335,9. The correction is assured Ijy the preceding and 

subsequent computations.
■‘*I.e. the equant: this is nnade explicit in X I 1 p. 515. See n.7 there.
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Therefore, in the circle about right-angled triangle D 0 F , 
arc DF = 78:38° 

and arc 0 F  = 101 ;22® (supplement).
Therefore the eorresponding chords

and 0F  = gistf'}  hypotenuse D0 = 120".
Therefore where the distance between the centres, D 0  = 6;33 '̂*, and the radius H337 
of the eccentre, DG = 60’’,

DF = 4;9^ 
and 0 F  = 5;4^

And since GD- -  DF- = G F^
GF = 59:5P, 

and, since 0 F  = FQ, 
by subtraction, G Q =  54:47'’ where NQ{= 2DF) is computed as 8; 18’’.

Hence hypotenuse [of right-angled triangle NGQ]
XG = 55:25^ in the same units.

Therefore, where XG = I2(f ,  X Q =  17:59^, 
and, in the circle about right-angled triangle GNQ, 

arc X Q =  17:14°
Z X G Q =  17:14°° where 2 right angles = 360°°.

Again, since X Q w as shown to b e 8:18'’, a n d 0 Q [=  2F 0] = 10:8'’, 
where the radius of the eccentre, 0 H  = 60**,

by subtraction, Q H  = 49:52’’ in the same units, 
and therefore hypotenuse X H  [of right-angled triangle X H Q ] = 50;33'’. H338

Therefore, where XH = 120^, X Q =  19;42^' 
and, in the circle about right-angled triangle HXQ, 

arc XQ.= 18:54°.
••• Z X H Q =  18;54°° where 2 right angles = 360°°.

But we showed that Z X G Q =  17:14°° in the same units.
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f 1'̂
Therefore by subtraction, Z G N H  = i ;40°° in the same units.

:50° where 4 right angles = 360°. 
T hat [0;50°], then, is the am ount of arc M Y of the ecliptic.

Now since we found arc L T  as 0;33° for the second opposition, it is clear that 
the second interval, taken with respect to the eccentre, will be less than the 
interval of apparent motion by the sum of both arcs, [namely] 1;23°, and will 
[thus] contain 92;21®.

Using the ecliptic arcs thus com puted for the two intervals, and, once more, 
the original arcs assumed for the eccentric [equant], and  following the theorem 
dem onstrated above [pp. 486-9] for such elements, by means of which we 
determine [the f>osition ol] the apogee and the ratio of the eccentricity, we find 
(not to lengthen our account by going through the same [com putations in detail 
again]),

H339 the distance between the centres, D K  = 11;50’’ where the radius of the eccentre
is 60’’;

the arc of the eccentre from the third opposition to the perigee, G M  = 45;33°.^° 
Hence arc LB = [180° -  (95;28° + 45;33°)] = 38;59° 

and arc AL = [81;44° -  38;59°] = 42;45°.
Next, starting from these [arcs] as data, we found from our dem onstration for 
each of the oppositions [separately] thefollow ingam ountsforthetruesizeofeach 
of the arcs in question:

arc KS 0:28°
arc LT, about the same, 0:28° 

and arc MY 0;40.^‘
We combined the [corrections]lbr the first and second oppositions, added the 
resulting 0;56° to the ecliptic arc of the first interval, 67;50°, and got the accurate 
interval with respect to the eccentre as 68;46°. Again, com bining the 
[corrections] for the second and third oppositions, and subtracting the resulting 
1;8° from the apparent motion on the ecliptic over the second interval, 93;44°, 
we got the accurate interval with respect to the eccentre as 92;36°.

Next, using the same procedure [as before], we determ ined a more accurate 
H340 value for the ratio of the eccentricity and [the position of] the apogee; we found 

the distance between the centres, DK*» 12’’ where the radius of the eccentre,
KL = 60^

arc GM  of the eccentre = 
whence, again, arc LB = 40:11° 

and arc AL = 41;33°.
Next, we shall show by means of the same [configurations] that the observed 

apparent intervals between the three oppositions are found to be in agreement 
with the above quantities.

■’“From Ptolemv’s elements, AX, = 8 1 ;4 4 ° ,  A7., = 9 5 ;2 8 ° ,  AX, =68;55°, AX, = 9 2 ;2 1 ° ,  I compute 2if = 
IhSO', GM = 4 5 ;2 8 » .

From a double eccentricity of 11 ;50‘’ and Ptolemy’s values for arcs GM, LB and AL, I find: arc 
KS = 0;27,49^. arc LT = 0;26,51°, arc MY = 0;39,31°

From Ptolemy’s elements I find: D K = 11;59,50'’®» 12'’, arc GM  = 44;18,45®*»44;19°. Ptolemy is 
quite rit^ht to terminate his calculation here, since a further iteration produces a change in the 
eccentricity of less than 0;0,30'’ and in the line of the apsides of less than 5'.
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z
Fig. 10.13

Let there be diaw n [Fig. 10.13] the diagram  for the first opposition, but 
with only ec ccntrc EZ, on which the epicycle centre is always cai i ied, drawn in. 
riien

Z A 0E  = 41;33° where 4 right angles = 360°, 
so where 2 right angles = 360°°,

Z AGE = 83;6°° = Z D 0 F  (vertically opposite).
Theiclbre, in the ciicle about l ight-angled triangle D 0F . 

arc DF = 83;6° 
and arc F 0  = 96;54° (supplement).

Thereibie the corresponding chords

and F 0  i 89;50"} hypotenuse D 0  = 12ff.

Theielbre where D 0  = 6'’ and hypotenuse [of l ight-angled triangle 
DAF] DA = 60^ '

DF = 3;58!‘* H341
and F 0  = 4;30’’.

And since DA* -  DF- = FA',
FA = 59;50'’ in the same units.

Furtherm ore, since F 0  = F Q a n d  NQ,= 2DF,
by addition, A Q =  64;20’’ where NQ-= 7;57’’.

Hence hypotenuse [ol'right-angled triangle NAQJ NA = 64;52‘’ in the same units.
T h erefb re  where NA = 120^, N Q =  14;44^, 

and, in the circle about right-angled triangle ANQ, 
arc NQ,= 14;6°.

14;6°° where 2 right angles = 360°°
7;3° where 4 right angles = 360°.

But Z A 0 E  = 41;33° in the same units.

Z NAQ.=
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H342

Therelbre, by subtraction, the angle of the apparent position, /  ANE = 34;30°. 
This is the am ount by which the planet was in advance of the ap>ogee a t the first 
opposition.

Let a similar diagram  [Fig. 10.14] be draw n again for the second opposition. 
Then the angle of the mean position of the epicycle.

Z
Fig. 10.14

where hypotenuse D 0  = 120'’.

H343

Z B 0E  = 40; 11° where 4 right angles = 360°, 
so where 2 right angles = 360°°,

Z B 0E  = 80;22°° = Z Q 0 N  (vertically opposite).
Therefore, in the circle about right-angled triangle D 0 F , 

arc DF = 80;22° 
and arc F 0  = 99;38° (supplement).

Therelbie the corresponding chords 
DF = 77;26‘’| 

and F 0  = 91;41'’j  
Therelbre where D 0  = 6‘* and hypotenuse [of right-angled triangle 

DBF] DB = 60^
DF = 3;52’’ 

and F 0  = 4;35^
And since DB^ -  DF* = BF^,

BF = 59;53'' in the same units.
And, by the same argum ent [as before],

since F 0  = FQ, and N Q =  2 DF, 
by addition, B Q =  64;28‘’ where N Q =  7;44^.

Hence hypotenuse [of right-angled triangle BNQj BN = 64;56'’ in the same units.

Reading icata Taotd (as D. Katci to auTCt, A i) for Katd taiJTa (‘according to this') at H342.23.
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Thereibre, where hypotenuse BN = 12(F, N Q .= 
and, in the circle about right-angled triangle BNQ, 

arc N Q =  13;42°.
■ Z N B Q -  *f where 2 right angles = 360°°

6;5i- where 4 right angles = 360°.
But Z B 0E  = 40; 11° in the same units.

Therefore, by subtraction, the angle ol' apparent position,
Z ENB = 33;20° in the same units.

T hat [33;20°], then, is the am ount by which the planet, in its apparent motion, 
was to the rear of the apogee at the second opposition. And we showed that at 
the llrst opposition it was 34;30° in advance oCthe apogee. Therefore the total 
distance [in apparent motion] from first to second opposition comes to67;50°, in 
agreem ent with what we derived from the observations [p. 485].

Let the diagram  lor the third opp>osition be draw n in the same way [Fig. 
10.15]. In this case the angle of the mean position of the epicycle. H344

Z
Fig. 10.15

Z G0Z = 44:21° where 4 right angles = 360° 
J;42°° where 2 right angles = 360°° 

Therefore, in the circle about right-angled triangle D 0 F , 
arc DF = 88;42° 

and arc F 0  = 91; 18° (supplement).
Therefoie the corresponding chords 

DF = 83;53'’l  
and F 0  = 85;49^J where hypotenuse D© = 120'*.

^^7;44 X 120/64;56 = 14:17,30, but il'one carries out the above computations to 2 fractional 
sexagesimal places, one linds XQ.= 14:18,41’’. .As often. Ptolemy computed with greater accuracy 
than the text implies.



Therefore where D 0  = 6** and the radius of the eccentre, DG = 60'’, 
D F =  4 ;lU ’’ 

and F© = 4; 17”.
And since DG^ -  DF^ = G F^

we find that GF = 59;51’’ in the same units.
Furtherm ore, since F© = FQ, and N Q =  2DF, 

we find by subtraction that Q G  = 55;34‘’ where N Q =  8;23’’.
Hence we find that hypotenuse [of right-angled triangle GNQ]

GN = 56; li** in the same units.
Therefore, where hypotenuseGN = 120'’, N Q =  17;55’’, 
and, in the circle about right-angled triangle GNQ, 

arc N Q =  17; 10®.

H345 Z 0 G N  = I  2 right angles =
8;35° where 4 right angles = 360®.

But Z G 0 Z  = 44;21° in the same units.
Therefore, by addition,Z  GNZ = 52;56° in the same units.
T hat [52;56°], then, is the am ount by which the planet was in advance of the 
perigee at the third opposition. But we also showed that at the second opposition 
it was 33;20° to the reaj- oi'the apogee. So we have found 93;44° between the 
second and third oppositions, com puted by subtraction [of thesum of52;56°and 
33;20° from 180°], in agreement with the am ount obseiA ed for the second intei-val 
[p. 485].

Furtherm ore, since the planet, when viewed at the third opposition along line 
GN. had a longitude of 2;34° according to our observation [p. 484], and angle 
GNZ at the centre of the ecliptic was shown to be 52;56°, it isclear that the perigee 
of the eccentre, at point Z, had a longitude o f [^ “ 2;34° + 52;56° =] 10“ 25;30°, 
while the apogee was diametrically opposite in ^  25:30°.

And if [see Fig. 10.16] we draw M ars’ epicycle K L M  on centre G and produce
H346 line 0GM ,^^ we will have, for the moment of the third opposition;

mean motion of the epicycle counted from apogee of the eccentre: 135;39® 
(for its supplement, Z G 0 Z , was shown to be 44;21°); 
mean motion of the planet from the epicycle apogee M  (i.e. arc MK): 171 ;25° 
(for Z 0 G N  was shown to be 8;35° [above], and since it is an angle at the 
centre of the epicycle, the arc K L  from the planet a t K  to the perigee at L is 
also 8;35°, hence the supplementai-y arc from the apogee M  to the planet at K 
is, as already stated, 171;25°).
Thus we have dem onstrated, am ong other things, that a t the moment of the 

third opposition, i.e. in the second year of Antoninus, Epiphi 12/13 in the 
Egy ptian calendar, 2 equinoctial hours before m idnight, the m ean positions of 
the planet M ars were;

H347 in longitude (so-called) from the apogee of the eccentre; 135;39°
in anom aly from the apogee of the epicycle: 171 ;25®.

Q..E.D.

498 X  7. Agreement o f  computation with observations fo r  M ars

Reading ©PM (wilh al'H aijaj) for 0 F  (©G) at H345,22.
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8. {Dernonslralion o f the size o f the epicycle o f Mars]^^

O ur next task is to dem onstrate the ratio of the size of the epicycle. For this 
purpose we took an obsei-\'ation which we obtained by sighting [with the 
astrolabe] about three days after the thiixl opp>osition, that is, in the second year 
of Antoninus, Epiphi [XI] 15/16 in the Egyptian calendar [139 May 30/31], 3 
ecjuinoctial hours before midnight. [T hat w'as the time,] for the twentieth 
degree of Libra [i.e. — 19°-20°] was culm inating according to the astiolabe, 
while the mean sun was in El 5;27° at that moment. Now when thestaron  the ear 
of wheat [Spica] was sighted in its proper position [on the instrument]. Mars 
was seen to have a longitude of 1 At the same time it was obsei-ved to be the 
same distance (15°) to the rear of the moon’s centre. Now at that moment the 
moon's position was as follows:^' 

m ean longitude 
true longitude

(Ibr its distance in anom aly I'rom the epicycle apogee was 92°) 
apparen t longitude 

So from these considerations too the longitude of M ars was 
agreem ent with the [astrolabe] sighting.

Hence, clearly, it was 53;54° in adx ance o f the perigee.

^  4;20° 
TTL 29;20°

1;36°, in

H348

^"On the method employed here see HAMA  179-80, Pedersen 283-6.
These positions arc computed (accurately), not for 9 p.m., but for 8;37 p.m., i.e. Ptolemy has 

applied the equation of time with respect to epoch as -2 3  minutes (it should be about -2 5 i mins.) 
Literally ‘at the beginning of Sagittarius’.
W hich was in V> 25;30» (X 7 p. 498).



And the interval between the third opp>osition and this observ’ation comprises 
in longitude about 1;32°
in anom aly about

If we add the latter to the [mean] positions a t the opposition in question®’ as 
demonstrated above, we get, for the moment of this observation;

distance of M ars in longitude from the apogee of the eccentre; 137;11° 
distance in anom aly from the apogee of the epicycle: 172;46°.
W ith these elements as data, let [Fig. 10.17] the eccentric circle carrying the 

centre of the epicycle be ABG on centre D and  diam eter ADG, on which the 
centre of the ecliptic is taken a t E, and the point of greater eccentricity [i.e. the

500 X  8. Geometrical determinaiion o f  size o f  M ars’ epi<ycle

e(|uant] at Z. Draw the epicycle H 0 K  on centre B, draw Z K B H , E 0B andD B , 
H349 and drop perpendiculars EL and DM  from points D and E on to ZB. Let the 

planet be situated at point N on the epicycle, join EN, BN, and drop 
peipendicular BX from B on to EN produced.

Then, since the planet’s distance from the apogee of the eccentre is 137; 11°,
42:49° where 4 right angles = 360°
85;38°° where 2 right angles = 360°°. 

Therefore, in the circle about right-angled triangle DZM . 
arc DM  = 85:38° 

and arc ZM = 94;22° (supplement).
Therefore the corresponding chords

Z BZG = [180° -  137; 11° =]

“ These mean moiions also aRi’ee l)etter with an intei-val ol'2^ 22*“ 37"' than with one o f2̂  23*' (see 
n.57).

Reading kotci ti^v UJtoKCinevTiv dKp(ivvjKTOv (w ith D) lor Kaxd tfiv  {iitOKEinevriv y 
dKpcovuKTOv ("ai the third opposition, which is the one in question’) at H348.9-10.



and ZM  = w ! l ^ }  hypotenuse DZ = 120'.

Therefore where the distance between the centres, DZ = 6^, H350
and the radius of the eccentre, DB = SO**,

DM  = 4;5'’ 
and ZM  = 4;24^.

And since DB^ -  DM^ = BM^,
BM = 59;52‘* in the same units.

Similarly, since ZM  = ML, and EL = 2DM , 
by subtraction, BL = 55;28'* and EL = 8;10'’ in the same units.

Hence hypotenuse [of right-angled triangle EBL] EB = 56;4’’.
Therefore, where EB = 120**, EL = 17;28*’, 

and, in the circle about right-angled triangle BEL, 
arc EL = 16;44°

■- Z ZBE = 16;44°° where 2 right angles = 360®®.
Furtherm ore, the apparent distance of the planet M ars in advance of the 
perigee G,

53;54° where 4 right angles = 360°

X  8. Geometrical determination o f  size o f  M ars' epigcle 501

Z G EX  is given as ĵ  io 7 ;48°o ^here  2 right angles = 360°°.
And, in the same units, Z ZBE = 16;44°° (shown above), 

and Z GZB = 85;38°° (given), 
so Z GEB = Z ZBE + Z GZB = 102;22°°.

Therefore, by subtraction [of Z GEB from Z GEX],
Z BEX = 5;26°° in the same units, 

and, in the circle about right-angled triangle BEX
arc BX = 5;26°. H351
So BX = 5;41’’ where hypotenuse EB = 120*’.

Therefore where EB, as was shown, = 56;4’’, 
and the radius of the eccentre is 60'*,

BX = 2:39^.
Similarly, since the distance of point N from the epicycle apogee H was 172;46°, 
and [hence], from the perigee K. 7; 14®

KRV /  where 4 right angles = 360° 
~ \  14:28°° where 2 right angles = 36C360°°.

But Z K B 0 was found as 16:44°° in the same units.
Therefore, by subtraction, Z N B0 = 2; 16°°, 

and. by addition, [ofZ NB0 toZ BEX], Z XNB = 7:42°°.
Therefore, in the circle about right-angled triangle BXX, 

arc XB = 7;42°
and BX = 8;3’’ where hypotenuse BN = 120’’. 

Therefore where BX = 2;39*’ and the radius of the eccentre = 60'*, 
the epicycle radius BN«* 39;30’’.

Therefore the ratio of the radius of the eccentre to the radius of the epicycle is 
60 : 39;30.

Q..E.D.



H352 9. {On the conectwn of I he periodic molions of Mars]^^

In order to correct the jaeriodic m ean motions we took one ol’ the ancient 
observations, in which it is declared that in the 13 th year ol' the calendar oi' 
Dionysius, Aigon 25,*’* a t dawn, M ars seemed to have occulted the northern 
[star in the] Ibrehead ol Scoipius. T he mom ent of this observation is in the 
52nd year from the death of Alexander, i.e. in the 476th year from Nabonassar, 
A thyr [III] 20/21 in the Egyptian calendar [-271 Ja n . 17/18], dawn. At this 
time we find the longitude of the m ean sun as 10® 23;54®; and the longitude of the 
star on the northern part of the Ibrehead of Scorpius was observ ed in our time'’'* 
as Tit 65°. So, since the 409 years from the observation to [the beginning oi] the 
reign of Antoninus produce about 4;5° of shift in the position of the fixed stars, at 
the time of the obsei'vation in question the longitude ol the star must have iieen 
nv 2i°, and, obviously, the longitude of the planet M ars was the same. In the 
same way, since the longitude of the apogee of Mai-s in our time, that is a t the 

H353 beginning of the reign of Antoninus, wasSiS 25;30°, it m ust have been 213 21;25° 
at the observation. Thus it is clear a t that m om ent the apparen t distance of the 
planet from its ap>ogee was 100;50°, while the distance ol'the m ean sun from the 
same apogee was 182;29®, and, obviously, 2;29® from [M ai's’] perigee.

W ith the above elements as data, let[Fig. 10.18] the eccentric circle carrying 
the epicycle centre l)e ABG on centre D and  diam eter ADG, on which the 
centi-e of the ecliptic is taken at E, and the f)oint of the greater eccentricit\ [i.e. 
the ec|uant] at Z. Draw the epicycle H 0  on centre B. draw  ZBH and DB, and 
drop perpendicular ZK  from Z on to DB. Let the planet be situated at point 0  

H354 of the epicycle; join B© and draw  EL parallel to it from E; then it is clear from 
our earlier dem onstration [X  6, pp. 480-3] that the mean position of the sun 
will l)e seen along EL. Jo in  E 0 , and on to it drop perpendiculars DM  and BN 
from points D and B. Also, drop peipendicular DX I'rom D on to BN, so that the 
figure D M N X  is a rectangular parallelogram .

Then, since the angle representing the apparen t distance of the planet li om 
the apogee,

Z A E 0 = 100;50° where 4 right angles = 360°, 
and the angle lepresenting the m ean motion of the sun [counted from the 
perigee],

Z GEL = 2;29° in the same units,
Z 0 E L  = Z B 0E  = [180° -  100;50° + 2;29° =] 

r 81;39° where 4 right angles = 360°
^  163; 18°° where 2 right angles = 360°°.

502 X  9. Ancient observation o f  M ars

"^On ihe method employed here see H AM A  180-2.
Bockh {Sonnenkreise ^ 4 ) ,  in agreement with Lepsius, changed this to 'Aigon 26’ on the basis ol 

his reconstruction ol'Dionysius’ calendar. He was Ibllowed by Manitius. The imcertainties are too 
many to justify emendation by a single day. It may Ijc pertinent that the occultation (if there was 
one) must, according to modern calculations, have occurred two days earlier than the date Ptolemy 
gives.

"^Catalogue no. X X IX  1.
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n

Thereibre, in the circle al)oiit right-angJcd triangle B 0N , 
arc BN = 163:18°

and BN = 118:43*’ where In poteniise B© = 120'’. 
'rherelbre where the radius of the epicycle. B0 = 39:30’’, 

and the distance between the centres. ED = 6'’.
BN = 39:3’’.

Furtherm ore, since
100:50° where 4 right angles = 360° 
201;40°° where 2 right angles = 360°°, 

and therelore its supplement, Z DEM  = 158;20°° in the same units, 
in the circle about right-angled triangle DEM , 

arc DM  = 158:20°
and DM  = 117:52'’ where hypotenuse DE = 120''. 

Therelore where DE = 6'’ and BN, as was shown, is 39;3’’,
DM  = NX = 5:54'’.

So, by subtraction, BX = 33;9'’ where the radius of the eccentre, BD = 60’’. 
Therelore where hypotenuse [of right-angled triangle BDX] BD = 120'’,

BX = 66; 18 ,̂
and, in the circle about right-angled triangle BDX, 

arc B X « 6 7 ;4 ° .
Z BDX = 67:4°° where 2 right angles = 360°°, 

and, by addition [of right angle X D M ], Z BDM = 247;4°°.
But, since Z D EM  was shown to be 158;20°°,
Z EDM  [= a right angle minus Z DEM ] = 21;40°° in the same units. 

Therefore, by subtraction, Z BDE is com puted as 225:24°°, 
and its supplement, Z BDA = 134;36°° in the same units.

H355



Therefore, in the circle about right-angied triangle D ZK. 
arc ZK = 134;36= 

and arc DK = 45;24° (supplement).
Therefore the corresponding chords

H356 and DK = ‘ i e j l s '}  hypotenuse DZ = 120'.
Therel'ore where DZ = 6’’ and the radius of the eccentre, DB = 60'’, 

ZK  = 5;32’’ 
and DK = 2; 19'’.

And, by subtraction, KB = 57;41’’.
Hence hypotenuse [of right-angled triangle BZK] BZ«= 57:57'’ in the same units.

Therefore, where BZ = 120”, ZK  = 11:28^ 
and, in the circle about right-angled triangle BKZ, 

arc ZK = 10;58°
Z ZBD = 10;58“- where 2 right angles =360".

But Z BDA = 134:36°° in the same units.
,  . . . .  0 - 7 »  J  145:34°° in the same -.mits 

Iherelore. l>v addition. BZA = i  -o  i-o i i ■ i[ /2 :4 /°  where 4 right angles = 360°.
Tlierefore the mean position in longitude of the planet (i.e. ol'B. the centre ofthe
epicycle) at the moment of the obseivation in (juestion was 72:47° from the
apogee.'’" H em e its [mean] longitude was [S3 21:25° + 72:^7° =] ^  4:12°.
•And Z GEL is given as 2:29°.
and Z GEL plus the two right angles of semi-circle ABG equals the sum of the 
mean longitude. Z .\ZB. and the [mean] anomaly (i.e. the[m ean] motion ofthe 
planet on the epicycle), Z HB0.
So, by subtraction [of Z AZB from Z G EL + 180°], we get 

H357 Z H B0 = 109:42°.
Therelbre the distance ofthe planet in anom aly from the apogee ofthe epicycle 
at that same moment of the observation was the above 109;42°, which was what 
we had to determine.

Now we had [already] shown [X 7. p. 498] that at the moment o fth e  third 
opposition the distance [of Mars] in anom aly from the apogee oi the epicycle 
was 171:25°. Therefore, in the interval between the observations, which 
comprises 410 Egy ptian years and 231? days ; appro.ximately). the planet moved 
61:43° beyond 192 complete revolutions. Th^t is practically the same 
increment [in anomaly] which we find from the tables for M ars' m ean motion 
we constructed. For our [mean] daily motion was derived from these \ ery data. 
Ijy dividing the num ber of degrees obtained from the complete revolutions plus 
the increment by the num ber of days com puted from the interval l^etw een the 
two observations.*’®

504 X  9. Derivation o f  M ars' mean motion from  observations

Through accumulated small computational and rounding crn>i-s Ptolemy's result is 3' too great 
(accuratc is 72;43.50°). This would have some elVect on the resulting mean motion in anomaly.

“ On the actual derivation ofthe mean motion in anomaly, which remains mysterious in the case 
of Mai^, sec .Appendix C.



10. {On the epoch oj [Marper i od i c  motiom]

Furtherm ore, the interval Irom the first year of Nabonassar, Thoth 1 in the 
Egy ptian calendar, noon, until the above observation [p. 502], is H358

475 Egyptian years and approxim ately 79i days, 
and that inteival comprises increments ol'

180;40° in longitude 
and 142;29° in anomaly.'^’
If, then, we subtract the latter from the respective positions for lx»th [longitude 
and anomaly] at the observation, as given above [p. 504], namely,
^  4; 12° in longitude 
and i09;42° in anomaly,
we get the Ibilowing epoch positions lor the periodic motion ol'M ars at noon 
Thoth 1 in the Egyptian calendar, first year of Nalx)nassan 

longitude ^  3;32°
anom aly 327; 13*̂ from the epicycle apogee.

Similarly, since, i'or the shift of the apogee in 475 years one gets by computation 
4i°, and the apogee of M ars was in 23 21;25° at the observation, it is obvious 
that, at the above moment of epoch, 

longitude of the apogee was 23 16;40°.
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The incT em ents over 475' TQi*" are (to the nearest minute) 180:39° in loni^itude and 142;28° in 
anomaiy. To get Ptoiemy 's /igurcs one needs al>out i hour more of motion. Perhaps he took ‘dawn’ 
as 6:30 a.m. at Diimysius' o l)scr\ ation. But in that case the interval between Dionysius’ observation 
and his own (p. 504) should have been less.
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Book XI
1. [Demonstration o f the eccentricity o f JupiterY H360

Now that we have established the periodic motions, anomalies and epochs of 
the planet Mars, we shall next deal with those of Jup iter in the same way. Once 
again, we first take, to dem onstrate [the position of] the apogee and [the ratio ol] 
the eccentricity, three oppositions [in which Jup iter is] directly opposite the 
mean sun.
[IJ VVe observed the first of these by means of the astrolabe instrument in the 
seventeenth year of H adrian, Epiphi [XI] 1/2 in the Egy ptian  calendar [133 
May 17/18], I hour before midnight, in ITT, 23:11°;
[2] the second in the twenty-fii'st year [of H adrian], Phaophi [II] 13/14 [136 
Aug. 31 Sept. 1], 2 hours before midnight, in K  7:54°;
[3] and the third in the fust year of Antoninus. Athyr [III] 20/21 [137 Oct.
7/8], 5 hours after midnight, in 14:23°. '

For the two intervals, that from the fu st to the second opposition comprises:
[in time] 3 Egyptian years 106 days 23 hours
and in apparent motion of the planet 104;43°;

uh ile  that from the second to the third opposition comprises:
[in time] 1 Egyptian year 37 days 7 hours
and [in true longitude] 36:29°.

By com putation we fmd the mean motion in longitude H36I
for the fust interval: 99;55°
for the second inteival: 33;26°.

From these mtervals, lollowing the methods expounded for Mars, we carried 
out the dem onstration of what we proposed to determine; first of all as if there 
were, again, only one eccentre. The dem onstration is as follows.

Let [Fig. 11.1] the eccentre be ABG. on which point A is taken as the position 
of the epicycle centre at the first opposition, B that of the second opposition, and 
G that of the third. W ithin the eccentre ABG take D as the centre of the ecliptic, 
join AD, BD and GD, produce GD to E and draw AE, EB and AB, and drop 
peipendiculars EZ and EH from E on to AD and BD, and perpendicular A© 
from A on to EB.

Then, since arc BG of the eccentre is giv^en as subtending 36:29° o f the H362 
ecliptic, the angle at the centre of the ecliptic,

Z BDG (= Z EDH) -  |  ^ ^ e re  2 right angles = 360°°.

' The procedure for Jupiter and Saturn is identical to that for Mars (except that fewer iterations- 
are rec|uired ). The readei is relerred to the notes on X 7 -9  lor ehicidations of points of detail.
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Fig. 11.1

H363

Therelbre. in the circle about right-angled triangle EDH, 
arc EH = 72:58°

and EH = 71:21’’ where hypotenuse DE = 120'’. 
Similarly, since arc BG = 33:26°. 

the angle [subtended by it] at the circumi'erence,
2 BEG = 33;26°° where 2 right angles = 360°°; 

and, by subtraction [ol Z BEG from Z EDH],
Z EBH = 39;32°° in the same units.

Therefore, in the circle about right-angled triangle BEH, 
arc EH = 39;32°

and EH = 40;35’’ where hypotenuse BE = 120’’. 
Therefore where EH, as we showed, is 71:21’’. and ED = 120’’,

BE = 210:58’’.
Furtherm ore, since the whole arc ABG of the eccentre is given as subtending 
141; 12° of the ecliptic (the sum of both intervals [104:43° and 36:29°]), the angle 
at the centre of the ecliptic,

/  A n r  /  141; 12° where 4 right angles = 360°
^ t282;24°° where 2 right angles = 360°°, 

and its complement. Z ADE = 77;36°° in the same units.
Therefore, in the circle about right-angled triangle DEZ, 

arc EZ = 77;36°
and EZ = 75; 12’’ where hypotenuse DE = 120’’. 

Similarly, since arc ABG of the eccentre is, by addition [of 99;55° + 33;26°], 
133;21°, the angle [subtended by it] at the circumference,

Z AEG = ’l33;21°° where 2 right angles = 360°°.
But Z ADE was found to be 77;36°° in the same units.

Therefore the rem aining angle [in triangle EAD],
Z EAZ = 149:3°° in the same units.



Therefore, in the circle about right-angled triangle AEZ, 
arc EZ = 149;3°

and EZ = 115;39‘’ where hypotenuse EA is 120’’.
Therefore where EZ, as was shown, is 75; 12’’, and ED is given as 120’’,

EA = 78;2^
Furtherm ore, since arc AB of the eccentre is 99\55'^, the angle [subtended by it] 
at the circumference,

Z AEB = 99;55°° where 2 right angles = 360°°.
Therefore, in the circle about right-angled triangle A E 0 , 

arc A 0  = 99;55° 
and arc E 0  = 80;5° (supplement).

Therefore the corresponding chords
A 0  = 91;52»1 ^_________H364
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and E 0  = 7 7 i l? }  hypolenuse EA = \2f f .

Therefore where AE, as was shown, is 78;2'’, and DE = 120’’,
A 0  = 59:44'’ 

and E 0  = 50; 12*’.
But the whole line EB was shown to be 210:58'’ in the same units.

So. by subtraction. 0 B  = 160:46'’ where A 0  = 59;44’’.
And 0 B ' = 25845;55 

0A - = 3568:4, 
so 0B - +-0A- = AB' = 29413:59.

AB = 171:30” where ED is 120^ and EA is 78:2”. 
Moreover, where the diameter of the eccentre is 120".

AB = 91:52*’ (for it subtends an  arc of 99;55°).
Therefore where AB = 91:52” and the diam eteroftheeccentre is 120”,

ED = 64:17” 
and EA = 41:47”.

Therefore arc EA of the eccentre equals 40:45°,
and the whole arc EABG [= 40:45= + 133:21°] = 174:6°. H365

Hence EDG 119:50” where the diam eter of the eccentre is 120”.
Now segment EABG is less than a semi-circle, so the centre oi the eccentre 

will fail outside it. Let it, then, be at K  [see Fig. 11.2], and draw  through K and 
D the diam eter through both centres. LKDM . and let the perpendicular from 
K  to GE be produced as KXX.

Then, where diameter LM  = 120”, 
the whole line EG was shown to be 119;50”. and ED to be 64:17”: 

so. by subtraction. GD = 55;33” in the same units.
So, since ED.DG = LD.DM.

LD.DM  = 3570;56” where diam eter LM  = 120”.
But LD .D M  + D K ' = L K ' (i.e. the square on half the diameter). H366 

Therefore, if we subtract (LD.DM ), i.e. 3570;56, from the square on half the 
diam eter, i.e. 3600, the rem ainder will be the square on DK, 

i.e. DK- = 29;4.
Therefore the distance between the centres, DK=® 5;23”  ̂

where the radius of the eccentre, KL = 60”.
’Because of an accumulation of rounding errors this should be 5:20’’.
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Furthermore, since
GN = iG E  = 59;55’’ where diam eter LM  = 120’’. 

and CD was shown to be 55;33'’ in the same units,
by subtraction, DN = 4;22*’ where DK = 5:23'’.

Therefore where hypotenuse [of right-angled triangle D K N] DK = 120'’.
DN = 97;20^ 

and. in the circle about right-angled triangle DKN, 
arc DN = 108:24°

• /  DKN -  I  ' '  here 2 right angles = 360°°
[ 54; 12° where 4 right angles = 360°.

And since D K N  is an angle at the centre of the eccentre,
H367 arc M X  = 54; 12° also.

But the whole arc G M X , which is  ̂ arc G X E, equals 87;3°.
Therefore, by subtraction, the arc from the perigee to the third opposition, 

arc M G = 32;5I°.'
And clearly, since the interval BG is given as 33:26°, 

by subtraction, we find the arc from the second opposition to the perigee, 
arc BM = 0;35°;^ 

and since the interval AB is given as 99;55°,
by subtraction [of (arc AB + arc BM) from 180°], we find the arc from the 
apogee to the first opposition,

arc LA = 79;30°.

 ̂Ptolemy’s accumulation of rounding errors has led to the considerable discrepancy of i°  from 
the accurate result, 32;2l°.

^The smallness of the corrections for this and the next opposition shows that these oppositions 
have been badly chosen. To display the greatest difference between the simple eccentric and equant 
models, all three oppositions should be near the octants (as they are lor Mars).
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Now if it were this eccentre on which the epicycle centre is carried, the above 
quantities would be sutTiciently accurate to use. However, since, according to 
our hypothesis, [the epicycle centre] moves on a different circle, namely the 
circle described with centre at the point bisecting D K  and  w ith radius KL, we 
must once again, as we did for Mars, first calculate the differences which result 
in the apparent intervals [i.e. the arcs of the ecliptic between the oppositions]; 
we must show what the sizes of these differences would be (taking the above 
ratio for the eccentricity as approxim ately correct), if the epicycle centre were 
carried, not on the second eccentre, but on the first eccentre [i.e. the equant], 
which produces the ecliptic anomaly, i.e. the one draw n on centre K.

Then [see Fig. 11.3] let the eccentre carrying the epicycle centre be LM  on 
centre D, and the eccentre of the planet’s m ean motion be N X  on centre Z,

H368

N

M

Fig. 11.3

equal to LM . Draw  the diam eter through the centres, N LM , and take on it the 
centre of the ecliptic E. Let the epicycle centre be situated, first, at A, for the first 
opposition. Draw  DA, EA, ZAX and EX, and drop perpendiculars DH and 
E 0  from D and E on to AZ produced.

Then, since the angle of mean motion in longitude, Z N ZX, was shown to be 
79;30° where 4 right angles = 360°, the angle vertically opposite to it,

/  D 7H  - 1  where 2 right angles = 360°
~ 1 159°° where 2 right angles = 360°°.

Therefore, in the circle about right-angled triangle D ZH, 
arc D H  = 159° 

and are ZH  = 21° (supplement).

H369



Therefore the corresponding chords

and ZH  = " l i s ? }  hypotenuse DZ = 120'.

Therefore where DZ (= lEZ) 2;42‘’and therad iusoftheeccentre ,D A  = 60'’, 
DH = 2;39^ 

and  ZH = 0;30".
And since DA^ -  DH^ = AH^,

AH = 59;56'’ in the same units.
Similarly, since ZH = H 0 , and E 0  = 2DH, 

by addition, A 0 = 60;26‘’ where E 0  = 5; 18’’, 
and hence hypotenuse [of right-angled triangle A E 0]

AE = 60;40‘* in the same units.
Therefore, where AE = 120’’, E 0  = 10;29‘’, 

and. in the circle about right-angled triangle A E 0, 
arc E 0 «  10:1°.
Z EA 0 = 10; 1°° where 2 right angles = 360°°.

H370 Furtherm ore, where E 0  = 5:18'’,
the radius of the eccentre, ZX = 60'’ and Z 0  [= 2ZH] = F ,
(hence, obviously, by addition. X 0  = 61'’).
So we lind hypotenuse [of right-angled triangle E 0 X ] EX as 61; 14'’ in the same

units.
Therefore, where EX = 120'’, E 0  = 10:23'’. 

and. in the circle about right-angled triangle E 0 X . 
arc E 0  = 9;55°.
Z E X 0  = 9;55°° where 2 right angles = 360°°.

But we showed that Z EA 0 = 10; l°° in the same units.
Therefore, by subtraction, the angle of the difference in question.

/  AFX -  /  '''here 2 right angles = 360°°
~ \0 ;3 °  where 4 right angles = 360°.

But at the first opposition the planet, viewed along the line EA. had an 
apparent longitude of TTl, 23; 11°. Thus it is clear that, if the epicycle centre were 
carried, not on eccentre LM. but on [eccentre] NX. it would have been at point
X on that eccentre. and the planet would have appeared along line EX, 
differing by 0:3° [from the actual position], and thus would have had a 
longitude of Ti], 23:14°.

H371 Let the diagram  for the second opposition be drawn, again with a similar 
figure [Fig. 11.4],^ [with the epicycle centre] depicted as a little in advance of 
the perigee.

Then, since arc XN of the eccentre was shown [p. 510. arc BM] to be 0:35°, 
/  X 7N  i  '''here 4 right angles = 360°

^ 1 1;10°° where 2 right angles = 360°°.
Therefore, in the circle about right-angled triangle D ZH, 

arc DH = 1;10° 
and arc ZH = 178;50° (supplement).

* Heiberg's figure (p. 371) is wrong; AE has been connected instead of AB, and A is misprinted as 
A. Corrected bv Manitius.

512 X I 1. Correction to account fo r  equant : 2nd opposition
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Fig. 11.4

Therefore the corresponding chords
DH = h lS ”!  . , 

and Z H «  1 2 0 '/  hypotenuse DZ = 120’.

Therefore where DZ = 2;42‘’and the radius oftheeccentre,D B = 60^, 
DH = 0;2^ 

and ZH = 2;42^
And HB = 60'’ in the same units (for it is negligibly smaller than hypotenuse [of 
right-angled triangle HBD] BD).

Furtherm ore, since 0 H  = HZ, and E 0  = 2DH, 
by subtraction, 0 B  = 57;18’’ where E 0  = 0;4'’.

Hence hypotenuse [of right-angled triangle E0B] EB = 57; 18’’ in the same units.
Thereibre, where EB = 120’’, E 0  0;8‘’, 

and, in the circle about right-angled triangle B E0, 
arc E 0  = 0;B° also.
Z EB 0 = 0;8°° where 2 right angles = 360°°.

In the same way. since we showed that the whole line Z 0  [= 2ZH] = 5;24'* 
where the radius of the eccentre, ZX  = 60*’,

by subtraction, 0 X  = 54;36*’ where E 0  = 0;4*’.
Hence hypotenuse [of right-angled triangle E 0 X ] EX = 54;36’’ in the same units.

Therefore, where EX  = 120*’, E 0  0;10‘’, 
and, in the circle about right-angled triangle E 0 X , 

a r c E 0  = O;lO°.
Z E X 0  = 0;10°® where 2 right angles = 360°®,

;2°° in the same units 
0;1° where 4 right angles = 360°. 

Here, then, it is clear that the planet, since its apparen t longitude at the

’ To.<
and, by subtraction [of Z EB0], Z BEX.= j  q.’"

H372
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H373 second opposition, when it was viewed along line EB, was K  7;54°, would, if it 
had been viewed along line EX, have had a longitude of only K  7;53®.

So let the diagram  for the third opposition be drawn, to the rear of the perigee 
[Fig. 11.5].«

T hen, since arc N X  of the eccentre is given as 32;51°,
r  32;51® where 4 right angles = 360° 

65;42®° where 2 right angles = 360°°.Z NZX =

M
Fig. 11.5

where hypotenuse DZ = 120'’.

Therefore, in the circle about right-angled triangle DZH, 
arc DH = 65;42° 

and arc ZH = 114;18° (supplement).
Therefore the corresponding chords 

DH = 65;6‘’ 
and ZH = 100;49'’J 

Therefore where DZ = 2;42'’ and the radius oi the eccentre, DG = 60’’, 
H374 DH = 1;28’’

and ZH = 2;16^
And since GD^ -  DH^ = GH^,

G H « 5 9 ;5 9 ".
Similarly, since 0 H  = H Z, and E© = 2DH, 
by subtraction, G 0  = 57;43‘* where E© = 2;56’’.

Hence hypotenuse [of right-angled triangle E©G] EG = 57;47’’ in the same units.
Therefore, where EG = 120'’, E© = 6;5‘’,

® Heiberg’s llijure (p. 373) is wrong: AS has l)ern connected instead ofAF, and A is in the wrong 
place and misprinted as A. Correrted by Manitius.
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and, in the circle about right-angled triangle G £ 0 , 
arc E 0  5;48®.

■. Z EG© = 5;48®® where 2 right angles = 360®°.
In the same way, since the whole line Z©[= 2ZH] comes to 4;32‘’ 

where the radius of the eccentre, Z X  = SO**,
by subtraction, X 0  = 55;28*’ where E 0  was found to be 2;5&.

Hence hypotenuse [of right-angled triangle E 0 X ] EX = 55;33'’ in the same units.
Therefore, where EX  = 120^, E© = 6;2(y’, 

and, in the circle about right-angled triangle E 0 X , 
arc E 0  = 6;2°.
Z EX© = 6;2®° where 2 right angles = 360°°,

, , , . r r y /  o r v  J0 ;14°° in the Same unitsand, by sub.race.on [of Z EG©], Z G E X =  ^  ^ ^

Hence, since the planet at the 3rd opposition, when viewed along line EG, had a H375 
longitude of HP 14;23°, it is clear that, if it had been on line EX, it would have 
had a longitude of ^  14;30°. And we showed that its [corrected] longitudes 
[would have been]

at the first opposition Tri, 23; 14° 
a t the second opposition M 7;53°.

Hence we calculate the apparent intervals [in longitude] of the planet, taken, 
not with respect to the eccentre carrying the epicycle centre, but with respect to 
the eccentre producing the mean motion [i.e. the equant],^ as 

from fii*st to second oppositions 104*39°
from second to third oppositions 36;37°.

S tarting from these data, by means of the previously dem onstrated theorem we 
llnd the distance between the centres of the ecliptic and the eccentre producing 
the mean motion of the epicycle as about

5;30‘’ where the diam eter of the eccentre is 120'’; 
and. for the arcs of the eccentre.

from the ap>ogee to the first opposition: 77; 15°
from the second opposition to the perigee 2;50°
from the perigee to the third opposition 30;36°.
The above quantities have been accurately determ ined by this method, for 

the differences in the inteivals [as measured along deferent and equant], when H376 
calculated from these data, are very nearly the same as the previous set. ® T hat is 
[also] clear from the fact that the apparent intervals [in longitude] of the planet 
derived from the ratios we have thus found tu rn  out to be the same as those 
observed; we can show this as follows.

O nce again, let the diagram  for the first opposition be draw n [Fig. 11.6], but 
containing only the eccentre carrying the epicycle centre. Then, since 

Z LZA was shown to be 77; 15° where 4 right angles = 360°,
Z LZA = Z D ZH  (vertically opposite) = 154;30°° where 2 right angles = 360°°.

’ I.e. the apparent intervals which would result if the epicycle were carried, not on the actual 
deferent, but on the equant. Cf. XI 5 p. 529, where this is stated explicitly. Cf. also p. 492.

® Indeed, a further iteration produces a change of much less than 0 ;F  in the eccentricity, and 
about 0;10° in the line of the apsides.
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L

M
Fig. 11.6

Therefore, in the circle about right-angJed triangle DZH, 
arc DH = 154;30° 

and arc ZH = 25;30° (supplement). 
Therefore the corresponding chords 

DH = 117;2‘’
and ZH = 26;29‘’ where hypotenuse DZ = \2(f .

H377 Therefore where ZD = 2;45‘’ and the radius of the eccentre DA = 60*’,
DH = 2 ;4F  

and ZH = OiSe".
Then, by the same argum ent as in the previous proof,

AH [= y j AD^ -  DH^] = 59;56*’ «n the same units, 
and, by addition [of H 0  = ZH], A© = 60;32'’ where E© (= 2DH) = 5;22^ 

Therefore hypotenuse [of right-angled triangle AE©] AE comes to 60;46‘* in the 
same units.

Therefore, where AE = 120^, E© = 10;36^ 
and, in the circle about right-angled triangle AE©, 

arc E© = 10:8°.
Z EA© = 10;8°° where 2 right angles = 360°°, 

and, by subtraction [of Z EA© from Z LZA],
/  T f a  -  -f ^ ^ ’22°° in the same units

"  1  72; 11° where 4 right angles = 360°.
T hat [72; 11°], then, was the distance in the ecliptic® of the planet from its 
apogee at the first opposition.

 ̂So wc must translate Tou ijcpSiaKob (i.e. take it closely with noipaq) at H 377,16, to make any 
sense at all. But its pxisition in the sentence, and redundance, make me suspect it as an interpolation, 
although it is in all branches of the ms. tradition.
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Again, let the [correspondingj diagram  for the second opposition be drawn 
[Fig. 11.7]. [Then,] since

/ • • /  2;50° where 4 right angles = 360°
Z BZM ,s given ^ right angles = 360“ .

in the circle about right-angled triangle D ZH, 
arc DH = 5;40°

and arc ZH  = 174;20® (supplement). H378
Therefore the corresponding chords

and ZH = l i g i s i '}  hypotenuse DZ = 120-.

Therefore where DZ = 2;45*’ and the radius oftheeccentre,D B = 6(P,
DH = 0;8‘*

and Z H « 2 ;4 5 ^
And, by the same [argum ent as previously],

BH 60*’ in the same units,
and, by subtraction [of H 0  = ZH], B© = 57; 15'’ where E© = 0;16‘’.
Hence hypotenuse [of right-angled triangle EBG] EB comes to 57;15'* in the
same units.

Therefore, where EB = 120'’, E© = 0;33‘’,
and, in the circle about right-angled triangle BE©,

arc E© = 0;32°.
■- Z EB© = 0;32°° where 2 right angles = 360®®.

A j  u T c / ^ o ' 7 \x^ /r>PTv^ r 6; 12°° in the same unitsAnd, by addition [of Z BZM], Z BEM = ^  ^ 3g„o«

Therefore the distance of the planet in advance of the perigee at the second 
opposition was 3;6°. And we showed [p. 516] that a t the first opposition it was H379
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72; 11° to the rear of the apogee.*® Thus the com puted apparen t interval from 
first to second oppositions is the supplem ent [of 3;6° + 72; 11°], 104;43°, in 
agreement with the interval derived from the observations [p. 507].

So let the [corresponding] diagram  for the third opposition be draw n [Fig. 
11.8]. [Then,] since

30;36° where 4 right angles = 360°
61; 12°° where 2 right angles = 360*̂  

in the circle about right-angled triangle D ZH, 
arc DH = 61; 12° 

and arc ZH = 118;48° (supplement).

L

Z M ZG  was shown to be

H380

M
Fig. 11.8

Therefore the corresponding chords

and  ZH i  l O s i n j  hypotenuse DZ = 120-.

Therefore where DZ = 2;45’’ and the radius oftheeccentre,G D  = 60’’, 
DH = 1;24*’ 

and ZH = 2;22^.
And, by the same [argum ent as previously],

GH = 59;59^,
and, by subtraction [of H 0  = ZH], G 0  = 57;37'* where E© = 2;48’’. 

Therefore hypotenuse [of right-angled triangle E G 0 ] EG = 57;41'* in the same 
units;

and hence, where EG = 120’’, E 0  = 5;5(f,  
and, in the circle about right-angled triangle G E 0 , 

arc E© = 5;34°
Z EG© = 5; 34°° where 2 right angles = 360°°.

*® Reading el? t o  ^7t6^eva t o u  dmoyelou (with D,Ar) at H379,3 for eiq td  feitoneva (‘to the rear’). 
Corrected b y  Manitius.



And, by addition [of Z M ZG],
/  IVTFP - 1  same units

\  33;23® where 4 right angles = 360°.
T h a t [33;23®], then, wzis the distance of the planet to the rear of the perigee at 

the third opposition. And we showed that at the second opposition its distance 
in advance of the same perigee was 3;6°. Therefore the apparent interval [in 
longitude] from the second to the third oppositions is com puted as the sum [of 
the above], 36;29°, once again in agreem ent with the observed interval [p. 507].

It is immediately clear, since the planet at the th ird  opposition had an 
observed longitude of HP 14;23® and, as we showed, was 33;23°to the rear of the 
perigee, that at that mom ent the perigee of its eccentre had a longitude of 
K  11°, while its apogee was diam etrically opposite at TIB 11°.

And if [see Fig. 11.9]** we draw  the epicycle H 0 K  about centre G, we will 
immediatelv have:

L

X I 1. Agreement o f  computation with observations fo r  Jupiter 519

H381

M
Fig. 11.9

the m ean position in longitude [counted] from the apogee of the eccentre, L, as 
210;36° (for we have shown that Z M ZG = 30;36°);
and the arc 0 K  of the epicycle from the perigee © to the planet K  as 2;47° (for 
we showed that

f  5; 34°° where 2 right angles = 360°°
~ \2 ;4 7 °  where 4 right angles = 360°). 

Therefore a t the moment o f the third opposition, nam ely in the first year of 
Antoninus, A thyr [III] 20/21 in the Egyptian calendar, 5 hours after midnight, 
the planet Jup iter had the following m ean positions:

in longitude 210;36° from the apogee of the eccentre
(i.e. its m ean longitude was ^  11;36°) 

in anom aly 182;47° from the apogee of the epicycle, H.

H382

"  Hciiaerg’s figure on p. 38^is wrong; he has connected AF instead of EF. Corrected by Manitius.
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2. {Demonstralion o f the size o f Jupiter’s epicycle]

Next, to dem onstrate the size of the epicycle, we again took an obsen.-ation, 
which we obtained by sighting [with the astrolabe], in the second year of 
Antoninus, Mesore [XII] 26/27 in the Egyptian calendar [139 Ju ly  10/11], 
before sunrise, i.e. about 5 equinoctial hours after midnight (for the mean 
longitude of the sun was 23 16; 11°, and the second degree of Aries [i.e. HP l°-2°] 
was culm inating according to the astrolabe). At that mom ent Jup iter, when 
sighted with respect to the bright star in the Hyades, was seen to have a 
longitude of El 155°, and also had the same apparent longitude as the centre of 
the moon, which lay to the south of it. For that moment*^ we find, by means of 
the [kind ofj calculations [previously] explained;

moon’s mean longitude El 9;0°
H383 moon’s [mean] anomaly counted from the epicycle apogee 272;5°

hence its true position I I  14:50°
and its apparent position at Alexandria El 15;45°.

Thus from these considerations too Ju p ite r’s longitude was El 154°.
Furtherm ore, the time inter\'al from the third opposition to the above 

obser\ation comprises
I Egy ptian year and 276 days, 

and this interval produces
in longitude: 53:17°
and in anomaly: 218;31°

(for it will make no sensible dilTerence even if this kind of calculation is carried 
out rather crudely);'^ so, if we add the latter to the [mean] p>ositions derived for 
the third opposition, we will get, for the mom ent of the present observation, [the 
mean positions]:

in longitude 263;53° from the apogee (which is in approxim ately the
same position [as at the third opposition])'* 

in anomaly 41; 18° from the apogee of the epicycle.
W ith the above as data, let the diagram  for the similar dem onstration in the 

case of M ars [Fig. 10.17] be repeated [Fig. 11.10], [but] with the epicycle in a 
position to the rear of the perigee of the eccentre, and with the planet past the 
apogee of the epicycle, in accordance with the mean positions in longitude and 
anomaly set out here.

Then, since the mean position in longitude from the apogee of the eccentre is 
H384 263;53°,

Z BZG -  i  where 4 right angles = 360°
\  167;46°° where 2 right angles = 360°°.

These positions were (correctly) computed, not for 5 a.m., but for 4;42 a.m., i.e. the correct 
equation of time with respect to epoch of era Nabonassar has been applied. Cf. p. 499 n.57.

These intervals are correct to the nearest minute if one computes for exactly 1*' 276“. However, 
for 18 mins. less (cf. n.l2) one fmds 218;30° for the motion in anomaly. Is it this neglect of the 
equation of time to which Ptolemy refers by ‘rather crudely’?

'*I.e. in less than 2 years the precessional motion of the apogee is negligible.
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G
Fig. 11.10

Therefore, in the circle about right-angled triangle DZM ,
arc DM = 167;46<’

and arc ZM  = 12; 14° (supplement).
Therefore the corresponding chords

D M = 1 1 9 ;1 9 ^ \ . . 
and ZM = 1 2 ;4 r j hypotenuse DZ = 120'.

Therefore where DZ = 2;45‘’and theradiusofiheeccentre,D B  = 60’’, 
DM «*2;44‘’ 

and ZM = 0;18^
And since DB^ -  DM^ = MB^

MB = 59;56'’ in the same units.
Similarly, since ZM  = M L and EL = 2DM , 

by subtraction, LB = 59;38‘* where EL is com puted as 5;28‘’. H385
Hence hypotenuse [of right-angled triangle LBE] EB = 59;52'’ in the same units.

Therefore, where EB = 120**, EL ^  10:58'’, 
and. in the circle about right-angled triangle BEL, 

arc EL = 10;30°.
Z EBZ = 10;30«» where 2 right angles = 360®°.

But Z BZG = 167;46®° in the same units.
Therefore, by addition, Z BEG = 178; 16°° in the same units.
Furtherm ore, since the approxim ate longitude of the perigee G  is K  11°, and 
the apparent longitude of the planet, as viewed along line EK, was El 15;45°,

94;45° where 4 right angles = 360°
189; 30°° where 2 right angles = 360°°.

And, by subtraction [of Z BEG], Z BEK = 11; 14°° in the same units.
Therefore, in the circle about right-angled triangle BEN, 

arc BN = 11; 14°
and BN = 11;44'’ where hyfwtenusc EB = 120*’.

Z KEG =



Therefore, where EB = 59; 52'*, and the radius of the eccentre is 60^, 
BN = 5;50P.

Similarly, since arc H K  = 41; 18®,
/  HRK where 4 right angles = 360°

H386 ^  ^ \  82;36‘’‘’ where 2 right angles = 360°°.
But Z EBZ (= Z H B 0) = 10;30°° in the same units.

Therefore, by subtraction, Z 0 B K  = 72;6°°.
And we showed that Z K E 0  = 11; 14°° in the same units.

Therefore, by subtraction, Z BKN = 60;52°° in the same units. 
Therefore, in the circle about right-angled triangle BKN, 

arc BN = 60;52°
and BN = 60;47’’ where hypotenuse BK = 120'’.

Therefore where BN = 5;50’’ and the radius of the eccentre is 60*’, 
the radius of the epicycle, BK*= 11;30*’.'^

Q .E.D.

3. {On the correction o f the periodic motions o f Jupiter]

Next, to [determine] the periodic motions, we again took one of the precisely 
recorded ancient observ’ations. In this it is declared that in the 45th year of 
the calendar of Dionysius, on Parthenon 10, the planet Jup ite r occulted'® the 
southernmost [of the 2] Aselli at dawn. Now the m oment [ of the observation] 
is in the 83rd year from the death of Alexander, Epiphi [XI] 17/18 in the 
Egv'ptian calendar [-240 Sept. 3/4], dawn. For that time we find the longitude 

H387 of the mean sun as TTJ 9;56°. But the star called ‘the southern Asellus’ am ong 
those surrounding the nebula in Cancer had a longitude, at the time of our 
observation [of it], of 213 115° [catalogue X X V  5]. Hence, obviously, its longitude 
at the observation in question was [ 2 1 3 ]  7;33°, since to the 378 years l)etween the 
observations'^ corresponds [a precessional motion ol] 3;47°. Therefore the 
longitude of Ju p ite r at that moment (since it had occulted the star) was also 
7:33°. Similarly, since the apogee was in TIB 11° in our times, it must have had a 
longitude oftiB 7; 13° at the observation. Hence it is clear tha t the distance of the 
apparent planet from the then apogee of the eccentre was 300;20°, while the 
distance of the mean sun from tha t same apogee was 2;43°.

W ith the above elements as data, let there again be draw n [Fig. 11.11] a 
diagram  similar to that for the [corresp>onding] dem onstration for M ars [Fig. 
10.18], but in this case in accordance with the positions given for the 
observation: [i.e.], have the epicycle, on centre B, positioned before the apogee 
A, and the point L, representing the m ean position of the sun, a little after that

'^Therc are a series of small miscalculations and rounding errors, which result in a not negligible 
final error (one finds 11 ;38’’ to the nearest minute). No doubt Ptolemy was aiming at a convenient 
round number.

"’Literally covered’ (feitEKdXuv(/Ev). Modern calculations show that Jup iter in fact passed ca. i° 
to the north of 5 Cnc (cf. p. 658), but Ptolemy’s wording is unambiguous here (cf. p. 477 n. 17).

'^The epoch of the star catalogue is Antoninus I = Nabonassar 885. Arid 885-507 = 378. But since 
the observation took place in the 11 th month of the Egyptian year, 377 would have Ijeen more 
accurate.
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Fig. 11.11

Z L E 0  (= Z B0E) =

same ap>ogee, and hence the point© , representing the planet, after H, the apogee 
of the epicycle. And. as we always do in similar situations, we join ZBH, DB. 3 0  
and E 0 . and drop perpendiculars ZK on to DB, DM  and BN on to E 0 . and DX 
on to NB (produced in this case), which forms the rectangular parallelogi am 
DM NX.

Then Z A E 0 contains one revolution in the ecliptic less 300;20°. or 59:40°.
And Z AEL = 2;43°.

Therefore, by addition.
62;23° where 4 right angles = 360° 

I24;46°° where 2 right angles = 360°°.
Therefore, in the circle about right-angled triangle B0N , 

arc BN = 124;46°
and BN = 106;20*’ where hypotenuse B0 = 120*’. 

Therefore where the radius of the epicycle, B0'** = 11;30*’,
BN = 10; 12”.

, . . r  59;40° where 4 right angles = 360°
Agam, smce Z DEM  is S^^en a s |   ̂ where 2 right angles = 360°°. ’

and Z M DE = 60;40°° in the same units (complement), 
in the circle about right-angled triangle DEM  

arc DM  = 119;20°
and DM  = 103;34*’ where hypotenuse ED = 120'’.

Therefore where ED = 2;45’’and the radius of the eccentre,DB = 60'’, 
DM  = 2;23‘’, 

and, by addition, BNX = 12;35’’.

H388

H-389

Reading 1̂ B 0  eic Tou icevTpoo (with D.Ar) fbri^ iKZOV icevrpou (‘the radius of the epicycle’) at 
H389.2-3.



Therefore where hypotenuse [of right-angled triangle BDX] BD = 120'’,
BX = 25; 10 ,̂

and, in the circle about right-angled triangle BDX, 
arc BX = 24; 14°
Z BDX = 24; 14®® where 2 right angles = 360°°, 

and, by subtraction [from a right angle], Z BDM = 155;46°° in the same units; 
and, by addition [of Z M DE], Z BDE = 216;26°° in the same units: 
and, again by subtraction [from 2 right angles], Z BDZ = 143;34°° in thesame units. 

Therefore, in the circle about right-angled triangle ZDK, 
arc ZK  = 143;34° 

and arc DK = 36;26° (supplement).
H390 Therefore the corresponding chords

and ^  '’vpolenme DZ = 120'.

Therefore where DZ = 2;45'’ and the radius oftheeccentre.D B = 60'’, 
KZ = 2;37’’ 

and DK = 0;52^ 
and. by subtraction [from DB], KB = 59;8'’ in the same units.
Hence hypotenuse [of right-angled triangle ZBK] ZB = 59:12'’ in the same

units.
Therefore, where ZB = 120'’. ZK  = 5:18'’, 

and. in the circle about right-angled triangle BZK, 
arc ZK = 5:4°.
Z ZBD = 5;4°° where 2 right angles = 360°°. 

and. by addition [ofZ  BDZ],
Z AZB (which comprises the _ f  148;38°° in the same units 

mean motion in longitude) [ 74; 19° where 4 right angles = 360°.
And since Z H B 0 + Z BZG + 180° (i.e. here Z H B 0 -  Z AZB) = Z AEL = 2;43°, 
we tind that Z HB© (which comprises the planet's position [in anomaly] from 
the apogee of the epicycle) is 77;2°.‘®
Therefore we have shown that at the moment of the obser%ation in question the 
planet Jup iter had the following m ean positions:

in longitude, from the apogee of the eccentre. 285;41°
(i.e. its mean longitude was EL 22:54°) 

in anomaly, from the apogee of the epicycle. 77;2°.
H391 And we had [already] shown that at the moment of the third opposition its 

distance from the apogee of the epicycle was 182:47°. Thus in the inter\'al 
between the two observations, which comprises

377 Egy ptian years and 128 days less approxim ately 1 hour, 
its motion in anomaly was

105;45° beyond 345 complete revolutions.
T hat is, again, ven- nearly the same increment in anom aly as one derives from 
the [tables for] mean motions which we constructed. For it was from these very 
same elements that we derived the daily [mean motion in anomaly], by dividing

' ’’There are numerous small inaccuracies and rounding errors in the preceding cakulaiions. 
which to some extent cancel each other. -Accurate computation gives 77:0° to the nearest minute.
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the niiiTiber of degrees contained in the complete revolutions plus the increment 
by the num ber of days contained in the time-intervai.^°
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4. {On the epoch, o f Jupiter’s periodic motions]

Here too again, then, since the interval from the first year of Nabonassar, Thoth 
I in the Egyptian calendar, noon, to the above-mentioned ancient observation 
is

506 Egyptian years and approximately 3164 days, 
and this interval comprises increments of 

258; 13° in longitude 
and 290;58° in anom aly,"
if vve subtract the latter from the respective [mean] positions listed above for the 
obser\ ation. we get. for the same moment of epoch as for the other [heavenly H392 
bodies], for Jupiter:

mean longitude — 4:41°
mean anomaly 146;4° from the epicyclic apogee.

.\nd . by the same [kind of com putation as before], 
the apogee of its eccentre will l>e in 2:9°.

5. [Denmmlraiwn o f Saturn's eccenlricilr and [the position oJ'\ its apogee}

To complete this topic, it remains to demonstrate the anomalies and epochs for 
the theory of the planet Saturn. Once again, as for the other planets, we took, 
first, lor our investigation of [the position ol] the apogee and the eccentricity, 
three opposition situations of the planet, in which it was diametrically opposite 
the sun's mean position.
[ 1 ] The fii-st of these was obsen. ed b\- us. using the astrolabe instruments, in the 
eleventh year of H adrian. Pachon [IX] 7 8 in the Egy ptian calendar [127 Mar.
26/27], in the evening, in ^  1;13°;
[2] the second, in the seventeenth year of H adrian, Epiphi [XI] 18 in the 
Egy ptian calendar [133 June  3]. We computed the time and place of exact 
opposition from nearby observations as 4 hours after noon on the 18th, in H393 
f  9;40°;
[3] we observed the third opposition in the twentieth year of H adrian, Mesore 
[XII] 24 in the Egy ptian calendar [ 136 July  8]. As before, we computed the time 
of exact opposition as having occurred precisely at noon on the 24th, and 
com puted the place as 14; 14°.

O f these two intervals, then, that from the first to the second opposition 
comprises

^®On the actual derivation of the mean motion in anomaly for Jupiter, which remains obscure, 
see Appendix C.

These intervals are precise (to the nearest minute) for an increment of exactly i day.
The apogee was in ITB 7;13° at the observation (p. 522). In 507' (at the rate of 1° in 100 years) it 

moves about 5;4°. Hence at epoch it was in 2 ;^ .



H394

[in time] 6 Egyptian years 70 days 22 hours
in apparent motion of the planet 68;27°;
while that from the second to the third oppKJsition comprises 
[in time] 3 Egyptian years 35 days 20 hours
[in apparent motion] 34;34°.

And we com pute for the mean motion in longitude, using rough figures,'* 
for the first interval: 75;43°
and for the second interval: 37;52°.
These intervals [in mean and true longitude] being given, we again 

dem onstrate the required [param eters] by means of the same theorem [as 
before] (as if there were only one eccentre), as follows.

To avoid repetition, let there be draw n a diagram  [Fig. 11.12] like those used 
for the same proof [previously. Figs. 10.8, 11.1]. Then since arc BG of the 
eccentre is given as subtending 34:34° of the ecliptic, the [corresponding] angle 
at the centre of the ecliptic.
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B

Z BDG (= Z EDH) =
34;34° where 4 right angles = 360°
69;8°° where 2 right angles = 360°°. 

Therefore, in the circle about right-angled triangle D EH, 
arc EH = 69;8°

and EH  = 68;5’’ where hypotenuse DE = 120'’. 
Similarly, since arc BG = 37;52°, the angle at the circumference,

Z BEG = 37;52°° where 2 right angles = 360°°, 
and, by subtraction [from Z BDG], Z EBH = 31; 16°° in the same units. 

Therefore, in the circle about right-angled triangle EBH, 
arc EH  = 3I;16° 

and EH = 32;20'’ where hypotenuse BE = 120’’.

Despite Ptolemy’s phrase here, the intervals in mean longitude are accurate to the nearest 
minute according to his own tables. Nor would the equation of time make any difference.



Therefore where EH, as we showed, is 68;5‘’, and ED = 120**, H395
BE = 252;4P.

Furtherm ore, since the whole arc ABG subtends 103; 1° of the ecliptic (the 
sum of both intervals [in true longitude]), the [corresponding] angle at the 
centre of the ecliptic,

Z ADG = 103;1° where 4 right angles = 360°.
Hence the supplementary f  76;59° in the same units

angle, Z ADE ~ \  153;58°° where 2 right angles = 360°°.
Therefore, in the circle about right-angled triangle DEZ, 

arc EZ = 153;58°
and EZ = 116;55’’ where hypotenuse DE = 120 .̂

Similarly, since arc ABG of the eccentre is found by addition [of 75;43° and 
37;52°] as 113;35°, the angle at the circumference,

Z AEG = 113;35°° where 2 right angles = 360°°.
But we found that Z ADE = 153;58°° in the same units.

Therefore the remaining angle [in triangle ADE],
Z ZAE = 92;27°° in the same units.

Therefore, in the circle about right-angled triangle AEZ, 
arc EZ = 92;27°

and EZ = 86:39'’ where hypotenuse AE = 120’’.
Thei efore where EZ, as we showed, is 116;55'’. and ED = 120'*

EA = 161;55'’.
Furtherm ore, since arc AB of the eccentre is 75:43°. the angle at the 
circumference

Z AEB = 75:43°° where 2 right angles = 360°°. H396
Therefore, in the circle about right-angled triangle A E 0 . 

arc A 0  = 75:43°. 
and arc E 0  = 104:17° (supplement).

Therefore the corresponding chords

and E 0  I  '’VPOlenuse EA = \2V .

Therefore where AE. as we showed, is 161 ;55‘’, and DE = 120*’,
A 0  = 99;23'’2< 

and E 0  = 127;5P.
But we showed that the whole line EB = 252;41‘’ in the same units.
Therefore, by subtraction, 0 B  = 124:50'’ where A© = 99;23’’.

And 0B - = 15583:22 
and A 0 ‘ = 9877;3 

and 0 B “ + A 0- = AB- = 25460;25.
AB = 159:34'’ where ED = 120” and EA = 161;55’’.

And, where the diam eter of the eccentre is 120'’, AB = 73;39'’
(for it subtends an arc of 75:43°).

Therefore where AB = 73;39*’ and the diam eter of the eccentre is 120'*, H397
ED = 55;23'’ 

and EA = 74;43”.
Reading icy forjlY (99;43‘’) at H 396,I0and 13. ‘23’, which is guaranteed by the rest of Ptolemy’s 

working, is found in Ger.
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Therefore arc EA of the eccentre = 77; 1°
and, by addition [of arc ABG], arc EABG = 190;36°,
and hence, by subtraction [from the circle], arc GE = 169;24°.
Therefore GDE *** 119:28'’ where the diam eter of the eccentre is 120*".

So [see Fig. 11.13] let the centre of the eccentre be taken inside segment EAG 
(since it is greater than a semi-circle) as point K. Draw through K  and D the 
diameter of the eccentre through both centres, LKDM , and let the perpen­
dicular from K on to GE be produced [to meet the circumference] as KNX.

Then, where the diameter, LM  = 120’’, 
the whole line EG was shown to be 119;28'’ and ED to be 55:23’’; 

so, by subtraction, DG = 64;5*’ in the same units.
So, since ED. DG = L D .D \I,

LD.DiVI = 3549:9^ where diam eter LM is 120 .̂
But LD.DM  + D K ' = L K ' (the square on half the diameter).
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Fig. 11.13

Therefore, if from the square on half the diameter. 3600. we subtract 3549:9, we 
are left with D K ' as 50:51’’ in the same units.

Therefore the distance betw'een the centres. DK =“ 7:8’’ 
where the diam eter of the eccentre is 120’’.‘^

Furtherm ore, since EN (= fGE) = 59;44’’ where diam eter LM  = 120”, 
and we showed that ED = 55;23’’ in the same units,

by subtraction, DN = 4;21’’ where DK. as we showed. = 7;8’’. 
Therefore where hypotenuse [of right-angled triangle DKN] D K  = 120’’, 

DN = 73;1P,

DG and ED have been computed with only small inaccuracies (I llnd 64:5.21 and 55:23.39 for 
Ptolemy's 64;5 and 55;23), but the resulting value for the eccentricity, 7;3.33'’. differs significantly 
from Ptolemv's 7:8'’.



and, in the circle about right-angled triangle DKN 
arc DN = 75; 10°.
/  DKN -  -f where 2 right angles = 360°°

~ \3 7 ;3 5 °  where 4 right angles = 360°.
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And since Z DKN is an angle at the centre of the eccentre, 
arc X M  = 37;35°.'^

But arc GX = 1 arc GXE = 84;42°. H399
Therefore, by subtraction [of (arc GX + arc X M ) from 180°], the arc from the 
apogee to the third opp>osition,

arc GL = 57;43°.
But arc BG is given as 37;52°.

Therefore, by subtraction, the arc from the apogee to >'he second opposition, 
arc LB = 19;51°.

Similarly, since arc AB is given as 75;43°, 
by subtraction, the arc from the first opposition to the apogee, 

arc AL = 55;5Z^.
Xow again, since the epicycle centre is carried, not on this eccentre, but on 

that drawn with centre the point bisecting DK and with radius KL, we 
com puted in due order, as we did for the other [planets], the difierences in the 
apparent intervals [in true longitude] on the ecliptic which result from the 
al)ove ratios (taking them to be approxim ately correct), if we transfer the 
epicN cle's path to the eccentre in question, which produces the ecliptic anomaly 
[i.e. the equant].

Thus, let there l>e draw n [Fig. 11.14] the diagram  for the first opposition,
[similar to] the [previous] one in the same dem onstration, but drawn in advance 
of the apogee L. Then, since the angle of the m ean position in longitude,

Z \ 7 X  (- /  DZH'I -  i  'vhere 4 right angles = 360°
. . U  j ^   ̂11;44°° where 2 right angles = 360°°. 

in the circle about right-angled triangle DZH,
arc DH = 111;44° H400

and arc ZH  = 68:16° (supplement).
Therefore the corresponding chords 

DH =
and ZH = 67:20'} DZ = ■SO'.

Therefore where the distance between the centres, DZ = 3;34‘’, 
and the radius of the eccentre, DA = 60’’,

DH = 2;57” 
and ZH = 2;0^.

And since DA^ -  D H ' = AH^,
AH = 59;56'* in the same units.

Similarly, since ZH  = 0 H , 
and 0 E  = 2DH, 

by addition, A 0  = 61;56'’ where E 0  = 5;54'’.

-®Thc accumulation of small errors again leads to a significant difference between Ptolemy’s 
result and the accurately computed value. 38:1°.
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M
Fig. 11.14

Hence hypotenuse [of right-angled triangle 0A E ]
AE = 62:13’’ in the same units.

Thereloie. where hypotenuse AE = 120’’, E 0  = 11:21’’.*' 
and. in the circle about right-angled ti iangle A E 0.

arc EG «  10:51°
Z E A 0 = 10:51°° where 2 right angles = 360°°.

H40I Furtherm ore, where E 0  = 5;54’’,
the radius of the eccentre, ZX = 60’’. and Z 0  = 4’’; 
hence, by addition. 0 X , obviously, = 64’’,

and we get hypotenuse [of right-angled triangle E 0 X ]
EX as 64:16’’ in the same units.

Theretbre, where hypotenuse EX = 120'', 0 E  = 11:2’'. 
and. in the circle about right-angled triangle E 0 X .

arc 0 E  = 10:33°.
Z E X 0  = 10;33°° where 2 right angles = 360°°.

But we showed that Z E A 0 = 10;5I°° in the same units.
Therelbre. by subtraction, the angle of the required diflerence,

, *pv- _ J0 ;18°°  where 2 right angles = 360°°
■ 1 0;9° where 4 right angles = 360°.

But the planet at the first opposition, w'hen viewed along line AE, had an 
apparent longitude of — I; 13°. Thus it is clear that if the epicycle centre were 
carried, not on AL, but on N X, it would have been at point X  [at the first

-■! Ilncl 11;2;5", Icadiiii? lo  a rc  E© = 10:53°.



opposition], and the planet would have been seen along line EX, 9 ' in advance 
of its [actual] position at A, with a longitude of — 1;4°.

Again, let there be draw n [Fig. 11.15] the diagram  for the second opposition, 
[like that] in the same dem onstration [previously], but draw n to the rear of the 
apogee. [Then,] since arc N X  of the eccentre was shown to be 19;51°,
Z N 7X  /  D 7H  (vertically _ f  19;51® where 4 right angles = 360°

= ^  opposite) "  1 39;42°° where 2 right angles = 360°°.'
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H402

N

M

Fig. 11.15

Therelbre, in the circle about right-angled triangle D ZH,
arc DH = 39;42°

and arc ZH  = 140;18° (supplement).
Therefore the corresponding chords

D H =  40;45‘’l  ^ ^ ,onP
and ZH  = 112:52'/ hypotenuse DZ = 120 .

Therefore, where DZ = 3;34’’ and the radius of the eccentre, DB = 60’’, 
DH = lilS ” 

and ZH  = 3;21^
And, since DB" -  DH" = BH",

BH*» 59;59‘* in the same units.
Similarly, since ZH = H 0 , and E 0  = 2DH, 

by addition, B 0 = 63;20^ where E 0  = 2;26’’.
Hence hypotenuse [of right-angled triangle B E0]

EB = 63;23‘’ in the same units.
Therefore where hypot&nuse BE = 120'*, E 0  = 4;36’’,

H403
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H 404

and, in the circle about right-angled triangle B E0, 
arc E 0  = 4;24°
Z EB 0 = 4;24®® where 2 right angles = 360®°. 

Likewise, where the radius of the eccentre, X Z = 60'*,
Z 0  is com puted as 6;42‘*;

so, by addition, X 0  = 66;42'* where E 0  is given as 2;26'’.
Hence we find hypotenuse [of right-angled triangle E 0 X ] E X  as 66;45‘* in the

same units.
Therefore, where hypotenuse E X  = 120**, E 0  = 4;23’’, 

and, in the circle about right-angled triangle E 0 X , 
a r c E 0  = 4;12®.
Z E X 0  = 4; 12®° where 2 right angles = 360°°.

But Z EB© was shown to be 4;24°° in the same units.
P , , . / /  0;12°° in the same units

Therefore, by subtraction, Z BEX = i  « co u  ̂ i ̂ t0 ;6° where 4 right angles = 360°°.
Here too, then, it is clear, since the planet at the second opposition, when
viewed along EB, had a longitude of f  9;40°, that if, instead, it were viewed
along EX, it would have a longitude of 9;46°. And we showed that at the first
opposition it would, on the same hypothesis, have had a longitude o f ^  1;4°.
Hence it is clear that the in ten ’al in apparent [longitude] from the first to the
second opposition, if it were taken with respect to the eccentre NX, would be
68;42° of the ecliptic.

Let the diagram  for the third opposition be drawn [Fig. 11.16], with the same
iavout as that set out above for the second. [Then,] since we showed [p. 529] that
arc NX = 57:43°,

N

M
Fig. 11.16
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57;43° where 4 right angles = 360°

533

/  MT-v ( /  n7'H^ -   ̂ Where 4 right angles = 360°
’ ~ 1 115;26°° where 2 right angles = SBC®®.

Therefore, in the circle about right-angled triangle D ZH,
arc D H  = 115;26°

and arc ZH  = 64;34® (supplement).
Therefore the corresponding chords H405

D H = 1 0 1 ;2 7 '’l  . . ,onP
and ZH  » 64;6>' /  hypotenuse D Z = 120".

Therefore where DZ = 3;34’’and the radius of the eccentre,DG  = 60'’,
D H = S;!” 

and ZH = 1;54P.
Again, since DG^ -  DH^ = Q H \

O H  = 59;56’’ in the same units.
Similarly, since ZH  = 0 H , and E 0  = 2DH,

by addition, G© = 6i;50'’ where E 0  is com puted as 6;2’’;
Hence hypotenuse [of right-angled triangle GEO]

EG = 62;8'’ in tlie same units.
Therefore, where hypotenuse GE = 120’’, E 0  = 11;39‘’, 

and, in the circle about right-angled triangle G E 0 , 
arc E 0 «  11;9°.
Z E G 0  = 11:9°° where 2 right angles = 360°°.

Similarly, where the radius of the eccentre, XZ = 60^,
Z 0  is com puted as 3:48’’:

so, by addition, X 0  = 63:48'’ where E 0  was found to be 6;2'’.
Hence hypotenuse [of right-angled triangle E 0 X ]

EX = 64:5'’ in the same units.
Therefore, where hypotenuse EX = 120’’. E 0  = 11;18'’, H406

and. in the circle about right-angled triangle E 0 X .
arc E 0  = 10:49°
Z E X 0  = 10:49°° where 2 right angles = 360°°.

But we showed that Z E G 0  = 11;9°° in the same units.
. , , /  J 0—0°° in the same units

Therefore, by subtraction, Z G EX  = ^ ^

Hence, since the planet at the third opposition, when viewed along line EG, had 
a longitude oflO® 14:14°, it is clear that, if it had been on line EX, it would have 
had a longitude of 10“ 14:24°, and the interval from the second opposition to the 
third in apparent [longitude], taken with respect to eccentre NX. would have 
been [V> 14;24° -  I  9;46° =] 34;38°.

Starting from these intervals, then, we follow through the same theorem, and 
find the distance between the centres of the ecliptic and  the eccentre which 
produces the uniform motion of the epicycle (i.e. the distance equal to EZ 
[in Fig. 11.16]) as about 6;50‘’ where the diam eter of the eccentre is 120’’, and 
[the following values] for the arcs of that same eccentre:

from the first opposition to the apogee 57;5°
from the apogee to the second opposition 18; 3 8°
from the apogee to the third opposition 56;30°.
H e re  a g a in , th e a b o v e  q u a n titie s  h a ve  b e e n  a c c u r a te ly  d e r iv e d  b y  this H 4 0 7

■■fei



534 X I 5. Verification o f Saturn’s apogee and eccentricity

method; for the differences in the ecliptic arcs com puted from these arcs are 
very nearly the same as the previous set,^® and the apparen t intervals [in 
longitude] of the planet are found to be in agreement with those observed, as we 
shall show by a procedure similar [to the preceding ones for Ju p ite r and Mars].

Let the diagram  for the first opposition be draw n [Fig. 11.17], with only the 
eccentre carrying the epicycle centre. Then since the angle subtending 57;5° of 
the eccentre [i.e. equant],

Z AZL = 57;5° where 4 right angles = 360°, 
and Z AZL = Z D ZH (vertically opposite) = 114; 10°° where 2 right angles

= 360°°,

L

M
Fig. 11.17

where hypotenuse DZ = 120'*.

in the circle about right-angled triangle DZH, 
arc DH = 114;io° 

and arc ZH = 65;50° (supplement).
Therefore the corresponding chords

DH = 100;44'’l  
a n d Z H =  65; 13”/

H408 Therefore where the distance between the centres, DZ = 3;25‘’, 
and the radius of the eccentre, DA = 60*’,

DH = 2;52‘’ 
and  ZH = 1;51".

Furtherm ore, since AD^ -  DH^ = AH^,
AH = 59;56'* in the same units.

Similarly, since ZH = H 0 , and E 0  = 2DH,

Indeed, with one more iteration, one finds corrections of 0;9,28°, 0;5,36° and 0;9.40° (compare 
Ptolemy’s 9 ', 6 ' and 10'), and a  result for the eccentricity and apogee agreeing very closely with that 
adopted by Ptolemy.
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by addition, A© = 61;47‘* where E© is com puted as 5;44‘*. 
Hence hypotenuse [of right-angled triangle A E 0]

AE = 62;3‘* in the same units.
Therefore, where hypotenuse AE = 12CP, E© = 

and, in the circle about right-angled triangle AE©, 
arc E© = 10;36®.
Z EAZ = 10;36°° where 2 right angles = 360°°.

But Z AZL was given as 114; 10°° in the same units.
T,.  ̂ , , /  At-T / 103;34°° in the same units
1 herelore, by subtraction, Z AEL = i  r ,  u a ■ u. i ocao ̂ [  51;47° where 4 right angles = 360°.
T hat [51;47°], then, was the am ount by which the planet was in advance of the
apogee at the first opposition.

Again, let the diagram  for the second opposition be draw n in the same
m anner [Fig. 11.18]. [Then,] since

M
Fig. 11.18

Z BZL was shown to be 18;38° where 4 right angles = 360°, 
and Z BZL = Z DZH (vertically opposite) = 37; 16°° where 2 right angles

= 360°,
in the circle about right-angled triangle DZH, 

arc D H  = 37; 16° 
and arc ZH  = 142;44° (supplement).

Therefore the corresponding chords

and  ZH = 113;4y} hypotenuse DZ = 120', _

So where DZ = 3;25” and the radius oftheeccentre,D B  = 60**, 
DH = 1;5’’ 

and ZH = 3;14^.

H409



And since DB^ -  DH^ =
BH = 59; SO** in the same units.

Similarly, since ZH  = H 0 , and E 0  = 2DH,
by addition, B© = 63; 13** where E© is com puted as 2; 10'*. 

Hence hypotenuse [of right-angled triangle BE©]
EB = 63; 15’’ in the same units.

Therefore, where hypotenuse EB = 120^, © E = 4;?’’,
H410 and, in the circle about right-angled triangle BE©,

arc ©E = 3;56°.
•• Z EBZ = 3;56®° where 2 right angles = 360°®.

But Z BZL was given as 37; 16®° in the same units.

Thf*rpfr,re by cubtra^^'^'" /  BEL = -f
’ ^ ’ t^l6;40® where 4 right angles = 360°.

Therefore at the second opposition the apparent position of the planet was
16:40° to the rear of the apogee. And we showed that at the first opposition it
was 51;47° in advance of the same apogee. Therefore the interval in apparent
[longitude] from the first opposition to the second is com puted as the sum of the
above amounts, 68;27°, in agreem ent with the distance found from the
observations [p. 526].

Now let the diagram  for the third opposition be draw n [Fig. 11.19]. [Then,]
since

Z G ZL was shown to be 56;30° where 4 right angles = 360°, 
and Z GZL = Z D ZH  (vertically opposite) = 113;0°° where 2 right angles

= 360°°,
in the circle about right-angled triangle D ZH, 

arc DH = 113°
H 411 and arc ZH = 67° (supplement).

536 X I 5. Verification: Satum^s 3rd opposition
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Therefore the corresponding chords
D H =100;4*’l  , . 

and ZH  = 66;14 'J l-ypotenus^ DZ = \Z(f.

Therefore, where DZ = 3;25‘*, and the radius of the eccentre, DG = 60'’,
DH = 2:51'’ 

and ZH  = l;53^
Again, since -  DH^ = GH^,

G H  = 59;56'’ in the same units.
Similarly, since ZH  = H 0 , and E 0  = 2DH,

by addition, G© = 61;49‘* where E© is com puted as 5;42’*; 
hence hypotenuse [of right-angled triangle G E 0]

EG = 62; S’* in the sam e units.
Therefore, where hypotenuse GE = 120’, E 0  = ll;]*’,̂  ̂

and, in the circle about right-angled triangle G E 0 , 
arc E© = 10;32«
Z EG© = 10;32°° where 2 right angles = 360°°.

But Z G ZL was given'® as 113°° in the same units. H412

Therefore, bv subtraction, Z G E L = | i" '‘am e units
51:14° where 4 right angles = 360°.

T hat [51;14°J, thpn, is the am ount by which the planet was to the rear of the
af)ogee at the third opposition. And we showed that at the second opposition it
was 16;40° to the rear of the same apogee. So the distance in apparent
[longitude] from the second opposition to the third is com puted as the difference
[between 51; 14° and 16;40°], 34;34°, which is, again, in agreem ent with that
derived I'rom the observations [p. 526].

It is immediately clear, since the planet at the th ird  opposition had a
longitude of 10“ 14; 14°, and was shown to be 51; 14° to the rear of the apogee,
that the apogee of its eccentre had a t that moment a longitude of ni, 23°, while
its perigee was diametrically opposite at B 23°.

In the same way [as before], if we draw  [Fig. 11.20] the epicycle H 0  about
centre G, we immediately get the mean position of the epicycle in longitude
from the apogee of the eccentre as 56;30° (as dem onstrated [p. 533]), and arc
© K  of the epicycle as 5; 16° (forZ EGZ was shown [above] to be 10;32°° where2 H413
right angles equal 360°°). Therefore, by subtraction [from 180°},

arc H©, the arc from the apogee of the epicycle to the planet, is I74;44°.
Therefore at the m oment of the third opposition, namely in the twentieth year
of H adrian, Mesore 24 in the Egyptian calendar, at noon, the planet Saturn
had the following mean positions:

in longitude: 56;30° from the apogee of the eccentre
(i.e. its [mean] longitude was 19;30°);

in anomaly: 174;44° from the ap>ogee of the epicycle.
Q.E.D.

X I 5. Agreement of compulation with observations for Saturn 537

•’ Reading ia a  (with Ar) for la i at H411,22. The reading b  confirmed by the
surrounding computations.

Reading uncKeiTO, with D, for bndKCiTai (‘is given’) at H 412,l.
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M
Fig. 11.20

H414 6. [Demonstration oj the size oj Saturn's epicycle]

H415

Next, once again, in order to dem onstrate the size of the epicycle, we took an 
observation which we m ade in the second year of Antoninus, M echir [ \7 ]  6 /7  
in the Egy ptian calendar [138 Dec. 22/23]. It was 4 equinoctial hours before 
midnight, for according to the astrolaijc the last degree of Aries was 
culminating, while the longitude of the mean sun was ^  28;4l°. At that 
moment the planet Saturn, sighted with respect to the bright star in the Hyades 
[catalogue X X III 14], was seen to have a longitude o f-2? 9t?°, and was about 
to the rear of the centre of the moon (for that was its distance from the moon’s 
northern horn). Now at that m oment the moon’s positions were as follows: 

mean longitude ^  8:55°
anomaly 174; 15° from the apogee of the epicycle
hence its true longitude must have been ^  9;40® 
and its apparent longitude at A lexandria ^  8;34°. “

Thus from these considerations too the planet Saturn must have had a 
longitude o f ̂  9j^° (since it was about i° to the rear o f the m oon’s centre).

It is far from d ea r for what moment these amounts arc computed. T he equation of time with 
respect to cp>och is about -  I3 i minutes, and indeed the mean positions seem to be computed for 7;50 
p.m. rather than 8 p.m.; but then Ptolemy’s true longitude is much too big. I find:

Xd
ad
Xd

for 7;50 p.m. 
308;52° 
174; 15° 
309;29°

for 8 p.m. 
308,58“ 
174;20“ 
309,35°

Ptolemy 
308;55'^ 
174; 15° 
309;40°.

Since the moon was almost on the horizon, the parallax was large; from Ptolemy’s tables I find a 
longitudinal parallax of about -  (~1;6° text), leading to a discrepancy of about 1° in the final 
result.



And its distance from the apogee of the eccentre (which was [in] the same 
[{X)sition as at the third opposition], since its shift over so short an interval is 
negligible), was 76;4°.

Now the interval from the third opposition to this observation is
2 Egyptian years 167 days 8 hours.

And the [mean] motions of Saturn over this interval, calculated ro u g h ly ,a re  
in longitude: 30,*3°
in anomaly: 134;24°.

If we add the latter to the positions at the third opposition as found above 
[p. 537], we get, for the moment of the obsei-vation in question: 
in [mean] longitude 86;33° from the apogee of the eccentre 

in anom ah’ 309;8° from the apogee of the epicycle.
W ith the alx»ve as data, let us again draw  the diagram  [Fig. 11.21] as in the 

similar proof [for Mars and Jupiter. Figs. 10.17 and 11.10], but with the 
epicycle situated to the rear of the apogee of the eccentre, and the planet in 
advance of the apogee of the epicycle, in accordance with their given positions. 
[Then,] since
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G
Fig. 11.21

/  47R  (- /  n V M )  -  I  ^ = 360° (given)
^  i-  z. uz-Ai; -  I  j 73.goo ^ h ere  2 right angles = 360®°,

in the circle about right-angled triangle DZM , 
arc DM  = 173;6° 

and arc ZM  = 6;54° (supplement). 
Therefore the corresponding chords

D M = 1 1 9 ;4 7 ‘’l  ^ iort>
and ZM = 7;13 'J hypotenuse DZ = 120'.

These agree, to the nearest minute, with those found from the tables. Cf. p. 526 n.23.



Therefore, where the distance between the centres, DZ = 3;25‘’, 
and the radius of the eccentre, DB = 60'*,

DM«»3;25*' 
and ZM  = 0;12^

H417 And since DB^ -  DM^ = BM^,
BM = 59; 54’’ in the same units.

Similarly, since ZM  = M L, and EL = 2DM ,
by addition, BL = 60:6’’ where EL is com puted as 6;50‘’.

Hence hypotenuse [of right-angled triangle BEL]
EB = 60;29'* in the same units.

Therefore, where hypotenuse EB = 120’’, EL = 13;33*’, 
and, in the circle about right-angled triangle BEL, 

arc EL = 12; 58°
Z EBZ = 12;58°® where 2 right angles = 360°°.

But Z AZB was given^^ as 173;6°° in the same units.
Therefore, by subtraction, Z AEB = 160:8°° in the same units.
But the angle representing the apparent distance of the planet from the apogee,

, T 76;4° where 4 right angles = 360°
Z AEK was g ,v e n a s | ,32;8o.> where 2 right angles = 360»“

Therefore, by subtraction, Z KEB = 8;0°° in the same units.
Therefore, in the circle about right-angled triangle BEN. 

arc BN = 8°
H418 and BN = 8:22*’ where hypotenuse EB = 120**.

Therefore, where EB = 60:29*’, and the radius of the eccentre is 60’’,
BN = 4; 13”.

Furtherm ore, since the distance of the planet from H, the apogee of the 
epicycle, was 309;8°,
by subtraction [from 360°], arc H K  = 50;52°.

• /  HRK -  /  where 4 right angles = 360°
-  I  2 right angles = 360°°.

But we found that Z EBZ (= Z H B 0) = 12:58°°.
Therefore, by subtraction, Z 0 B K  = 88:46°° where Z KEB was shown to be 8°°. 
Therefore, by subtraction, Z BKN = 80;46°° in the same units.

Therefore, in the circle about right-angled triangle BKN, 
arc BN = 80:46°

and BN = 77;45'’ where hypotenuse BK = 120’’.
Therefore, where BN was found as 4;13'’, and the radius of the eccentre is 60'’, 

the radius of the epicycle, BK=® 6!’’.
Thus we have com puted the following;
round about the beginning of the reign of Antoninus the longitude of Saturn’s 

H419 apogee was n\, 23°;
where the radius of the eccentre carrying the epicycle is 60'’,
the distance between the centres of the ecliptic and the eccentre which produces
the uniform motion is 6;50'’,
and the radius of the epicvcle is 6;30'’.

Q .E.D.
"  Reading OitEKeixo (with D) for uJtOKEuai (‘is given’) at H417.13.

540 X I 6. Geometrical determination o f  size o f  Saturn’s epicycle
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7. {On the correction o f Saturn’s periodic motions}

It remains lo dem onstrate the correction of the periodic motions. For this 
purpose we again selected one of the accurately recorded ancient observations. 
In this it is declared that in the 82nd year in the C haldaean calendar, 
Xanthikos 5, in the evening, the planet Saturn was 2 digits [i.e. 10 minutes] 
below [the star on] the southern shoulder of Virgo.^”* Now tha t m oment is in the 
519th year from Nabonassar, Tybi [V] 14 in the Egyptian calendar [-228 
M ar. 1], evening, a t which time we find the longitude of the mean sun as 
M 6; 10°. But the fixed star on the southern shoulder of Virgo had a longitude at 
the time of our observation of WH 136°;^  ̂ thus at the m om ent of the observation 
in question, since to the intervening 366 years corresponds a motion of the fixed 
stars of about 3s°, its longitude was, obviously, tTR 9j°. And the planet Satum  
had the same longitude, since it was 2 digits to the south of the fixed star. By the 
same argum ent, since we showed that in our time its apogee was at TIT, 23°, at 
the observation in question it must have had a longitude ofni, 19i°. From this 
we conclude that at the above moment the apparent distance of the planet from 
the then apogee was 290; 10° of the ecliptic, while the m ean sun was 106;50° 
from the same apogee.

W ith the above ajs data, let there be drawn [Fig. 11.22] the diagram  as for the 
same dem onstration [for M ars and Jupiter, Figs. 10.18 and 11.11], [but] with 
the epicycle located in advance of the apogee of the eccentre, and the [mean] 
sun in advance of the perigee, with the radius from the epicycle centre to the

H

H420

This is clearly a Babylonian observation: see Introduction p. 13. On the ‘digit’ sec p. 322 n.5. 
The star in question, y Vir, is one of the Babylonian ‘normal stars’ (cf. p. 453 n.70).

Catalogue no. X X V II 7.



planet drawn parallel to [the line indicating] the sun’s position. Then, since the 
apparent position o f  Saturn was in advance o f  the apogee by 69,50° (the 
difference [of 290; 10°] from one revolution), the angle a t the centre of the 
ecliptic,

H421 . AF(=) I  where 4 right angles = 360°
“ ~ \  139;4G°° where 2 right angles = 360°°. 

And the angle of the sun’s distance [from the ap)Ogee],
/ . p ,  . f  106;50° where 4 right angles = 360°
ZAEL .s g 'v e n a s |2 i 3 .4ooo „ h e re  2 right angles = 360“ .

Therelbre, by addition, Z ©EL {= Z B 0 E , since B 0  is parallel to EL), 
is 353;20°° where 2 right angles = 360°°,

and, by subtraction [of Z B 0E  from 2 right angles]
Z B 0N  = 6;40°° in the same units.

Therefore, in the circle about right-angled triangle B 0N , 
arc BN = 6;40°

and BN = 6;58‘’ where hypotenuse B© = 120'’.
H422 Therefore where the radius of the epicycle, B© = 6;30'’,

BN = 0:23”.
Similarly, since Z A E 0 = 139;40°° where 2 right angles = 360°°

and Z EDM  = 40;20°° in the same units [complement], 
in the circle about right-angled triangle D EM .

arc DM = 139;40°
and DM  = 112:39'’ where hypotenuse ED = 120'’. 

Therefore, where the distance between the centres, ED = 3;25'’, 
and the radius of the eccentre. DB = 60'’,

D M  (= XN) = 3 ;l2 ^  
and, by addition, BNX = 3;35’’ where hypotenuse [of right-angled

triangle BDX] DB = 60'’. 
Therefore, where DB = 120^, BX = 7;10^ 

and. in the circle about right-angled triangle BDX, 
arc BX = 6;52°
Z BDX = 6;52°° where 2 right angles = 360°° 

and, by subtraction [from a right angle],
Z BDM = 173;8°° in the same units.

And, by addition [of Z EDM ], Z BDE = 213;28°° in the same units, 
and, by subtraction [from 2 right angles],

Z BDA = 146;32°° in the same units.
Therefore, in the circle about right-angled triangle D ZK, 

arc ZK = 146;32° 
and arc DK = 33,28° (supplement).

Therefore the corresponding chords
ZK = 114'55’’!

H423 a n d D K =  34;33p j - h y p o t e n u s e  DZ = lao '.

Therefore, where the distance between the centres, D Z = 3;25’’, 
and the radius of the eccentre, DB = eO**,

ZK = 3 , \ r  
and DK = 0;59^,
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Z AZB =

and, by subtraction [from DB], KB = 59;!'’ where ZK  =
Hence hypotenuse [of right-angled triangle BZK]

ZB = 59;6'’ in the same units.
Therefore, where hypotenuse ZB = 120*’, ZK  = 6;4(/, 

and, in the circle about right-angled triangle BZK, 
arc ZK  = 6;22°.
Z ZBK = 6;22°° where 2 right angles = 360°°.

But we found that Z ADB = 146;32°° in the same units.
Therefore, by addition, the angle representing the m ean position in longitude,

152;54°° in the same units 
76;27° where 4 right angles = 360°.

Therefore at the moment of the above observation S atu rn ’s distance from the 
apogee in mean longitudinal motion was 283:33°, i.e. its [mean] longitude was 
[r\i 19;20° + 283;33° =] W  2;53°.

And since the sun’s mean position is given as 106;50°, ifwe add the 360° of one 
revolution lo the latter and from the resulting 466;50° subtract the 283;33° of H424 
the longitude [from apogee], we get, for the anom aly at that moment,

183; 17° from the apogee of the epicycle.^®
So, since we have shown that at the moment of the above observation, which is 
in the 519th year from Nabonassar, Tybi [V] 14,^  ̂ in the evening, [Saturn] was 
183; 17° [in anomaly] from the apogee of the epicycle, and a t the moment of the 
third opposition, which was in the 883rd year from Nabonassar, Mesore [XII]
24, noon, it was 174;44°, it is clear that in the interval between the observations, 
which comprises

364 Egyptian years and 219j days, 
the planet Saturn has moved

351;27° (beyond 351 complete revolutions in anomaly).
T hat is again almost the same increment as one derives from the [tables for] 
mean motions which we constructed. For it was from these very same elements 
that we derived the daily mean motion [in anomaly], by dividing the total in 
degi’ees com puted from the num ber of complete revolutions plus the increment H425 
by the total in days com puted from the time [interval].^®
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8. {On the epoch o f Saturn’s periodic motions]

Now since the time interval from the first year of Nabonassar, Thoth 1, noon, to 
the above ancient observation is 

518 Egyptian years 133i days, 
and this interval comprises increments of 

216; 10° in longitude^®

Accurate computation gives 183; 16° to the nearest minute.
”  Reading i5 ' for 5 ' (4) at H424,6. The latter is found as the reading of the first hand in D, but is 

probably a misprint in Heiberg’s text. Corrected by Manitius.
**On the actual derivation of Saturn’s mean motion in anomaly sec Appendix C.
”  Reading ok; i  (with GD'^ Ar) foroi^0  (216;9“), which is Heiberg’s correction (most Greek mss. 

have 216° or 216;0°). Heiberg was no doubt influenced by the fact that the mean motion,, according
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and 149; 15° in anomaly,
if we subtract the latter from the [respective] positions at the observation, we 
get, for the same moment of epoch, the m ean position of the planet Saturn  as 

in longitude; 26;43°
in anomaly: 34;2® from the apogee of the epicycle.

By the same com putation [as before], we find the apogee of its eccentre in 
tn. 14; 10°.“®

Q.E.D.

H426 9. {How the true positions can be found geometricaily from the periodic motions]

Furtherm ore, conversely, given the arcs of the periodic [motions] on the 
eccentre which produces the uniform motion [i.e. the equant] and on the 
epicycle, one can readily obtain the apparent positions of the planets 
geometrically, as will become clear to us through the same [diagram s as above, 
e.g. Fig. 11.21].

For [see Fig. 11.23], in the simplified diagram  containing [only] the eccentre 
and epicycle, we join ZB© and EBH. Then, if we are given the m ean position in 
longitude, i.e. Z AZB, I'rom what we proved previously, Z AEB will be given 

H427 according to both hypotheses,^* and  so will Z EBZ, (which is the same as

fl

to Ptolemy’s table, isonly 2I6;8,27°. But 216,10° is confirmed by the reading26;43° below (in which 
all mss. agree here and in IX 4: Heiberg’s correction to 26;44° must be rejected), and we must admit 
that Ptolemy made a small computing error. Cf. H AM A  182 n.l5 .

The apc^fee was in nj, i 9;20° at the observation (p. 541). In 5 1 the movement in precession is 
5; 11°. Ptolemy, through inaccuracy or rounding, found 5; 10°. The latter subtracted from n), 19;20° 
gives his result.

1 presume that by ‘both hypotheses’ Ptolemy means the simple eccentric model and the full, 
equant model. A possible alternative would be eccentric and epicyclic models, but since these are 
not discussed (for the planets) until Bk. X II, this seems unlikely.



Z H B 0), and aiso the ratio oflineEB  to the radius ofthe epicycle. And if we also 
suppose that the planet is located on the epicycle, e.g. a t point K , and, when EK 
and BK are joined, arc © K  is given, then, if instead of dropping the 
p>erpendicular from the epicycle centre B on to EK  (as in the converse proof), we 
drop the perpendicular (here KL) from the planet K  on to EB, ihenZ  HBK will 
be given by addition [of the given a n g le s / 0 B K , Z H B 0], and  hence the ratio of 
KL and LB to BK and also, obviously, [their ratio] to EB.^^ Accordingly, the 
ratio of the whole line EBL to LK will be g iv e n .H e n c e  Z L E K  will be given, 
and we will have com puted the angle AEK which comprises' the apparent 
distance of the planet from the apogee.
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10. [Method o f com I rue ting tables for the anomalies]**

However, to avoid always com puting the apparent positions geometrically (for 
although that method is the only one which provides a fully accurate solution to 
the problem, it is too cumljersome to be convenient for [astronomical] H428 
investigations), we have constructed for each of the five planets a table which is 
as easy to use as we could devise, while at the same tim e being ver>' close to full 
accuracy. [Each table] contains the individually determ ined anomalies of the 
planets, so that we can use them as a ready means of com puting any particular 
apparent position, once we are given the periodic motions from the respective 
apogees.

VVe have again arranged each of the tables in 45 lines for the sake of 
symmetry, and we have arranged each in 8 columns. T h e  first 2 columns will 
contain the numbers of the mean positions arranged as for the sun and moon 
[III 6 and V 8]: in the first column the 180 degrees beginning from the apogee, 
from the top down, and in the second the rem aining 180 degrees of the [other] 
semi-circle, from the bottom up, in such a way tha t the num ber ‘180’ is in the 
last line in both columns, and the increment in the num bers is 6® in the top^* 15 
lines, but 3° in the 30 lines rem aining below (for the differences between 
[successive] values for the anomalies remain almost constant for longer stretches 
near the apogee, whereas they change faster near the perigee). As for the next H429 
two columns, the third will contain the equations corresponding to the mean 
position in longitude (each to the argum ents on the same line), com puted for the 
greater eccentricity,^* but under the simplifying assumption that the centre of 
the epicycle is carried on the eccentre which produces the m ean motion [i.e. the 
equant]. T he fourth column will contain the corrections to the equations due to 
the fact that the epicycle centre is carried, not on the above circle, but on 
another. T he method by which each of these quantities [the equation and its 
correction], both in combination and separately, can be found geometrically has

Euclid, Data Props. 40 and 8.
Euclid, Data Props. 6 and 8.

^S ce  H AM A  183-6, Pedcracn 291-4.
Reading &v<D06v (with D,Is) forfivcodEV icpfflTcov (‘first top’) a t H428,18.

** I.e. the equations of center computed for the double eccentricity (ZE in Fig. 11.23, where the 
equation is Z ZBE).



already been made plain by numerous preceding theorems.'*^ In this place, 
since this is a [scientific] treatise, it was appropriate to display this way of 
separating the zodiacal anomaly, and  hence to tabulate it in two columns. 
However, for actual use, a single column formed by com bining these two will 
suffice/®

Each of the next three columns will contain the equations due to the epicycle. 
These, again, are computed under a simplifying assumption, [namely] that the 
apogee or perigee of the epicycle is viewed along the line from the observer [to 

H430 the epicycle centre].*® The way in which this kind of dem onstration is 
performed has also been made plain by the previous theorems. T he midmost of 
these three columns (which is the sixth from the beginning) will contain the 
equations com puted for the ratio [of epicycle radius to distance of epicycle 
centre] at mean distance; the fifth will contain, [for each argum ent], the 
difference between the equation at greatest distance [of the epicycle] and the 
equation for the same argument at m ean distance; the seventh will contain the 
differences between the equations a t least distance and the [corresponding] 
equations at mean distance. For we have shown that for the following epicycle 
sizes (from now on it would be best to list [the planets] in order from the 
outermost):

Saturn Jup ite r M ars Venus M ercury
6;30’’ 11:30^ 39;30^ 43;10'* 22;30*’,' 

the mean distance, i.e. the distance [equivalent] to the radius of the eccentre 
which carries the epicycle, is 60’’ in all cases; and the greatest distances (with 
respect to the centre of the ecliptic), are:

Saturn Ju p ite r M ars Venus M ercury
H431 63; 25” 62; 45” 66” 61; 15” 69”.

The least distances (defined similarly) are:
Saturn Jup iter M ars Venus M ercury
56;35” 57; 15” 54” 58;45” 55;34”. °̂

As for the remaining, eighth column, we provided it in order that one may find 
the applicable fraction of the above differences [in cols. 5 and 7] when the 
planet’s epicycle is not exactly at mean, greatest or least distance, but in an 
interm ediate position. The com putation of this correction is based only on the 
m aximum equation ([i.e.] that formed by the tangent from the observer to the 
epicycle) at each intermediate distance; for the [fraction] of the difference to be 
applied for any particular position [of the planet] on the epicycle is not 
significantly different from that for the greatest equation.

But in order to make our m eaning clearer, and  to explain the actual method 
of com puting the [fractions] to be applied, let us draw  [see Fig. 11.24] the line

E.g. XI 5 pp. 529-37 and XI y.
^*Thc didactic purpose of the Almagest is made explicit here, ‘[scientific] treatise’ is my 

translation ofouvtoi^u;. For this meaning, which is typical of Hellenistic prose, but seems not to be 
classical, see LSJ s. v. 3. In the Handy Tables Ptolemy does indeed combine the two columns into one, 
and that is the pattern ol' all subs^uen t ancient and mediaeval astronomical tables.

I.e. the equation of anomaly is computed as a function, not of the mean anomaly, but of the 
true, that is as counted from the true apogee of the epicycle.

^  For this value for the least distance of the centre of the epicycle for Mercury see IX  9 p. 460 with 
n.89.

546 X I 10. Structure o f  planetary anomaly tables
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through both centres (the centre of the ecliptic and the centre of the eccentre 
producing the uniform motion of the epicycle), ABGD. Let the centre of the 
ecliptic be taken at G, and the centre of the epicycle’s uniform motion [i.e. the 
equant point] at B. Produce line BEZ, describe the epicycle ZH  about centre E, 
and draw  the tangent to it from G, line GH. Jo in  GE and perpendicular EH, 
and let us supp>ose, exempli gratia, that for each of the five planets the epicycle 
centre is 30° from the apogee of the eccentre in m ean motion.

B

H432

D
Fig. 11.24

T hen  (to avoid lengthening the com putation by dem onstrating the same 
thing over and over again), we have dem onstrated at length in what preceded, 
both in the hypothesis for M ercury and in tha t for the other planets,'’' that if 
Z ABE is given, the ratio o f GE to the radius of the epicycle (HE) is also given. 
Hence, by means of the computations for each particular planet, w ithZ  ABE 
taken as 30°, this ratio comes to:

for Saturn Jup iter M ars Venus M ercury
63;2: 6;30 62;26: 11;30 65;24; 39;30 61;6^2. 43. jq  66,35; 22;30.

Thus we will get for Z EGH, which comprises the m axim um  epicyclic equation 
at that point,

for Saturn Jup iter M ars Venus M ercury
5;55^° iO ;3^° 37;9° 44 ;5^° 19;45°.

And we com pute the greatest equations at the m ean distance, according to the 
ratios set out just above^ as (to avoid repetition, we [simply list them] in an order 
corresponding to the above order of the planets);

b',13“ ll;3® 41;10° 46;0° 22;2°;

Mercury, IX  9 pp. 457-60; other p la n ts , X  2, X  8, XI 2, XI 6.
Reading ^  q (with AD,Ar) for ^  Kq (61;26) at H433,4. At H503,5 all mss. have 61;6. 

Corrected by Manitius.

H433



those at the greatest distances as
5;53® I0;34‘’ 36;45® 44;48« 19;2°;

and those at the least distances as
6;36° 11;35® 47; 1® 47; 17° 23;53°.

H434 Thus the differences between the equations a t m ean distance and those at 
greatest distance are

0;20° 0;29° 4;25° 1;12° 3;0°,
while the differences between [those a t m ean distance and] those at least 
distance are

0;23® 0;32° 5;51° 1;17° 1;5P.
Now the equations of the distances in question [For a m ean longitude of 30° 

from the apogee] are less than those for m ean distance, and difier from the latter 
by the following amounts:

0;17|° 0;26^° 4;1° l;3i° 2; 17°,
and the latter (expressed as sixtieths of the above total differences between [the 
equations for] mean and greatest distance)^^ are

for Saturn Jup ite r M ars Venus M ercury
52:30 54;50 54:34 52:55 45;40.

So those are the values, in sixtieths, which we put in the 8th column of the 
appropriate table, on the line containing the num ber ‘30’ for the mean motion 
in longitude.

H435 For those distances which have equations greater than those at mean 
distance, we again reduced the [resulting] differences to sixtieths, but in this 
case expressed as fractions, not of the [corresponding] equations at greatest

• distance, but of those at least distance. In the same way [as above], we 
performed the com putation lor all o ther positions [of the epicycle] at 6° 
inter\‘als of mean longitude/’̂  and tabulated the resulting fractions, expressed 
in sixtieths, opposite the appropriate arguments. As we said, the fraction of the 
difference to be applied is sensibly the same even when the position of a planet is 
not at the greatest epicyclic equation, but at some other point on the epicycle.

The layout of the five tables is as follows.

548 X I 10. Computation o f  coefficient o f  interpolation

H436-45 11. {Planetary equation tablesY^

[See pp. 549-53.]

^^Thus, e.g., (or Saturn 0:17* : 0;20 = 52* : 60.
The statement that these values were computed at 6° intervals, even where the function is 

tabulated at 3° intervals, is easily verified by taking the differences between successive values in col. 
8 for Mars.

** Corrections to Heiberg;

H441,49 Mars, arg. 174°, col. 6. Read ta te (with Ar) for la  tO (1I;19°). Computed: 11;I6°. 
H442,17 Venus, arg. 66°, col. 6. Read Kq vC, (with DL) for Kq XC (26;37°). 26;57° is the value I 

compute, and it also agrees with the value in col. 2 of the latitude table (X III 5). 
H443,34 arg. 129°, col. 3. Read a  v5 (with Ar) for a  va (1;51°). Corrected by Manitius. 
H443,36 arg. 135°, col. 6. Read jxe v9 (with D,Ar) for he ve (45;35°). Computed: 46;0°. 
H443,43 arg. 156°, col. 7. Reada^T) (with D,Ar) fo ra  vt) ( I;5 ^ ), which is obviously wrong since 

it is greater than the value for 159°. Ciomputed: 1;47°. Corrected by Manitius. 
H444,9 Mercury, arg. 18°, col. 5. Read o k0 (with Ar) for o k5 (0;24°). Computed: 0;29°.
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SATURN 
APOGEE: irt 14;10°

1 2 3 4 5 6 7 8
Equation Difference Equation

Common in •n Subtractive of Additive
Numbers Longitude Equation Difference Anomaly Difference Sixtieths

6 354 0 37 +0 2 0 2 0 36 0 2 -6 0  0
12 348 1 13 +0 4 0 4 1 11 0 4 -5 8  30
18 342 1 49 +0 6 0 5 1 45 0 7 -57  0

24 336 2 23 +0 8 0 7 2 18 0 9 -55  30
30 330 2 57 +0 9 0 8 2 50 0 11 -5 2  30
36 324 3 29 +0 10 0 10 3 20 0 13 -4 9  30

42 318 3 59 +0 11 0 11 3 49 0 15 -4 6  30
48 312 4 28 +0 11 0 12 4 17 0 17 -4 3  30
54 306 4 55 +0 10 0 14 4 42 0 19 -3 9  0

60 300 5 20 +0 9 0 15 5 4 0 20 -3 4  30
66 294 5 42 +0 8 0 17 5 25 0 20 -3 0  0
72 288 6 0 +0 7 0 18 5 42 0 21 -2 4  0

78 282 6 14 +0 5 0 18 5 55 0 21 -1 8  0
84 276 6 24 +0 3 0 19 6 5 0 22 -1 2  0
90 270 6 30 +0 1 0 19 6 12 0 22 -  4 30

93 267 6 31 +0 0 0 20 6 12 0 23 -  0 45
96 264 6 32 - 0  2 0 20 6 13 0 23 + 2 32
99 261 6 31 - 0  3 0 20 6 12 0 24 + 5 51

102 258 6 30 - 0  4 0 21 6 12 0 24 + 9 8
105 255 6 27 - 0  5 0 21 6 9 0 24 + 11 45
108 252 6 23 - 0  6 0 20 6 5 0 25 + 14 21

111 249 6 19 - 0  7 0 20 6 0 0 25 + 16 58
114 246 6 14 - 0  8 0 20 5 55 0 24 + 19 31
117 243 6 7 - 0  9 0 19 5 48 0 24 +22 11

120 240' 5 59 - 0  10 0 19 5 40 0 23 +24 47
123 237 5 50 - 0  10 0 19 5 31 0 23 +27 24
126 234 5 39 - 0  11 0 18 5 21 0 22 +30 0

129 231 5 27 - 0  11 0 18 5 10 0 22 +32 37
132 228 5 14 - 0  12 0 17 4 58 0 21 +35 13
135 225 5 0 - 0  12 0 17 4 45 0 20 +37 50

138 222 4 45 - 0  12 0 16 4 31 0 19 +40 26
141 219 4 29 - 0  12 0 15 4 16 0 18 +43 3
144 216 4 12 - 0  12 0 14 4 0 0 17 +45 39

147 213 3 54 - 0  12 0 14 3 43 0 15 +47 37
150 210 3 35 - 0  11 0 12 3 25 0 14 +49 34
153 207 3 16 1 - 0  11 0 11 3 7 0 13 +51 32

156 204 2 56 - 0  10 0 10 2 48 0 12 +53 29
159 201 2 36 - 0  9 0 9 2 29 0 11 +54 49
162 198 2 15 - 0  8 0 7 2 9 0 10 +56 6

165 195 1 53 - 0  7 0 6 1 48 0 8 +57 24
168 192 1 31 - 0  6 0 5 1 27 0 7 +58 42
171 189 1 9 - 0  5 0 5 1 6 0 5 +59 21

174 186 0 47 - 0  3 0 4 0 45 0 4 +60 0
177 183 0 24 - 0  2 0 2 0 23 0 2 +60 0
180 180 0 0 - 0  0 0 0 0 0 0 0 +60 0
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JU P IT E R  
APOGEE: tib 2;9“

1 2 3 4 5 6 7 8
Equation Difference Equation

Common in in Subtractive of Additive
Numbers Longitude Equation Difference Anomaly Difference Sixtieths

6 354 0 30 +0 1 0 2 0 58 0 2 -6 0  0
12 348 1 0 +0 2 0 5 1 56 0 5 -5 8  58
18 342 1 30 +0 3 0 7 2 52 0 7 -5 7  56

24 336 1 58 +0 4 0 9 3 48 0 9 -5 6  54
30 330 2 26 +0 5 0 11 4 42 0 11 -5 4  50
36 324 2 52 +0 6 0 13 5 34 0 13 -51 43

42 318 3 17 +0 7 0 15 6 25 0 15 -4 7  35
48 312 3 40 +0 7 0 17 7 12 0 18 -4 3  27
54 306 4 1 +0 7 0 19 7 57 0 20 -3 9  19

60 300 4 20 +0 6 0 21 8 37 0 22 -3 5  8
66 294 4 37 +0 5 0 23 9 14 0 24 -2 8  58
72 288 4 51 +0 4 0 24 9 46 0 26 -2 2  45

78 282 5 2 +0 3 0 25 10 13 0 28 -1 7  35
84 276 5 9 +0 2 0 26 10 35 0 30 -11 23
90 270 5 14 +0 1 0 26 10 51 0 31 -  4 40

93 267 5 15 +0 0 0 27 10 57 0 31 -  1 8
96 264 5 16 - 0 1 0 27 11 0 0 32 + 1 52
99 261 5 15 - 0 1 0 27 11 2 0 32 + 5 9

102 258 5 14 - 0 2 0 28 11 3 0 32 + 8 26
105 255 5 12 - 0 2 0 28 11 1 0 33 + 11 43
108 252 5 9 - 0 3 0 29 10 59 0 33 + 15 0

111 249 5 5 - 0 4 0 29 10 53 0 33 + 17 49
114 246 5 0 - 0 5 0 30 10 45 0 34 +20 37
117 243 4 54 - 0 5 0 30 10 35 0 34 +23 26

120 240 4 47 - 0 6 0 30 10 24 0 34 +26 15
123 237 4 39 - 0 6 0 29 10 10 0 33 +29 4
126 234 4 30 - 0 7 0 29 9 54 0 33 +31 52

129 231 4 20 - 0 7 0 28 9 36 0 32 +34 41
132 228 4 9 - 0 8 0 28 9 16 0 32 +37 30
135 225 3 58 - 0 8 0 27 8 54 0 31 +40 19

138 222 3 46 - 0 8 0 26 8 30 0 30 +43 7
141 219 3 33 - 0 8 0 25 8 4 0 28 +45 28
144 216 3 20 - 0 7 0 23 7 36 0 26 +47 49

147 213 3 6 - 0 7 0 22 7 6 0 25 +49 42
150 210 2 51 - 0 6 0 21 6 34 0 23 +51 31
153 207 2 36 - 0 6 0 19 6 0 0 21 +52 58

156 204 2 20 - 0 5 0 17 5 24 0 19 +54 22
159 201 2 4 - 0 5 0 15 4 47 0 17 +55 47
162 198 1 47 - 0 4 0 13 4 9 0 15 +57 11

165 195 1 30 - 0 3 0 11 3 29 0 13 +57 40
168 192 1 13 - 0 2 0 9 2 49 0 10 +58 13
171 189 0 55 - 0 2 0 7 2 7 0 8 +58 40

174 186 0 37 - 0 1 0 5 1 25 0 5 +59 4
177 183 0 18 - 0 1 0 3 0 43 0 3 +59 32
180 180 0 0 - 0 0 0 0 0 0 . 0 0 +60 0
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MARS 
APOGEE; 23 16;40°

1 2 3 4 5 6 7 8
Equation DilTerence Equation

Common m m Subtractive of Additive
Numbers Longitude Equation Difference Anomaly Difference Sixtieths

6 354 1 0 +0 5 0 8 2 24 0 9 -5 9  53
12 348 2 0 +0 10 0 16 4 46 0 18 -5 8  59
18 342 2 58 +0 15 0 24 7 8 0 28 -5 7  51

24 336 3 56 +0 20 0 33 9 30 0 37 -5 6  36
30 330 4 52 +0 24 0 42 11 51 0 46 -5 4  34
36 324 5 46 +0 27 0 51 14 11 0 56 -5 2  11

42 318 6 39 +0 28 1 0 16 29 1 6 -4 9  28
48 312 7 28 +0 29 1 9 18 46 1 16 -4 6  17
54 306 8 14 +0 28 1 18 21 0 1 28 -4 2  38

60 300 8 57 +0 27 1 27 23 13 1 40 -3 8  8 .
66 294 9 36 +0 24 1 37 25 22 1 53 -33  26
72 288 10 9 +0 20 1 49 27 29 2 6 -2 8  20

78 282 10 38 +0 15 2 1 29 32 2 19 -2 2  47
84 276 11 2 +0 10 2 14 31 30 2 33 -1 6  33
90 270 11 19 +0 4 2 28 33 22 2 45 -1 0  5

93 267 11 25 +0 0 2 35 34 15 2 57 -  6 34
96 264 11 29 - 0  4 2 42 35 6 3 6 -  3 3
99 261 11 32 - 0  8 2 49 35 56 3 15 + 0 5

102 258 11 32 - 0  12 2 56 36 43 3 25 + 3 13
105 255 11 31 - 0  16 3 4 37 27 '3  36 + 6 1
108 252 11 28 - 0  19 3 13 38 9 3 47 + 8 49

111 249 11 22 - 0  22 3 22 38 48 3 58 + 11 44
114 246 11 14 - 0  25 3 32 39 24 4 9 + 14 38
117 243 11 5 - 0  28 3 43 39 56 4 21 + 17 33

120 240 10 53 - 0  31 3 54 40 23 4 35 +20 27
123 237 10 39 - 0  33 4 4 40 44 4 50 +23 35
126 234 10 23 - 0  35 4 14 40 59 5 5 +26 42

129 231 10 4 - 0  37 4 24 41 7 5 21 +29 31
132 228 9 44 - 0  39 4 35 41 9 5 37 +32 20
135 225 9 21 - 0  40 4 45 41 2 5 55 +35 9

138 222 8 55 - 0  41 4 56 40 45 6 14 +37 58
141 219 8 27 - 0  41 5 7 40 16 6 34 +40 35
144 216 7 59 - 0  41 5 18 39 37 6 53 +43 12

147 213 7 27 - 0  41 5 28 38 40 7 12 +45 26
150 210 6 54 - 0  38 5 34 37 25 7 30 +47 39
153 207 6 19 - 0  36 5 38 35 52 7 45 +49 50

156 204 5 41 - 0  33 5 38 33 53 7 58 +52 1
159 201 5 3 - 0  30 5 34 31 30 8 3 +53 47
162 198 4 22 - 0  27 5 18 28 35 7 58 +55 32

165 195 3 41 - 0  23 4 52 25 3 7 47 +56 44
168 192 2 58 - 0  19 4 18 21 0 7 6 +57 55
171 189 2 14 - 0  15 3 32 16 25 5 59 +58 49

174 186 1 30 - 0  10 2 27 11 15 4 26 +59 43
177 183 0 45 - 0  5 1 16 5 45 2 20 +59 52
180 180 0 0 - 0  0 0 0 0 0 0 0 +60 0
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VENUS 
APOGEE: 8 16;10»

1 2 3 4 5 6 7 8
Equation DifFcrcnce Equation

Common in in Subtractive ol Additive
Numbers Longitude Equation Difference Anomaly Difference Sixtieths

6 354 0 14 +0 1 0 1 2 31 0 2 -59  10
12 348 0 28 +0 1 0 3 5 1 0 4 -57 55
18 342 0 42 +0 1 0 5 7 31 0 6 -56  40

24 336 0 56 +0 2 0 7 10 1 0 8 -55 0
30 330 1 9 +0 2 0 9 12 30 0 10 -52 55
36 324 1 21 +0 2 0 11 14 58 0 12 -49  35

42 318 1 32 +0 3 0 13 17 25 0 14 -45 50
48 312 1 43 +0 3 0 15 19 51 0 16 -42  5
54 306 1 53 +0 3 0 18 22 15 0 18 -37 5

60 300 2 1 +0 2 0 20 24 38 0 20 -31 40
66 294 2 8 +0 2 0 22 26 57 0 23 -26  15
72 288 2 14 +0 2 0 24 29 14 0 25 -20  25

78 282 2 18 i-0 1 0 27 31 27 0 28 -14  35
84 276 2 21 +0 1 0 29 33 38 0 30 -  8 20
90 270 2 23 +0 1 0 31 35 44 0 33 -  1 40

93 267 2 23 -0  0 0 33 36 40 0 36 + I 31
96 264 2 23 -0  1 0 35 37 43 0 38 + 4 42
99 261 2 22 -0  1 0 38 38 40 0 40 + 7 39

102 258 2 21 —0 1 0 40 39 35 0 43 + 10 35
105 255 2 20 -0  1 0 42 40 29 0 45 + 13 32
108 252 2 18 -0  1 0 45 41 20 0 47 + 16 28

111 249 2 16 - 0  1 0 47 42 9 0 50 + 19 25
114 246 2 13 -0  2 0 49 42 54 0 52 +22 21
117 243 2 10 -0  2 0 52 43 35 0 55 +25 18

120 240 2 6 -0  2 0 54 44 12 0 58 +28 14
123 237 2 2 -0  2 0 57 44 45 1 1 +31 0
126 234 1 58 -0  2 1 0 45 14 1 4 +33 44

129 231 1 54 -0  2 1 3 45 36 1 8 +36 18
132 228 1 49 - 0  3 1 6 45 51 1 11 +38 50
135 225 1 44 -0  3 1 10 45 59 1 14 +41 11

138 222 1 39 -0  3 1 14 45 57 1 18 +43 32
141 219 1 33 - 0  3 1 19 45 45 1 22 +45 42
144 216 1 27 -0  2 1 24 45 20 1 27 +47 51

147 213 1 21 -0  2 1 29 44 40 1 32 +49 37
150 210 1 14 -0  2 1 33 43 39 1 38 +51 23
153 207 1 7 -0  2 1 37 42 18 I 43 +52 46

156 204 1 0 -0  2 1 39 40 28 1 48 +54 8
159 201 0 53 -0  2 1 41 38 7 1 51 +55 18
162 198 0 46 -0  1 1 42 35 7 1 52 +56 26

165 195 0 39 -0  1 1 38 31 24 1 50 +57 28
168 192 0 32 -0  1 1 31 26 46 1 43 +58 26
171 189 0 24 • -0  1 1 19 21 15 1 27 +59 1

174 186 0 16 - 0  1 0 58 14 47 1 5 +59 36
177 183 0 8 -0  1 0 31 7 38 0 35 +59 58
180 180 0 0 -0  0 0 0 0 0 0 0 +60 0
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M ERCURY 
APOGEE: 2̂= 1;10°

1 2

Common
Numbers

3
Equation

in
Longitude

4
Difl'erence

in
Equation

5

Subtractive
Difference

6
Equation

of
.Anomaly

7

Additive
Difference

8

Sixtieths

6 354 0 18 -0 1 0 10 1 38 0 5 -5 9  20
12 348 0 34 -0 2 0 20 3 16 0 11 -57 20
18 342 0 51 -0 4 0 29 4 53 0 17 -5 4  40

24 336 1 7 -0 5 0 39 6 29 0 23 -5 0  40
30 330 1 22 -0 5 0 49 8 4 0 28 -45  40
36 324 1 37 -0 4 0 59 9 36 0 34 -3 9  40

42 318 1 51 -0 4 1 8 11 6 0 40 -33 0
48 312 2 4 -0 3 1 18 12 33 0 45 -25 40
54 306 2 15 -0 1 1 28 13 58 0 50 -1 8  0

60 300 2 25 -0 0 1 39 15 18 0 56 -1 0  20
66 294 2 34 +0 2 1 49 16 33 1 4 -  2 20
72 288 2 41 +0 4 1 59 17 43 1 11 + 9 14

78 282 2 46 +0 6 2 9 18 47 1 17 +20 0
84 276 2 50 +0 7 2 19 19 44 1 23 +29 44
90 270 2 52 -f-0 9 2 29 20 33 I 29 +39 28

93 267 2 52 +0 10 2 34 20 54 1 32 +43 31
96 264 2 52 +0 10 2 39 21 14 1 35 +47 34
99 261 2 51 +0 11 2 44 21 29 1 38 +50 0

102 258 2 50 +0 10 2 48 21 42 1 41 +52 26
105 255 2 48 +0 10 2 53 21 52 1 44 +54 52
108 252 2 46 +0 10 2 58 21 59 1 46 +57 18

111 249 2 44 +0 9 3 2 22 2 1 49 +58 23
114 246 2 41 +0 9 3 4 22 1 1 52 +59 28
117 243 2 37 +0 9 3 6 21 56 1 55 +59 44

120 240 2 33 +0 8 3 8 21 47 1 57 +60 0
123 237 2 28 +0 7 3 9 21 33 1 59 +59 44
126 234 2 23 +0 7 3 10 21 15 2 0 +59 23

129 231 2 18 +0 6 3 12 20 53 2 0 +58 39
132 228 2 12 +0 6 3 12 20 25 2 1 +57 50
135 225 2 6 +0 5 3 9 19 50 2 1 +56 46

138 222 2 0 +0 4 3 6 19 10 2 0 +55 41
141 219 1 53 +0 4 3 2 18 24 2 0 +54 3
144 216 1 46 +0 3 2 57 17 32 1 58 +52 26

147 213 1 38 +0 3 2 51 16 35 1 53 +50 48
150 210 1 30 +0 2 2 42 15 31 1 47 +49 11
153 207 1 22 +0 2 2 32 14 20 1 41 +47 34

156 204 I 13 +0 2 2 21 13 3 1 34 +45 57
159 201 1 5 +0 1 2 9 11 41 I 26 +44 36
162 198 0 56 +0 1 1 55 10 13 1 17 +43 15

165 195 0 46 +0 1 1 38 8 40 1 7 +42 26
168 192 0 38 +0 0 1 19 7 1 0 56 +41 37
171 189 0 28 +0 0 1 1 5 19 0 43 +40 48

174 186 0 19 +0 0 0 42 3 35 0 28 +40 0
177 183 0 9 +0 0 0 21 1 48 0 14 +39 44
180 180 0 0 +0 0 0 0 0 0 0 0 +39 28



H446 12. {On the computation o f the longitude o f the 5 planets}^^

So when we w ant to determ ine the apparent p>osition of any one of the planets 
from the periodic motions in longitude and anom aly, by employing the above 
[tables], we carry out the numerical com putation (which is one and the same for 
all five planets) in the following way.

From the tables for mean motion we com pute the m ean positions in longitude 
and anomaly for the moment required (by addition, and casting out complete 
revolutions). Then, taking as argum ent the distance from the apogee of the 
eccentre at that moment to the mean position in longitude, we enter the 
anomaly table belonging to the planet in question, and take the value for the 
longitudinal correction corresponding to that argum ent in the third column, 
together with the value (in minutes) in the fourth column (which has to be 
added or subtracted). We subtract the result from the [mean] longitude and 
add it to the anomaly if the alx)ve-mentioned argum ent for the longitude [i.e. 

H447 the mean centrum ] falls in the first column, but if it falls in the second column, 
we add the result to the longitude and suijtract it from the anomaly, to get both 
positions corrected.

Then we enter with the corrected anom aly [counted] from the [epicyclic] 
apogee into [one of] the first two columns, take the corresponding am ount in the 
sixth column (the equation for mean distance), and write it down separately. 
Similarly, we enter with the am ount for the mean longitude [i.e. mean 
centrum] (which we used as argum ent at the beginning) into the same 
argum ent [columns]; then, if [that argum ent] falls in the upper lines, which are 
closer to the apogee than that for mean distance (this will be clear from the 
entries in the eighth column), we take the corresponding num ber of sixtieths 
in the eighth column, take, from the fifth column (for the [diflerence at] greatest 
distance), the entry on the same line as that for the equation at m ean distance 
which was written down separately, form the fraction of that [entry for the] 
difference corresponding to the above num ber of sixtieths, and subtract the 
result from the am ount which we wrote down separately. But if the argum ent of 
the above longitude [i.e. the mean centrum ] falls in the lower lines, which are 
closer to the perigee than that for m ean distance, we take the corresponding 
num ber of sixtieths in the eighth column, as before, take, from the seventh 
column (for the [difference at] least distance), the entrv' corresponding to the 
equation lor mean [distance] which was w ritten down separately, form the 
fraction of that difference corresponding to the above num ber of sixtieths, and 

H448 add the result to the num ber we wrote down separately. T he result will be the 
corrected equation [of anomaly]. If the corrected anom aly is in the first column, 
we add that corrected equation to the am ount for the corrected longitude, 
but we subtract it if the corrected anom aly is in the second column. Using the 
result to count from the apogee of the planet at that moment, we reach its 
apparen t jX)sition.

“ Sec H AMA  186-7 and Appendix A, Example 14.
I.e. if the entry in the eighth column is subtractive, the epicycle centre is closer to apogee than to 

mean distance; if additive, closer to perigee (for M ercury, to least distance) than to mean distance.

554 X I 12. Computation o f  planetary position from  tables



Book XII
1. {On the preliminaries for the retrogradations] * H450

Now that we have demonstrated the above, the appropriate sequel would be to 
examine the greatest and least retrogradations associated with each of the 5 
planets, and to show that the sizes of these, [as com puted] from the above, 
hypotheses, are in as close agreement as possible with those found from 
observations.

In the definition of this kind of problem, there is a preliminary lemma 
dem onstrated (for a single anomaly, that related to the sun) by a num ber of 
m athem aticians, notably Apollonius of Perge, to the following effect.
[1] If[the synodic anomaly] is represented by theepicyclic hyfx>thesis, in which 
the epicycle performs the [mean] motion in longitude on the circle concentric 
with the ecliptic towards the rear [i.e. in the order] of the signs, and the planet 
performs the motion in anomaly on the epicycle [uniformly] with respect to its 
centre, towards the rear along the arc near the apogee, and if a line is drawn 
from our point of view intersecting the epicycle in such a way that the ratio of 
half that segment of the line intercepted within the epicycle to that segment 
intercepted between the obseiver and the {x>int where the line intersects the 
epicycle nearer its perigee is equal to the ratio of the speed of the epicycle to the H451 
speed of the planet, then the point on the arc of the epicycle nearer the perigee 
determined b\- the line so drawn is the boundary between forward motion and 
retrogradation, so that when the planet reaches' that point it creates the 
appearance of station.
[2] If the anom aly related to the sun is represented by the eccentric hypothesis 
(which is a viable hyjx)thesis only for the three [outer] planets which can reach 
any elongation from the sun),' in which the centre of the eccentre moves 
[uniformly] about the centre of the ecliptic with the speed of the [mean] sun 
towards the rear [i.e. in the order] of the signs, while the planet moves on the 
eccentre in advance [i.e. in the reverse order] of the signs with a speed [uniform] 
v/ith respect to the centre of the eccentre and equal to the [mean] motion in 
anomaly, and if a line is draw n in the eccentre through the centre of the ecliptic 
(i.e. the observer) in such a way that the ratio of half the whole line to the 
smaller of the two segments of the line formed by [ the position of] the observer is

‘ O n chs. 1-6 sec HAMA  190-201, Pedersen 331-49.
’'T h is type of eccentric model is in fact applicable to the inner planets as well, provided that, for 

the speed of the centre of the eccentre, one uses, not the speed of the m ean sun, but the sum of the 
speeds of the mean sun and the planet's anomaly (which sum is the same as the modern heliocentric 
mean motion). I do not understand why Ptolemy docs not recognise thb.



556 X I I 1. Apollonius’ lemma on stationary points

equal to the ratio of the speed of the eccentre to the speed of the planet, then 
when the planet arrives at the point in which the above line cuts the arc of the 
eccentre near the perigee, it will produce the appearance of station.

H452 We too shall achieve the required result by a m ethod which, though 
summary', is none the less more convenient: we employ a proof which contains 
both hypotheses combined in a com mon [figure], to dem onstrate their 
agreement and similarity in these ratios of theirs too.^

Let [Fig. 12.1] the epicycle be ABGD on centre E and diam eter AEG, which 
is produced to Z, the centre of the ecliptic (i.e. our point of view). C ut olTequal 
arcs, GH, G 0 , on either side of the perigee G, and draw  ZH  B and Z 0 D fro m Z  
through points H and 0 .  Jo in  DH and 3 0  to intersect each other at point K, 
which will, obviouiily. lie on diam eter AG.

We say, first, that
AZ;ZG = AK;KG.

[Proof:] Jo in  AD, DG, and draw LG M  through G parallel to AD. Then LGM  
H453 will, obviously, be perpendicular to DG (for Z ADG is right).

Then, since Z GDH = Z G D 0  [on equal arcs, Euclid III 27],
GL = GM  [triangles LDG, M D G  congruent].

fl

z
Fig. 12.1

 ̂‘ in these . . . too’ refers to the earlier demonstrations of the equivalence of the hypotheses in III 3 
and IV 5. .Note that Ptolemy opposes his proof 5e) to that of the earlier mathematicians,
notably Apollonius (TtpoanoSetKvucuoi jiev, H450.9). This counts against Neugebauer’s supposi­
tion {HAMA 264) that Ptolemy has taken this elegant equivalence theorem from Ap>ollonius, 
despite its relationship to Conics III 37-40 and to Plane Loci II 8 (‘Circle of Apwlionius’).
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triangle GMZ]
II triangle GLK].

••• AD:GL = AD:GM .
But AD:GM  = AZ.ZG [triangle ADZ ||| 
and AD:LG = A K :K G  [triangle ADK 

AZ:ZG = AK:KG.
So, if we imagine epicycle ABGD to be the actual eccentre in the eccentric 

hypothesis, the point K  will be the centre of the ecliptic, and diam eter AG will 
be divided by it in the same ratio as [the corresponding amounts] in the 
epicyclic hypothesis. For we have shown that the ratio of the greatest distance in 
the epicyclic [hypothesis], AZ, to the least distance, ZG, is the same as the 
greatest distance in the eccentric [hypothesis], AK, to the least distance, KG.

We also say, [secondly], that
D Z :Z 0 = B K :K 0.

[Proof:] In the similar diagram  [Fig. 12.2] join the line BND (obviously, this will 
be perpendicular to diam eter AG), and draw  0 X  parallel to it from 0 .  Then, 
since

fi

D

Z
Fig. 12.2

H454

BN = ND,
B N :X 0 = N D :X 0 .

But N D :X 0  = D Z :Z 0  [triangle ZND | 
and BN:X© = BK:K© [triangle BNK 

•• D Z :Z 0 = B K .K 0.
So, componendo,

(D Z + Z 0 ):Z 0  = B 0 :0 K .

triangle Z X 0 ] 
triangle ©XK].

■11



And, dropping perpendiculars EO  and EP, and dividendo, [we get],
O Z :Z 0  = P 0 : K 0 /

And, dividendo once again,
O 0 :Z 0  = P K :K 0 .

Therefore, if, in the epicycHc hypothesis, DZ is draw n in such a way that the 
ratio of 0 0  to Z 0  equals the ratio ofthe speed of the epicycle to the speed of the 

H455 planet, in the eccentric hypothesis P K :K 0  will have that same ratio.
The reason that in this case [i.e. in the eccentric hypothesis] we do not use this 

ratio obtained dividendo (namely P K ;K 0 ) to get the stations, bu t rather the 
undivided ratio (namely P 0 :K 0 ) , is that the epicycle’s speed is in the same 
ratio to the p lanet’s as the [mean] motion in longitude (alone) to the [mean] 
motion in anomaly, whereas the ratio of the eccentre’s speed to the planet’s is 
the same as that o fth e  sun’s mean motion (i.e. the sum o fth e  p lanet’s [mean] 
motions in longitude and anomaly) to the motion in anomaly. Thus, e.g. for 
Mars.

speed of epicycle : speed ol’planet *=» 42:37 
(for that, approxim ately, is the ratio which, as we dem onstrated, holds between 
the [mean] motions in longitude and anomaly).^

Hence that is also the ratio of O 0 :0 Z .
But speed of eccentre : speed of planet [42 + 37 =] 79:37.
i.e. this is the same as the ratio obtained componendo, P 0 :0 K ,

H456 since we found that the divided l atio, P K :K 0 , is equal to O 0 :0 Z  (i.e. 42:37).
Let the above sulllce us as preliminary theorems. It remains to prove that 

when one takes lines [corresponding to ZD. B0] divided in the ratio described, 
then in both hypotheses H and 0  represent the points in which station appears 
to take place, and [thus] arc H G 0  must be retrograde, and the rem ainder [of 
the circle] possessing forward motion. [For this purpose] Apollonius proposes 
the following preliminary lemma.

[See Fig. 12.3.] In triangle ABG, in which 
B G > A G ,

if we cut otf [from GB] G D >  AG,^ then
G D :B D > Z  ABG:Z BGA.

H457 His pi ool' is as follows.
Com plete the parallelogram  ADGE (he says), and let BA and GE be 

produced to meet at Z. Then, since 
AE [= G D ]>  AG,

the circle draw n on centre A with radius AE will either pass through G or 
beyond G. Let it be draw n to pass through G, as HEG. Then, since 

triangle AEZ >  sector AEH 
and triangle AEG <  sector AEG, 

triangle AEZ : triangle AEG >  sector AEH : sector AEG.
But sector AEH : sector AEG = Z EAZ:Z EAG

'  For DZ + Z 0  = 2 0 Z , and B 0 = 2P© (Euclid III 3 ) . 2O Z:Z0 = 2 P 0 ;0 K . O Z :Z 0  = P 0 ;0 K . 
It is this last step which is described as (5ieX,6vTi). Sec Introduction pp. 17-18 for the two
senses of this term.

MX 3 p. 424.37 returns in anomaly correspond to about 42 revolutions in longitude and 79 years.
® Literallv ’not less than AG’.

558 X I I 1. Equivalence fo r  epicycle and eccentre demonstrated
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z

D B
Fig. 12.3

and triangle AEZ : triangle AEG = ZE:EG (bases).’
•. Z E :E G > Z  ZAE:Z EAG.

But ZE:EG = [ZA:AB =] GD:DB.
And Z ZAE = Z ABG 
and Z EAG = Z BGA.

G D :D B > Z  ABG:Z AGB.
And it is obvious that if'GD (= AE) is supposed, not equal to AG. l)ut greater, H458 
the dillerencc in the ratios will be even greater.

Now tliat we have established this preliminary lemma, let [Fig. 12.4] the 
epicycle be ABGD on centre E and diam eter AEG. Produce AEG to Z, 
[representing] our point of view, so that

E G ;( iZ >  speed of epicycle : speed of planet.“
Thus it will be possil)le to draw  a line ZHB^ in such a way that

iB H :H Z = speed of epicycle : speed of planet.
Then. b\' what we proved previously, if we cut oil’arc AD equal to arc AB, and 
join D 0 H . point 0  will represent our point of view in the eccentric hypothesis, 
and

!D H :0 H  = speed of eccentre : speed of planet.
We say, then, that in either hypothesis, when the planet reaches point H, it H459 

will produce the appearance of station, and if we cut off arcs, however small, on 
either side oi' H, we will find that the arc intercepted towards the apogee will be 
an arc of forward motion, and the arc towards the perigee will be retrograde.
[Proof;] First, cut oif an arbitrary' arc towards the apogee, K H , draw ZK L and 
K 0 M , and join BK, DK and also EK and EH.

Then since, in triangle BK.Z,
BH > B K ,‘°

B H :H Z > Z  HZK:Z HBK [cf. above].

^Euclid VI I: triangles with the same height are in proportion to their bases.
“The situation where EG;GZ = speed ol'epicycle : sjjeed of planet is the limiting situation for 

retrogradation to occur: sec p. 561.
* Because of Euclid 111 8, which proves that ol' all lines drawn to a circle from a point outside it, 

that through the centrc is the least.
‘“ Euclid III 15.
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fl

M

Z
Fig. 12.4

>  Z H ZK :2 Z KBH = Z HZK:Z K EH  
But :B H :H Z = speed of epicycle ; speed of planet.

Z HZK:Z K EH  <  speed of epicycle ; speed of planet. 
Therefore the angle which has the same ratio to Z K E H  as the ratio (speed of 

H460 epicycle : speed of planet) is greater than Z H ZK . Let that angle be Z HZN. 
Then, in the time that the planet takes to travel arc K H  of the epicycle, the 
epicycle centre has moved in the opposite direction by an am ount equal to the 
[angular] distance from ZH  to ZN. So it is clear th a t arc K H  of the epicycle has 
moved the planet in advance through an angle at our eye (Z H ZK) which is less 
than the angle (Z HZN) through which [the motion of] the epicycle itself has 
moved it towards the rear during the same space of time. Thus the planet has 
undergone a forward motion [of the am ount] of Z KZN.

Similarly, to carry out the reasoning as if the circle [ABGD] were an 
eccentre:"

"  Reading ox; iKKCvrpou xdu kukXou (with C*D) for (Jx; trd  xoi5 ^KKCvrpou kukXou (‘as on 
the eccentric circle’) at H 4 ^ ,1 3 .



since BH:HZ > Z  HZK:Z HBK, 
comportendo, BZ;ZH >  [Z H Z K  + Z HBK =] Z BKL.Z HBK.

But BZ:ZH = D 0 :0 H .‘2 
And Z BKL = Z D K M ‘3 
and Z HBK = Z H D K.

D 0 :0 H  > Z  DKM :Z H D K . H461
So, componendo; D H :H 0  >  [Z D K M  + Z H D K  =] Z H 0K :Z  HDK.

Therefore, dividendo, iO H :H 0 > Z  H 0 K :2  Z H D K  = Z H 0 K ;Z  HEK.
But I D H :0 H  = speed of eccentre : speed of planet.

Z H 0K ;Z  H E K  <  speed of eccentre : speed of planet.
Therefore the angle which bears the same ratio to Z H E K  as the speed of the 
eccentre bears to the speed of the planet is greater than Z H 0 K . Let it, again, be 
Z H 0 N . So, since the planet, in its own motion along K H , has travelled in 
advance through Z K EH, and in the same space of time has been carried by the 
motion of the eccentre towards the rear through Z HON, which isgi'eater than 
Z K 0 H , it is clear that, by this [hypothesis] too, the planet will appear to have 
undergone a fonvard motion [of the am ount] o fZ  K 0 N .

It is easy to see that the same method can be used to prove the opposite case,'^ H462 
if in the same figure [Fig. 12.5] we suppose that

!LK :K Z = speed of epicycle : speed of planet 
and hence :M K ;0 K =  speed of eccentre : speed of planet; 

and imagine arc KH cut olf towards the perigee side of line LZ.
For. if we join LH to produce the triangle LZH, in which there is cut otf 

ZK >  ZH, then
L K :K Z < Z  H ZK:Z H LK . 

iL K :K Z < Z  H ZK:2 Z H L K  = Z HZK:Z KEH, 
which is the opposite of what was proved above.
And, by the same reasoning, one will come to a conclusion opposite [to the 
above, namely] that

Z KEH:Z H Z K  <  speed of planet : speed of epicycle H463
and Z KEH:Z H 0 K <  speed of planet : speed of eccentre.

So the angle which has the same ratio [to Z H Z K  or Z H 0 K  as the speed of the 
planet has to the sp>eed of the epicycle or eccentre] turns out to be greater than 
Z K EH . and the resulting retrograde [component ol] motion is greater than the 
forward.

Furtherm ore, it is clear that for distances at which
E G :G Z <  speed of epicycle : speed of planet 

ii will be impossible to draw  another line [to the circle which will be cut] in a 
ratio equal to that [of the speeds of epicycle and planet], and the planet will not 
appear stationaiy or retrograde.

X I I 1. Stationary point fo r  eccentre 561

‘^This was proven p. 557 (in Fig. 12.2 DZ:Z© = BK ;K 0).
Euclid III 27; angles standing on equal arcs are equal. I.e. Ptolemy assumes that arc BL = arc 

DM. This follows from the fact that 0  is a  fixed point for given Z (cf. HAM A  264-5). Cf. p. 556, 
where it is shown that AZ:ZG = AK;KG, hence K  (corresponding to 0  here) is a fixed point.

I.e. that the planet will be retrograde on the other side of the point defined by the ratio of the 
sp>eeds.

'5 p. 560, where i BH HZ >  Z HZK;Z KEH.
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H464

For since, in triangle EKZ, EG has been cut oil and is [equal to. i.e.] not less 
than EK,

Z GZK.Z G E K < E G :G Z .
But E G ;G Z <  speed of epicycle : speed of planet.

Z GZK.Z G E K <  speed of epicycle : speed of planet.
Hence, since we have shown [p. 560] that, where this occurs, the planet has 
undergone a forward motion, we shall find no arc either on epicycle or on 
eccenti e on which it will appear retrograde.

2. [Demonstration oj the retrogradations oj Saturn}

T hat being established, we shall next set out the calculations of the retro- 
gradations for each of the planets, in accoidance with the hypotheses 
[previously] dem onstrated, beginning with Saturn.-The m ethod is as follows.



M m m v ir n
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Fig-Q

[See Fig. I2 .6 .]‘*’ Let the circle carrying the epicycle centre be AB on 
diam eter AGB. on which G represents the centre of the ecliptic, i.e. our point of 
view. Describe the epicycle D EZH  on centre A, and draw  line GZE in such a 
way that, when perpendicular A© is dropped on to it, the ratio of half EZ (i.e. 
©Z) to ZG is that of the speed of the epicycle to the speed of the planet. Let us 
suppose, llrst, that the epicycle is situated a t m ean distance: thus the. mean 
motions in longitude and anomaly are very nearly the same as the motions [in 
longitude and anomaly] taken with respect to the centre of the ecliptic.’  ̂

Now for Saturn, as we dem onstrated [X I 6], where the mean distance GA is 
60’’, the epicycle radius AD = 62’’,

Thus, by addition, DG = 66;30^ 
and, by subtraction, GH = 53;30‘’ in the same units.

H465

Ptolemy uses an identical simplified figure (Figs. 12.6 -  12.12), in which the observer, G, is 
represented as the centre of the circle, for all situations. The actual situation is depicted in Fig. Q, 
(copied from Manitius), where the subscripts 1, 2 and 3 represent the situations at mean, greatest 
and least distances respectively.

I.e. because the epicycle centre is the same distance from the observer as it would be in the 
simple model treated in ch. 1, one can assimilate the situation to that, and use the mean motions 
unmodified. As Ptolemy says, this involves an approximation, since the centre of motion is not the 
obsei-ver, but the equant point. However, for small eccentricities this is negligible.
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Thus liieir p roduct’** is 3557;45’’.
But DG.GH = EG.GZ.

so EG.GZ = 3557:45’’ in the same units.
Furtherm ore (in accordance with the mean motions), wliere the speed of the
epicycle (i.e. 0 Z )  is the speed o l'the  planet (i.e. ZG) is about 28;25,46'’.‘®

Theiel'oie, by addition, EG [= ZG + 2 0 Z ] = 30:25,46'’,
and EG.GZ = 865;5,32’’ in the same units.

H466 So if we divide'® 3557;45 by 865:5.32, which gives a quotient ol'4;6,45, take the
square root of the latter, 2; 1,40, and m ultiply this factor in to 0 Z  (= F ) and ZG
(= 28:25,46'’) separately, we get

0 Z =  2:1.40'’!  .
, OQ - - P  r  where (EG.GZ) = ^borA iy.and ZG = o/:38,oo'^J '

Then if we join AZ, where AZ = 6:30’’,
Z 0  = 2:1,40”,

so where AZ = 120^ Z 0  = 37:26.9’’.
Therefore, in the circle about right-angled triangle A Z 0,

arc 0 Z  = 36:21,15°,-*
= 36;21;15°° where 2 right angles = 360°°

18; 10,38° where 4 right angles = 360°.
so Z Z A 0

‘“Literally the rectani?le contained by them'.
’’ Taking the mean daily motions tabulated in IX 4 one finds the ratip of longitude toanomalv as 

1 ; 28:25,55 . . . Ptolemy may have taken the rounded numbers 0;57,7,43'‘/<j and 0;2,0.34“/d, 
which lead to 28;25.^5.

-‘'7rapapdXQ)|i£v rap d , literallv ‘measure it bv laving alongside".
.Vcuratelv. 36;21,20°.



Furtherm ore, where hypotenuse [of right-angled triangle AG©] GHA  = 60’’, 
by addition, GZ© [= 57;38,55'’ + 2; 1,40”] = 59;40,35^ 

so where G H A  = 120”, GZ© = 119;21,10”.
So, in the circle about right-angled triangle AG©, 

arc G© = 168;5,39®.
• /  P A © -[ “ 168;5,39°° where 2 right angles = 360®®

" \  84;2,50° where 4 right angles = 360° .
Hence we get Z AG© = 5;57,10° (complement), H467

and Z ZAH = Z GA© -  Z ZA© = 65;52,12°.
So, since the planet is seen along line GZ at first station, and along GH at 

[mean] opposition, it is clear th a t, if the epicycle centre had no motion towards 
the rear [during this interval], arc ZH  of the epicycle, comprising 65;52,12°, 
would produce a retrograde motion of the am ount o fZ  AGZ, 5;57,10°. But 
since, according to the above ratio of the speed of the epicycle to the speed of the 
planet, to this anom aly of 65;52,12° correspond approxim ately 2; 19° in 
longitude, we get a retrograde motion of;

from either station to opposition 3:38,10° and 69“̂^̂
(the latter is approxim ately the time the planet takes to move 2;19° in mean 
longitude),

and a total retrogradation of 7; 16,20° and 138'*.
Next we will investigate the [corresponding] quantities near the greatest 

distance under the same conditions, namely when the opposition halfway 
between the [two] stations brings the epicycle centre precisely to the apogee of 
the eccentre, and, obviously, brings each of the two stations to a distance in 
corrected longitude from the opposition (i.e. from the apogee)^'* which is close to H468 
the 2; 19° which was derived [above] from the ratio between the mean 
[motions]. In this situation AG, which represents the distance at that moment, 
is negligibly dilferent from the greatest distance,”  and hence is obtained via the 
theorems previously developed, and to 1° of longitude corresponds an equation 
of about 6;30'.’® Therefore the ratio of the corrected [m otion in] longitude to 
the corrected [motion in] anom aly, i.e. of the apparent speed of the epicycle at 
that moment to the apparent speed of the planet, is 0;53,30 : 28;32,16.^^

Then, repeating the same figure [Fig. 12.7], where the radius of the epicycle 
DA is 6;30‘’, GA (which is negligibly different from the greatest distance) is 
63;25”.

Hence, by addition, DG is com puted as 69;55‘*, 
and. by subtraction. G H  = 56:55”.
And D G .G H  (= EG.EZ) = 3979;25,25”.

'^65;52.12/28;25,46= 2;19,1.
'‘̂ 5;57,10® -  2:19® = 3;38,10®. In 69 days the planet moves 2;18,39° in longitude, i.e. here (and 

throughout) Ptolemy rounds to the nearest day or convenient fraction of a day.
Since this must be the meaning, one has to correct Heiberg’s punctuation at H468,3, deleting 

the comma after uTiKOuq, and inserting a comma after^JtOYeiou.
Since the epicycle centre is in the apogee of the eccentre halfway between the stations, at the 

actual stations the epicycle is a  little before or after apogee: hence ‘negligibly diflferent’.
In the anomaly table for Saturn (X II I ) , to 6° corresponds an equation of centre of39': hence to 

r  corresponds exactly 6 i '.
I.e. 1° -  0;6,30° and 28;25,46° + 0;6,30® (cf. p. 564 n. 19). O n the rationale for this procedure see 

H AMA  193-4.

X I I 2. Saturn's retrogradation at mean distance 565
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And, by hypothesis, where Z© (representing the speed of the epic\cle) is 
H469 0;53,30'’, GZ (representing the speed of the planet) is 28;32,16'’; 

so, by addition, EG [= GZ + 2 Z 0 ] = 30;19,16p, 
and EG.GZ = 865; 17,SO’’.

So. again, dividing 3979;25,25 by 865; 17,50, which gives 4;35,56, taking the 
square root ol'the latter, 2;8,40, and m ultiplying this factor in to 0 Z  (= 0;53,30'’) 
and ZG (= 28:32,16'’) separately, we get 

O Z = 1-54 44‘’1
Cl . ,  Vopf where AZ = 6;30’’ and AG = 63;25’’. and GZ = 61;11,52‘̂ J

And. by addition, G© = 63;6,36‘’ in the same units.
Therefore where hypotenuse AZ [of right-angled triangle A Z 0] = 120’’,

©Z = 35;18,9^’,
and where hypotenuse GA [of right-angled triangle A G 0] = I2(f ,

G© = 119,25,11^
Therefore, in the circle about right-angled triangle AZ©,

a rc © Z  = 34; 13,4°,
and, in the circle about right-angled triangle AG©,

arc G© = 168;43,38°.
H470 ••• Z ZA© = 34;13,4°° , u 9 • , qaacwhere Z right angles = ioO

•j
and Z GA© = 168;43,38®°

Z ZA© = 17;6,32° 
and Z GA© = 84;21,49«

Hence, by subtraction [from 90°], Z AG© (which represents the am ount of

where 4 right angles = 360*̂



retrogradation^® which there would be between either of the stations and
opposition, if the epicycle had nô ® forward motion) is 5;38,11°,
and, by subtraction [of Z ZA© from Z G A 0], Z ZAH  (which represents the
apparen t motion on the epicycle^® at the same [unchanging] distance) is
67;15,17°.

Now, according to the ratio of the speeds a t the apogee, to the latter am ount 
correspond 2;6,6° in corrected longitude;^* so we get, for half of the total 
retrogradation,

[5;38,11° -  2;6,6° = ] 3;32,5° and 70̂ *̂
(the latter is approxim ately the time the planet takes to travel2;21,25° in mean 
longitude, which is the am ount corresp>onding to the above 2;6,6® in corrected 
longitude);

and, for the total retrogradation,
7;4,10° and HOf^.

Again, we will investigate the [corresponding] quantities near the least 
distance, using the same figure [Fig. 12.8] and under similar conditions, i.e.

X I I 2. Saturn’s retrogradation at greatest distance 567
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Reading TTi(; (with C‘D) for TdB at H470.6. Cl. H473.1. Corrected by Manitius.
Reading at H470,8 for jir|6ev6(;. There is no ms. authority for my correction, but it is

necessary I'or the scn.se. As a consequence of the corruption ol Tl̂ f; to tdD just above, it was assumed 
that TtpoTiYTiaea)  ̂ was connected with uiteXeiiteTO, hence (ir|5ev was changed to HTi5ev6<; to agree 
with it.

By apparent motion' Ptolemy means as counted from the true [and not the mean] epicyclic 
perigee’.

“ One might suppose from what he says here that Ptolemy computes 67; 15,17°x0;53,30/28:32,16. ~ 
This leads to 2;6,5°. The actual method ol'computation is explained a t the end of X I I6 (p. 582). It is 
as follows: 67;15,17° x 1/28;32,16 = 2:21,24®. To the latter corresponds an equation of0;15.19°, 
which, subtracted from 67:15,17°, gives about 67°. Then 67° x l/28;25,46 = 2;21,25°. 2;21.25° -  
0 :1.-). 19° = 2:6.6°.



H471 when the opposition halfway between the [two] stations is precisely at the 
perigee of the eccentre, and both stations are the above [ca. 2; 19°] distance in 
longitude from the opposition (i.e. from the perigee).

In this situation the distance a t tha t m om ent, AG, is found in the same way 
[as at greatest distance], since it is negligibly different from the least distance. 
And to 1® oflongitude corresponds an  equation ofabout7;20 m in u te s .S o  here 

apparent speed of epicycle : apparen t speed of planet = 1;7,20 : 28; 18,26.^^ 
Hence, where 0 Z  = 1;7,20^, GZ = 28,18,26^, 

and, by addition, EG = 30;33,6'*,^^ 
and EG.GZ = 864;49,58^”

But where the epicycle radius, DA = 6;30'’,
AG (which is negligibly different from the least distance) is 56:35'’; 

hence, by addition, DG = 63;5'’, 
and, by subtraction, GH = 50;5'’,

H472 and D G .G H  (= EG.GZ) = 3159;25,25'’.
Therefore if, as before, we divide 3159;25,25 by 864;49,58, which gives 3;39.12, 
take the square root of that, 1;54,41,^* and multiply the latter factor into 0 Z  
(= 1;7,20'’) and ZG (= 28; 18,26”) separately, we gel 

©Z = 2;8,43'’
where the epicycle radius, AZ = 6;30'*, and the distance at that moment, AG =

56:35'’;
and GZ = 54;6,22'* in the same units.

Hence, by addition. G 0  = 56:15,5'’ in the same units.
Therefore, where hypotenuse AZ = 120'’, 0 Z  = 39;36,18‘’, 
and, where hypotenuse GA = 120'’, G© = 119; 17,46’’.̂ ^

Hence, in the circle about right-angled triangle A Z 0 , 
arc Z 0  = 38;32,34°, 

and, in the circle about right-angled triangle AGO, 
arc G 0  = 167;34,54°.

568 X I I 2. Saturn’s retrogradation at least distance

Z Z A 0 = 38;32,34H  . .  • . , .^^00 
and Z GA© = 167;34,54” J  ^ nghe angles = 3 6 0 - .
And Z Z A© = 19:16,17°! . . . .  ,
and Z GA© = 83;47,27«J ^  " S '”  °

H473 Therefore, by subtraction [from 90°], we get Z A G 0 , which represents the 
retrogradation (due to the planet’s speed) between either of the stations and 
opposition, as 6; 12,33°,

*^To an argument of 177° (= 180“ -  3°) corresponds (Table X I 11) an equation of centre of 0;22°. 
Hence to 1° near perigee corresponds 0;7,20®.

^n.e. 1 + 0;7,20 and 28;25,46 -  0;7,20.
Deleting Toiootmv at H471,18-19 (with D,Ar).

”  Reading vt} for ~ (m is p r in t  in Heiberg) at H471,20.
** Reading fia at H472,5 for jiP (1;54,42). T he latter has no ms. authority, but is Heiberg’s 

correction for thepS (45) orjlS (49) of the Greek mss. ‘41’ is the reading ofG er (all other Arabic mss. 
I have seen have '49’), and is shown to be correct not only because it is the square root of3;39,12 
(accurate to two sexagesimal places), but because (below) 1;54,41 x 28; 18,26 •» 54;6,22 (in 
agreement with the text), whereas 1;54,42 x 2B;18,26 54;6,50.

119:17,45'’ would be a more accurate resuh, and corresponds better to the arc 167;34,54° given 
beiow. But in the absence of any ms. authority I hesitate to change it.
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and, again by subtraction [of L ZA© from Z G A 0], Z ZA H , which represents 
the apparent motion on the epicycle a t the same [unchanging] distance, as 
64;31,10®.
According to the ratio of the speeds a t the pjerigee, to the latter am ount 
correspond 2;33,28° in corrected longitude.^® Hence we get for half the total 
retrogradation,

[6;12,33° -  2;33,28® =] 3;39,5° and 68f*
(the latter is approxim ately the time taken by the planet to travel, at mean 
speed, 2; 16,45°, which is the am ount in mean longitude corresponding to the 
above 2;33,28° of corrected longitude).

[Thus] the total retrogradation is
7; 18,10° and 136^

3. [Demonstration o f the retrogradations oj Jupiter]

For Jup ite r [see Fig. 12.91, according to our calculations for mean distance, 
0 z V g Z  = 1 : 10;51,29,’  ̂

and EG:ZG = 12:51,29 : 10;51,29,

D

B
Fig. 12.9

“ Cf. p. 567 n.31. Computation: 64;31,10“ x 1/28;18,26=2;16,45°. Equation for 180^-2; 16,45° is 
0,16.43'’. 64;31,10° + 0;16,43° = 64;47,53‘’. The latter multiplied by l/28;25,46 gives 2;16,45°, and 
2; 16,45° + 0; 16,43° = 2;33,28°.

’’ Taking the first three places (rounded) of the mean daily motions from IX  4 (cf. p. 564 n.l9), 
one gets 0;54,9,3 ; 0;4,59,14 = 10:51,28,29 . . .



so EG.ZG = 139,-37,39.“"
H474 Furtherm ore GA:AD = 60 : 11;30

and C D :O H  = 71;30 : 48:30, 
so G D .G H  = 3467;45.

Dividing [3467;45 by 139;37,39] we get 24;50,9, the square root of which, 
4;59,I, we multiply into the above ratio o f0 Z ;G Z , and  get, in terms of the 
given sizes of GA and AZ [i.e. 60 and 11;30],

0 Z  = 4;59,1'’ 
and GZ = 54;6,44‘’ in the same units, 

and, by addition, G© = 59;5,45‘’.
Hence, expressed in units where hypotenuses AZ and AG [respectively] are 
120^

0 Z  = 52;0,10'’ 
and G 0  = 118;I1,30p, 

and the corresponding^' arcs are:
arc Z 0  = 51;21,41° 

and arc G 0  = I60;4,55°.
Accordingly we com pute Z Z A 0 >=» 25;40,50°

H475 and Z G A 0 «  80;2,28°,
and, by subtraction [of Z G A 0 from 90°], Z ZGA, which represents the 
retrogradation due to the planet's speed, is 9;57,32°, and Z ZAH, which 
represents the apparent [motion in] anomaly, is [Z G A 0 -  Z Z A 0 =] 
54;21,38°. To the latter correspond 5; 1,24° in longitudinal motion, according to 
the above ratio [of 1 : 10;51,29].^' Thus half the retrogradation is 

4:56,8° and about 60j'', 
and the total retrogradation is

9;52,16° and 121^
The distance at an elongation of about 5° from apogee or perigee is 
[respectix ely] negligibly smaller than the greatest distance and negligibly larger 
than the least distance.

According to our calculations for greatest distance, the equation [cor­
responding to 1°] for collecting [the speeds] is 56 minutes.^’ Hence 

0Z :G Z  = 0;54,50 : 10:56,39 
and EG:GZ = 12;46,19 : 10;56,39, 
and EG.GZ = 139;46,42.

“̂ Ptolemy has made a computing e rro r correct is 139;36,48, and this is indeed found in Ger, 
derived no doubt from the kind of marginal correction found in ( i 39;36,48,32). T hat the error is 
Ptolemy’s is shown by the subsequent calculations (at H474.5 Ger reads 24;50,17, again in 
agreement with and the above amount, but the square root should be 4;59,2, whereas the whole 
tradition agrees on 4;59,1, which is confirmed by the following computations).

Reading in' a o ta t i ;  at H474,16 (with all mss.) for Heiberg’s correction kn' auTfflv. Although 
the genitive is normal in the Almagest in expressions of the type tn \  tti<; Z 0  nepupepelac;, the 
dative after km  is perfectly good Greek, and is explicable here as avoiding the ambiguity of two 
genitive plurals referring to different things. I have restored the mss.’ reading in the similar passages 
H476.9 and H477,18.

*^In fact 54;21,38/10;51,29 = 5;0,23°. But the num ber in the text is confirmed by the following 
computations.

”  R ead in g fi;' (with L,Ger) at H 475,14for£^ (5;6). The correction was made by Manitius, who 
notes that, in the table of anomaly, to an argument of 6° corresponds an equation of centre ofO;31°, 
hence, to 1°, 0:5.10°.

570 X I I 3. Jupiter’s retrogradation at mean distance
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Furthermore, GA.AD = 62;45 : 11;30,
D G ;G H =  74; 15 : 51;15, 

and D G .G H  = 3805; 18,45.
Dividing [3805;18,45 by 139;46,42], we get 27;13,26, the square root of which, H476 
5;13,4, when multiplied into the above ratio o f0 Z :G Z , gives, in terms of the 
given sizes of GA and AZ [i.e. 62;45 and 11;30]

Z© = 4;46,6^
GZ = 57;6,19^,*^ 

and, by addition, G© = 61;52,25p.
Hence, expressed in units where hypotenuses AZ and AG [respectively] are 
120^

Z 0  = 49;45,23'’ 
and G 0  = 1I8;19,27^ 

and the corresponding arcs are:
arc Z 0  = 48;59.34° 
arc G 0  = 160:49,36°.

Accordingly, Z Z A 0 = 24;29.47° 
and Z G A 0 = 80;24,48‘’.

And, by subtraction, Z ZGA, which represents the retrogradation due to the 
planet's speed, is [90° -  Z G A 0 =] 9:35,12°, and Z ZAH, which represents the 
apparent [motion in] anomaly, is [Z G A 0 -  Z Z A 0 =] 55;55,1°. To the latter 
correspond 4;40.35° in corrected longitudinal motion,^'’ and 5;6,35° in mean 
[longitudinal] motion, according to the ratio [of speeds] at the apogee. Thus 
half the retrogradation is

[9:35,12°- 4:40.35°=] 4:54.37° and about 611", 
and the total retrogradation

9:49,14° and 123".
According to our calculations for least distance, the equation [corresponding H477 

to 1°] for correcting [the speeds] is found to be‘5f minutes.^" Hence 
0 Z :Z G  = 1:5.40 ; 10:45,49,
EG:ZG = 12:57,9 : 10;45,49, 

and EG.ZG = 139:24,56.
Furtherm ore, GA:AD = 57:15 : 11:30.

DG:GH = 68:45 : 45;45, 
and D G.GH = 3145:18,45.

Dividing [the latter by 139:24,56], we get 22;33,39, the square root of which,
4;45, multiplied into the above ratio o f0Z :G Z , gives, in terms ofthe above sizes 
of GA and AZ [i.e. 57;15 and 11;30],

0 Z  = 5;11,55P,
ZG = 51:7,38^, 

and, by addition, G 0  = 56; 19,33’’.

'*■' More accuratc would be 57;6.15. which is the reading of D and is given as an alternative in 
ABC. Blit the text is guaranteed by the following computations.

^*Cf. p. 567 n.3I. Computation: 55;55,Px 1/10;56,39 = 5;6,33°, to which corresponds an equation 
or0;26.24° «  26'. 55;55,1° -  0;26<* = 55;29,1°. This multiplied bv 1/10;5I,29 = 5;6,35° [so text; 
accurately 5;6.36]. 5;6,35° -  0;26° = 4,40;35°.

'̂’ In the table of anomaly, to an argument ol'[180° -  3°=] 177° corresponds an equation ofO; 17°, 
hence to 1° near perigee cort^ponds 5 t'.



Hence, expressed in units where hypotenuses ZA and AG [respectively] are 
120^

Z 0  = 54; 14,47" 
and G 0  = l]8;3 ,46^ 

and the corresponding arcs
arc Z© = 53;45,4° 

and arc G© = 159;22,40°.
Accoidingly Z Z A 0 = 26;52,32^

H478 and Z G A 0 = 79;41,20°.
And, by subtraction, Z ZGA, which represents the relvogi adaiion  due to the 
planet’s speed, is [90° -  Z G A 0 =] 10; 18,40®, andZ  ZAH, which represents the 
apparent [motion in] anomaly, is [Z G A 0 -  Z Z A 0 =] 52;48,48°. To the latter 
correspond 5;21,20° in corrected longitudinal motion,^' and 4;54,20° in mean 
[longitudinal] motion, according to the ratio [of speeds] at the perigee. Thus 
hali'the retrogradation is 

[10;18,40° -  5;21,20° =] 4;57,20® and about 59^ 
and the total retrogradation is

9;54,40° and 118".
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4. [Deinonstration oj the relrogradalions oj Mars]

Again, in the case oi M ars [see Fig. 12.10], according to our calculations Ibr 
near mean distance.

©Z:ZG = 1 : 0;52,51,^“ 
and EG:GZ = 2;52,51 ; 0;52,51, 

so EG.GZ = 2,32,15.
Furtherm ore, GA:AH = 60 : 39:30,

and DG:GH = 99:30 : 20;30, 
so D G .GH = 2039;45.

H479 Dividing [2039;45 by 2;32,15], we get 803:50,50/’* the square root of which, 
28:21,8, multiplied into the above ratio o f0 Z :Z G , gives, in terms of the above 
sizes ol GA and AZ [i.e. 60 and 39:30],

©Z = 28:21,8^,
GZ = 24:58.25’’ in the same units, 

and, by addition. G© = 53:19,33'’.
Hence, in units where hypotenuses AZ and AG a ie  each [respectivelv] 120'’. 

Z 0  = 86:8.0'’ 
and G© = 106;39,6'’.

’̂ Cf. p. 567 n.31. Computation: 52;48,48° x 1/10;45,49 = 4;54,24°, to which corresponds an 
equation of27' [so text: accurate would be 29']. 52;48,48° + 0;27° = 53;15.48‘’, which muhipiied by 
1/10:51.29 gives 4;54,20° [accurately 4;54,19°], 4;54,20° + 0;27° = 5;21,20°.

^*From the mean daily motions (IX 4) : 0;27,41,40/0;3I,26,36 = 0;52,50,47 . .
Accurate would be 803,50,33, which is found as the reading of the second hand in D. Ger has 

803;50,32, T  803,50,30. The variation has no lurther conscquenccs, since the square root of ail 
(to the nearest second) is 28:21.8.
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The corresponding arcs are
arc Z 0  = 9I;44.34® 

and arc GO = 125:26,10°.
Accordingly Z Z A 0 = 45;52.I7° 

and Z G A 0 = 62:43,5°.
And. by subtraction. Z ZGA. which represents the retrogradation due to the 
planet's speed, is [90° -  Z G A 0 =]27;I6,55°. an d Z Z A H , which represents the 
[motion in] anomaly, is [Z G A 0 -  Z ZA© =] 16:50.48°. T o the latter amount 
correspond 19;7,33° in [mean] longitudinal motion, according to the above 
ratio [or speeds, of 1 : 0:52,51]. Thus hall’ the retrogradation is 

[27:16,55° -  19:7,33° =] 8:9.22° and about 36? .̂
And the total retrogradation is

16:18,44° and 73^
[Hence] the distance at the elongation of the stations from apogee and 

perigee is [respectively] about 0:20’’ ofthe mean distance [i.e. 60*’] less than the 
greatest distance, and about the same am ount greater than the least distance.^® 

According to our calculations for near greatest distance, the equation 
corresponding to an argum ent of 1° for correcting [the speeds] is found to be 
10?'.'* Hence

H480

’®For a true centrum (k ) of 19;7,33®, the distance ofthe centre of the epicycle, p = 65;38,12‘’**’ 
66" -  22'. For k = I60;52,27°, p = 54;17,56'’ 54'’ + 18', i.e. 20' is a reasonable mean.

In the anomaly table for Mars (XI 11), to an argument of 18° corresponds an equation of 3; 13° 
and to 24°, 4; 16°; hence, as Manitius notes, the correct amount correspondini? to 1° should be 
(4 ;1 6 -3 ;1 3 ) /6 =  lOi'.



0 Z :Z G  = 0;49,40 : 1;3,11,
EG:GZ = 2;42,31 : 1;3,11, 

and EG.GZ = 2;51,8.
Furtherm ore, GA;AH = 65;40 : 39,30,

DG:GH = 105;10 : 26;10, 
and D G.GH  = 2751;51,40.

And, when we divide [2751;51.40 by 2;51,8], we get 964;48,47, the square root 
of which, 3I ;3,41, multiplied into the above ratio of'0Z :Z G , gives, in terms of 
the above sizes of GA and AZ [i.e. 65;40 and 39;30],

0 Z  = 25;42,43P,
GZ = 32;42,34P,

H48I and, by addition, G 0  = 58;25,17^
Hence, expressed in units where hypotenuses AZ and AG are each [respectively] 
I20P,

Z 0  = 78;6,44‘’ 
a n d G 0  = 106;45,36^

T he corresponding arcs are
a rc Z 0  = 81;13,8°5- 

and arc G 0  = 125;39,46°.
Accordingly Z ZA 0 = 40;36,34° 

and Z G A 0 = 62;49,53°.
And, by subtraction. Z ZGA, which represents the retrogradation due to the 
planet's speed, is [90° -  Z G A 0 =] 27; 10.7°, while Z ZAH, which represents 
the [motion in] apparent anomaly, is [Z G A 0 -  Z Z A 0 =] 22:13,19°. To the 
latter correspond [motions in] corrected longitude o lT 7;I3 ,2I°, and in mean 
[longitude] of 20:58.21°.'’* according to the ratios [of the speeds] at the apogee. 
Thus half the retrogradation is

[27:10.7° -  17:13.21° =] 9:56,46° and about 40^ 
and the total retrogradation is

19:53,32° and 80^
.According to our calculations for near least distance, the equation [cor­

responding to an argum ent of 1°] for correcting [the speeds] is found to be 
1 2 r .'^  Hence

0 Z :Z G  = 1;12,40 : 0,40,11,
EG:GZ = 3;5,31 : 0;40,11, 

and EG.GZ = 2;4,14.
H482 Furtherm ore, GA:AH = 54;20 : 39;30,

DG:GH = 93;50 : 14:50, 
and D G .G H  = 1391 ;51,40.

Dividing [1391;51,40 by 2;4,14], we get 672;I3, the square root of which,

CoiTi‘ct would 1h* 81; 13.28°, and this is the reading of BCL.Ger. However, all mss. agi'ce in the 
readiruj Ibi' the hall of (hi.s, 40;36,34°, which would seem to conlirm Heiberg’s rc adiiiier here. It is 
possible, however, that Ptolemy made an error in halving, and that the readinj^ '8 ‘ in AD is due to 
scribal correction.

Ptolemy gives the computation for this at X II 6 p. 582.
In the anomaly table for .Vlars (XI 11), to an argum ent ol 162° corresponds an ecjuation of 

3:55°, and to 159°, 4;33°. Therefore to 1°, at alM>ut 20° from [x^rigee, corresponds (4;33 -  3;55)' 3 = 
12?'.

574 X I I 4. M ars' retrogradation at greatest distance



25;55,38, multiplied into the above ratio of’0 Z :Z G , gives, in terms of the above 
sizes of GA and AZ [i.e. 54;20 and 39;30],

©Z = 31;24,3P,
GZ = 17;21,51’’ in the same units, 

and, by addition, GO = 48;45,54’’.
Hence, where the hypotenuses AZ and AG are each [respectively] 120*’,

Z© = 95;23,42‘’ 
and G© = 107;42,7^

T he corresponding arcs are
arc Z© = 105; 18,10° 

and arc G 0  = 127;40.22°.''
Accordingly Z ZA© = 52;39,5° 

a n d Z  GA© =63;50,11°.
And, by subtraction, Z ZGA, which represents the [am ount ol] retrogradation 
due to the planet’s speed, is [90° -  Z GA© =j 26;9.49°, w hile /. ZAH, which ’ 
represents the [motion in] apparent anomaly, is [ Z GA© -  Z ZA© =] 11;11,6°.
To the latter correspond [motions in] corrected longitude of 20;33,42°, and in 
mean longitude of 16;52,52°, according to the ratios [of the speeds] at the 
perigee.^** So half the retrogradation comes out as H483

[26;9,49° -  20;33,42° =] 5:36,7° and alx)ut 32 i^  
and the total retrogradation is

11;12,14° and 644^

................ . II.- ■
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5. {Demonstration o f the retro^radations o f l enus]

Again, in the case of the planet Venus [see Fig. 12.11], according to our 
calculations for mean distance,

© Z.ZG = 1 : 0;37,31,^'
EG:GZ = 2;37,31 : 0;37,31, 

and EG.GZ = 1;38,30.
Furtherm ore, GA:AH = 60 : 43; 10,

DG .G H  = 103,10 : 16,-50, 
and D G .GH = 1736;38,20.

Dividing [I736;38,20 by 1;38,30], we get 1057;51,^® the square root of which,

”  Accurately. 127;40.3<’.
**Cf. p. 567 n.31. Computation: x 1/0;40,11 = 16;42,3°, to which corres{»nds an

equation or3;40,50® [accurately 3;38,5^: it appears as if Ptolemy took the equation of (180® -  
I6;51°)]. 11; 11,6° + 3;40,50° = 14;51,56®, which multiplied by l/0 ;52 ,51 gives 16;52,52“ [accurately 
16;52,36‘’]. I6;52,52° + 3;40,50° = 20:33,42°.

However one computes, 0;37,32 would be more accurate. From the relationship (IX 3 p. 424) 5 
revolutions in anomaly torrespond to tt revolutions m longitude less 21°, one finds 0;37,31,45 . . 
and the same from the mean daily motion carried to three places. Even taking only two places 
(0;36,59/0; 59,8), one gets 0;37,31,31 . . .

** R e a d in g ^  (with C^) forV?(1057;50,6) a t H483,22. The latter is Heiberg’s emendation for the 
reading of most mss., vq (1057;56), which I take to be a scribal corruption ofvo. Correct to two 
fractional places is I057;51,4, and that Ptolemy did not make a computing error is indicated by the 
amount given for the square root. The reading of D,Ar (1057;50,56) is also consistent with the 
square root, but seems to be*a conjectural (and baseless) correction of the corruotion 1057,56.
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H484 32;31,29, multiplied into the above ratio of 0 Z :Z G , gives, in terms of the above 
sizes of GA and AZ {i.e. 60 and 43; 10],

0 Z  = 32;31,29^,
GZ = 20;20,11'’ in the same units, 

and, by addition, G© = 52;51,40’’.
Hence, where hypxjtenuses AZ and AG are each [respectively] 120'*,

Z 0  = 90;24,58’’ 
and G© = 105;43,20^

The [corresponding] arcs are:
arc Z 0  = 97;47,0° 

and arc G 0  = 123;31,49°.
Accordingly Z Z A 0 = 48:53,30° 

a n d Z  GA0»«61;45,54°.
And, by subtraction, Z ZGA, which represents the [am ount of] retrogradation 
due to the planet’s speed, is [90° -  Z G A 0 =] 28;14,6°, while Z ZAH, which 
represents the [motion in mean] anomaly, is [Z GA© -  Z ZA© =] 12;52,24°. 
To the latter corresponds a motion in [mean] longitude of 20;35,19°,^® 
according to the above m ean ratio [of the speeds], and half the retrogradation is 
computed to be 

[28;14,6° -  20;35,19° =] 7;38,47° and about 201“.
The total retrogradation is

15; 17,34° and 411“.

’M2;52.24/0:37,31 is. accuratclv, 20;35.17.



[Hence] the distance a t the elongation of the stations from apogee and 
perigee is [respectively] about 0;5’’ of the m ean distance [i.e. 6CP] less than the 
greatest distance, and about the same am ount greater than  the least distance.®®

According to our calculations for near greatest distance, the equation H485 
[corresponding to 1°] for correcting [the speeds] is found to be Hence 

0 Z :Z G  = 0;57,40 : 0;39,51,
EG:GZ = 2;35,11 ; 0;39,51, 

and EG.GZ = 1;43,4.
Furtherm ore GA:AH = 61;10 : 43;10,

DG:HG = 104;20 : 18;0, 
and DG.HG = 1878;0.

Dividing [1878 by 1;43,4], we get 1093; 16,23, the square root of which, 33;3,53, 
m ultiplied into the above ratio of 0 Z .Z G , gives, in terms of the above sizes of 
GA and AZ [i.e. 61;10 and 43:10],

0 Z  = 31;46,44^
GZ = 21:57,38'’ in the same units, 

and, by addition, G© = 53:44,22’’.
Hence, where hypotenuses AZ and AG are each [respectively] 120**,

Z 0  = 88;20,34'’ 
and G 0  = 105:25,44^

T he [c orresponding] arcs are:
, arc Z 0  = 94:48.54° 
and arc G 0  = 122:56,27°.

Accordingly Z ZA© = 47:24,27° H486
a n d Z  G A 0 = 61:28,14°.

And, l>y subtraction, Z ZGA. which represents the [am ount ol] retrogradation 
due to the planet’s speed, is [90° -  Z G A 0 =] 28:31,46°, while Z ZAH, which 
represents the [motion in] apparent anomaly, is [Z G A 0 -  Z Z A 0 =] 14;3,47°.
To the latter correspond [motions ol] 20; 19,3° in corrected longitude and 
21:9,3° in mean longitude, according to the ratios [of the speeds] at apogee.®^
Thus half of the retrogradation comes to

[28;31,46° -  20;19,3° =] 8;12,43° and about 212^
T he total retrogradation is

16:25,26° and 43“.
According to our calculations for near least distance, the equation [cor­

responding to an argum ent of 1°] for correcting [the speeds] is found to be the 
same am ount. 23 '.**̂  Hence
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®®For a  true centrum (ic) of 20;35,19 the distance of the centre of the epicycle is 61;10,6'’ 
(*  61;15‘’ -  5), and for k = 180<’ -  20;35,19° the distance is 58;49,41'’ *  58;45’’ + 5'.

The increment between successive values of the equation in the anomaly table for Venus (XI 
11) is 14' for 6° of argument near the apogee, hence 2 i' for 1°. However, one should take the 
increment between 18° and 24°, which is 15', leading to 2 i ' for 1°.

p. 567 n.31. Computation: 14;3,47° x 1/0;39,5I »  21° [accurately 2I;I0,26°], to which 
corresponds an equation of0;50° [accurately 0;50,30°]. 14;3,47° -  0;50° = 13;13,47° I3;13i°. 
13;13i° X 1/0;37,31 = 21;9,3“, and 21;9,3° -  0;5&> = 20:19,3°.

This corresponds to an increment of 7 ' for an increment of 3° in the argument. In the anomaly 
table for Venus (X II I ) ,  near perigee, the increment is 7 ' between 165° and 162° and between 159° 
and 156°, but between 162° and 159°, which is the proper interval (k ** 20°), it is only 6'.



Z 0:Z G  = 1;2,20 : 0;35,11,
EG:GZ = 2;39,51 : 0;35,11, 

and EG.GZ = 1;33,44.
Furtherm ore GA:AD = 58;50 : 43; 10,

DG:GH = 102;0 : 15;40, 
and D G .G H  = 1598;0.

H487 Dividing [1598 by 1;33,44], we get 1022;54,7, the square root of which, 
31;58;58, multiplied into the above ratio o f0 Z :Z G , gives, in terms of the above 
sizes of GA and AZ [i.e. 58;50 and 43; 10],

0 Z  = 33;13,36P,
GZ = 18;45,16’’ in the same units, 

and, by addition, G© = 51;58,52‘’.
Hence, where hypotenuses AZ and AG are each [respectively] 120’’,

Z 0  = 92;22,3” 
and G 0  = 106;l,23^®'•

The [corresponding] arcs are:
arc Z 0  = 100;39,34° 

and arc G 0  = 124;8,22°.
Accordingly Z Z A 0 = 50; 19,47° 

a n d Z  G A 0 = 62;4,11°.
And, by subtraction, Z ZGA, which represents the [am ount of] retrogradation 
due to the planet's speed, is [90° -  Z G A 0  =] 27;55,49°, while Z ZAH, which 
represents the [motion in] apparent anomaly, is [Z G A 0 -  Z Z A 0 =] 
11;44,24°. To the latter correspond [motions of] 20;53,30° in corrected 
longitude, and 20:4,30° in mean longitude, according to the ratios [of the 
speeds] at perigee.'’̂  Accordingly half of the retrogradation comes to 

[27;55,49° -  20;53,30° =] 7:2,19° and about 2 oK  
The total retrogradation is

14;4,38° and 4 0 f .
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H488 6. [Demonstration o f the retrogradations o f Mercury]

Again, in the case ofM ercury [see Fig. 12.12], according to our calculations for 
mean distance,

0 Z :Z G  = 1 : 3;9,8,«®
EG:GZ = 5;9,8 : 3;9,8, 

and EG.GZ = 16;14,27.
Furtherm ore, GA:AH = 60 : 22l,

DG:GH = 82;30 : 37;30, 
and D G.GH = 3093;45.

“  Calculation gives 106; 1,26*, and perhaps one should correct to that, which is the reading of Is. 
Hovwever, an arc of 124;8,22® agrees better with a chord of 106; 1,23’’.

«C f. p. 567 n.31. Computation: 11;44,24° x 1/0;35,11 = 20;1,15'’ *  20*». To (180° -  20“) 
corresponds an equation of 0;49“. 11;44,24° + 0;49° = 12;33,24° 12;33“. 12;33° x 1/0;37,31 
«  20;4i° [accurately 20;4,16°]. 20;4j° + 0;49“ = 20;53,30“.

“ From the mean daily motions taken to 2 sexagesimal places (IX 4), 3;6,24/0;59,8 = 3;9,7,54 
3.9.8.
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Dividing [3093;45 by 16;14,27], we get 190:29,31, the squa're root of which, 
13;48,7, multiplied into the above ratio of lines 0 Z :Z G , gives, in terms of the 
above sizes of GA and AZ [i.e. 60 and 22;30],

0 Z  = 13;48,?P,
ZG = 43:30,24^, 

and, by addition, G© = 57; 18.31’’.
Hence, where hypotenuses AZ and AG are each [respectively] 120**,

Z 0  = 73;36,37^ 
and G© = 114;37,2^

The corresponding arcs are:
arc Z 0  = 75:40,28° 

and arc G 0  = 145;32,52®.
Accordingly Z Z A 0 = 37;50.14° 

and Z 0 A G  = 72;46,26°.
And, by subtraction, Z ZGA, which represents the [am ount ot] retrogradation 
due to the planet’s speed, is [90° -  Z 0 A G  =] 17; 13,34°, while Z ZAH, which 
rqjresents the [motion in mean] anomaly, is [Z 0 A G  -  Z Z A 0 =] 34;56,12°. 
To the latter corresponds a motion in [mean] longitude of 11 ;4,59°, according 
to the above ratio [of the speeds],®^ and half the retrogradation is found by 
subtraction as

[17; 13,34° -  11;4,59° =] 6;8,35° and about l l l ^
The total retrogradation is com puted as

12; 17,10° and 22i“.

H489

®’ 34;56,12/3;9,8 is indeed 11;4,59 (accurate to two places).



According to our calculations for near greatest distance, i.e. when the 
corrected longitude is about 11° from apogee (corresponding to a mean 
longitude of about 1 li®), the equation for correcting [the speeds] corresponding 
to 1® [of anomaly] is about Hence

0 Z :2 G  = 0;57,40 : 3; 11,28,
H490 EG:GZ = 5;6,48 : 3; 11,28,

and EG.GZ = 16; 19,2.
Furtherm ore, GA;AH = 68;36 : 22;30,®®

DG;GH = 91;6 ; 46;6, 
and D G.GH = 4199;42,36.

Dividing [4199;42,36 by 16;19,2], we get 257;22,44, the square root of which, 
16:2.35. multiplied into the above ratio o f0 Z ;Z G , giv'ps, in terms of the sbo'/e 
sizes ol GA and AZ [i.e. 68:36 and 22;30],

0 Z  = 15;25.9^
ZG = 51; 11,43'’ in the same units, 

and. by addition. G 0  = 66:36.52'’.
Hence, where hypotenuses ZA and AG aie  each [ respecti\el\] 120’’,

Z 0  = 82:14,8'’ 
and G 0  = 116:31,36^.

The corresponding arcs are;
arc Z 0  = 86:31,4° 

and arc 0 G  = 152:27,56°.
•Accordingly L ZA 0 = 43;15.32°

H491 and Z 0A G  = 76:13,58°.
And, by subtraction. Z ZGA, which represents the [am ount ol] retrogradation 
due to the planet's speed, is [90° -  Z 0 A G  =] 13:46.2°, while Z ZAH, which 
represents the [motion in] apparent anomaly, is [Z 0 A G  -  Z Z A 0 =] 
32;52;26°.'' To the latter correspond [motions of] 9:48,51° in corrected 
longitude and 10; 16,51° in mean [longitude], according to the ratios [of the 
speeds] at the apogee.'^ Thus half the retrogradation is found bv subtraction as

[13;46.2° -  9;48,51° =] 3;57,11° and about 
The total retrogi’adation is

7;54,22° and 21^
According to our calculations for near least distance (which occurs near the
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“* In the tabic ol'anomaly lor Mcrcuiy (XI 11), to an argument of 6° corresponds an equation of 
17', and to 12°. 32'. Thus to an increment of 6° corresponds an increment of 15', or, to l° ,2 l '.  I have 
no explanation for the discrepancy.

"*The distance at apogee is 69’’; hence Ptolemy assumes that the distance at the given situation is 
24' less. For ic = lli®, the distance (p) is in fact 68;37’’. It is about 68:36’’ forlc = 11;40'’.

’“Ptolemy has committed a considerable computing error here: the arc of the chord 116;31,36‘’ 
should l)e about 152;22°.

As noted by Heiberg and Manitius, 76; 13,58 -  43;15,32 in fact equals 32;58,26. But Ptolemy’s 
erroneous number is confirmed by the following calculations and by H500,23. It is worth noting that 
had Ptolemy used the correct arc of the chord 116;31,36'’ (cf. n.70), he would have fo u n d /©  AG 
76; 11° and Z ZAH 32;55°, which is closer to the text, but still not in perfect agreement.

” Cf. p. 567 n.31. Computation: 32;52,26® x 1/3;I1,28 10;18°, to which corresponds an 
equation of0;28° [accurately 0;27,45°]. 32;52,26“ -  0:28° = 32:24,26°, which divided bv3;9,8 gives 
10;16,51°. 10:16.51° -  0:28° = 9,48,51°.



elongations of 120® in mean motion from the apogee), the equation for correct­
ing (the speeds], derived from entering [the table] a t around  11° either side of 
the perigees is approximately l i ' . ”  Hence

0 Z :Z G  = 1;1,30 : 3;7,38,
EG:GZ = 5;10,38 : 3:7,38, 

and EG.GZ = 16; 11,25.
Furtherm ore, GA:AH**55;42 : 22;30,'*

DG;GH = 78;12 ; 33;12, H492
and DG.GH = 2596; 14,24.

Dividing [2596;14,24 by 16;11,25], we get 160;21,29, the square root of which, 
12;39,48, multiplied into each member of the above ratio of© Z:ZG , gives, in 
terms of the above sizes of GA and AZ [i.e. 55;42 and 22;30],

0 Z  = 12;58,47"
ZG = 39:36,4'’ in the same units, 

and. by addition, G 0  = 52:34.5F.
Hence, where hypotenuses AZ and AG are each [respectively] 120'’,

0 Z  = 69:13,3 r  
and 0 G  = ll3;16,48^

T he corresponding arcs are:
arc 0 Z  = 70:27,44° 

and arc 0 G  = 141:28,14°.
Accordingly Z 0 A Z  = 35; 13,52° 

and Z 0A G  = 70;44.7°.
And, by subtraction, Z ZGA, which represents the [am ount ol] retrogradation 
due to the planet’s speed, is [90° -  Z 0 A G  =] 19; 15,53°, while Z ZAH, which 
represents the [motion in] apparent anomaly, is [Z 0 A G  -  Z 0 A Z  =] 
35:30,15°. To the latter correspond [motions ol] 11;39,30° in corrected 
longitude, and 11:21.30° in mean [longitude], according to the above ratios [of 
the speeds near the p e r ig e e ] .T h u s  half of the retrogiadation is found by 
subtraction as

[19:15,53° -  11;39,30° =] 7;36,23° and about 11 i". H493
T he total retrogradation is

15:12,46° and 23^
T he am ounts [of the retrogradations] we have dem onstrated agree very 

closely with those derived from the actual phenom ena associated with each 
planet.
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”* From the table oi'anomaly for .\^c^cul•^ ( X I I I ) it can be seen that 1 is a compromise between 
the two values derived on either side of the perigee: tolc = 108° corresponds an equation of2;56°, and 
to If =111°, 2:53°. Here, then, an increment of 1° produces I '.  Forlc = 129° and 132° one finds 2;24° 
and 2:18° respectively, and hence, for an increment of 1°, 2 '.

^*Cf. p. 580 n.69. Here, for a distance of l l i °  in mean motion from ‘perigee’ (at K = 120°), one 
finds, for Ic = 131 i°, p = 55;41,58' (text 55;42'). On the other side of the perigee, however, for 
K = 108i°, p = 55;45,50'.

” Cf. p. 567 n.3l. Computation: 35;30,15° x l/3;7,38 = ll;2 1 ,l l° ,  to which corresponds an 
equation of 18' [in fact 11:21,1 l°6^b/r the perigee leads to an equation of+15', and ll;2 1 ,ll°a //? rit 
to -2 3 '.  i.e. 18' is, again, acompromise]. 35;30,I5° + 0;I8° = 35;48,15°, w hichdividedby3;9,8givrs 
11;21,30°. 11;21,30° + 0;18°= 1I;39.30°.



582 X I I 6. M ethod o f  computing ‘corrected longitude’

We used the following method to find the motions in longitude a t greatest 
and least distances.^*

For example, in the case of M ars [X II 4 p. 574], we showed that, near the 
greatest distance,’’ the apparent arc of the epicycle from either of the stations to 
opposition (i.e. the arc as viewed from the centre of the ecliptic) is 22; 13,19°. To 
the latter corresponds (according to the ratio 1 : 1;3,11) a motion in mean 
longitude of about 21; 10°.’“ But the latter does not represent [the actual mean 
motion] accurately, since the ratios of the speeds which we set out for the

stations do not remain unchanged throughout the whole period of retro- 
gradation. However, it is close enough to the tru th  so that the equation cor­
responding to it (which is about 3;45°)’® is not significantly difierent [ from the 

H494 true equation]. So we subtracted that [3;45°] from the 22; 13,19° of the epicycle 
(since at greatest distance the apparent m otion on the epicycle is greater than 
the mean motion), and [thus] found that the corresponding m ean motion in 
anomaly from either of the stations to opposition is 18;28,19°. To this, according 
to the ratio of the mean motions [0;52,51 : 1] corresponds a motion in mean 
longitude of20;58,21°.®“ So we adopted that as the accurate value instead of the

”  There is no need to assume, with Neugebauer (note in Manitius, revised edition, p. 301) that 
the following passage has been displaced in antiquity from its rightful place in X II 4. For the 
method applies to all planets, not just Mars. It is quite in Ptolemy’s m anner to attach an 
explanation or justification of a particular method as an appendix at the end of his general treatment. 
Cf. V 19 pp. 267-73 and VI 4 p. 282.

”  See Fig. R. The planet is at opposition (P) when the epicycle is at apogee, and at second station 
(S) when the epicycle is at a  mean centrum lf from apogee. Then ‘the apparent arc of (nration on) 
the epicycle’ is XS, and ‘the mean motion on the epicycle’ (which diflers from it by the equation c) is 
ZS.

Accurately 21;6,8®.
’’ Accurately 3;46,15°.
“ Accurately 20;58,15°.



[previous] 21; 10°, and subtracted from it the 3;45® of the equation (which 
remains very nearly unchanged for this fKJsition). [We subtracted] because at 
greatest distance the apparent motion in longitude is less than the mean. Thus 
we found the apparent motion in longitude as 17;13,21°, the interval set out 
above.
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7. {Construction o f a table fo r  the stationsY^

Furtherm ore, to enable us to investigate conveniently a t w hat point on the 
epicycle each planet is when it produces the appearance of being stationary, for 
distances in the interval between m ean distance and greatest o r least distance as 
well, we have constructed®^ for this purpose a table with 31 lines and 12 H495 
columns. The first two of these columns will contain the numbers of the mean 
longitude at intervals of 6° (corresponding to the arrangem ent of the other * 
tables). T he following 10 columns will contain the distances in corrected 
anomaly from the apparent apogee of the epicycle for each of the 5 planets: in 
each case the first column [of the pair for that planet] will contain the am ount 
for first station, and the second column the am ount for second station. We 
obtained the am ounts for these [entries] too from the [numbers] demonstrated 
above for mean, least and greatest distances, and  from the increments at 
distances in between these, which we happen to have determ ined already in 
[our com putations oi] the minutes to be tabulated in the eighth column of the 
tables for anomaly.**^ For in dem onstrating the am ount of the maximum 
equation of anomaly corresponding to each entry in m ean motion, one 
simultaneously demonstrates the distance of the epicycle, which is the principal 
factor affecting the difference in [the position of) the stations.

But first, since the retrogradations which we dem onstrated for near apogee 
and perigee represent, not the stations which occur when the centre of the 
epicycle is precisely a t apogee and perigee, but those when it is a certain H496 
specified distance [from them], we used the latter to determ ine, for each planet, ,  
the am ount corresponding to the actual apogee and perigee, as follows.

In the case of Saturn and  Jupiter, since the distances of the epicycle at actual 
apogee and perigee do not differ significantly from those a t the elongations from 
apogee and perigee used above, we entered the am ounts of anom aly (counted 
from apparen t apogee of the epicycle) derived for those elongations on the 
appropriate lines, i.e. we entered the am ount for apogee on the line with the 
argum ent ‘360’, and the am ount for p>erigee on the line with the argument 
‘180’. We showed that for Saturn [ X I I 2, pp. 567-9] the distance [in anomaly] 
from the perigee of the epicycle at apogee of the eccentre is about 67; 15°, and at 
perigee of the eccentre about 64;3P ; and that for Jup iter [ X I I3, pp. 571-2] it 
is 55;55° at apogee and 52;49° at perigee. For convenience in use, we entered the

«' See HAM A  202-06, Pedenen 349-51.
Reading ne0(o8eoaojiev (with D,Ar) at H494,20 for Me6o5euo)iev (‘we construct’).

“ Cf. X I 10 p. 547. It was necessary for Ptolemy to compute the distaiiccs of the ccntre of the 
epicycle all round the orbit in order to calculate the ‘minutes of interpolation’ in the planetary 
anomaly tables. *



amounts [in anomaly] corresponding to these, counted from the apogee of the 
H497 epicycle, on the appropriate lines in the 4 C( lumns following the [argum ent 

columns of] longitude: on the line with the argum ent ‘360’ (for the apogee) [we 
entered], in the third column, ‘112;45°’ for the first station of Saturn, and, in the 
fourth column, ‘247; 15°’ for its second station; similarly, in the fifth column, 
‘124;5°’ for Ju p ite r’s first station, and, in the sixth column, ‘235;55°’ for its 
second station. And on the line with the argum ent ‘180’ (for the perigee) [we 
entered], following the same order, ‘115;29°’ and ‘244;31°’, and similarly 
‘127;11°’ a n d ‘232,49°’.

In the case of Mars, we showed [X II 4, pp. 573-4] that when the epicycle 
centre is 20;58® in mean [longitude] from the ap>ogee o f theeccentre, the planet 
performs its stations at a distance of 22; 13° [in anomaly] from the apparent 
perigee of the epicycle; and  the [corresponding] am ount [of anomaly] a t mean 
distance is 16;51°, so tha t the difference is 5;22°. Furtherm ore, where the mean 
distance is 6(f, the greatest distance is SB** and the difference between greatest 
and mean is S'*, while at the above distance from the apogee [of 20;58°] the 
distance is 65;40‘*®̂ and  the difference between this and the m ean is 5;40‘’. So, 

H498 multiplying 6 into 5;22 and dividing the result by 5;40, we find that the 
difference with respect to the mean distance at the actual apogee is about 5;41°. 
Thus we calculate the distance [in anomaly] from the apparent perigee of the 
epicycle as [16;51° + 5;41° =] 22;32®, and from the apogee as, for the first 
station, 157;28°, which we enter in the seventh column on the line with ‘360’, 
and, for the second station, 202;32°, which we enter in the eighth column on the 
same line.

Similarly [see p. 575], when the epicycle centre is 16;53° in m ean [longitude] 
from the perigee [of the eccentre], [M ars] performs its stations at a distance of 
11;11° [in anomaly] from the apparent perigee of the epicycle, so that the 
difference [in anomaly] from that for m ean distance is [16;51° -  I I ;I1 °= ]  
5;40°. And, in the same units [as before], the least distance is 54’’ (with a 
difference from the m ean of 6’’), and at the above elongation from the perigee of 
the eccentre it is 54;20‘*, with a difference from the m ean of 5;40‘’. Thus at the 
actual perigee we get the total difference [in anom aly from the mean] as 
[5;40° X 6 5;40 =] 6°. Hence the am ount [of anomaly] from apparent p>erigee 
of the epicycle is [16;51° -  6° =] 10;51°, and from the apogee, for the first 

H499 station, 169;9°, and for the second 190;51°, which we enter in the appropriate 
columns on the line with ‘180’.

In the case of Venus, we showed [X II 5, pp. 576-7] that when it is 21;9° in 
mean longitude from the apogee [of the eccentre], the planet performs its 
stations at a distance of 14;4° [in anomaly] from the apparen t perigee of the 
epicycle, while the [corresponding] am ount a t m ean distance is 12;52°, so that 
the difference is 1;12°. And, where the m ean distance is eO**, the greatest 
distance is 61; 15’’, and the difference from the m ean 1;15’’, while a t the above 
elongation from the apogee the distance is 61;10‘’ and  the difference from the 
mean 1;10‘’. So, again, multiplying 1;15 into 1;12 and  dividing the result by

**Cf. p. 573 with n.50. One should probably read and  toC drtoyeiou (with D) at H497,21 (cf. 
H499,1I) Corrected by Manitius.
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1;10, we find the difference [in anomaly] a t the actual apogee with respect to 
that for the m ean distance as 1; 17°. Thus we calculate the distance [in anomaly] 
from the apparent perigee of the epicycle as [12;52° + 1;17° =] 14;9°, and from 
the apogee as, for the first station, 165;51°, which we en ter in the ninth column 
on the line with '360’, and, for the second station, I94;9®, which we enter in the 
tenth column on the same line.

Similarly [see p. 578], when the epicycle is about 20® in m ean longitude from H500 
perigee o f the eccentre, [Venus] performs its stations a t a  distance [in anomaly] 
of 11 ;44° from the apparent perigee of the epicycle, so tha t the difference with 
respect to [that for] m ean distance is [12 ;5^  -  11;44° =] 1;8°. And the least 
distance is 58;45° where the m ean is 60'’, and their difference is 1;15'’, while the 
distance at the above elongation from the perigee is 58;50‘’ in the same units, 
and the difference from the mean 1;10'*. So, m ultiplying 1;15 into 1;8 and 
dividing the result by I; 10, we find the difference [in anom aly] at the actuzd 
perigee with respect to the mean distance as I;13°. H ence the am ount of 
anom aly from the apparent perigee of the epicycle is [12:52® -  1;13° =] 11:39°, 
and from the apogee, for the first station, 168;21°, and, for the second station,
191;39°, which we enter in the same columns [i.e. the ninth and tenth 
respectively] opposite the number®^ ‘180\

In the case of the planet M ercury, we showed [X II 6, pp. 579-80] that when 
the epicycle is 10:17° in mean longitude from the apogee of the eccentre, the 
planet performs ks stations at a distance [in anom aly] from the apparent 
perigee of the epicycle of 32:52°, while the [corresponding] am ount at mean H501 
distance is 34:56°. so that the difference is 2;4°. Furtherm ore, where the mean 
distance is 60’’, the greatest distance is 69** and the difference between them 9'’, 
while at the above elongation from the apogee the distance is 68:36’’,'** and the 
difference from the mean 8;36’’. By the same procedure as before, m ultiplying9 
into 2;4 and dividing the result by 8:36, we find the difference [in anomaly] at 
the actual apogee with respect to that for the mean distance as about 2; 10°.
Thus we calculate the distance [in anomaly] from apparen t f>erigee of the 
epicycle as [34;56° -  2; 10° =] 32;46°, and from the apogee as, for the first 
station, 147:14°, which we enter in the eleventh colum n opposite the number 
‘360’, and for the second station 212;46°, which we enter in the twelfth column 
on the same line.

Similarly [see p. 581], when the epicycle is 11;22® in m ean [longitude] from 
the perigee, the planet performs its stations at a distance [in anomaly] from the 
apparent perigee of the epicycle of 35;30°, so that the difference from that for 
m ean distance is [35;30® -  34;56° =] 34'. And the least distance is55;34‘’ where H502 
the mean is 60̂ *, and  their difference is 4;26*’, while a t the above elongation from 
the perigee the distance is about 55;42‘’, and the difference from the m ean 4;18‘’.
So, again, m ultiplying 4;26 into 0;34 and dividing the result by 4; 18, we find the 
difference [in anomaly] at the actual perigee with respect to tha t for the mean 
distance as 0;35°. Hence the distance in anom aly from the apparen t perigee of

KOTCi Tov tS v p?t dpl6^6v. One would cxpectxcTOiTdO tS v pSor'ixou (cf. e.g. H 499 ,1-2,22), 
and that occurs (at least as an alternative reading) in L,Ger. But the same expression occurs at 
H501,14 and 502,12.

»*Cf. p. 580 with n.69.
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the epicycle is [34;56® + 0;35° =] 35;31°, and from the apogee, for the first 
station, 144;29®, and for the second station 215;31°. W e enter the latter in the 
same [i.e. eleventh and twelfth] columns, in this case, however, not opposite the 
num ber ‘180’ of longitude, but opposite ‘120’ and ‘240’, since we have shown 
that the points of the planet M ercury’s eccentre closest to the earth  are at those 
positions.

Now that the above has been set out, the increments for the positions in 
between [apogee and f>erigee] can be obtained using the same methods.

To take an example, let us set ourselves the task of finding the entries (in 
apparent anomaly) for first station when the mean position in longitude is 30° 

H503 from the apogee. At this situation the distance of the epicycle, for a mean 
distance in every case of 60**, calculated by the methods explained previously, is 
(as we stated before)®^ as follows:

Saturn Ju p ite r M ars Venus M ercury
63;2’’ 62;26’’ 65;24’’ 61 ;6’’ 66;35^.'

Hence the differences of each with respect to the mean (using the above order, 
to avoid repetition) are

3;2” 2;26” 5;24‘’ 1;6’’ 6;35’’
But the differences between the distance at actual apogee and the mean, since 
the above am ounts for the distance are in all cases greater than the mean, are, in 
the same units,

3;25‘’ 2;45'’ 6;0'’ 1;15’’ 9;0^
Now the total differences in apparen t anom aly between apogee and mean 
distance come to (using the same order)®®

1;23° 1;33° 5;41° 1;17° 2;10°
We multiply each of the latter in tu rn  into the difference between the distance at 
that point and the m ean for the planet in question (e.g. [for S aturn  we multiply] 
1;23 into 3;2), and  divide the result by the difference between greatest distance 

H504 [and mean], (e.g. [for Saturn] by 3;25), and thus get for the above position in 
longitude, for each planet, the following am ounts of difference in anom aly with 
respect to that for m ean distance;

1;14° 1;22° 5; 7° 1;8° 1;35°.
The distances [in anomaly] from the apparen t apogee of the epicycle at the 
mean distances are:®®

114;8° 125;38° 163;9° 167;8° 145;4°.
The [corresponding am ount] at greatest distance is greater than the above for 
Mercury, but less for the other planets. So for M ercury we add the difference 
which we found for the distance in question to that for the m ean distance, but 
for the other planets we subtract it, and get the following amounts, in apparent

X I 10 p. 547. See that chapter for the method of calculating these quantities.
“ Saturn (p. 567) Apogee 67;15°, mean 65,52“, difference 1;23°. Jup iter (p. 571) Apogee 55;55° 

mean 54;22°, difference 1;33°. For the other amounts see pp. 584, 585, and 585. Although Ptolemy 
does not explicitly say so, logic demands, and the tables confirm, that for positions of the epicycle 
between mean distance and perigee one takes the corresponding differences in anomaly between 
mean distance and perigee (namely 1;21, 1;33,6;0, l;13and0;35)and  interpolates accordingly. Cf. 
HAMA  204 bottom.

For the following amounts see L  ZAH on pp. 565,570,573,576, and 579, where in each case the 
supplements (i.e. the distances from apparent perigee) are given.
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anom aly from the apogee of the epicycle, which are entered in the columns for 
first station opposite 30° of m ean longitude;

Saturn Ju p ite r M ars Venus M ercury
112;54° 124;16° 158;2° 166;0° 146;39°.

W e can immediately complete the columns for second station, by entering, for 
each [planet],^® the difference from 360° of the am ount for first station, [putting 
the result] in the column for second station on the same line. Thus a t the above H505 
position [we enter]

247;6° 235;44° 201;58° 194;0° 213;2I°.
It is easy to see that if, for the sake of greater convenience, we should choose to 

enter, not the anomaly, taken with respect to the apparent apogee of the 
epicycle, but the uncorrected anomaly, taken with respect to the mean 
[epicyclic apogee], we can immediately derive this too, by taking in the table of 
anom aly the equation (combined [from the 3rd and 4th columns]) correspond-^ 
ing to each argum ent of mean longitude, and subtracting it from the am ount we 
found for the apparent anom aly on the 180° of the eccentre counted from 
apogee, but adding it for [longitudes from apogee] of more than 180°.

The layout of the table is as follows.
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8. {Table o f Slalions}^^ H 5 0 6 -7

[See p. 588.]

9. {Demonstration o f the greatest, elongations from the sun o f Venus and Mercury]^^ H508

Now that we have gone through the theorems concerning retrogradations, next 
in the logical sequence is to dem onstrate the greatest elongations of the planets 
Venus and M ercury from the sun, in each of the zodiacal signs, as derived from 
the above hypotheses. In setting out [the tables] for these, we have taken [the 
elongations] with respect to the apparent position of the sun, and assumed that 
the actual planets are at the beginning of the [respective] signs, and that the 
positions of their apogees w ith respect to the solstitial and equinoctial points are 
those which obtain in our time, namely, for Venus, in 8 25°, and, for M ercury, 
in — 10°. It will be easy for those who come zifter us to correct for the chang&in 
the greatest distances due to the shift in the apogees, using the same methods, and 
in any case the change remains negligible for a very long time.

In order to make it easy to understand the method of our approach [to this 
problem], by way of example we must dem onstrate, for Venus first, the greatest

Deleting the word CTTi%OU at H504.20. If kept, this would mean ‘on each line’. But, first,
Ptolemy does not use fejti in this sense, but K O td ; secondly, it is hideously clumsy to follow £(p’ 
iKdoTOO orixoo by Kara tS v  auxOv atixG v; and thirdly one needs a reference to each planet 
^exactly as at H504,l). This is an ancient interpolation, since it is in all mss.

*' For Mars, argument 138° (H507,28), D,Ar have the readings 167;10° (also A ') and 192;50°, 
which are more correct than the 167;8°, 192;52° adopted by Heil>erg, and should perhaps lie 
preferred. However, errors of as much as 2 ' occur elsewhere in the Mars table.

*-See HAMA  230-4, Pede'rsen 351-4.
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[TABLE OF STATIONS] 
(AMOUNTS IN CORRECTED ANOMALY)

SATURN JU PITER MARS VENUS MERCURY
Common First Second First Second First Sct-ond First Second First Second
Numbers Station Station Station Slation Station Station Station Station Station Station

0 360 112 45 247 15 124 5 235 55 157 29 202 32 165 51 194 9 147 14 212 46
6 354 112 45 247 15 124 6 235 54 157 29 202 31 165 52 194 8 147 13 212 47

12 348 JJ2 46 247 14 124 7 235 53 157 34 202 26 165 53 194 7 147 a 212 52
18 342 112 48 247 12 124 9 235 5! 157 41 202 19 165 55 194 5 147 1 212 59
24 336 112 51 247 9 124 12 235 48 157 50 202 10 165 57 194 3 m  51 213 9
30 330 112 54 247 6 124 16 235 44 158 2 201 58 166 0 194 0 146 39 213 21
36 324 112 58 247 2 124 21 235 39 158 18 201 42 166 4 193 56 146 25 213 35
42 318 113 3 246 57 124 26 235 34 158 34 201 26 166 9 193 51 146 11 213 49
48 312 113 8 246 52 124 32 235 28 158 55 201 5 166 15 193 45 145 55 214 5
54 306 113 15 246 45 124 39 235 21 159 17 200 43 166 22 193 38 145 39 214 21
60 300 113 22 246 38 124 47 235 13 159 42 200 18 166 29 193 31 145 23 214 37
66 294 113 29 246 31 124 55 235 5 160 10 199 50 166 35 193 25 145 8 214 52
72 288 113 36 246 24 125 3 234 57 160 39 199 21 166 42 193 18 144 58 215 2
78 282 113 44 246 16 125 12 234 48 161 10 198 50 166 50 193 10 144 52 215 8
84 276 113 53 246 7 125 22 234 38 161 44 198 16 166 58 193 2 144 46 215 14
90 270 114 1 245 59 125 32 234 28 162 18 197 42 167 7 192 53 144 40 215 20
% 264 114 10 245 50 125 41 234 19 162 54 197 6 167 14 192 46 144 36 215 24

102 258 114 18 245 42 125 51 234 9 163 31 196 29 167 21 192 39 144 33 215 27
108 252 114 27 245 33 126 0 234 0 164 9 195 51 167 28 192 32 144 30 215 30
114 246 114 35 245 25 126 10 233 50 164 47 195 13 167 35 192 25 144 30 215 30
120 240 114 43 245 17 126 19 233 41 165 25 194 35 167 43 192 17 144 29 215 31

126 234 114 51 245 9 126 28 233 32 166 3 193 57 167 50 192 10 144 29 215 31
132 228 114 58 245 2 126 36 233 24 166 37 193 23 167 56 192 4 144 30 215 30
138.1 222 115 5 244 55 126 44 233 16 167 8 192 52 168 I 191 59 144 31 215 29

144 216 115 11 244 49 126 51 233 9 167 39 192 21 168 6 191 54 144 33 215 27
150 210 115 16 244 44 126 57 233 3 168 4 191 56 168 10 191 50 144 35 215 25
156 204 115 21 244 39 127 2 232 58 168 28 191 32 168 14 191 46 144 37 215 23

162 198 115 25 244 35 127 6 232 54 168 46 191 14 168 17 191 43 144 38 215 22
168 192 115 27 244 33 127 8 232 52 168 59 191 1 168 19 191 41 144 39 215 21

174 186 115 29 244 31 127 10 232 50 169 8 190 52 168 20 191 40 144 40 215 20
180 180 115 29 244 31 127 11 232 49 169 9 190 51 168 21 191 39 144 40 215 20

H509 morning and evening elongations (as defined above) when the planet is at the 
spring equinox, [namely] at the beginning of Aiies.

Let [Fig. 12.13] the line through A, the apogee of the eccentre, be ABGDE, 
on which B is taken as the centre ol' uniform motion, G as the centre ol‘ the 
eccentre carr\ ing the epicycle, and  D as the centre of the ecliptic. Draw  GZ as 
radius of the eccentre, describe the epicycle H© about Z, and  from D draw  D© 
as tangent on the side ol'the epicycle which represents m orning [visibility] and is 
in advance of it[s centre]. Jo in  BZH and Z 0 , and drop f>erpendiculars G K, GL 
and BM.

Then, since DA points towards 8 25° and  D© towards the beginning of 
Aries,

H510
Z AD©_ _ r  55° where 4 right angles = 360°

~ \  110°° where 2 right angles = 360°°; 
and Z D G K  = 70°° (complement).
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H

Fig. 12.13

Therefore, in the circle about right-angled triangle G D K, 
a rc G K = 1 1 0 °

and GK = 98;18‘’ where hypotenuse GD = 120’’. 
Therefore where GD = U S ’* and the radius of the epicycle, Z 0  = 43; 10’’ 

GK (= L 0 ) = 1;F, 
and, by subtraction [of L 0  from Z 0 ], ZL = 42;9‘’, 
where GZ, the radius of the eccentre, is taken as 60*’.
Therefore where hypotenuse GZ = 120**, ZL = 84;18‘’, 
and, in the circle about right-angled triangle GZL, 

arc ZL = 89; 16°.
Z ZGL = 89; 16°° where 2 right angles = 360°°.

But Z D G K  = 70°° in the same units, and Z LGK is right. 
Therefore, by addition. Z ZGD is found to be [89:16 + 70 + 180] = 339:16°°, 

and, by subtraction [from 2 right angles], Z AGZ = 20;44°°.
Therefore, in the circle about right-angled triangle BGM, 

arc BM = 20;44° 
and arc GM  = 159; 16° (supplement).

Therefore the corresponding chords

and  GM  I  hypotenuse BG = 120'.

Therefore where BG = 1;15*’, and GZ, the radius of the eccentre, is 60*", 
BM = 0;13^
GM  = l;14^

and, by subtraction [of GM  from GZ}, M Z = 58;46‘*.
Hence hypotenuse BZ [= \/B M ^ + MZ^] = 58;46'’ in the same units. 

Therefore, where BZ = 120^, BM = 0;27^

H511
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and, in the circle about right-angled triangle BZM, 
arc BM = 0;26°.

A Z BZG = 0;26°° where 2 right angles = 360°°.
And we showed that Z AGZ = 20;44°° in the same units.

Therefore, by addition, Z ABZ, which represents the m ean motion in longitude,
. r 21; 10°° where 2 right angles = 360°°

10;35° where 4 right angles = 360°. 
Therefore the mean position of the sun will be 10;35° in advance of the 
apogee at A, and, obviously, will be in y 14;25°.

And the true position of the sun will be in 8 15; 14°. Therefore the planet, 
when it is at the beginning of Aries, will have a m axim um  m orning elongation 
from the true sun of 45; 14°.

Again, let there be drawn next [Fig. 12.14] the diagram  with the tangent to 
the side of the epicycle which represents evening [visil)ility] and is towards the

Fig. 12.14

rear of the epicycle [centre], while the planet, as before, is taken as being at the 
H 5 12 beginning of Aries.

By what was shown above, Z AD© will rem ain the same,
and Z D G K  = 70°° where 2 right angles = 360°°, 

and O K  = L© = I;!** 
where GZ, the radius of the eccentre, is 60’’, 
and Z 0 , the radius of the epicycle, is 43;10*’.

Therefore, by addition, ZL[= Z© + L©] = 44; 11'’ in the same units.
And it is obvious that, where hypotenuse [of triangle GZL] GZ = 120’’, 

ZL = 88;22^
and, in the circle about right-angled triangle GZL, 

arc ZL = 94;51°.
• • Z ZG L = 94;51°° where 2 right angles = 360°°, 

and Z Z G K  = 85;9°° (complement).



So, by addition, Z Z G D (= Z  B G M )[=Z D G K  + Z ZG K ]=  155;9®° inthesam e
units.

Hence, in the circle about right-angled triangle BGM, 
arc BM = 155;9°

and arc GM  = 24;51° (supplement). H513
Therefore the corresponding chords

B M = 1 1 7 ; l l ‘’l  , . _
and G M  = 2 5 - M  hypotenuse BG = 120'.

Therefore, where BG = 1;15'’,
BM = l;13^
M G = 0;16^ 

and, by addition, M Z = 60:IB**.
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Hence hypotenuse BZ [= \ /B M ' + MZ'^] = 60; 17’’ in the same units.
Therefbre, where BZ = 120^ BM = 2;25^' 

and, in the circle about right-angled triangle BZM, 
arc BM = 2; 19°.
Z BZM = 2; 19°° where 2 right angles = 360°°.

And Z BGZ = 204;51°° in the same units, 
since Z DGZ was shown to l>e 155;9°° in those units.

Therefore, by addition. Z ABZ, which represents the mean motion in 
longitude,*^’

r 207:10°° where 2 right angles = 360°°
[ 103:35° where 4 right angles = 360°.

Therefore the sun's mean position will be at [8  25° -  103;35° =] -2? 11;25° 
and its true position a t ^  13;38°.

Thus the greatest evening elongation of the planet from the true sun, when, as 
befbi e, it is at the beginning o f  .Aries, will i>e 46:22°.

In the case of the planet M ercury, in order to hav'e a moie convenient H514 
approach to the demonstrations of its missing phases which we shall give further 
on,^'' let us set ourselves the task of finding the ma.\imum elongation of the .  
planet from the true sun, as evening star when it is at the beginning of Scorpius, 
and as m orning star when it is at the beginning of Taurus.

Now, according to our hypothesis for M ercury, when the apparent p>osition 
of the planet is given, the mean position in longitude cannot be f ound, since line 
GZ does not remain the same constant length,®^ always equal to the radius of 
the eccentre (as it does in the hypothesis for the other [planets]). But if the meSn 
position in longitude is given, the apparent position can be demonstrated. So we 
assume, for each [zodiacal] sign, two positions in [mean] longitude which can 
bring the planet [at greatest elongation] near the beginning of the sign in

Rcadinirxf^i; 6|iaA.ti(; Kaxd jrapoSou (with D 'G . Av) at H513,15-16lbrtl»cnonsensicaf
tt}(; 6|iaX.% koI icaTd n'fjicoc; TtapoSou. Corrcciecl l)v .Vlaniiius.

The reference is to X III 8 (p. 644).
For tfic other planets (e.i?. V'eniis, Fig. 12.14) this denotes the distance trom the ccntre of the 

eccentre to the ccntre ol' the epicycle, but Ibr Mercury Ptolemy seems to be referring to a figure such 
as Fig. 9.9, where it denotes the distance from the equan! point to the centre of the epicycle. These 
two amoimts are indeed tritjpnometrically comparable. Ptolemy is correct in stating that, Ibr 
Mercury, one cannot llnd the mean position from the true, at least i)y Euclidean geometry.
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question, the first in advance [of the beginning of the sign], and the second to the 
rear [of it]; we com pute the greatest elongations a t the chosen positions, and 
thence®* find the greatest elongation which occurs a t the actual beginning of the 
sign. T h b  will be easily comprehensible from the [particular] problems we have 
set ourselves to solve: and first for the greatest evening elongation at the 
beginning of Scorpius.

Let [Fig. 12.15] the diam eter through the apogee A be ABGD, on which G is 
taken as the centre of the ecliptic, and B as the centre of the epicycle’s uniform 
motion. First let the epicycle centre be imagined as being precisely at the

D
Fig. 12.15

apogee, so that the mean position in longitude of the sun will b e ^  10°, and its 
true longitude — 8°. O n centre A describe the epicycle ZH , draw  O H  as 
tangent to the side of it representing evening, and drop perpendicular AH.

Then, since in our previous treatm ent [IX  9, p. 459] it was shown that where 
GA, the greatest distance, is GQ**, AH, the epicycle radius, is 222’’, 
where hypotenuse [of right-angled triangle AGH] AG = 120’’,

AH = 39;8^
and, in the circle about right-angled triangle AGH, 

arc AH = 38;4°

and Z AGH
_ r 38;4°° where 2 right angles = 360°° 
■ 119 ;̂;2° where 4 right angles = 360°.

H516 And GA is at ^  10°.
Therefore the planet will have a position of ̂  29;2°, its m axim um  elongation 
from the true sun being 21;2°.

'"’By linear intcijx)lalion.
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Again, let [Fig. 12.16] the distance in mean longitude from the apogee be 3®: 
thus the mean sun will be a t ̂  13°, and the true sun a t — 11 ;4°. Draw BE and 
on centre E describe the epicycle ZH. As before, draw  the tangent GH, and join 
EG, EH. Then at the situation in question, i.e. with Z ABE taken as 3°, by our 
previous methods one can show that the angle corrected for the eccentricity,®’ 

Z AGE = 2;52°, 
and the distance of the epicycle in that situation,®®

EG 68;58‘* where EH, the radius of the epicycle, is 22;30‘’.

D
Fig. 12.16

and Z EGH =

Therefore, where hypotenuse EG = 120’’, EH  = 39;9**.
Therelbre, in the circle about right-angled triangle G EH , 

arc EH = 38;5°,
38:5°° where 2 right angles = 360°°
19;3°, approximately, where 4 right angles = 360°. 

Hence, by addition, Z AGH = 21;55° in the same units.
So when the planet is at ni 1 ;55°, its greatest elongation from the true sun will be 
[TTl 1;55° -  ^  11;4° =] 20;51°.
And we showed that when it is at ^  29;2°, its greatest elongation from the true 
sun will be 21;2°.
Thus the difference between the longitudes is 2;53°, and the difference 
between the greatest elongations is 1 1 and so to the 0:58° from the first position

H517

If the tfxt is to be trusted here, this must be the meaning of tfiq napd ti^v eKKevtpoTTiTa 
Siatpopaq. But the normal relierence of such an expression would be to the equation (of centre) ksell', 
not to the angle corrected by the equation. I strongly suspect that the phrase is interpolated (it is in 
the whole ms. tradition).

**By trigonometrical calculation. EG = 68;58.25'’, Z AGE = 2;52,10°.
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H518

H519

to the beginningoCScorpius corresponds [a decrement in greatest elongation of] 
about 4^ which we subtract from 21 ;2® to get the greatest evening elongation 
from the true sun [when the planet is] precisely at the beginning of Scorpius as 
20;58°.

Next, to lind the greatest m orning elongation at the beginning of Taurus, let 
us suppose first that the mean position in longitude is 39° towards the rear from 
the perigee. Thus the mean sun is at 8 19°, and the true sun a t 8 19;38°. Let 
there be drawn [Fig. 12.17] a figure similar [to the preceding], in which the 
epicycle is described to the rear of the perigee, and the tangent is drawn to the 
m orning side of the cpicycle.

n

Then at the position in question, i.e. w ithZ  DBZ taken as 39°. l)v the method 
previously desc ribed one can show tliat 

Z DGE = 40:57°,'"' 
and that the distance at that moment.

GE = 55:59*’ where the radius of the epicycle, EH = 22:30*'. 
Thereibre where iiypotenuse [of right-angled triangle GEH] GE = 120’’.

EH = 48:14’’
and. in the circle about right-angled triangle GEH, 

arc EH = 47:24=
. /  E C H  = I  ̂ "̂ ’24°° where 2 right angles = 360°° 

\  23:42° where 4 right angles = 360°.
And. by sul)ti'action [from Z DGE], Z H G D  = 17:15° in the same unus. 
Therefore when the planet M ercuiy has a longitude of ̂  27:15°, its greatest 
morning elongation from the true sun will be [ 8  19;38° -  ^  27:15° =] 22:23°.

' For K = p = and K = ‘i20;f)5.57°. hence Z DGE «  40:56°.
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Again, let it be assumed to have a distance in m ean longitude from the 
F>erigee, on the same side, of 42®. Thus the sun will have a m ean longitude of y 
22® and a true longitude of 8 22;31®.
Then a t this position, i.e. with Z DBZ taken as 42°, one can show that 

Z DGE = 44;4°, 
and that the distance at tha t moment,

G E = 55;53‘’*°° where the radius of the epicycle, EH = 22;30'’. 
Therefore, where hypotenuse EG = 120’’, EH = 48;IQ**, 

and, in the circle about right-angled triangle EGH, 
arc EH  = 47;30®.

• /  F T H  -  -f 'vhere 2 right angles = 360°®
.. ^  LUH -  ^23;45° where 4 right angles = 360°,

H520

and, by subtraction [from Z DGE], Z H G D  = 20; 19° in the same units. 
Therefore when the planet M ercury has a longitude of 8  0;19°,‘°‘ its greatest 
morning elongation from the true sun will be [ 8 22;31° -  8 0;19° =] 22; 12°. ’ 
And we showed that when it has a longitude o f 27; 15°, its greatest elongation 
(similarly defined) will be 22;23°.
So, again, since the difierence between the longitudes is 3;4°, and the dilTerence 
between the greatest elongations is 11', to the 2;45° from the longitude at the 
first position to the beginning of Taurus correspond approxim ately 10'. So. 
suljtracting the latter from the 22:23°, we get the greatest morning elongation 
from the true sun [when the planet is] at the beginning of Taurus as 22; 13°.

Q.E.D.
In the same way we com puted the greatest m orningand evening elongations 

for both planets by calculation at [the beginning of] the other signs, and 
constructed a small table for them, with 12 lines (equal in num ber [to the signs]) 
and 5 columns. At the beginning we put, in the fn-st column, the first points of 
the signs, starting with Aries. In the following 4 columns we put the 
corresponding com puted greatest elongations from the true sun: the second 
contains the morning elongations of the planet \'enus, the third its evening 
elongations, the fourth the m orning elongations of M ercury, and the fifth its 
evening elongations. The table is as follows.

H521

Reading ve V7 at H519.13 for ve v (55;50'’). Calculation (lorIT = 222°) givesp = 55;52,58^ 
Although Ptolemy is capable ol'a computing error of this amount, he did not in fact make it, forthe 
following calculations are consistent with 53;53’’ and not with 55;5(f (thus 22;30 x 120/55;50 = 
48;211, whereas 35;53 leads to 48;I9, as the text). The error, though scribal, is old, since it is shared 
by all mss.

‘®‘ Literally ‘of 19' of the first degree of Taurus'.
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H522 10. {Greatest elongaliom with respfct to the true

Beginning 
of the 
Sign

VEI
As

M orning
Star

'JUS
As

Evening
Star

M ER(
As

Morning
Star

2URY
As

Evening
Star

T 45 14 46 22 24 14 19 36
8 45 17 45 31 22 13 21 7
n 45 34 44 49 20 18 23 41

•3 45 56 44 25 18 17 26 16
n 46 20 44 31 16 35 27 37

46 38 44 55 16 8 26 17

46 45 45 41 17 46 23 31
m 46 47 46 30 21 32 20 58

46 30 47 i3 26 9 iy 28

10* 46 7 47 35 28 37 19 14
45 41 47 34 28 17 18 51

K 45 20 47 7 26 24 19 0

Conection to Heiberg; omit (with G,Ai) the column of an ^ m en t Ixifore the entries lor 
Mercury. Ptolemy’s own description indicates that it was not in the original.

There are occasional computing errors of up to 5 ' in the entries. For Venus, evening, the 
printed version ol‘ the Hmcfy Tables (Halma III p. 32) has 47;37 (computed 47;39), but this greater 
accuracy seems coincidental, as the version in Vat. Gr. 1291, f. 90', agrees with thc.l/m a^«/. For 
Mercur\', 10“, e\’ening, there is a serious computing error, as n o t e d 234 n.lO. I find 18:53, but 
all mss. known to me agree in 19; 14.



Book XIII
.11

The following two topics still remain to [complete] the treatm ent ol' the 5 
planets: their position in latitude with respect to the ecliptic, and the discussion 
oi" their elongations at their lli-st and last visibilities with respect to the sun. For 
the second topic the latitudinal distances ol’ each must also be taken into 
account first, since some considerable dillerences in the fii-st and last visibilities 
occur due to that factor. So we shall again first set out the hypotheses which we 
assign to the inclination of the circles of all [live] in common.

Now [first], just as each [planet] appears to perfonn a twofold anomaly in 
longitude, each exhibits a twofold dillercnce in latitude, one [varying] with 
respect to the parts of the ecliptic, and due to the eccentre, the other with respect 
to [its elongation from] the sun, and due to the epicycle. Therefore in every case 
we suppose that the cccentre is inclined to the plane of the ecliptic, and that the H525 
epicycle is inclined to the plane of the eccentre. However, as we said [IX  6, p.
443], no noticeable dill'erence occurs in the longitudinal position or the 
dem onstrations of the anomalies on account of such'sm all inclinations, as we 
shall show later." [Secondly,] from individual observations of every planet, [we 
see that] the planets appear exactly in the plane of the ecliptic when the 
corrected longitude is approxim ately a quadran t from the northern or southern 
limit o f the eccentre, and at the same time the corrected anomaly is 
approxim ately a quadran t from its own apogee. * So we suppose the inclinations 
of the eccentres to take place at the centre of the ecliptic (just as for the moon), 
and with respect to the diameters through the northern and* southern limits; 
and [we suppose] that the inclinations of the epicycles take place with respect to 
that diam eter of the epicycle which points towards the centre of the ecliptic, on 
which its apparent apogee and perigee are observed.

Moreover, in the case of the 3 planets Saturn, Ju p ite r and  Mars, we have 
observed that when their longitudinal positions are in the section of the eccentre 
farther from the earth they are always'^ north of the ecliptic, and are more H526

‘ O n chs. 1 and 2 see H AM A  206-7, Pederecn 355-61.
*See X III 4 pp. 608-22.
 ̂I.e. from the true apogee of the epicycle.
* One would expect KOi (text f |) , and Kai was apparently read by al-Hajjaj. 11'one keeps the text, 

one has to understand 'through [the centre of the ecliptic] and the northern or southern limits’.
Excising TO nXeiOTOV at H525,23, with Ar. It is a gloss ('for the most part’) put in by a 

commentator to qualify dei: since the northern limit does not quite coincide with the apogee 
(except for Mars), the planets are not always north of the ecliptic when on the semi-circle containing 
the apogee.

1. {On the hypotheses fo r  the positions in latitude o f  the 5  planets]



northerly for positions a t the perigee o f  the epicycle than lor those a t the 
apogee;* but that when their longitudinal positions are in the section of the 
eccentre nearer the earth, quite the opposite, they appear south o f the ecliptic. 
And [we have observed] that the northern limit of the eccentre is, for Saturn 
and Jupiter, around the beginning of the sign o f Libra, and, for M ars, around 
the end of Cancer, almost exactly at its apogee. From  these [observations] we 
conclude that the parts of their eccentres in the above-mentioned regions of the 
zodiac are inclined towards the north, and the diam etrically opposite parts 
[depressed] by an equal am ount towards the south, and that the parts of the 
epicycle nearer the earth  are always inclined in the same direction as the 
eccentre,^ while the diam eter [of the epicycle] at right angles to the diam eter 
thixjugh its apKJgee always remains parallel to the plane of the ecliptic.

In the case of Venus and M ercury, however, we have observed that [firstly], 
when their longitudinal positions are at the apogee or p>erigee of the eccentre, 
then positions at the perigee of the epicycle do not diiTer at all in latitude from 

H527 positions at the apogee [of the epicycle]: rather they are either north or south of 
the ecliptic by an equal am ount, always north for Venus, always south, on the 
contrar\', Ibr M ercuiy; whereas their jx>sitions a t the greatest elongations difl'er 
[in latitude] from each other by the greatest am ount (that is, the morning 
greatest elongations dill'er from the evening greatest elongations), while thev 
dilfer from the positions at ap>ogee and perigee of the cpicycle (i.e. from the 
dilference [in latitude] due to the eccentre)** by an equal am ount, [but] in 
opposite directions: the gieatest elongation which is towards the rear [of the 
epicycle centre] and in the evening is, lor V'enus, more northerly [than the 
morning one] at the apogee of the eccentre and more southerly at the f>erigee, 
while ibr M ercuiy the opposite is tioie, it is more southerly at the apogee [of the 
eccentre] and more northerly at the perigee. [Secondly, we have observed that.] 
when their corrected longitudinal positions are at the nodes, then a distance ofa 
quadrant on either side of apogee or perigee of the epicycle brings [the planet] 
into the plane of the ecliptic, whereas positions at the perigee [of the epicycle] 
have the greatest dilference [in latitude] from positions at the apogee: for \'enus 
this inclination is towards the south at the node on the semi-circle on which the 

H528 equation is subtractive.^ and towards the north at the opposite [node]; for 
M ercury the opposite is again true: at the node on the subtractive semi-circle 
the inclination is towards the north, at the opposite one towards the south. 
From this too, then, we conclude that the inclination of the eccentre is also 
variable, and that its variation has the same period as the epicycle [on the

* ExcisingtQ TiXeiCTTO) tote at H526.1. This would have to mean ‘the amount by which they are 
more northerly for apogee positions than for perigee positions is greatest at that point’, where tote 
refers to tlie apogee of the eccentre. But in fact the point where this occurs is not the apogee, but the 
northern hmit, and in any case this relinement is simply not appropriate here.

’ I.e. if the eccentre is north of the ecliptic, the perigee of the epicycle is north of the eccentre. and 
if it is south, south.

“ .At the positions in question (at apogee or perigee ol the eccentre) the diameter of the cpicycle 
through apogee and perigee of the epicycle lies in the plane of the eccentre, hence the latitudinal 
effect comes entirely from the inclination of the eccentre.

“This nomenclature is used, rather than ‘ascending’ and ‘descending’ (as for the moon and the 
outer planets), because the of the inclination of the eccentre is always in one direction (north 
for V'enus and south Ibr Mercurv). Cf. Manitius p. 328 n.a) and Pedersen 376.

598 X I I I 1. Characteristics o f  planetary motions in latitude
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eccentre]: when the epicycle is in the nodes, the eccentre is in the same plane as 
the ecliptic, but when [the epicyle] is a t apogee or perigee, the eccentre produces 
the greatest difference in the epicycle’s latitude, making it most northerly for 
Venus and most southerly for M ercury. [We also conclude that] the epicycle 
brings about two variations [in latitude]: it produces the greatest inclination of 
the diam eter through the apparent apogee at the nodes of the eccentre, and the 
greatest ‘slant’ (let us use this term  to distinguish this kind of angular variation) 
of the diam eter at right angles to the former at the apogee and perigee of the 
eccentre. Contrariwise, it brings the first [diameter] into the plane of the 
eccentre at its [the eccentre’s] apogee and perigee, and brings the second 
diam eter into the plane of the ecliptic at the above-mentioned nodes.

2. {On the type o f the motions in inclination and slant according to the hypotheses]^  ̂ H529

The general structure of the hypotheses, then, which we infer is as follows. The 
eccentric circles of [all] 5 planets are inclined to the plane of the ecliptic about 
the centre of the ecliptic. But in the case of the 3 planets Saturn, Jup iter and 
M ars the eccentre has a fixed inclination, so that diametrically opposite 
positions of the epicycle have opposite directions in latitude, whereas in the case 
of Venus and M ercuiy the eccentre moves together with the epicycle in the 
same latitudinal direction, for Venus always to the north, for M ercuiy always to 
the south. The epicycle [for all 5 planets] has the diam eter through its apparent 
apogee moved from a starting-point in the plane of the eccentre, by a small 
circle which we may suppose attached to the end [of the diameter] nearer the 
earth. This circle is of a size corresponding to the appropriate [maximum] 
deviation in latitude, is perpendicular to and centred in the plane of the 
eccentre, and revolves with uniform motion, w ith a period equal to that of the 
motion in longitude, from one end of the intersection of its own plane and the H530 
plane of the epicycle towards the north (by hypothesis), carrying with it the 
plane of the epicycle; in its revolution through the (ii^t quadran t it carries the 
epicycle’s plane, obviously, to the northern limit, in the second back to the 
plane of the eccentre, in the third to the southern limit, and in its return to [the 
end of] the rem aining quadrant back to the original plane. We also [infer] that 
the origin and point of return of this revolution is for Saturn, Jup ite r and Mars 
the ascending node, for Venus the perigee of the eccentre, and for M ercury the 
apogee of the eccentre." The diam eter [of the epicycle] a t right angles to the 
aforementioned, in the case of the 3 [superior] planets, as we said [p. 598], 
always remains pai-allel to the plane of the ecliptic, or at any rate is not inclined 
to it by a significant am ount, but in the case of Venus and M ercury it too 
is carricd from a starting-point in the plane of the ecliptic by a small circle 
which we may suppose attached to the rearw ard end, which is again of a 
size corresf)onding to the appropriate [maximum] deviation in latitude.

'®On the mechanism imagined by Ptolemy (and in particular the ‘small circles’) the best 
discussion is by Riddell, ‘Latitudes of V'enus and M ercury’, despite occasional inaccuracies due to 
his use of Talial'erro’s faulty translation.

“ It is essential to c h a n ^  Hetberg's punctuation from a comma to a full stop at H530,13.



perpendicular to the plane of the ecliptic, and centred on the diameter^ ̂  
parallel to the ecliptic. This circle revolves, w ith a speed equal to that of the 

H 531 other [small circle], from one end of the intersection of its plane and the plane of 
the epicycle towards the north, again by hypothesis, and carries with it the 
evening [i.e. rearward]*^ end of the aforem entioned diam eter in the same order 
as before. For this too the origin and point of return  of the similar type of 
revolution is, in the case of Venus, a t the node in the additive semi-circle, and, 
in the case of M ercury, a t the node in the subtractive semi-circle.

However, we must make the following assumption concerning those small 
circles which produce the motions in latitude of the epicycles; they too are, 
indeed, bisected by the planes about which we declare that the variations in 
latitude take place; for that is the only way in which it can come about that their 
[the epicycles’] motions in latitude are equal on both sides [of the planes]. 
However, their revolution in uniform motion takes place, not about their own 
centres, but about some other point which will produce in the small circle an 
eccentricity corresp>onding to [the eccentricity] of the planet in longitude in the 
ecliptic. For since the times of revolution on the ecliptic and the small circle are, 
by hypothesis, equal, and the arrivals a t the quadrants in both [circles] also 

H532 correspond to each other, according to the [observational] phenomena, if the 
[uniform] revolution of the small circle were to take place about its own centre, 
the desired result would not be achieved; since [in that case] each of the 
quadrants of the small circle would be traversed in an equal time, while the 
quadrants of the ecliptic traversed by the epicycle would not be, because ot'the 
eccentricity assumed for each planet. But if [the uniloim  revolution ofthe small 
circle takes place] about a point placed similarly to the [centre of uniform 
motion] in the eccentre, the returns in the inclinations will also traverse tlie 
corresponding quadrants o fth e  ecliptic and the small circle in equal times.

Now let no one, considering the com plicated nature of our devices, judge 
such hypotheses to be over-elaborated. For it is not appropriate to compare 
hum an [constructions] with divine, nor to form one’s beliefs about such great 
things on the basis o fveiy  dissimilar analogies. For what [could one compare] 
more dissimilar than the eternal and unchanging with the ever-changing, or 
that which can be hindered by anything with that which cannot be hindered 
even by itsell?* ’ Rather, one should try, as far as possible, to fit the simpler 
hypotheses to the heavenly motions,'® but if this does not succeed, [one should 
apply h\ potheses] which do fit. For provided that each of the phenom ena is 

H533 duly saved by the hypotheses, why should anyone think it strange that such

‘•Cr. M anitius’ note p. 331 b). If'd iam eter’ is to make any sense here, it must be a diam eter ol'the 
epicycle which is parallel to the ecliptic (at a certain point in the orbit), and notionally remaining 
there all the time, even when the epicycle is ‘slanted’. Cf. H AM A  1279 Fig. 219a (where the line 
through A is parallel to the ecliptic), and Riddell Fig. 4 and p. 101.

‘ 'np6<; eojtepav, literally ‘toward evening’, which one would expect to mean ‘western’. But the 
sense demands ‘eastern’, and. If the text is correct, one must interpret it, with the Arabic translators, 
as ‘the side of the epicycle where the planet appears as evening star’, cf. H 511,22, td  feoTtepia teal 
fereoneva t o i) femKUKXou.

'^ It is essential to correct Heiberg’s punctuation of this passage by deleting the comma after 
TETapTTinopitov (H532,9) and inserting one after iK K Evrpoi) (H532,8).

** I.e. the substance of the heavenly bodies, the ‘fifth essence’. Cf. p. 36 n.8.
“ O n this principle of simplicity see p. 136 n.l7 .
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complications can characterise the motions oi the heavens when their nature is 
such as to afford no hindrance, but of a kind to yield and  give way to the natural 
motions of each part, even if [the motions] are opposed to one another? Thus, 
quite simply, all the elements can easily pass through and  be seen through all 
other elements, and this ease of transit applies not only to the individual circles, 
but to the spheres themselves and the axes of revolution. VVe see that in the 
models constructed on earth  the fitting together of these [elements] to represent 
the different motions is laborious, and difficult to achieve in such a way that the 
motions do not hinder each other, while in the heavens no obstruction whatever 
is caused by such combinations. Rather, we should not judge ‘simplicity’ in 
heavenly things from what appears to be simple on earth, especially when the 
same thing is not equally simple for all even here. For if we were to judge by those 
criteria, nothing that occure in the heavens would appear simple, not even the 
unchanging nature of the first motion, since this very quality of eternal 
unchangingness is for us not [merely] difficult, but completely impossible. H534 
Instead [we should judge ‘simplicity’] from the unchangingness of the nature of 
things in the heaven and their motions. In this way all [motions] will appear 
simple, and more so than w hat is thought “simple’ on earth , since one can 
conceive of no labour or difficulty attached to their revolutions.
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3. {On the amount o f the inclination and slant for each [planet'^^^

From the above considerations one may infer the general situation and 
arrangem ent of the inclinations of the [various] circles. But [concerning] the 
actual size lor each planet of the arc cut olfby the inclination on the gi-eat circle 
draw n perpendicular to the plane of the ecliptic through the poles of the 
inclined circle*** (with respect to which [great circle] the positions in latitude are 
measured), this is readily calculated in the case ofVenus and  Mercury’ from the 
apparent positions in latitude at the situations described.

For when their motion in longitude brings them to apogee or perigee of the 
eccentre, if the planet’s p>osition is at perigee or ap>ogee of the epicycle, they H535 
appear, as we said, (operating from nearby observations),*® an equal amount 
either north or south of the ecliptic: Venus always about north, and M ercury 
always 4° south. Hence [we conclude that] the inclinations of the eccentres are of 
that size for each. But if they are at a greatest elongation trom the sun, both 
planets appear about 5° (in the mean) farther north or south than at the 
opposite greatest elongation: for Venus has an apparent difference in latitude of 
the kind mentioned [i.e. between greatest m orning and evening elongations] of 
negligibly less than 5° at the apogee of the eccentre, and negligibly greater than 
5̂ " at the perigee, while M ercury has about [less and  greater than 5° in

‘’ O n chs. 3 and 4 see HAMA  208-16, Pedersen 361-85, Riddell, ‘Latitudes ol'Venus and 
Mercui'v’.

‘“‘inclined circle’: defnent or epicycle as the case niay be.
‘®From ’nearby observations’ because the planets are invisible when precisely at apogee or 

perigee of the epicycle. Correct Heil)erg’s punctuation by inserting a  comma alter (oc; gq>a|iev (‘as 
we said’), which cannot refer to the use of nearby observations, but only to the fact that the planet is 
north or south etc. (as p. 599).



latitudinal difference at apogee and 180° from apofee respectively]. Hence the 
slant of the epicycle to either side of the plane of the eccentre subtends about 2l°, 
in the mean, of the [great] circle orthogonal to the ecliptic. From  this [quantity] 
the size of the angles formed by the slant of the epicycle to the plane of the 
eccentre [for each planet] can be found, as will become clear in our proofs 

H536 concerning them in what follows [X III 4, p. 625] (so as not to fragment, at this 
point, our discussion of the inclinations, which will treat the five planets in 
common).

But when their corrected motion in longitude brings them to the nodes and 
[hence] very nearly to m ean distance; then Venus, when its position is near the 
apogee of the epicycle, appears 1° north or south^” of the ecliptic, and, when its 
position is near the perigee, about 6^°; hence the inclination of its epicycle too 
cuts off 2:° of the great circle drawn through its poles in the way described; for 
we find from the [table for] epicyclic anomaly that at mean distance that am ount 
[2^°] subtends at the observer’s eye an angle of 1 ;2° for [the planet at] the apogee 
of the epicycle, and 6;22° for [the planet at] the p e r ig e e .A s  for M ercury, when 
its position is near the ap>ogee of the epicycle, as one can calculate from the 
phases nearest to it, it is north or south of the eclip tic '' by li°, and, when near 
the perigee, about 4°; hence the inclination of its epicycle comes to 6l°. For 

H537 again we find from the [table for] epicyclic anom aly that at the distances of 
greatest inclination, that is when the corrected longitude is a quadran t from 
apogee, that am ount [6i°] subtends, at the observer's eye, 1:46° for [the planet 
at] the apogee of the epicycle, and 4;5° for [the planet at] the perigee.'^

In the case of the other planets, Saturn, Ju p ite r and Mars, there is no method 
for finding the sizes of the inclination immediately [from the observational 
data], since both inclinations, that connected with the eccentre and that 
connected with the epicycle, are always intermingled; however, once again, 
from the latitudinal positions observed at perigee and apogee of eccentre and 
epicycle, we determ ine each inclination separately in the following manner.

[See Fig. 13.1.] In the plane orthogonal to the ecliptic let the intersection with 
it of the plane of the ecliptic be AB, and of the plane of the eccentre. GD. Let 
point E be the centre of the ecliptic, and at the intersection of the planes, [that of 
the eccentre and that orthogonal to the ecliptic], draw ,'^ in the defined plane, 
about G. the apogee of the eccentre, and about D. the perigee, equal circles 

H538 Z H 0 K  and LM N X  to represent the circles through the poles of the epicycles. 
O n these circles let the planes of the epicycles [be drawn] on lines H G K  and 
M D X , inclined, obviously, at equal angles at G and D. From E, the centre of

-“Soe HAMA  1279 Fig. 219b: V'enus at apogee is north for Kq = 90°, south for Kq = 270°.
For the rationale of this calculation see HAMA  215. From Table X I 11, col. 6, to an argument 

of 2^° near apogee conesponds an equation of anomaly of 2;31° x 2 ^ /6 =  1;2°, while to 2{° near 
perigee conesponds 7;38° x 2^/3 6;22°.

■'See HAMA  1280 Fig. 221: Mercury at apogee is north for Kq = 270° and south for Kq = 90°.
•’See HAALi 216 (which lias several small errors). Tiie corrected longitude for VIercury is 

exactly 90° from apogee when the mean longitude is 92:52°. From Table X I 11, cols. 6-8, one finds, 
forS = 92;52° and a  =6l°, an equation of];45,51°, and foric =92;52° a n d a  = 1731°, an equation of 
4:4,47°, conllrming Ptolemy’s calculations.

ExcisingTE after YEYpd<p0(i)Oav at H537,20 (with D). Alternativeiy one could put a strongstop 
after EJtiKeSoJV at H537.19 (with A,Is), and translate 'Let point tl be the centre ofiKe ecliptic and at 
the intersection of [all threej planes. Then draw. . .
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X I I I  3. Observational bases fo r  latitudinal parameters 603

ilie ecliptic, at which the obseivei ’s eye is. draw  straight lines Joining it to the 
apogees and perigees ol the epic\ cles. EH and EM to the apogees, and EK and 
EX to the perigees. It is clear that points K and X  will represent the positions at 
opposition, and H and M those at conjunction.

For Mars, then, we oi)tained the positions in latitude round about the 
oppositions occurring at the apogee of the eccentre (that is. round about point 
K ol the epicycle), and also round about the oppositions occurring at the 
perigee ol the eccentre (that is, round about point X of the epicycle), since the 
dilVerence between them is quite noticeable. At the oppositions near the apogee 
it is 4 t° to the north of the ecliptic, and at those near the perigee about 7° to the 
south. Thus

and 1  BEX = ^
W ith that as data, we find the angle formed by the inclination of the eccentre, 
namely Z AEG, and that formed by the inclination of the epicycle, namely 
Z HGZ, in the following manner.

Since It is easy to see from our demonstrations of the anomalies of M ars that, if 
one considers the angles subtended at the observer’s eye by equal arcs of the 
epicycle near its perigee, those for positions near the apogee of the eccentre bear 
to those for positions near the perigee [of the eccentre] a ratio of approximately 
5:9,''’ and since

arc 0 K  = arc NX,

H539

For the derivation of this ratio from the anomaly table see H AM A  209-10, Pedersen 363 (with 
the correction Toomer [3], 14*1).



it follows that Z GEK:Z D EX  = 5:9.
H540 So, since angles AEK and BEX are given, 

and the ratio of Z GEK;Z D EX  is given, 
and  Z AEG = Z BED, 

if we form the difi’erence between the magnitudes of the whole [angles, i.e. 
Z AEK andZ  B E X ],and  the difference betw een[them em berso l]theratio [i.e .5  
and 9], take the fraction which the first [difference] is of the second, and take 
that fraction of each [m em ber of the] ratio, we will get the m agnitude 
corresponding to each part of the ratio. This can be proven by means of an 
arithm etical lemma.

So, since the m agnitudes are 4j and 7, and their difference 2?, 
and the ratio is 5:9 and the dilference 4. 

and 2? is two-thirds of 4, 
we take two-thirds of 5 and 9 [respectively], and get 

Z G EK = and Z D EX  = 6=
Accordingly, i)y subtraction,

Z AEG = Z BED = 1°, the inclination of the eccentre.
Hence arc 0 K . representing the inclination of the cpicycle. is 2i° lor from the 
table of anomaly we find that that am ount [2i°] corresponds approxim ately to 
the quantities we found Ibr the angles G EK  and D E X .''

In the case of Saturn and Jup iter, we llnd that the [latitudinal] {X)sitions 
occurring near the apogee of the eccentre are not sensibly different from those 

H541 diametrically opposite, near the perigee. So we com puted the required results 
in another way, by com paring the [latitudinal positions] near apogee of the 
epicNcle with those near perigee. It has become clear to us from individual 
obser\-ations that at positions near (ii'st and last visibilities the maximum 
deviation to north and south is about 2° for Saturn and 1° for Jupiter, while Ibr 
positions near opposition [the maximum latitudinal deviation] is about 3° for 
Saturn and 2° for Jup iter. Now for these planets too it is obvious from the [table 
for] anom aly that, if one considers the angles subtended at the observer’s eye by 
equal arcs near apogee and perigee of the epic\cle, the angles subtended by arcs 
near apogee bear a ratio to those subtended by arcs near perigee of 18:23 ibr 
Saturn, and 29:43 for Jup iter;-” 
and arcs ZH  and ©K of the epicvcle are equal.

So Z Z E H : Z Z E K = t e 3  for Saturn
[29:43 lor Jupiter.

But Z H EK , which is the difference between the two latitudes [at apogee and

-’’Given two magnitudes A, B, and the ratio l:m  of two other magnitudes, C, D such that 
A = X + C, B = X + D, the lemma states that

C = I X (B -  .A)/(m -  1), D = m X (B -  A )/(m  -  1).
Proof: Since D /C  = m /i, (D -  C )/C  = (m -  1)/!.

But D -  C = B -  A 
C = 1 X (B -  A )/(m  -  i);
D = C X m /l = m X (B -  A )/(m  -  I).

” For the method see p. 602 n.21. Here, from Table X I I I , cols. 5-7. for argument 
a  = (180° -  2i°) at greatest and least distance respectively, one finds (5;45 -  1; 16) x 2 l/3  *• 3;22® and 
(5;45 + 2:20) X 2 i/3  -  6;4° (text and 6°).

-*See HAMA  211, where however one should change to for Saturn and ^  for
Jupiter, in exact agreement with Ptolemy. '
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Z ZEH  =

and Z ZEK

Z AEG =

perigee of the epicycle], is, by subtraction, 1® for both planets. Therefore, if we H542 
divide that 1 ° in the above ratios, we get

0;26° for Saturn 
0;24° for Jupiter,

_ I 0;34® for Saturn 
~ \0 ;3 6 °  for Jupiter.

So, by subtraction [from Z A E K l the inclination of the eccentre
2; 26° for Saturn 
1;24° for Jupiter.

Instead of these, to achieve greater symmetry, we have adopted the round 
numbei-s 2:° and 12°. Then arc ©K, representing the inclination of the epicycle, 
can immediately be com puted as 4^° for Saturn and 2 for Jupiter. For again, 
in the tables of anomaly for each planet, those were the amounts which 
correspond approxim ately to the quantities we i'ound for angles ZEH  and 
ZEK.-"

Q..E.D.

4. {(Ainslmction oj tables for the individuai fmsilions in latitude]

P'rom the aljove, then, we estaljlishcd the generally applicable quantities ofthe 
greatest inclinations of cccentres and epicycles. But in order that we may l?e 
ai)le to conveniently and systematically llnd the positions in latitude for a given 
moment for the individual distances [from apogee] as well, we constructed 5 
tables for the 5 planets. Each contains the same numl>er of lines as the tables for H543 
anomaly [i.e. 45], and 5 columns. T he fii-st 2 of these columns comprise the 
arguments, in the same way as in those [tables for anomaly]; the third column 
contains the latitudinal distances from the ecliptic corresponding to the 
particular degrees of [motion on] the epicycle, under the assumption of greatest 
inclination -  for Venus and M ercury this is the inclination at the nodes o fthe 
eccentre, and for the other 3 planets the inclination at the northern limit o fthe  
eccentre. For the latter the fourth column will contain thesim ilar corresponding 
amounts at the southern limit, and in the case of these 3 planets the maximum 
deviation to north and south of the eccentres too has also been included in the 
com putation. T he way in which we determined these quantities for Venus and 
M ercury again rested on a single theorem [for both], as follows.

[See Fig. 13.2] In the plane orthogonal to the ecliptic let ABG be the 
intersection with it o fth e  plane o fthe  ecliptic, and DEE the intersection [with 
it] of the plane o fthe  epicycle. Let A be the centre of the ecliptic, B the centre of H544 
the epicycle, and  AB the distance of the epicycle at the greatest inclination.
About B describe the epicycle DZEH,^® and draw diam eter ZBH perpendicular

Sec p. 602 n.21. Here, Irom Table X I 11, col. 6 for Saturn, 0;36 x 4 i /6  = 0;27<’ (text 0;26°), and 
0;2.'< X 4 i/3  = 0;34,30° (text 0;34°); for Jup iter 0;58 x 2 j/6  = 0;24,10° (text 0;24°); 0;43 x 2 i/3  =
0:35.50 (text 0;36).

“ Note that Ci is not a point on the epicycle, as might appear from Fig. 13.2 and from the 
corresponding figure for M ercury, Fig. 13.4. To make the various planes in this three-dimensional 
figure clearer it has been redrawn as Fig. S.
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Fig. 13.2

H545

to DE. Let the plane of the epicycle too be taken as perpendicular to the 
assumed plane [that orthogonal to the plane of the ecliptic], so that when lines 
are draw n in it perpendicular to DE, all will be parallel to the plane of the 
ecliptic, e.xcepting only ZH , which will lie in the plane of the ecliptic.

Then let the problem be, given the ratio of AB to BE, and the am ount of the 
inclination (i.e. ofZ ABE), to find the positions of the planets in latitude when (to 
take an example) they are at a distance of 45° (where [the circumference of] the 
epicycle is 360°) from the perigee of the epicycle, E. [We choose 45°] because we 
intend to dem onstrate at the same time the differences in the positions in 
longitude produced by these [maximum] inclinations, and these differences 
ought to reach their maximum at about halfway between the perigee E and the 
positions Z and H, since at those points [the longitudes so com puted] are 
identical w ith the longitudes produced by neglecting the inclination.

Sq let arc E© be cut off in the above am ount of 45°, and 
drop 0 K  perpendicular to BE, and K L, ©M  perpendicular to the plane of the 
ecliptic. Jo in  ©B, LM , AM and A 0 .
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It is immediately obvious that
[1] quadrilateral L K 0 M  has parallel sides and right angles 
(since K 0  is parallel to the plane of the ecliptic); and
[2] the equation in longitude is comprised by Z LAM , and
[3] the position in latitude is comprised by Z ©AM
(since angles ALM  and A M 0  too turn  out to be right angles, because line AM 
lies in the plane of the ecliptic).^'

But now we must dem onstrate the numerical amounts* of the required 
positions to be com puted for each of the above planets, and first for Venus.

Since arc E 0  = 45° where [the circumference ol] the epicycle is 360°,
Z. EB0 (since it is at the centre _ f  45° where 4 right angles = 360° 

of the epicycle) [ 90°° where 2 right angles = 360°°. 
Therefore, in the circle about right-angled triangle B 0K , 

arc BK = arc K 0  = 90°.
So the corresjx>nding chords

BK = K 0  = 84;52‘’ where hypotenuse B 0 = 120". 
Therefore where B 0, the radius of the epicycle, is 43; lO**, 
and AB, the mean distance, is 60’’

(for the greatest inclination of the epicycle occurs at approxim ately that point), 
BK = K 0  = 30;32^.

Again, since the angle of inclination,
2;30° where 4 right angles = 360°

5°° where 2 right angles = 360°°, 
in the circle about right-angled triangle BLK, 

arc LK  = 5° 
and arc BL = 175° (supplement).

So the corresponding chords
KL = 5;14'’l  

and BL = 119;53‘’J

H546

Z ABE is taken as

where hypotenuse BK = 120'*.

Sec Fig. S, which makes most of Ptolemy’s statements obvious. In particular, since M  b  in the 
ecliptic (by construction) and Z AM© is constructed as a right angle, LM, K 0  and BH are all 
parallel, so Z ALM  is a  right‘angle.



Thcrelorc, where hypotenuse BK = 30;32’’, and AB = 60'*,
K L = l;20^
BL = 30;3(F,

and, by subtraction [of BL from AB], AL = 29;30'’.
H547 Bui, in the same units, LM  = K©  = 30;32'’.

Therefore hypotenuse AM [= x/ a L ^ T l M^] = 42;27'’ in the same units.
Therefore, where hypotenuse AM  = 120*’, LM  = 86; 19’’, 

and the equation in longitude at that point,
/  I AM -  -f where 2 right angles = 360°° 

\4 6 ;0 °  where 4 right angles = 360°. 
Similarly, where AM = 42;27^

©M  = KL = 1;20‘*; 
and ©M- + AM2 = A©2,

so A© = 42;29'’ in the same units.
Therefore, where hypotenuse A© = 120'*,

’ ©M = 3;46‘*, 
and the angle of the deviation in latitude,

/  O A \l -  -f where 2 right angles = 360°°
[ 1;48° where 4 right angles = 360°.

T hat [1;48°] is what we shall put in the third column of the table for Venus on 
the line containing ‘135°’.

In order to make a comparison of the dilference in the equation of longitude 
which results [from the above com putation], let there be draw n [Fig. 13.3] the 
corresponding figure without any inclination of the epicycle. Then we showed 
that

BK = K© = 30;32*’ where AB = 60^ 
so, by subtraction, AK = 29;28‘*;

H548 and AK^ + K©^ =
so A© = 42;26’’ in the same units.

Therefore, where hypotenuse A© = 120*’, K© = 86;21'’, 
and the angle of the equation in longitude,

Z © AK -  -f where 2 right angles = 360°°
[46;2°, approxim ately, where 4 right angles = 360°. 

And with the inclination it was shown to be 46°.
Therefore the equation in longitude, com puted according to the inclination, 
was less by 2'.

Q.E.D.^^
Again, to enable us to dem onstrate the [latitudinal] positions for M ercury 

too, let there be draw n a figure [Fig. 13.4] similar to the one before the last, with 
arc E© taken as the same size, 45°. Hence again

BK = K© = 84;52'* where hypotenuse B© = 120'’.
H549 Therefore, where the radius of the epicycle,B© = 22;30’’,

608 X I I I 4. Effect o f  IcUitiuie on longitude o f  Venus

Accuratcly, one finds 45;59° (to the nearest minute) with the inclination, and 46;0° without it. 
Ptolemy’s inaccuracy here is mysterious, since for the table of anomaly (XI 11), argument 135° at 
mean distance, he found (prcsumal)iy by an identical computation) the Ijettei' value 45;59°.



D
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'H

L  ABE =

fl

Fig. 13.3

and AB, the distance at which the greatest inclinations occur, is 56;40‘’ (all of 
which we have previously demonstrated),^^

BK = Kfc) = 15;55'’ in the same units.
Again, since by hypothesis the ar^ le  of the inclination of the epicycle,

6; 15° where 4 right angles = 360° 
12;30°° where 2 right angles = 360°°, 

in the circle about right-angled triangle BKL, 
arc LK = 12;30° 

and arc BL = 167;30° (supplement).
So the corresponding chords

a n d S  = n 9 ;1 7 '}  hV P""™ ”  .
Therefore where BK, as we showed, is 15;55‘’, 

and AB, by hypothesis, is 56;40*’,
K L  = l ; W ,
BL = 15;49",

This last number is not, in fact, previously attested. However, Ptolemy must have computed 
the distances all the wa\- round the orbit in order to construct the table of anomaly, and no doubt 
found this value by interpolation. Neugebauer {HAMA 221) found 56;37‘’ from a cubic equation. 
However, from a computer program I find, for i< = 93;1,41°, Ko = 90;0,0°, p = 56;43,9’’.
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and, by subtraction [from AB], AL = 40;51'’ in the same units. 
And LM  = K 0  = 15;55^

H550 And since AL^ + LM^ = AM^,
AM  = 43;50'’ where line LM  = 15;55^ 

Therefore, where hypotenuse AM = 120'’, LM  = 43;34’’, 
and the angle of the equation in longitude,

/  LAM  -  I  where 2 right angles = 360°°
\2 1 ;1 7 °  where 4 right angles = 360°. 

Similarly, where AM = 43;50'*,
0 M  = K L = 1;44”; 

and  AM2 + 0M ^ = A©^,
so A 0  = 43;52'* in the same units.

Therefore, where hypotenuse A 0  = 120’’,
0 M  = 4;44^, 

and the angle of the deviation in latitude,
/  OAM  -  -f where 2 right angles = 360°° 

■ [ 2 ;  16° where 4 right angles = 360°.
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T h at [2;16°J is what we shall enter in the third column of the table lor Mercury 
on the same line, namely that containing the argum ent ‘135°’.

In order again to make a comparison of the equation, let there be drawn [Fig. 
13.5] the figure without the inclination [of the epicycle]. Then we showed that, 
where line AB = 56;40’’,

0 K  = KB = 15;55^ 
and, by subtraction, obviously, AK = 40,•45’’ in the same units; 

and AK2 + K©^ = AG^,
so A 0  = 43;45” where ©K = 15;55‘’.

D

H551

H
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Fig. 13.5

Therefore, where hypotenuse A© = 120’’, © K  = 43;39‘*, 
and the angle of the equation in longitude,

/  K A<=> -  I  ̂ 2;40°° where 2 right angles = 360°°
^  -  |2 1 ;2 0 °  where 4 right angles = 360®.

But we showed that with the inclination it was 21; 17°.
Therefoi’e here too the equation in longitude com puted according to the 
inclination was less, by 3'.

Q .E.D.
Such, then, is the method by which we com puted the positions in latitude at 

the greatest inclinations for these two planets. For the greatest inclinations 
occur when the eccentre is in the same plane as the ecliptic. For the remaining3 
planets, however, we com puted [those positions] by means of a theorem which

H552
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requires a different diagram , since [for these] the greatest inclination of the 
epicycle occurs when the inclination of the eccentre is also at a maximum, and it 
would benefit us to have the positions in latitude resulting from both 
inclinations com puted together.

[See Fig. 13.6 and cf. Fig. T .] In the plane orthogonal to the ecliptic, again, 
let the intersection with it of the plane of the ecliptic be AB, the intersection of 
the plane of the eccentre AG, and the intersection of the plane of the epicycle 
DGE. Let A be taken as the centre of the ecliptic, and G as the centre of the 
epicycle, and let the epicycle D ZEH  be described about G in such a way, again.

0

fl
Fig. 13.6



that when lines are drawn perpendicular to DE, diam eter ZG H  lies in the plane 
ol' the eccentre and  parallel to the plane of the ecliptic, while the other 
[perpendiculars] are parallel to lx)th the above planes. Similarly, let arc E 0  be 
cut o ir in the same am ount of 45°, and drop perpendicular 0 K  from 0  (the 
point a t which the planet is located), and also drop perpendiculars 0 L , KB from H553 
points 0  and K  to the plane of the ecliptic. Jo in  BL and  AL. Then let the 
problem be, to lind the equation in longitude, represented by Z BAL, and the 
position in latitude, represented by Z LA 0.

So draw  perpendicular K M  from K to AG, and join G 0 , AK and A 0. Let us 
again take it as given, from what* was proved before, that

G K  = K 0  = 84;52‘’ where hypotenuse G 0  = 120 .̂
Then llrst, for Saturn:

Since we showed that the radius of the epicycle is 6;30‘’ where the mean 
distance is 60'’,

GK = K 0  = 4;36’’ where hypotenuse G 0  = 6;30'’.
And since, by hypothesis, the angle of the inclination of the epicycle,

/  A P F  < w here 4 righ t angles = 360°
Z A G L = 2 right angles = 360°,

in the circle about right-angled triangle GK M , 
arc KM  = 9° 

and arc G M  = 171° (supplement).
So the corresponding chords

and GM = l l f t S
Therefore, where GK = 4;36’’, H554

KM  = 0;22’’ 
and GM = 4;35^

Now at the greatest inclination on the semi-circle containing the apogee, AG, 
representing the distance [when the epicycle is] near the beginningofLibra,^^ is 
com puted, by means of the theorems which we went through before, in treating 
the anomalies, as 62; 10’’ in the same units. Hence, by subtraction [ofGM  from 
AG],

AM  = 57;35P where line M K  = 0;22‘’; 
hence hypotenuse AK [= \ / a M^ + MK^] = 57;35'* in the same units.

Therefore, where hypotenuse AK = 120*’, K M  = 0;46’’,
and Z KAM^* = 0;44°° where 2 right angles = 360°°.

But, by hypothesis, the angle of the inclination of the eccentre,
/  R A P  -  -f where 4 right angles = 360°

~ \  5°° w here 2 righ t angles = 360°°.
Therefore, by addition, Z BAK = 5;44°° where 2 right angles = 360°°. 

Therefore, in the circle about right-angled triangle BAK, 
arc BK = 5;44° 

and sure AB = 174; 16° (supplement).

’♦Cf. X III 1 p. 598.
Accuratclv, 62;8,21'’ when the centre of the epicycle is at a  true lon^ tude  0® (the apogee 

being in nv 20», cf. X III 6 p. 635).
‘̂ Reading KAM for KAM (misprint in Heiberg’s text) at H 554 ,ll. Corrected by Manitius.
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So the corresponding chords

and ^  = l l W l ' }  AK = i2<f.
Therefore, where line AK = 57;35’’,

H555 BK = 2;53^
AB = 57;31^ 

and BL = K 0  = 4;36‘’ [p. 613].
And since AB^ + BL^ = AL^,

AL = 57;42*’ in the same units.
Similarly, since L 0  = BK = 2;53'* in the same units, 

andA L ^ + L02 = A02,
A0 = 57;46^

Therefore, where hypotenuse A 0  = 120’’, 0 L  = S-jSQ"*, 
and the angle of the deviation in latitude,

/  (=)AT -  T w h e r e  2 right angles = 360°°
~ \2 ;5 2 °  where 4 right angles = 360°.

T hat [2;52°] is what we shall enter in the third column of the table for Saturn 
opposite '135°’.

But at the greatest inclination on the semi-circle containing the perigee, since 
AG, representing the distance [when the epicycle is] near the beginning of 
Aries, is com puted as 57;40*’,̂ ^
where, as we dem onstrated [p. 613], K M  = 0;22’’ and G M  = 4;35*’, 

hence, by subtraction, AM  = 53;5’’.
And hypotenuse AK = 53;5'’ in the same units, since it is negligibly 

greater than line AM.
Therefore, where hypotenuse AK = 120*’,

K M  = 0;50P,
H556 and Z KAM  = 0;48°° where 2 right angles = 360°°.

But, by hypothesis, Z BAG = 5°° in the same units.
So, by addition, Z BAK = 5;48°° where 2 right angles = 360°°. 

Therefore, in the circle about right-angled triangle BAK, 
arc BK = 5;48° 

and arc AB = 174; 12° (supplement).
So the corresponding chords

and AB = l ig -M '}  hypotenuse A K  = 120'.

Therefore, where line AK = 53;5'’,
BK = 2;41'’ 

and AB = 53 ;l^
And since AB^ + BL‘ = AL^, 

and BL was shown to be 4;36‘’ in the same units,
AL = 53; 13’’ in the same units.

614 X I I I 4. Construction o f  latitude tables: Saturn

Accurately, 57;44,4tf’ when the centre of the epicycle is at a true longitude o f T  0®. Precisely 
opposite a distance of p = 62;10'’ is the dbtance (63;25 x 56;35/62;10 =) 57;43’’. It is obvious that 
Ptolemy has rounded to the nearest convenient number, whatever method o f  computation he used.



Therefore, where hypotenuse AL = 12(f, BL = 10;23‘’, 
and the angle of the equation in longitude,

/  RAT - 1 where 2 right angles = 360®°
■ \4;58® where 4  right angles = 360°.

Again, where line AL = 53; 13’’,
0 L  = KB = 2 ;4P , 

and A V  + Q V  = A0^, 
so A 0  = 53;17^

Therefore where hypotenuse A 0  = 120**, 0 L  = 6;3‘’, 
and the angle of the deviation in latitude,

/  ftA I -  -f where 2 right angles = 360°°
\2 ;5 3 °  where 4 right angles = 360°.

T hat [2;53°] is what we shall enter in the fourth column of the table opposite 
‘135°’.

Then in order to compare the equations in longitude for the inclination ’ 
nearer the perigee, let the diagram  with no inclination be draw n again [Fig. 
13.7]. Then, where the distance at that point,

AG = 57;40^,
G K  (= K 0 )  is given as 4;36’’;

and, bv subtraction, AK = 53:4'* in the same units; 
but AK- + K 0 ‘ = A Q \  

so A 0  = 53; 16'’.
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Therefore, where hypotenuse A 0  = 120'*, K© = 10;22'*, 
and the angle of the equation in longitude,

Z OAK -  I where 2 right angles = 360®®
■ t4 ;57° where 4 right angles = 360°.

But when the inclinations [of eccentre and epicycle] were taken into account it 
was shown to be 4;58°. So the equation in longitude com puted according to 
both inclinations was 1' greater.

Q .E .D .
Let there again be draw n [Fig. 13.8], fii-st, the diagram  for the inclinations, 

representing the ratios established for Jupiter.
Hence, where the radius of the epicycle, G© = 11;30'’,

G K  K©^ is com outed as [84:52 x 11:30/120 =1 8:8*’.

616 X I I I 4. Construction o f  latitude tables: Jupiter
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Then, since the angle of the inclination of the epicycle,
. App _ f  2;30° where 4 right angles = 360° 

~ \  5°° where 2 right angles = 360°°, 
in the circle about right.-angled triangle G K M , 

arc K M  = 5°
H559 and arc GM  = 175° (supplement).

So the corresponding chords
K M  = 5;14'’'l 

and GM  = 119;53‘’J where hypotenuse G K  = 120'*



Therefore, where line G K  = 8;8**, 
and AG, the distance near the beginning of Libra, is 62;30’’,̂ ®

K M  = 0 ;2P ,
G M  = 8;8^ 

and, by subtraction, M A = 54;22‘*.
Hence hypotenuse AK, being negligibly greater than MA, is54;22’’ in the same 
units.

Therefore, where hypotenuse AK = 120'*, K M  = 0;46'’,
and Z K A M  = 0;44°® where 2 right angles i  360°®.

But, by hypothesis, the angle of the inclination of the eccentre,
/  RAP -  -f  ̂ where 4 right angles = 360°°.

[ 3°° where 2 right angles = 360°°.
Therefore, by addition, ZBAK = 3;44°° where 2 right angles = 360°°.

Therefore, in the circle about right-angled triangle BAK, 
arc KB = 3;44° 

and arc AB = 176:16° (supplement).
So the corresponding chords

and AB I  I I 9I S '}  hypotenuse AK = 120'.

Therefore, where line AK = 54;22'*,
KB = 1;46”

. and AB = 54;20^
And, from what was dem onstrated previously, BL = 8;8’’ in the same units. H560 

And since AB^ + BL“ = AL^,
AL = 54;56‘’ in the same units.

Similarly, since L© [= KB] = 1;46‘’ in the same units, 
and AL^ + L©^ = A©^,

A© = 54;58'* in the same units.
Hence, where hypotenuse A© = 120**, L© = 3;52*’, 
and the angle of the deviation in latitude,

/  OAT -  ■[ where 2 right angles = 360°°
■ U ;51° where 4 right angles = 360°.

T hat [1;51°] is w hat we shall enter in the third column of the table for Jup iter 
opposite ‘135°’.

In the same way, AG, when it represents the distance a t the beginning of 
Aries, is com puted as 57;30*’,̂ ® where, as we dem onstrated, K M  = 0 ;2F  and 
GM  = 8;8“’;
hence, by subtraction, AM(= AK which is negligibly greater) is 49;22*’ in the 
same units.

Therefore, where hypotenuse AK = 120'’, K M  = 0 ;5F ,
and Z K A M  = 0;49°° where 2 right angles = 360°°.

Accurately, 62;34,36'’ when the centre of the epicycle is a t a true longitude o f ^  0® (the apogee 
being in HR 10®, cf. X III 6 p. 635).

’̂ .Accurately 57;24,31‘’. T he values of Ptolemy for both distances (cf. n.38) would fit better an 
elongation from the apogee of-24i®  and (180® -  24i“), rather than the -2 0 °  which he specifies 
in X I I I6. But if one were to take the precise position of the apogee in his time, UJJ11 this would give 
-19° with even worse agreement with the text.
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Therefore, by addition, Z BAK [= L KAM  + 3®®] = 3;49®® in the same 
units.

Therefore, in the circle about right-angled triangle AKB, 
arc KB = 3;49° 

and arc AB = 176;11'’ (supplement).
H561 So the corresponding chords

618 X I I I 4. Effect o f  latitude on longitude o f  Jupiter

and AB = 1 ig ls e '}  hypoWnuse AK = 120^
Therefore, where line AK = 49;22‘*,

KB = 1;39P 
and AB = 49;20‘’.

Hence, since BL = SIS'* in the same units, 
and AB2 + BL^ = AL^,

AL = 50;0‘’ in the same units.
Therefore, where hypotenuse AL = 120’’, BL = 19;31’’, 
and the angle of the equation in longitude,

/  RAT -  -f where 2 right angles = 360°°
\  9;22° where 4 right angles = 360°.

Again, where line AL = SO;©**,
0 L  [= KB] = l;39^ 

and AL^ + 0L^ = A0^, 
so A 0  = 50;2^.

Therefore, where hypotenuse A 0  = 120*’, L 0  = 3;57’’, 
and the angle of the deviation in latitude,

/  AAT -  -I where 2 right angles = 360°°
\  1;53° where 4 right angles = 360°.

T hat [ 1 ;53°] is what we shall enter in the fourth column of the table opposite the 
same ‘135°’.

In order to com pare the equations in longitude, let the diagram  with no 
inclinations be drawn again [Fig. 13.9]. Then at the distance in question, 

where 0 K  = G K  = 8;8^
H562 the whole line AG = 57;30*’,

and, by subtraction, AK = 49;22‘’ in the same units.
But AK2 + K 02 = A02,

so A 0  = 50;2’’ in the same units.
Therefore, where hypotenuse A 0  = 120*’, 0 K  = 19;30^, 
and the angle of the equation in longitude,

/  AAK -  /  where 2 right angles = 360°°
9;21° where 4 right angles = 360°.

And when the inclinations were taken into account it was shown to be 9;22°. So 
the equation in longitude com puted according to both inclinations was, again, 
greater by only a single minute.)

Q..E.D.
Next, to determine the quantities for M ars, let there be drawn, first, the 

diagram  for the inclinations [Fig. 13.10], and let G K  (= K 0 )  be com puted as 
[84;52 X 39;30/120 =] 27;56^ where the radius of the epicycle, G 0  = 39;30^
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Then, since the angle of the inclination of the epicycle,
2; 15° where 4 right angles = 360° H563
4;30°° where 2 right angles = 360°°, 

in the circle about right-angled triangle G M K , 
arc KxM = 4;30° 

and arc C M  = 175;30° (supplement).
So the corresponding chords

K M  = 4;43'’l 
and GM  = 119;54‘’J 

Therefore, where line G K  = 27;56'’, 
and AG, the greatest distance, is 66'*,̂ ®

K M  = 1;6‘’ 
and GM  = 27;54^ 

and, by subtraction, AM = 38:6'’._______
Hence hypotenuse AK [= \/AM '^ + KM^] = 38;?’’ in the same units.

Therefore, where hypotenuse AK = 120*’,
KM  = 3;28^

and Z KAM  = 3; 19°° where 2 right angles = 360°°.
But, by hypothesis, the angle of the eccentre’s inclination, '  H564

where hypotenuse GK = 120’’.

I.e. the northpoint is taken as coinciding with the apogee, both being placed in the (rounded)
n  0».
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Z BAG -  I  ^  right angles = 360̂ ^
where 2 right angles = 360

where hypotenuse AK = 120’’.

360°°.
Therelbre, by addition, Z BAK = 5; 19°° where 2 right angles = 360°̂  ̂

So. in the circle about right-angled triangle BAK, 
arc KB = 5;19° 

and arc AB = 174;4I° (complement).
So the corresponding chords

BK = 5;34P1 
and AB = I I9;52'’J 

Therefore, where line AK = 38;T**,
KB = 1;46'’ 

and AB = 38;5'’.
But line BL [= K 0  = GK] = 27;56*’ in the same units.

And, since AB^ + BL^ = AL^,
AL =47;14^

Similarly, since 0 L  = l;46'’ in the same units, 
and AL^ L 0^ = A 0 ^

A© = 47;16'’ in the same units.
Therefore, where hypotenuse A 0  = 120*’, 0 L  = 4;29'*, 
and the angle of the deviation in latitude,

/  0 A I -  -I where 2 right angles = 360'
\  2;9° where 4 right angles = 360'^



T h at [2;9°] is what we shall enter in the third colum n of the table for Mars 
opposite ‘135°’.

In the same way, for the inclinations a t least distance:
AG = 54’’ where, as was shown,

KM  = U&’ H565
and GM  = 27;54^

Thus, by subtraction, AM  = 26;6*’,
and hypotenuse AK [= \JK M ^  + AM^] = 26;7’’ in the same units.

Therefore, where hypotenuse AK = 120’’, K M  = 5;3’’,
and Z KAM  = 4;49°° where 2 right angles = 360°°.

Hence, by addition, Z BAK = 6;49°° in the same units.
Therelbre, in the circle about right-angled triangle ABK, 

arc BK = 6;49° 
and arc AB = 173;11° (supplement).

So the corresponding chords

and AB = 119i47”} h y p o t e n u s e  AK = 120”.

Therefore, where line AK = 26;7’’,
BK = 1;33” 

and AB = 26;4^
And line BL is, again, 27;56’’ in the same units.

And, since AB^ + BL* = AL',
A L = 3 8 ;I2 ^

Therefore, where hypotenuse AL = 120'’, BL = 87:45’’, 
and the angle of the equation in longitude,

Z BAL -  -I where 2 right angles = 360°®
\4 7 °  where 4 right angles = 360°.

Similarly, where line AL = 38;12^ L 0  [= BK] = l;33^  
and AL- + L©^ = A02, 

so A 0 = 38; 14”.
Therefore, where hypotenuse A 0  = 120”, L 0  = 4;52’’, H566
and the angle of the deviation in latitude,

Z 0 A I - 1  ^
\  2;20° where 4 right angles = 360°.

T h a t [2;20°] is what we shall enter in the fourth colum n of the table opposite the
same ‘135°’.

Again, if. in order to compare the equations in longitude, we set out the 
diagram  without the inclinations [Fig. 13.11], at the least distance (where the 
difference must necessarily become most noticeable),

AG:GK (= K 0 )  = 54 : 27;56. 
hence, by subtraction, AK = 26;4’’,
and hypotenuse A 0  [=V A K ' + K 0^] = 38; 12’’ in the same units.

Hence, where hypotenuse A 0  = 120”,
0 K  = 87;45” again [as BL in the previous computation], 

and the angle of' the equation in longitude,
/  OAK -  T w h e r e  2 right angles = 360°°

■ [47° where 4 right angles = 360°.
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622 X III  i. ‘Slant* o f Venus and Mercury
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Fig. 13.11

H567 But that is the same size as was dem onstrated by means of the calculations 
including the inclinations. Therefore the equation in longitude for Mars 
con^puted according to the inclinations of the circles [of epicycle and eccentre] 
did not dilFer at all.

Q .E.D.
The fourth column in the two tables for Venus and M ercury will contain the 

positions in latitude produced by the greatest slants of their epicycles, which 
occur at the ap>ogee and perigee ol’the eccentre. However, we have computed 
these separately, without the ell’ect due to the inclination of the eccentre, since 
that would have required a greater num ber o f tables and  a m ore complicated 
method of calculation [from the tables]: lor the [corresponding latitudinal] 
positions as m orning-star and evening-star are not going to be equal to each 
other, and not even always on the same side [i.e. north or south] of the ecliptic; 
and in any case, since the inclination of the eccentre is not constant, the 
dillerences in the am ount to be diminished with respect to the greatest 
inclination [of the epicycle] would not correspond to the differences in the 
am ount to be diminished with respect to the greatest s la n t.H o w e v e r , if we 

H568 separate the ellects, we can determ ine each element in a more convenient way, 
as will become clear from the actual procedure which we shall adduce.

Ptolemy means that one could not use a single coefllcient column (C5 i n t o  compute the 
diminution with respect to maximum of both inclination and slant as a function of the planet’s 
position on the epicycle.



X llI  4. ‘Slant’ oj verms and Mercury 623
Let AB [see Fig. 13.12] be the intersection of the planes of the ecliptic and the 

epicycle. Let point A be taken as the centre o f the ecliptic, and  B as the centre of 
the epicycle, and let the epicycle G D EZH  be described about it slanted to the 
plane of the ecliptic,'*^ i.e. so that straight lines draw n in the [two planes] 
perpendicular to the common section G H  all form equal angles at the points on 
OH. Draw  AE tangent to the epicycle, and AZD intersecting the epicycle a t an 
arbitrary  point, and drop from points D, E and Z perpendiculars D 0 , EK and 
ZL to GH, and perpendiculars DM , EN and ZX  to the plane of the ecliptic. Join 
0 M , KN, LX, and also AN and A X M  (for A X M  will be a straight line, since 
the three points [A, X, M all] lie in two planes, the plane of the ecliptic and the 
plane through AZD perpendicular to the ecliptic.

H569
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Fig. 13.12

It is obvious that, with the slant as depicted, the equations in longitude of the 
planet [at D and E respectively] will Ije represented by angles 0  AM and KAN, 
and the [positions] in latitude by angles DAM  and EAN. VVe must demonstrate, 
first, that the position in latitude at the tangent point, Z EAN, is the maximum,, 
just as the equation in longitude [is m axim um  at th a t point].

**See Fig. U ibr a redrawing of this three-dimensional figure. Note that Ptolemy’s figure is an 
artillcial one. since when tbe intersection ol'the planes of ecliptic and cpit ycle passes through ihc 
centre ol'the epicycle, the slant’ is zero. But it is justified by the ‘separation of the elfects’.
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[Proof:] Since Z EAK is the maximum,
KE;EA > 0 D ;D A  = LZ:ZA.

But EK;EN = 0 D .D M  = LZ.ZX.
Ibr, as we said, the triangles formed by them [ E K \.  D 0 M  and ZLX] have 
equal angles [at GH] and right angles at M, N and X.

••• N E: EA >  MD: DA = XZ: ZA.
H570 And, again, the angles DMA. ENA and ZX A  are right.

Therefore Z EAN > Z  DAM. and hence, obviously,
Z EAN is greater than any angle so formed.

It is immediately obvious that, when one considers the ellect on the equations 
in longitude caused by the slant, the maximum difference is produced at the 
greatest deviations in latitude at E. For the differences [in the equation caused by 
the slant] are represented by the angles subtended by (0 D  -  0 M ), (KE -  KN) 
and (LZ -  LX) [when the planet is at D. E and Z respectively], and since the 
ratios of these lines [0 D :0 M  etc.] to each other and to the difference between 
them [(0 D  -  0 M ) etc.] remains the same, it follow's that 

(EK -  KN) : EA > ( 0 D  -  0 M )  : AD, etc.^^
And it is also immediately clear that, whatever the ratio between the greatest 
equation in longitude and the greatest deviation in latitude [due to the slant], 
that ratio holds between the equation in longitude for any position [of the 
planet] on the epicycle and the [corresponding] position in latitude.

Ptolemy’s argument here is t'aliacious, as pointed out by Pedersen 382. He seems to have been 
misled by his figure, which substitutes straight lines for arcs.
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For KE:EN = LZ.ZX  = 0D :D M , 
and so on for the other points [on the epicycle].^^

Q.E.D.
H aving established these preliminary points, let us first examine the size of 

the angle which is contained by the slant of the planes for each of the two 
planets. W e take for granted what was noted at the beginning [of the discussion, 
p. 601], that both planets, when halfway between greatest and least distances, 
display a maximum difi'erence [in latitude] between opposite positions on the 
epicycle of 5° to north or south: for Venus appears to [so] vary by slightly more 
than 5° at perigee and slightly less than 5° at ap>ogee, while M ercury varies by 
about [more and less than 5° at 180° from apogee and  apogee respectively].

So let [Fig. 13.13] ABG again be the intersection of ecliptic and epicvcle. 
Describe the epicycle GDE about centre B, slanting to the plane of the ecliptic^'’ 
in the way described. From A, the centre of the ecliptic, draw  AD tangent to the 
epicycle, and from D drop perpendicular DZ on to GBE, and perpendicular 
DH on to the plane of the ecliptic. Jo in  BD. ZH and AH. and let Z DAH be 
taken as comprising half the above deviation in latitude for each of the two

H571
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Fig. 13.13

** This too is fallacious, since Ptolemy has substituted chords for arcs (in modern terminology, has 
treated a relationship between the sines oi'an|?les as a relationship l>et\veen the angli-s). See Pedei'sen 
380-1. However, if one treats it as an approximation, it isa ver\- reasonable one: see my remark on 
Pedersen, Toomer [3] 145.

«C f. p. 623 n.42.



H572 planets (thus it is 2i°). Let our problem be, to find for each the am ount of the 
slant between the planes, namely the si/e ol'Z DZH.

For Venus, since, where the radius o l'th e  cpicycle is 43;10‘’, the greatest 
distance is 61; 15'’, the least 58;45’’, and the mean between them 60*’,

AB;BD = 60 ; 43; 10.
And since AB^ -  BD^ = AD^,

AD = 41;40*’ in the same units.
Similarly, since BA:AD = BD:DZ,

DZ = 29;58'’ in the same units.
Furtherm ore, since, by hypothesis,

r 2;30° where 4 right angles = 360°
 ̂ 5°° where 2 right angles = 360°°,

in the circle al)out right-angled triangle ADH,
H573 arc DH = 5°

and the corresponding chord DH = 5; 14’’ where hypotenuse AD = 120’’.
'riierelore, whcie line AD = 41;40^ DH = hSO".’

And DZ was shown to be 29;58‘’ in the same units.
Tlierelbre. wheie hypotenuse DZ = 120’’. DH =7:20'’. 
and the angle ol the slant,

/  D 7H  -f angles = 360°°
^ l3 ;3 0 °  where 4 right angles = 360°.''^

But since the am ount l>y which Z DAZ exceeds /  HAZ represents the resulting 
diU'ercrice in thce(]uation in longitude, wc must immediately com pute this too, 
l)y iinding the amoiuUs of these angles. For we showed that, where line 
DH = l;50^ hvpotenuse AD = 41:40'’ and DZ = 29:58”: 

and AD- -  DH- = A H ' 
while ZD- -  DH- = HZ-;

so AH = 41:37'’ 
and HZ = 29:55’’ in the same units.

Theieiore, where hypotenuse AH = 120'’, ZH  = 86:16'’,
/  7  . _ r 91:56°° where 2 right angles = 360°° 

and Z Z.AM -  1 43.330 4 ^ 3gQo

H574 Similarly, since DZ = 86:18'’ where hypotenuse AD = 120'’,
/  HA7 - 1  where 2 right angles = 360°°

■ t  45:59° where 4 right angles = 360°.
Thus the equation in longitude com puted according to the slant was less by one 
minute.

For M ercury [see Fig. 13.14], where the radius of the epicycle is 22:30*’, the 
greatest distance, as we dem onstrated, is 69’’, and the distance diametrically 
opposite to that 57’’; the m ean between these two is calculated as 63'’ in the same 
units.

So AB:BD = 63 : 22;30.
And since AB^ -  DB~ = AD^,

AD = 58;51'’.

^̂’This neat ictuU is achieved only by some devious rounding: computing accurately one finds 
3;28i°:
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Similariy. since AB:AD = BD:DZ.
DZ = 21:1’’ in the same units.

Again, since, by hypothesis.
Z DAH = 5°° wheie 2 right angles = 360°°, 

in the circle about right-angled triangle .ADH, 
arc DH = 5°,

and the corresponding chord DH = 5:14^ where hypotenuse AD = 120'’. 
Therefore, where line AD = SScSP, DH = 2:34’’.

But we showed that DZ = 21:1’’ in the same units.
Therefore, where hypotenuse DZ = 120’’, DH = 14;40’’, 

and the angle o f the slant,
14°° where 2 right angles = 360°°
7° where 4 right angles = 360°^\

In the same wa\- [as for V'enus], in order to com pare the angles of the equation 
[in longitude]:

again, where DH = 2;34’’, we showed that 
hypotenuse AD = 58;51‘’ and DZ = 21;1'’.

And -  DH2 = AH^,
DZ^ -  DH^ = HZ\ 

so AH = 58;47’’ 
and ZH  = 20;53‘’ in the same units.

■"Accurately, 7;1°.

H575

Z D ZH =
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and Z ZAH

H576

Therefore, where hypotenuse AH = 120'*, H Z  = 42;38‘’,
_ f  41;38°° where 2 right angles = 360°° 

\2 0 ;4 9 °  where 4 right angles = 360°.
In the same way, where hypotenuse AD = 120’’, DZ is calculated as 42;50‘’,

, , p . . ™ _ f  41;50°° where 2 right angles = 360°°
\  20;55° where 4 right angles = 360°.

So in this case the equation in longitude due to the slant was less by 6'.^®
Q.E.D.

Next let us examine whether, if we take the above am ounts of the slant as 
given, we llnd the greatest latitudes a t the greatest and least distances [derived 
from them] to agree with those derived from our observations. In the same 
figure [Fig. 13.15], let us now take as basis the greatest distance of Venus, i.e.

fl

Fig. 13.15

H577

AB:BD = 61;15 : 43; 10.
Hence, since AB^ -  BD^ = AD^,

AD = 43;27^
But AB:AD = BD:DZ.

So DZ = 30;37’’ in the same units.
Again, since, by hypothesis, the angle of the slant,

Z DZH = 7°° where 2 right angles = 360°°
Ptolemy has fudged the calculations a little to get this result, .\ccurate computation gives 

Z Z.AH = 41:33.58°°, Z D .\Z  = 41;50,50°°. with a diirerence of 0; 16,52°", or about 8 i '.



and [hence] DH = 7;20’’ where hypotenuse DZ = 120*’, 
therefore, where line DZ = 30;37’’, and AD = 43;27'*,

D H  = 1;52P.
So where hypotenuse AD = 120’’,

D H  = 5:9^.
and the greatest deviation in latitude,

/  HAH -  where 2 right angles = 360®°
\  2;27° where 4 right angles = 360°.

But at the least distance, where the radius of the epicycle,
BD = 43; 10 ,̂

AB is given as 58;45’’.
And AB2 -  DB=" = AD^.

so AD = 39;51'* in the same units.
Similarly, since AB:AD = BD:DZ,

DZ = 29; 17’’ in the same units.
But D Z:D H  is given as 120 : 7;20.

Therefore, where DZ = 29; 17'* and AD = 39;51‘*,
DH = l;47^

Therefore, where hypotenuse AD = 120’’, DH = 5;22’’, 
and the greatest deviation in latitude,

/  DAH -  {  where 2 right angles = 360°°
L  U A H  -  |2 ;3 4 °  where 4 right angles = 360°.

Thus [the greatest latitude] differs from the 2:° of [greatest] deviation in H578 
latitude assumed for the mean, being less at the apogee and greater at the 
perigee, but [in both cases] by an am ount which is negligible to the senses; for at 
the greatest distance it was only three minutes less, and a t the least distance four 
minutes more. Such [small difl'erences] could not be at all easily detected from 
the observations.

Next [see Fig. 13.16] let us take the greatest distance of M ercury as basis, 
namely

AB:BD = 69 : 22;30.
Hence, bv the same procedure as above,

AD [= VAB^ -  BD^] = 65; 14^, 
and DZ [= AD x BD/AB] = 21:16’’ in the same units.

But in this case the angle of slant,
Z DZH is given as 14°° where 2 right angles = 360°°.

Hence we have D H  = 14;40'’‘‘® where hypotenuse DZ = 120'’.
Therefore, where line DZ = 21;I6‘’, and AD = 65;14‘’,

D H = 2;36^
Therefore, where hypotenuse AD = 120’’, DH = 4;47’’, 
and the greatest deviation in latitude,

/  DAH -  i  where 2 right angles = 360°° H579
\2 ;1 7 °  where 4 right angles = 360*.

X I I I 4. Computation o f  maximum differences fo r  Venus 629

■•’ The chord of 14° (1 11) is 14;37,27’’. But Ptolemy’s 14;40'’ is justified by p. 627, where the 7° of 
the slant is derived from that value.
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Fig. 13.16

But at the least distance,^"
AB.BD is given as 57 : 22;30,
and so, Ijy the same procedure again,

AD = 52:22'’ in the same units 
and DZ = 20;40'’.

And the slant is the same as before, 
and hence ZD;DH is given as 120 : 14;40,

so where DZ = 20;40P and  AD = 52;22^,
DH = 2;32^

Therefore, where hypotenuse AD = 12CP, DH = 5;48’’,
/  _ / 5;32°° where 2 right angles = 360°°

\  2;46° where 4 right angles = 360°.
Thus the diilerence from the m axim um  deviation in latitude at the mean 

(which was taken as 2^° here too) was 13' in the negative direction at apogee 
and 16' in the positive direction at perigee. T o represent these, we shall use a 

H580 correction ofi° with respect to the m ean in the calculations [from the table], in 
accordance with the perceptible diilerence derived from the observations.

Now that we have dem onstrated the above, and also dem onstrated that the 
l atio i)etween the greatest ecjuation in longitude and the greatest deviation in

Ptolemy is speaking loosely here. 57’’ represents, not the least distance, (which is c. 55;34’’ at 
120° from apogee, IX 9 p. 460), but the distance at the point opposite the greatest distance, i.e. 
strictly analogous to the situation lor Venus. Cf. the use of perigee’ below.
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latitude also holds good at other points on the epicycle for the ratio between the 
individual equations in longitude and the [corresponding] individual p>ositions 
in latitude,^* we immediately have a convenient method for computing the 
positions in latitude due to the slant to be entered in the fourth column of the 
tables for Venus and M ercury. However, as we mentioned, these positions are 
based only on the slant of the epicycles at mean distance: the difference due to 
the inclination of the eccentres, and also the difference due to [the approach 
towards] apogee or perigee for M ercury, will be found by means of a correction 
procedure in the com putation [from the tables], for convenience of calculation.

For, at the mean distances as set out above, the greatest deviation due to the 
slant was shown to be 2;30° on either side of the ecliptic for both planets; and the 
greatest equation in longitude is approxim ately 46° for Venus and 22° for 
Mercury;^" and we already have, set out in the tables for anomaly of these 
planets, the equations corresponding to the individual positions on the epicycle. H581 
So we form the ratios between the latter and the greatest equation, take the 
same proportion of 2!°, separately for each planet, and enter the results in the 
fourth cohimn of the tables of latitude opposite the rorresponding arguments^

VVe have pioduced the fifth column [in each table] in o ider to correct the 
positions in latitude for other positions [of'the epicyclejon theeccentre, by using 
the sixtieths entered [in that column]. For since, as we said, the increase and 
decrease in the inclination and slant of the epicycle, through the action of the 
attached small circles, have a p>eriod precisely corresponding to the period of 
return on tfie eccehtre, and since the amounts of all the inclinations and slants is 
not veiy different from that associated with the moon's inclined orbit, and the 
individual deviations in latitude,fbr such smafl inclinations, are. again, almost 
pro|X)rtional, and since we already have the correspond ingentries for the moon 
com puted geometrically, we multiplied each of the entries in that table by 12 
(because the maximum there is about 5°, and here we are making the maximum 
60), and enteied the results opposite the appropriate argum ent in the fifth 
column of each table.

T he layout of the tables is as follows.

5. {Layuul o f the tables for the compulations in latitudeY^ H582-6

[See pp. 632-4.]

See p. 625 n.44.
These numlxrrs arc* simply rounded lix)m the maxima in col. 6 of the tables ol'anomaly (X I11), 

45;59° Ibr \'enus and 22;2° lor Mercury. Heiberg mistakenly relei-s to X II9, which ^;ives nothing to 
compare, since it rclers to true, not mean elongations.

’ ‘As M anitius (p. 428) notes, there are a numl)er of entries in col. 5 (the sixtieths’) which are 
derived, not Irom the corresponding values in col. 7 of the lunar table (V8), iiut from a value 1' less. 
Most (those for 24°, 36°, 42°, 72°, 111°, 153°, 155°) are less accurate, hut some (those Ibr 12°, 78°7 
99°) are moi-e accurate. Since there Ls no doubt that Ptolemy did, as he says, obtain the values in col. 
5 simply by multipying by 12, this may l»e a remnant of an earlier stage in the computation of the 
lunar table.
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INCLINATIONS OF SATURN INCLINATIONS OF JU PITER
Argument Argument

[in Distance] Northern Southern [in Distance] Northern Southern
from Apogee Limit Limit Sixtieths from Apogee Limit Limit Sixtieths

6 354 2 4 2 2 59 36 6 354 1 7 I 5 59 36
12 348 2 5 2 3 58 36 12 348 1 8 1 6 58 36
18 342 2 6 2 3 57 0 18 342 1 8 1 6 57 0

24 336 2 7 2 4 54 36 24 336 1 9 1 7 54 36
30 330 2 8 2 5 52 0 30 330 1 10 1 8 52 0
36 324 2 10 2 7 48 24 36 324 1 11 1 9 48 24

42 318 2 11 2 8 44 24 42 318 1 12 1 10 44 24
48 312 2 12 2 10 40 0 48 312 1 13 1 11 40 0
54 306 2 14 2 12 35 12 54 306 1 14 1 13 35 12

60 300 2 16 2 15 30 0 60 300 1 16 1 16 30 0
66 294 2 18 2 18 24 24 66 294 1 18 1 18 24 24
72 288 2 21 2 21 18 24 72 288 1 21 1 21 18 24

78 282 2 24 2 24 12 24 78 282 1 24 I 24 12 24
84 276 2 27 2 27 6 24 84 276 1 27 1 27 6 24
90 270 2 30 2 30 0 0 90 270 1 30 I 30 0 0

93 267 2 31 2 31 3 12 93 267 1 31 1 31 3 12
96 264 2 33 2 33 6 24 96 264 1 33 1 33 6 24
99 261 2 34 2 34 9 24 99 261 1 34 1 34 9 24

102 258 2 36 2 36 12 24 102 258 1 36 1 36 12 24
105 255 2 37 2 37 15 24 105 255 1 37 1 37 15 24
108 252 2 39 2 39 18 24 108 252 1 39 1 39 18 24

111 249 1 2 40 2 40 21 24 111 249 1 40 1 40 21 24
114 246 2 42 2 42 24 24 114 246 I 42 1 42 24 24
117 243 2 43 2 43 27 12 117 243 1 43 1 43 27 12

120 240 2 45 2 45 30 0 120 240 1 45 1 45 30 0
123 237 2 46 2 46 32 36 123 237 1 46 1 46 32 36
126 234 2 47 2 48 35 12 126 234 1 47 1 48 35 12

129 231 2 49 2 49 37 36 129 231 1 49 1 49 37 36
132 228 2 50 2 51 40 0 132 228 1 50 1 51 40 0
135 225 2 52 2 53 42 12 135 225 1 51 1 53 42 12

138 222 2 53 2 54 44 24 138 222 1 52 1 54 44 24
141 219 2 54 2 55 46 36 141 219 1 53 1 55 46 36
144 216 2 55 2 56 48 24 144 216 1 55 1 57 48 24

147 213 2 56 2 57 50 12 147 213 1 56 1 59 50 12
150 210 2 57 2 58 52 0 150 210 1 58 2 0 52 0
153 207 2 58 2 59 53 12 153 207 1 59 2 1 53 12

156 204 2 59 3 0 54 36 156 204 2 0 2 3 54 36
159 201 2 59 3 1 56 0 159 201 2 1 2 4 56 0
162 198 3 0 3 2 57 0 162 198 2 2 2 5 57 0

165 195 3 0 3 2 57 48 165 195 2 2 2 6 57 48
168 192 3 1 3 3 58 36 168 192 2 3 2 6 58 36
171 189 3 I 3 3 59 12 171 189 2 3 2 7 59 12

174 186 3 2 3 4 59 36 174 186 2 4 2 7 59 36
177 183 3 2 3 4 59 48 177 183 2 4 2 8 59 48
180 180 3 2 3 5 60 0 180 180 2 4 2 8 60 0
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INCLI 
Argument 

[in Distance] 
from Apogee

NATIONS

Northern
Limit

OF MARS

Southern
Limit Sixtieths

INCLir 
Argument 

[in Distance] 
from Apogee

NATIONS C 

Inclination

)F VENUS 

Slant Sixtieths

6 354 0 8 0 4 59 36 6 354 1 2 0 8 59 36
12 348 0 9 0 4 58 36 12 348 1 1 0 16: 58 36
18 342 0 11 0 5 57 0 18 342 1 0 0 25 57 0

24 336 0 13 0 6 54 36 24 336 0 59 0 33 54 36
30 330 0 14 0 7 52 0 30 330 0 57 0 41 52 0
36 324 0 15 0 9 48 24 36 324 0 55 0 49 48 24

42 318 0 18 0 12 44 24 42 318 0 51 0 57 44 24
48 312 0 21 0 15 40 0 48 312 0 46 1 5 40 0
54 306 0 24 0 18 35 12 54 306 ' 0 41 1 13 35 12

60 300 0 28 0 22 30 0 60 300 0 35 1 20 30 0
66 294 0 32 0 26 24 24 66 294 0 29 1 28 24 24
72 288 0 36 0 30 18 24 72 288 0 23 1 35 18 24

78 282 0 41 0 36 12 24 78 282 0 16 1 42 12 24
84 276 0 46 0 42 6 24 84 276 0 8 1 50 6 24
90 270 0 52 0 49 0 0 90 270 0 0 1 57 0 0

93 267 0 55 0 52 3 12 93 267 0 5 2 0 3 12
96 264 0 59 0 56 6 24 96 264 0 10 2 3 6 24
99 261 1 3 1 0 9 24 99 261 0 15 2 6 9 24

102 258 1 6 1 4 12 24 102 258 0 20 2 9 12 24
105 255 1 10 1 8 15 24 105 255 0 26 2 12 15 24
108 252 1 14 . 1 13 18 24 108 252 0 32 2 15 18 24

i l l 249 1 18 1 18 21 24 111 249 0 38 2 17 21 24
114 246 1 23 1 24 24 24 114 246 0 44 2 20 24 24
117 243 1 28 1 30 27 12 117 243 0 50 2 22 27 12

120 240 I 34 I 37 30 0 120 240 0 59 2 24 30 0
123 237 1 41 1 44 32 36 123 237 1 8 2 26 32 36
126 234 1 48 1 51 35 12 126 234 1 18 2 27 35 12

129 231 I 54 2 0 37 36 129 231 1 28 2 29 37 36
132 228 2 1 2 10 40 0 132 228 1 38 2 30 40 0
135 225 2 9 2 20 42 12 135 225 1 48 2 30 42 12

138 222 2 16 2 32 44 24 138 222 1 59 2 30 44 ^4
141 219 2 25 2 44 46 36 141 219 2 11 2 29 46 36
144 216 2 34 2 56 48 24 144 216 2 23 2 28 48 24 .

147 213 2 44 3 12 50 12 147 213 2 43 2 26 50 12
150 210 2 54 3 29 52 0 150 210 3 3 2 22 52 0
153 207 3 5 3 46 53 12 153 207 3 23 2 18 53 12

156 204 3 16 4 9 54 36 156 204 3 44 2 12 , 54 36
159 201 3 27 4 32 56 0 159 201 4 5 2 4 56 0
162 198 3 38 4 55 57 0 162 198 4 26 1 55 57 0

165 195 3 49 5 24 57 48 165 195 4 49 I 42 57 48
168 192 4 0 5 53 58 36 168 192 5 13 1 27 58 36
171 189 4 10 6 21 59 12 171 189 5 36 1 9 59 12

174 186 4 14 6 36 59 36 174 186 5 52 0 48 59 36
177 183 4 18 6 51 59 48 177 183 6 7 0 25 59 48
180 180 4 21 7 7 60 0 180 180 6 22 0 0 60 0
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INCLI

Aixumcni 
[in Distance] 
from Apo<<ee

NATK^NS ( 

Inclination

3F MERCUF 

Slant

lY

Sixtieths

6 354 1 45 O i l 59 36
12 348 1 44 0 22 58 36
18 342 1 43 0 33 57 0

24 336 1 40 0 44 54 36
.'50 330 1 3(i 0 55 52 0
;56 324 1 30 1 6 48 24

42 318 1 23 I 16 44 24
48 312 1 16 1 26 40 0
54 306 1 « 1 35 35 12

W) 300 0 39 1 44 30 0
66 294 0 49 I 52 24 24
72 288 0 38 2 0 18 24

78 282 0 26 2 7 12 24
84 276 0 16 2 14 6 24
90 270 0 0 2 20 0 0

9;{ 267 0 H 2 23 3 12
96 264 0 15 2 25 6 24
99 261 0 23 2 27 9 24

102 258 0 31 2 28 12 24
105 255 0 4<) 2 29 15 24
108 252 0 48 2 29 18 24

111 249 0 57 2 30 21 24
114 246 1 () 2 30 24 24
117 243 1 16 2 30 27 12

120 240 1 25 2 29 30 0
123 237 1 35 2 28 32 36
126 234 1 45 2 26 35 12

129 231 1 55 2 23 37 36
132 228 2 6 2 20 40 0
135 225 2 16 2 16 42 12

138 222 2 27 2 11 44 24
141 219 2 37 2 6 46 36
144 216 2 47 2 0 48 24

147 213 2 57 I 53 50 12
150 210 3 7 I 46 52 0
153 207 3 17 1 38 53 12

156 204 3 26 1 29 54 36
159 201 3 34 1 20 56 0
162 198 3 42 1 10 57 0

165 195 3 48 0 59 57 48
168 192 3 54 0 48 58 36
171 189 3 58 0 36 59 12

174 186 4 2 0 24 59 36
177 183 4 4 0 12 59 48
180 180 4 5 0 0 . 60 0
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6. {Compulalion o f the deviation in latitude for the 5 planets]^* H587

Those [tables] thus estabhshed, we carry out the latitude com putation for the 5 
planets as follows.

For the 3 planets Saturn, Ju p ite r and Mars, we take the corrected longitude 
(for M ars just as it is, for Ju p ite r subtracting 20° and for Saturn  adding 50°),^'’ 
and entering the argum ent [columns] of the appropriate table, find the sixtieths 
corresponding to it in the fifth column of the latitude, and  write that down 
separately. Similarly, we enter the same argum ent [columns] with the corrected 
am ount of the anomaly,'’*’ and take the dilference in latitude corresponding to 
it. in the third column if the corrected longitude falls within the first 15 lines, but 
in the fourth column if it (alls within the lines after [the 15th]. We multiply 
this by the si.xtieths we wrote down, and the result will give us the am ount I)y’ 
which the planet is north of the ecliptic, if we took the difference in latitude from 
the third column, or south of it, if we took it from the fourth.

For Venus and xMercury we lli'st enter with the corrected am ount of the 
anomaly into the argum ent [columns] of the appropriate table, take the H588 
corresponding amounts in the third and fourth columns of the latitude, and 
write tiiem down separately; we lake them unchanged from all columns except 
the fourth column for M ercury, but for that, if the corrected longitude falls 
within the first 15 lines, we subtract a tenth part of the am ount, whereas if the 
corrected longitude lalls within the lines below [the 15th], we add a tenth 
part. ’' Then we add to the corrected longitude, for \ ’enus always 90°, and for 
M ercury always 270°, subtract [the 360° ol] a circle if it comes to that [i.e. to 
more than 360°], enter w ith the result into the same argum ent [columns], and 
take the corresponding num ber of sixtieths in the fifth column. VVe multiply the 
latter into the am ount we wrote down from the third column, and set out the 
result. The direction of this will be:
[A] if the longitude (with the addition as detailed above) falls within the first 15 -

lines, and
[1] the am ount of the corrected anom aly falls within the fu-st 15 lines: 

southerly
[2] the anom aly falls w ithin the lines following [the 15th]: northerly;

[B] il' the above-mentioned longitude falls within the lines below the 15, and
[1] the am ount of the above-mentioned anomaly falls within the first 15 

lines: northerly
[2] the anomaly falls within the lines following [the 15th]: southerly.

Next we again take the corrected longitude, just as it is for Venus, but with the 
addition of 180° for M ercury, enter with it into the same [columns of] H589

’^See HAMA  219-20, 222-6, and Appendix A, Example 15.
’’The correc ted longitude’ means 'the d istanceotthe epicycle centre Irom apoj^ee, asseenlrom 

the obseiver (i.e. corrected I)v the ec|iiation ol'centre)'. The amounts to l)e applied to it represent the 
(rounded) distance Ijetween apogee and northpoint ol' the inclined orbit.

’®I.e. the true anomaly a , corrected for equation of centre.
The ‘tenth part’ represents the ratio i° : 2i°. Cf. X III 4 p. 630.



argument; take the sixtieths corresponding to this in the fifth column, multiply 
them into the amount we wrote down trom the lourth column, and set out the 
result. The direction of this will be:
[A] if the longitude we entered with (as described above) falls within the lii'st 15 

lines, and
[1] the corrected anomaly is 180° or less: northerly
[2] the anomaly is greater than 180°; southerly;

[B] if the longitude falls within the lines below the 15, and
[1] the anomaly is 180° or less: southerly
[2] the anomaly is greater than 180°: northerly.

Then we take these same sixtieths which were found by the second entry' with 
the longitude, calculate the am ount which is the same fraction of them as they 
are of 60, and, for Venus, lake i th  of this and set it out too, always with a 
northerly direction; but for M ercuiy we take 1 of the am ount and set it out, 
always in a southerly direction.'’®

Thus, by combining the 3 quantities set out, we determ ine the apparent 
position in latitude with respect to the ecliptic of these [two planets].

636 X I I I 6. Computalion o f  latitude o f  Venus and Mercury from  tables

H590 7. [On the first and last visibilities o f the 5 planelsY"^

\o w  that we have dealt with the basic problem of the deviations in latitude ol 
the 5 planets, there remains the supplem entary topic of the requisite theorems 
for their tlrst and last visibilities with respect to the sun. For, as we explained in 
the treatise on the lixed stars [ M il  6. p. 413], it turns out that their distanc es 
from the sun along the ecliptic are variously unequal, for both first and last 
visibilities, for a numiier of reasons: the first of these is due to the fact that they 
are of unequal size, the second due to the variation of the inclination of the 
ecliptic to the horizon, and the third due to their positions in latitude.

For if we again imagine [see Fig. 13.17] segments of great circles, AB of the 
horizon, and GD of the ecliptic,”® and take point E as their intersection at rising 
or setting, points G and A in the direction of south [i.e. the m eridian],”* and 
point D as the sun's centre, and we draw through D and the pole of the horizon 

H591 another great circle segment DBZ, and suppose the planet to rise or set along the 
horizon AEB (when it is situated on the ecliptic, it will do so, obviously, at E; 
when it is north of the ecliptic, at H. and when it is south, at 0 ) ,  and drop 
perpendiculars H K  and 0 L  on to the ecliptic from points H  a n d 0 ,  then we will 
again®' have, in BD. an arc which is equal to the am ount which the sun must 
alwa\ s be below the earth in order for the same [given] planet to be first or last 
visible. For it is on a great circle so draw n [i.e. perpendicular to the horizon]

’“For an explanation of this pi-occdiirc see HAMA  224.
’’ See HAMA  234-8. Pedersen 386-8, with the correction Toomer [3], 145.
•“ Reading KUtcA.ou (with D.Ar) for ney iaT O U  icukXo u  (‘the i^ieat circle of the ecliptic ) at 

H490,18. Corrected by Manitius.
Ger adds and points 0  and H in the direction of south and north’, which makes good sense, 

'’'"again" refers back to the similar situation with the fixed stars, VIII 6 p. 413.
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Fig. 13.17

^■6

D

that equal inteiA-als below the earth must l)e taken in order for the identical 
obscuring ell'ect of the sun's rays to take place.

First, then, this arc [BD] is, naturally, unequal lor the various planets, which 
are unequal [in size], so, even if all other factors remain the same, the arc of the H592 
ecliptic subtending the right angle, i.e. the interval corresponding to ED. must 
\ ai \', being, obviously, smaller lor the larger planets, and  greater for the smaller 
planets.

Similarly, even if BD remains the same for the same [given] planet, but the 
angle of inclination of the ecliptic. BED. varies either Ijecause there is a dillerent 
/zodiacal sign [crossing the horizon] or [the latitude ol] the location is dillerent. 
the arc of the [sun’s] distance, ED. will again vary, and will become greater as 
the angle in question decreases and lesser as it increases.

In the same way. even if we join to the above condition [of BD being constant] 
the further condition that the inclination remains the same, but the planet does 
not lie on the ecliptic, but is either north of it at H or south of it at 0 ,  its first and 
last visil)ility will no longer take place at a distance [from the sun] ofarc DE, but 
when it is north of the ecliptic, at the lesser distance DK, and when it is south, at 
the greater distance DEL.

Therefore, for our investigations of the particular cases, it is essential that 
there first be given, for each of the 5 planets, the universally applicable size of 
the arc corresponding to BD, from the more reliable observ'ations of the phases. H593 
These would be those made in summer, round about Cancer, since at that 
season the atmosphere is thin and clear, and the inclination of the ecliptic to the 
horizon is symmetrical [at eastern and western horizons].'’̂  We find, then, by 
examining observations of [first] risings of this kind,®"* tha t near the beginning of 
Cancer, in general,

'“ This is Neugebauer's interpretation ol symmetricar {HAMA  235), and it is conllrniecl l)v p.
639, ‘when the beginning of Cancer is setting, it forms the same angle and inclination to the horiaon 
as belore [at rising]’.

'‘̂ For Saturn at least, these could hardlv have l)een Ptolemy’s own oljser\'ations. as the 
requirement o fa  longitude near S  0° takes us back to about the year 120, much earlier than any of 
Ptolemy’s quoted obseiA'ations. This is confirmed by the references to the Bai>ylonians.
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S atum  rises [i.e. is first visible] at a distance from the true sun of 14° 
Ju p ite r  at 
M ars at 14^°
Venus as evening star at 5f°, and 
M ercury as evening star at 11
W ith these data given, let the diagram  of the preceding figure be draw n [Fig. 

13.18]. (For such small arcs it will make no difference if, for convenience’ sake, 
we substitute in our calculations the corresponding chords which are not 
sensibly different from them). Let point E be the intersection of ecliptic and 
horizon at the above-mentioned phases, at the beginning of Cancer, and rising

D
Fig. 13.18
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for the 3 morning-star planets, Saturn, Ju p ite r  and M ars, I)ut, obviously, 
setting for the evening-stai’s, \ ’cnus and M ercury. Let us take as geographical 
latitude the parallel through Phoenicia, where the longest day is 14i hours, 
since it is mainly on this parallel or round ai)out it that the majority and most 
reliable of the obsei-vations of the phases have been made, those of the 
Babylonians almost on it, and those in Grccce and Egypt round about it.*’’ 

Now we find, by means of the procedure for angles [between ecliptic and 
horizon] previously dem onstrated [II 11], that when the beginning of Cancer is 
rising at the latitude in question,

Z BED = 103°° where 2 right angles = 360°°, 
and hence the ratio of the sides about the right angle,**'

[B D :B E]« 94 : 75 where the hypotenuse [DE] = 120”.

According to the Geography Babylon has a latitude of 35° (which coiTesponds closely to the 
standard Babylonian daylight ratio M:m = 3 : 2). In fact its latitude is atxjut 32j°. The parallel with 
M = K i" (and (p = 33;18°j is halfway between the climata of Lower Egypt (14*' and 30;22°) and 
Rhodes (14i’’ and 36°).

How Ptolemy got this angle remains mysterious: whether he used interpolation in the tables II 
13 (cf. HAMA  236) or direct computation, he should have found (in round numljers) 53° = 106°°. 
O n the general problem of the angles between ecliptic and horizon in this chapter see//.“I A'A-l 245- 
50.

"’The text has ‘right angles’, ‘hypotenuses’ etc. l)ecause it is true for each planet.



By means ol'the procedure for the [planetary] latitude, we fmd that (considering 
now just the 3 [outer] planets), when they [first] rise near the beginning of 
Cancer, that is, when they are near the apogee of the epicycle, then at any 
distance from the apogee not exceeding rith  [of the epicycle circumference],®* 
with no sensible error Saturn and Ju p ite r are practically on the ecliptic, while 
M ars is about 5® north of the ecliptic.®® H595

Therefore their distance from the sun along the ecliptic will be represented by 
DE for Saturn and Jupiter, and by D K  for Mai's, since it is north [of the ecliptic] 
bv K H , of the am ount 12'.

And since K H :K E = 94 : 75,
KE** 10 '  in the same units.

But DK is given for M ars as 14:°,
so, l)v addition, DE = 14;40°.

And for Saturn it is 14° 
and for Ju p ite r 12i°.

So, since ED:DB = 120 ; 94, 
we get, approximately, for DB, the arc of the great circle draw n through the 
poles of the horizon.

11° for Saturn 
10° for Jup iter 

and 11:° Ibr Mars.
Similaily, for \'en u sa n d  M ercury, when the Ijeginning of Cancer is setting, it 

ibrms the same angle and inclination to the horizon as b^brc: and we are 
gi\en  that, when these planets have their first visibilit\' as evening-star in this 
part of the ecliptic, the distance of \ ’enus from the true sun is 5^°, while 
M ercury's is I l i° .  Therefore at tfieir [first] risings the true sun will have a 
hni^itudc of

n  24l° Ibr \  enus H596
and n  18:° for Mercury.
while the longitude of the mean sun will be alx)ut 

n  25° ibr Venus 
and n  19° fbr Mercury.
Therefore the planets will h a \e  these positions in mean longitude. And w'hen. 
with these [mean] longitudes, the planets have apparent positions a t the 
beginning of Cancer, we find that their distances from the apogee are about 

14° for Venus 
and 32° for Mercury.
(This kind of com putation can be carried out by means of the theorems on their 
anom aly which we set out before).^® Accordingly, a t these positions, we find 
that

“ At apogee of the epicycle the planet is at mean conjunction. So Ptolemy is considering 
elongations fiom the mean sun of up to one zodiacal sign.

««See H .U U  235,237.
From the anomaly tables, X I 11, given, for Venus, X = 85°, 5 = 14° and the apogee in 8 25°, 

then K = 30°, leading to an equation of centre of 1;11°, so a  = 15; 11°, which leads to an equation of 
anomaly of+6;6i°, so A, = 85° -  l ; l l °  + 6;64° = 89;56 i°« ' 23 0°. For Mercury, withX = 7 ^ , 5 =32° 
and the apogee in ̂  10°, if=249°, leading to an equation of centre of2;53°, soa=29;7°, which leads to 
an equation of anomaly of 8;16°, hence k  = 79° + 2;53° + 8; 16° = 90;9°* S3 0°.

X I I I  7. Values o f  arcus visionis fo r  outer planets 639
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Fig. 13.19

<̂ B

D

and 94 : 75«»-

EK =

Venus is about 1° north of the ecliptic, 
and M ercury about 1 north.'*
These, obviously, are the amounts of K H  [in Fig. 13.19].

So, since K H :EK  = 94 : 75,
I : i  

15 : l l ,
J° for Venus 

ll° for M ercury.
And in the same units, by hypothesis, the apparent distance of the planet Irom 
the sun,

for Venus 
1 li°  for M ercury.
6?° for \"enus 

12fi° for M ercury.
94,

D K  =

H597 Therefore, by addition, DKE**-

So, since ED;BD is again 120 
and that ratio is about the same as 6 ? : 5

and I2 l : 10 , 
we get for DB, the size of the normal distance,

5° for Venus 
and 10° for M ercurv.

Q.E.D.

8. {That the peculiar characteristics o f the phases o f Venus and Mercury are also in 
accordance with the hypotheses'^

Furtherm ore, it is in accordance with the hypotheses detailed above that the 
strange characteristics of the fii-st and last visibilities of Venus and M ercury take

For the calculations conllrming this see H AMA  237-8.
HAMA  239-42. There is a reference to this in Proclus, Hypoiyposis 1 17 (ed. Manitius p. 10).
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place: namely that, for Venus, the interval from evening setting to morning 
rising is about 2 days round about the beginning of Pisces, but about 16 days 
round about the beginning of Virgo; and, for the planet M ercury, the phases as 
evening-star are missing, when one would expect it to appear round about the 
beginning of Scorpius, and the phases as m om ing-star, when round about the 
beginning of Taurus. W e can come to understand that as follows; and first for 
Venus.

Let there be drawn a diagram  [Fig. 13.20] similar to the preceding figure for 
the phases, and let point E represent, first, the point on the ecliptic at the 
beginning of Pisces (at this point Venus, when it is near the perigee of the

H598

D
Fig. 13.20

epicycle, is about 63° north of the ecliptic).’  ̂ Let the diagram  represent the 
evening setting  [i.e. last visibiiit\- as evening-star]. In this Z BED, a t  the 
terrestrial latitude in question, is calculated as 154°° where 2 right angles equal 
360°°.

And [in the right-angled triangles BED,KEH], where the hypotenuse is 120'’, 
the greater of the sides about the right angle,

[BD or K H ]« 1 1 7 ^  
and the lesser, [BE or KE] ** 27’’.

Hence, where the norm al distance, DB = 5°,
DE = 5;8°.

See HAM A  239, and cf. X III 3 p. 602; when Venus is in the node and near the perigee of the 
epicycle its latitude is 6l°. Since Venus’ apogee is taken as B 25°, for a  position o fK  0® it is 275° 
liom apogee or 5° from the node.

'^O n the angles l>etween ecliptic and horizon given by Ptolemy see HAMA  245-50. The 
(rounded) value here, 77°, can l)e foundfrom the tables I I 13, taking the values for XO® at Clima III 
and Clima IV, 10;5° and 15;53°, taking the mean, 12;59°, and taking its complement, 77;i°. The 
other values given by Ptolemy, however, cannot lie so derived.

■A



H599 But since the planet is north of the ecliptic (which am ount is represented by 
arc KH),

and the ratio 117 : 27*= 6:1 : 1 
K E = l i ° ,

and, l)y subtraction, KD , which represents the distance of the planet towards 
the rear from the sun at its evening setting, is

[5 ;8 -  1;30=] 3;38°.

642 X I H  8. Phases o f  Venus in Pisces

H600

Fig. 13.21
K

Again, on the similar diagram  [Fig. 13.21], since at the m orning rising [i.e. at 
the planet’s I'u-st visibility as morning-star]

Z BED = 69°° where 2 right angles = 360°°, 
and hence, where the hypotenuse [ol the right-angled triangles] is 120 '’, 
the lesser of the sides about the right angle, [BD or KH ] ** 68'’, 

and the greater, [BE or KE] 99'’; 
and we calculate that 68 : 120 = 5 : 8;49 

and that 68 : 99 = 6.1 : 9; 13,
so we get DE = 8;49° in the same units, 

and the difl'erence [in longitude] due to the latitude,
KE = 9; 13°;

and, by subtraction, DK, [the p lanet’s distance] from the sun, towards the rear 
(obviously), is 0;24°.
And at its evening setting its distance, likewise towards the rear, was 3;38°. 
Therefore during the interval from evening setting to m orning rising it has 
moved a distance which is less than  the sun’s motion (that is, approximately,^ ’ 
its own m otion in [mean] longitude) by 3; 14°, which is due to its motion in 
advance on the epicycle. Now it is easy to determ ine from the table of anomaly 
that a motion in advance of that am ount [3; 14°] is produced by a motion on the 
epicycle near its perigee of li®:̂ ® and the planet traverses 1 i°  in mean motion [in

‘approximately’, bccause the sun’s motion is that of the true sun, while the planet’s mean 
motion in longitude is equal to that of the mean sun.

’* rrom  the table of anomaly, XI 11, Venus has an equation of anomaly of 7;38° fo ra  = 177°
( = 180“ - 3°  

fo ra =  172' 
6;381').

; hcnce to3;14°connesponds3;14x3/7;38= 1;16,14°=» li°. Similarly, (below pp. 643-4), 
° we find an equation of 18;1° (text 18;2°), and for a  = 177i°an equation of6;21° (text
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anomaly] in about 2 days. Hence it is clear that that [2 days] is the period of the 
above interval, in agreement with the phenomena.

Again, on the similar diagram  [Fig. 13.22], let point E be taken as the 
beginning of Virgo (at this point, when Venus is at the perigee of the epicycle, it 
is south of the ecliptic by about the same am ount, 6 i°).”  Let us consider, first, 
the evening setting, when

Z BED = 69°® where 2 right angles = 360°°.

0
Fig. 13.22

Thus where the hypotenuse [of right-angled triangle BED] is 120*’, 
the lesser of the sides about the right angle, [BD] 68’’,

and the greater, [BE] ** 99*’.
Thus since the ratios [of BD;BE:DE] are the same as for the morning rising in 
Pisces, and the difi’erence due to the latitude is equal [to its am ount there], we 
get

arc ED = 8;49°, 
the dilference [in longitude] due to the latitude, LE = 9;13°, 
and, by addition, DL, the planet’s distance from the sun towards the rear, is 
18;2°.
From  the table of anomaly, as mentioned before, [the motion in anomaly] near 
the perigee of the epicycle corresponding to that am ount [18;2°] of retro- 
gi adation with respect to the mean motion in longitude of sun and planet is 
about 7l°

Similarly, a t the m orning rising at the beginning of Virgo, when
Z BED = 154°° where 2 right angles = 360°°, 

and [hence], where the hypotenuse [of right-angled triangle BED] is 120’’, 
the greater of the sides about the right angle, [BD] = 117’’,

and the lesser, [BE] = 27”; 
and one again finds the same ratios as those set out for the evening setting in 
Pisces, so we get

. DE = 5;8°,
” Cf. p. 641 n.73.

H601
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the diflerence [in longitude] due to the latitude, EL = 1;30°, 
and, by addition, DL, the planet’s distance from the sun in advance, is 6;38°. To 

H602 this am ount corresponds, in the same way as above, about 2 i°  of [motion in 
anomaly] near the f>erigee of the epicycle.

Therefore the total am ount of m otion on the epicycle which the planet Venus 
will perform from evening setting to m orning rising is 10°; and it traverses that 
am ount in about 16 days, which, as stated af)ove, is the am ount agreeing with 
the phenomena.

Having dem onstrated the above, we must apply our theory to the facts 
concerning the missing phases of Mercury,^® and [show], fu-st, that at the 
beginning of Scorpius, even if it reaches its gi eatest elongation towards the rear 
from the sun,^® it cannot become visible as evening-star.

[Proof:] Let the diagram  for the phases [Fig. 13.23] be drawn, with point E 
taken as the point on the ecliptic at the beginning ol’Scorpius at a [terrestrial 
latitude] such that at setting

Z BED = 69°° where 2 right angles = 360°°, 
and [thus] where the hypotenuse [of right-angled triangle BED] is 120’’, 

the lesser of the sides about the right angle, [BD] = 68'’,
and the greater, [BE] = 99’’.

H603 Therefore where the am ount of the norm al distance, BD = 10°,
DE = I7;39°.

But when the planet is in the above situation, it is about 3° south of the ecliptic.®®
So, according to the above ratios, 
where L 0 , the am ount of the latitude, is 3°,

LE = 4;22°,
and, by addition, DEL [= 17;39° + 4 ;22°]«22°.

'*A simiiar phrase is used ol'M ercury as early as Aristotle {Meteorologica 342b34) 5id yap to  
Hiicpov Enava^aivEiv TtoXXd? ^KXciTiei (pdoei^ liecause it rises only a little aljove [the horizon] it 
misses many phases (appearances)’.

’* At XII 9 Ptolemy has calculated the maximum elongations for M ercury at 0° and y 0°, in 
preparation, as he says (p. 591) for this problem.

*®For a computation of this see HAMA  241 n.l 1.
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Hence the planet must have that elongation [22®] from the true sun in order to 
have its first visibility. But since its maxim um  elongation from the true sun when 
it is at the l>eginning ol Scorpius is only 20;58°, as we dem onstrated previously 
[X II 9, p. 594] in our treatm ent of the greatest elongations, it is obvious that it is 
natural for phases of this kind to be missing.

Again, if we set out the same diagram  tor the phases [Fig. 13.24] and take 
point E as the beginning of T aurus a t m orning rising, when the planet, in 
accordance with the positions in question, is about south of the ecliptic,”' 
and the ratios of the sides [of triangles BED, L E 0 ] about the right angles are the 
same as those above,

then DE = 17;39° 
and, where the latitude 0 L  = 3; 10°,

LE = 4;37°.
Thus, bv addition, DEL = 22; 16°.

Fig. 13.24

i 'B

D

Thus here too the planet must have an elongation of that am ount [22; 16°] from 
the true sun in order to have its first visibility. But since its maximum elongation 
[in this situation] does not exceed 22; 13°, as we dem onstrated previously [p. 
595], naturally, this kind of phase too is missing. Thus we have shown that the 
facts in question are in agreement with the hypotheses we set out as well as with 
the phenomena.

H604

9. {Method o f determining the individual elongations from the sun o f the first and last
visibilities}^^

It is immediately obvious [see Fig. 13.25] that if we take as fixed, for each planet, 
the norm al arc [arcus visionis] BD, and are given the beginning of [each of] the 
[zodiacal] signs at the intersection E, and hence angle BED, there will also_be 
given DE and the position in latitude of the planet at that elongation [i.e. DE],

"'See HAMA  241 n .ll .
“ Sec HAMA  242-56.
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Fig. 13.25
D

H605

namely K H  or 0 L ; thence will be given KE or EL [respectively], and also the 
[corresponding] apparent distance, D K  or DL. In this way, (to avoid 
lengthening our discussion), we com puted, for all the signs and for each ol theS 
planets, but for only one [terrestrial latitude], the interm ediate parallel used 
above, since that is sullicient in itself, the apparent distance from the true sun of 
the risings and settings [i.e. first and last visibilities], on the assumption tiiat the 
planets themselves were located at the beginning of the signs. We have set these 
out below, putting them, too, for the user’s convenience, in 5 tables, [one] lor 
[each ol] the 5 planets, each containing 12 lines. T he first 3 tables, for Saturn, 
Jup iter and Mars, are arranged in 3 columns: the first column contains the 
beginnings of the signs, the second the elongations at m orning rising, and the 
third those at ev ening setting. T he next 2 tables, for Venus and  M ercury, are 
arranged in 5 columns: the first, as before, contains the beginnings of the signs, 
the second the elongations at evening rising, the third those at evening setting, 
and the fourth, again, those at m orning rising, and the fifth those at morning 
setting. The layout of the tables is as follows.

H 606- 10. {Laxoul o f the tables containing the first and last visibilities o f the 5 planets}^^ 
H607

[See p. 647.]

*' The basis oi computation oi'these tables is in part unclear (see HAMA  242-56), hence I have not 
l)een able to recompute them to check the numbers. However, from Neugebauer’s computations, 
the follov^ing corrections to Heiberg have been made:
H606.6 Saturn, Morning Rising, Aries, icy X (with DK.Is) for icy a  (23;1°) {HAMA  248, n. 11). 
H606,7 Mars, M orning Rising, Taurus, K t<; (with DHKL) for ic t) (20;8°) {HAMA  248 n. 9 suggests 
20:19°).
See also HAMA  255 lor a suggestion to emend Venus, M orning Rising, Aries, to 2;0° from 3;0°.
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TABLES FO R  FIRST AND LAST VISIBILITIES O F TH E 5 PLANETS
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Beginning 
o<' Sign

SAT
Morning

Rising

URN
Evening
Setting

j u p r
Morning

Rising

TER
Evening
Setting

MA
Morning

Rising

lRS
Evening
Setting

Aries
Taurus
Gemini

23 30 
21 57 
17 52

11 28
11 41
12 26

20 10 
19 6 
15 51

10 19
10 29
11 10

21 12 
20 16 
17 21

11 40
11 48
12 30

Cancer
Leo
\'irgo

14 2 
11 34 
10 53

14 2
15 34
16 53

12 46 
10 40 
10 1

12 46 
14 31 
16 12

14 33 
12 28 
11 46

14 33 
17 19
20 5

Libra
Scorpius
Sagittarius

10 48
10 53
11 34

17 6 
16 53 
15 34

9 57
10 1 
10 40

16 34^ 
16 12 
14 31

11 38
11 48
12 34

21 1 
20 19 
17 32

Capricornus
Acjuarius
Pisces

14 2 
17 52 
21 57

14 2 
12 26 
11 41

12 46 
15 51 
19 6

12 46 
11 10 
10 29

14 45 
17 35 
20 26

14 45 
12 36 
11 49

\E N U S MERCURY
Beginning Evening Evening Morning Morning Evening Evening Morning Morning
ol Sign Risitig Setting Rising S«tting Rising Setting Rising Setting

Aries 5 10 4 9 3 0 10 28 9 58 9 43 23 58 23 38
Taurus 5 8 4 16 6 16 9 40 10 4 10 15 22 15 22 15
Gemini 5 12 5 7 9 15 7 36 10 18 11 47 18 0 16 44

G am er 5 36 8 23 9 50 5 59 12 22 15 34 14 4 12 30
Leo 6 16- 13 3 8 2 5 5 13 43 19 59 11 25 10 21
X’irgo 7 22 18 2 6 38 4 54 18 1 23 13 10 21 9 59

Libra 7 53 17 43 5 41 4 54 22 49 23 16 9 51 10 0
Scorpius « 20 13 47 5 28 4 55 20 1 22 1 9 44 10 19
Sagittarius 7 49 8 1 4 39 5 16 18 11 17 25 9 25 11 19

Cbpricornus 6 52 4 8 2 43 6 35 J  3 54 12 10 9 36 14 5
Ac|uarius 5 51 3 16 0 30 8 33 11 10 9 50 12 27 17 50
Pisces 5 22 3 38 0 24 10 16 10 11 9 43 19 15 21 46

11. [Epilogue oj the treatise]

VVe have now completed these additional topics, Syrus, and have shown the 
way to deal with almost all the topics which should, at least to my mind, be 
subjected to theory for the purposes of'this kind of treatise, at any rate as far as 
the time up to our own days“̂  contributed to greater accuracy in our discoveries 
or in corrections [of earlier discoveries], and as fai‘ as was suggested by a 
memorandum®^ directed only toward scientific usefulness, and not towards 
ostentation. So at this point our present discussion can be term inated at an 
appropriate place and at the right length.

H608

“ Cf. p. 37 n .l l . 
p. 37 n.l2.





Appendix A
Examples o f Computations

1 (a). II 4 p. 80. Given the terrestrial latitude (<p), com pute the distance of the 
sun from the summer solstice as measured along the ecliptic (AX.).
Example: (p = 4; 15° (cf. II 6, second parallel, p. 83).

From  Table I 15 X 5
10° 4; 1,38°
11° 4;25,32°.

Hence to a declination of 4; 15° corresponds a longitude (counted from 
equinox) of 10;33.33°.
Therefore the distance from solstice, AX = (90° -  10;33,33°) = 79;26,27° 
(text: 795°). -

1 {b). II 6 p. 89. Find the terrestrial latitude (cp) at which the sun does not set 
for a given period of time.
Example: Period of one month. Taking a month as 30 days, and assuming the 
sun to move 1% in the ecliptic, we find that the parallel in question cuts off30° of 
the ecliptic, or 15° either side of the summer solstice.

From Table I 15 X 5
90° -  15° = 75° 22;59,41°.

Hence (p = 90° -  5 = 67;0,19° (text: 67°).

2. II 9 p. 99. Given the longitude of the sun (X©) and the terrestrial latitude (i.e. 
the ‘clim a’), find the length of day or night and the length of the seasonal hour. 
Example: X©= 28; 18°. Place: Babylon (cf. IV 11 p. 212). W hat is the length of 
night?
We use the rising-time table (II 8) for Rhodes (M =
[a) First method.
Since it is night, we take the degree opposite the sun, El 28; 18°.
From the table: p (D  28;I8°): 69;27° 

p 28; 18°): 286;50°

Difference (in order of signs), A: 217:23°.
Length of night in equinoctial hours is A/15: 14;29*' (text: 14?'').
Length of 1 seasonal night-hour in time-degrees is A/12: 18;7° (text: 18°) 
(hence length of 1 seasonal hour in equinoctial hours: 1 ; 12,28*').

g g |



(b) Second method.
From rising-time table (II 8) at sphaera recta: a  (El 28; 18°): 88;9°

as above p ( II  28; 18°): 69;2T

650 Appendix A. Examples 2 -5

Difference (A): 18;42"
A /6: 3; 7°

Since Gemini is north of the ecliptic, add 15°: 18;7° 
This is the length of 1 seasonal night-hour in time-degrees.

3. II 9 p. 104. Given the length of a seasonal hour in time-degrees, convert the 
time in seasonal hours to the time in equinoctial hours.
From Example 2 (q.v.), length of 1 seasonal night-hour: 18;7°.
W hat is 5i seasonal hours after m idnight in equinoctial houre?
5; X 18;7/15 = 6;38, so the time is 6;38 a.m.
Ptolemy (I.e.) multiplies by I? and gets 65 equinoctial hours after midnight.

4. II 9 p. 104. Given the longitude of the sun (X.©), the terrestrial latitude, and 
the time in seasonal houi^s, fmd the point of the ecliptic which is rising (the 
■horoscop>e’).
Example (cf. V II 3 p. 336). Xq: Til, 13; 17° (text, ‘about the middle of Til,’) 

Place: Alexandria. Time: 2i seasonal hours after midnight. ‘
Length of 1 night-hour (>.3 = Tii, 13;17°, M  = 14 \ cf. Example 2): 16;38° 

Tim e liom sunset: 84 seasonal hours. 84 x 16;38: 137;14°
From Table II 8 for Clima III: p (8  13; 17°): ________3I;4°
(we take the point opposite the sun, since it is night) Sum 168; 18°.

168;18° is the rising-time (at Clima III) of the horoscope: p (115 19;51°)
( t e x t :  ‘a b o u t  Tip 2 2 ;° ) .

5. II 9 p. 104. Given the same data as in E.xample 4, fmd the point of upper 
culmination.
Total of seasonal hours from last midday: 6 day-houi-s plus 84 night-houn. 
Length of 1 day-hour: 13;22°
Length of 1 night-hour: 16;38°
6 X 13;22° + 8i X 16;38° = 80;12° + 137;14° = 217;26°
Rising-time at sphaera recta of sun’s degree: a (Til, 13; 17°) 220;46°

Sum: 78; 12*=
78; 12° = a  (H  19; 11°) (text: U  22i°).

‘ Ptolemy (I.e.) gives 2i equinoctial houn>, which is appioximately the same.



6. II 9 p. 104. Given the longitude of the horoscope at a given place, find the 
point of' upper culmination.
Example: same data as in Exam ple 4.

Rising*time of horoscope at Clim a III: p (nj 19;51°): 168;18°
-  90;0°
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78;18°
78;18° = a  (H  19;16°) (text: n  225°).
T he discrepancy from the result of Example 5 is due to the rounding to minutes 
of the tables and at every step of the computation.

7. I ll  8 p. 169. Given the date, com pute the position of the sun.
Exam ple (Cf. IV 11 p. 214). Date: Nabonassar 548, M echir [VI] 9/10, I f  
equinoctial hours after midnight.
From mean motion table. III 2:

A X q
540' 228; 42,48°

7' 358; 17,53°
150" I47;50,43°

8̂* 7;53,6°
13" 0;32,2°
0:20" 0:0,49°

Sum 547' 158̂ * I 3 f  743:17,21°- 23:17,21° 
K (epoch): + 265:15°

k : 288:32,21°
From Table III 6. for argum ent 288:32°, we find (by inteipolation) the equation 
as 2; 13,28°. This is additive, since K falls in the second column. 288;32.21°

longitude of apogee: + 65:30°

X: 354;2,21° 
9: + 2; 13,28°

k:  356:15,49^,
or about K  26; 16° (text: K  26; 17°).

8. I l l  9 p. 171. Com putation of the ‘equation of tim e’, E (given an interval in 
true solar days, find the interval in mean solar days).
Example (cf. IV 6 p. 198): 

t,: H adrian  17 (Nabonassar 880) Pauni [X] 20/21, 11;15 p.m. 
t2: Hadr.'an 19 (Nabonassar 882) Choiak [IV] 2 /3 , II p.m.

From the solar tables (cf. M anitius I p. 437):
X (t,): 42;21°, X (^): 8 13;15° 
X (ts): 206;42° X (tj): =2= 25; 10°.



Hence, from Table II 8 (rising-times a t sphaera recta): 
a (t,): 40;44°

_  _  a  203; 17°.
A X = X  (to) -  X (t,) = 164;21
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/X  oool E = 1;48° = 75 mins.
Aa = a  (tj) -  a  (to) = 162;33°J

Since AX >  Aa, we subtract E Irom the ‘simple’ interval, V 166'' 23 ;45\ to 
get, lor the intei-val in mean solar days, P 166‘* 23;37,48*’ (text; 231'’ = 
23;37,30'’).

9. V' 9 p. 239. Com putation ol' the moon’s latitude and longitude from the 
tables lor a given date.
Example: Nabonassar 466, T hoth [I] 7 /8 , 2 equinoctial hours alter midnight 
(cf. V II 3 p. 336).
From the mean motion tables, IV 4:

X S' 0) Tl
epoch value 268;49° 354; 15° 70;37°

450' 260;46,44° 323;26,5° 320;54,6° 10 ; 1 1 ,3°
15 • 140;41,33° 250;46,52° 70;41,48° I44;20,22°

6' 79;3.30° 78;23,24° 79;22,34° 73;8,40°
14” 7;41,10° 7;37,I6° 7;43,2° 7:6,41°

Sum 488; 12,57° 929;2,37° 832;56,30° 305;23,46°.
AX = 128; 13° IT = 209;3° 5) = 112;56° 2fi = 250;48°.

From anomaly table, V 8.
col. 3: c,(2Ti) = -  13;4° 

true anomaly a  = a  + ĉ  = 209;3 -  13;4° = I95;59° 
col. 4: c,{a) = 1;30° 
col. 5: C5(a) = 0;55° 

col. 6: Ce(2fi) = ;36,52 
equation c = C4 + C5.Cs = +(1;30° + 0;55° x 0;36,52) = +2:4° 
longitude = A l + c + X*poch = 128;13° + 2;4° + 4I;22° = 171;39° (text: 171;30°). 
0) = 5  + c = 112;56° + 2;4° = 115;0°. 
col. 7: latitude (3(co) = - 2 ; T  (text: -2 i° ) .

10. V 19 p. 264. Com putation of the parallax of the moon for a given time, 
place, solar longitude and lunar longitude, latitude and  elongation, from the 
tables.
Example: time, 2i equinoctial hours afterm idnight(true local time Alexandria); 
Xo: TTV 13; 17°; X c  W  21;30°, p <t: -  2 i°  (cf. V II 3 p. 336 and  Exam ple 9). 
From solar longitude and local time: culm inating point: Li 19;11° (cf. Example 
5).
Distance of moon from meridian: a  (up 21;30°) -  a  ( II  19;11°)

= 172;12° -  78;12° = 94°
= 6; 16'' east.



From  Table II 13 (Clima III), arguments 6;16*' (vertical) and ITJ 21;30° 
(horizontal), by interpolation in tables for Virgo and Libra: 

arc 90° 
east angle 172;30°.

Correction to arc and angle for moon’s latitude (cf. V 19 p. 272):
Crd (2 X (180° -  I72;30°)) = Crd 15° = 15;40^

Crd (180° -  15°) = C rd 165° = 118;58^
M ultiplying P by each of these and dividing by 120, we get 0;17° and 2;9° 
respectively. Then the corrected arc is given by 

V(90° + 0;16°)2 + (2;9°)2=« 90; 18°, 
and the corresponding angle of correction from: 2;9 x 120 = 2;5F , which

W 8
is the chord of ca. 2;44°, half of which is 1;22°.
Therefore the corrected angle is 172;30° -  1;22° = 171;8°.
VVe take the arc as exactly 90° (since otherwise the moon would be below the 
horizon).

Com putation of total parallax.
From Table V 18, argum ent (, = 90°.
Lunar parallax ( a t  = 195;59°, f] = 305;24°, cf. Example 9); 

col. 3 col. 4 col. 5 col. 6 
0;53,34 0;10,17 1;19,0 0;25,0 

with argum ent (360° -  a )/2  (®* 82°), from col. 7: minutes: 58,39
from col. 8: minutes: 58,31. 

Parallax a t syzygy: 0;53,34 + 0;10,17 x 0;58,39 = 1;3,37°
Parallax at quadrature: 1;19.0 + 0:25,0 x 0;58,31 = 1;43.23°

A = 0;39.46°
with argum ent (360° -  t]) = 54:36, from col. 9: minutes: 42,35.
Parallax: 1;3,37 + 0;39,46 x 0;42,35 «  1;32°.

Determination of longitudinal and latitudinal components of parallax. 
Angle between hour-circle and ecliptic see above): 171;8°.
This is greater than 90°, so we take the supplement, 8;52°.
Twice this is 17;44°, and the supplement of the latter I62;16°.
The chords of these angles are 18;30‘’ and 118;34‘’ respectively.
Latitudinal parallax: 1;32 x 17;44/120*» 0;13i°.
Longitudinal parallax: 1;32 x 118;34/120®“ 1;31°.
Latitudinal parallax is southwards (zenith to the north of the culm inating 
point).
Since latitudinal parallax is southwards and the angle greater than 90°, 
longitudinal parallax is positive.
Result: parallax in latitude: -0 ;13 !°  (text: -0;5°) 

parallax in longitude: +1;31° (text: +1;0°).
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11. VI 9. Given year and month, com pute lunar eclipse.
Example: Date, Nabonassar 28, Thoth (cf. IV 6 pp. 191-ii).
From Table V I 3, com pute mean opp>osition:

Days of T hoth  1T a  5)
Period: 26 9;55,35 267;58,12° 83;24,29° 230;10,5°
Y ear 2 8; 15,53 7;39,36° 285;25,4° 46;45,54°

Yean 28 18;11,28‘‘ 275;37,48° 8;49,33° 276;55,59°.
Tim e ol’mean opposition: 18; 11,28*̂  = T hoth  18/19, 4;35 p.m.
0) lies within ecliptic limits for lunar eclipse, which is therefore possible. 
Com putation of true opposition.

From Table III 6, c(lt): +2:21° solar equation 
F rom T al)le IV '10, c(S): -0;42° lunar equation.
T rue position in latitude: co = c5 + c(a) = 276; 14° at mean opposition. 

AX =2;21° + 0;42° = 3;3°.
M oon's true hourlv motion in longitude: 0;32.56 -  0;32,40 x 45' = 0:30.24°. 
At = 3 ;3 x |!4 .0 ;3 0 .2 4  = 6 ;3 l\
T rue longitude of moon at mean syzygy is less than true longitude ofsim (minus 
180°). So we add At to the time of mean opposition to get the time of true 
opposition as 11:6 p.m. (text: 11:10 p.m.).
Motion over At: 3;3 x }: = 3:18°.
We aM  this to the position in latitude: to = 279;32° at true opposition.
In 6;3l'’ motion in anomaly is 3;33°. so at true opposition a  = 12:22°. 
Com putation of circumstances of eclipsc.
From Table \T  8. II. argum ent 279;32°.
.At greatest distance .At least distance
M agnitude D uration M agnitude D uration
2:32 digits 0:26.22° 4:42 digits 0;39,35°

A: 2:10 digits and 0:13,13°.
From III, argum ent 12:22°: sixtieths: 0:43.
M agnitude: 2;32 + 2:10 x 0;0,43 = 2;34 digits (text: 3 digits observed). 
Duration: 0:26,22 + 0; 13,13 x 0:0,43 = 0;26,3l°.
To get time from beginning to middle of eclipse, we divide the duration, 
increased by a twelfth, by the moon's true hourly motion:

0:26.31 x H  ^ 0;30,24 = 0:57".
Beginning of eclipse (Alexandria) 10;9 p.m.
Eclipse middle l l ;6 p .m .
End of eclipse 12;3 a.m.
M agnitude ca. 2j digits.
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12. VI 10. Given year, month and place, com pute solar eclipse.
There is no example of a solar eclipse in the Almagest, so I have selected the 
eclipse of 364, Ju n e  16, which Theon observed at Alexandria, and gave as the 
example of com putation in his com m entary on the Almagest, first according to 
the Almagest, and again according to the H andy Tables (Basel edition pp. 332- 
339, cf. Rom e [6]). A somewhat dilTerent calculation of the same eclipse also



appears in some mss. of Theon’s small com mentary on the H andy Tables, and 
has been published in exlenso by Tihon, ‘Calcul de I’eclipse’.
Example: Nabonassar 1112, Thoth, Alexandria.
From Table V I 3 com pute m ean conjunction:

Days of T ho th  Ic F  ti)
Period: 1101 22;41,45 I9 ;ll,5 6 °  222;53,32° 65;41,57°
Year: 11 1;9,39 358;28,11° 271;4,19° 211;12,3°

Year 1112 23;51,24‘* 17;40,7° I33;57,5P  276;54,0°.
T im e of mean conjunction: 23;51,24'* = Thoth  24, 8;34 a.m. 
w lies within ecliptic limits for solar eclipse, which is therefore possible. 
Com putation of true conjunction.

From Table III 6 , c (k ): -0;41° solar equation
From Table I \ ’ 10, c(a): -3:50° lunar equation.

T rue position in latitude: co = (5 + c(a) = 273;4° at mean conjunction.
AX = -0;41° + 3:50° = 3;9°.
M oon's true hourly motion in longitude: 0:32,56° + 0:32,40 x 3^' = 0:34,56° 
(Theon: 0:34,56°).
At = 3:9 X 0:34.56 = 5;52^
Tim e of true conjunction: 8:34 a.m. + 5;52*’ = 2;26 p.m. (Theon: 2 + 1  + 10 
houi^s after noon).
M otion over At: 3:9 x I5 3:25°.
VVe add this to the position in latitude: o) = 276;29° at true conjunction.
In 5:52*' mean motion in anomaly is 3:12°, so at true conjunction d = 137; 10°. 
To lind time o l'appaient conjunction at A lexandria we have llrst to llncl true 
local lime. i.e. apply ecpiation of lime.
T rue longitude of sun at m ean conjunction: K + T .\+  c.(ic) =
17;40° + 65:30° -  0;41° = 82:29°.
Motion of sun from mean to true conjunction: AA. 12 = 0;16°.
T rue longitude of sun at true conjunction: 82:45°.
Hence equation of lime with respect to era Nalx>nassar (cf. Example 8 for 
method): +24 mins.
T im e of true conjunction with respect to noon a t Alexandria: 2;50 p.m. 
Calculation of apparent conjunction.
(1) Parallax com putation (cf. Exam ple 10).
From Table II 13, Clim a III, X = U  22:45°, 2;50 p.m.; 
zenith distance: 38:28° angle: 17;35°.
From Table V 18, ^ = 38;28°, a  = 137;10° (latitude of moon neglected): 

total parallax of sun: 0; 1 ,45“ 
total parallax of moon: 0;39,35° (from cols. 3 and 4 only)

Appendix A. Example 12 655

dilference in parallax: 0;37,50°.
Longitudinal parallax (for angle 17;35°): px. = 0;36°.

Tim e from true to apparent conjunction is found by dividing the above by the 
true hourly velocity of the moon: 0;36 0;34,56 «=* 1;2**.
Hence time of apparent conjunction (first approxim ation): 3;52 p.m.
(2) Second parallax com putation, for corrected time.



From Table II 13, Clima III, X. = El 22;45°, 3;52 p.m.: 
zenith distance: 51;48° angle: 18;32°.
In 1;2** motion in anomaly is about 0;33°, hence a  for corrected time is 
137;10° + 0;33°= 137;43°.
Neglecting lunar latitude, as before, from Table V 18, ^ = 51;48°, a  = 137;43°: 

total parallax of sun: 0;2,15° 
total parallax of moon: 0;49,47°

difference in parallax: 0;47,32°.
Longitudinal parallax (for angle 18;32°): p'x = 0;45°.

Com putation of the ‘epiparallax’:
Difference between first and second longitudinal parallaxes, 

d = p ' l -  p x  = 0;45° -  0;36° = 0;9°.
Further increment, f, is found by f:d = d:p, hence f  = 0;9 x 0;9 0;36 0;2, and 
epiparallax = d + f = 0:11°.
Final parallax in longitude: 0;36° + 0;11° = 0;47°.
To account ibr sun's motion add T̂ !th to this: n  x 0;47° =  0;51°.
Tim e from true to apparent conjunction: 0;51 ^ 0;34,56 =« 1;28*'.
Hence time ol'apparent conjunction: 2;50'’ + 1;28'’ = 4;18 p.m. (Theon: 45*’ p.m.) 
Position of moon at this time:

X: H22;45° + 0:51° = n23;36°
0): 276:29° + 0;51° = 277;20° 
a: 137;10° + 0:51° = 138;1°

Com putation of circumstances of cclipse.
Com putation of latitudinal parallax.

From Table II 13, Clima III. X = I I  23;36°, 4:18 p.m.: 
zenith distance: 57:18° angle: 19;46°.

From Table 18. with ^ = 57; 18°, a  = 138; 1°: 
total parallax of sun: 0;2,24° 

total parallax of moon: 0:53,2°

difference in parallax: 0;50,38°.
Latitudinal parallax (cf. Exam ple 10) for angle 19;46°: pp = 0:17°.

We convert this to a distance along the moon's orbit by m ultiplying it by 12: 
Ao) s  12.pp = 3;24° (Theon uses the factor l l j  and gets 3; 19°).
Since (0 is 277;20°, the moon is just past the ascending node. The effect of the 
parallax is southwards, therefore its elfect on o) is negative.
Final position of moon on orbit: 277;20° -  3;24° = 273;56°, apparent argum ent 
of latitude.
From Table \T  8, I, argum ent 273;56°:

At greatest distance At least distance
M agnitude D uration M agnitude D uration
4;8 digits 23:44,28 minutes 4;56 digits 26; 18,52 minutes 

of travel of travel
A: 0;48 digits and 2;34,24 minutes.

From III, argum ent a  = 138;1°: sixtieths: 51,39.
Magnitude: 4;8 + 0;48 x 0;51,39 = 4;49 digits.
Duration: 23;44,28 + 2;34,24 x 0;51,39 = 25;57 minutes of travel.
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W e increase the latter by n th , to account for the sun’s motion: 28;7', 
and divide by the moon’s hourly velocity, 0;34,56°, to get 
half-duration of the eclipse: 0;28,7 -s- 0;34,56 0;48,18*’
(Theon: 5 + i + 15 = 0;48*’).

Thus circumstances of eclipse (neglecting variation of zenith distance during 
the eclipse):
M agnitude: 4;49 digits (Theon: 4;39,18 digits)

Beginning of eclipse, Alexandria: 3;30 p.m. (Theon: 3;32 p.m.)
mid-eclipse, Alexandria: 4; 18 p.m. (Theon: 4;20 p.m.)
end of eclipse, Alexandria: 5;6 p.m. (Theon: 5;8 p.m.).

(Theon goes on to calculate the dilferences in beginning and end of eclipse 
because of the variation in the zenith distance, c f  Almagest VI 10 pp. 312-13. 
These am ount to 12 minutes earlier and 7 minutes later.respectively, verifying 
Ptolemy’s statements about the elfect on the intervals).

Using m odern tables (those in P. V. Neugebauer, Aslronomische Chronologie), 1 
fmd:
maximum phase at Ale.xandria: 5.6 digits
times of phases at Alexandria: ijeginning: 15;18*'

middle: 16;28*'
end: 17:24".
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13. \ ' I  13 p. 319. Given the circumstances of an eclipse (magnitude and times 
of principal phases), com pute the 'inclination' (irpooveuaiq, i.e. point on the 
horizon towards which the line joining the centres points).
We take as e.xample the solar eclipse of E.xample 12 (364June 16 = Nabonassar 
1112, Thoth 24), beginning of eclipse (lu st contact).
Given: time at Ale.xandria, 3;30 p.m.; magnitude. 4:49 digits.
First, ilnd the rising-point of the ecliptic (cf Exam ple 4).
The longitude of the sun is I I  22:45° (Example 12 p. 655).
T im e in seasonal hours at A lexandria (cf E.xample 2): 3*’ after noon.
Hence rising-point of ecliptic: TTl, 10°; and setting-point is therefore 8 10°. 
From  Fig. 6.7, azimuth of 8 10° at Clima III:

8 0° 13;33° N. ofW . 
n  0° 23;53°N . ofW . 

Hence 8 10° is 17° N. ofW . 
From Table 12. col. 2 argum ent 4;49 digits: 37;41°. 

Moon is north of ecliptic (o) is somewhat more than 270° in Example 12). 
Hence this angle is set olf to the north of the setting-point 
So point o f ‘inclination’ on the horizon is 17° + 37;41° = 54;41° N. of W.

14. X I 12 p. 554. Com pute the longitude ol'a planet from the tables for a given 
time.
Example: M ars, Nabonassar 886, Epiphi [XI] 15/16, 9 p.m. (cf. X 8, where 
M ars is obseived for this moment).



i
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From mean motion tables, IX  4, find m ean longitude and mean anomaly:

epoch 3;32° 327;13°
810- 138;15,13° 24;48,59°

72> 92;17,21° 250; 12,21°
y 213;50,43° 145;25,31°

lO™ (300") 157;13,4° 138;28,21°
14“ 7;20,13° 6;27,43°
9” 0; 11,47° 0; 10,23°

885- 314" 9'' 612;40,21° 892;46,18°
hence \  = 252;40° a  = 172;46° (as X 8 p. 500).

Apogee p>osition at epoch: 213 16;40° 
motion of apogee in 886' (at 1° in 100 )̂: 8;52° 
hence apogee position at date: 115;32°.
M ean centrum  (R): 252;40° -  115;32° = 137;8° (X 8: 137;11°).
From anomaly table (XI 11):
with argum ent ic, find equation of centre from col. 3 and col. 4:
137;8°- 9,-3 -  0;41 = 8;22° (ci: X  8, Z ZBE = 16;44°°).
Since K is in the lii'st column (less than 180°), we subtract the latter from ~k and 
add it tocT:
V  = 252;40 -  8;22 = 244; 18°, a  = 172;46 + 8;22 = 181;8°.
W ith argum ent a . take the equation from col. 6: Ct;(181;8°) = 2; 10°.
W ith argum ent ic, take the 'sixtieths’ from col. 8: Cs(137;8°) = 37,9
Since Ic is between mean distance and perigee (cg positive), we take the
increment from col. 7: C7(181;8°) = 0;53°.
Then etjuation of anomaly c = Cg + Ca.C7 = 2; 10° + 0;53° x 0;37,9 = 2;43°. 
(cf. X 8, Z BEX = 5;26°°).’
Since a  is greater than 180° (in second column of argum ent), this equation is 
negative.
Thereibre X = X' -  c = 244;18° -  2;43° = 241;35° (X 8: observed: I  15°).

15. X III 6. Com pute latitude of planet, given ‘corrected longitude’ (see p. 635 
n.55: distance of epicycle center from apogee, Kq) and ‘corrected anom aly’ (a). 
{a) O u ter planet. Example; Jupiter, Nabonassar 507 X I  18, 6 a.m. (cf. X I  3 
p. 522)
Given: Kq = 29G;40°, a  = 72;3°.
0) = Ko -  20° = 270;40°: Cs((o ) = 0,43 (Table X III 5).
0) >  270°, so we enter col. 3: c^{72;3°) = 1;2I°.
P = C3.C5 = 1;21 X 0;0,43 +0;1° (northerly since we took Cj).
Text says that Jup iter occulted 5 Cnc, which according to the star catalogue 
(X X V  5) had a latitude of-0g°. Thus there is a discrepancy of 6°. Tuckerm an 
(- 240 Sept. 4) gives P +0;14°. Since 5 Cnc was, by m odern calculations, 
almost exactly on the ecliptic a t the time of the observation, there could not 
have been an  occultation.
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{b) Inner planet. Example: M ercury, Nabonassar 486 IV 18, 6 a.m. (cf. IX  7 
p. 450)
Given: Kq = 129;44°, a  = 239; 15°.
Table X III 5, argum ent a: = 1;27°,

C4 = 2;29°. Since 90° <  ko <  270°, we add to the 
latter I'oth of itself: c% = 2;29® + 0;15° = 2;44°. 

K' = Ko + 270° = 39;44°. Cs(k') = 45,55. 
p, = 1;27° X 0;45,55 = 1;7°.
Condition A2 (p. 635) holds, since k ' <  90°, 90° <  a  <  270°, so p, is northerly. 
k"  = Ko + 180° = 309;44°. Cs(k") = 38,11.
P2 = c^.cs = 2;44 x 0;38,H  = 1;44°.
Condition A2 (p. 636) holds, since 270° <  k "  <  360°, a  >  180°, so P2 is 
southerly.
P3 = 0;45° X C5(k").C5(k") = 0;18°. This is southerly.
P = P, + P2 + P3 = +1;7° -  1;44° -  0;18° = -0;55°.'
Te.xt says M ercur\' was ‘3 moons to the north’ of 5 Cap. In the star catalogue 
(X X X I 24) this has a latitude o f-2°; so according to the ol)servation M ercury’s 
latitude should be about -^°, a discrepancy of about 1° with the computation. 
From Tuckerm an, for -261 Feb. 12, 6 a.m. Alexandria, I fmd a latitude of 
about +0;8°.





Appendix B
Corrections to Heiberg’s text

This is a list ol' all corrections to the Greek text of the standard  edition which I 
have adopted in making the translation (lor certain types of corrections omitted 
see Introduction p. 4). For each item I give the reference in Heiberg’s text, the 
correction (usually the reading ol' Heiberg lollovved, alter a colon, by the 
reading I adopt), and the page and note in whicfi I make and, where necessary, 
justiiy the correction.
H16,9 TOt TtXeiova : ;rA.eiova 41 n.30
H 2 3 J auTTiv : auxov 44 n.39
H35,18 £vt£5j0£v : outoBev 50 n.58
H 42,l Aotitfi : f) XoiTrfi 53 n.62
H48,20 va ; v5 58 n.68
H 54.105 : Y 59 n.68
H55,43 : ^5 59 n.68
H56,15 kC : K0 59 n.68
H57,37 vc; : vs 59 n.68
H 5 8 J3  pia : 59 n.68
H60,17 Kq : VC, 59 n.68
H65,13 ujroGenciTtov : ujio08|aaxio)v 62 n.71
H72,13-15 w ote . . . OTraKoueaSo) del. 67 n.80
H75, 2 TO arm etov : TCt ar||iE ta 68 n.83
H81,29 la  : a  71 n.87
H 81 ,50k  : a 71 n.87
H83,10 ^  73 n.89
H83,13 ^  73 n.89
H86,20 Kttid 5eKa^oip'iav TrapaXXriXov ; Kaxct TiapdXXriXov 28 n.2 
H 9 2 ,8 i^ ;  77 n . l l  
H 9 2 ,ll ic/ : ifq 77 n . l l
H95,18 jtpoeKTiOe^evwv : 7tpoeKTE0ei|ievo)v 79 n .l3
H95,22 7iEpi(pEp£ia ; TrEpitpEpEiSv 79 n .l3
H105,13 £ y '  : 84 n.28
H108,13X(; ;X 8 5  n.38
H108,20 Try i3 ' : TtY TB 85 n.39
H109,9 Py Z 'Y ' ; pY Z ' i ' 86 n.41
HI 10,3 iiY 5 : Py a  86 n.43
H I 10,6 pjiB : ^  5 ' 86 n.45
H 1 1 1 ,9 Z ' y '  iP ' : iP ' 87 n.52



Z ' c,' - . m i '  87 n.54 
H I 12,3 X : a  87 n.56 
H,113,4<;' : y '  88 n.6I 
H I 13,3 i|3' : [S’ 88 n .62 
H122,7 p a  : |T a  93 n.73 
H 1 2 3 ,ll 5 : o 94 n.74 
H123,21 M E : 94 n.75 
H 138 ,2pn  : |In 99 n.80 
H I 75,7 |ib vTi : |at) ht] 130 n .l08  
H181,7 p |i^ Xa Xa : p Xa 130 n. 108 
H183,17 XP : Xp X 130 n.l08 
H186,17 pXP I 710 V : pXP k; n0 ia6 130 n. 108 
H189.6 SuoiaiKWTepoq seclusi 130 n .llO  
H I96,15 dKoXouaOov : dKoXouOov 134 n. 10 
H I 98.24 £(p' sauTotJ: u(p’ EauxoC 135 n. 13 
H 2 10.23 va : X 141 n.29 
H210.24 iP : va 141 n.29 
H210.25 X : ip 141 n.29 
H215.38Xe : X<; 141 n.29 
H225.4 ono'ia seclusi 148 n.39 
H225,Fi3Uf. A addidi 148 n.40 
H233.2 aTtouSnq : jrctaTiq cttou6t|<; 153 n.45 
H239.12 Tjan^a : iijiiKUKXiov 156 n.48
H240.16-17 tffq dvto^aX'iac; e;riaKev|/e(0(; : xwv dvto|aaXitov Kavovonoi'iac;

157 n.49__________
H247,6 p X5 Xg : p X6 162 n.53 
H249.20 p X6 Xq : p X6 162 n.53
H251,24 7rp6<; dTtoyeioK; : Kpoc; xoTq dTcoyEioK; 165 n.56 
H254.5 £jroir|od|a80a : 7ioir|a6|i80a 166 n.58 
H261.14 5id(popov ; KXeTarov Sidcpopov 171 n.67
H266,5 aeXrivTiq : tfjq yfjc; to u te o t i  to u  i^wSiaKou 5id to u  KEvtpou 

TTig aEXTjvTic; 173 n.2 
H267.4 Tttutaq : xaq  auxdc; 174 n.3 
H269.9 Ktttd TO jiXdtoc; : icaxd JtXdxog 175 n.5 
H280.5 Xa : X 180 n.20 
H294,6 xauxT](; : ical x^q aux7i<; 180 n.22 
H301.10 aOptpwvog dEi : oumpwvoq 190 n.28 
H 3 17,4-5 o^iox; ax; jin uttokeihevou xoutou : ofjoicoq 200 n.42 
H 3 17,25 xp'iywvov : 6p0OY(6viov 200 n.43 
H318.8 BEZ : BEZ opOoyoiviov 200 n.44 
H319.4 xpiywvov : opGoywviov 200 n.43 
H319,7 e5eIx0ti ^  : pic 201 n.45 
H319,14 xp'iywvov : opOoywviov 200 n.43
H321,14-15 xou ETtiKUKXolj [E^TiKOvxa] toieTx6 ttTt’ auxTiq/yx, Mv xd,yx : xdu 

ejtikukXou xSv auxffiv feoxiv £dv xd jyx toTj XExpaycovou 201 n.46 
H332.14 yEvonEv^ : yEV0|a£VTi 208 n.59 
H344.5 p ^  f\ : poE Kai 213 n.70
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H347,16-17 f ||iioe i Kal tp'n(p Kai SeKdtq) ; fjn ioei Ka'i tpixw Kai fjn'ioei Kai 
TpiTQ) Ktti 6£KdxQ} 215 n. 75 

H 353 ,l-2  tS v  ev dpxti Tf|q ouvrd^emq U7to5e6ei7nev(ov : xQ ev dp-xx} 
auvxd^eax; dnoSeSeiYiievw 218 n.3 

H 353,24-354,1 koi 5id xflq dTtevavxiov koX TiapaXXTiXou xoG kukXou irXeupac; 
dioTcep k6K0XXt)h8V0(; d^(poxepa^ auxSv xaTq eTrKpavEiaic;: tboiiEp 
KeKoA.Xri|i£vo(; d^(poxepal(; aux%  xaTq eJiKpaveiaic; 219 n.5 

H358,20-21 del. Kai ypdtpeiv TiEp'i x6 Z Kevxpov xov AH SKKevxpov 221 n.B 
H360, Fig. corrigenda ut 222 n.9 
H363,16 v ' : v a ' 224 n .l3
H385,7 d7coxeA.ou|ievr|<; dvw^aX'iaq : drroxeXou^Evriq 235 n.28
H395, Fig. corrigenda ut 240 n.33
H 404,17-18 del. npoq x^ ai)X^ ypa^ ji^  245 n.41
H 416,18-19 iransposui post 1.8 251 n.50
H417,23 del. 7tXeioxr|^ oiioTn; 252 n.55
H 431,4T io ; IT 260 n.7U
H431.13TI o : M 260 n.70
H443.41 |ia  : ko 264 n.73
H449,16 6 i’ aOxou : 5id xou H 267 n.81
H 451,12-13 del. 6id x6 jroXu eKeivtov auxag 5e56o0a> 269n.83
H 465J0  ^  : va 277 n.H 
H 475.2P  o : p:282 n .l4  
H475.6 V? o : ^  282 n .l4
H 475,15-17 del. 6oOevxo(; xou kux' auxT^v TtXriOouc; xSv iari|a£pivSv wpcSv xfiq 

dno xoi5 laeoTmPpivou dKoxng 282 n. 16 
H477.I0 5 : 5 ' 283 n .l9  
H485.22 del. Kai 287 n.31 
H 490J6  (iEyiaxri^ : fiearji; 290 n.35 
H494.12 fiEyiaxov : |i£oov 292 n.43 
H498,8 del. an d  o kS 294 n.47 
H501,10 5id ; Ka'i 5id 295 n.52 
H501.18 del. ydp 295 n.52 
H507.3 del. ouv 298 n.57 
H 512,1 (paivo^£vo)v : yivo|i£va)v 302 n.58 
H 5 1 4 ,2 0 y : Y' 303 n.62 
H 5 19,20 X,y kP o : Xy K 3 o 305 n.63 
H521.27 mP : vp 305 n.63 
H521.29 ? : ic; 305 n.63 
H521,31 ^p : vP 305 n.63 
H 537.I2-13 del. XTj<; EKXEivi/ewq dvEU 314 n .78 
H539.7 EKxoq : Evxoq 315 n.82 
H 544J3  kC : X6 318 n.86 
H544,23 k5 : Ka 318 n.86 
Fig. ad llnem Vol. I corrigenda ut 316 n.83 

II H4,14 xf|v : x%  322 n.6
H9,4 Xa^PdvEi : dnoXapPdvEi 325 n.32 
H I 1,10 xov : rooq 326ji.44



H12,I2_del. elc id  e7t6^eva 327 n.49
H29,7 ip ; ip ^ 3 6  n.73
H32.I TOE : TO0 337 n.81
H32,18 ^ £ x o v  : dnevov 338 n.83
H32.19iB : iB' 338 n.84
H33,20 enexov : dnexov 338 n.83
H37,2 Ta?<; tou : xaTg eitoxriq tm tou 340 n.92
H39,6 ic; : I q' 341 n.96
H43,14 kP Z' f3" : Kp Z' 343 n .l04
H43,I5 Ky' : K y ' 343 n .l06
H44,19 ETTOiJEvoc; : TtpoT̂ YOÛ evoq 344 n. 110
H45,20 TiC : TTY 345 n. 111
H 46J3 del. o^iou JIa 345 n .ll4
H47,4 n y '  :TVf 345 n .ll2
H47,7 I y' : ly 345 n.l 13
H55,5 V F  : vy 348 n.l23
H58.16auxGv ; aoxoTJ 350 n. 135
H59,3 ic6 : k5 <;' 350 n.l33
H 64,19tS v : TotJ 353 n .l42
H67,19i(; : i y ' 354 n.l47
H69.13 Kg : Ky 354 n. 150
H71,18 K<; : Ky 355 n. 155
H85.18 I Z ' : I 361 n.l73
H89.4 iC Z' : s' 362 n.lBO
H90.5 EKTOi; ; ektoc; 363 n. 190
H9l,10 Ktt ; k6 364 n .l95
H96.13 5 Z' y'  : C 5' 366 n.212
H96,14C 5' : 5 Z' y' 366 n.212
H 10K6y e' : y 368 n.221
H103,7 y' (pr.) ; g' 369 n.226
H 103,8Z' : q' 369 n.227
H103J0 p Z' : p Z' y' 369 n.228
H105.7(;' : Z' 370 n.240
HI 11,13 K VO ir) 1  ̂ : K g' VO it] 372 n.7
HI 11,14 K g' VO IT] : K VO iTj [T 372 n.7
H H 3 J  K£ : K0 373 n.9
HI 15,18 Ky Z' y' : Kg Z' y ' 375 n. 18
H120.10 pope'icov : votiwv 377 n.31
H I36.8 aoxSv : auxotJ 384 n.76
H147,18ng g' : ng 389 n.lOO
H149,4 Z' 6' : ^0 Z' 389 n.lOl
H161,8 Xy : Xy '  395 n.l31
H161,12^y : ^ y ' 395 n.l33
H 1 65 ,13ay ' : X y' 397 n.l46
H I66,2 auxSv : auxS 397 n .l49
H 169,12ia : i5 399 n.l57
H I72,8 To^oxou : xo^ou 400 n. 161
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H I72,11 To^otou : to^ou 400 n. 161
H176,18 t6  vcoto) : x(3v cotqv 403 n .l72
H176,24 TotJxo Tipena oXov : oXov toCto T^pe|ia 403 n .l73
H I77,13 del. ai)T^ 403 n .l74
HI 79,4 Trapd : utio 404 n .l77
H179,14-15 Ktti xSv ; drco xoD 404 n .l78
H181,5 nXsvpdq : nkevpSv 405 n .l82
H I86,13 auToC : auxQv 407 n. 188
H I90,18 dvateXXovToq ; dvaxeiXavTOC 409 n.l95
H I90,22 KttxaSuvovxoq : KaxaSuvavxoc; 409 n .l96
H I92,19 del. (paivonEVOV 410 n.l97
H192,20 post |i£aoupavT]OTi add. Kai x6 UTiep Yfivxouxou(paiv6|i6vovYiv£xai 

4 1 0n .l97  
H194, Fig. corrigenda ut 411 n.200 
H198,18 Suvaxov [eTvai] : 5uvax6v eTvai 413 n.204 
H200,6 x6 : xot) 414 n.207 
H200,7 0Z K  : H0ZK 414 n.207 
H200.13 iceKXi|ievou : £YK?^ivo^evou 414 n.208
H203.14 x6 Kttx' avTCK; xSv xSv daxEptov (pdaewv xt|pTiaei(; : k o x ’ auxdq xdq 

x(5v ipdoEwv xTiprioEiq 416 n.211 
H204.3 drr' aOxSv : djto 417 n.212 
H 2 1 6 ,I ,^  :,yu 424 n.25 
H 2 1 6 ,2 ^  :^ 4 ^ 4 _ n .2 6  
H 2 1 9 , 2 ^ ^ n  ^  k 426 n.31 
H219,7 v|3 ?iri : vP vr| 426 n.32 
H235,24 (; : vc; 426 n.33 
H238,3 p  : o fi£ 426 n.33 
H250,17 del. Kai 442 n.37
H259,4-5 del. f| vnd rQv’iaoiv nXevpSv 447 n.47
H260,8 post dva)naA.'iav add. Siacpopoo 448 n.48
H 264J8 K0' : Ka' 450 n.58
H264,24 5tiXov6xi ; 5e 450 n.61
H265.16 del. X '451 n.63
H271, Fig. corrigenda ut 454 n.79
H273,19 it i' : i0' 456 n.81
H275,13 k5 ' : Ka' 456 n.84
H283,4auxou : auxQv 461 n.91
H294,5 rrj y' : rfj 467 n.l05
H297,5 i5' ; 5' 469 n.4
H298,14-15 KaxaX.d^^Elv : KaxaXd|av|/£iv 470 n.8
H303,2 EKdxEpa ; SKOXEpac 472 n. 11
H 311,4^£xpl : a ' exoc; 477 n.I8
H311,5 toJt5' : a)Ji5 eoxiv dTto NaPovaaadpou 477 n .l8
H 314,22 dvo)|iaXiQv : dva>|iaXia(; 479 n.20
H318,18 auvo5Ei)£i : ouvoSsuaEi 481 n.25
H319,8 del. xouxeoxiv A.£i(p0£Taa Oti’ aOxrig 481 n.27
H322,l SiacxdaEox; : 5la^Expou axdoEox; 484 n.31
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H324,8 auTtti : a u ta i  486 n.35
H324,22 KAM, IT Y  ; KAM t S v  IT Y  486 n.37
H 329,17 TCpoq touto) : svtoq toutou 488 n.41
H 3 3 5 ,9 l0  : f a  492 n.48
H342,23 Tttuxa : TaOxd 494 n.53
H345,22 © r  : ©FM 498 n.55
H348,10 del. y ' 500 n.61
H371, Fig. corrigcnda iil 512 n.5
H373, Fig. corrigciida ut 514 n.6
H379.3 post EJTOiiEva add. xou dTroyeiou 518 n.lO
H381, F’ig. corrigenda ul 519 n. 11
H389,2 n £K ToC : fi B 0  £K xou 523 n .l8
H396,10 Py : 1 ^  527 n.24
H396,13 ppf : 527 n.24
H41L22T : a 537 n.29
H412,l UTTOKEixai : ujteKEixo 537 n.30
H 417J3 UTtOKeixai : oiteKEixo 540 n.33
H424,6 5 ' : i5 ' 543 n.37
H425,9 G j J  543 n.39
H 425.14|i6 : Py 544 n.39
H428.18 del. Ttpwxwv 545 n.45
H433,4T^ ;-^ 547 n.52
H441.49 10 : le 548 n.55
H442.17 XC : vC 548 n.55
H443.34 va ; v5 548 n.55
H443,36 v£ : v0 548 n.55
H443.43 VT1 : ^rl 548 n.55
H444.9 k5 ; kO 548 n.55
H460,13 xou EKKEvxpou : EKKEvxpou xou 560 n. 11
H470,6 xou : 567 n.28
H470.8 ^ri5Ev6<; : ^r|5£v 567 n.29
H 47M 8-19  del. xoiouxuv 568 n.34
H 471 ,20^  : Vt] 568 n.35
H472.5 nP : 115 568 n.36
H474,16 auxSv : auxaic; 570 n.41
H 4 7 5 ,1 4 ^ : q' 570 n.43
H476,9 auxQv : auxaTg 570 n.41
H477,18 auxSv : auxaTc; 570 n.41
H483,22 V q : ^  575 n.58
H494,20 n£0o5euon£v ; |i£0Q)5£uaa^£v 583 n.82
H497,2I xoiJ (XTioYe'iou : and  xou dJtoyEiou 584 n.84
H504,20 del. ax'ixou 587 n.90
H513,16 del. Ktti 591 n.93
H519,13 V : vy 595 n.lOO
H520 del. colum nam  quartam  596 n. 102
H$25,23 del. x6 nXE?axov 597 n.5
H 526,l del. xQ JiXeioxQ) xoxe 598 n.6
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H537,20 del. te 602 n.24 
H 554 ,ll KAM : KAM 613 n.36 
H 590J8  del. laEYioTOO 636 n.60 
H606,6 KY a  : Ky A. 646 n.83 
H606,7 K r) : K i<; 646 n.83





Appendix C
How did Flolemy derive the mean ?noiions for the Jive planets?

O u r discussion concerns oni\- the mean daily motions in anomaly, since the 
mean daily motions in longitude are not derived independently: for Venus and 
M ercury the latter are identical with that of the sun, while lor the outer planets 
they are found l)y subtracting the mean daily motions in anom aly from the sun’s , 
mean daily motion.

T he answer to the above question would seem to Ije provided by those 
chapters entitled. ‘O n the correction of the periodic motions [of each planet]’, 
IX  10 (M ercury), X 4(\''enus), X 9 (M ai’s), X I 3 (Jupiter) and X I 7 (Saturn). In 
every case Ptolemy determines the position of the planet on the epicycle at one 
of his own observations, and also at an ‘ancient’ obseiA’ation (appro.ximately 
400 years earlier). From the (Babylonian) period relations stated in IX 3 he 
computes how many integer revolutions in anoinaly have occurred between the 
two observations; this plus the increment in degrees derived from the two 
observations gives the total motion of the planet in anomaly. Division of the 
latter by the inteival in days and fractions of a day between the two 
observations gives the mean daily motion in anomaly, and Ptolems' e.xplicitly 
states in every case that this was the basis of the mean daily motion used in the 
tables (IX 4).

However, if one does the computations implied in the above chapters using 
Ptolemy's numbers, in no case does one find agreem ent with the mean daily 
motions in anomaly which he actually lists,' as the following shows.

Ptolem y’s mean daily motions in anomaly (IX  3 pp. 424-5)

h  0;57,7,43,41,43.40°/; [1] 
0;54,9.2,46.26.0°^ [2] 

(5 0;27,41,40,19,20,587d [3] 
9  0;36,59,25,53.11.28°/^ [4]

§ 3;6,24,6,59,35,50°/d [5]
p. 543 h  travels 35,11,51 ;27° in 36,57,59:45''- 0 ;5 7 ,7 ,4 3 ,4 1 ,7 5 % ^  [la]
p. 524 % travels 34,31,45:45° in 38,15.32;57.30' -  O M ,9,2,45,8,48%  [2a]
p. 504 S  travels 19,13,1;43° in 41,38,1;40“ -  0;27,41,40,19,25,7%' [3a]

'C r. Newton pp. 320-1, 325-7, where the discrepancy is descril)ed almost correctly, but 
implausible consequences drawn.

'  In these and sul>se(|uent computations the last place is rounded on the basis of one more 
compiued place.

 ̂Ptolemy (jivcs an increment o f’t day’, implying6 a.m. lor the lii-st observation and 10 p.m. for 
the second. If we assume (improbably) that the second was in Tact 10;25 p.m. (cf. p. 484 n.32), and



p. 479 $  travels 25,35,38;25° in 41,30,52'* -  0;36,59,25,^9,5,5/%" [4a] 
p. 467 § travels 2,6,52,6;53° in 40,50,13;33,45‘‘ -  3;6,24,6,55,J9,^^% ^[5a]

T he worst of these discrepancies, that tor Ju p ite r ,” does not produce an error 
of as much as one minute of arc in 400 years. Hence it is clear that Ptolemy had 
no motive for ‘fudging’ here (and also that it is strictly illegitimate to derive a 
mean motion to the sixth sexagesimal fractional place I'rom observations 
separated by only 400 years). But, although his obseivations are essentially in 
agreement with the mean daily motions he uses, the latter cannot be derived h om  
them, not at least by the method he states.^

An alternative possibility is suggested by the way the derivation of tne mean 
motions is presented in IX  3. T here Ptolemy expresses them in ihe form ol 
‘corrections’ to the period relations, e.g. ‘for Saturn, 57 returns in anomaly 
correspond to 59 tropical years plus I i days’. These are reduced to degrees and 
days, e.g. ‘Saturn travels (in anomaly) 20520° in 2155I;18‘̂ ’. It is plausible to 
suppose that the latter are actually prim ary, i.e. the corrections ‘plus l i  days’ 
etc. are derived from the equivalences between da\ s and degrees together with 
the param eter ‘one tropical year equals 365; 14,48‘‘’.® These equivalences can be 
derixed from the pairs of obseivations in IX  10 etc., com bined with the 
Babylonian period relations, as follows.

E.xample: Saturn. From Hipparchus Ptolemy knew the Babylonian period 
relation, 57 returns in anomaly take place in 59 years, i.e. that the planet travels 
(57 X 360)° in approximately (59 x 365:14,48)^*. He knew iiom his pair ol 
observations that it travels 35.11,51:27° in 36,57,59,45"*. P'rom the latter 
equivalence he could derive a 'correction' to the period ofdays in the former, by 
multiplying 36,57,59:45 by (57 x 360) and dividing the result by 35.11,51:27. 
This produces 5,59,11:17,59,55. . o r (rounded to the neatest sixtieth) 
21551:18‘*, as in IX 3. The corresponding calculations for the other planets are: 
% 38.15,32:57,30x(65x360) ^34,31,45:45 = 7,12,7:36,42,19. . ."or(rounded) 

25927:37^ as in IX 3. 
s  41.38.1:40 x (37 x 360) ^ 19.13,1:43 =8,0.57:40,45,50. . or (rounded) 

28857:41^ Te.xt in IX 3 has 28857:53, em ended by me to 28857:43 [cl\ n.8).
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ihe incremeni actually 16;25'’, this would make the inteival 41,38,1 ;4i,2,30‘‘. leading to
0 . 2 7 1 8 , 4 6 J2°h,  which is even more dis«.rt.-pant.

* But see p. 479 n.21. The inteival, which Ptolemy rounds to integer days, should probably be l i  
or 1̂  houi-s less. These corrections lead to daily motions of 0;36,59.25,5/,i6'.2i/° and 
0:36..59.25,52,29./9°. of which the second is much closer to, but still not identical with, the 
tabulated daily motion.

 ̂Applying the ec|«ation oClime ol'-23 mins. to Ptolemy’s obsen-ation, i.e. taking the increment 
as I3;7". instead ol' ISl. leads to a daily motion of 3:6,24,7.^..?°. which is even more discrepant.

" Assuming that we correct the interval lor Venus as in n.4.
’ In case anyone should conjecture that Ptolemy computed the times ol'the ol)scr\-ations more 

precisely than he slates (with e.g. corrections lor ec|uation ol' time), I note that in order to get 
Ptolemy’s mean daily motion accurate to the sixth sexagesimal fractional place directly from the 
obstfiA alions, these would liave to l>e reirorded to an acciu acy otseconds, which is totally implausible.

"iThis works well for all planets except Maix (where the text ligure, ‘28857;53'‘’ is cei tainly 
coniipt: I have emended ‘53’ to ‘43’, but ‘42’ would give perlect agreement with the above 
hypbthesi.s) and MtfcuVy, where '+1 jJi'*’ should rather l>e ‘+1;3'*.’ But, rather than emending t o '1 j'*)'*’ 
(which is possible), we can regard 'Ijh**' as simply a small inaccuracy.



$  41,30,52 X (5 X 360) ^ 25,35,38;25 = 48,39;40,5,19. . or (rounded) 
2919;40", as in IX  3."

§ 40,50,13;33,45 x (145 x 360) h- 2,6,52,6,53 = 4,40,2;24,]. . or (rounded) 
16802;24‘', as in IX 3.

From  these ‘corrected period relations’ the m ean daily motions can now be 
derived:

k  20520° in 2i551;18''leads toO;57,7,43,41,43,39,41. . in agreement with 
[!]•

% 23400° in 25927;37'^ leads to 0,54,9,2,42,55,52. . in disagreement with
[2], and worse than [2a].

s  13320° in 28857:41" leads to 0:27,41,4 0 J5 ,59,/2 . . .%  in disagreement with
[3], and worse than f3a].‘®

9  1800“ in 2919:40'' leads to 0:36,59,25,53,11,27,36. . in agieement 
with [4]."

§ 52200° in 16802:24^' leads to 3:6,24,6.59,35,49,55. . .%. in agieement 
with [5].

Thus, petverse as this procedure may appear, it could theoretically be u.sed to 
derive Ptolemy's mean motions lor Saturn, \ ’enus and M eicury. However, it 
fails miserably for Jup iter and Mars, which casts doubt on the validity olthis 
explanation in general.

Let us sup|X)se. instead, that Ptolemy found his m ean daily motions by some 
other method. Then tlie equivalences 'Saturn  travels 20520° in 2I55I;i8'*' etc. 
can be directly derived by division of 20520 by 0;57,7,43,41,43,40, etc.,'" and 
the pairs ol'obserx ations in IX  10 etc. are simply used as a c/zt'cL E.g. lor Saturn 
Ptolemy found from the obseivations an increment of 351:27° in 364' 2194**. 
From the m ean motion tables one linds, for the latter interval. 351;26,59°. The 
corresponding numbei-s for the other planets are:

■21 377' 128'*- l "  obseivations 105:45° tables 105:45,48°
(5 410' 2 3 observat i ons 61:43° tables 61 ;42,55°
$  409" 167‘‘ obser\-ations 338:25° tables 338:27,48°*^ '
$ 402' 283̂ * 13:'' observations 246;53° tables 246;53,28°.

Thus the observations can in every case be regarded as justifying the mean 
motions used, within the accuracy attainable. O n this assumption, Ptolemy had 
derived his mean motions I'rom some other source, and simply did not bother to

^Takinif an intfival l |  or i j  hoiirs less (see n.4) makes no dilVcrence to the tii'st sexagesimal 
liactional plac c.

'“Taking the sexagesimal fraction of the day as 42,43 or 53 (cf. n.8) produces a progressively 
smaller mean daily motion and progiessiveU' greater disagreement.

“ It is interesting that tliis c|iiotient lies almost exactly in the middle Ijetween the mean daily 
motion which Ptolemy gives explicitly (28 in the last sexagesimal place) and that tmderlying the 
sections ibr years and 18-year periods in the mean motion tables (27 in the last sexagesimal placc, c t  
p. 425 n.29). Is this an indication of incomplete revision?

'^M ars is still a problem here, since this method also produces 28857;41*' (cf. n.8).
“ F o ran  inteival li*’ less (cf. n.4) one linds from the tables 338:25,30°, in agreement with the 

result from the obseivations.
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change them on the basis of the observations he quotes (in this he was absolutely 
justified, since, as we saw above, an intei-val of 400 years is insulllcient to 
guarantee more than 4 sexagesimal fractional places; he was not of coui-se 
justified in concealing it from his readers).

This still leaves unexplained the basis of the actual mean motions. O ne might 
conjecture that they were derived from observations m ade over a shoi ter period 
(e.g. Isetween H ipparchus and Ptolemy). It is easy to find, by D iophantine 
analysis, plausible intervals in time and longitude which producc the exact 
numbers, e.g. for M ars a motion in 274' 189; 16*̂  of 128 revolutions plus 169;32° 
leads to a mean daily motion of 0;27,41,40,19,20,57,59°/6. But in the absence of 
ar;y evidence for such obseivations by H ipparchus this remains mere arith- 
metical juggling, and wc must adm it that the origin of these numbers, at least 
for Jup iter and M ars, and probably for all the planets, remains unknown.

672 Appendix C. Derivation o f  planetary mean motions

‘■*An alteinalive conjecture is that the mean motions were indeed derived from the C|uoied 
ol)servations, but by applying a ‘coirection’ to an earlier (?Hipparchan) mean motion, in the same 
way as the mean motion in lunar anomaly was corrected in IV' 7 (and in lunar latitude in the 
Canobic Inscription). But since no such mean motion is mentioned by Ptolemy, the details would lie 
irrecoverable.



Bibliography

Aaboe, A., ‘O n the Babylonian Origin ol'Som e H ipparchian Parameters’. 
Ceniaui iis 4, 1955, 122-125.

ACT: Astronomical Cuneiform Texts, ed. O. Neugebauer. 3 vols. Princeton 
and London, n.d. [1955].

Allinson, Francis G., Lucian Satii isl and Artist. New York, 1926.
Apollonius, Conics-. Apollonii Pergaei quae Graece exstant ed. L L. Heiberg. 2 

vols. Leipzig (Tcubner), 1891, 1893.
Aratus: A iati Phaenomena rec. Ernestus Maass. Berlin, 1893.
Aichimedes, O peia O m nia ed. J . L. Heiberg. Second edn. 3 vols. Leipzig 

(Teubner), 1910-1915.
Archimedes (Heath): 'I’he Works of Archimedes edited in modern notation 

with introductory chaptci-s by T. L. H eath, with a supplement. The Method 
of Aichimedes recently discovered by Heil)erg. New York, n.d. (Dover), 
reprint of editions Cam bridge 1897, 1912.

Aristarchus: see Heath. T. L.
Aristotle’s Metaphysics. A levised text with introduction and commentary by 

W. D. Ross. 2 vols. Oxlbrd. 1924.
Aristotle, Meteorologica, with an English translation by H. D. P. Lee. Second 

edn. London and Cambridge. Mass. (Loeb Classical Library), 1962.
.\thenaeus: Athenaei N aucratitae Dipnosophistarum Libri XV rec. G. Kaibel. 

3 vols. Leipzig (Teubner). 1887-1890.
Autolycus de Pitane, ed. Joseph Mogenet. (Univei-site de Louvain, Recueil de 

travaux d'histoire et de philologie. o ser. fasc. 37). Louvain, 1950.
Avieniu.s: Ruli Festi Avieni Carm ina rec. Alfred Holder. Innsbruck, 1887.
Bayer: loannis Bayeri V'ranometria, omnium asterismorum continens sche­

mata. Augustae Vindelicorum, 1603.
Becvar, Antonin, Atlas of the Heavens. Atlas Coeli 1950.0. Prague and 

Cam bridge, Mass., 1958. [Also known as the ‘Skalnate Pleso Atlas’].
Berger, Hugo, Die geographischen Fragm ente des Eratosthenes. Leipzig, 1880.
Bockh, August, U eber die vierjahrigen Sonnenkreise der Alten. vorziiglich den 

Eudoxischen. Berlin, 1863.
Boll, Franz, ‘Studien iiber CJaudius Ptolemaus’. Jah rb iicher fur Classische 

Philologie, Supplem entband 21, 1894, 51-244.
Boll, F., and Gundel, VV., 'Sternbilder, Stei nglaube und Sternsymbolik bei 

Griechen und Rom ern'. Ausfuhrliches Lexikon der griechischen und 
romischen Mythologie ed. W. H. Roscher, Bd. 6. Leipzig and Berlin, 1924=- 
37, cols. 867-1071.

Bouche-Leclercc|, A., L’Astrologie Grecc|ue. Paris, 1899.



Britton [I]: Jo h n  Phillips Britton, O n the Qiiality o( Solar and Lunar 
Observations and Param eters in Ptolemy’s Almagest. Ph.D. Thesis, Yale, 
1967.

Britton [2]: Jo h n  P. Britton, ‘Ptolem y’s D eterm ination of the O bliquity of the 
Ecliptic’. Centaurus 14, 1969, 29-41.

BSC: Yale University Observatory, Catalogue of Bright Stars. T hird  Revised 
Edition by Dorrit HoiTleit. New Haven, 1964.

Burnham: R obert Burnham  Jr., Burnham ’s Celestial H andbook. 3 vols. New 
York, 1978.

Calcidiu.s: T im acusa Calcidio translatus com m em ario(|ue instriic tus. cd .J. H. 
W as/ink. London and Leiden, 1962.

Callimachus, Aetia-Iambi-Lyric Poems, ed. C. A. Trypanis. London and 
Cam bridge. Mass. (Loeb Classical L ib ia i\ ), 1958.

Campanus: Cam panus of Novara and medieval p lanetary Theon-, Theorica 
Ptanelamm, ed. Francis S. Benjamin J r . and G. J . Toomer. Madison, 
Wisconsin, 1971.

CCAG; CatalogusCodii um Astrologorum Graccorum  [I], Codiccs Kloifiuinos 
dcscr. A. Olivieri. Bru.xcllis, 1898.

Cumont, Franz, ‘Lcs noms des planctes ct I’astrolatrie chez les Gives'. 
L*Anii(|uite Classiciuc 4, 1935, 5-43.

Darembcrg-Saglio: Diclionnaire des Anticjuites Grecques el Romaines, sous la 
direction de Ch. Daremlx-rg et Edm. Saglio. 5 parts. Paris. 1875-1919.

Delambre, J . B. J ., Hisioire de I'astronomie ancienne. 2 vols. Paris. 1817.
Dicls-Kranz: Die Fragm enie der \'orsokratiker, von H erm ann Diels. Zeiinle 

Aullage heiausgcgeben von VValther Kranz. 3 vols. Beilin, 1961.
Dindorf, Thesaurus: Thesaurus G raecae Linguae ab  Henrico Stephano 

constructus, tertio ed. Carolus Benedictus Hase, Guilielmus Dindorllus ct 
Ludovicus Dindorlius. 8 vols. Paris. 1831-51.

Dio Cassius: C'a.ssii Dionis Cocceiani Historiaj um R om anarum  quaesupersunt 
ed. U. P. Boissevain. 5 vols. repr. Bei lin. 1955.

Epicurus, letter to Pytheas: Epicurus, Epistolae Ties et R atae Sententiae ed. 
P. von der M uehll. Leipzig (Teui)ner), 1922.

Eratosthenes, Geography: see Berger, Hugo.
Eratosthenis Catasterism orum Reliquiae ed. C. Robert. Berlin, 1878.
Euclid: Euclidis E lem entaed. L L. Heiberg. (Euclidis O pera O m nia vols. 1-5). 

Leipzig (Teubner), 1883-8.
Euclid (Heath): T he Thirteen Books of Euclid’s Elements, translated by Sir 

Thom as L. H eath. Second edn. 3 vols. Cam bridge, 1926.
Euclid, Data: Euclidis D ata cum com mentariis M arini et scholiis antiquis ed. 

Henricus Menge. (Euclidis O pera O m nia vol. 6). Leipzig (Teubner), 1896.
Euclid, Phaenomena: Euclidis Phaenom ena et Scripta M usica ed. Henricus 

Menge. (Euclidis O pera O m nia vol. 8). Leipzig (Teubner), 1916.
Eudoxi Ai-s Astronomica qualis in charta Aegyptiaca superest ed. Fr. Blass. 

Kiel [University Programme], 1887.
Fotheringham  [1]: J . K . Fotheringham , ‘T he Secular Acceleration of the 

M oon’s M ean M otion as Determined from the O ccultations in the Almagest', 
M onthly Notices of the Royal Astronomical Society 75, 1915, 377-94.

674 Bibliography



---- -------------------- ------------------------------------------------- ------------ — -----------------------------------------------------------------------------:---------------------------------- U -------------- 1--------------------------- -- i_____ i

Bibliography 675

Fotheringham [2]: J . K. Fotheringham, ‘The Secular Acceleration of the Moon’s 
M ean M otion as Determ ined from the O ccultations in the Almagest (a 
Correction)’. M onthly Notices of the Royal Astronomical Society 83, 1923,
370-3.

Fotheringham [3]J. K. Fotheringham, ‘Note on the Secular Accelerations of the 
Sun and M oon as determ ined from the Ancient L unar and Solar Eclipses,
Occultations, and Equinox Observations’. M onthly Notices of the Royal 
Astronomical Society 80, 1920, 578-81.

Fi aser [1] P. M. Fraser, Ptolemaic Alexandria. 3 vols. Oxford, 1972.
Fraser [2] P. M. Fraser, ‘Bibliography: Greco-Rom an Egypt.’ Journal of

Egx ptian Archaeolog\’ 47, 1961, 139-49. *
Galen: Claudii Galeni Pergameni Scripta M inoi a V'̂ ol. II ex recognitione Iwani 

Mueller. Leipzig (Teubner), 1891.
Galen, ‘On Seven-M onth C hildren’: R. VValzer, Galens Schrift ‘U eber die 

Siebenmonatskinder’. Rivista degli Studi O rientali 15. 1935, 323-57.
GAS VI: Fuat Se/gin. Geschichte des Arabischen Schrifttums, Band V’̂ I,

Astronomic bis c a. 430 H. Leiden, 1978.
Germ anici Caesaris A ratea cum Scholiis ed. Alfred Breysig. Berlin, 1867.
Geminus, Eisagoge: Gemini Elem enta Astronomiae ed. C. Manitius. Leipzig 

(Teubner), 1898.
G in/el, F. K.. H andbuch der mathem atischen und technischen Chronologic. 3 

vols. Leipzig, 1906-14.
Glowatzki, Ernst and Gottsche, Helm ut. Die Sehnentafel des Klaudios 

PtoJemaios. Nach den historischen Form elplanen neuberechnet. M iinchen,
1976.

Gundel, W., article Kyknos 9’. RE 11.2, 1922, cols. 2442-51.
H alm a [N.. ed. and tr.]. Composition M athem aticiue de Claude Ptolemee. 2 

vols. Paris, 1813, 1816.
HAMA: O. Neugebauer. A Histon- oJ Ancient M athem atical Astronomy. 3 

vols. Berlin-Heidelberg-New York, 1975.
H artner, Willy, ‘The Mercurv' Horoscope of M arcantonio Michiel of Venice’.

V'istas in Astronomy, ed. A rthur Beer, vol. 1, London and New York. 1955,
84-138.

Haskins, C. H., Studies in the History of M ediaeval Science. Cambridge,
Mass., 1924, repr. New York, 1960.

H eath, T. L., Aristarchus of Samos, the Ancient Copernicus. Oxford, 1913.
Heath, HGM : Sir Thom as Heath, A Histoiy of Greek M athematics. 2 vols.

Oxford, 1921.
H eath. See also Euclid.
Heiberg, J . L. See Apollonius, Euclid, Ptolemy, Theodosius.
Hennig, R ichard, Terrae Incognitae I, A ltertum  bis Ptolemaus. Leiden, 1936.
Hephaestionis T hebani Apotelesmaticorum Libri Tres ed. David Pingree. Vol.

I. Leipzig (Teubner), 1973.
Heron, Belopoeica: see M arsden, Greek and R om an Artillery.
Heron, Dioptra: Herons von Alexandria Vermessungslehre and Dioptra, ed.

H erm ann Schone. (Heronis Alexandrini O pera quae supersunt omnia. Vol.
III). Leipzig (Teubner), 1903.



Heron, Pneumatica: Heronis Alexandrini O pera quae supersunt omnia. Vol. I, 
Pneumatica et Autom ata rec. W ilhelm Schmidt. Leipzig (Teubner), 
1899.

Hesiod, Works and Days-. Hesiode, Texte etabli et traduit par Paul Mazon. 
Paris (Collection Bude), 1951.

Hipparchus, Comm, in Aral.: H ipparchi in A rati et Eudoxi Phaenom ena 
Commentariorum Libri Trcs rec. Carolus M anilius. Leipzig (Teubner), 
1894.

Homer, Hymns: The Homeric Hymns, ed. T. W. Allen, VV. R. Halliday and E. 
E. Sikes. Second edn. Oxford, 1936.

Honigmann, Ernst, Die siel^en K lim ata und die FIO A EII EnilHMOI.  
Heidelberg, 1929.

Hultsch. ‘Sehnentafeln'; F. Huksch, 'D ie Sehm 'ntaleln der gricchischen 
Astronomen'. Das W’eltall 2, 1901/2, 49-55.

Ibn as-Salah, Zur Kritik der Koordinateniiberlieferung im Sternkatalog des 
Almagest, ed. Paul Kunitzsch. (Abh. Ak. VV'iss. Gottingen, Phil.-hist. KI., 3F, 
.\r.94). Gottingen. 1975.

Ideler. Ludwig, Historischc Untci'sucluingcn liber die astronomischen Beo- 
bachtungen der Alten. Berlin, 1806.

Kiepeit. H. and R., Formae Oi bis Anticiuae. Berlin. 1893-1914.
King. L. VV., Babylonian Boundar\-Siones and M fm orial-Tablcts in the 

British Museum. W ith an Allas ol'Plates. London. 1912.
Kiihnci-Gtrrth: Atisfiihrliche G ram m atik der Griechischen Sprache von Di-. 

Rapliael Kiihner. Zweiter 'I’eil. Sat/lehre. 3' Auilage von Dr. Bernliard 
Gerth. 2 vols. Hannover and Leipzig, 1898, 1904.

Kugler, F. X., Die Babylonische M ondrechnung. Freiburg im Breisgau, 1900.
Kugler. SSB: F. X. K-ugler, S ternkunde und Sterndienst in Babel. 2 vols. 

Miinstei-, 1907-24.
Kunitzsch, Paul, Der Almagest. Die S\ ntaxis M atliem atica des Claudius 

Ptolemiius in arabisch-laleinischer Uberlieierung. Wiesbaden. 1974.
Lewis, Xaphtali, Papyrus in Classical Anticjuity. O.xlord, 1974.
LSJ: A Greek-English Lexicon compiled by Henry George Liddell and Robert 

Scott. A New Edition Revised . . .  by H enry S tuart Jones. 2 vols. Oxlbrd, 
1940. Supplement, edited by E. A. Barber. Oxford. 1968.

Maass, E. (ed.), Com m entariorum  in A ratum  Reliquiae. Berlin, 1898.
Manitius, Karl, 'Fixsternbeobachtungen des Altertum s'. Das W eltall 5, 

1904 5 ,1 4 -1 8 ,2 3 -6 .
M anitius [translation]: Ptolemaus, H andbuch der Astronomic. Deutsche 

Ubersetzung von K. Manitius. 2 vols. Leipzig, 1912, 1913. Second edn., 
revised by O. Neugebauer. Leipzig, 1963.

M ai’sden, E. W., Greek and Rom an Artillery. Technical Treatises. Oxford,
1971.

Menelaus, Sphaerica: M ax Krause, Die Spharik von M enelaus aus Alexandrien 
in der Verbesserung von Abu Nasr M an ju r b. ‘Afi b. ‘Iraq. (Abh. Ges. W'iss. 
zu Gottingen, Phil.-hist. Kl., 3F., 17). Berlin, 1936.

M ercati, lohannes, and Franchi de’ Cavalieri, Pius, Codices V aticani Graeci, 
Tomus I. Roma, 1923.

676 Bibliography



M GH: M onum entaG erm aniaeH istorica, A uctorum  AntiquissimorumTomus 
X III, Chronica M inora Saec. IV .V .V I.V II ed. Th. Mommsen, Vol. III. 
Berlin 1898.

Neugebauer [1]: O. Neugebauer, ‘U ntersuchungen zu ran tiken  Astronomic V. 
D er Halleysche “ Saros” und andere Erganzungen zu UAA III’. Quellen und 
Studien zur Geschichte der M athem atik, Astronomic und Physik B 4, 1938, 
407-11.

Neugebauer [2]; O. Neugebauer, ‘O n Some Aspects ofEariy Greek Astronomy’. 
Proceedings of the American Philosophical Society 116 no. 3, Ju n e  1972,243-
51.

Neugebauer [3]: O. Neugebauer, ‘U bereine M ethodezurD istanzbestim m ung 
A lexandria-Rom  bei H eron’. Det Kgl. Danske Videnskaberncs Selskab, 
Hist.-fil. Medd. X X V I 2, 1938.

N eugebauer, O. and Schmidt, O ., ‘H indu Astronomy at Newminster in 1428’.
Annals of Science 8, 1952, 221-8.

Neugebauer, O. and V^\n Hoesen, H. B., Greek Horoscopes. (Memoii-s of the 
American Philosophical Society, Vol. 48). Philadelphia, 1959. 

Neugebauer, O. See also HAMA.
Neugebauer, P. V., Spezieller K anon der Mondfinsternisse fiir Vorderasien 

und Agypten von 3450 bis I v. Ghr. Astronomische Abhandlungcn. 
(Erganzungshefte zu den Astronomischen N achrichten Bd. 9 Nr. 2). Kiel, 
1934.

Neugebauer, P. Astronomische Chronologic. 2 vols. Berlin and Leipzig, 
1929.

Newton. Robert R., The Crime of Claudius Ptolemv. Baltimore and London,
1977.

Op. Min. See Ptolemy, Opera Minora.
Oppolzer, Th. v.. Canon der Finsternisse (Ak. d. Wiss., Wien, Denkschriften, 

LII). Wien, 1887. English translation by Owen Gingerich as Canon of 
Eclipses. New York. 1962.

The Oxford English Dictionary. 13 vols. Oxford, 1933.
Pappus, Com m entary on the Almagest; see Rom e [1].
Pappus, Synagoge: Pappi Alexandrini Collectionis quae supersunt,ed. F.

Hultsch. 3 vols. Berlin, 1875-8.
Parker-Dubberstein; Richaixl A. Parker and W aldo H. Dubberstein, Baby­

lonian Chronology 626 B.C.-A .D. 75 (Brown University Studies XIX). 
Providence, 1956.

Pedersen: O laf Pedersen, A Survey of the Almagest. (Acta Historica 
Scientiarum  Naturalium  et M edicinalium  Vol. 30). Odense University 
Press, 1974.

Petei-s, Christian Heinrich Friedrich, and Knobel, Edward Ball, Ptolemy’s 
Catalogue ofStai-s. A Revision of the Almagest. W ashington, 1915. 

Petersen, Viggo M., and Schmidt, Olaf, ‘T he D eterm ination of the Longitude 
of the Apogee of the O rbit of the Sun according to H ipparchus and'Ptolemy’. 
Centaurus 12, 1967, 73-96.

Pfeiffer, Erwin, Studien zum antiken Stcrnglauben. (ZTOIXEIA II). Leipzig 
and Berlin, 1916.

Bibliography 677



P-K : see Peters and Knobel.
Pliny, NH: Pline 1’Ancien, Histoire naturelle, Livre II, texte etabli, traduit et 

commente par Jean  Beaujeu. Paris (Collection Bude), 1950.
Pollux; Pollucis Onomasticon ed. E. Bethe. 3 vols. Leipzig (Teul)ner), 1900- 

37.
Porphyry, Comm, on Harmonica: Porphyrius, Elq xd dp^cviKCi riToXenaiou 

Ono|jvrma ed. Ingemar D uring (Goteborgs Hogskolas Arsskrift X X X V III 
1932:2).

Posidonius, I. T he Fragments, ed. L. Edelstein and I. G. K idd. Cambridge,
1972.

P. Oxy.: T he O xyrhynchus Papyri. P art I, ed. B. P. Grenfell and A. S. Hunt. 
London, 1898. Part X IX , ed. E. LobeJ, E. P. Wegener, C. H. Robert s and H. 
I. Bell. London. 1948.

P. Ryl.: Catalogue of the Greek Papyri in the Jo h n  Rylands Libiary 
M anchester. Vol. 1 ed. A rthur S. H unt. M anchester and London, 1911.

Price, Derek J .,  'Precision Instrum ents to 1500’, with a scction on Hero's 
instruments bv A. G. D rachm ann. A History ol’Technolog)', ed. Charles 
Singer et al., \ ’ol. III. Oxibrcl, 1957, 582-619.

Pritchard. Jam es B. (ed.). Ancient X ear Eastern Texts Relating to the Old 
Testam ent. Third  edn. Princeton, 1969.

Proclus, Hyjx)typosis Astronomicarum Positionum, ed. C. M anitius. Leipzig 
(Teubner), 1909.

Pseuclo-Eiatosthenes: see Eratosthenis Catasterism orum  Reliquiae.
Ptolemy. Almagest: Claudii Ptolemaei O pera quae exstant omnia. \ 'o l. I. 

Syntaxis M athem atica, ed. J .  L. Heiberg. 2 vols. Leipzig (Teubner), 1898. 
1903.

Ptolemy, Almagest. See also H alm a, M anitius, Taliaferro.
Ptofemy, Apolelesmatica: Claudii Ptolemaei O pera quae e.xstant omnia. Vol.

Ill, AnOTEAELMATIKA ed. F. Boll et Ae. Boer. Leipzig (Teubner), 
1957.

Ptolemy, Geography: Claudii Ptolemaei G eographia ed. C. F. A. Xobbe. 2 
vols. Leipzig, 1843, 1845.

Ptolemy, H andy Tables: N. H alm a (ed.). Tables manuelles astronomiques de 
Ptolemee et de Theon. 3 parts. Paris, 1822-5.

Ptolemy, Op{era) Min{ora): Claudii Ptolem aei O pera quae exstant omnia. 
\'o l. II, O pera Astronomica M inora, ed. J . L. Heiberg. Leipzig (Teubner),
1907.

Ptolemy, Optics: L ’O ptique de Claude Ptolemee dans la version latine d ’apres 
I’arabe de I'emir Eugene de Sicile, ed. Albert Lejeune. (Universite de 
Louvain, Recueil de travaux d ’histoire et de philologie, 4'" serie, fasc. 8). 
Louvain, 1956.

Ptolemy, Phaseis: in Opera Minora, 3-61.
Ptolemy, Planetary Hypotheses: T he Arabic Version of Ptolem y’s Planetary 

Hypotheses, ed. Bernard R. Goldstein. T ransactions of the American 
Philosophical Society, N.S. Vol. 57.4. Philadelphia, 1967.

R -E : Paulys Real-Encyclopadie der classischen Altertumswissenschaft, Neue 
B earbeitung . . . von G. Wissowa, W. Kroll [andothers]. S tu ttgart, 1894-

678 Bibliography



Bibliography 679

Regiomontanus, Epytoma: Epytom a loannis De monte regio In almagestum 
ptolomei. Venice, 1496.

Rehm, A., ‘Hipparchos 18’, R -E  VIII.2, 1913, cols. 1666-81.
Rehm, A., Griechische Windrosen, (SB Konigl. Bayer. Ak. d. Wiss., Philos.- 

philol. u. hist. KI. 1916.3).
Richter, Gisela M. A., A H andbook ol'Greek Art. T hird  edn. London, 1963.
Riddell. R. C., ‘The Latitudes of Venus and M ercury in the Almagest’. Archive 

for History ol'Exact Sciences 19, 1978, 95-111.
Robert, Louis, A travers I’Asie M ineure. (Bibliotheque des Ecoles Fran<;aises 

d ’Athenes et de Rome, 239). Paris, 1980.
Rome [1]: A. Rome (ed.), Com mentaires de Pappus et deT heon  d’Alexandrie 

sur I’Aimageste.
Tome I. Pappus d’Alexandiie, Com m entaire sur les livres 5 et 6 de 

I’Almageste. (Studi e Testi 54). Roma. 1931.
Tome IL Theon d’Alexandrie, Com m entaire sur les livres 1 et 2 de 

I’Almageste. (Studi e Testi 72). C itta del V'aticano, 1936.
Tom e III. Theon d’Alexandrie. Com m entaire sur les livres 3 et 4 de 

I'Almageste. (Studi e Testi 106). C itta del X'aticano. 1943.
Rome [2]: A. Rome, 'Glanures dans I'idyiie 15 de T heocrite’. Academic royale 

de Belgique, Bulletin de la Classe des Lettres, 5" ser. T. 37, 1951. 260-7.
Rome [3]: A. Rome, Les Observations d ’Equinoxes de Ptolemee. Ptolemee et le 

mouvement de I’apogee solaire’. Ciel et Terre 59, 1943, 1-15.
Rome [4]: A. Rome, ‘L’Astrolabe et le Meteoroscope d’a p r tt  le commentaire 

de Pappus sur leS*̂  livre de I’Almageste'. Annales de la Societe Scientifk|ucde 
Bruxelles 47, 1927, Deuxieme partie, Memoires, 77-102.

Rome [5]: A. Rome, ‘Les obseiA-ations d ’equinoxes et de solstices dans le 
chapitre I du livre 3 du Com m entaire sur I’Almageste par Theon 
d ’Alexandrie'. [I] Annales de la Societe Scientilicjue de Bruxelles 57, ser. I, 
1937, 213-36. [II] ibid. 58, ser. I, 1938. 6-26.

Rome [6]: A. Rome, ‘The Calculation of an Eclipse of the Sun according to 
Theon of Alexandria’. Proceedings of the International Congress of M athe­
maticians, Cambridge, Mass., U.S.A., Aug. 30-Sept. 6, 1950. I, 209-19.

Sachs [1]: A. J . Sachs, ‘Babylonian observational astronom y’. Philosophical 
Transactions of the Royal Society, London, A.276, 1974, 43-50.

Sach [2]: A .J. Sachs, ‘A classiilcation of the Babylonian astronomical tablets of 
the Seleucid period’. Journal of Cuneiform Studies 2, 1948, 271-90.

Samuel, Alan E., Greek and Rom an Chronology-. Calendars and Years in 
Classical Antiquity. (H andbuch der Altertumsvvissenschaft, Abt. I, Teii 7). 
M iinchen, 1972.

Sattler, Peter, Studien aus dem Gebiet der Alten Geschichte. Wiesbaden, 1962.
Sawyer, Frederick W., ‘O n Ptolem y’s D eterm ination of the Apsidal Line for 

Venus’. Appendix to: Bernard R. Goldstein, ‘Remarks on Ptolemy’s Equant 
M odel in Islamic Astronomy’. IIP ISM A T A  (Festschrift fiir Willy Hartner), 
ed. Y. M aeyam a and W. G. Saltzer. W iesbaden, 1977, 169-81.

Schjellerup, C. F. C., ‘Recherches sur 1’astronomic des anciens III. Sur les 
conjonctions d ’etoiles avec la lune rapportees par Ptolemee’. Copernicus 1, 
1881, 223-36.



Schlachter, Alois, Der Globus, seine Entstehuni? und Verwendung in der 
Antike. (ZTOIXEIA VIII). Leipzig and Berlin, 1927.

Schmidt, Olaf, ‘Bestemmelsen af Epoken for M aanens Middelbevaegelse i. 
Bredde hos H ipparch og Ptolemaeus’. M atem atisk Tidsskril't B 1937, 27-32.

Schram, Robert, Kalendariogi aphische und Chronologische Tal'eln. Leipzig,
1908.

See, T. J . J ., ‘Historical Researches Indicating a Change in the Color of Sirius, 
Ijetween the Epochs of Ptolemy, 138, and of A1 Sufi, 980 A .D .’ Astronomische 
Nachrichten 229, 1927, cols. 245-72.

Scidl, Ui-sula, ‘D iebabylonischenK udurru-Reliefs’. Deutsches Archaologisches 
Institut, Baghdader M ittcilungen 4, 1968, 7-220.

Strabo: The Geography of Stral)o, with an  English translation by Horace 
Leonard Jones. 8 vols. London and Cam bi idge, Mass. (Loeb Classical 
L ibrary),’1917-32.

Swerdlow, Noel, ‘H ipparchus on the Distance of the Sun’. C entaurus 14,1969, 
287-305.

Swei dlow, Noel M ., ‘The origin of Ptolemaic planetary theory’. Forthcoming.
Swerdlow, \ . ,  and Neugebauer, O ., M athem atical Astronomy in Copernicus’ 

De Rei'olutionibiis. (Studies in the History of M athem atics and Physical 
Sciences). Forthcoming.

Taliaferro, R. Catesby. The Almagest by Ptolemy. In G reat Books of the 
Western World, Chicago (Encyclopaedia Britannica), 1952, \'o l. 16.

Theodosius, Sphaerica: Theodosius Tripolites, Sphaerica, von J . L. Heiberg. 
(Ai)h. der Ges. d. Wiss. zu Gottingen, Phil-hist. Kl., X.F. X IX .3). Berlin. 
1927.

Theon of Ale.xandi ia, Com mentary on the Almagest: see Rome [1],
Theon of Smyrna: Theonis Smyrnaei Expositio rerum m athem aticarum  ad 

legendum Platonem utilium, ed. E. Hiller. Leipzig (Teubner), 1878.
Theophrastus, Hisloria Planlarum: Theophrastus, Enquiry into Plants, with 

an English translation by Sir A rthur Hort. 2 vols. London and Cambridge. 
Mass. (Loeb Classical Library). 1916.

Thiele, Georg, Antike Himmelsbilder. Berlin, 1898.
Tihon. Anne, ’Le calcul de I’eclipse de Soleil du 16 juin 364 p.C. et le “ Petit 

Com m entaire" de T heon’. Bulletin de I’lnstitut Beige de Rome, fasc. 46-7, 
1976-7. 35-79.

Toomer [1]: G. J .  Toomer, "The M athem atician Zenodorus’. Greek, Rom an 
and Byzantine Studies 13, 1972, 177-92.

Toom er [2]: G. J . Toomer, ‘The Chord Table of H ipparchus and the Early 
Histoiy of Greek Trigonom etry’. Centaurus 18, 1973, 6-28.

Toom er [3]: G. J . Toomer, review of O laf Pedersen, A Survey of the Almagest, 
Archives Internationales d ’Histoire des Sciences 27, 1977, 137-50.

Toom er [4]: G. J . Toomer, review of E. Glowatzki and H. Gottsche, Die 
Sehnentaiel des Klaudios Ptolemaios, Centaurus 21, 1977, 321-3.

Toom er [5]: article PTO LEM Y . Dictionary of Scientific Biography X I, 1975, 
186-206.

Toom er [6]: article H IPPA R C H U S. Dictionary of Scientific Biography XV,
1978, 207-24.

680 Bibliography



Toom er[7]: article M ETO N . Dictionary ofScientilk  Biography IX, 1974,337- 
40.

Toom er [8]: G. J . Toomer, ‘T he Size of the L unar Epicycle According to 
H ipparchus’. Centaurus 12, 1967, 145-50.

Toom er [9]: G. J . Toomer, ‘H ipparchus on the Distances of the Sun and M oon’. 
Archive for History of Exact Sciences 14, 1974, 126-42.

Toom er [10]: G. J . Toomer, ‘A Survey of the Toledan T ables’. Osiris 15, 1968, 
5-174.

Toom er [11]: G. J . Toomer, ‘H ipparchus’ Empirical Basis for His Lunar M ean 
M otions’. Centaurus 24, 1981, 97-109.

Tuckerm an: Bryant Tuckerm an, Planetary, L unar and Solar Positions at 
Five-day and Ten-day Intervals. [Vol. I,] 601 b .c. to .v D .  1 (Memoirs of the 
American Philosophical Society, Vol. 56), Philadelphia, 1962. [Vol. II,] 
.\.D. 2 to A.D. 1649 (Memoirs of the American Philosophical Society, Vol. 59), 
Philadelphia, 1964.

van der VVaerden, Bartel Leendert, ‘Ewige Tafeln’. Arithmos-Ariythmos, 
Skizzen aus der VVisscnschaftsgeschichte, Festschrift fiirjoachim  Fleckenstein 
zum 65. Geburtslag, cd. K. Figala and E. H. Berninger, Miinchen, 1979, 
285-93.

Vettius X'alens: \ 'e ttii \ ’alentis .\n lhologiarum  Libri ed. Guilelmus Kroll. 
Berlin, 1908.

\'o g t, Heinrich. ‘V'ersuch einer W iederherslellung von H ipparchs Fixslern- 
verzeichnis’. Astronomische Xachrichten 224, 1925, coIs.< 17-54.

Wilson, Curtis, “The Inner Planets and the Keplerian Revolution’. Centaurus 
17, 1973, 205-48.

Xenophon, Memorabilia; Xcnophontis Com m entarii rec. Carolus Hude. 
Leipzig (Teubner), 1934.

Bibliography 681



Index

This index contains all instances ol' proper names occuring in the book, with the following 
exceptions: purely bibliographical references, kings in the king-list (p. 11) not mentioned elsewhere, 
trivial occurrences of ‘Ptolemy’, Heiberg' and ‘Manitius’, month names, signs of the zodiac, 
constellations, named stars (although certain observ ations involving Regulus, Spica and other stars 
are included), and trivial mentions of the planets, sun and moon. It is also a subject index, but is 
highly selective lx)th in the topics listed and in the references to those topics. However, it does 
include all observ ations recorded in the .Almagest, listed under the body (e.g. Mars) or event (e.g. 
equinoxes) concerned, with the date inthe Julian calendar and the observer or place ofobservation.

•Achilles. Isagoge, 19
Adulitic gulf, parallel ihrough. 84. 84 n.29 
'advance', 16; meaning of, 20, 340 n.93. 344 

n.llO
‘.Aeon-tables’, 137 n. 18. 420 a6 . 422. 422 n.l2 
aether, 36 n.8. 40; cf 600 n.l5 
•Agrippa, observation of occultation by. 334, 

334 n.68
•Alexander of .Abonouteichos. 381 n.60 
•Alexander ol Macedon. 11; death of. era. 10 

n.l6 . 138(quater), 138 n.20. 154. 168. 227. 
230. 502. 522 

.Alexandria; Ptolemy worked at. 1; libraries at. 
1, 421 n. 10; .Almagest studied at. 2; 
meridian through. 225.225 n .l6 .337 n.78; 
used as norm. 130, 130 n. 109. 169. 191. 
192. 207. 208. 212.213. 237,253,282.305. 
310, 334-5. 335 n.70. 337. 338. 650. 652. 
654, 655,657.659; equatorial rings at, 133,
133 n.7. 134; Square Stoa at. 133. 133 n.7; 
Palaestra at. 133 n.7. 134; latitude of 
30;58°. 247. 248; seasonal hours at. 283; 
observations a t‘; bv Timocharis, 12. 334.
334 n.67, 335. 336,'337; bv Ptolemv. 198.
223, 247, 247-8. 328, 461, 475, 520. 538; 
?bv Theon, 206 n.54; bv unknowns. 134.
134 n.9, 214, 215, 283

.Almagest: date of. 1; Greek name of. 1, of. 546 
n.48; importance of, 2; a standard text­
book, 2; mediaeval translations of, 2. 3; 
origin of name, 2; PPahlavi translation of, 
2; printed editions of, 3; manuscript 
tradition of, 3-4, 24; interpolations in, 5, 
17, 219 n.5, 221 n.8. 235 n.28. 245 n.41, 
252 n .55 ,269 n.83,282 n .l6 ,294 a 4 7 ,313 
n.74, 314 n.78, 315 n.79, 442 n.37. 447

n.47. 516 a 9 . 587 n.90. 593 n.97.597 n.5, 
598 n.6; chapter headings and divisions in,
5, 24, 27 n .l, 131 n .l, 251 n.50; structure 
of, 5-6, 37-8; mathematical methods in. 
6-9; chronology in. 9-14; time-reckoning 
in, 23; didactic purpose of, 546 n.48. 
•W also errors, computational; star cata­
logue ' 

almanac, peipetual. 140 n.27 
.Ammi^duqa. Venus tablets of, 166 n.59 
dmpioKioq, 82 n.24
ancient astronomers'. 131. 175, 175 (‘even 

more ancient'), 252 n.51 (‘more ancient ) 
anomaly, various m ean ing  of, 21. Set also 

moon; planets 
.Antares, used as sighting-star, 450. 473 
.Antinous, 357. 357 n.l60 
-Antioch, school at. in late antiquity, 2 
antipmdes, 75 n. 1, 294, 294 n.47 
•Antoninus. Roman emperor, 1. 11, 138. 223, 

328, 449.450. 456(ter), 461, 469..473. 474, 
484, 499. 507, 519, 520, 538, 540; first year 
of reign, epoch of Ptolemy's star catalogue,
1. 328, 340, 406, 477, 502, 522 n.l7 

apogee: Greek terms for. 22; mean, defined, 227.
See also moon; planets; sun 

.Apollonius of Perge: knew equivalence of 
eccentric and epicyclic hypotheses for 
planets. 144 n.32, 556 n.3; lemma of, for 
stationarv points, 555; preliminarv- lemma 
of, 558

‘.Apollonius, Circle o f, 556 n.3 
Apseudes, Athenian archon, 138(bis)
Aratus, Phaenomena, 348 n .l21, 349 n.l30, 350 

n.l34, 358 n.I65, 384 n.77, 391 n .ll4 ; 
schoiion on, 15 n.27

‘ Only those observations in which Alexandria is specirically mentioned are recorded here; there can be no 
doubt that e.g. all of Ptolemy's •bseivations were made there.
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Arbela, lunar eclipse of-330 Sept. 20 observed 
at, 75 n.3

Archimedes: theorem of, used for Ptolemy’s 
chord table, 52 n.60; observations of sol­
stices by, mentioned by Hipparchus, 133; 
limits for n found by, 302, 302 n.60; order 
of planets according to, 419 n,l 

arcus I'isionis: for fixed stars, 413, 413-15; for 
planets, 639-40 

area digits, 302-5, 302 n.59 
Aristarchus of Samos: heliocentric hypothesis 

of, 44 n.41; solstice observed bv, 137, 137 
n.l9, 138, 139 

Aristotle: associated with Kallippos, 12; men­
tioned in Almagest. 35; physics of. 36 n.8; 
Melaphvsics 1026al8ir., 35 n.7; Meleoroloaica 
3421)34. 644 n.78; mentioned, 36 n.9 

Aristyilos: fixed-star observations of, used bv 
Hipparchus, 321; star declinations ob- 
seived by, 331. 332 

armillar\' ring. Sfe equatorial armillaiy 
armillaiy spheres, 43. 43 n.36. See also ‘astrolalx-’ 
ascensional dilference, 95 n.76 
.Astaboras. river. 84 n.30 
Astopus. river. 84 n.30 
doTiip. meaning of. 21
'astrolalie' f armillar\- sphere) 43 n.36; construc­

tion of. 217-18. 217 n.l; obsei'vation with. 
219. 219 n.4. 224, 224 n . l l .  327-8. 328 
n.51. 339. 339 n.87. 423. 423 n . l7. 
449(l)isl. 456. 461. 474. 484. 499, 507. 520. 
525. 538: advantages o f 453: ?not used by 
Hipparchus. 227 n.20 

astrolalx- (‘small astrolabe'). 217 n.l 
astrolog\. terms in. 407 n. 185. 407 n .l87. 408 

n.l 90
astronomical’ dating, 9 n .l l  

astronomv. Babylonian. 90 n.70. 175 n.7. 176 
a  10. 224 n.'l4. 322 n .5 ,374 n. 13,423 n. 19. 
669. .See also observations, Babylonian 

astronomy, early Hellenistic, 82 n.20 
astronomv, Indian, 82 n.20, 224 n .l4, 420 n.6, 

422 n.l2 
•Athenaeus. 374 n .l3
Athens, school at, in late antiquity, 2; archons 

at, used for dating, 12 n.l8, 138(bis), 211, 
212, 213

Augustus. Roman emperor, 11, 14; era of, 
168

•Autolycus of Pitane, 6, 407 n. 189
•Avaliie gulf, parallel through, 84, 84 n.27, 100
•Avienius, translation of-Aratus by, 348 n.l21

Babvlon: longitudinal difference of, from 
Alexandria, 191, 191 n.31, 207, 208; place 
of observation according to Ptolemy, 191, 
192, 206, 208, 211, 212, 213, 253; latitude 
of, 212 n.64, 638 n.65 

Babylonians: inventors of sexagesimal system,
6. See also astronomv; calendar, obser-

Bayer, Uranomelria, 15
Berenice, lock of, 368 n.223
Bithynia, 134 n.9, 334, 334 n.69, 335 n.70;

calendar of, 14, 334, 334 n.68 
Bdckh, A., 14, 451 n.63, 502 n.63 
Borysthenes, riven parallel through mouths of, 

87, 87 n.49, 102, 122, 129, 285, 315; 
meridian through, 225 n.16 

Brahe, Tycho, 3
Brigantium: parallel through, 88; identilication 

of, 88 n.59
Brittania, Great, parallels through, 88, 88 n.59, 

103
Brittania, Little, parallels through, 88, 88 n.59,

88 n.63
Britton, J ., viii, 135 n.l2, 334 n.64 
Byzantium, meridian through. 225 n. 16

Calcidius, 257 n.66
calendar, Babylonian. 13. 452(bis), 541 
calendar. Bithynian, 14. 334. 334 n.68 
calendar of Dionvsius. 13-14. 450(bis), 451, 

452. 464. 502' 502 n.63, 522 
calendar, Egyptian, 9, 10, 12, 13, 276 n.5; used 

bv Hipparchus. 13. 212. 214 n .72.215 n.74.
224. 227. 230. 284. 421 n . l l .  See also 
N'abonassar. era of 

calendar. Julian. 14
calendar. Kallippir. 12. .V« aijo Kailippic Cycles 
calendar. Metonic. 12, 12 n.l8 , 211 n.63 
Callimachus. Aetia fr. 10, 3 68 'n.223 
Canobic Inscription: earlier than .Almagest, 1; 

lunar mean motion in latitude in. 205 n.51. 
672 n. 14; dillerences from .Almagest in. 206 
n.52

Canon Basileon. 10, 11, 340 n.91 
Carthage, lunar eclipse of -330 Sept. 20 

observed at. 75 n.3 
Caturactonium, parallel through, 88, 88 n.60 
centrum, meaning of, 22 
Cepheus myth, 346 n. 115 
‘Chaldaeans’, 13, 452(bis), 541

consistently used by Ptolemy for constel­
lation ‘L ibra', 371 n.l 

chord: no specific name for in Greek, 17; cal­
culation of, 48-56, 48 n.50; of half-angle, 50 
n.59, -52 n.60; of third-angle cannot be 
found geometricallv, 54. 54 n.63; of 1°, 54- 
6

chord table, 57-60; norm of, 48, 48 n.51;
accuracy of, 57 n.68. See also trigonometry 

chronology, 9-14. See also calendar 
clima (K^ina): explained, 19, 42 n.32; the 7 

climata, 19, 86 n.42, 87 n.50, 122 n.l06, 
286 n.25, 315 

colure, 83, 217; explained, 19 
Conon, mathematician and astronomer, 368 

n.223
constellations. See star catalogue 
Copernicus, 3 
cosmology, 38-47
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cubit, as astronomical measurement, 322 n.5, 
453 n.70

culminating point, computation of, 104, 650
culmination, explained, 19, 408
cycles, calendaric. See Kallippic Cycles; Melon

Darius I, king, 11, 206, 208 
day: various meanings of, 23, 169-70; epoch of, 

astronomical, 12, 170; epochs ol‘, civil, 12; 
length of, com puution of, 99, 649-50 

day, longest, used to characterise terrestrial 
latitude, 76-9, 83-9, 285, 638 

deferent, meaning of, 21 
‘demi degrees’, 8, 9, 26 
digit, as astronomical measurement, 322 n.5.

See also area digits 
Dio Cassius, on Hadrian and Antinous, 357 

n.l60
Diodorus of Alexandria, Anaiemma, 62 n.72 
Dionysius, astronomer, 450 n.59, 452 n.66. See 

also calendar of Dionysius 
Dionysus, 394 n.l29
dioptra: Heronic, 227 n.20; four-cubit, 252,252 

n.52
Domitian, Roman emperor. 11, 334 
‘double dales’, 12
5p6^o<;, meaning of, 177 n.l4, 224 n. 14 
duration of totality, 296, 296 n.53, 300-1; Greek 

term for, 22

earth: sphericity of, 40-1; central position ol, 
41-2; negligible size of, in relation to 
heavens, 43; motionless, 43-5; axial rotation 
of: denied by Ptolemy, 45; allirmed l)y 

others, 44 n.41 
Elyoudae, islands, parallel through, 89, 89 n.65 
eccentre, eccentric, meaning of, 21 
eccentric hypothesis: explained, 141; equival­

ence of, to epicvclic hypothesis, 144-5,144 
n.32, 148-51, 181, 188-90, 211, 556, 556 
n.3; preli:rred, 153, 442. See also planets, 
eccentric model for 

eccentricity, bisection of: demonstrated for 
Venus, 474 n.l2; observational basis for. 
480

eclipse limits, 277 n .8 ,282-7,287,289,290,290 
n.34, 291. 293 

eclipses: used to show earth’s sphericity, 40; 
used to determine longitudinal difTcrcnce, 
75; tables for, construction of, 294-305; 
magnitude of, defined, 295; inequality of 
phases of, 309. See also area digits 

eclip>ses, lunar, 40, 42; simultaneous observation 
of, 75 a 3 ; basis of lunar theory, 173, 174, 
181; explained, 173; computation a  
305-9, 654; angles of inclination at: 
example, 317; computation of, from table, 
318-20

eclipses, lunar, intervals between: 6 months, 
287; 5 months, 288-9; 7 months, 289-90

eclipses, lunar, observations of:
-720 Mar. 19 (Babylonian), 166 n.59, 191, 

191 n.30
-719 Mar. 8 /9  (Babylonian), 191,191 n.32,

204, 208; used by Hipparchus, 205 n.51, 
309, 309 n.67

-719 Sept. I (Babylonian), 192, 192 n.33 
-620 Apr. 21/2  (Babylonian), 253, 253 

n.56
-522 Ju ly  16 (Babylonian), 253, 253 n.58 
-501 Nov. 19 (Babylonian), 208,208 n.60;

used by Hipparchus, 208 
-490 Apr. 25 (Babylonian), 206, 206 n.53 
-382 Dec. 23 (Babylonian), 211-12; used 

by Hipparchus, 211 
-381 Jun e  1-8 (Babylonian), 212,212 n.67;

used by Hipparchus, 212 
-381 Dec. 12 (Babylonian), 213. 213 nn.

68, 69; used by Hipparchus, 213 > 
-330 Sept. 20 (in Geography). 15 n.3 
-200 Sept. 22 (Alexandrian), 214, 214 

n.71; used by Hipparchus, 214 
-199 Mar. 19 (Alexandrian), 214, 214 

n.73; used by Hipparchus, 214 
-199 .Sept. 11/12 (Alexandrian), 215, 215 

n.74; used by Hipparchus, 215 
-173 May 1 (Alexandrian), 283, 284 n.21 
-145 Apr. 21 (Hipparchus), 133 n.8, 135,

135 n .l4
-140 Jan. 27 (Hipparchus), 284. 284 n.23, 

309. 309 n.67 
-134 M ar. 21 (Hipparchus). 135. 135 n.l4

125 Apr. 5 (?Theon), 206, 206 n.54
133 May 6 (Ptolemy), 198. 198 n.39
134 Oct. 20 (Ptolemv), 198. 198 n.40,
205. 205 n.51

136 Mar. 6 (Ptolemy), 198, 198 n.41 
eclipses, soian alfected bv parallax, 40 n.29, 

174, 243, 310; o f-1 8 9  Mar. 14, used by 
Hipparchus, 244 n.38; annular, possible 
according to Hipparchus, 252 n.53; inter-- 
vals lietween: 6 months, 287; 5 months, 
290-1; 7 months, 291-3; 1 month, 293-4; 
computation of, 310-13, 654-7;'inequality 
of phases in, 312-13; angles of inclination 
at: example, 317; computation of, from 
tables, 318-20, 657; of 364 June  16, 
observed by Theon of Alexandria, 654-7. 
See also parallax, lunar; parallax, solar 

ecliptic: Greek terms for, 20; explained, 46-7; 
obliquity of: determined, 61-3, 61 n.69; 
according to Eratosthenes and Hipparchus, 
63, 63 n.75

Egypt: observation of phases in, 638; lower, 
parallel through, 85, 101, 125, 638 n.65. 
See also calendar, Egyptian 

elongation, m eaning of, 22 
emersion, meaning of, 22 
Empedocles, 40 n.26
enlargement of heavenly bodies near horizon, 

apparent, 39 n.24 
fetpantiq, meaning of, 374 n.l3
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Epicurus, Epicureans, 38 n.22, 39 n.23 
epicycJk hypothesis: explained, 141, 144, 

191 (for moon); equivalence to eccentric 
hypothesis. 144-5, 144 n.32, 148-51, 
188-90, 211, 556, 556 n.3; preferred, for 
moon, 181, 190; preferred, for planets, 442 

epiparallax, 295; computation of, 310-11, 311 
n.71, 656 

ijTKiTinooiat, 283 n.l8 , 302 
epoch: of day, astronomical and civil, 12, 170;

ofSeleucid era, 13 
tno^ieva, rd, explained, 20 
equant; introduced on basis of trial and 

application, 422 n.l5; origin of, 474 n.l2 , 
480 n.24

equation, astronomical meaning of, 21-2, 147 
n.36

equation of time: reason for, 169-70; maximum, 
170-1; computation of. 171, 172 n.70, 230 
n.23,281.281 n. 11.461 n.93 ,475 n. 15.479 
n.22, 484 n.32, 499 n.57, 520 n.l2 , 538 
n.31, 651-2

equator, celestial, defined, 19. 41, 45, 45 n.44 
equator, terrestrial, parallel through, 82, 291, 

292
equatorial armillary, 133, 133 n.7, 134, 134 

n,l2
equinoctial points, defined 47 
equinox, position of within /.odiacal signs, 90, 

90 n.70
equinoxes, preccssion ol". SW precession 
equin<?.\es. autumnal, obsei'\'ations of:

-161 Sept. 27. 6 p.m., 133, 133 n.8 
-158 Sept. 27, 6 a.m., 133. 133 n.8 
-157 Sept. 27. noon. 133. 133 n.8 
-146 Sept. 26/7, midnight (Hipparchus),

133, 138
-145 Sept. 27, 6 a.m. (Hipparchus), 133 
-142 Sept. 26. 6 p.m. (Hipparchus), 133

132 Sept. 25. 2 p.m. (Ptolemv), 168
139 Sept. 26. 7 a.m. (Ptolemv), 138, 138 
n.21, 154, 154 n.47 

eciuinoxes, spring, observations of:
-145 Mar. 24, 6 a.m. (Hipparchus), 134,

135, 138
-145 Mar. 24, 11 a.m. (Alexandrian), 134 
-144 Mar. 23, noon (Hipparchus). 134 
-143 Mar. 23, 6 p.m. (Hipparchus), 134 
-142 Mar. 23/4, midnight (Hipparchus),

134
-141 M ar. 24, 6 a.m. (Hipparchus), 134 
-140 Mar. 23, noon (Hipparchus), 134 
-134 Mar. 23/4, after midnight (H ip­

parchus), 134, 135 
-133 Mar. 24, 6 a.m. (Hipparchus), 134 
->132 Mar. 23, noon (Hipparchus), 134 
-131 Mar. 23, 6 p.m. (Hipparchus), 134 
-130 Mar. 23/4, midnight (Hipparchus),

134
*129 Mar. 24, 6 a.m. (Hipparchus), 134 
•^128 Mar. 23, noon (Hipparchus), 134 
t l2 7  Mar. 23, 6 p.m. (Hipparchus), 134

140 Mar. 22, 1 p.m. (Ptolemy), 138, 154, 
154 n.47

eras. See Alexander of Macedon; Augustus;
Nabonassar, Philip; Seleucid 

Eratosthenes: determined arc between solstices 
as a  o f  the circle, 63, 63 n. 75; Geography of, 
63 n.75; standard meridian of, 225 n.l6; 
order of planets according to, 419 n.l 

Eratosthenes, pseudo-, 348 n .l21 
errors, computational, in Almagest. 130 n. 108, 

211 n.62, 230 n .23 ,237 n.30, 242 n.36 ,254 
n.60, 254 n.61, 284 n.23, 302 n.61, 305 
n.63, 333 n.63, 334 n.64, 335 n.70, 336 
n.75, 337 n.79, 570 n.40, 570 n.42, 574 
n.52, 580 n.70, 580 n.71, 596 n.l02, 608 
n.32

eoTtepav, npoq, peculiar sense of, 600 n. 13 
Eternal Tables. See Aeon-tables 
£TEp6cKiO(;, 82 n.24, 85, 85 n.36 
Euandros. Athenian archon. 213 
Euclid: Elemenis, 2, 6, 24; I 4.447 n.47; 1 18. 147 

n.37; I 19, 147 n.37; I I 5. 489 n.43; II 6, 48 
n.52, 197 n.38: III 3. 558 n.4; III 7, 455 
n.80; III 8, 559 n.9; III 14.447 n.46; III 15. 
559 n.l0; III 27. 556, 561 n. 13; III 35. 489 
n.42; III 36, 196 n.37; IV 15. 49 n.55; \ 'I  
Def 3. 49 n.53; V I1 .55 n.65.559 n.7; \ ' l  3. 
54 n.64. 55 n.66; \ ’I 8, 52 n.61. 148 n.38; 
XIII 9, 49 n.54; X III 10. 49 n.56; Data: 6. 
545 n.43; 7. 67 n.79; 8. 159 n.51. 545 n.42. 
545 n.43; 40, 159 n.50. 545 n.42; 43. 159 
n.52; Fhaenomena 6 

Eudoxus, delined colures, 19 
‘Eudoxus’ papyrus, 177 n .l4 
Euktemon, 137, 137 n. 19. 138. 139 
euT0V0(;. meaning of, 405 n .l80 
‘Exeligmos’. lunar period. 175. 175 n.8 
extreme and mean ratio, 49. 49 n.53

■fixed’ stars; lerminolog>-. 43, 43 n.35, 321; 
relative positions of unchanged. 321-7; 
alignments o f observ ed: by Hipparchus, 
322-4; by Ptolemv , 325-7; declinations of 
observ'ed: by Timocharis and .Aristyllos, 
331, 332; by Hipparchus, 331. 332; by 
Ptolemy, 331, 332. See also occultations; 
phase; precession; star catalogue 

Fortunate Isles, prime meridian of Geoi>raphr, 
130 n.l09

fractions, Greek, 7; awkwardness of, 48

Galen: used Hipparchus’ works, 1; on Seven- 
month Children, 1 n .l; Commentary on 
Hippocrates’ /̂ l in Waters and Places, 1 n .l, 2 
n.2; alleged mention of Ptolemy an inter­
polation. 2 n.2; On his own Books, 139 n.25 

Geminus, 175 n.8 
geography, Hellenistic, 82 n.20 
Gerard of Cremona, translation of Almagest 

by. 3, 4
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Germanicus, translation of Aratus by, 348 
n.l21; scholion on, 350 n.l31 

globe. See star-globe 
Glykon, serpent, 381 n.60 
gnomon: mentioned by Ptolemy, 42, 43, 80; 

shadow of, used to characterise terrestrial 
latitude, 76, 80-2, 82 n.20, 82-90; in­
accuracy of this, 82 

Goldstein, B. R., 8, 419 n.2 
Greece, observation of phases in, 638

Hadrian, Roman emperor, I I ,  166, I98(ter), 
204, 247, 449(bis), 454, 455,456(bis), 469, 
470(bis), 471(bis), 472. 484(bis), 507(bis), 
525(ter), 537, 651; and Antinous, 357 
_n.l60

Hajjaj, al-, Arabic translation of Almagest by,
2, 4, 49 n.57,327 n.49,334 n.66,348 n. 123, 
364 n.l93, 379 n.47, 442 n.37, 597 n.4 

Halma. N„ vii, 224 n.l4, 250 n.48, 451 n.63 
Hamilton, Norman T ., I, 205 n.5l, 206 n.52 
Handy Tables. 2 n.2. 10, 10 n .l6 , 140 n.28,237 

n.30, 276 n.4. 292 n.44.295 n.50,546 n.48, 
596 n.l02. 654 

yasan, al-, ibn Qjiraysh. translated Almagest 
into Arabic. 2. 341 n.96 

Hebudae, islands 89 n.65 
Heiberg, J. L.. 3. 4, 24. 28 n.2. 202 n.46.

250 n.48, 252 n.51, 283 n. 19. 315 n.82 
Hellespont, parallel through, 86. 86 n.42, 102, 

127
Hephaestion, astrologer. 374 n.l3  
Heraclides of Pontos, 44 n.41 
Hercules, identilied with eyyovaotv, 348 n. 121 
Hermes, legend of, 349 n.l30, 350 n.l31 
Heron of Alexandria: dioptra of. 227 n,20; 

Dioplra. 337 n.78; Belopoeica, 405 n.l80; 
Mechanics, 405 n. 180; Pneumatica, 405 n. 180 

Hervagius. produced editio princeps of Greek 
•Almagest, 3 

Hipparchus: astronomical works of, lost, 1; used 
Kallippic Cycles inconsistently, 13, 214 
n.72, 224 n.l3; used Egyptian calendar, 
13, 212, 214 n.72, 215 n.74, 224, 227, 230, 
284, 421 n. 11; Commentary on Aratus bv, 
15, 19, 63 n.75, 322 n.5, 361 n.l72, 365 
n.204, 374 n.l3 , 391 n .ll4 , 402 n.l70; 
chord table of, 52 n.60; used Eratosthenes’ 
value for arc between the solstices, 63. 63 
n.75; treatise on geography by, 63 n.75; on 
length of year, 131, 132, 135, 139; 
discovered precession, 131, 321, 321 n.2; 
errors attributed to by Ptolemy, 132, 135,
136, 178-9, 205, 211, 213, 215, 268, 
309-10; observations of equinoxes by, 133,
134, 135, 137-8; did not observe at 
Alexandria, 134 n.9; observations of lunar 
eclipses by, 135, 284 n.23, 309, 309 n.67, 
327; a iover of truth’, 131, 136, 421; 
assumed only one anomaly for sun and 
moon, 136, 309 n.68; observations ofSpica

at lunar eclipses, 135, 327; showed that 
tropical year is less than 365i da^s, 136, 
139; thought predecessors’ soktice obser­
vations crude, 137; used solstice observa­
tions of Meton and Aristarchus, 139; 
sobtice observation of, 139; determined 
sun’s eccentricity and apogee from season- 
lengths, 153; season-lengths according to,
153, 156; determination of lunar mean 
motions by, 175-6 ,1 7 6 n .l0 ,178,192n.34, 
309-10; dependence on Babylonian 
astronomy, 176 n.lO, 322 n.5, 423 n.l9, 
670; use ofSpdnoq  by, 177 n. J 4.224 n. 14; 
lunar eclipses used by, 178 n . l7 ,205 n.51, 
208, 211, 212, 213, 214, 215, 309. 327; 
determined lunar anomaly from 3 eclipses, 
181, 181 n.24, 192 n.34, 215 n.75; 
discrepancies in his method of so doing, 
211-15; method of finding mean motion 
and epoch in lunar latitude, 205,205 n.51,
309-10; apparent diameter of moon and 
shadow according to, 205, 252, 252 n.53, 
252 n.54; lunar observations by, outside 
syzygies, 217. 217 n.2, 220, 224, 225, 225 
n.l7 , 227, 227 n.20, 230; suspected in­
adequacy of simple lunar hypothesis, 217 
n,2; used 248-day lunar anomaly period, 
224 n.l4; computations of parallax bv, 
224,227,227 n.21,230,230 n.22; Padopted 
standard meridian from Eratosthenes, 225 
n. 16; used era of death of Alexander, 227, 
230; found maximum latitude of moon as 
5°. 237; used solar distance to find lunar 
distance, 243; used solar eclipse to find 
lunar distance, 244,244 n.38; Pfound lunar 
distance as 59 earth radii, 251 n.49; 
criticised ‘ancient astronomers’, 252 n.51; 
observed apparent diameters with 4-cubit 
d iop tra . 252; invented  geom etrical 
method of finding solar and lunar distances, 
254; parallax procedure of. 268, 268 n.82; • 
investigated eclipse intervals, 294 n.47; 
uncertain about amount of precession, 
321, 328; reliability of fixed-star obser­
vations of, 321; at first restricted preces- 
sional motion to zodiacal stars, 322, 329; 
observ ations of star alignments by, 322-5, 
322 n.3, 322 n.4, 324 n.26, 324 n.27; 
celestial globe of, 327, 327 n.48; longitudes 
of fixed stars recorded by. 327, 330 n,56; 
obser\'ation o f Regulus by, 328; concluded 
that precession takes place along the 
ecliptic, 329; considered observations of 
‘school of Timocharis’ crude, 329; records 
of star positions by, 330, 330 n.56; star 
declinations observed by, 331, 332, 333; 
265-ycar interval between his and Ptolemy’s 
fixed-star observations, 333; differences 
from Ptolemy in describing constellations, 
340, 340 n .94 ,361; Pplanetary observations 
of, 420 n.7, 672; did not construct a 
planetary theory, 421; showed that con-
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temporary planetary hypotheses were 
wrong, 421; ‘computed’ planetary periods, 
423, 423 n.l9; mentioned, 29 

Hipparchus: works mentioned in Almagest: 
‘O n the displacement of the solsticial and 

equinoctial poinu’, 132, 321 n.2, 327, 
329; quoted, 133, 327 

‘O n the length of the year’, 139(bis), 328, 
329; quoted, 139, 328 

‘O n intercalary months and days’, 139;
quoted, 139 

catalogue of his own writings, 139 n.25;
quoted, 139 

‘O n sizes and distances', 244 n .38 ,257 n.66 
On parallaxes’: Bk. I, 268; Bk. II, 268 

compilation of planetary observations, 420 
n.7, 421 n .9 ,421, 421 n.l 1,452,452 n.66 

horoscopic degree, computation oi, 104, 650 
‘horoscopic instrument’ 217 n.l 
hours, equinoctial, 23; conversion of, to civil 

hours, 104
hours, seasonal or civil, 23; computation of 

length of, 99, 649-50 
Hyades, bright star in (o Tau), used as sighting- 

star, 449(bis), 449 n.54, 454,454 n .78 ,456, 
473. 520, 538 

hypothesis, meaning of in Almagest, 23-4

Ideler. J . L., 13, 214 n.72. 224 n.l3 , 451 n.63 
immersion, meaning of, 22 
inhabited world. See oikouhevt^ 
instruments, obser\’ational, 61-3, 61 n.70,

133. 133 n.7, 134, 134 n.l2 , 217-19. 227, 
244-6. 252; eirorsdue to, 132, 134. See also 
‘astrolalje’

interpolation, coelllcient of. 235-7.260-4,546- 
8, 622 n.41, 631. See also Almagest, inter­
polations in

Ishaq ibn Hunavn. Arabic translation of 
Almagest bv, 2, 4, 315 n.81, 342 n.99, 366 
n.2lT. 392 n .l22 

Istros, river, parallel through, 87, 87 n.48

Ju p ite r  period and mean motions of, 424, 522- 
5, ^ 9 - 7 2 ;  alleged occultation of star by, 
522. 522 n. 16, 658; retrograde arcs of, 569- 
72; northern limit of eccentre of, 598; ob­
servational basis of latitude theory of, 604; 
arcus l isionis of, 639 

Jupiter, observations of:
-240 Sept. 4 (PDionysius), 522, 522 n.l6, 
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133 May 17 (Ptolemy), 507
136 Aug. 31 (Ptolemy), 507
137 Oct. 8 (Ptolemy), 507
139 July 11 (Ptolemy), 520

Kallippic Cycles 12-13, 139 n.24, 214 n.72; 
First, 12, 138, 139, 334, 335, 336, 337;

Second, 12, 2I4(bis), 215; Third. 12. 133,
134, 135, 137, 138, 139, 224, 284,309, 328 

Kallippos, 12; length of year according to, 139; 
mentioned by Hipparchus, 139. See also 
calendar; Kallippic Cycles 

Kambyses, king, 11, 208, 253 
KaTaX.d^netv, 414 n.209, 470 n.8 
icevrpa, astrological meaning of, 408 n.l90 
Kepler, 3
Keskinto, inscription of, 422 n .l2 
king-lists. See Canon Basileon 
icXi^a. See clima
koXXtiok;, astronomical meaning of, 407 n.l87 
KoXXopoPov, 346 n.l 18, 383 n.69 
Kunitzsch, P., 2, 4, 403 a  172

lathe, used for instrument-making, 61, 217,405 
latitude: various meanings of, 19, 329 n.55;

meaning ‘latitude or declination’, 21 
latitude, terrestrial, 75 n.4, 82, 82 n.22. See also 

clima 
Lepsius, R., 502 n.63

Maiotic lake, parallel through, 87, 87 n.51 
M a’miin, al-, Caliph, Almagest translated 

under, 2
Manitius, K.. vii. 3 n.7, 7, 14, 15, 16,20, 75 n .l.

133 n.6, 135 n.l2 , 153 n.46, 215 n.75,222 
n.9, 224 n.l4, 250 n.48, 252 n.55, 271 n.85 
275 n.3, 451 n.63, 631 n.53 

M ardokempad, king, 10, 11, 166n.59,191(bis), 
192, 204(bis), 309 

Mars: period and mean motions of, 424, 484 
n.33, 502-4,669-72; occultation of star by, 
502. 502 n.63; retrograde arcs of, 572- 
5; northern limit of eccentre of, 597 n.5, 
598; observational basis of latitude theory 
of, 603; arcus l isionis of, 639 

Mars, observations of:
-271 Jan . 18 (?Dionvsius), 502, 502 n.63, 

505 n.67 
130 Dec. 15 (Ptolemy), 484
135 Feb. 21 (Ptolemy), 484 
139 May 27 (Ptolemy), 484 
139 May 30 (Ptolemy), 499, 657-8 

Massalia. parallel through, 86, 86 n.44 
liaOimaTiKoi, meaning of, 139 n.26 
mean motions, validity of, 137, 137 n .l8  
mean speed, position of in epicyclic/eccentric 

hypothesis, 146. 146 n. 35 
Medusa, 352 n .l40
Menelaus, m athem atician and astronomer, 18. 

69 n.84; chord table of, 50 n.59; used 
TpiJtXfiopov, 80 n. 14; observations ol cccul- 
tations by, 336, 338 

Menelaus Configuration, 18, 69 n.84 
Mercury: changes in Ptolemy’s hypothesis for, 

206, 206 n.52; transits of, 419 n.2: lack of
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parallax for, 419-20, 420 n.4; special 
model for, 422 n.lfi, 444-5, 591 n.95: 
period and mean motions of, 424, 461-7, 
467 n.l04, 669-72; apogee of, 449-53, 453 
n.74, 454; called Stilbon, 450, 450 n.59, 
464; double perigee of, 454-6; maximum 
elongation of, 454 n.76; computation of 
least distance as 55;34’’, 460,460 n .89 ,546; 
retrograde arcs ol', 578-81; ‘missing phases’ 
of, 591, 641,644-5; inclination of eccentre 
of, 598; observational basis of latitude 
theory of, 601-2, 625; arctu visiohis of, 640 

Mercury, observations of:
-264 Nov. 15 (PDionysius), 464, 464 

n.99
-264 IVov. 19 (.^Dionysius), 464 
-261 Feb. 12 (PDionysius), 450, 659 
-261 Apr. 25 (PDionysius), 450-1 
-261 Aug. 23 (?Dionysius), 452 
-256 May 28 (?Dionysius), 451-2 
-244 Nov. 19 (Babylonian), 452 
-236 Oct. 30 (Babylonian), 452

130 July 4 (Thcon), 456
132 Feb. 2 ;Ptolemy), 449, 455
134 June 4 (Ptolemy), 449, 456
134 Oct. 3 (Ptolemy), 454
135 Apr. 5 (Ptolemy), 454
138 June 4 (Ptolemy), 449-50. 456
139 May 17 (Ptolemy), 461
139 July 5 (Ptolemy), 456
141 Feb. 2 (Ptolemy), 450, 456 

meridian, defined. 19, 47 
meridian line. 62, 62 n.72 
meridian ring, 61-2. 218 
Meroe: parallel through, 84. 84 n.30, 100, 122, 

122 n .l0 8 , 123, 285, 315; m eridian 
through, 225 n .l6  

|ieTd(ppevov, meaning of. 356 n.l59 
Meton, 12, 137, 137 n. 19, 138; cycle of. 12, 139 

n.24; length of year according to, 139; 
mentioned by Hipparchus, 139, 328 n.53. 
See also calendar 

Miletus, parapegma at, 13, 138 n.22 
Milky Way, location of, 400-4 
‘month’, meaning of, 175 n.6 
month names: Babylonian. 13 n.22; in Diony­

sius’ calendar, 14; Egyptian, 9; M acedon­
ian, 13

moon: mean motions of, 175-80, 190; epochs of 
these, 204-5, 207-9; periods of, 175-6; 
Ptolemy’s corrections to Hipparchan mean 
motions of, 179, 179 n.l8 , 204, 205-7; 
sim ple hypothesis of, 180-1; second 
anomaly of, 181, 217, 220-2; size of this, 
222-5; determination of maximum anom­
aly and apogee of: by Hipparchus, 181, 
181 n.24, 211-15; by Ptolemy, 190-203; 
inclination of orbit of neglected, 191, 191 
n.29, 297-8, 298 n.55; determination of 
mean position in latitude, 205-9; apparent 
diameter of: according to Hipparchus, 205, 
252, 252 n.54; found from eclipse observa­

tions, 252-4, 283-5; inaccuracies in this, 
254 n.62; computation of true position of, 
233-4; (frxjm tables), 237-9, 652; maxi­
mum latitude of, 237,247; size and volume 
of, 257, 257 n.66; velocity, computation of, 
282, 282 n .l5 , 311; m ^ e l of compared 
with M ercury’s, 443, 453 n.75; procedure 
for finding anomaly of compared with 
outer planets’, 484; table of, earlier version, 
631 n.53. See also Exeligmos; parallax, 
lunar; ‘Periodic’ 

moon, observations of:
-127 Aug. 5 (Hipparchus), 224 
-126 Mav 2 (Hipparchus), 227 
-126 July 7,(Hipparchus), 230

126 or 145 (Ptolemy), 246-7, 247 n.44
135 Oct. 1 (Ptolemy), 247 
139 Feb. 9 (Ptolemy), 223 
139 Feb. 23 (Ptolemy), 328 

moon, observations of (star occultations):
-294 Dec. 21 (Timocharis), 337 
-293 M ar. 9 (Timocharis), 335 
-282 Jan . 29 (Timocharis), 334 
-282 Nov. 9 (Timocharis). 336 

92 Nov. 29 (Agrippa), 334 
98 Jan . 11 (Menelaus), 337 
98 Jan . 14 (Menelaus), 338 

moon, observations of (as auxiliary in planetary 
observations):

138 Dec. 16 (Ptolemy), 474
138 Dec. 22 (Ptolemv), 538
139 Mav 17 (Ptolemv), 461 
139 May 30 (Ptolemv), 499
139 July II (Ptolemy). 520*

See also eclipses, lunar 
moon’ as unit of measurement, 450, 450 n.60.

451, 464. 470. 470 n.9 
motion, daily, of heavens, 45-7 
motion, natural, 40, 43-4 
motions, primary, 45-7

Nabonassar. king, 11; era ol', 9 ,10 ,12 ,13,168, 
169, 172, 205, 205 n.49,205 n.51,207,209, 
212(bis), 213, 214, 224,247,253,275,276, 
277, 283,284,334(bis), 335,335 n.72,336, 
337(bis), 338, 340, 340 n.91, 450,451(bis), 
452(ter), 456 n.84, 461, 464, 467, 477,479, 
480, 502, 505, 522 n .l7 , 525, 541, 
543, 651, 652, 654, 655, 657, 658; reason 
for use of this in Almagest, 9, 166, 166 
n.59

Nabopolassar, king, 11, 253 
Napata, parallel through, 85, 85 n.32 
veonTivia, 275 n.3
Neugebauer, O., viii, ix, 18,273 n.87,405 n. 181, 

582 n.76, 637 n.63 
Newton, R., viii, 247 n.44, 669 n. 1 
Nicaea, H ipparchus born at, 134 n.9 
‘normal stars’, Babylonian, 453 n.70, 544 n.34 
vuxOiinepov, meaning and translation of, 23
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observations. See cciipses, lunar; e(|uinoxes; 
fixed stars; Jupiter; Mars; Mercury; moon; 
Rcifiilus; Saturn; soJstices; sun; Venus 

observations, Babylonian, 9, 12 n .l8 , 13, 166 
n.59, 191-2, 206, 207, 208, 211, 212, 213, 
253(bis), 253 n.58, 420 n.7, 452(his), 453 
n.70, 541 n.34, 637 n.64, 638 

occultaitions. .SVr Jupiter; M an; moon; Venus 
0llC0u^evl^: location ol, 75, 82; meaning of 

tca0’ i*|n2<; oticoi^MevTj, 75 n .l; diflercni 
oiKoonEvat, 294 

oppositions, planetai7 , technical term lor, 484 
n.29

ortive amplitude 77 n. 10

Pappus; (Jommentarv on Almagest l)v. 2. 5, 219 
n.5. 244 n.:;8. 244 n.39,245 n.4l'. 246 n.43. 
252 n.51, 252 n.52, 252 n.55, 268 n.82,275 
n.3, 291 n.39, 292 n.44; .Synavo,i;f. 80 n . l4. 
405 n. 180

papvri, astronomical, 2 n.2. 10 n. 12, 140 n.27.
177 n.l4 , 224 n.l4 . 422 n .l2  

papyrus, standard roi m atsol, 56 n.67, 140 n.28 
parallactic instrument: construction of, 244-6, 

244 n.39. 244 n.40, 245 n.41. 246 n.42,246 
n.43; use oi; 246, 247 

parallax, lunar: trigonometry required Ibi, 105. 
130 n. 108; errors in determination ol'. 136; 
complicates lunar obseiAations. 173. 243; 
explained. 173: all'ects solar, but not lunar, 
eclipses, 173-4. 310; computation ol. 223.
223 n.lO, 227. 227 n.21, 264-73, 310-1. 
328. 334. 335. 336(his). 337, 338(bis), 461. 
461 n.93. 475. 499. 520, 538, 538 n.31. 
652-3, 655-6; theory of. 243-73; obseiva- 
tion of. 247-8; inaccuracies in. 251 n.49. 
260 n.69,264 n.73; total’, 258-60; table ol. 
260-5; ellect on solar eclipse limits, 285-6; 
ell'ect on intervals between solar eclipses, 
290-4; ell'ect on length of phases in solar 
eclipses. 312-3 

parallax, solar: uncertainty oi; 243-4; used by 
Hipparchus to lind lunar distance, 243; 
total’. 258-60; calculation of, 266, 310-1; 

does not afl'ect solar theory, 267, 267 n.80; 
elFect on solar eclipse limits, 285 

Pedersen O., viii, 281 n. 12, 282 n. 15, 328 n.52. 
624 n.43

perigee (TOp'tYEtov): Greek terms for, 22; special 
use ol, for Mercury, 22,461 n.94, 630. 630 
n.50

TtepiyeioTaTOi;, meaning of, 22, 461 n.94
rcepiicaTdXTivK;, 424 n.22
‘Periodic’, lunar period 175, 175 n-7
JiepiaKiCH;, 82 n.24, 89 n.67
Pereeus myth, 346 n .ll5 , 352 n.l40, 402 n.l70
Petavius, Dionysius, 451 n.63
Peters^Knobcl, 14, 15, 16
Peurbach, See Regiomontanus
Phaethon, myth of, 384 n.77
Phanostratos, Athenian archon, 211, 212

phase: meaning of, 22, 407 n.l89, 416 n.211; 
phases of fixed stars enumerated, 409-10; 
dilliculty ol precise determination of, 416, 
420-1. .V« a/so eclipses, solar; visibility, first 
and last

Philadelphos. See Ptolemy Philadelphos 
Philip (Arrhidaeus), era of, 10 n .l6  
Philometor. See Ptolemy Philometor 
Phoenicia, parallel through, 86; used as norm 

lor planetary phases, 638 
planetaria, artificial, 601 
planets: names for, 21, 450 n.59; order of, 

419-20; order of in Hanelaty Hypolheses, 420 
n.4; two anomalies of. 420, 442; observa­
tions of: mostly recent and unsatisfactory, 
420, cf. 450; types used by Ptolemy, 423; 
mean motions of, 423-6; periods of ‘cor­
rected’ bv Ptolemy, 423, 423 n.20; eccentric 
model (or. 442 n.38, 555, 555 n.2; apogees 
of sidereally fixed, 443, 445: ‘eccentre 
producing the anomaly’ [equant], 443; 
description of models Ibi', 443-5; inclin­
ation of orbits negligii)le. 443, 597, 608. 
611, 616, 618, 622. 626, 628; computation 
of longitude of, iiom tables; 554. 657-8; 
models of with single anomaly. 555; n  tro- 
gradation, limit of, 559 n.B; latitude 
models ol. 599~600 

planets, inner: latitude theory for, 422 n .l6; 
Ptolemy's method of determining apsidal 
line for, 449 n.53; peculiarities of latitude 
theory of, 598. 599. 622-4; computation of 
latitude ol', I'rom tables. 635-6, 639. See also 
Mercury; \'enus 

planets, outer: oljservational basis of theory for, 
480-4; peculiarities of latitude theory ol. 
Iiom tables. 635, 658. See also Jupiter; 
Mai's; Saturn 

plaque, for detennining obliquity o( ecliptic, 
62-3

Plato, order of planets according to, 419 n.l 
Pleiades: occultations of. 334-5; length of. 469, 

469 n.3. 470 
Pliny, Vatural History. 89 n.65, 294 n.47 
plumb-line, 62. 63. 245 
Pollux, lexicographer. 374 n. 13 
Pontus, 122. 86 n.46; parallel through middle 

of, 86, 102, 128 
Porphyrius, 2 n.2, 407 n.l87 
Posidonius, use of terms dfi(pi(7Kioq etc. bv, 82 

n.24
precession: effect of'. 46 n .4 5 ,132; discovered by 

Hipparchus, 131, 321 n.2; definition of, 
321 n.2; deduced from changes in declin­
ation, 330-3; amount of: according to 
Hipparchus, 328; according to Ptoiemy, 
328, 333-8 

precession-globe. See star-globe 
Ttpiopa, astronomical meaning of, 407 n.l86 
Proclus, Hypotvposis, 252 n.51, 252 n.52, 640 

n.72 ■
TtpoTiyoojiEva, e’i? toi, explained 20
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progress in science, ancient idea of, 37 n. 11 
TrpoCTveuoic;, meanings of, 43 n.38, 227 n .l9 , 

313 n.77, 417 n . 2 1 4 . e c l i p s e s ,  lunar; 
eclipses, solar 

Ptolemais Hermeiou, parallel through, 85 
Ptolemv: life of, 1; Aristoteiianism of, 35 n .4 ,36 

n.9
works:
Geography, 84 n.30, 87 n.57, 88 n.59, 89 

n.66, 'l30, 130 n.l09, 191 n .3l,212n.64.
335 n.69, 337 n.78, 638 n.65 

Optics, 39 n.24, 421 n.8 
Phaseis, 22, 134 n.9, 283 n.l8 , 417 n.213 
Planetary Hypotheses, 407 n. 186,419 n .2 ,420 

n.4
Tetrabiblos, 35 n.5, 283 n.l8 , 417 n.214 
See also Almagest; Canobic Inscription; 

Handy Tables 
Ptolemy Philadelphos, king, 11, 14, 477 
Ptolemy Philometor, king, 11, 283 
Ptolemy’s Theorem. 50 n.59, 52 n.60 
Pvtheas of Massalia, 89 n.66

ratios, operating with. 17-18 
'rear' 16; meaning of. 20, 340 n.93, 344 n. 110 
refraction, c Hect of. 135 n.12, 246 n.43; Preferred 

to in Almagest, 421 n.8 
Regiomontanus, epitome of Almagest by. 3 
Regulus: observations of: bv Ptoiemv (139 Feb. 

23), 328; by Hipparchus (-128 7), 328; 
used as sighting-star, 450. 454. 456. 461 

retardations of heavenly bodies, denied. 46 
retrogradation’, as translation ol 7rpoiiYrioi<;, 

20
Rhine, river, parallel through mouths ol. 87 
Rhodes: parallel through, 86, 101. 126, 212 

n.64, 224, 227, 230, 292. 638 n.65; parallel 
through used as example, 76-9, 80, 92-4, 
97-9. 111-14. 120-2: obseixations at, by 
H ipparchus, 224, 227. 230. 284. 284 
n.23; supposed to be on same meridian as 
Alexandria. 225, 225 n. 16 

Riddell, R. C., 599 n.lO 
ring. See 'astrolabe'; equatorial armillary;

meridian ring 
rising-times. See sphaera obliqua; sphaera recta 
Rome: observations at, 336, 337 n.79, 338: 

longitudinal difference of, from Alexandria, 
337 n.78 

Rome, A„ 135 n.I2, 246 n.43

Sachs, A. J „  10, 253 n.58 
Salah, ibn as-, treatise on Almagest star 

catalogue by, 2 n.4. 341 n.95, 342 n.99, 
345 n .ll3 , 380 n.54, 399 n.l55 

Samuel, A. E., 13 n.22 
‘Saros’, 175 n.7
Saturn: changes in Ptolemy’s hypothesis for,

206, 206 n.52; period and mean motions of, 
424-6, 541 -3, 669-72; retrograde arcs of.

562-9; northern limit of eccentrc of, 598; 
observational basis of latitude theory of, 
604; arcus visionis of, 639 

Saturn, observations of:
-228 Mar. 1 (Babylonian), 541 

127 Mar. 26 (Ptolemy), 525
133 June 3 (Ptolemy), 525
136 July 8 (Ptolemy), 525
138 Dec. 22 (Ptolemy), 538 

Sawyer, F. W., 449 n.53 
Scythian peoples, unknown, parallel through,

89
seasons, lengths of according to Hipparchus 

and Ptolemv, 153-4, 156 
Seleucid Era 13,'452 n.67. 453 n.70 
Seleucus I, king, 13 
series, convergent. 281 n. 12 
sexagesimal system, 6-7, 48 
shadow (of earth at lunar eclipse): apparent size 

of: according to Hipparchus, 205; according 
to Ptolem y, 254. 285; shadow-cone, 
distance to apex of, 257 

Shahpuhr I, Sassanian king, alleged translation 
of Almagest under. 2 

sign (of the zodiac), Greek terms for, 20-1 
simplicity: in hypotheses desirable, 136, 136 

n. 17, 153, W l,  600; in heavens different 
from on earth, 601 

Sirius: names of, 387 n.88, 405 n. 183; change in 
colour of, 387 n.88; as starting-point on 
star-globe, 405 

slant’ (Xo^coatq): defined, 599; angle of com­
puted. 625-7 

‘small circle’, mechanism for planetary lati­
tudes, 599 n. 10, 600 

Smyrna, parallel through, 86 
Soene: parallel through, 85, 85 n.35, 101, 124;

meridian through, 225 n. 16 
solstices: inaccuracy of observations of, 137; arc 

l)ctween. See ecliptic, obliquity of 
solstices, observations ol:

-431 June 27, ca. 6 a.m. (Meton and 
Euktemon), 137 n.l9, 138, J38 n.22, 
139, 139 n.23, 328 n.53 

-279 (Aristarchus), 137 n.I9, 139 
-134 (Hipparchus), 139

140 June 25, 2 a.m. (Ptolemv), 138, 139,
154, 154 n.47 

other mentions of: by Hipparchus, 133; by 
A rchim edes, 133; by M eton and 
Euktemon, 137; by Aristarchus, 137 

solsticial points, delined, 47 
sphaera obliqua: explained, 18; theorems con­

cerning, 75, 82, 99-104; rising-times at, 
90-9; table of these. 100-3 

sphaera recta: explained. 18; rising-times at, 
computed, 71-4; table of these, ICO 

spherics, 6
Spica: observations of, by Hipparchus, 135; 

distance of, from autum nal equinox, 135,
135 n .l4 , 327; occultations of, observed, 
335-7; used as sighting-star, 452, 474, 499
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‘star’, spccial sense of, 21, 37 n.l8 , 419 n.3 
star catalogue, Almagest: epoch of, 1, 340; 

constellations in, 14-16, 340; coordinates 
in, 16, 339; magnitudes in, 16, 339; identi­
fications in, 16; mean error in, 328 n.51; 
arrangement of, 339-40, 341 n.95; m en­
tioned, 20

star-globe, 15, 327, 327 n.48, 339, 339 n. 90,344 
n. 110; orientation of figures on, 15, 352 
n.l39, 356 a  159; Famese, 346 n. 118, 356 
n.l59; construction of, 404-7 

station, planetary: uncertainty of observations 
of, 420-1; ancient observation of, 464 n.99 

Stilbon. See Mercury
Strabo, Geography, 83 n.24, 225 n. 16, 322 n.5 
Sufi, as-, star catalogue of, 15, 348 n. 123 
sun: eccentricity and apogee of determined, 

153-5; apogee of fixed tropically, 153, 153 
n.46; epoch ofmean motion of, 166-9, 172, 
172 n.71; computation of longitude of, 169, 
651; apparent diameter of: according to 
Hipparchus. 252, 252 n.54; according to 
Ptolemy, 252-3; distance of, 255-7; size 
and volume of, 257, 257 n.66. See also 
equinox; parallax, solar; solstices; year 

sun, observations of:
-127 Aug. 3 (Hipparchus^ 224 
-126 May 2 (Hipparchus). 227 
-126 Julv 7 I Hipparchus). 230

139 Feb. 9 (Ptolemv), 223
139 Feb. 23 (Ptolemy), 328 

See also eclipses, solar; equinoxes: solstices 
sundials, reference to in Almagest. 39. See 

also gnomon 
ouvtock;. meaning of, 546 n.48 
Swerdlow, N., ix, 252 n.53. 480 n.24 
Syene. See Soene 
Syrus. 35. 35 n.5, 321. 647 
svzyg\" meaning of. 22; mean, computation of, 

275-81: true, computation of, 281-2. 308 
n.65, 654. 655: apparent, computation of,
310-1, 655-6

tables. Almagest: format and computation o t  
56. 56 n.67. 140, 140 nn. 27-8, 165-6, 165 
n.54, 180. 209, 234-7, 260-4, 275-7. 316 
n.83, 317-18, 426, 545-8. 583-7, 595, 
605-31, 646; use of 18-year interval in, 56 
n.67. 140 n.28 

tables, pre-Ptolemaic, 420 n.6. See also Aeon- 
tables

Talicil'erro, R. C., vii, 599 n.lO 
Tanais. river, parallel through mouths of, 87, 

87 n.57, 103 
Taprobane, parallel through, 83, 83 n.26 
Thabit ibn Qurra, revision of Ishaq's translation 

of the Almagest by, 2, 4, 342 n.99, 366 
n.211, 379 n.47 

Theodosius ofTripolis, 6; Sphaerica, 82 n.23, 106 
n.90

Thewi. as-sociate of Ptolemy, 206 n.54, 456.

456 n.83, 469, 470, 471 
Theon of Alexandria: Commentary on the 

Almagest, 2, 5 n .8 ,35 n .6 ,38 n.22,39 n.23, 
40 n.25, 148 n.39, 654-7; edition of Handy 
Tables, 10; mentioned, 217 n.l 

Theon of Smyrna, 257 n.66, 456 n.83 
Theophrastus, Hisloria Plantarum, 405 n. 180 
Thule, island; parallel through, 89; identifica­

tion of, 89 n.66 
thyrsus, 394, 394 n .l29 
time-degi'ees, meaning of, 23 
Timocharis; used Kallippic calendar, 12, 334, 

334 n.65, 336 n.74; observations by at 
Alexandria, 12, 334. 334 n.66; fixed-star 
observations of, used by Hipparchus, 321, 
329; lunar eclipse observation of, used by 
Hipparchus, 327; crudity of observations 
of, 329; star declinations observed by, 
330-2; occultations observed by, 334, 335, 
336, 337. 338 n.86; planetarv observations 
by, 477, 479 nn. 21-2 

T|iTi)iOTa, meanings of, 62 n.73, 69 
Toledo. .Almagest translated at. 3 
Trajan, Roman emperor, II, 336. 338 
transits, Ptolemy’s opinions about, 419 n.2 
trigonometry, 5, 7-9; spherical, 64-9 
tpinXcupov (spherical triangle). 80 n. 14 
triquetrum, 244 n.39. See also parallactic in­

strument
Troad, meridian through, 225 n. 16 
tropical points, tropics. See solsticial points; 

solstices
Tusi. at-, revision of .Almagest translation bv,

336 n .2 ll

u5poneTptov, vox nihili, 252 n.51 
uniform circular motion posited, 140, 141 
uTOHVTina, meaning of, 37 n.12

Vakya system, 224 n .l4 
van der W’aerden, B. L.. 422 n .l2 
Venus: transits of. 419 n.2; period and mean 

motions of, 424-6, 474-9,479 n.21,669-72; 
two difierent values for mean motion of, 
425 n.29, 671 n. l l ;  apogee of, 469-71; 
errors in dates of maximum elongations of, 
469 n.2; not source of equant model, 474 
n .l2; alleged occultation of star by, 477 
n. 17; retrograde arcs of, 575-8; computa­
tion of maximum elongation oi. 588-91; 
inclination of eccentre of, 598; obser­
vational basis of latitude theory of, 601-2, 
625; arcus lisionis of, 640; peculiar phases of, 
641-4 

Venus, observations of:
-271 Oct. 12 (Timocharis), 477. 477 n.l7 
-271 Oct. 16 (Timocharis). 477

127 Oct. 12 (Theon), 470 
129 Mav 20 (Theon), 471 
132 Mar. 8 (Theon), 469



Index 693

134 Feb.. 18 (Ptolemy), 472-3
136 Nov. 18 (Ptolemy), 471
136 Dec. 25 (Ptolemy), 470 
138 Dec. 16 (Ptolemy), 474
140 Feb. 18 (Ptolemv), 473
140 July 30 (Ptolemy), 469 

Vettius Valens: used Hipparchus’ work, 1 n .l,
224 n .l4; mentions ‘Aeon-tables’, 422 
n.l2; mentioned, 407 n . l87 

visibility, first and last: deflned, 407; of stars, 
413-17; o f planets, 636-40. See also 
Mercury; Venus

Xenophanes, 38 n.22 
Xenophon, Memorabilia, 413 n.204

year, len^h  of, 131-40; invariability of, 132 
year, sidereal, 131, 132 
year, tropical: taken as basic by Ptolemy, 132; 

period of sun’s anomaly according to 
Hipparchus, 136; length of: according to 
Hipparchus, 139; according to Ptolemy,
137, 139-40

water-clocks, used lor astronomical purposes, 
252, 252 n.51 

wind-directions, 315, 315 n.79, 316 n.83 Zenodorus, mathematician, 40 n.25




