
This is a Chapter from the Handbook of Applied Cryptography, by A. Menezes, P. van
Oorschot, and S. Vanstone, CRC Press, 1996.
For further information, see www.cacr.math.uwaterloo.ca/hac

CRC Press has granted the following specific permissions for the electronic version of this
book:

Permission is granted to retrieve, print and store a single copy of this chapter for
personal use. This permission does not extend to binding multiple chapters of
the book, photocopying or producing copies for other than personal use of the
person creating the copy, or making electronic copies available for retrieval by
others without prior permission in writing from CRC Press.

Except where over-ridden by the specific permission above, the standard copyright notice
from CRC Press applies to this electronic version:

Neither this book nor any part may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, microfilming,
and recording, or by any information storage or retrieval system, without prior
permission in writing from the publisher.

The consent of CRC Press does not extend to copying for general distribution,
for promotion, for creating new works, or for resale. Specific permission must be
obtained in writing from CRC Press for such copying.

c©1997 by CRC Press, Inc.

Chapter6
Stream Ciphers

Contents in Brief

6.1 Introduction . 191
6.2 Feedback shift registers . 195
6.3 Stream ciphers based on LFSRs 203
6.4 Other stream ciphers . 212
6.5 Notes and further references . 216

6.1 Introduction

Stream ciphers are an important class of encryption algorithms. They encrypt individual
characters (usually binary digits) of a plaintext message one at a time, using an encryp-
tion transformation which varies with time. By contrast, block ciphers (Chapter 7) tend to
simultaneously encrypt groups of characters of a plaintext message using a fixed encryp-
tion transformation. Stream ciphers are generally faster than block ciphers in hardware,
and have less complex hardware circuitry. They are also more appropriate, and in some
cases mandatory (e.g., in some telecommunications applications), when buffering is lim-
ited or when characters must be individually processed as they are received. Because they
have limited or no error propagation, stream ciphers may also be advantageous in situations
where transmission errors are highly probable.

There is a vast body of theoretical knowledge on stream ciphers, and various design
principles for stream ciphers have been proposed and extensively analyzed. However, there
are relatively few fully-specified stream cipher algorithms in the open literature. This un-
fortunate state of affairs can partially be explained by the fact that most stream ciphers used
in practice tend to be proprietary and confidential. By contrast, numerous concrete block
cipher proposals have been published, some of which have been standardized or placed in
the public domain. Nevertheless, because of their significant advantages, stream ciphers are
widely used today, and one can expect increasingly more concrete proposals in the coming
years.

Chapter outline

The remainder of §6.1 introduces basic concepts relevant to stream ciphers. Feedback shift
registers, in particular linear feedback shift registers (LFSRs), are the basic building block
in most stream ciphers that have been proposed; they are studied in §6.2. Three general tech-
niques for utilizing LFSRs in the construction of stream ciphers are presented in §6.3: using

191

192 Ch. 6 Stream Ciphers

a nonlinear combining function on the outputs of several LFSRs (§6.3.1), using a nonlin-
ear filtering function on the contents of a single LFSR (§6.3.2), and using the output of one
(or more) LFSRs to control the clock of one (or more) other LFSRs (§6.3.3). Two concrete
proposals for clock-controlled generators, the alternating step generator and the shrinking
generator are presented in §6.3.3. §6.4 presents a stream cipher not based on LFSRs, namely
SEAL. §6.5 concludes with references and further chapter notes.

6.1.1 Classification

Stream ciphers can be either symmetric-key or public-key. The focus of this chapter is
symmetric-key stream ciphers; the Blum-Goldwasser probabilistic public-key encryption
scheme (§8.7.2) is an example of a public-key stream cipher.

6.1 Note (block vs. stream ciphers) Block ciphers process plaintext in relatively large blocks
(e.g., n ≥ 64 bits). The same function is used to encrypt successive blocks; thus (pure)
block ciphers are memoryless. In contrast, stream ciphers process plaintext in blocks as
small as a single bit, and the encryption function may vary as plaintext is processed; thus
stream ciphers are said to have memory. They are sometimes called state ciphers since
encryption depends on not only the key and plaintext, but also on the current state. This
distinction between block and stream ciphers is not definitive (see Remark 7.25); adding a
small amount of memory to a block cipher (as in the CBC mode) results in a stream cipher
with large blocks.

(i) The one-time pad

Recall (Definition 1.39) that a Vernam cipher over the binary alphabet is defined by

ci = mi⊕ki for i = 1, 2, 3 . . . ,

where m1,m2,m3, . . . are the plaintext digits, k1, k2, k3, . . . (the keystream) are the key
digits, c1, c2, c3, . . . are the ciphertext digits, and⊕ is the XOR function (bitwise addition
modulo 2). Decryption is defined by mi = ci⊕ki. If the keystream digits are generated
independently and randomly, the Vernam cipher is called a one-time pad, and is uncondi-
tionally secure (§1.13.3(i)) against a ciphertext-only attack. More precisely, ifM , C, and
K are random variables respectively denoting the plaintext, ciphertext, and secret key, and
if H() denotes the entropy function (Definition 2.39), then H(M |C) = H(M). Equiva-
lently, I(M ;C) = 0 (see Definition 2.45): the ciphertext contributes no information about
the plaintext.

Shannon proved that a necessary condition for a symmetric-key encryption scheme to
be unconditionally secure is that H(K) ≥ H(M). That is, the uncertainty of the secret
key must be at least as great as the uncertainty of the plaintext. If the key has bitlength k,
and the key bits are chosen randomly and independently, then H(K) = k, and Shannon’s
necessary condition for unconditional security becomes k ≥ H(M). The one-time pad is
unconditionally secure regardless of the statistical distribution of the plaintext, and is op-
timal in the sense that its key is the smallest possible among all symmetric-key encryption
schemes having this property.

An obvious drawback of the one-time pad is that the key should be as long as the plain-
text, which increases the difficulty of key distribution and key management. This moti-
vates the design of stream ciphers where the keystream is pseudorandomly generated from
a smaller secret key, with the intent that the keystream appears random to a computation-
ally bounded adversary. Such stream ciphers do not offer unconditional security (since
H(K)� H(M)), but the hope is that they are computationally secure (§1.13.3(iv)).

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§6.1 Introduction 193

Stream ciphers are commonly classified as being synchronous or self-synchronizing.

(ii) Synchronous stream ciphers

6.2 Definition A synchronous stream cipher is one in which the keystream is generated inde-
pendently of the plaintext message and of the ciphertext.

The encryption process of a synchronous stream cipher can be described by the equations

σi+1 = f(σi, k),

zi = g(σi, k),

ci = h(zi,mi),

where σ0 is the initial state and may be determined from the key k, f is the next-state
function, g is the function which produces the keystream zi, and h is the output function
which combines the keystream and plaintextmi to produce ciphertext ci. The encryption
and decryption processes are depicted in Figure 6.1. The OFB mode of a block cipher (see
§7.2.2(iv)) is an example of a synchronous stream cipher.

zi

f

k
zi

k

σi+1

(ii) Decryption(i) Encryption
Plaintextmi
Ciphertext ci
Key k
Keystream zi
State σiσi+1

g h

σi
mi

ci

ci

mih−1g

f

σi

Figure 6.1: General model of a synchronous stream cipher.

6.3 Note (properties of synchronous stream ciphers)
(i) synchronization requirements. In a synchronous stream cipher, both the sender and

receiver must be synchronized – using the same key and operating at the same posi-
tion (state) within that key – to allow for proper decryption. If synchronization is lost
due to ciphertext digits being inserted or deleted during transmission, then decryption
fails and can only be restored through additional techniques for re-synchronization.
Techniques for re-synchronization include re-initialization, placing special markers
at regular intervals in the ciphertext, or, if the plaintext contains enough redundancy,
trying all possible keystream offsets.

(ii) no error propagation. A ciphertext digit that is modified (but not deleted) during
transmission does not affect the decryption of other ciphertext digits.

(iii) active attacks. As a consequence of property (i), the insertion, deletion, or replay
of ciphertext digits by an active adversary causes immediate loss of synchronization,
and hence might possibly be detected by the decryptor. As a consequence of property
(ii), an active adversary might possibly be able to make changes to selected ciphertext
digits, and know exactly what affect these changes have on the plaintext. This illus-
trates that additional mechanisms must be employed in order to provide data origin
authentication and data integrity guarantees (see §9.5.4).

Most of the stream ciphers that have been proposed to date in the literature are additive
stream ciphers, which are defined below.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

194 Ch. 6 Stream Ciphers

6.4 Definition A binary additive stream cipher is a synchronous stream cipher in which the
keystream, plaintext, and ciphertext digits are binary digits, and the output function h is the
XOR function.

Binary additive stream ciphers are depicted in Figure 6.2. Referring to Figure 6.2, the
keystream generator is composed of the next-state function f and the function g (see Fig-
ure 6.1), and is also known as the running key generator.

Generator

Keystream
mi

zi

cimi

ci

Plaintextmi
Ciphertext ci
Key k

Keystream zi

zi
kk

Keystream

Generator

(ii) Decryption(i) Encryption

Figure 6.2: General model of a binary additive stream cipher.

(iii) Self-synchronizing stream ciphers

6.5 Definition A self-synchronizing or asynchronous stream cipher is one in which the key-
stream is generated as a function of the key and a fixed number of previous ciphertext digits.

The encryption function of a self-synchronizing stream cipher can be described by the
equations

σi = (ci−t, ci−t+1, . . . , ci−1),

zi = g(σi, k),

ci = h(zi,mi),

where σ0 = (c−t, c−t+1, . . . , c−1) is the (non-secret) initial state, k is the key, g is the
function which produces the keystream zi, and h is the output function which combines
the keystream and plaintext mi to produce ciphertext ci. The encryption and decryption
processes are depicted in Figure 6.3. The most common presently-used self-synchronizing
stream ciphers are based on block ciphers in 1-bit cipher feedback mode (see §7.2.2(iii)).

hk
zi

ci

(i) Encryption

gk
zi

mi

(ii) Decryption

g h−1

cimi

Figure 6.3: General model of a self-synchronizing stream cipher.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§6.2 Feedback shift registers 195

6.6 Note (properties of self-synchronizing stream ciphers)

(i) self-synchronization. Self-synchronization is possible if ciphertext digits are deleted
or inserted, because the decryption mapping depends only on a fixed number of pre-
ceding ciphertext characters. Such ciphers are capable of re-establishing proper de-
cryption automatically after loss of synchronization, with only a fixed number of
plaintext characters unrecoverable.

(ii) limited error propagation. Suppose that the state of a self-synchronization stream ci-
pher depends on t previous ciphertext digits. If a single ciphertext digit is modified
(or even deleted or inserted) during transmission, then decryption of up to t subse-
quent ciphertext digits may be incorrect, after which correct decryption resumes.

(iii) active attacks. Property (ii) implies that any modification of ciphertext digits by an
active adversary causes several other ciphertext digits to be decrypted incorrectly,
thereby improving (compared to synchronous stream ciphers) the likelihood of being
detected by the decryptor. As a consequence of property (i), it is more difficult (than
for synchronous stream ciphers) to detect insertion, deletion, or replay of ciphertext
digits by an active adversary. This illustrates that additional mechanisms must be
employed in order to provide data origin authentication and data integrity guarantees
(see §9.5.4).

(iv) diffusion of plaintext statistics. Since each plaintext digit influences the entire fol-
lowing ciphertext, the statistical properties of the plaintext are dispersed through the
ciphertext. Hence, self-synchronizing stream ciphers may be more resistant than syn-
chronous stream ciphers against attacks based on plaintext redundancy.

6.2 Feedback shift registers

Feedback shift registers, in particular linear feedback shift registers, are the basic compo-
nents of many keystream generators. §6.2.1 introduces linear feedback shift registers. The
linear complexity of binary sequences is studied in §6.2.2, while the Berlekamp-Massey al-
gorithm for computing it is presented in §6.2.3. Finally, nonlinear feedback shift registers
are discussed in §6.2.4.

6.2.1 Linear feedback shift registers

Linear feedback shift registers (LFSRs) are used in many of the keystream generators that
have been proposed in the literature. There are several reasons for this:

1. LFSRs are well-suited to hardware implementation;
2. they can produce sequences of large period (Fact 6.12);
3. they can produce sequences with good statistical properties (Fact 6.14); and
4. because of their structure, they can be readily analyzed using algebraic techniques.

6.7 Definition A linear feedback shift register (LFSR) of length L consists of L stages (or
delay elements) numbered 0, 1, . . . , L− 1, each capable of storing one bit and having one
input and one output; and a clock which controls the movement of data. During each unit
of time the following operations are performed:

(i) the content of stage 0 is output and forms part of the output sequence;

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

196 Ch. 6 Stream Ciphers

(ii) the content of stage i is moved to stage i− 1 for each i, 1 ≤ i ≤ L− 1; and
(iii) the new content of stage L − 1 is the feedback bit sj which is calculated by adding

together modulo 2 the previous contents of a fixed subset of stages 0, 1, . . . , L− 1.

Figure 6.4 depicts an LFSR. Referring to the figure, each ci is either 0 or 1; the closed
semi-circles are AND gates; and the feedback bit sj is the modulo 2 sum of the contents of
those stages i, 0 ≤ i ≤ L− 1, for which cL−i = 1.

Stage Stage
L-2

sj

L-1

c2c1 cL−1 cL

output0
StageStage

1

Figure 6.4: A linear feedback shift register (LFSR) of length L.

6.8 Definition The LFSR of Figure 6.4 is denoted 〈L,C(D)〉, where C(D) = 1 + c1D +
c2D

2 + · · ·+ cLDL ∈ Z2[D] is the connection polynomial. The LFSR is said to be non-
singular if the degree of C(D) is L (that is, cL = 1). If the initial content of stage i is
si ∈ {0, 1} for each i, 0 ≤ i ≤ L− 1, then [sL−1, . . . , s1, s0] is called the initial state of
the LFSR.

6.9 Fact If the initial state of the LFSR in Figure 6.4 is [sL−1, . . . , s1, s0], then the output
sequence s = s0, s1, s2, . . . is uniquely determined by the following recursion:

sj = (c1sj−1 + c2sj−2 + · · ·+ cLsj−L) mod 2 for j ≥ L.

6.10 Example (output sequence of an LFSR) Consider the LFSR 〈4, 1 + D + D4〉 depicted
in Figure 6.5. If the initial state of the LFSR is [0, 0, 0, 0], the output sequence is the zero
sequence. The following tables show the contents of the stagesD3,D2,D1,D0 at the end
of each unit of time t when the initial state is [0, 1, 1, 0].

t D3 D2 D1 D0

0 0 1 1 0
1 0 0 1 1
2 1 0 0 1
3 0 1 0 0
4 0 0 1 0
5 0 0 0 1
6 1 0 0 0
7 1 1 0 0

t D3 D2 D1 D0

8 1 1 1 0
9 1 1 1 1
10 0 1 1 1
11 1 0 1 1
12 0 1 0 1
13 1 0 1 0
14 1 1 0 1
15 0 1 1 0

The output sequence is s = 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, . . . , and is periodic with
period 15 (see Definition 5.25). �

The significance of an LFSR being non-singular is explained by Fact 6.11.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§6.2 Feedback shift registers 197

Stage
3

Stage
1

Stage Stage
2 0 output

D3 D2 D1 D0

Figure 6.5: The LFSR 〈4, 1 +D +D4〉 of Example 6.10.

6.11 Fact Every output sequence (i.e., for all possible initial states) of an LFSR 〈L,C(D)〉 is
periodic if and only if the connection polynomialC(D) has degree L.

If an LFSR 〈L,C(D)〉 is singular (i.e., C(D) has degree less than L), then not all out-
put sequences are periodic. However, the output sequences are ultimately periodic; that
is, the sequences obtained by ignoring a certain finite number of terms at the beginning
are periodic. For the remainder of this chapter, it will be assumed that all LFSRs are non-
singular. Fact 6.12 determines the periods of the output sequences of some special types of
non-singular LFSRs.

6.12 Fact (periods of LFSR output sequences) LetC(D) ∈ Z2[D] be a connection polynomial
of degree L.

(i) If C(D) is irreducible over Z2 (see Definition 2.190), then each of the 2L − 1 non-
zero initial states of the non-singular LFSR 〈L,C(D)〉 produces an output sequence
with period equal to the least positive integer N such that C(D) divides 1 +DN in
Z2[D]. (Note: it is always the case that thisN is a divisor of 2L − 1.)

(ii) IfC(D) is a primitive polynomial (see Definition 2.228), then each of the 2L−1 non-
zero initial states of the non-singular LFSR 〈L,C(D)〉 produces an output sequence
with maximum possible period 2L − 1.

A method for generating primitive polynomials over Z2 uniformly at random is given
in Algorithm 4.78. Table 4.8 lists a primitive polynomial of degreem over Z2 for eachm,
1 ≤ m ≤ 229. Fact 6.12(ii) motivates the following definition.

6.13 Definition If C(D) ∈ Z2[D] is a primitive polynomial of degree L, then 〈L,C(D)〉 is
called a maximum-length LFSR. The output of a maximum-length LFSR with non-zero ini-
tial state is called anm-sequence.

Fact 6.14 demonstrates that the output sequences of maximum-length LFSRs have good
statistical properties.

6.14 Fact (statistical properties ofm-sequences) Let s be anm-sequence that is generated by
a maximum-length LFSR of length L.

(i) Let k be an integer, 1 ≤ k ≤ L, and let s be any subsequence of s of length 2L +
k − 2. Then each non-zero sequence of length k appears exactly 2L−k times as a
subsequence of s. Furthermore, the zero sequence of length k appears exactly 2L−k−
1 times as a subsequence of s. In other words, the distribution of patterns having fixed
length of at most L is almost uniform.

(ii) s satisfies Golomb’s randomness postulates (§5.4.3). That is, every m-sequence is
also a pn-sequence (see Definition 5.29).

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

198 Ch. 6 Stream Ciphers

6.15 Example (m-sequence) Since C(D) = 1 +D +D4 is a primitive polynomial over Z2,
the LFSR 〈4, 1+D+D4〉 is a maximum-length LFSR. Hence, the output sequence of this
LFSR is anm-sequence of maximum possible periodN = 24−1 = 15 (cf. Example 6.10).
Example 5.30 verifies that this output sequence satisfies Golomb’s randomness properties.

�

6.2.2 Linear complexity

This subsection summarizes selected results about the linear complexity of sequences. All
sequences are assumed to be binary sequences. Notation: s denotes an infinite sequence
whose terms are s0, s1, s2, . . . ; sn denotes a finite sequence of length n whose terms are
s0, s1, . . . , sn−1 (see Definition 5.24).

6.16 Definition An LFSR is said to generate a sequence s if there is some initial state for which
the output sequence of the LFSR is s. Similarly, an LFSR is said to generate a finite se-
quence sn if there is some initial state for which the output sequence of the LFSR has sn

as its first n terms.

6.17 Definition The linear complexity of an infinite binary sequence s, denotedL(s), is defined
as follows:

(i) if s is the zero sequence s = 0, 0, 0, . . . , then L(s) = 0;
(ii) if no LFSR generates s, then L(s) =∞;

(iii) otherwise, L(s) is the length of the shortest LFSR that generates s.

6.18 Definition The linear complexity of a finite binary sequence sn, denoted L(sn), is the
length of the shortest LFSR that generates a sequence having sn as its first n terms.

Facts 6.19 – 6.22 summarize some basic results about linear complexity.

6.19 Fact (properties of linear complexity) Let s and t be binary sequences.

(i) For any n ≥ 1, the linear complexity of the subsequence sn satisfies 0 ≤ L(sn) ≤ n.
(ii) L(sn) = 0 if and only if sn is the zero sequence of length n.

(iii) L(sn) = n if and only if sn = 0, 0, 0, . . . , 0, 1.
(iv) If s is periodic with periodN , then L(s) ≤ N .
(v) L(s⊕t) ≤ L(s) + L(t), where s⊕t denotes the bitwise XOR of s and t.

6.20 Fact If the polynomialC(D) ∈ Z2[D] is irreducible over Z2 and has degree L, then each
of the 2L−1 non-zero initial states of the non-singular LFSR 〈L,C(D)〉 produces an output
sequence with linear complexity L.

6.21 Fact (expectation and variance of the linear complexity of a random sequence) Let sn be
chosen uniformly at random from the set of all binary sequences of length n, and let L(sn)
be the linear complexity of sn. LetB(n) denote the parity function: B(n) = 0 if n is even;
B(n) = 1 if n is odd.

(i) The expected linear complexity of sn is

E(L(sn)) =
n

2
+
4 +B(n)

18
−
1

2n

(
n

3
+
2

9

)
.

Hence, for moderately large n, E(L(sn)) ≈ n
2 +

2
9 if n is even, and E(L(sn)) ≈

n
2 +

5
18 if n is odd.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§6.2 Feedback shift registers 199

(ii) The variance of the linear complexity of sn is Var(L(sn)) =

86

81
−
1

2n

(
14−B(n)

27
n+
82− 2B(n)

81

)
−
1

22n

(
1

9
n2 +

4

27
n+

4

81

)
.

Hence, Var(L(sn)) ≈ 86
81 for moderately large n.

6.22 Fact (expectation of the linear complexity of a random periodic sequence) Let sn be cho-
sen uniformly at random from the set of all binary sequences of length n, where n = 2t for
some fixed t ≥ 1, and let s be the n-periodic infinite sequence obtained by repeating the
sequence sn. Then the expected linear complexity of s is E(L(sn)) = n− 1 + 2−n.

The linear complexity profile of a binary sequence is introduced next.

6.23 Definition Let s = s0, s1, . . . be a binary sequence, and let LN denote the linear com-
plexity of the subsequence sN = s0, s1, . . . , sN−1, N ≥ 0. The sequence L1, L2, . . .
is called the linear complexity profile of s. Similarly, if sn = s0, s1, . . . , sn−1 is a finite
binary sequence, the sequenceL1, L2, . . . , Ln is called the linear complexity profile of sn.

The linear complexity profile of a sequence can be computed using the Berlekamp-
Massey algorithm (Algorithm 6.30); see also Note 6.31. The following properties of the
linear complexity profile can be deduced from Fact 6.29.

6.24 Fact (properties of linear complexity profile) LetL1, L2, . . . be the linear complexity pro-
file of a sequence s = s0, s1,

(i) If j > i, then Lj ≥ Li.

(ii) LN+1 > LN is possible only if LN ≤ N/2.

(iii) If LN+1 > LN , then LN+1 + LN = N + 1.

The linear complexity profile of a sequence s can be graphed by plotting the points
(N,LN), N ≥ 1, in the N × L plane and joining successive points by a horizontal line
followed by a vertical line, if necessary (see Figure 6.6). Fact 6.24 can then be interpreted as
saying that the graph of a linear complexity profile is non-decreasing. Moreover, a (vertical)
jump in the graph can only occur from below the line L = N/2; if a jump occurs, then it is
symmetric about this line. Fact 6.25 shows that the expected linear complexity of a random
sequence should closely follow the line L = N/2.

6.25 Fact (expected linear complexity profile of a random sequence) Let s = s0, s1, . . . be a
random sequence, and letLN be the linear complexity of the subsequencesN = s0, s1, . . . ,
sN−1 for each N ≥ 1. For any fixed index N ≥ 1, the expected smallest j for which
LN+j > LN is 2 if LN ≤ N/2, or 2 + 2LN −N if LN > N/2. Moreover, the expected
increase in linear complexity is 2 if LN ≥ N/2, or N − 2LN + 2 if LN < N/2.

6.26 Example (linear complexity profile) Consider the 20-periodic sequence s with cycle

s20 = 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0.

The linear complexity profile of s is 1, 1, 1, 3, 3, 3, 3, 5, 5, 5, 6, 6, 6, 8, 8, 8, 9, 9, 10, 10, 11,
11, 11, 11, 14, 14, 14, 14, 15, 15, 15, 17, 17, 17, 18, 18, 19, 19, 19, 19, Figure 6.6 shows
the graph of the linear complexity profile of s. �

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

200 Ch. 6 Stream Ciphers

10 30

20

15

10

5

20 40

L = L(sN)

N

L = N/2 line

Figure 6.6: Linear complexity profile of the 20-periodic sequence of Example 6.26.

As is the case with all statistical tests for randomness (cf. §5.4), the condition that a se-
quence s have a linear complexity profile that closely resembles that of a random sequence
is necessary but not sufficient for s to be considered random. This point is illustrated in the
following example.

6.27 Example (limitations of the linear complexity profile) The linear complexity profile of the
sequence s defined as

si =

{
1, if i = 2j − 1 for some j ≥ 0,
0, otherwise,

follows the line L = N/2 as closely as possible. That is, L(sN) = b(N + 1)/2c for all
N ≥ 1. However, the sequence s is clearly non-random. �

6.2.3 Berlekamp-Massey algorithm

The Berlekamp-Massey algorithm (Algorithm 6.30) is an efficient algorithm for determin-
ing the linear complexity of a finite binary sequence sn of length n (see Definition 6.18).
The algorithm takes n iterations, with the N th iteration computing the linear complexity
of the subsequence sN consisting of the first N terms of sn. The theoretical basis for the
algorithm is Fact 6.29.

6.28 Definition Consider the finite binary sequence sN+1 = s0, s1, . . . , sN−1, sN . ForC(D)
= 1+ c1D+ · · ·+ cLDL, let 〈L,C(D)〉 be an LFSR that generates the subsequence sN =
s0, s1, . . . , sN−1. The next discrepancy dN is the difference between sN and the (N+1)st

term generated by the LFSR: dN = (sN +
∑L
i=1 cisN−i) mod 2.

6.29 Fact Let sN = s0, s1, . . . , sN−1 be a finite binary sequence of linear complexity L =
L(sN), and let 〈L,C(D)〉 be an LFSR which generates sN .

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§6.2 Feedback shift registers 201

(i) The LFSR 〈L,C(D)〉 also generates sN+1 = s0, s1, . . . , sN−1, sN if and only if the
next discrepancy dN is equal to 0.

(ii) If dN = 0, then L(sN+1) = L.
(iii) Suppose dN = 1. Letm the largest integer < N such that L(sm) < L(sN), and let
〈L(sm), B(D)〉 be an LFSR of lengthL(sm)which generates sm. Then 〈L′, C′(D)〉
is an LFSR of smallest length which generates sN+1, where

L′ =

{
L, if L > N/2,
N + 1− L, if L ≤ N/2,

and C′(D) = C(D) +B(D) ·DN−m.

6.30 Algorithm Berlekamp-Massey algorithm

INPUT: a binary sequence sn = s0, s1, s2, . . . , sn−1 of length n.
OUTPUT: the linear complexity L(sn) of sn, 0 ≤ L(sn) ≤ n.

1. Initialization. C(D)←1, L←0, m←− 1, B(D)←1, N←0.
2. While (N < n) do the following:

2.1 Compute the next discrepancy d. d←(sN +
∑L
i=1 cisN−i) mod 2.

2.2 If d = 1 then do the following:
T (D)←C(D), C(D)←C(D) +B(D) ·DN−m.
If L ≤ N/2 then L←N + 1− L, m←N , B(D)←T (D).

2.3 N←N + 1.

3. Return(L).

6.31 Note (intermediate results in Berlekamp-Massey algorithm) At the end of each iteration
of step 2, 〈L,C(D)〉 is an LFSR of smallest length which generates sN . Hence, Algo-
rithm 6.30 can also be used to compute the linear complexity profile (Definition 6.23) of
a finite sequence.

6.32 Fact The running time of the Berlekamp-Massey algorithm (Algorithm 6.30) for deter-
mining the linear complexity of a binary sequence of bitlength n is O(n2) bit operations.

6.33 Example (Berlekamp-Massey algorithm) Table 6.1 shows the steps of Algorithm 6.30 for
computing the linear complexity of the binary sequence sn = 0, 0, 1, 1, 0, 1, 1, 1, 0of length
n = 9. This sequence is found to have linear complexity 5, and an LFSR which generates
it is 〈5, 1 +D3 +D5〉. �

6.34 Fact Let sn be a finite binary sequence of length n, and let the linear complexity of sn be
L. Then there is a unique LFSR of length L which generates sn if and only if L ≤ n

2 .

An important consequence of Fact 6.34 and Fact 6.24(iii) is the following.

6.35 Fact Let s be an (infinite) binary sequence of linear complexity L, and let t be a (finite)
subsequence of s of length at least 2L. Then the Berlekamp-Massey algorithm (with step 3
modified to return both L and C(D)) on input t determines an LFSR of length L which
generates s.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

202 Ch. 6 Stream Ciphers

sN d T (D) C(D) L m B(D) N

− − − 1 0 −1 1 0
0 0 − 1 0 −1 1 1
0 0 − 1 0 −1 1 2
1 1 1 1 +D3 3 2 1 3
1 1 1 +D3 1 +D +D3 3 2 1 4
0 1 1 +D +D3 1 +D +D2 +D3 3 2 1 5
1 1 1 +D +D2 +D3 1 +D +D2 3 2 1 6
1 0 1 +D +D2 +D3 1 +D +D2 3 2 1 7
1 1 1 +D +D2 1 +D +D2 +D5 5 7 1 +D +D2 8
0 1 1 +D +D2 +D5 1 +D3 +D5 5 7 1 +D +D2 9

Table 6.1: Steps of the Berlekamp-Massey algorithm of Example 6.33.

6.2.4 Nonlinear feedback shift registers

This subsection summarizes selected results about nonlinear feedback shift registers. A
function with n binary inputs and one binary output is called a Boolean function of n vari-
ables; there are 22

n
different Boolean functions of n variables.

6.36 Definition A (general) feedback shift register (FSR) of length L consists of L stages (or
delay elements) numbered 0, 1, . . . , L− 1, each capable of storing one bit and having one
input and one output, and a clock which controls the movement of data. During each unit
of time the following operations are performed:

(i) the content of stage 0 is output and forms part of the output sequence;
(ii) the content of stage i is moved to stage i− 1 for each i, 1 ≤ i ≤ L− 1; and

(iii) the new content of stage L − 1 is the feedback bit sj = f(sj−1, sj−2, . . . , sj−L),
where the feedback function f is a Boolean function and sj−i is the previous content
of stage L− i, 1 ≤ i ≤ L.

If the initial content of stage i is si ∈ {0, 1} for each 0 ≤ i ≤ L−1, then [sL−1, . . . , s1, s0]
is called the initial state of the FSR.

Figure 6.7 depicts an FSR. Note that if the feedback function f is a linear function, then
the FSR is an LFSR (Definition 6.7). Otherwise, the FSR is called a nonlinear FSR.

Stage

sj

Stage
L-1 L-2 1 0

Stage Stage

sj−L+1sj−1 sj−2 sj−L

f(sj−1, sj−2, . . . , sj−L)

output

Figure 6.7: A feedback shift register (FSR) of length L.

6.37 Fact If the initial state of the FSR in Figure 6.7 is [sL−1, . . . , s1, s0], then the output se-
quence s = s0, s1, s2, . . . is uniquely determined by the following recursion:

sj = f(sj−1, sj−2, . . . , sj−L) for j ≥ L.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§6.3 Stream ciphers based on LFSRs 203

6.38 Definition An FSR is said to be non-singular if and only if every output sequence of the
FSR (i.e., for all possible initial states) is periodic.

6.39 Fact An FSR with feedback function f(sj−1, sj−2, . . . , sj−L) is non-singular if and only
if f is of the form f = sj−L ⊕ g(sj−1, sj−2, . . . , sj−L+1) for some Boolean function g.

The period of the output sequence of a non-singular FSR of length L is at most 2L.

6.40 Definition If the period of the output sequence (for any initial state) of a non-singular FSR
of length L is 2L, then the FSR is called a de Bruijn FSR, and the output sequence is called
a de Bruijn sequence.

6.41 Example (de Bruijn sequence) Consider the FSR of length 3 with nonlinear feedback
function f(x1, x2, x3) = 1⊕x2⊕x3⊕x1x2. The following tables show the contents of the
3 stages of the FSR at the end of each unit of time t when the initial state is [0, 0, 0].

t Stage 2 Stage 1 Stage 0

0 0 0 0
1 1 0 0
2 1 1 0
3 1 1 1

t Stage 2 Stage 1 Stage 0

4 0 1 1
5 1 0 1
6 0 1 0
7 0 0 1

The output sequence is the de Bruijn sequence with cycle 0, 0, 0, 1, 1, 1, 0, 1. �

Fact 6.42 demonstrates that the output sequence of de Bruijn FSRs have good statistical
properties (compare with Fact 6.14(i)).

6.42 Fact (statistical properties of de Bruijn sequences) Let s be a de Bruijn sequence that is
generated by a de Bruijn FSR of lengthL. Let k be an integer, 1 ≤ k ≤ L, and let s be any
subsequence of s of length 2L + k − 1. Then each sequence of length k appears exactly
2L−k times as a subsequence of s. In other words, the distribution of patterns having fixed
length of at most L is uniform.

6.43 Note (converting a maximum-length LFSR to a de Bruijn FSR) Let R1 be a maximum-
length LFSR of length L with (linear) feedback function f(sj−1, sj−2, . . . , sj−L). Then
the FSR R2 with feedback function g(sj−1, sj−2, . . . , sj−L) = f ⊕ sj−1sj−2 · · · sj−L+1
is a de Bruijn FSR. Here, si denotes the complement of si. The output sequence of R2 is
obtained from that ofR1 by simply adding a 0 to the end of each subsequence of L− 1 0’s
occurring in the output sequence of R1.

6.3 Stream ciphers based on LFSRs

As mentioned in the beginning of §6.2.1, linear feedback shift registers are widely used
in keystream generators because they are well-suited for hardware implementation, pro-
duce sequences having large periods and good statistical properties, and are readily ana-
lyzed using algebraic techniques. Unfortunately, the output sequences of LFSRs are also
easily predictable, as the following argument shows. Suppose that the output sequence s of
an LFSR has linear complexityL. The connection polynomialC(D) of an LFSR of length
L which generates s can be efficiently determined using the Berlekamp-Massey algorithm

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

204 Ch. 6 Stream Ciphers

(Algorithm 6.30) from any (short) subsequence t of s having length at least n = 2L (cf.
Fact 6.35). Having determined C(D), the LFSR 〈L,C(D)〉 can then be initialized with
any substring of t having length L, and used to generate the remainder of the sequence s.
An adversary may obtain the required subsequence t of s by mounting a known or chosen-
plaintext attack (§1.13.1) on the stream cipher: if the adversary knows the plaintext subse-
quencem1,m2, . . . ,mn corresponding to a ciphertext sequence c1, c2, . . . , cn, the corre-
sponding keystream bits are obtained asmi⊕ci, 1 ≤ i ≤ n.

6.44 Note (use of LFSRs in keystream generators) Since a well-designed system should be se-
cure against known-plaintext attacks, an LFSR should never be used by itself as a keystream
generator. Nevertheless, LFSRs are desirable because of their very low implementation
costs. Three general methodologies for destroying the linearity properties of LFSRs are
discussed in this section:

(i) using a nonlinear combining function on the outputs of several LFSRs (§6.3.1);
(ii) using a nonlinear filtering function on the contents of a single LFSR (§6.3.2); and

(iii) using the output of one (or more) LFSRs to control the clock of one (or more) other
LFSRs (§6.3.3).

Desirable properties of LFSR-based keystream generators

For essentially all possible secret keys, the output sequence of an LFSR-based keystream
generator should have the following properties:

1. large period;
2. large linear complexity; and
3. good statistical properties (e.g., as described in Fact 6.14).

It is emphasized that these properties are only necessary conditions for a keystream gen-
erator to be considered cryptographically secure. Since mathematical proofs of security of
such generators are not known, such generators can only be deemed computationally secure
(§1.13.3(iv)) after having withstood sufficient public scrutiny.

6.45 Note (connection polynomial) Since a desirable property of a keystream generator is that
its output sequences have large periods, component LFSRs should always be chosen to be
maximum-length LFSRs, i.e., the LFSRs should be of the form 〈L,C(D)〉 where C(D) ∈
Z2[D] is a primitive polynomial of degree L (see Definition 6.13 and Fact 6.12(ii)).

6.46 Note (known vs. secret connection polynomial) The LFSRs in an LFSR-based keystream
generator may have known or secret connection polynomials. For known connections, the
secret key generally consists of the initial contents of the component LFSRs. For secret
connections, the secret key for the keystream generator generally consists of both the initial
contents and the connections.

For LFSRs of length L with secret connections, the connection polynomials should be
selected uniformly at random from the set of all primitive polynomials of degreeL overZ2.
Secret connections are generally recommended over known connections as the former are
more resistant to certain attacks which use precomputation for analyzing the particular con-
nection, and because the former are more amenable to statistical analysis. Secret connection
LFSRs have the drawback of requiring extra circuitry to implement in hardware. However,
because of the extra security possible with secret connections, this cost may sometimes be
compensated for by choosing shorter LFSRs.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§6.3 Stream ciphers based on LFSRs 205

6.47 Note (sparse vs. dense connection polynomial) For implementation purposes, it is advan-
tageous to choose an LFSR that is sparse; i.e., only a few of the coefficients of the con-
nection polynomial are non-zero. Then only a small number of connections must be made
between the stages of the LFSR in order to compute the feedback bit. For example, the con-
nection polynomial might be chosen to be a primitive trinomial (cf. Table 4.8). However, in
some LFSR-based keystream generators, special attacks can be mounted if sparse connec-
tion polynomials are used. Hence, it is generally recommended not to use sparse connection
polynomials in LFSR-based keystream generators.

6.3.1 Nonlinear combination generators

One general technique for destroying the linearity inherent in LFSRs is to use several LF-
SRs in parallel. The keystream is generated as a nonlinear function f of the outputs of the
component LFSRs; this construction is illustrated in Figure 6.8. Such keystream generators
are called nonlinear combination generators, and f is called the combining function. The
remainder of this subsection demonstrates that the function f must satisfy several criteria
in order to withstand certain particular cryptographic attacks.

LFSR 1

LFSR 2

LFSR n

f keystream

Figure 6.8: A nonlinear combination generator. f is a nonlinear combining function.

6.48 Definition A product of m distinct variables is called an mth order product of the vari-
ables. Every Boolean function f(x1, x2, . . . , xn) can be written as a modulo 2 sum of dis-
tinctmth order products of its variables, 0 ≤ m ≤ n; this expression is called the algebraic
normal form of f . The nonlinear order of f is the maximum of the order of the terms ap-
pearing in its algebraic normal form.

For example, the Boolean function f(x1, x2, x3, x4, x5) = 1 ⊕ x2 ⊕ x3 ⊕ x4x5 ⊕
x1x3x4x5 has nonlinear order 4. Note that the maximum possible nonlinear order of a
Boolean function in n variables is n. Fact 6.49 demonstrates that the output sequence of
a nonlinear combination generator has high linear complexity, provided that a combining
function f of high nonlinear order is employed.

6.49 Fact Suppose thatnmaximum-length LFSRs, whose lengthsL1, L2, . . . , Ln are pairwise
distinct and greater than 2, are combined by a nonlinear function f(x1, x2, . . . , xn) (as in
Figure 6.8) which is expressed in algebraic normal form. Then the linear complexity of the
keystream is f(L1, L2, . . . , Ln). (The expression f(L1, L2, . . . , Ln) is evaluated over the
integers rather than over Z2.)

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

206 Ch. 6 Stream Ciphers

6.50 Example (Geffe generator) The Geffe generator, as depicted in Figure 6.9, is defined by
three maximum-length LFSRs whose lengthsL1,L2,L3 are pairwise relatively prime, with
nonlinear combining function

f(x1, x2, x3) = x1x2 ⊕ (1 + x2)x3 = x1x2 ⊕ x2x3 ⊕ x3.

The keystream generated has period (2L1−1) · (2L2−1) · (2L3−1) and linear complexity
L = L1L2 + L2L3 + L3.

keystream

x1

x2

x3
LFSR 3

LFSR 2

LFSR 1

Figure 6.9: The Geffe generator.

The Geffe generator is cryptographically weak because information about the states of
LFSR 1 and LFSR 3 leaks into the output sequence. To see this, let x1(t), x2(t), x3(t), z(t)
denote the tth output bits of LFSRs 1, 2, 3 and the keystream, respectively. Then the cor-
relation probability of the sequence x1(t) to the output sequence z(t) is

P (z(t) = x1(t)) = P (x2(t) = 1) + P (x2(t) = 0) · P (x3(t) = x1(t))

=
1

2
+
1

2
·
1

2
=
3

4
.

Similarly, P (z(t) = x3(t)) = 3
4 . For this reason, despite having high period and mod-

erately high linear complexity, the Geffe generator succumbs to correlation attacks, as de-
scribed in Note 6.51. �

6.51 Note (correlation attacks) Suppose that n maximum-length LFSRs R1, R2, . . . , Rn of
lengths L1, L2, . . . , Ln are employed in a nonlinear combination generator. If the connec-
tion polynomials of the LFSRs and the combining function f are public knowledge, then
the number of different keys of the generator is

∏n
i=1(2

Li − 1). (A key consists of the ini-
tial states of the LFSRs.) Suppose that there is a correlation between the keystream and
the output sequence of R1, with correlation probability p > 1

2 . If a sufficiently long seg-
ment of the keystream is known (e.g., as is possible under a known-plaintext attack on a
binary additive stream cipher), the initial state ofR1 can be deduced by counting the num-
ber of coincidences between the keystream and all possible shifts of the output sequence
of R1, until this number agrees with the correlation probability p. Under these conditions,
finding the initial state of R1 will take at most 2L1 − 1 trials. In the case where there is
a correlation between the keystream and the output sequences of each of R1, R2, . . . , Rn,
the (secret) initial state of each LFSR can be determined independently in a total of about∑n
i=1(2

Li − 1) trials; this number is far smaller than the total number of different keys.
In a similar manner, correlations between the output sequences of particular subsets of the
LFSRs and the keystream can be exploited.

In view of Note 6.51, the combining function f should be carefully selected so that
there is no statistical dependence between any small subset of the n LFSR sequences and

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§6.3 Stream ciphers based on LFSRs 207

the keystream. This condition can be satisfied if f is chosen to be mth-order correlation
immune.

6.52 Definition LetX1, X2, . . . , Xn be independent binary variables, each taking on the val-
ues 0 or 1 with probability 12 . A Boolean function f(x1, x2, . . . , xn) is mth-order corre-
lation immune if for each subset ofm random variablesXi1 , Xi2 , . . . , Xim with 1 ≤ i1 <
i2 < · · · < im ≤ n, the random variableZ = f(X1, X2, . . . , Xn) is statistically indepen-
dent of the random vector (Xi1 , Xi2 , . . . , Xim); equivalently, I(Z;Xi1 , Xi2 , . . . , Xim) =
0 (see Definition 2.45).

For example, the function f(x1, x2, . . . , xn) = x1 ⊕ x2 ⊕ · · · ⊕ xn is (n − 1)th-
order correlation immune. In light of Fact 6.49, the following shows that there is a tradeoff
between achieving high linear complexity and high correlation immunity with a combining
function.

6.53 Fact If a Boolean functionf(x1, x2, . . . , xn) ismth-order correlation immune, where 1 ≤
m < n, then the nonlinear order of f is at most n − m. Moreover, if f is balanced (i.e.,
exactly half of the output values of f are 0) then the nonlinear order of f is at mostn−m−1
for 1 ≤ m ≤ n− 2.

The tradeoff between high linear complexity and high correlation immunity can be
avoided by permitting memory in the nonlinear combination function f . This point is il-
lustrated by the summation generator.

6.54 Example (summation generator) The combining function in the summation generator is
based on the fact that integer addition, when viewed over Z2, is a nonlinear function with
memory whose correlation immunity is maximum. To see this in the case n = 2, let a =
am−12

m−1+· · ·+a12+a0 and b = bm−12m−1+· · ·+b12+b0 be the binary representations
of integers a and b. Then the bits of z = a+ b are given by the recursive formula:

zj = f1(aj , bj, cj−1) = aj ⊕ bj ⊕ cj−1 0 ≤ j ≤ m,

cj = f2(aj , bj, cj−1) = ajbj ⊕ (aj ⊕ bj)cj−1, 0 ≤ j ≤ m− 1,

where cj is the carry bit, and c−1 = am = bm = 0. Note that f1 is 2nd-order corre-
lation immune, while f2 is a memoryless nonlinear function. The carry bit cj−1 carries
all the nonlinear influence of less significant bits of a and b (namely, aj−1, . . . , a1, a0 and
bj−1, . . . , b1, b0).

The summation generator, as depicted in Figure 6.10, is defined by nmaximum-length
LFSRs whose lengths L1, L2, . . . , Ln are pairwise relatively prime. The secret key con-

keystream

x1

x2

xn

LFSR 1

LFSR 2

LFSR n

Carry

Figure 6.10: The summation generator.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

208 Ch. 6 Stream Ciphers

sists of the initial states of the LFSRs, and an initial (integer) carry C0. The keystream
is generated as follows. At time j (j ≥ 1), the LFSRs are stepped producing output bits
x1, x2, . . . , xn, and the integer sum Sj =

∑n
i=1 xi + Cj−1 is computed. The keystream

bit is Sj mod 2 (the least significant bit of Sj), while the new carry is computed as Cj =
bSj/2c (the remaining bits of Sj). The period of the keystream is

∏n
i=1(2

Li−1), while its
linear complexity is close to this number.

Even though the summation generator has high period, linear complexity, and corre-
lation immunity, it is vulnerable to certain correlation attacks and a known-plaintext attack
based on its 2-adic span (see page 218). �

6.3.2 Nonlinear filter generators

Another general technique for destroying the linearity inherent in LFSRs is to generate the
keystream as some nonlinear function of the stages of a single LFSR; this construction is
illustrated in Figure 6.11. Such keystream generators are called nonlinear filter generators,
and f is called the filtering function.

Stage Stage
L-2

sj

L-1 1

c2c1 cL−1 cL

f

keystream

Stage
0

Stage

Figure 6.11: A nonlinear filter generator. f is a nonlinear Boolean filtering function.

Fact 6.55 describes the linear complexity of the output sequence of a nonlinear filter
generator.

6.55 Fact Suppose that a nonlinear filter generator is constructed using a maximum-length
LFSR of length L and a filtering function f of nonlinear orderm (as in Figure 6.11).

(i) (Key’s bound) The linear complexity of the keystream is at most Lm =
∑m
i=1

(
L
i

)
.

(ii) For a fixed maximum-length LFSR of prime length L, the fraction of Boolean func-
tions f of nonlinear ordermwhich produce sequences of maximum linear complex-
ity Lm is

Pm ≈ exp(−Lm/(L · 2
L)) > e−1/L.

Therefore, for large L, most of the generators produce sequences whose linear com-
plexity meets the upper bound in (i).

The nonlinear function f selected for a filter generator should include many terms of
each order up to the nonlinear order of f .

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§6.3 Stream ciphers based on LFSRs 209

6.56 Example (knapsack generator) The knapsack keystream generator is defined by a maxim-
um-length LFSR 〈L,C(D)〉 and a modulusQ = 2L. The secret key consists ofL knapsack
integer weights a1, a2, . . . , aL each of bitlength L, and the initial state of the LFSR. Re-
call that the subset sum problem (§3.10) is to determine a subset of the knapsack weights
which add up to a given integer s, provided that such a subset exists; this problem is NP-
hard (Fact 3.91). The keystream is generated as follows: at time j, the LFSR is stepped
and the knapsack sum Sj =

∑L
i=1 xiai mod Q is computed, where [xL, . . . , x2, x1] is the

state of the LFSR at time j. Finally, selected bits of Sj (after Sj is converted to its binary
representation) are extracted to form part of the keystream (the dlgLe least significant bits
of Sj should be discarded). The linear complexity of the keystream is then virtually certain
to be L(2L − 1).

Since the state of an LFSR is a binary vector, the function which maps the LFSR state
to the knapsack sum Sj is indeed nonlinear. Explicitly, let the function f be defined by
f(x) =

∑L
i=1 xiai mod Q, where x = [xL, . . . , x2, x1] is a state. If x and y are two

states then, in general, f(x⊕ y) 6= f(x) + f(y). �

6.3.3 Clock-controlled generators

In nonlinear combination generators and nonlinear filter generators, the component LFSRs
are clocked regularly; i.e., the movement of data in all the LFSRs is controlled by the same
clock. The main idea behind a clock-controlled generator is to introduce nonlinearity into
LFSR-based keystream generators by having the output of one LFSR control the clocking
(i.e., stepping) of a second LFSR. Since the second LFSR is clocked in an irregular manner,
the hope is that attacks based on the regular motion of LFSRs can be foiled. Two clock-
controlled generators are described in this subsection: (i) the alternating step generator and
(ii) the shrinking generator.

(i) The alternating step generator

The alternating step generator uses an LFSR R1 to control the stepping of two LFSRs, R2
and R3. The keystream produced is the XOR of the output sequences of R2 and R3.

6.57 Algorithm Alternating step generator

SUMMARY: a control LFSR R1 is used to selectively step two other LFSRs, R2 and R3.
OUTPUT: a sequence which is the bitwise XOR of the output sequences of R2 and R3.
The following steps are repeated until a keystream of desired length is produced.

1. Register R1 is clocked.
2. If the output of R1 is 1 then:

R2 is clocked;R3 is not clocked but its previous output bit is repeated.
(For the first clock cycle, the “previous output bit” of R3 is taken to be 0.)

3. If the output of R1 is 0 then:
R3 is clocked;R2 is not clocked but its previous output bit is repeated.
(For the first clock cycle, the “previous output bit” of R2 is taken to be 0.)

4. The output bits of R2 and R3 are XORed; the resulting bit is part of the keystream.

More formally, let the output sequences of LFSRs R1, R2, and R3 be a0, a1, a2, . . . ,
b0, b1, b2, . . . , and c0, c1, c2 . . . , respectively. Define b−1 = c−1 = 0. Then the keystream
produced by the alternating step generator is x0, x1, x2, . . . , where xj = bt(j) ⊕ cj−t(j)−1

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

210 Ch. 6 Stream Ciphers

and t(j) = (
∑j
i=0 ai) − 1 for all j ≥ 0. The alternating step generator is depicted in

Figure 6.12.

LFSR R2

LFSR R3

LFSR R1 outputclock

Figure 6.12: The alternating step generator.

6.58 Example (alternating step generator with artificially small parameters) Consider an al-
ternating step generator with component LFSRs R1 = 〈3, 1 + D2 + D3〉, R2 = 〈4, 1 +
D3 +D4〉, and R3 = 〈5, 1 +D +D3 +D4 +D5〉. Suppose that the initial states of R1,
R2, and R3 are [0, 0, 1], [1, 0, 1, 1], and [0, 1, 0, 0, 1], respectively. The output sequence of
R1 is the 7-periodic sequence with cycle

a7 = 1, 0, 0, 1, 0, 1, 1.

The output sequence of R2 is the 15-periodic sequence with cycle

b15 = 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0.

The output sequence of R3 is the 31-periodic sequence with cycle

c31 = 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0.

The keystream generated is

x = 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, �

Fact 6.59 establishes, under the assumption thatR1 produces a de Bruijn sequence (see
Definition 6.40), that the output sequence of an alternating step generator satisfies the basic
requirements of high period, high linear complexity, and good statistical properties.

6.59 Fact (properties of the alternating step generator) Suppose that R1 produces a de Bruijn
sequence of period 2L1 . Furthermore, suppose thatR2 andR3 are maximum-length LFSRs
of lengthsL2 andL3, respectively, such that gcd(L2, L3) = 1. Letx be the output sequence
of the alternating step generator formed by R1, R2, and R3.

(i) The sequence x has period 2L1 · (2L2 − 1) · (2L3 − 1).
(ii) The linear complexity L(x) of x satisfies

(L2 + L3) · 2
L1−1 < L(x) ≤ (L2 + L3) · 2

L1 .

(iii) The distribution of patterns in x is almost uniform. More precisely, let P be any bi-
nary string of length t bits, where t ≤ min(L2, L3). If x(t) denotes any t consecutive
bits in x, then the probability that x(t) = P is

(
1
2

)t
+O(1/2L2−t) +O(1/2L3−t).

Since a de Bruijn sequence can be obtained from the output sequence s of a maximum-
length LFSR (of lengthL) by simply adding a 0 to the end of each subsequence of L−1 0’s
occurring in s (see Note 6.43), it is reasonable to expect that the assertions of high period,

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§6.3 Stream ciphers based on LFSRs 211

high linear complexity, and good statistical properties in Fact 6.59 also hold when R1 is a
maximum-length LFSR. Note, however, that this has not yet been proven.

6.60 Note (security of the alternating step generator) The LFSRs R1, R2, R3 should be cho-
sen to be maximum-length LFSRs whose lengthsL1, L2, L3 are pairwise relatively prime:
gcd(L1, L2) = 1, gcd(L2, L3) = 1, gcd(L1, L3) = 1. Moreover, the lengths should be
about the same. If L1 ≈ l, L2 ≈ l, and L3 ≈ l, the best known attack on the alternating
step generator is a divide-and-conquer attack on the control register R1 which takes ap-
proximately 2l steps. Thus, if l ≈ 128, the generator is secure against all presently known
attacks.

(ii) The shrinking generator

The shrinking generator is a relatively new keystream generator, having been proposed in
1993. Nevertheless, due to its simplicity and provable properties, it is a promising candi-
date for high-speed encryption applications. In the shrinking generator, a control LFSRR1
is used to select a portion of the output sequence of a second LFSR R2. The keystream
produced is, therefore, a shrunken version (also known as an irregularly decimated subse-
quence) of the output sequence of R2, as specified in Algorithm 6.61 and depicted in Fig-
ure 6.13.

6.61 Algorithm Shrinking generator

SUMMARY: a control LFSR R1 is used to control the output of a second LFSR R2.
The following steps are repeated until a keystream of desired length is produced.

1. Registers R1 and R2 are clocked.
2. If the output of R1 is 1, the output bit of R2 forms part of the keystream.
3. If the output of R1 is 0, the output bit of R2 is discarded.

More formally, let the output sequences of LFSRs R1 and R2 be a0, a1, a2, . . . and
b0, b1, b2, . . . , respectively. Then the keystream produced by the shrinking generator is
x0, x1, x2, . . . , where xj = bij , and, for each j ≥ 0, ij is the position of the jth 1 in the
sequence a0, a1, a2,

ai = 0

output bi

discard bi

ai = 1

aiLFSR R1

LFSR R2

clock

bi

Figure 6.13: The shrinking generator.

6.62 Example (shrinking generator with artificially small parameters) Consider a shrinking
generator with component LFSRs R1 = 〈3, 1 + D + D3〉 and R2 = 〈5, 1 + D3 + D5〉.
Suppose that the initial states ofR1 andR2 are [1, 0, 0] and [0, 0, 1, 0, 1], respectively. The
output sequence of R1 is the 7-periodic sequence with cycle

a7 = 0, 0, 1, 1, 1, 0, 1,

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

212 Ch. 6 Stream Ciphers

while the output sequence of R2 is the 31-periodic sequence with cycle

b31 = 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0.

The keystream generated is

x = 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, �

Fact 6.63 establishes that the output sequence of a shrinking generator satisfies the basic
requirements of high period, high linear complexity, and good statistical properties.

6.63 Fact (properties of the shrinking generator) LetR1 andR2 be maximum-length LFSRs of
lengthsL1 and L2, respectively, and let x be an output sequence of the shrinking generator
formed by R1 and R2.

(i) If gcd(L1, L2) = 1, then x has period (2L2 − 1) · 2L1−1.
(ii) The linear complexity L(x) of x satisfies

L2 · 2
L1−2 < L(x) ≤ L2 · 2

L1−1.

(iii) Suppose that the connection polynomials forR1 andR2 are chosen uniformly at ran-
dom from the set of all primitive polynomials of degrees L1 and L2 over Z2. Then
the distribution of patterns in x is almost uniform. More precisely, if P is any binary
string of length t bits andx(t) denotes any t consecutive bits in x, then the probability
that x(t) = P is (12)

t +O(t/2L2).

6.64 Note (security of the shrinking generator) Suppose that the component LFSRsR1 andR2
of the shrinking generator have lengths L1 and L2, respectively. If the connection polyno-
mials for R1 and R2 are known (but not the initial contents of R1 and R2), the best attack
known for recovering the secret key takes O(2L1 · L32) steps. On the other hand, if secret
(and variable) connection polynomials are used, the best attack known takesO(22L1 ·L1 ·
L2) steps. There is also an attack through the linear complexity of the shrinking generator
which takesO(2L1 ·L22) steps (regardless of whether the connections are known or secret),
but this attack requires 2L1 ·L2 consecutive bits from the output sequence and is, therefore,
infeasible for moderately large L1 and L2. For maximum security, R1 and R2 should be
maximum-length LFSRs, and their lengths should satisfy gcd(L1, L2) = 1. Moreover, se-
cret connections should be used. Subject to these constraints, if L1 ≈ l and L2 ≈ l, the
shrinking generator has a security level approximately equal to 22l. Thus, if L1 ≈ 64 and
L2 ≈ 64, the generator appears to be secure against all presently known attacks.

6.4 Other stream ciphers

While the LFSR-based stream ciphers discussed in §6.3 are well-suited to hardware im-
plementation, they are not especially amenable to software implementation. This has led
to several recent proposals for stream ciphers designed particularly for fast software imple-
mentation. Most of these proposals are either proprietary, or are relatively new and have not
received sufficient scrutiny from the cryptographic community; for this reason, they are not
presented in this section, and instead only mentioned in the chapter notes on page 222.

Two promising stream ciphers specifically designed for fast software implementation
are SEAL and RC4. SEAL is presented in §6.4.1. RC4 is used in commercial products,
and has a variable key-size, but it remains proprietary and is not presented here. Two

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§6.4 Other stream ciphers 213

other widely used stream ciphers not based on LFSRs are the Output Feedback (OFB; see
§7.2.2(iv)) and Cipher Feedback (CFB; see §7.2.2(iii)) modes of block ciphers. Another
class of keystream generators not based on LFSRs are those whose security relies on the
intractability of an underlying number-theoretic problem; these generators are much slower
than those based on LFSRs and are discussed in §5.5.

6.4.1 SEAL

SEAL (Software-optimized Encryption Algorithm) is a binary additive stream cipher (see
Definition 6.4) that was proposed in 1993. Since it is relatively new, it has not yet received
much scrutiny from the cryptographic community. However, it is presented here because
it is one of the few stream ciphers that was specifically designed for efficient software im-
plementation and, in particular, for 32-bit processors.

SEAL is a length-increasing pseudorandom function which maps a 32-bit sequence
number n to an L-bit keystream under control of a 160-bit secret key a. In the preprocess-
ing stage (step 1 of Algorithm 6.68), the key is stretched into larger tables using the table-
generation function Ga specified in Algorithm 6.67; this function is based on the Secure
Hash Algorithm SHA-1 (Algorithm 9.53). Subsequent to this preprocessing, keystream
generation requires about 5 machine instructions per byte, and is an order of magnitude
faster than DES (Algorithm 7.82).

The following notation is used in SEAL for 32-bit quantitiesA, B, C,D, Xi, and Yj :

• A: bitwise complement of A
• A ∧B, A ∨B, A⊕B: bitwise AND, inclusive-OR, exclusive-OR
• “A←↩ s”: 32-bit result of rotating A left through s positions
• “A ↪→ s”: 32-bit result of rotating A right through s positions
• A+B: mod 232 sum of the unsigned integersA and B

• f(B,C,D)
def
= (B∧C)∨(B∧D); g(B,C,D)

def
= (B∧C)∨(B∧D)∨(C∧D);

h(B,C,D)
def
= B⊕C⊕D

• A‖B: concatenation of A and B
• (X1, . . . , Xj)←(Y1, . . . , Yj): simultaneous assignments (Xi←Yi), where
(Y1, . . . , Yj) is evaluated prior to any assignments.

6.65 Note (SEAL 1.0 vs. SEAL 2.0) The table-generation function (Algorithm 6.67) for the first
version of SEAL (SEAL 1.0) was based on the Secure Hash Algorithm (SHA). SEAL 2.0
differs from SEAL 1.0 in that the table-generation function for the former is based on the
modified Secure Hash Algorithm SHA-1 (Algorithm 9.53).

6.66 Note (tables) The table generation (step 1 of Algorithm 6.68) uses the compression func-
tion of SHA-1 to expand the secret key a into larger tables T , S, and R. These tables can
be precomputed, but only after the secret key a has been established. Tables T and S are
2K bytes and 1K byte in size, respectively. The size of table R depends on the desired
bitlength L of the keystream — each 1K byte of keystream requires 16 bytes of R.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

214 Ch. 6 Stream Ciphers

6.67 Algorithm Table-generation function for SEAL 2.0

Ga(i)
INPUT: a 160-bit string a and an integer i, 0 ≤ i < 232.
OUTPUT: a 160-bit string, denotedGa(i).

1. Definition of constants. Define four 32-bit constants (in hex): y1 = 0x5a827999,
y2 = 0x6ed9eba1, y3 = 0x8f1bbcdc, y4 = 0xca62c1d6.

2. Table-generation function.
(initialize 80 32-bit wordsX0, X1, . . . , X79)
Set X0 ← i. For j from 1 to 15 do: Xj← 0x00000000.
For j from 16 to 79 do: Xj ← ((Xj−3⊕Xj−8⊕Xj−14⊕Xj−16)←↩ 1).
(initialize working variables)
Break up the 160-bit string a into five 32-bit words: a = H0H1H2H3H4.
(A,B,C,D,E)← (H0,H1,H2,H3,H4).
(execute four rounds of 20 steps, then update; t is a temporary variable)
(Round 1) For j from 0 to 19 do the following:
t ← ((A←↩ 5) + f(B,C,D) +E +Xj + y1),
(A,B,C,D,E)← (t, A,B ←↩ 30, C,D).
(Round 2) For j from 20 to 39 do the following:
t ← ((A←↩ 5) + h(B,C,D) +E +Xj + y2),
(A,B,C,D,E)← (t, A,B ←↩ 30, C,D).
(Round 3) For j from 40 to 59 do the following:
t ← ((A←↩ 5) + g(B,C,D) +E +Xj + y3),
(A,B,C,D,E)← (t, A,B ←↩ 30, C,D).
(Round 4) For j from 60 to 79 do the following:
t ← ((A←↩ 5) + h(B,C,D) +E +Xj + y4),
(A,B,C,D,E)← (t, A,B ←↩ 30, C,D).
(update chaining values)
(H0,H1,H2,H3,H4)← (H0 +A,H1 +B,H2 + C,H3 +D,H4 +E).
(completion) The value of Ga(i) is the 160-bit stringH0‖H1‖H2‖H3‖H4.

6.68 Algorithm Keystream generator for SEAL 2.0

SEAL(a,n)
INPUT: a 160-bit string a (the secret key), a (non-secret) integer n, 0 ≤ n < 232 (the
sequence number), and the desired bitlength L of the keystream.
OUTPUT: keystream y of bitlength L′, where L′ is the least multiple of 128 which is ≥ L.

1. Table generation. Generate the tables T , S, and R, whose entries are 32-bit words.
The functionF used below is defined by Fa(i) = Hiimod5, whereHi0H

i
1H
i
2H
i
3H
i
4 =

Ga(bi/5c), and where the functionGa is defined in Algorithm 6.67.
1.1 For i from 0 to 511 do the following: T [i]←Fa(i).
1.2 For j from 0 to 255 do the following: S[j]←Fa(0x00001000+ j).
1.3 For k from 0 to 4 · d(L− 1)/8192e − 1 do: R[k]←Fa(0x00002000+ k).

2. Initialization procedure. The following is a description of the subroutine
Initialize(n, l, A,B,C,D, n1, n2, n3, n4) which takes as input a 32-bit word n
and an integer l, and outputs eight 32-bit wordsA,B, C,D, n1, n2, n3, and n4. This
subroutine is used in step 4.
A←n⊕R[4l], B←(n ↪→ 8)⊕R[4l+ 1], C←(n ↪→ 16)⊕R[4l+ 2],
D←(n ↪→ 24)⊕R[4l+ 3].

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§6.4 Other stream ciphers 215

For j from 1 to 2 do the following:
P←A∧0x000007fc, B←B + T [P/4], A←(A ↪→ 9),
P←B∧0x000007fc, C←C + T [P/4], B←(B ↪→ 9),
P←C∧0x000007fc, D←D + T [P/4], C←(C ↪→ 9),
P←D∧0x000007fc, A←A+ T [P/4], D←(D ↪→ 9).

(n1, n2, n3, n4)←(D,B,A,C).
P←A∧0x000007fc, B←B + T [P/4], A←(A ↪→ 9).
P←B∧0x000007fc, C←C + T [P/4], B←(B ↪→ 9).
P←C∧0x000007fc, D←D + T [P/4], C←(C ↪→ 9).
P←D∧0x000007fc, A←A+ T [P/4], D←(D ↪→ 9).

3. Initialize y to be the empty string, and l←0.
4. Repeat the following:

4.1 Execute the procedure Initialize(n, l, A,B,C,D, n1, n2, n3, n4).
4.2 For i from 1 to 64 do the following:
P←A∧ 0x000007fc, B←B + T [P/4], A←(A ↪→ 9), B←B⊕A,
Q←B∧0x000007fc, C←C⊕T [Q/4], B←(B ↪→ 9), C←C +B,
P←(P + C)∧0x000007fc, D←D + T [P/4], C←(C ↪→ 9), D←D⊕C,
Q←(Q+D)∧0x000007fc, A←A⊕T [Q/4], D←(D ↪→ 9), A←A+D,
P←(P +A)∧0x000007fc, B←B⊕T [P/4], A←(A ↪→ 9),
Q←(Q+B)∧0x000007fc, C←C + T [Q/4], B←(B ↪→ 9),
P←(P + C)∧0x000007fc, D←D⊕T [P/4], C←(C ↪→ 9),
Q←(Q+D)∧0x000007fc, A←A+ T [Q/4], D←(D ↪→ 9),
y←y ‖ (B + S[4i− 4]) ‖ (C⊕S[4i− 3]) ‖ (D + S[4i− 2]) ‖ (A⊕S[4i− 1]).
If y is ≥ L bits in length then return(y) and stop.
If i is odd, set (A,C)←(A+n1, C+n2). Otherwise, (A,C)←(A+n3, C+n4).

4.3 Set l←l + 1.

6.69 Note (choice of parameter L) In most applications of SEAL 2.0 it is expected that L ≤
219; larger values of L are permissible, but come at the expense of a larger table R. A
preferred method for generating a longer keystream without requiring a larger table R is
to compute the concatenation of the keystreams SEAL(a,0), SEAL(a,1), SEAL(a,2),. . . .
Since the sequence number is n < 232, a keystream of length up to 251 bits can be obtained
in this manner with L = 219.

6.70 Example (test vectors for SEAL 2.0) Suppose the key a is the 160-bit (hexadecimal) string

67452301 efcdab89 98badcfe 10325476 c3d2e1f0,

n = 0x013577af, and L = 32768 bits. Table R consists of words R[0], R[1], . . . , R[15]:

5021758d ce577c11 fa5bd5dd 366d1b93 182cff72 ac06d7c6
2683ead8 fabe3573 82a10c96 48c483bd ca92285c 71fe84c0
bd76b700 6fdcc20c 8dada151 4506dd64

The table T consists of words T [0], T [1], . . . , R[511]:

92b404e5 56588ced 6c1acd4e bf053f68 09f73a93 cd5f176a
b863f14e 2b014a2f 4407e646 38665610 222d2f91 4d941a21
........
3af3a4bf 021e4080 2a677d95 405c7db0 338e4b1e 19ccf158

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

216 Ch. 6 Stream Ciphers

The table S consists of words S[0], S[1], . . . , S[255]:

907c1e3d ce71ef0a 48f559ef 2b7ab8bc 4557f4b8 033e9b05
4fde0efa 1a845f94 38512c3b d4b44591 53765dce 469efa02
........
bd7dea87 fd036d87 53aa3013 ec60e282 1eaef8f9 0b5a0949

The output y of Algorithm 6.68 consists of 1024 words y[0], y[1], . . . , y[1023]:

37a00595 9b84c49c a4be1e05 0673530f 0ac8389d c5878ec8
da6666d0 6da71328 1419bdf2 d258bebb b6a42a4d 8a311a72
........
547dfde9 668d50b5 ba9e2567 413403c5 43120b5a ecf9d062

The XOR of the 1024 words of y is 0x098045fc. �

6.5 Notes and further references
§6.1

Although now dated, Rueppel [1075] provides a solid introduction to the analysis and
design of stream ciphers. For an updated and more comprehensive survey, see Rueppel
[1081]. Another recommended survey is that of Robshaw [1063].

The concept of unconditional security was introduced in the seminal paper by Shannon
[1120]. Maurer [819] surveys the role of information theory in cryptography and, in partic-
ular, secrecy, authentication, and secret sharing schemes. Maurer [811] devised a random-
ized stream cipher that is unconditionally secure “with high probability”. More precisely,
an adversary is unable to obtain any information whatsoever about the plaintext with prob-
ability arbitrarily close to 1, unless the adversary can perform an infeasible computation.
The cipher utilizes a publicly-accessible source of random bits whose length is much greater
than that of all the plaintext to be encrypted, and can conceivably be made practical. Mau-
rer’s cipher is based on the impractical Rip van Winkle cipher of Massey and Ingermarsson
[789], which is described by Rueppel [1081].

One technique for solving the re-synchronization problem with synchronous stream ciphers
is to have the receiver send a resynchronization request to the sender, whereby a new inter-
nal state is computed as a (public) function of the original internal state (or key) and some
public information (such as the time at the moment of the request). Daemen, Govaerts,
and Vandewalle [291] showed that this approach can result in a total loss of security for
some published stream cipher proposals. Proctor [1011] considered the trade-off between
the security and error propagation problems that arise by varying the number of feedback
ciphertext digits. Maurer [808] presented various design approaches for self-synchronizing
stream ciphers that are potentially superior to designs based on block ciphers, both with re-
spect to encryption speed and security.

§6.2
An excellent introduction to the theory of both linear and nonlinear shift registers is the book
by Golomb [498]; see also Selmer [1107], Chapters 5 and 6 of Beker and Piper [84], and
Chapter 8 of Lidl and Niederreiter [764]. A lucid treatment ofm-sequences can be found in
Chapter 10 of McEliece [830]. While the discussion in this chapter has been restricted to se-
quences and feedback shift registers over the binary field Z2, many of the results presented
can be generalized to sequences and feedback shift registers over any finite field Fq.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§6.5 Notes and further references 217

The results on the expected linear complexity and linear complexity profile of random se-
quences (Facts 6.21, 6.22, 6.24, and 6.25) are from Chapter 4 of Rueppel [1075]; they also
appear in Rueppel [1077]. Dai and Yang [294] extended Fact 6.22 and obtained bounds
for the expected linear complexity of an n-periodic sequence for each possible value of n.
The bounds imply that the expected linear complexity of a random periodic sequence is
close to the period of the sequence. The linear complexity profile of the sequence defined
in Example 6.27 was established by Dai [293]. For further theoretical analysis of the linear
complexity profile, consult the work of Niederreiter [927, 928, 929, 930].

Facts 6.29 and 6.34 are due to Massey [784]. The Berlekamp-Massey algorithm (Algo-
rithm 6.30) is due to Massey [784], and is based on an earlier algorithm of Berlekamp [118]
for decoding BCH codes. While the algorithm in §6.2.3 is only described for binary se-
quences, it can be generalized to find the linear complexity of sequences over any field.
Further discussion and refinements of the Berlekamp-Massey algorithm are given by Blahut
[144]. There are numerous other algorithms for computing the linear complexity of a se-
quence. For example, Games and Chan [439] and Robshaw [1062] present efficient algo-
rithms for determining the linear complexity of binary sequences of period 2n; these algo-
rithms have limited practical use since they require an entire cycle of the sequence.

Jansen and Boekee [632] defined the maximum order complexity of a sequence to be the
length of the shortest (not necessarily linear) feedback shift register (FSR) that can gener-
ate the sequence. The expected maximum order complexity of a random binary sequence
of length n is approximately 2 lgn. An efficient linear-time algorithm for computing this
complexity measure was also presented; see also Jansen and Boekee [631].

Another complexity measure, the Ziv-Lempel complexity measure, was proposed by Ziv and
Lempel [1273]. This measure quantifies the rate at which new patterns appear in a sequence.
Mund [912] used a heuristic argument to derive the expected Ziv-Lempel complexity of a
random binary sequence of a given length. For a detailed study of the relative strengths
and weaknesses of the linear, maximum order, and Ziv-Lempel complexity measures, see
Erdmann [372].

Kolmogorov [704] and Chaitin [236] introduced the notion of so-called Turing-Kolmogorov
-Chaitin complexity, which measures the minimum size of the input to a fixed universal
Turing machine which can generate a given sequence; see also Martin-Löf [783]. While this
complexity measure is of theoretical interest, there is no algorithm known for computing it
and, hence, it has no apparent practical significance. Beth and Dai [124] have shown that
the Turing-Kolmogorov-Chaitin complexity is approximately twice the linear complexity
for most sequences of sufficient length.

Fact 6.39 is due to Golomb and Welch, and appears in the book of Golomb [498, p.115].
Lai [725] showed that Fact 6.39 is only true for the binary case, and established necessary
and sufficient conditions for an FSR over a general finite field to be nonsingular.

Klapper and Goresky [677] introduced a new type of feedback register called a feedback
with carry shift register (FCSR), which is equipped with auxiliary memory for storing the
(integer) carry. An FCSR is similar to an LFSR (see Figure 6.4), except that the contents
of the tapped stages of the shift register are added as integers to the current content of the
memory to form a sum S. The least significant bit of S (i.e., S mod 2) is then fed back
into the first (leftmost) stage of the shift register, while the remaining higher order bits (i.e.,
bS/2c) are retained as the new value of the memory. If the FCSR has L stages, then the
space required for the auxiliary memory is at most lgL bits. FCSRs can be conveniently
analyzed using the algebra over the 2-adic numbers just as the algebra over finite fields is
used to analyze LFSRs.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

218 Ch. 6 Stream Ciphers

Any periodic binary sequence can be generated by a FCSR. The 2-adic span of a periodic
sequence is the number of stages and memory bits in the smallest FCSR that generates the
sequence. Let s be a periodic sequence having a 2-adic span of T ; note that T is no more
than the period of s. Klapper and Goresky [678] presented an efficient algorithm for finding
an FCSR of length T which generates s, given 2T + 2dlgT e+ 4 of the initial bits of s. A
comprehensive treatment of FCSRs and the 2-adic span is given by Klapper and Goresky
[676].

§6.3
Notes 6.46 and 6.47 on the selection of connection polynomials were essentially first point-
ed out by Meier and Staffelbach [834] and Chepyzhov and Smeets [256] in relation to
fast correlation attacks on regularly clocked LFSRs. Similar observations were made by
Coppersmith, Krawczyk, and Mansour [279] in connection with the shrinking generator.
More generally, to withstand sophisticated correlation attacks (e.g., see Meier and Staffel-
bach [834]), the connection polynomials should not have low-weight polynomial multiples
whose degrees are not sufficiently large.

Klapper [675] provides examples of binary sequences having high linear complexity, but
whose linear complexity is low when considered as sequences (whose elements happen to
be only 0 or 1) over a larger finite field. This demonstrates that high linear complexity (over
Z2) by itself is inadequate for security. Fact 6.49 was proven by Rueppel and Staffelbach
[1085].

The Geffe generator (Example 6.50) was proposed by Geffe [446]. The Pless generator
(Arrangement D of [978]) was another early proposal for a nonlinear combination genera-
tor, and uses four J-K flip-flops to combine the output of eight LFSRs. This generator also
succumbs to a divide-and-conquer attack, as was demonstrated by Rubin [1074].

The linear syndrome attack of Zeng, Yang, and Rao [1265] is a known-plaintext attack on
keystream generators, and is based on earlier work of Zeng and Huang [1263]. It is effective
when the known keystreamB can be written in the formB = A⊕X , whereA is the output
sequence of an LFSR with known connection polynomial, and the sequenceX is unknown
but sparse in the sense that it contains more 0’s than 1’s. If the connection polynomials of
the Geffe generator are all known to an adversary, and are primitive trinomials of degrees
not exceeding n, then the initial states of the three component LFSRs (i.e., the secret key)
can be efficiently recovered from a known keystream segment of length 37n bits.

The correlation attack (Note 6.51) on nonlinear combination generators was first devel-
oped by Siegenthaler [1133], and estimates were given for the length of the observed
keystream required for the attack to succeed with high probability. The importance of
correlation immunity to nonlinear combining functions was pointed out by Siegenthaler
[1132], who showed the tradeoff between high correlation immunity and high nonlinear or-
der (Fact 6.53). Meier and Staffelbach [834] presented two new so-called fast correlation
attacks which are more efficient than Siegenthaler’s attack in the case where the component
LFSRs have sparse feedback polynomials, or if they have low-weight polynomial multiples
(e.g., each having fewer than 10 non-zero terms) of not too large a degree. Further exten-
sions and refinements of correlation attacks can be found in the papers of Mihaljević and
Golić [874], Chepyzhov and Smeets [256], Golić and Mihaljević [491], Mihaljević and J.
Golić [875], Mihaljević [873], Clark, Golić, and Dawson [262], and Penzhorn and Kühn
[967]. A comprehensive survey of correlation attacks on LFSR-based stream ciphers is the
paper by Golić [486]; the cases where the combining function is memoryless or with mem-
ory, as well as when the LFSRs are clocked regularly or irregularly, are all considered.

The summation generator (Example 6.54) was proposed by Rueppel [1075, 1076]. Meier

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§6.5 Notes and further references 219

and Staffelbach [837] presented correlation attacks on combination generators having mem-
ory, cracked the summation generator having only two component LFSRs, and as a result
recommended using several LFSRs of moderate lengths rather than just a few long LFSRs
in the summation generator. As an example, if a summation generator employs two LF-
SRs each having length approximately 200, and if 50 000 keystream bits are known, then
Meier and Staffelbach’s attack is expected to take less than 700 trials, where the dominant
step in each trial involves solving a 400× 400 system of binary linear equations. Dawson
[312] presented another known-plaintext attack on summation generators having two com-
ponent LFSRs, which requires fewer known keystream bits than Meier and Staffelbach’s
attack. Dawson’s attack is only faster than that of Meier and Staffelbach in the case where
both LFSRs are relatively short. Recently, Klapper and Goresky [678] showed that the sum-
mation generator has comparatively low 2-adic span (see page 218). More precisely, if a
and b are two sequences of 2-adic span λ2(a) and λ2(b), respectively, and if s is the re-
sult of combining them with the summation generator, then the 2-adic span of s is at most
λ2(a)+λ2(b)+ 2dlg(λ2(a))e+2dlg(λ2(b))e+6. For example, ifm-sequences of period
2L − 1 for L = 7, 11, 13, 15, 16, 17 are combined with the summation generator, then the
resulting sequence has linear complexity nearly 279, but the 2-adic span is less than 218.
Hence, the summation generator is vulnerable to a known-plaintext attack when the com-
ponent LFSRs are all relatively short.

The probability distribution of the carry for addition of n random integers was analyzed by
Staffelbach and Meier [1167]. It was proven that the carry is balanced for evenn and biased
for oddn. Forn = 3 the carry is strongly biased, however, the bias converges to 0 asn tends
to∞. Golić [485] pointed out the importance of the correlation between linear functions of
the output and input in general combiners with memory, and introduced the so-called linear
sequential circuit approximation method for finding such functions that produce correlated
sequences. Golić [488] used this as a basis for developing a linear cryptanalysis technique
for stream ciphers, and in the same paper proposed a stream cipher called GOAL, incorpo-
rating principles of modified truncated linear congruential generators (see page 187), self-
clock-control, and randomly generated combiners with memory.

Fact 6.55(i) is due to Key [670], while Fact 6.55(ii) was proven by Rueppel [1075]. Massey
and Serconek [794] gave an alternate proof of Key’s bound that is based on the Discrete
Fourier Transform. Siegenthaler [1134] described a correlation attack on nonlinear filter
generators. Forré [418] has applied fast correlation attacks to such generators. Anderson
[29] demonstrated other correlations which may be useful in improving the success of cor-
relation attacks. An attack called the inversion attack, proposed by Golić [490], may be
more effective than Anderson’s attack. Golić also provides a list of design criteria for non-
linear filter generators. Ding [349] introduced the notion of differential cryptanalysis for
nonlinear filter generators where the LFSR is replaced by a simple counter having arbitrary
period.

The linear consistency attack of Zeng, Yang, and Rao [1264] is a known-plaintext attack
on keystream generators which can discover key redundancies in various generators. It is
effective in situations where it is possible to single out a certain portion k1 of the secret key
k, and form a linear system of equationsAx = b where the matrix A is determined by k1,
and b is determined from the known keystream. The system of equations should have the
property that it is consistent (and with high probability has a unique solution) if k1 is the
true value of the subkey, while it is inconsistent with high probability otherwise. In these
circumstances, one can mount an exhaustive search for k1, and subsequently mount a sepa-
rate attack for the remaining bits of k. If the bitlengths of k1 and k are l1 and l, respectively,
the attack demonstrates that the security level of the generator is 2l1 +2l−l1 , rather than 2l.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

220 Ch. 6 Stream Ciphers

The multiplexer generator was proposed by Jennings [637]. Two maximum-length LFSRs
having lengths L1, L2 that are relatively prime are employed. Let h be a positive integer
satisfying h ≤ min(L1, lgL2). After each clock cycle, the contents of a fixed subset of h
stages of the first LFSR are selected, and converted to an integer t in the interval [0, L2−1]
using a 1 − 1 mapping θ. Finally, the content of stage t of the second LFSR is output as
part of the keystream. Assuming that the connection polynomials of the LFSRs are known,
the linear consistency attack provides a known-plaintext attack on the multiplexer gener-
ator requiring a known keystream sequence of length N ≥ L1 + L22h and 2L1+h linear
consistency tests. This demonstrates that the choice of the mapping θ and the second LFSR
do not contribute significantly to the security of the generator.

The linear consistency attack has also been considered by Zeng, Yang, and Rao [1264] for
the multispeed inner-product generator of Massey and Rueppel [793]. In this generator,
two LFSRs of lengthsL1 andL2 are clocked at different rates, and their contents combined
at the lower clock rate by taking the inner-product of the min(L1, L2) stages of the two
LFSRs. The paper by Zeng et al. [1266] is a readable survey describing the effectiveness
of the linear consistency and linear syndrome attacks in cryptanalyzing stream ciphers.

The knapsack generator (Example 6.56) was proposed by Rueppel and Massey [1084] and
extensively analyzed by Rueppel [1075], however, no concrete suggestions on selecting ap-
propriate parameters (the lengthL of the LFSR and the knapsack weights) for the generator
were given. No weaknesses of the knapsack generator have been reported in the literature.

The idea of using the output of a register to control the stepping of another register was used
in several rotor machines during the second world war, for example, the German Lorenz
SZ40 cipher. A description of this cipher, and also an extensive survey of clock-controlled
shift registers, is provided by Gollmann and Chambers [496].

The alternating step generator (Algorithm 6.57) was proposed in 1987 by Günther [528],
who also proved Fact 6.59 and described the divide-and-conquer attack mentioned in
Note 6.60. The alternating step generator is based on the stop-and-go generator of Beth
and Piper [126]. In the stop-and-go generator, a control register R1 is used to control the
stepping of another register R2 as follows. If the output of R1 is 1, then R2 is clocked; if
the output of R1 is 0, thenR2 is not clocked, however, its previous output is repeated. The
output ofR2 is then XORed with the output sequence of a third registerR3 which is clocked
at the same rate as R1. Beth and Piper showed how a judicious choice of registersR1, R2,
and R3 can guarantee that the output sequence has high linear complexity and period, and
good statistical properties. Unfortunately, the generator succumbs to the linear syndrome
attack of Zeng, Yang, and Rao [1265] (see also page 218): if the connection polynomials of
R1 andR2 are primitive trinomials of degree not exceeding n, and known to the adversary,
then the initial states of the three component LFSRs (i.e., the secret key) can be efficiently
recovered from a known-plaintext segment of length 37n bits.

Another variant of the stop-and-go generator is the step-1/step-2 generator due to Gollmann
and Chambers [496]. This generator uses two maximum-length registersR1 andR2 of the
same length. Register R1 is used to control the stepping of R2 as follows. If the output of
R1 is 0, then R2 is clocked once; if the output of R1 is 1, then R2 is clocked twice before
producing the next output bit. Živković [1274] proposed an embedding correlation attack
on R2 whose complexity of O(2L2), where L2 is the length of R2.

A cyclic register of lengthL is an LFSR with feedback polynomialC(D) = 1+DL. Goll-
mann [494] proposed cascading n cyclic registers of the same prime length p by arranging
them serially in such a way that all except the first register are clock-controlled by their pre-
decessors; the Gollmann p-cycle cascade can be viewed as an extension of the stop-and-go

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§6.5 Notes and further references 221

generator (page 220). The first register is clocked regularly, and its output bit is the input
bit to the second register. In general, if the input bit to the ith register (for i ≥ 2) at time
t is at, then the ith register is clocked if at = 1; if at = 0, the register is not clocked but
its previous output bit is repeated. The output bit of the ith register is then XORed with at,
and the result becomes the input bit to the (i+1)st register. The output of the last register is
the output of the p-cycle cascade. The initial (secret) stage of a component cyclic register
should not be the all-0’s vector or the all-1’s vector. Gollmann proved that the period of the
output sequence is pn. Moreover, if p is a prime such that 2 is a generator of Z∗p, then the
output sequence has linear complexity pn. This suggests very strongly using long cascades
(i.e., n large) of shorter registers rather than short cascades of longer registers. A variant of
the Gollmann cascade, called anm-sequence cascade, has the cyclic registers replaced by
maximum-length LFSRs of the same length L. Chambers [237] showed that the output se-
quence of such anm-sequence cascade has period (2L− 1)n and linear complexity at least
L(2L−1)n−1. Park, Lee, and Goh [964] extended earlier work of Menicocci [845] and re-
ported breaking 9-stagem-sequence cascades where each LFSR has length 100; they also
suggested that 10-stage m-sequence cascades may be insecure. Chambers and Gollmann
[239] studied an attack on p-cycle and m-sequence cascades called lock-in, which results
in a reduction in the effective key space of the cascades.

The shrinking generator (Algorithm 6.61) was proposed in 1993 by Coppersmith,
Krawczyk, and Mansour [279], who also proved Fact 6.63 and described the attacks men-
tioned in Note 6.64. The irregular output rate of the shrinking generator can be overcome by
using a short buffer for the output; the influence of such a buffer is analyzed by Kessler and
Krawczyk [669]. Krawczyk [716] mentions some techniques for improving software im-
plementations. A throughput of 2.5 Mbits/sec is reported for a C language implementation
on a 33MHz IBM workstation, when the two shift registers each have lengths in the range
61–64 bits and secret connections are employed. The security of the shrinking generator is
studied further by Golić [487].

A key generator related to the shrinking generator is the self-shrinking generator (SSG) of
Meier and Staffelbach [838]. The self-shrinking generator uses only one maximum-length
LFSR R. The output sequence of R is partitioned into pairs of bits. The SSG outputs a
0 if a pair is 10, and outputs a 1 if a pair is 11; 01 and 00 pairs are discarded. Meier and
Staffelbach proved that the self-shrinking generator can be implemented as a shrinking gen-
erator. Moreover, the shrinking generator can be implemented as a self-shrinking genera-
tor (whose component LFSR is not maximum-length). More precisely, if the component
LFSRs of a shrinking generator have connection polynomials C1(D) and C2(D), its out-
put sequence can be produced by a self-shrinking generator with connection polynomial
C(D) = C1(D)

2 ·C2(D)2. Meier and Staffelbach also proved that if the length ofR is L,
then the period and linear complexity of the output sequence of the SSG are at least 2bL/2c

and 2bL/2c−1, respectively. Moreover, they provided strong evidence that this period and
linear complexity is in fact about 2L−1. Assuming a randomly chosen, but known, connec-
tion polynomial, the best attack presented by Meier and Staffelbach on the SSG takes 20.79L

steps. More recently, Mihaljević [871] presented a significantly faster probabilistic attack
on the SSG. For example, if L = 100, then the new attack takes 257 steps and requires a
portion of the output sequence of length 4.9× 108. The attack does not have an impact on
the security of the shrinking generator.

A recent survey of techniques for attacking clock-controlled generators is given by Goll-
mann [495]. For some newer attack techniques, see Mihaljević [872], Golić and O’Connor
[492], and Golić [489]. Chambers [238] proposed a clock-controlled cascade composed of
LFSRs each of length 32. Each 32-bit portion of the output sequence of a component LFSR

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

222 Ch. 6 Stream Ciphers

is passed through an invertible scrambler box (S-box), and the resulting 32-bit sequence is
used to control the clock of the next LFSR. Baum and Blackburn [77] generalized the notion
of a clock-controlled shift register to that of a register based on a finite group.

§6.4
SEAL (Algorithm 6.68) was designed and patented by Coppersmith and Rogaway [281].
Rogaway and Coppersmith [1066] report an encryption speed of 7.2 Mbytes/sec for an as-
sembly language implementation on a 50 MHz 486 processor withL = 4096bits, assuming
precomputed tables (cf. Note 6.66).

Although the stream cipher RC4 remains proprietary, alleged descriptions have been pub-
lished which are output compatible with certified implementations of RC4; for example, see
Schneier [1094]. Blöcher and Dichtl [156] proposed a fast software stream cipher called
FISH (Fibonacci Shrinking generator), which is based on the shrinking generator principle
applied to the lagged Fibonacci generator (also known as the additive generator) of Knuth
[692, p.27]. Anderson [28] subsequently presented a known-plaintextattack on FISH which
requires a few thousand 32-bit words of known plaintext and a work factor of about 240

computations. Anderson also proposed a fast software stream cipher called PIKE based on
the Fibonacci generator and the stream cipher A5; a description of A5 is given by Anderson
[28].

Wolfram [1251, 1252] proposed a stream cipher based on one-dimensional cellular automa-
ta with nonlinear feedback. Meier and Staffelbach [835] presented a known-plaintext attack
on this cipher which demonstrated that key lengths of 127 bits suggested by Wolfram [1252]
are insecure; Meier and Staffelbach recommend key sizes of about 1000 bits.

Klapper and Goresky [679] presented constructions for FCSRs (see page 217) whose output
sequences have nearly maximal period, are balanced, and are nearly de Bruijn sequences in
the sense that for any fixed non-negative integer t, the number of occurrences of any two
t-bit sequences as subsequences of a period differs by at most 2. Such FCSRs are good
candidates for usage in the construction of secure stream ciphers, just as maximum-length
LFSRs were used in §6.3. Goresky and Klapper [518] introduced a generalization of FCSRs
called d-FCSRs, based on ramified extensions of the 2-adic numbers (d is the ramification).

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

