
Mining NANOG Mailing List∗

Tony Zu-Cheng Huang, Chi-Yao Hong
Department of Computer Science

University of Illinois at Urbana-Champaign
{zuhuang1, hong78}@illinois.edu

ABSTRACT
It had been shown that the misbehaviors by few malicious,
compromised or misconfigured BGP routers could lead to se-
rious outages in Internet. This failing becomes progressively
crucial as the recent prosper of outage-sensitive applications
such as Voice over IP, streaming media, and video conferenc-
ing. To address these misbehaviors, previous work mainly
focus on distributedly detect or prevent outages using lim-
ited state of Internet.

In this paper, we present a first step towards efficient trou-
bleshooting by mining network operators mailing lists. Us-
ing Natural Language Processing (NLP) and Machine Learn-
ing, we develop a new approach to extract useful information
from the mailing forum on North American Network Oper-
ators Group (NANOG).

Our experimental results show that the proposed approach
detects 94 out of 105 outages from NANOG with a false
positive rate of only 7.3%. We validate the extracted outage
using real network logs collected by Route Views project.
While our approach is not perfectly accurate, we envision
it to be a useful information to existing anomaly detec-
tion/prevension mechanisms.

1. INTRODUCTION
Internet today adopts the Border Gateway Protocol (BGP) [20]
as the core routing protocol to connect autonomous systems
(ASs). However, the current design of BGP assumes that
each border router will fully obey the rules specified by BGP,
which is not always true in practice. The misbehavior such
as faulty announcements could be sent by malicious, com-
promised or misconfigured routers, and could lead to serious
problems. The common BGP problems include prefix filter-
ing, prefix leaking, prefix hijacking, blackhole, and route
instability [11].

∗CS598PBG Project Report, Fall 2009.

Dealing with BGP problems is not new – different mecha-
nisms have been proposed to mitigate the performance degra-
dation induced by a variety of BGP problems [8, 13, 15, 21].
However, these mechanisms usually has complicated imple-
mentations and overheads in terms of control messages and
implementation costs, and thus most of ISPs are not able to
install most up-to-date mechanisms. Besides, these mech-
anisms might not be accurate (i.e., with considerable false
positives/negatives) because of limited view of networks [16].
Due to the scalability issues, the BGP router does not have
global view of entire Internet. The partial view of whole
network renders the troubleshooting of network problems
more difficult. Worse still, some problems, such as prefix
hijacking, has been shown by recent researches to be hard
to detect automatically [9].

In actual network management practice, each AS has net-
work operators that manages the filter list, local transit
policy and other network management issues. They also
actively monitors network conditions and shares informa-
tion about potential network problems. Network outages,
illogical BGP announcements, prefix hijackings and other
network problems are all topics closely monitored by these
operators. Network operators communicate with each other
through mailing lists and other channels. Therefore, instead
of using existing mechanisms to deal with network outages,
operators adopt various mailing lists as a good source of
information on the history of network outages as well as a
warning flag on current network problems.

In this paper, we try to leverage the information contained
in the operator mailing lists and Route Views archive to help
to solve the problem of network outages detection, diagno-
sis and analysis. We propose a platform to extract useful
information from network forum. In particular, our plat-
form can mine important information about present network
problems from on-line forum. We here focus on the mail-
ing forum on North American Network Operators Group
(NANOG) [4], which is a public forum for the exchange of
network operation issues for operators mainly within United
States. Since most on-line forums adopt similiar design pat-
terns, we believe our platform can be easily modified to sup-
port other forums, and we consider it as a first step towards
efficient troubleshooting by mining Internet forums.

With the information extracted from NANOG, the current
mechanisms could detect network problems more accurately.
Extracted information from forum could help mechanisms



not only refine their searching domain (i.e., achieving fewer
false negatives) but also improve the searching accuracy (i.e.,
having fewer false positives). While our approach is also not
perfectly accurate, we envision it might be of use to signal
“hint” to network operators regarding which AS, prefix or
IP address may be faulty.

The main contributions of our design are as follows.

i. Using information retrieval and natural language
processing techniques to solve networking prob-
lem: Troubleshooting network problem is hard for net-
work operators because of the limited view of networks.
We present a novel approach to diagnose network prob-
lem by mining the NANOG mailing lists. To the best
of our knowledge, this paper is the first work to detect
network anomalies by extracting on-line forum infor-
mation.

ii. Effective extraction: Our design utilizes mature ex-
isting techniques from document indexing, classifica-
tion and name entity recognition and combine them in
an efficient way. It can be shown that our system ef-
fectively reports network problems that are useful for
network problem diagnosis.

iii. Classified report: We mine the mailing list in a struc-
tured way, identify threads discussing network outages,
classify them into outage categories and extract infor-
mation about the outages. Our classified information
can be used as error signal to network operators.

The proposed method is presented in §2, including thread
classification and information extraction. We use statistical
analysis and real network logs to evaluate the performance
of our design in §3. We conclude our work in §4.

2. METHOD
Our design includes three stages as shown in Figure 1. In
the first stage (§2.1) the raw information are extracted from
NANOG and stored in a thread-level data structure. Given
the thread-level information, we classified threads into net-
work outage-related threads and others in the second stage
(§2.2). Then the last stage (§2.3) extracts useful informa-
tion from outage-related threads and report the extracted
information for network diagnosis.

2.1 Raw Text Extraction and Processing
The input of this stage is the raw NANOG mailing list
archive in HTML format, while the desired output is a list of
threads. In forum structure, a thread consists of a collection
of posts, which are user submitted messages. We use thread
as the basic data structure to store the information extracted
from NANOG, i.e., we classify posts into threads. Based on
our observation, useful information for a single outage are
scattered in various posts with the same title. Therefore, we
use thread instead of post as the basic unit for our classifier
and information extractor.

For each thread, we are particularly interested in extracting
following features:

Figure 1: The architecture of the design.

• Title

• Author of the first post

• Publish time of the first post

• Publish time of the last post

• Post bodies (user messages)

• Keywords (the selection of keywords is discussed in
§2.3)

We are interested in the authors of the posts because it
would be useful to identity point of contact for information
about the problem discussed in the thread. We reason that,
in posts discussing network issues happening at real-time,
the publish time of the first post might be close to the ac-
tual time when the outages are happening. We reason that,
authors discussing about problem happened some time ago
would explicitly post the time when the problem occured.
The publish time of the last post could be used to calculate
the time span of a thread, which is used for indexing meth-
ods (§2.2.2). The bodies of the posts are used for keyword
extration (§2.3).

To extract the features from NANOG forum, we first down-
load all posts in HTML format from NANOG forum. We
implement an algorithm that recursively cleans up nested
quotations in every downloaded post. We reason that quotes
are not actual contents of the posts, but instead repetition
from previous contents. They would falsely increase the im-
portance (i.e., appearances) of the quoted words, and affect
the weight of words on the word frequency matrix. After the
removal of quotes, we implement a detagger to convert the
posts to plain text format. We choose not to parse the post
in HTML format directly because there is no any tags inside
the message body that would help distinguish the semantic
of various parts in a post. Based on our observation, the
body of a post, including the signature and public key di-
gest, are enclosed in a single <pre> </pre> pair. Therefore,
to work with the posts in plain text format, the detagger is
implemented to elimiate the noises caused by HTML tages.



Besides, while plain-text posts have better readability, there
remains some noisy words. For example, the phrase “North
American Network Operators Group” appears in every post
as header and structural words. We implement a simple
word-processing program to automatically filter out these
structural contents. However, although our word-processing
program can easily filter out the noises that appears repeat-
edly, it remains another type of noises. Specifically, the mes-
sage contents also include the signatures, message digest,
manual quotes that are not removed by HTML detagging
and other noises. Filtering out the signatures poses a tough
issue because a lot of signature include email addresses, com-
pany titles and internet addresses, which are parts of the in-
formation we try to retrieve from the contents. Filtering out
these words therefore would be critical for the performance
of the name entity recognition (§2.2.1). After observing the
common pattern of the signature, we deploy a heuristic that,
starting from the end of a post, we discard lines of the thread
until we reach the first line that ends with a period, question
mark, exclamation mark or until it reach a line that starts
with two dashes.

After we clean up the single post, we form a thread by com-
bining the posts with the same title. We order the bodies of
posts in a thread by its publish time.

2.2 Classification
In this stage, we aim to classify the discussion units into
outages categories. Previous work by Feamster and Balakr-
ishnan [12] analyze the forum manually and classified them
into 10 categories. We started off to adopt their categories
and try to manually label the forum posts since year 2007
to October in year 2009. However, we observe that most of
the categories in Feamster and Balakrishnan’s paper is very
granular. For example, the most common category, global
route visibility, has only 146 threads discussing actual net-
work problems. By our manual inspection, we identify about
150 threads that are discussing actual network outages dur-
ing year 2007 and 2008, while the total number of threads
that are over 2000. The number of threads does not jus-
tify a granular classification from the beginning. Therefore,
we adopt a two level filtering and classification approach.
We first classify threads into either network problem related
or not-related, then further classify them in sub-categories.
The performance of this scheme is discussed in Section 3.

The output from the first stage, i.e the combined contents of
a thread, is then tokenized, processed and filtered by a chain
of recognizers (§2.2.1), and converted into a term occurrence
vs. document matrix.

The matrix is then undergone indexing to transform into a
weighted term frequency vs. document matrix (§2.2.2). We
combine this matrix with manually selected features, and
form a final feature vs. document matrix (§2.2.3). We uses
the classification methods implemented in Weka Machine
Learning library [14] to classify our documents. Several pop-
ular algorithms for text classification such as Naive Bayes,
SVM and decision tree are used and evaluated (§2.2.4).

2.2.1 Document Processing
We construct a program tokenizer using the rule-based break
iterator from International Components for Unicode pack-

age [3]. There were other available packages available for us
to choose from, specifically Java’s inherent text package and
the text package from Apache [1]. We choose to use the ICU
package because it provides users a convenient user-defined
rules using regular expressions. We extend their rule-based
tokenizer with IP addresses (e.g., 192.168.2.1), IP prefixes
(e.g., 192.168.0.0/16), and general Internet site addresses
(e.g., http://www.cs.illinois.edu/homes/pbg/), and email
addresses. IP prefixes have higher priority than IP ad-
dresses. The general Internet site addresses is used to im-
plement a heuristic in §2.2.3.

The reason we need to recognize IP prefixes, IP addresses
and Internet site addresses are motivated by the observation
that people reporting a network outages would post websites
or IP addresses they can not reach, or domains that they
find out having problems. The responding posts would often
include traceroute traces or other network tracing software
reports. These are all valuable information that we deem
important to extract. Despite the fact that these traces come
in various format, they include the IP addresses or domains
that the traces went through and potential problematic sites.

We then pass the tokens throw a chain of recognizers. The
recognizer is a Java interface we implemented for flexible
incorporation of different token recognition algorithms. In
this paper, we implemented two token recognizers. The first
recognizer is a stop word recognizer. We used the standard
stop-word list retrieve from Onix Text Retrieval Toolkit [5].
The second recognizer is a general name entity recognizer
from Stanford University NLP Group [6]. The name entity
recognizer can recognize token type date, organization, loca-
tion and human name. The recognizer is a general purpose
one, trained on the CoNLL 2003 [2] English training data.
We reason that a general English recognizer would suffice for
our task because we mainly use the name entity recognizer to
recognize organization names, such as AT&T or Comcast,
and locations where outages occurs. These two categories
are both recognized by the general English recognizer.

2.2.2 Term Frequency Indexing
Term indexing, or weighting, is a common practice for chang-
ing the weights of a term frequency to better reflect its in-
fluence on indicating the category of a document. Various
indexing approaches had been proposed [22]. In this paper,
we consider five widely-used indexing schemes:

• Term Frequency (TF), which sets the weight for
word w in document D to the number of times w ap-
peared in D.

• Document Frequency (DF), which sets the weight
for word w to the number of documents in the corpora
that contain this word.

• Inverse Document Frequency (IDF), which sets
the weight for word w to the inverse of its Document
Frequency.

• TFIDF Indexing, which sets the weight to the prod-
uct of its term frequency and its inverse document fre-
quency. In our implementation, we uses a logarithmic
inverse document frequency with Laplace smoothing.



Mathematically it is expressed as:

aik = fik × log

„

1 +
N

ni

«

where aik is the weight of word i in document k, fik

represents the document frequency, and the log term
is the Laplace smoothed inverse document frequency.

• Latent Semantic Indexing, which is an indexing
algorithm that measure how closely related two docu-
ments are.

The intuition for TF indexing is that, if a word appears fre-
quently in a document, it should be more representative of
its actual category. It suffers from a problem that it gives too
much weight to common words such as “internet” that are
typical in network related issues. Word document frequency
indexing is not commonly used for classification problems,
but instead is used in finding hierarchy of documents [17].
IDF would give a word that’s rare across the corpora a higher
weight. The intuition is that, is a word is more rare across
the corpora, it would be more indicative about the category
of this document. It suffers from a problem that, it is too
sensitive to an accidental occurrence of a word in a docu-
ment. Such accidental occurrence can happen due to a word
having different meanings. The TFIDF indexing combines
the advantages of both indexing methods while mitigating
their problems. Latent Semantic Indexing [10] is a mathe-
matically methods that try to reduces the dimension of the
matrix and discover underlying relations between features.

2.2.3 Features Weighting for Classification
While the basic term-vector algorithm behavea well in gen-
eral cases, specific features could enhance the performance of
classification program for the corpora at hand. We present
a general framework to incorperate the human observations
into classification by weighting features. Observed features
would be assigned a higher weight to distinguish it from
pure statistical weight, thus having higher indicating effect
during classification.

We first observe that, for threads reporting an outages, the
initial first few replies come in within hours. These replies
contains most useful information such as traceroutes to the
reported website, news about the mentioned organization,
etc. Replies that come later usually digress from the actual
topics and discuss other topics. Therefore, more weights
should be given to terms that occur in the responses posted
closer to the initial post dates while less weights should be
given to terms occur later in the reply. Therefore, we design
an exponential discounted scheme to weight the terms in a
series of replies. Specifically, we discount each term by

e
−(n/a) (1)

, where n is the number of days document in which word
appears is posted after the main thread. As a result, replies
posted during the same day as the initial post would not be
discounted, while replies posted later would get their weight
reduced. We aimed to discounted the weight such that the
term for threads posted after 3 days the initial thread is
posted would be discounted by a half. Because ln(0.5) =
−0.7, we reason that by choosing a = 4, we would obtain a
good approximation for our target.

In additional to the above observation, we also make the
following observations.

• Presence of general Internet site addresses in the first
thread.

• Length of the first post.

• Whether the first post contains the following keywords:
anyone, anybody, everyone or everybody.

The first heuristic is from the observation that, for dis-
cussion purpose threads, authors frequently posted a news
link for background of the discussion. On the contrary,
people discussing a outages would not post a general web-
site, but instead the domain of the website. For example,
when discussing about CNN outages, author would post the
link cnn.com instead of a specific news article address from
cnn.com. Therefore, we reason that presence of general web-
site addresses in the first post would be a indication of a
discussion thread.

The second heuristic shares similar intuition as the first one.
We observe that if people are trying to discuss a topic, in
addition to provide background new articles, they also in-
clude their opinions, which in most cases are long in length.
For threads discussing network problems, however, the first
thread are usually short in their length. The author usually
give succinct description about the network problem and
ask for help. Therefore, we reason that a long thread would
indicate a discussion thread instead of a problem reporting
threads.

The last heuristic comes from how people usually ask for
help or solicit information from other operators on the mail-
ing list about the network problem. The person trying to
report a problem would ask whether other people experi-
ence similar problem, or provide traces for diagnosis pur-
pose. Such request are usually written in sentences with the
mentioned keywords. Such feature has already been cap-
tured by the TFIDF indexing, but we reason that it is im-
portant enough to justify a stand-alone feature.

2.2.4 Classification Algorithm
A lot of classification algorithms have been shown to perform
well for general text classification problems. We use three
classic algorithms in our evaluation. The algorithms are
discussed below.

Naive Bayes

Naive Bayes is the classic model for document classification.
It models a document as a bag of words. Each word has
certain probability appearing in a document in a certain
category. The model also assumes the probability that a
word occurs in a document is independent. The probabil-
ity a word occurs is estimated as an maximum expectation
estimation, i.e, dividing the number it occurs in the train-
ing corpora by the total number of words in the corpora.
The assumption that words occurring in a document inde-
pendently is not true in general case, but has been shown
to perform surprisingly good in a lot of tasks, including the
binary classification tasks that we are considering here.



Decision Tree

In this approach, a tree is constructed from the training
data. Each node in the tree represents a feature that de-
termines which branch a given document would follow. A
new instance of document to be classified will start from the
root node and traverse along the edges until it reaches a tree
node, in which a category is assigned. Decision tree learning
algorithm performs better when the number of features are
small, and some dominating features exist that are would
strongly indicates the type of a document. The algorithm
used to construct the tree varies, and technical details are
beyond the scope of this paper. In our work, we adopt the
common C4.5 decision tree algorithm [19].

Support Vector Machine

Support Vector Machine with linear kernel has been consid-
ered as one of the best, if not the best, off the shell general
classification algorithms available [18]. SVM models each
documents as a vector in a high dimensional vector spaces,
and it try to identify a linear function in this vector spaces
that would linearly separates the two categories while main-
taining the largest possible margin to the two separated clus-
ters. The vectors from the two clusters that are closest to
the linear plane is called the support vectors for the algo-
rithm. The SVM algorithm has advantages in that it has a
computationally efficient implementation called SMO that
can handle the high dimension input spaces efficiently. In
general, most text categorization problems are linearly sepa-
rable [22], and the input space is extremely high dimension
due to fact that a corpora usually has a large vocabulary.
SVM seems to suite the task of classification well.

2.3 Keyword extraction
Much of the Keyword extraction tasks has been described
in previous sections when we are generating classification
features. Here, we notice that, logically, keyword extraction
is a separate part from the classification task in that it is
trying to mind useful information from the threads. The
information minded may or may not be useful for classifica-
tion. A feature that is common to both type of threads may
have little value for the task of classification, but it can nev-
ertheless be useful information, such as domain names and
network corporation names. During the initial design phase,
we planned to separate the thread filtration and classifica-
tion part and the keyword extraction part into two physi-
cally separate parts of the project. However, the two parts
merges under the same framework during the implementa-
tion phase as a step in generating the feature matrix.

3. PERFORMANCE EVALUATION
In this section, we evaluate the performance of our proposed
algorithm. In Section 3.1, we analyze the accuracy of our
text cleaning heuristics. In Section ??, we analysis the per-
formance of our indexer and classifier in terms of recall, false
positive rate and false negative rate. Then we report the re-
sults of our keyword extraction mechanisms on threads iden-
tified as reporting problems in Section ??. We evaluate the
usefulness of the keywords by correlating them to routeview
data in Section 3.3.

3.1 Text Cleaning

Category fraction

Satisfying 80.4%
Over-pruning 7.8%
Under-pruning 11.8%

Table 1: Performance of filtering heuristics

We use some heuristics in the format of the messages to fil-
ter out noise contents from the plain texts (as discussed in
§2.1). We manually look at 51 threads pick randomly from
threads with such noises and the subsequent threads gener-
ated and evaluate the results. As shown in Table 1, we put
the results into three categories. First category is satisfying,
which means noise words are being filtered out without af-
fecting any essentially content words. Threads are classified
as Over-pruning if some content words are mistakenly parse
out. Threads are classified as Under-pruning if there remains
some noises. The fractions of the threads in each category
are summerized in Table 1, where above 80% threads are
filtered correctly using our heuristics.

3.2 Classification
Let tp(tn) and fp(fn) respectively be the true positives
(negatives) and false positives (negatives) produced by clas-
sifier. Then the metrics for evaluating the performances of
algorithms that classifies outages are:

• Precision, which is the number of true positive in-
stances divided by the number of positive instances
classified. It measures how many instances retrieved
are relevant to the topic. Mathematically, it is ex-
pressed as:

tp

tp + fp

• Recall, which is the number of true positive instances
divided by the number of actual positive instances. It
measures how many relevant items are retrieved, i.e,
the sensitivity of the algorithm. Higher recall means
the algorithm is more sensitive. It is expressed, math-
ematically, as:

tp

tp + fn

• False Positive Rate, which is the number of false pos-
itive instances divided by the actually number of neg-
ative instances. It measures how specific the classifi-
cation algorithm is. The higher positive rate, the less
specific it is in classification. Mathematically, it is ex-
pressed as:

fp

fp + tn

For our task, we focus on optimizing the recall instead of im-
proving the precision. The reason is that while high recall
can result in a low precision by having retrieve too many
false positive instances, our goal is to extract information
from the threads that can be utilized to diagnosis potential
network problems. Therefore, missing threads for network
problem discussion (i.e, false negatives) is more severe than
retrieving a thread that is not discussing about network out-
ages (i.e, false positives). In short, we trade sensitivity for
specificity.



We first evaluate the baseline document vector model classi-
fication, which means we use only words in the document
as features without adding in our manually selected fea-
tures. For indexing, we implemented word frequency index-
ing, inverse document frequency indexing, TFIDF indexing,
latent semantic indexing and exponential discounted index-
ing. For classification, we uses the classification algorithms
in the Weka Machine Learning library. Specifically, we uses
their implementation of Naive Bayes, C4.5 Decision Tree
and SMO algorithms.

We first run out program on all the available data. However,
we quickly realize that the computing resources we have,
which is a Macbook Pro with 2GB memory and 2.16GHz
Intel Core 2 Duo running Snow Leopard, is not able to han-
dle such a work load as it constantly run into java heap space
problem when we are trying to construct the raw term docu-
ment matrix. We therefore reduces the size of our corpora to
include data from the first 6 months of year 2007, which con-
tains 30 threads discussing network outages and 245 other
threads.

During the indexing process, we were not able to run the
latent semantic indexing method again due to memory and
java heap spaces issues. We run the program on a corpora
with 10 documents and they were successful. We suspect
that the matrix decomposition operations used in LSI, as
implemented by the generic apache matrix library we used,
is computationally expensive and does not scale well to cor-
pora with over 100 documents. We would like to revisit this
indexing scheme in the future when we get access to better
computation resources.

The performance results are presented in Table 2. We subse-
quently incorporate the manually selected features into our
feature spaces, apply exponential discounted weighting on
the already existing term weights, and further prune the
feature spaces to include terms happening only more than 3
times to reduce noises. The performances are summarized
in the Table 3.

We focus on comparing the performance differnces between
the baseline term vector model algorithm and our optimized
algorithm. We observes that our optimization improves the
precision and fp rate of classification. With optimization,
we also observe that the recall of SMO increases by 3% to
7%.

Comparing the three algorithm, we observe that Naive Bayes
has generally highest FP rate, indicating that Naiye Bayes
has property of high sensitivity but low selectivity. SMO
generally have the lowest FP rate. This shows that SMO
has higher selectivity than sensitivity.

3.3 Correlation to network logs
In this section, we conduct two experiments to evaluate the
performance of our proposed method by correlating the ex-
tracted keyword to real network logs. For each experiment,
we randomly select an outage reported by our method. To
validate that the extracted information are useful for de-
tecting network anomaly, we replay the network logs (BGP
RIBs and updates) collected by six Zebra routers from Route
Views project [7].

Algorithm Naive Bayes C4.5 Decision Tree SMO

TF Precisoin % 46.8 66.7 63.0
Recall % 68.6 76.2 64.8
FP Rate % 33.5 16.3 16.3

IDF Precision % 38.7 59.0 71.4
Recall % 89.5 59.0 47.6
FP Rate % 60.8 17.0 8.2

TFIDF Precision % 50.3 66.7 68.1
Recall % 73.3 74.3 61.0
FP Rate % 31.0 15.9 12.2

Table 2: Performance with baseline document vec-
tor model

Algorithm Naive Bayes C4.5 Decision Tree SMO

TF Precisoin % 52.2 72.0 73.1
Recall % 79.0 63.8 72.4
FP Rate % 31.0 10.6 11.4

IDF Precision % 39.7 63.8 79.3
Recall % 84.8 72.0 65.7
FP Rate % 55.1 10.6 7.3

TFIDF Precision % 50.3 76.6 67.7
Recall % 76.2 68.6 63.8
FP Rate % 32.2 9.0 13.1

Table 3: Performance with optimization

In the first experiment, the reported outage is a discussion
unit with thread title“Anomalies with AS13214 ?” posted on
July 28th, 2009. The extracted information from this outage
is the AS number “13214”. Figire 2 shows the number of
received update messages (i.e., announcement and withdraw
messages) and of announced prefixes originated from the AS
13214 from the Zebra routers on July 28th, 2009. Notice
that the bilateral arrow in the Figure 2 represents the time
interval between the time of the first post and the last post
from the discussion unit. We observe that the Zebra servers
received thousands of BGP announcements originated from
AS 13214 in only one hour period (8 to 9 AM), while the
first post discussing the problem appeared around 10 AM.

In the second experiment, we analysis an outage reported on
Jan. 4th, 2007. Instead of reporting any suspicious AS, our
algorithm reported a prefix related to the outage. Again, we
leverage network logs stored at Zebra routers of the Route
View project. In this experiments, we evaluate the reach-
ability of any reported prefix. The reachability of a prefix
is defined by the fraction of the Zebra routers that have
at least one valid path to reach the prefix. For the prefix
194.153.114.0/24, Figure 3 shows that the prefix is not
reachable until 12:50, Jan. 5th, 2007, which is about 24
hours after the time of first post of the discussion unit.

Besides to the above two cases, the following problems are
also validated from Zebra routers:

prefix instability: Using the longest prefix matching al-
gorithm, we measured that some reported IP changes
their using prefix frequently. It happens when the
router receives a withdraw of less-specific prefix or
an announcement of more-specific prefix for an IP ad-
dress.

AS-level path instability: We validated that some re-
ported IP are flapping (i.e., switching the forwarding
path frequently) during the reported time.



thread

lifespan

Figure 2: The number of received updates/prefixes
originated by AS 13214 on Jul. 28th, 2009.

 0

 0.2

 0.4

 0.6

 0.8

 1

00:00 04:00 08:00 12:00 16:00 20:00 00:00

R
ea

ch
ab

ili
ty

 (
%

)

time (hh:mm)

Prefix 194.153.114.0/24

Figure 3: The reachability of prefix
194.153.114.0/24

4. CONCLUSIONS
This paper proposes a new method to aid anomaly detec-
tion by extracting information from NANOG forum. We
adopt novel machine learning techniques such as SVM and
NER to efficiently obtain the network outage information.
With the proposed methid, the network operators can focus
on tracking suspicious ASs, IP prefixes, or domain names
reported by our method with high detection probability.
We believe our method can cooperate with other anomaly
detection/prevention algorithm towards collaborative trou-
bleshooting.

The main problem we confront is that the forum threads
are mostly short in its nature and heterogeneous in its fea-
tures. For future research, we would focus on using more
advanced classification model than the common term vector
model, and deeper semantic analysis to extract or infer more
relavant features from forum posts.

5. REFERENCES
[1] The apache software foundation.,

http://www.apache.org.

[2] Conll: the conference of acl’s special interest group on
natural language
learning.,http://ifarm.nl/signll/conll/.

[3] Icu - international components for
unicode.,http://site.icu-project.org/.

[4] The north american network operators group (nanog)
mailing list archive,
http://www.cctec.com/maillists/nanog/.

[5] Onix text retrieval toolkit, http:

//truereader.com/manuals/onix/stopwords1.html.

[6] Stanford named entity recognizer.,http:
//nlp.stanford.edu/software/CRF-NER.shtml.

[7] University of oregon routeviews project.,
http://www.routeviews.org/.

[8] H. Ballani, P. Francis, and X. Zhang. A study of prefix
hijacking and interception in the internet. In
SIGCOMM’07, pages 265–276, New York, NY, USA,
2007. ACM.

[9] H. Ballani, P. Francis, and X. Zhang. A study of prefix
hijacking and interception in the internet. SIGCOMM
Comput. Commun. Rev., 37(4):265–276, 2007.

[10] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K.
Landauer, and R. Harshman. Indexing by latent
semantic analysis. Journal of the American Society for
Information Science, 41:391–407, 1990.

[11] N. Feamster and H. Balakrishnan. Detecting bgp
configuration faults with static analysis. In Networked
Systems Design and Implementation (NSDI) 2005.

[12] N. Feamster and H. Balakrishnan. Detecting bgp
configuration faults with static analysis. In NSDI’05:
Proceedings of the 2nd conference on Symposium on
Networked Systems Design & Implementation, pages
43–56, Berkeley, CA, USA, 2005. USENIX
Association.

[13] S. Goldberg, S. Halevi, A. D. Jaggard,
V. Ramachandran, and R. N. Wright. Rationality and
traffic attraction: incentives for honest path
announcements in bgp. In SIGCOMM ’08:
Proceedings of the ACM SIGCOMM 2008 conference
on Data communication, pages 267–278, New York,
NY, USA, 2008. ACM.

[14] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The weka data
mining software: an update. SIGKDD Explor. Newsl.,
11(1):10–18, 2009.

[15] J. Karlin, S. Forrest, and J. Rexford. Autonomous
security for autonomous systems. Computer Networks,
52(15), 2008.

[16] R. Mahajan, D. Wetherall, and T. Anderson.
Understanding bgp misconfiguration. In ACM
SIGCOMM 2002.

[17] A. Medem. Troubleminer: Mining network trouble
tickets.,www-rp.lip6.fr/~medem/im_workshop_09_
amelie_medem.pdf.

[18] A. Ng. Stanford machine learning course nodes.,http:
//www.stanford.edu/class/cs229/materials.html.

[19] J. R. Quinlan. C4.5: Programming for machine
learning. Morgan Kaumann, 1993.

[20] Y. Rekhter, T. Li, and S. Hares. RFC 4271: A Border
Gateway Protocol 4 (BGP-4). Technical report, IETF,
2006.

[21] L. Subramanian, V. Roth, I. Stoica, S. Shenker, and
R. H. Katz. Listen and whisper: security mechanisms
for bgp. In NSDI’04: Proceedings of the 1st conference
on Symposium on Networked Systems Design and
Implementation, pages 10–10, Berkeley, CA, USA,
2004. USENIX Association.

[22] F. I. Thorsten Joachims and L. Viii. Text
categorization with support vector machines: Learning
with many relevant features, 1997.


