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Abstract. Blacklists are commonly used to protect computer systems
against the tremendous number of malware threats. These lists include
abusive hosts such as malware sites or botnet Command & Control and
dropzone servers to raise alerts if suspicious hosts are contacted. Up to
now, though, little is known about the effectiveness of malware blacklists.

In this paper, we empirically analyze 15 public malware blacklists and 4
blacklists operated by antivirus (AV) vendors. We aim to categorize the
blacklist content to understand the nature of the listed domains and IP
addresses. First, we propose a mechanism to identify parked domains in
blacklists, which we find to constitute a substantial number of blacklist
entries. Second, we develop a graph-based approach to identify sinkholes
in the blacklists, i.e., servers that host malicious domains which are con-
trolled by security organizations. In a thorough evaluation of blacklist
effectiveness, we show to what extent real-world malware domains are
actually covered by blacklists. We find that the union of all 15 public
blacklists includes less than 20% of the malicious domains for a major-
ity of prevalent malware families and most AV vendor blacklists fail to
protect against malware that utilizes Domain Generation Algorithms.
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1 Introduction

The security community needs to deal with an increasing number of malware
samples that infect computer systems world-wide. Many countermeasures have
been proposed to combat the ubiquitous presence of malware [1–4]. Most notably,
researchers progressively explored network-based detection methods to comple-
ment existing host-based malware protection systems. One prominent example
are endpoint reputation systems. The typical approach is to assemble a blacklist
of endpoints that have been observed to be involved in malicious operations. For
example, blacklists can contain domains of Command & Control (C&C) servers
of botnets, dropzone servers, and malware download sites [5]. Such blacklists can
then be queried by an intrusion detection system (IDS) to determine if a previ-
ously unknown endpoint (such as a domain) is known for suspicious behavior.

Up to now, though, little is known about the effectiveness of malware black-
lists. To the best of our knowledge, the completeness and accuracy of malware
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blacklists was never examined in detail. Completeness is important as users oth-
erwise risk to miss notifications about malicious but unlisted hosts. Similarly,
blacklists may become outdated if entries are not frequently revisited by the
providers. While an endpoint may have had a bad reputation in the past, this
might change in the future (e.g., due to shared hosting).

In this paper, we analyze the effectiveness of 15 public and 4 anti-virus (AV)
vendor malware blacklists. That is, we aim to categorize the blacklist content
to understand the nature of the listed entries. Our analysis consists of multiple
steps. First, we propose a mechanism to identify parked domains, which we find
to constitute a substantial number of blacklist entries. Second, we develop a
graph-based approach to identify sinkholed entries, i.e., malicious domains that
are mitigated and now controlled by security organizations. Last, we show to
what extent real-world malware domains are actually covered by the blacklists.

In the analyzed blacklist data we identified 106 previously unknown sinkhole
servers, revealing 27 sinkholing organizations. In addition, we found between
40 - 85% of the blacklisted domains to be unregistered for more than half of the
analyzed blacklists and up to 10.9% of the blacklist entries to be parked. The
results of analyzing the remaining blacklist entries show that the coverage and
completeness of most blacklists is insufficient. For example, we find public black-
lists to be impractical when it comes to protecting against prevalent malware
families as they fail to include domains for the variety of families or list malicious
endpoints with reaction times of 30 days or higher.

Fortunately, the performance of three AV vendor blacklists is significantly
better. However, we also identify shortcomings of these lists: only a single black-
list sufficiently protects against malware using Domain Generation Algorithms
(DGAs) [3], while the other AV vendor blacklists include a negligible number
of DGA-based domains only. Our thorough evaluation can help to improve the
effectiveness of malware blacklists in the future.

To summarize, our contributions are as follows:
– We propose a method to identify parked domains by training an SVM clas-

sifier on seven inherent features we identified for parked web sites.
– We introduce a mechanism based on blacklist content and graph analysis to

effectively identify malware sinkholes without a priori knowledge.
– We evaluate the effectiveness of 19 malware blacklists and show that most

public blacklists have an insufficient coverage of malicious domains for a ma-
jority of popular malware families, leaving the end hosts fairly unprotected.
While we find blacklists operated by AV vendors to have a significantly higher
coverage, up to 26.5% of the domains were still missed for the majority of the
malware families, revealing severe deficiencies of current reputation systems.

2 Overview of Malware Blacklists

Various malware blacklists operated by security organizations can be used to
identify malicious activities. These blacklists include domains and IP addresses,
which have been observed in a suspicious context, i.e., hosts of a particular
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type such as C&C servers or—less restrictive—endpoints associated to malware
in general. Table 1 introduces the 15 public malware blacklists that we have
monitored for the past two years [6]. For the majority of blacklists, we repeatedly
obtained a copy every 3 hours (if permitted). The columns Current state the
number of entries that were listed at the end of our monitoring period. The
columns Historical summarize the entries that were once listed in a blacklist,
but became delisted during our monitoring period. For reasons of brevity, we
have omitted the number of listed IP addresses per blacklist, as we mainly focus
on the blacklisted domains in our analyses. For all listed domains, we resolved
the IP addresses and stored the name server (NS) DNS records. If blacklists
contained URLs, we used the domain part of the URLs for our analysis.

Four blacklists are provided by Abuse.ch, of which three specifically list hosts
related to the Palevo worm and the banking trojans SpyEye and ZeuS. The
Virustracker project lists domains generated by DGAs, and the Citadel list in-
cludes domains utilized by the Citadel malware (that was seized by Microsoft in
2013 [7]). UrlBlacklist combines user submissions and other blacklists, covering
domains and IPs of various categories, whereas we focus on the malware-related
content. The Exposure [4] blacklist included domains that were flagged as mali-
cious by employing passive DNS (pDNS) analysis. The Abuse.ch AMaDa and the
Exposure lists were discontinued, yet we leverage the collected historical data.

Table 1. Observed content of the analyzed malware blacklists (‡ denotes C&C blacklists)

Domains (in #)
Observ.
(days)Blacklist Current Historical

AMaDa [8]‡ 0 1,494 267

Citadel [7]‡ 4,634 0 66

Cybercrime [9]‡ 1,070 0 121
Exposure [4] 0 107,183 559
Malc0de [10] 2,121 20,135 832
MDL Hosts [11] 1,653 11,996 832

MDL ZeuS [11]‡ 12 1,675 829
MW-Domains [12] 23,396 37,490 832

Domains (in #)
Observ.
(days)Blacklist Current Historical

Palevo Tracker [8]‡ 35 147 542

Shadowserver [13]‡ 0 0 832
Shallalist [14] 20,677 48 320

SpyEye Tracker [8]‡ 123 956 832
UrlBlacklist [15] 127,745 281 824
Virustracker [16] 12,066 56,269 196

ZeuS Tracker [8]‡ 759 8,042 832

Besides these public blacklists, we have requested information from four anti-
virus (AV) vendors, namely Bitdefender TrafficLight [17], Browserdefender [18],
McAfee Siteadvisor [19], and Norton SafeWeb [20]. These blacklists cannot be
downloaded, but we can query if a domain is listed. We thus do not know the
overall size of these blacklists and omit the numbers in Table 1.

Datasets. We divide the 15 public blacklists into three overlapping datasets.
The first dataset, referred to as SC&C , consists of domains taken from the sources
primarily listing endpoints associated to C&C servers, denoted by ‡ in Table 1.
We extend SC&C with the IP addresses to which any of these domains at some
point resolved to. The second, coarse-grained dataset SMal includes the domains
that were at any time listed in any of the 15 blacklists (including SC&C) and
the resolved IPs. Last, we generate a third dataset SIPs, covering all currently
listed IP addresses by any of the 15 public blacklists (i.e., 196,173 IPs in total).
This dataset will help us to verify if blacklists contain IPs of sinkholing servers.
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Paper Outline. Motivated by the fact that blacklists contain thousands of do-
mains, we aim to understand the nature of these listings. We group the entries in
four main categories: domains are either i) unregistered, ii) controlled by park-
ing providers, iii) assigned to sinkholes, or iv) serve actual content. Unregistered
domains can easily be identified using DNS. However, it is non-trivial to detect
parked or sinkholed domains. We thus propose detection mechanisms for these
two types in Section 3 (parking domains) and Section 4 (sinkholed domains). In
Section 5, we classify the blacklist content and analyze to what extent blacklists
help to protect against real malware. Note that a longer version of this paper
with more technical details is available as a technical report [21].

3 Parking Domains

Parking domains make up the first prominent class of blacklist entries. They are
mainly registered for the purpose of displaying web advertisements, so called
ads. Typically no other, real content is placed on these domains. As domains
associated with malicious activities tend to be parked to monetize the malicious
traffic [22], we expect parked domains to constitute a substantial number of
blacklist entries. Unfortunately, parking services have diverging page templates
to present the sponsored ads. As such, it is not straightforward to identify these
sites, e.g., with pattern-matching algorithms. In order to identify parking do-
mains in the blacklists, we thus introduce a generic method to detect parked
domains that can cope with the diversity of parking providers.

3.1 Datasets

We first assemble a labeled dataset by manually creating patterns and apply-
ing pattern-matching algorithms [23, 24]. Note that these patterns are far from
complete due to the high diversity of page templates. We leverage the resulting
dataset as ground truth to evaluate our generic detection model for parked do-
main names later on. We generate the labels based on Li et al.’s [22] observation
that parking providers either modify the authoritative NS sections of a domain
to point to dedicated parking NS or employ web-based (i.e., HTTP-, HTML-,
or JavaScript-based) redirections to forward users to the final parking content.

Based on our recorded DNS information, we first label domains following
the DNS-based type of redirection. That is, we analyze the 233,772 distinct
name servers aggregated while processing the blacklist data. We split the NS
hostnames into tokens and searched for terms indicating parking such as park,
sell, and expired and labeled NS whose hostnames match one of these terms
as potential parking name servers. We monitored a fraction of parked domains
that switched their authoritative NS to a different parking provider. As a result,
we extracted the domains that used the parking NS identified in the previous
step from the aggregated DNS data, requested latest NS records for each domain,
and inspected the most frequently used NS. In addition, we consulted the DNS
DB [25], a passive DNS (pDNS) database. That is, for each identified parking
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NS, we requested 50,000 randomly selected domains the NS was authoritative
for, obtained current NS records for each domain, and again checked the NS host-
names against terms indicating parking behavior. Overall, using these techniques
and manual inspection, we identified 204 NS operated by 53 parking providers.

A minority of parking services employ web-based techniques to redirect users
to the actual parking content. The DNS-based methods discussed so far did not
detect these providers. However, we identified parked domains that are often
transferred between providers, thus we assume that some domains found in pDNS
data of the previously identified parking NS at some point have relocated to
providers utilizing web-based redirection techniques. To identify these services,
we extracted 10,000 randomly chosen domains from the pDNS data of each
parking NS, analyzed the domain redirection chains, and identified 14 patterns of
landing pages [21] to which users are redirected to when visiting parked domains.
These landing pages belong to parking, domain, and hosting providers.

Finally, we use the parking NS and landing pages to manually extract 47
descriptive strings, in the following referred to as identifiers (IDs) [21]. These
IDs can be found in the HTTP responses of many parked domains (e.g., <frame
src="http://ww[0-9]{1,2} and landingparent). We use these IDs to create
the parked domains dataset P that consists of 5,000 randomly chosen domains
from the pDNS database we find to utilize a verified parking NS or include at
least one identifier. We further create a dataset B of benign (i.e., non-parked) do-
mains. We utilize the Top 5,000 domains taken from the Alexa Top Ranking [26]
and verify that none of these domains trigger a landing page or ID match.

3.2 Feature Selection and Classification

Pattern matching allowed us to identify a subset of all parking services. How-
ever, we seek to identify intrinsic characteristics of parking websites that are
more generic than the manually assembled classification described above. We
thus studied subsets of our benign and parked domain sets and identified two,
respectively, five generic features based on HTTP and HTML behavior.

The first HTTP-based feature is determined by the redirection behavior when
domains are directly accessed without specifying any subdomains. For benign
domains, automated redirection to the common www subdomain is often enforced.
Parked domains, in contrast, typically do not exhibit similar behavior.

Our second feature is based on the observation that parked domains deliver
similar content on random subdomains and the domains itself while benign do-
mains tend to serve differing content for arbitrary subdomains (if at all). We
measure the normalized Levenshtein ratio [27] between the HTML content gath-
ered by accessing the domain and a randomly generated subdomain. If the HTTP
request for the subdomain failed (e.g., due to DNS resolution), the feature is set
to -1, otherwise the value is in the range from 0 (no similarity) to 1 (equal).

The first HTML-based feature is derived from the observation that many
parked domains display sponsored ads while the textual content is negligible.
Contrary, most benign domains deliver a substantial amount of human-readable
content in the form of coherent text fragments. Our third feature thus defines
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the ratio of human-readable text in relative to the overall length in returned web
content after removing HTML tags, JavaScript codes, and whitespaces.

Next, we outline three features to express the techniques that landing pages
utilize to embed parking content. That is, we account for the observation that
most parked domains use JavaScript or frames to display sponsored ads. In the
fourth feature, we measure the ratio of JavaScript code. In the fifth feature, we
count the number of <frame> tags on landing pages. As many page templates
utilizing frames contain only the basic HTML structure and the frameset, the
frame count is particularly powerful in combination with the ratio of human-
readable text (feature 3). A fraction of parked domains, however, do not rely on
JavaScript or frames and directly embed the referral links into the HTML code.
We observed many of these parking providers to specify rather long attributes
in the referral <anchor> tags (e.g., multiple mutual IDs in the href attribute).
As parked domains tend to serve numerous referral links, the average length of
<anchor> tags is expected to be considerably higher than in content served by
the majority of benign domains, as expressed in the sixth feature.

The seventh feature is defined by the robots value specified in the <meta>

tag. Parked domains in our dataset either did not specify a robots value (thus
using the default index + follow) or defined one of the values index + nofollow,
index + follow, or index + follow + all. Parking providers monetize the do-
mains and are interested in promoting their domains, thus permitting index-
ing by search engines. In contrast, benign sites often customize the indexing
policies—we identified 31 different robots values. As the robots value is a con-
catenation of tokens, we mapped all possible single tokens to non-overlapping
bitmasks and use the numerical value of the bit-wise OR of all tokens as feature.

Most parking services rely on JavaScript to display referral links and adver-
tisements. The HTML-based features (3 - 7) thus require JavaScript execution
when aggregating the feature values. As the initially served content before ex-
ecuting JavaScript and the final content after executing JavaScript both are
characteristic for parked domains (and might be entirely different, e.g., when
JavaScript is used for redirection), we obtain two feature values for each of the
HTML-based features accordingly, resulting in 12 feature values per domain.

We use these 12 feature values to classify domains as either parked or benign
(i.e., non-parking). We evaluated our approach for different types of machine-
learning algorithms using RapidMiner [21, 28] and achieved the best results for
support vector machines (SVMs) using the Anova kernel [29].

3.3 Evaluation

Cross-fold Validation. We evaluate the feature set with a 10-fold cross valida-
tion using all domains in our benign B and parking P sets and achieve an average
detection rate of 99.85% correctly classified domains while the false positive (FP)
rate is at 0.11% and the false negative (FN) rate at 0.04%.

Individual Dataset. To evaluate our approach on an individual dataset and
discuss false positives and negatives as suggested by Rossow et al. [30], we split
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the 10,000 labeled benign and parked domains into a training set STrain consist-
ing of 1,000 benign and 1,000 parked domains and a test set STest that includes
the remaining 8,000 domains. The resulting detection model correctly classifies
7,969 domains in STest (99.6%) as benign or parked, resulting in 5 FPs (0.1%)
and 26 FNs (0.3%). When investigating the FPs, we find each domain to have a
ratio of less than 20% for human-readable text (feature 3) in combination with a
high average length of <anchor> tags (feature 6). Further, all domains respond
to random subdomain requests and serve similar web content (i.e., the normal-
ized Levenshtein ratio ≥ 0.9). When analyzing the 26 FNs, we find domains that
either switched between redirecting to parking and benign content or delivered
parking content on the second visit. As we visited each domain only once during
feature attribution, we did not observe parking behavior for these domains.

Real-World Data. Finally, we verify our approach on real-world data con-
taining significantly more unlabeled domains. We obtained the Top 1M domains
from the Alexa Ranking 12 weeks after the Top 5k domains were gathered for
the benign set B. We expect only a few parked domains in this dataset, thus
we mainly are interested if our approach can handle the diverse page structures
of benign web pages without high FP rates. We could aggregate feature values
for 891,185 domains while the remaining domains either did not resolve to IP
addresses or provide web content within a time frame of 15 seconds, respectively,
replied with blank content or HTTP error codes. We further remove 957 domains
already covered by STrain, thus the resulting set SAlexa is defined by 890,228
domains. We then match the content of each domain against the IDs and landing
pages introduced in Section 3.1 to estimate a lower bound of FPs and FNs. We
cannot ensure the correctness of the IDs, hence might erroneously flag benign
domains as parked. We thus manually verify potential false classifications.

Table 2. Results of SAlexa and SCurrent (Parked = Domains
flagged as parked by IDs or classifier (CL), INT = Intersection of do-
mains flagged as parked by IDs and CL, FI = Domains falsely flagged as
parked by IDs, New = Domains detected by CL but not found by IDs)

Parked (#) Rates (%)

Subset Size ID CL INT # FI # New CD FP FN

SAlexa 890,228 5,208 8,709 4,596 71 626 99.5 0.4 0.1
SCurrent 33,121 3,747 5,623 3,027 28 2,336 (98.7) 0.8 (0.5)

As shown in Ta-
ble 2, we achieve
a correct detection
rate (CD; the sum
of true positive and
true negative rate)
of 99.5%, a FP rate
of 0.4%, and a FN

rate of 0.1%. The IDs flag 5,208 domains as parked, yet we find 71 of the domains
to be incorrectly flagged. The classifier marks 8,709 domains as parked of which
4,596 domains are verified by the IDs. Of the remaining domains we find 626 to
be parked that are not detected by the IDs, resulting in 5,222 parked domains
detected by the classifier. These results indicate that 0.6% of the Alexa 1M do-
mains, i.e., more than 1/200 of the most popular domains, are parked. More
specifically, we identify 36 parked domains in the Alexa Top 10k while 432, re-
spectively, 1,170 domains are parked in the Top 100k and Top 250k, showing that
the majority of parked domains are not ranked in the Top 250k Alexa. During
the manual verification process, we find the vast majority of parked domains to
be associated to domain resellers such as Above, GoDaddy, and Sedo [21].
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We now turn back to our original goal, i.e., classifying the content of black-
lists. We thus extracted currently blacklisted domains from our blacklist set
SMal twelve weeks after generating the benign B and parking P sets used for
STrain. We name this dataset SCurrent and again remove domains already in-
cluded in STrain. Of the 158,648 currently listed domains, we obtained feature
values for 33,121 domains. The remaining domains either were unregistered or
replied with HTTP error codes. The classifier defines 5,623 domains as parked,
of which 3,027 domains are verified by the IDs. When manually investigating the
remaining 2,596 domains flagged by the classifier, we identify 2,336 parked do-
mains not detected by the IDs and 260 FPs (0.8%). The FPs are mostly caused
by adult content and web directory sites with similar characteristics as parked
domains. When taking a closer look at the initial high number of 692 FNs, we
find 538 domains not serving parking content at all (i.e., referral links). More
precisely, one domain reseller causes most of the FNs, as we identify 506 domains
(73.1% of all FNs) redirecting to hugedomains.com, providing web content not
exhibiting common parking behavior. To evaluate if our approach fails to detect
domains associated with this reseller due to missing training data, we adjusted
STrain to cover a partition of these domains and find the detection model to
correctly classify these domains as parked, reducing the FN rate to 0.5%.

4 Sinkholes

Next to parking domains, also so called sinkholing servers (sinkholes) are promi-
nent types of blacklist entries. Sinkholes are operated by security organizations
to redirect malicious traffic to trusted hosts to monitor and mitigate malware in-
fections. In order to track sinkholes in our blacklist data, we first identify intrinsic
characteristics of these servers. We thus obtained an incomplete list of sinkhole
IPs and domains by manual research and through collaboration with partners. In
pDNS, we then observed that domains associated with sinkholes tend to resolve
to the corresponding IPs for a longer period of time, thus the monitored DNS
A records are persistent. Contrary, malicious domains tend to switch to various
IPs and Autonomous Systems (AS) within a short time frame to distribute their
activities to different providers [5]. We also found sinkholed domains switching
to other sinkholes provided by the same organization or located in the same AS,
and discovered domains that were relocated to other sinkhole providers.

Sinkhole operators often use their resources to monitor as many domains of
a malware family as possible. We thus find sinkhole IP addresses to be typically
assigned to numerous (up to thousands of) domains. In the majority of cases,
the domains resolving to a specific sinkhole IP shared the same NS such as
torpig-sinkhole.org or shadowserver.org. We thus argue that if multiple
domains resolve to the same IP address but do not utilize the same NS, the
probability that this IP is associated with a sinkhole is considered to be low.

Another observation is the content sinkholes serve upon HTTP requests.
When requesting content from randomly chosen sinkholed domains using GET /

HTTP/1.1, we find sinkholes to either not transfer any HTML data (i.e., closed
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HTTP port or web servers responding with 4xx HTTP codes) or serve the same
content for all domains as monitored for zinkhole.org. We thus assume that
domains resolving to the same set of IP addresses but serving differing content do
not belong to sinkholes and are rather linked to services such as shared hosting.

4.1 Sinkhole Identification

Based on these insights we introduce our approach to identify sinkholes in the
blacklist datasets SC&C and SMal. The datasets consist of currently listed and
historical domains and the IPs to which any of the domains resolved to. For each
domain, we aggregate current DNS records and web content while we obtain
reverse DNS records, AS and online status details, and web content for all IPs.

Filtering Phase. In a first step, we aim to filter IP addresses sharing simi-
lar behavior as sinkholes to eliminate potential FPs. We thus remove the IPs
associated with parking providers using the detection mechanism introduced in
Section 3. To identify IPs of potential shared hosting providers serving benign
or malicious content, we analyze the aggregated HTTP data. We define IPs to
be associated with shared hosting when we obtain varying web content (i.e.,
normalized Levenshtein ratio ≤ 0.9) for the domains resolving to the same set
of IPs. Furthermore, we expect sinkholes to be configured properly, thus we do
not consider web servers as sinkholes that delivered content such as it works.

As our datasets might include erroneously blacklisted benign domains, we
filter likely benign IPs such as hosting companies and Content Delivery Networks
with the following heuristic: we do not expect the Alexa Top 25k domains to
be associated to sinkholing servers. We thus obtained the HTTP content of
each domain, extracted further domains specified in the content, and requested
DNS A records for all domains. The resulting dataset SBenign includes 105,549
presumably benign IPs. We acknowledge that this list does not remove all false
listings in the blacklist datasets, however, this heuristic improves our data basis.

To further reduce the size of the datasets, we eliminate IPs associated to Fast
Flux with the following heuristic: we define an IP to be associated with Fast Flux
when at least 50% of the blacklisted domains currently resolving to this IP are
found to be Fast Flux domains, whereas we define a Fast Flux domain as follows:
i) the domain resolved to more than 5 distinct IPs during our observation time
and ii) at least half of these IPs were seen within two weeks. As we expect the
ratio of fast flux domains associated to individual sinkhole IP addresses to be
rather low, we assume to not remove any sinkholing servers.

Graph Exploration. The actual sinkhole identification follows the intuition
that IPs of sinkholes mostly succeed malicious IPs in the chain of resolved IPs
for a high number of domains and are persistent for a longer period of time. For
each dataset SC&C and SMal, we map this assumption onto a separate directed
graph G = (V,E), whereas the domains and IPs in the datasets are represented
as vertices v ∈ V . The edges e ∈ E are determined by the relationship between
the domains and IPs. We define u ∈ V to be a parent node of v when there
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exists a directed edge e = (u, v) and define w ∈ V to be a child node of v when
there exists a directed edge e = (v, w). The edges e ∈ E are defined as follows:

(i) For each domain v ∈ V , we add a directed edge e = (v, w) if domain v at
some point resolved to IP w ∈ V .

(ii) For each domain v ∈ V , we add an edge e = (wo, wn) if v resolved to IP
wo ∈ V , switched to a new IP wn ∈ V , and never switched back to IP wo.

In step (i), we assign the resolved IPs to each domain in our datasets. In step
(ii), we add a domain’s history of A records (i.e., resolved IPs) to the graph.

We name deg−(v) the in-degree of node v, resembling the number of parent
nodes. In our graph model, the in-degree represents the number of domains that
currently are or were once resolving to node v and the number of IPs preceding
v in the resolver chain. For sinkholes, the in-degree is considerably higher than
the average in-degree as sinkholes usually succeed malicious IPs in the chain of
resolved IPs and a single sinkhole IP is often used to sinkhole multiple domains.

We further refer to deg+(v) as the out-degree of node v, resembling the
number of child nodes, e.g., IP addresses that followed node v in the resolver
chain. We find the out-degree of sinkhole IPs to be significantly lower than the
average out-degree because sinkhole IPs are persistent for a longer period of

time. As a result, the ratio R = deg−(v)
deg+(v) is expected to be high for sinkholes.

We use the resulting graph to create a list of potential sinkholes Spot by
adding all IP addresses v ∈ V which meet these requirements:

(i) The IP address must respond to ICMP Echo or HTTP requests.
(ii) At least D domains are currently resolving to this IP, whereas the value D

is defined by the average number of active domains per IP in our set.
(iii) The ratio R exceeds a threshold T , whereas T is defined as the average

ratio of all IP addresses v ∈ V .
(iv) All domains associated with a single IP address utilize the same NS.

We then manually verify each IP in Spot whether it is a FP or associated with
a sinkhole by analyzing the utilized NS, served web content, reverse DNS record,
and AS details, and also employ a service provided by one of our collaboration
partners listing known sinkhole IPs. Verified sinkholes are added to the set Sver.

We chose these rather hard requirements as most sinkhole operators have
little incentive to disguise the existence of their sinkholes. We thus hypothesize
that this list of requirements will even hold once our sinkhole detection technique
is known. However, as we might have missed sinkhole IPs due to the strict
requirements for Spot, we explore the neighboring IP addresses of Sver in the
second phase of the sinkhole identification. Before doing so, we extract the NS
of the domains resolving to the IPs in Sver, manually check whether the NS are
specifically used in conjunction with sinkholed domains and if so, we add the
NS to a trusted set SNS . Further on, to also detect inactive sinkholes at a later
stage, we create a mapping of trusted NS and the AS the corresponding sinkhole
s ∈ Sver is located in, defined by SNS AS = {(nss, ASs) | nss ∈ SNS}.

Sinkhole operators might relocate domains to different sinkholes in the same
organization and AS, thus we explore the parent and child nodes of each sinkhole
to identify yet unknown sinkholes. For each ip ∈ V , we check whether ip is a
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parent or child node of a known sinkhole s ∈ Sver, whereas we only consider
IPs abiding ASip = ASs. If ip is found to be a neighboring node of at least two
sinkholes, we define ip to be a potential sinkhole and add it to Spot. Further, ip
is added to Spot when it is a parent or child node of at least one sinkhole in the
same AS and the domains resolving to both IP addresses share the same NS.

To identify sinkholes which cannot be found by exploring parent and child
nodes, we leverage the trusted name servers ns ∈ SNS . As we defined these NS
to be exclusively used for sinkholed domains, we check if the authoritative NS
of the domains currently resolving to each IP ip ∈ V can be found in SNS .

The previous exploration mechanisms traced active sinkholes only as we re-
quire domains to resolve to the IPs of potential sinkholes. Our blacklist dataset
also includes historical data, thus we are interested in obtaining a list of sink-
holes which were active in the past. Inactive sinkholes presumably do not have
domains currently resolving to them, hence we cannot leverage the NS data as
conducted in the previous step. Instead, we examine the domains which once
resolved to each ip ∈ V in our dataset, obtain the currently most utilized name
server ns, and check if ns is covered by SNS . If ns ∈ SNS is true, the ip is either
of malicious character and the domains once resolving to ip are now sinkholed or
we identified an inactive sinkhole and the domains were relocated to other sink-
holes. To distinguish between malicious and sinkhole IP we check if (nsip, ASip)
is listed in SNS AS . If this is true, we add ip to Spot as we assume that malicious
IPs are not located in the same AS in which we found verified sinkholes.

4.2 Evaluation

We now evaluate our method on the datasets SC&C and SMal. On SC&C , the
filtering step removed 1,144 IPs listed in SBenign or associated with parking
providers or Fast Flux. The resulting graph consists of 41,269 nodes and 371,187
edges. In the first phase of the graph exploration our approach adds 20 IPs to
Spot, which we manually verified to be associated with sinkholes. In the second
phase, we identify 6 sinkholes by exploring the parent and child nodes of the
already verified sinkholes, 11 sinkholes by analyzing the actively used NS, and 8
sinkholes by exploring the NS of historically seen domains. Table 3 outlines the
operators of the verified sinkholes and the number of distinct AS. The sinkholes
listed as Others are associated with organizations such as Abuse.ch and Echo-
Source. In total, we discovered 45 sinkholes in SC&C without any false positives.

On the larger and more distributed dataset SMal, we filter 7,349 IPs, resulting
in a graph of 277,315 nodes and 4,690,369 edges. The first phase of the graph
exploration identifies 80 IPs to be potential sinkholes. We are able to verify
59 of these IPs to be associated with sinkholes and find 10 IPs to serve 403
(Forbidden) and 404 (Not Found) HTTP error codes or empty HTTP responses
for all associated domains. Another 7 IPs do not accept HTTP requests due to
the HTTP port being closed. We assume that these 17 IPs are either associated
with sinkholes or hosting companies, which deactivated misbehaving accounts or
servers. The remaining 4 IPs in Spot are considered to be FPs as two IPs serve
benign content (i.e., related to adult content and the DNS provider noip.com),



12 Marc Kührer, Christian Rossow, and Thorsten Holz

one IP replies with a single string for all known domains, and the last IP is still
distributing malicious content. Based on the 59 verified sinkholes, we perform the
second phase and detect 14 sinkholes by exploring the parent and child nodes, 19
sinkholes by monitoring the actively utilized NS, and 14 sinkholes by exploring
the NS of previously seen domains. In Others, we summarize operators such as
Fitsec, Dr.Web, and the U.S. Office of Criminal Investigations.

Table 3. Sinkhole IPs identified in SC&C and SMal

SC&C SMal

Organization # AS Active Inactive Active Inactive

Anubis Networks 1 1 0 4 0
Cert.pl 1 4 0 4 0
GeorgiaTech/SinkDNS 5 0 0 8 1
Microsoft 3 7 2 11 2
Others 17 4 1 18 4
PublicDomainRegistry 7 10 7 20 11
Shadowserver 1 0 0 5 0
Torpig-Sinkhole 2 4 1 8 2
Zinkhole 1 4 0 7 1

Our detection technique
identified 106 IPs, which we
verified to be associated with
sinkholes, 17 IPs of potential
sinkholes, and 4 IPs, which
are falsely added to Spot in
the first exploration phase.
The second phase does not
cause any FPs but doubles
the number of sinkholes.

5 Blacklist Evaluation

Based on the findings in the previous sections, we now proceed to analyze the
content of the monitored malware blacklists in regards to multiple characteristics.

5.1 Classification of Blacklist Entries

We introduced detection mechanisms for parked domains and sinkholing servers,
which are covered by blacklists. Table 4 outlines how many of the currently listed
domains (SCurrent) and IPs (SIPs) can be assigned to one of these categories.

Table 4. Classification of SCurrent and SIPs

(in %) Sinkholed

Blacklist Unreg. Parked Domains (% / #) # IPs

Citadel 23.6 0.2 70.4 3,263 n/a
Cybercrime 40.1 1.6 4.2 45 0
Malc0de 12.0 1.5 0.0 0 0
MDL Hosts 18.0 3.0 0.4 6 n/a
MDL ZeuS 41.6 0.0 8.3 1 0
MW-Domains 52.1 2.4 2.8 659 n/a
Palevo Tracker 0.0 0.0 2.9 1 1
Shallalist 45.7 10.9 0.9 190 1
Shadowserver n/a n/a n/a n/a 4
SpyEye Tracker 47.2 0.0 19.5 24 2
UrlBlacklist 72.3 3.1 1.7 2,211 3
Virustracker 85.1 8.7 3.5 426 n/a
ZeuS Tracker 52.0 0.3 0.1 1 0

The Abuse.ch blacklists as
well as MDL ZeuS include a
low number of parked domains.
In contrast, we observe a high
number of parked domains for
blacklists that have only a few
historical entries (cf. Table 1 in
Section 2). Particularly for Shal-
lalist and UrlBlacklist, we as-
sume that the listed domains
are not reviewed periodically
as more than 57%, respectively,
77% of all domains are either

non-existent, parked, or associated to sinkholes while the number of historical
entries is almost negligible. When taking a look at Virustracker, we find 8.7% of
the currently listed domains to be parked. Virustracker consists of DGA-based
domains next to a partition of hard-coded malware domains that are valid and
blacklisted for a longer period of time. The classification results indicate that
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the hard-coded domains are parked significantly more often than the DGA-based
domains, i.e., when inspecting a random subset of 25 DGA-based and 25 hard-
coded domains, only a single DGA-based domain was parked while more than
40% of the hard-coded domains were associated to parking. We thus assume that
many of the persistent domains are parked to monetize the malicious traffic.

5.2 Blacklist Completeness

Next, we aim to answer how complete the blacklists are, i.e., we measure if they
cover all domains for popular malware families. We thus turn from analyzing
what is listed to evaluating what is not blacklisted. To the best of our knowledge,
we are the first to analyze the completeness of malware blacklists. Estimating
the completeness is challenging as it requires to obtain a ground truth first, i.e., a
set of domains used by each malware family. To aggregate a dataset of malicious
domains we leverage analysis reports of our dynamic malware analysis platform
Sandnet [31]. We inspect the network traffic of more than 300,000 malware
samples that we analyzed since Mar. 2012 and identify characteristic patterns
for the C&C communication and egg download channels of 13 popular malware
families. Our dataset includes banking trojans, droppers (e.g., Gamarue), ran-
somware (e.g., FakeRean), and DDoS bots (e.g., Dirtjumper), thus represents a
diverse set of malware families. Per malware family, we manually identify typical
communication patterns and extract the domains for all TCP/UDP connections
that match these patterns. Next to regular expressions, we use traffic analy-
sis [32] and identify encrypted C&C streams using probabilistic models [33] to
classify the malware communication. We ensured that these fingerprints cap-
ture generic characteristics per malware family, guaranteeing that the number
of false negatives is negligible (see [32] and [33] for details). We manually veri-
fied a subset of the suspicious communication streams and did not identify any
false classifications. Admittedly, our dataset is limited to a small subset of the
overall malware population only. Given the subset of malware samples, the set
of extracted domains is thus by no means complete. However, our dataset serves
as an independent statistical sample. In addition, polymorphism creates tens
of thousands new malware samples daily, whereas the number of new malware
variants (e.g., using different C&C domains) is much lower [30]—indicating that
our dataset achieves reasonable coverage, as also indicated in the experiments.

We evaluate the completeness of the blacklists by computing the ratio of the
malware domains observed in Sandnet that are also blacklisted. Table 5 out-
lines our evaluation results per family. The second column shows the number of
domains we obtained from Sandnet per family. The remaining columns repre-
sent the results for particular blacklist datasets as introduced in Section 2, while
SAV is defined by the union of all four AV vendor blacklists. Our analysis shows
that the public blacklists detect less than 10% of the malicious domains for eight
(SC&C) and five (SMal) malware families, respectively. As a result, the detec-
tion capabilities of an IDS or AV software using these blacklists is insufficient,
even when combining multiple blacklists that employ different listing strategies.
The public blacklists do achieve detection rates higher than 50% for particular
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families because of highly specialized listing policies such as in the Abuse.ch
trackers and Microsoft’s list of Citadel domains, yet they fail to detect the other
families—even though families such as Sality are known since 2003.

Table 5. Coverage of malware domains

Public (%) AV Vendors (%)

Family # Dom. SC&C SMal SAV SBD SMA

Citadel 225 87.6 89.3 96.0 57.3 79.1
Dirtjumper 47 2.1 2.1 80.9 63.8 40.4
FakeRean 34 0.0 17.7 73.5 50.0 58.8
Gamarue 127 6.3 18.9 86.6 62.2 47.2
Gbot 321 0.0 0.0 100.0 77.3 100.0
Palevo 58 51.7 58.6 93.1 63.8 89.7
Ponyloader 210 4.3 21.0 95.7 71.4 65.7
Pushdo 42 0.0 9.5 92.9 64.3 78.6
Rodecap 9 11.1 11.1 100.0 66.7 44.4
Sality 417 0.0 1.2 82.3 73.4 27.3
SpyEye 145 56.6 57.9 83.4 26.9 61.4
Tedroo 7 0.0 0.0 85.7 57.1 28.6
ZeuS 47 51.1 53.2 95.7 51.1 61.7

Three of the blacklists op-
erated by AV vendors perform
significantly better. Looking at
the union of the blacklists, at
least 70% of the domains per
family are detected. More than
90% of the domains were listed
for seven of the 13 families. We
also look at the breakdown of
SAV , i.e., how well the individ-
ual blacklists perform. Table 5
includes the two blacklists that
perform best: SBD is operated

by Bitdefender and SMA by McAfee. Surprisingly, these blacklists have a non-
negligible separation—combining them significantly increases the overall cov-
erage for many families. We do not list the remaining two blacklists due to
space constraints, however, note that Norton performs similar to Bitdefender
and McAfee while Browserdefender fails to detect any domain for the majority
of families and covers only 2 - 7% of the domains for the other malware families.

5.3 Reaction Time

For the domains seen in Sandnet which are also covered by SMal, we addi-
tionally estimate the reaction time of the blacklists. That is, we measure how
long it takes to blacklist the domains once they were seen in Sandnet. As
the domains could have been performing malicious activities before we observed
them in Sandnet, the presented reaction times are lower bounds. We therefore
obtained pDNS records and VirusTotal [34] analysis results to investigate the
history of each domain. In total, we could aggregate pDNS records for 81.3% of
all domains and obtained information from VirusTotal for 98% of the domains.

We determined the reaction times for each combination of public blacklist
and malware family. Yet, for reasons of brevity we focus on a few interesting
combinations only. Figure 1 illustrates a CDF of the reaction times of four
blacklists, respectively, blacklist combinations. The y-axis shows the reaction
time per blacklist entry in days and the x-axis depicts the ratio of domains with
this reaction time. Negative y-values indicate that the domain was first seen in
the blacklists and then observed in Sandnet, pDNS, or VirusTotal. Positive y-
values denote that a blacklist lagged behind. The y-values of blacklisted domains
that are not found in pDNS or VirusTotal are set to the negative infinity.

The black solid line represents the reaction time of the blacklists provided by
Abuse.ch (Palevo, SpyEye, and ZeuS ) and the corresponding domains as seen in
Sandnet. About 23.3% of the domains were listed by the blacklists before they
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appeared in Sandnet, respectively, 76.7% of the domains were seen in Sand-
net first. As depicted by the black dotted line, we find 37.9% of the domains
to be blacklisted before appearing in VirusTotal. Approximately 64.7% of the
domains were seen in Sandnet and added to the blacklists on the same day. The
reaction time of Abuse.ch was less than a week for 80.2% of the Sandnet do-
mains and the blacklists included already 96.6% of the domains within 30 days.
The results show an adequate reaction time for the Abuse.ch blacklists, although
the completeness is not ideal (cf. Section 5.2). The black dashed line illustrates
the results obtained for the Abuse.ch blacklists and pDNS. We could not obtain
pDNS records for 27.6% of the domains, i.e., these domains, although monitored
in multiple sandbox environments, were never seen in the DNS DB database.
Another 3.4% of the domains were blacklisted before the domains appeared in
pDNS, while 10.4% of the domains were blacklisted and seen in pDNS on the
same day. The remaining 58.6% of the domains were seen in pDNS on average
334 days before appearing in the blacklists. These domains either performed ma-
licious activities before becoming blacklisted or—more likely—performed benign
actions before turning malicious.
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Fig. 1. Reaction times of selected blacklists

We observe dif-
ferent results for the
reaction times of the
other three black-
lists shown in the
graph. The reaction
time of UrlBlacklist
was higher than a
month for 53.5% of
the domains. Sim-
ilarly, the blacklist
MW-Domains has a
reaction time of at
least 30 days for
39.7% of the do-
mains. After four
months, the coverage of all three blacklists was still below 90%. In general, the
low number of domains that appeared in Sandnet after they were blacklisted
(negative y-values) indicates that our ground truth dataset is up-to-date.

5.4 DGA-based Domains

Malware that employs DGAs to dynamically create domains—typically derived
from the current date—imposes additional difficulties to blacklist operators.
First, DGA-based domains are valid for a limited time span, thus often change.
Ideally, blacklists would include these domains before they become valid. Second,
most of the domains are never registered or seen active, e.g., when dynamically
analyzing malware samples. Yet, DGA-based malware is on the rise [3], hence
networks protected by blacklists would benefit from DGA-based listings.
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We evaluate the coverage of DGA-based domains in the blacklists for five
prevalent malware families. We implemented the DGAs for these families after
obtaining the algorithms from partners or using reverse engineering. Four fami-
lies generate domains every day, whereas the ZeuS P2P domains are valid for 7
days. We again measure the completeness and determine the reaction time for
each family, i.e., how many days it takes to blacklist a domain once it becomes
valid. We further estimate the rate of registered domains in SMal by leveraging
the recorded DNS data (i.e., we check if the domains resolved to IP addresses at
the time the domains were valid). As the dataset SMal contains all the domains
that were listed by any of the 15 public blacklists at some point in time since
2012, it should also include DGA-based domains that were valid in the past.

Table 6. Coverage of DGA-based domains

SMal SAV

Ratio (%) Ratio (%)

Family # Domains Listed Reg. tReact # Domains Listed Reg.

Bamital 84,136 21.9 11.7 -1 104 75.0 50.0
Conficker 7,354,415 1.6 0.2 1 50,500 94.3 4.8
Flashback 4,045 18.0 15.3 71 5 0.0 100.0
Virut 8,089,752 0.2 0.004 13 10,000 97.9 1.7
ZeuS P2P 131,000 28.9 0.2 1 1,000 99.5 4.5

Table 6 illustrates
the listing behavior
we monitored in the
period Jan. 2012 to
Mar. 2014 for the
public blacklists (first
major column) and
on a typical weekday
in Mar. 2014 for the

AV vendor blacklists (second major column). In total, less than 1.2% of all do-
mains were listed by the public blacklists. On the positive side, blacklists have a
low reaction time for three families (if they blacklist a domain). On the downside,
82.1% of the matches are found in the blacklist Virustracker only. When remov-
ing Virustracker from SMal, the reaction times increase significantly for most
families (i.e., Bamital : 12 days, Conficker : 12 days, Flashback : 381 days, Virut :
-271 days, and ZeuS P2P : 16 days). Before removing Virustracker from SMal, we
find 0.2% of the Virut domains to be blacklisted. After removing Virustracker,
we find merely 167 domains (0.002%) to be listed. Due to the generic structure
of Virut domains, we assume that these domains are not listed to protect against
Virut in particular but rather because they were related to other malicious ac-
tivities. The reaction time confirms our assumption as it is not reasonable to
blacklist domains 271 days before they become active for a single day.

We also determine the coverage of the AV vendor blacklists regarding DGA-
based domains. To avoid requesting millions of domain names, we divide our
analysis into two steps. To measure if the blacklists protect against threats of
DGA-based domains that are currently active, we request listing information
and DNS A records for all the domains that are valid on the day we perform this
experiment (i.e., 03/24/2014). Second, we analyze if blacklists include domain
names which become active in the future. We thus also request a sample of DGA-
based domain names (i.e., a random selection of at most 10 domains per day
and malware family, respectively, type for Conficker) that will be valid between
03/25/2014 and 04/24/2014, i.e., up to 31 days ahead of the day of requesting.

For the domains valid on the day of performing our experiment, we find
76.1%, respectively, 28.9% of the ZeuS P2P domains to be blacklisted by McAfee
and Bitdefender and observe the best coverage for Norton as most of the results
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in Table 6 are caused by this blacklist—with a single exception. Norton lists
95.5% of the ZeuS P2P domains while the union of all AV vendor blacklists
increases the coverage up to 99.5%. For the remaining blacklists and malware
families, we find a negligible number of listed domains (if domains are listed at
all). When taking a closer look at the registered domains that day, we find half of
the Bamital domains and most of the domains for Conficker B/C and Flashback
to be sinkholed. Further on, four domains of ZeuS P2P are sinkholed while the
168 registered Virut domains are associated to parking providers and benign
web pages. In conclusion, a partition of valid domains is sinkholed by security
researchers, yet the remaining domains could be used for malicious activities.
We thus recommend to blacklist each DGA-based domain for security reasons
(i.e., to trigger alerts). For the domains getting active in the near future, we
again find the blacklist provider Norton to perform best. Except for Flashback
(no listed domain) and Bamital (coverage of 46.5%), we find Norton to include
at least 94.5% of the domains for each of the remaining families. For the other
families and blacklists, we again observe a negligible number of listed domains.

Our analysis shows that as of today, only one blacklist can reasonably protect
against any of the five DGAs used in our experiments. This is surprising to us,
given the fact that—once the DGA is known—the DGA-based domains can be
accurately predicted unless there are external dependencies (e.g., DGAs utilizing
lists of popular feeds from social network web pages). One of the reasons could
be that DGAs are often used as a C&C backup mechanism only. For example,
Zeus P2P uses a DGA only if its peer-to-peer communication fails [35]. Another
reason could be that DGA-based domains may, by coincidence, collide with
benign domains. Still, as these issues can be overcome, the potential of including
DGA-based domains is unused in most of the nowadays blacklists.

6 Discussion and Future Work

We showed that our parking detection approach can effectively distinguish parked
and benign domains. As our features depend on the content delivered by park-
ing services such as sponsored ads, domain resellers serving benign content and
parked domains exhibiting parking behavior different from the expected however
cannot be effectively identified by our detection model. This is particularly prob-
lematic when parking providers block us, e.g., for sending too many requests.
Parking services employ different types of blocking (e.g., provide error messages,
benign content, or the parking page template without any referral links). To
avoid getting blocked, we could distribute the requests to several proxy servers
or rate-limit our requests. Further, domains might perform cloaking [36], i.e.,
provide malicious content for real users while serving parking content for auto-
mated systems. We leave a detection of cloaking domains for future work and
acknowledge that a large number of parked domains alone does not necessarily
imply that a blacklist is not well-managed. We also have to keep in mind that the
parking IDs might be biased in respect to the language of the blacklist content,
as we obtained the IDs by leveraging the NS used by the blacklisted domains.
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However, our dataset does not include any national blacklists, which primarily
list domains of a specific country or language. While performing the manual
verification for the real-world datasets in Section 3.3, we monitored many do-
mains providing content in foreign languages that were flagged as parked by the
classifier. This shows that our approach is largely language-independent.

The proposed sinkhole detection method relies on the blacklists to observe
behavior that can be attributed to sinkholes. As such, our detection capabilities
are limited to sinkholes that are blacklisted. We could use the identified sinkhole
dataset as ground truth and leverage techniques such as passive DNS analysis to
identify further potential sinkholes [37]. Additionally, the quality of our approach
depends on the accuracy of the blacklists. If blacklists contain too many benign
domains that cannot be filtered, e.g., by removing Alexa Top 25k, parking, and
shared hosting IPs, we might flag benign IP addresses as potential sinkholes.

Our evaluation on the completeness of blacklists is limited to estimating
lower bounds as Sandnet only covers a random subset of all samples of the
active malware families. Consequently, we may have missed malicious domains
in Sandnet. We aim to scale up malware execution to achieve a higher coverage.

We classified the blacklist content as parked, sinkholed, or unregistered and
analyzed the completeness of the blacklists in regards to domains of various
malware families. Yet, the blacklists also include domains we could not classify
accordingly, leaving 23.7% of the currently blacklisted domains to be unspeci-
fied. These domains might also include potential false listings, e.g., caused by
erroneous setups of analysis back-ends or insufficient verification of domains that
are flagged to be potentially malicious. False listings, however, are hard to iden-
tify as each blacklist applies its own listing strategy and might include domains
of malware families that are not present in Sandnet and the DGA-based do-
main dataset. Analysis techniques to identify potential false listings thus require
a thorough evaluation of correctness. We leave the categorization of the so far
unclassified domains for future work.

7 Related Work

The effectiveness of malware blacklists is still largely unstudied. In prior work, we
proposed a system to track blacklists and presented first details regarding black-
list sizes [6]. With this paper, we extend our work and evaluate malware blacklist
effectiveness—motivated by promising results others reported with blacklists in a
different context. For example, Thomas et al. [38] looked at blacklists in Twitter.
Similarly, Sinha et al. [39], Rossow et al. [40], and Dietrich et al. [41] evaluated
the strength of blacklists in the context of email spam, while Sheng et al. [42]
analyzed phishing blacklists.

Concurrent to our sinkhole identification work, Rahbarinia et al. developed a
system called SinkMiner [37] to identify sinkhole IPs. They leverage pDNS data
and a priori information about sinkholes to extrapolate to other sinkholes. Our
approach does not rely on an initially-known set of sinkholes and, in its simple
form, works without pDNS. In addition, we found sinkholes which were not linked
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to other sinkholes—many of which SinkMiner would miss. Nevertheless, a com-
bination of SinkMiner and our graph-based approach could identify yet unknown
sinkholes, as SinkMiner analyzes the global history of domains using pDNS while
we are limited to the history of blacklisted domains. We further proposed a more
advanced mechanism to identify parking providers. Rahbarinia et al. filter for NS
that include the term park in their hostnames. Yet, of the 204 parking NS iden-
tified in Section 3.1 we find 59 NS to not specify this term in their hostnames.
Halvorson et al. [23,24] identify parked domains by applying regular expressions
to the aggregated web content. Instead, we introduced characteristic features for
parking behavior and—to the best of our knowledge—are the first to propose a
generic mechanism to identify parked domains.

Orthogonal to our work, a number of proposals aim to increase the quality of
existing blacklists. Neugschwandtner et al. [43] proposed Squeeze, a multi-path
exploration technique in dynamic malware analysis to increase the coverage of
C&C blacklists. Stone-Gross et al. [44] proposed FIRE, a system to identify
organizations that demonstrate malicious behavior by monitoring botnet com-
munication. Our findings show that usage of such systems should be fostered.

8 Conclusion

We have shown that blacklists have to be employed with care as the nature of
the listings is diverse. First, one needs to keep in mind that also sinkholes may
be blacklisted. Second, many parking providers re-use popular malware domains.
This is crucial to know, e.g., when blacklists raise false positives or one aims to
attribute a reputation to certain providers based on blacklist data. In addition,
our evaluation of blacklist coverage indicates how blacklists can be improved
in the future as none of the public blacklists is sufficiently complete to protect
against the variety of malware threats we face nowadays. We further have shown
that most blacklists operated by AV vendors do not cover DGA-based malware
to effectively protect users, although integration would be straight-forward. We
are confident that our analyses will help to improve blacklists in the future.
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