
This is a Chapter from the Handbook of Applied Cryptography, by A. Menezes, P. van
Oorschot, and S. Vanstone, CRC Press, 1996.
For further information, see www.cacr.math.uwaterloo.ca/hac

CRC Press has granted the following specific permissions for the electronic version of this
book:

Permission is granted to retrieve, print and store a single copy of this chapter for
personal use. This permission does not extend to binding multiple chapters of
the book, photocopying or producing copies for other than personal use of the
person creating the copy, or making electronic copies available for retrieval by
others without prior permission in writing from CRC Press.

Except where over-ridden by the specific permission above, the standard copyright notice
from CRC Press applies to this electronic version:

Neither this book nor any part may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, microfilming,
and recording, or by any information storage or retrieval system, without prior
permission in writing from the publisher.

The consent of CRC Press does not extend to copying for general distribution,
for promotion, for creating new works, or for resale. Specific permission must be
obtained in writing from CRC Press for such copying.

c©1997 by CRC Press, Inc.

Chapter10
Identification and Entity

Authentication

Contents in Brief

10.1 Introduction . 385
10.2 Passwords (weak authentication) 388
10.3 Challenge-response identification (strong authentication) 397
10.4 Customized and zero-knowledge identification protocols 405
10.5 Attacks on identification protocols 417
10.6 Notes and further references . 420

10.1 Introduction

This chapter considers techniques designed to allow one party (the verifier) to gain assur-
ances that the identity of another (the claimant) is as declared, thereby preventing imper-
sonation. The most common technique is by the verifier checking the correctness of a mes-
sage (possibly in response to an earlier message) which demonstrates that the claimant is
in possession of a secret associated by design with the genuine party. Names for such tech-
niques include identification, entity authentication, and (less frequently) identity verifica-
tion. Related topics addressed elsewhere include message authentication (data origin au-
thentication) by symmetric techniques (Chapter 9) and digital signatures (Chapter 11), and
authenticated key establishment (Chapter 12).

A major difference between entity authentication and message authentication (as pro-
vided by digital signatures or MACs) is that message authentication itself provides no time-
liness guarantees with respect to when a message was created, whereas entity authentica-
tion involves corroboration of a claimant’s identity through actual communications with an
associated verifier during execution of the protocol itself (i.e., in real-time, while the ver-
ifying entity awaits). Conversely, entity authentication typically involves no meaningful
message other than the claim of being a particular entity, whereas message authentication
does. Techniques which provide both entity authentication and key establishment are de-
ferred to Chapter 12; in some cases, key establishment is essentially message authentication
where the message is the key.

385

386 Ch. 10 Identification and Entity Authentication

Chapter outline

The remainder of §10.1 provides introductory material. §10.2 discusses identification sch-
emes involving fixed passwords including Personal Identification Numbers (PINs), and
providing so-called weak authentication; one-time password schemes are also considered.
§10.3 considers techniques providing so-called strong authentication, including challenge-
response protocols based on both symmetric and public-key techniques. It includes discus-
sion of time-variant parameters (TVPs), which may be used in entity authentication proto-
cols and to provide uniqueness or timeliness guarantees in message authentication. §10.4
examines customized identification protocols based on or motivated by zero-knowledge
techniques. §10.5 considers attacks on identification protocols. §10.6 provides references
and further chapter notes.

10.1.1 Identification objectives and applications

The general setting for an identification protocol involves a prover or claimantA and a veri-
fierB. The verifier is presented with, or presumes beforehand, the purported identity of the
claimant. The goal is to corroborate that the identity of the claimant is indeed A, i.e., to
provide entity authentication.

10.1 Definition Entity authentication is the process whereby one party is assured (through ac-
quisition of corroborative evidence) of the identity of a second party involved in a protocol,
and that the second has actually participated (i.e., is active at, or immediately prior to, the
time the evidence is acquired).

10.2 Remark (identification terminology) The terms identification and entity authenticationare
used synonymously throughout this book. Distinction is made between weak, strong, and
zero-knowledge based authentication. Elsewhere in the literature, sometimes identification
implies only a claimed or stated identity whereas entity authentication suggests a corrobo-
rated identity.

(i) Objectives of identification protocols

From the point of view of the verifier, the outcome of an entity authentication protocol is
either acceptance of the claimant’s identity as authentic (completion with acceptance), or
termination without acceptance (rejection). More specifically, the objectives of an identi-
fication protocol include the following.

1. In the case of honest parties A and B, A is able to successfully authenticate itself to
B, i.e., B will complete the protocol having accepted A’s identity.

2. (transferability) B cannot reuse an identification exchange with A so as to success-
fully impersonateA to a third party C.

3. (impersonation) The probability is negligible that any party C distinct from A, car-
rying out the protocol and playing the role ofA, can causeB to complete and accept
A’s identity. Here negligible typically means “is so small that it is not of practical
significance”; the precise definition depends on the application.

4. The previous points remain true even if: a (polynomially) large number of previous
authentications between A and B have been observed; the adversary C has partici-
pated in previous protocol executions with either or both A and B; and multiple in-
stances of the protocol, possibly initiated by C, may be run simultaneously.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§10.1 Introduction 387

The idea of zero-knowledge-based protocols is that protocol executions do not even reveal
any partial information which makes C’s task any easier whatsoever.

An identification (or entity authentication) protocol is a “real-time” process in the sense
that it provides an assurance that the party being authenticated is operational at the time of
protocol execution – that party is taking part, having carried out some action since the start
of the protocol execution. Identification protocols provide assurances only at the particu-
lar instant in time of successful protocol completion. If ongoing assurances are required,
additional measures may be necessary; see §10.5.

(ii) Basis of identification

Entity authentication techniques may be divided into three main categories, depending on
which of the following the security is based:

1. something known. Examples include standard passwords (sometimes used to derive
a symmetric key), Personal Identification Numbers (PINs), and the secret or private
keys whose knowledge is demonstrated in challenge-response protocols.

2. something possessed. This is typically a physical accessory, resembling a passport
in function. Examples include magnetic-striped cards, chipcards (plastic cards the
size of credit cards, containing an embedded microprocessor or integrated circuit;
also called smart cards or IC cards), and hand-held customized calculators (password
generators) which provide time-variant passwords.

3. something inherent (to a human individual). This category includes methods which
make use of human physical characteristics and involuntary actions (biometrics),
such as handwritten signatures, fingerprints, voice, retinal patterns, hand geome-
tries, and dynamic keyboarding characteristics. These techniques are typically non-
cryptographic and are not discussed further here.

(iii) Applications of identification protocols

One of the primary purposes of identification is to facilitate access control to a resource,
when an access privilege is linked to a particular identity (e.g., local or remote access to
computer accounts; withdrawals from automated cash dispensers; communications permis-
sions through a communications port; access to software applications; physical entry to re-
stricted areas or border crossings). A password scheme used to allow access to a user’s
computer account may be viewed as the simplest instance of an access control matrix: each
resource has a list of identities associated with it (e.g., a computer account which authorized
entities may access), and successful corroboration of an identity allows access to the autho-
rized resources as listed for that entity. In many applications (e.g., cellular telephony) the
motivation for identification is to allow resource usage to be tracked to identified entities,
to facilitate appropriate billing. Identification is also typically an inherent requirement in
authenticated key establishment protocols (see Chapter 12).

10.1.2 Properties of identification protocols

Identification protocols may have many properties. Properties of interest to users include:

1. reciprocity of identification. Either one or both parties may corroborate their iden-
tities to the other, providing, respectively, unilateral or mutual identification. Some
techniques, such as fixed-password schemes, may be susceptible to an entity posing
as a verifier simply in order to capture a claimant’s password.

2. computational efficiency. The number of operations required to execute a protocol.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

388 Ch. 10 Identification and Entity Authentication

3. communication efficiency. This includes the number of passes (message exchanges)
and the bandwidth required (total number of bits transmitted).
More subtle properties include:

4. real-time involvement of a third party (if any). Examples of third parties include an
on-line trusted third party to distribute common symmetric keys to communicating
entities for authentication purposes; and an on-line (untrusted) directory service for
distributing public-key certificates, supported by an off-line certification authority
(see Chapter 13).

5. nature of trust required in a third party (if any). Examples include trusting a third
party to correctly authenticate and bind an entity’s name to a public key; and trusting
a third party with knowledge of an entity’s private key.

6. nature of security guarantees. Examples include provable security and zero-know-
ledge properties (see §10.4.1).

7. storage of secrets. This includes the location and method used (e.g., software only,
local disks, hardware tokens, etc.) to store critical keying material.

Relation between identification and signature schemes

Identification schemes are closely related to, but simpler than, digital signature schemes,
which involve a variable message and typically provide a non-repudiation feature allowing
disputes to be resolved by judges after the fact. For identification schemes, the semantics
of the message are essentially fixed – a claimed identity at the current instant in time. The
claim is either corroborated or rejected immediately, with associated privileges or access
either granted or denied in real time. Identifications do not have “lifetimes” as signatures
do1 – disputes need not typically be resolved afterwards regarding a prior identification,
and attacks which may become feasible in the future do not affect the validity of a prior
identification. In some cases, identification schemes may also be converted to signature
schemes using a standard technique (see Note 10.30).

10.2 Passwords (weak authentication)

Conventional password schemes involve time-invariant passwords, which provide so-call-
ed weak authentication. The basic idea is as follows. A password, associated with each
user (entity), is typically a string of 6 to 10 or more characters the user is capable of com-
mitting to memory. This serves as a shared secret between the user and system. (Conven-
tional password schemes thus fall under the category of symmetric-key techniques provid-
ing unilateral authentication.) To gain access to a system resource (e.g., computer account,
printer, or software application), the user enters a (userid, password) pair, and explicitly or
implicitly specifies a resource; here userid is a claim of identity, and password is the evi-
dence supporting the claim. The system checks that the password matches corresponding
data it holds for that userid, and that the stated identity is authorized to access the resource.
Demonstration of knowledge of this secret (by revealing the password itself) is accepted by
the system as corroboration of the entity’s identity.

Various password schemes are distinguished by the means by which information al-
lowing password verification is stored within the system, and the method of verification.
The collection of ideas presented in the following sections motivate the design decisions

1Some identification techniques involve, as a by-product, the granting of tickets which provide time-limited
access to specified resources (see Chapter 13).

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§10.2 Passwords (weak authentication) 389

made in typical password schemes. A subsequent section summarizes the standard attacks
these designs counteract. Threats which must be guarded against include: password dis-
closure (outside of the system) and line eavesdropping (within the system), both of which
allow subsequent replay; and password guessing, including dictionary attacks.

10.2.1 Fixed password schemes: techniques

(i) Stored password files

The most obvious approach is for the system to store user passwords cleartext in a system
password file, which is both read- and write-protected (e.g., via operating system access
control privileges). Upon password entry by a user, the system compares the entered pass-
word to the password file entry for the corresponding userid; employing no secret keys or
cryptographic primitives such as encryption, this is classified as a non-cryptographic tech-
nique. A drawback of this method is that it provides no protection against privileged in-
siders or superusers (special userids which have full access privileges to system files and
resources). Storage of the password file on backup media is also a security concern, since
the file contains cleartext passwords.

(ii) “Encrypted” password files

Rather than storing a cleartext user password in a (read- and write-protected) password file,
a one-way function of each user password is stored in place of the password itself (see Fig-
ure 10.1). To verify a user-entered password, the system computes the one-way function of
the entered password, and compares this to the stored entry for the stated userid. To pre-
clude attacks suggested in the preceding paragraph, the password file need now only be
write-protected.

10.3 Remark (one-way function vs. encryption) For the purpose of protecting password files,
the use of a one-way function is generally preferable to reversible encryption; reasons in-
clude those related to export restrictions, and the need for keying material. However, in both
cases, for historical reasons, the resulting values are typically referred to as “encrypted”
passwords. Protecting passwords by either method before transmission over public com-
munications lines addresses the threat of compromise of the password itself, but alone does
not preclude disclosure or replay of the transmission (cf. Protocol 10.6).

(iii) Password rules

Since dictionary attacks (see §10.2.2(iii)) are successful against predictable passwords,
some systems impose “password rules” to discourage or prevent users from using “weak”
passwords. Typical password rules include a lower bound on the password length (e.g., 8 or
12 characters); a requirement for each password to contain at least one character from each
of a set of categories (e.g., uppercase, numeric, non-alphanumeric); or checks that candi-
date passwords are not found in on-line or available dictionaries, and are not composed of
account-related information such as userids or substrings thereof.

Knowing which rules are in effect, an adversary may use a modified dictionary attack
strategy taking into account the rules, and targeting the weakest form of passwords which
nonetheless satisfy the rules. The objective of password rules is to increase the entropy
(rather than just the length) of user passwords beyond the reach of dictionary and exhaus-
tive search attacks. Entropy here refers to the uncertainty in a password (cf. §2.2.1); if all
passwords are equally probable, then the entropy is maximal and equals the base-2 loga-
rithm of the number of possible passwords.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

390 Ch. 10 Identification and Entity Authentication

Verifier (system) B

Password table

A h(passwordA) h(passwordA)

password, A

h(password)

A

password
=

REJECT

ACCEPT
yes

no

Claimant A

h

Figure 10.1: Use of one-way function for password-checking.

Another procedural technique intended to improve password security is password ag-
ing. A time period is defined limiting the lifetime of each particular password (e.g., 30 or
90 days). This requires that passwords be changed periodically.

(iv) Slowing down the password mapping

To slow down attacks which involve testing a large number of trial passwords (see §10.2.2),
the password verification function (e.g., one-way function) may be made more computa-
tionally intensive, for example, by iterating a simpler function t > 1 times, with the output
of iteration i used as the input for iteration i + 1. The total number of iterations must be
restricted so as not to impose a noticeable or unreasonable delay for legitimate users. Also,
the iterated function should be such that the iterated mapping does not result in a final range
space whose entropy is significantly decimated.

(v) Salting passwords

To make dictionary attacks less effective, each password, upon initial entry, may be aug-
mented with a t-bit random string called a salt (it alters the “flavor” of the password; cf.
§10.2.3) before applying the one-way function. Both the hashed password and the salt are
recorded in the password file. When the user subsequently enters a password, the system
looks up the salt, and applies the one-way function to the entered password, as altered or
augmented by the salt. The difficulty of exhaustive search on any particular user’s pass-
word is unchanged by salting (since the salt is given in cleartext in the password file); how-
ever, salting increases the complexity of a dictionary attack against a large set of passwords
simultaneously, by requiring the dictionary to contain 2t variations of each trial password,
implying a larger memory requirement for storing an encrypted dictionary, and correspond-
ingly more time for its preparation. Note that with salting, two users who choose the same
password have different entries in the system password file. In some systems, it may be
appropriate to use an entity’s userid itself as salt.

(vi) Passphrases

To allow greater entropy without stepping beyond the memory capacity of human users,
passwords may be extended to passphrases; in this case, the user types in a phrase or sen-
tence rather than a short “word”. The passphrase is hashed down to a fixed-size value, which
plays the same role as a password; here, it is important that the passphrase is not simply trun-

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§10.2 Passwords (weak authentication) 391

cated by the system, as passwords are in some systems. The idea is that users can remember
phrases easier than random character sequences. If passwords resemble English text, then
since each character contains only about 1.5 bits of entropy (Fact 7.67), a passphrase pro-
vides greater security through increased entropy than a short password. One drawback is
the additional typing requirement.

10.2.2 Fixed password schemes: attacks

(i) Replay of fixed passwords

A weakness of schemes using fixed, reusable passwords (i.e., the basic scheme of §10.2),
is the possibility that an adversary learns a user’s password by observing it as it is typed
in (or from where it may be written down). A second security concern is that user-entered
passwords (or one-way hashes thereof) are transmitted in cleartext over the communications
line between the user and the system, and are also available in cleartext temporarily during
system verification. An eavesdropping adversary may record this data, allowing subsequent
impersonation.

Fixed password schemes are thus of use when the password is transmitted over trusted
communications lines safe from monitoring, but are not suitable in the case that passwords
are transmitted over open communications networks. For example, in Figure 10.1, the
claimantAmay be a user logging in from home over a telephone modem, to a remote office
site B two (or two thousand) miles away; the cleartext password might then travel over an
unsecured telephone network (including possibly a wireless link), subject to eavesdropping.

In the case that remote identity verification is used for access to a local resource, e.g.,
an automated cash dispenser with on-line identity verification, the system response (ac-
cept/reject) must be protected in addition to the submitted password, and must include vari-
ability to prevent trivial replay of a time-invariant accept response.

(ii) Exhaustive password search

A very naive attack involves an adversary simply (randomly or systematically) trying pass-
words, one at a time, on the actual verifier, in hope that the correct password is found. This
may be countered by ensuring passwords are chosen from a sufficiently large space, limit-
ing the number of invalid (on-line) attempts allowed within fixed time periods, and slowing
down the password mapping or login-process itself as in §10.2.1(iv). Off-line attacks, in-
volving a (typically large) computation which does not require interacting with the actual
verifier until a final stage, are of greater concern; these are now considered.

Given a password file containing one-way hashes of user passwords, an adversary may
attempt to defeat the system by testing passwords one at a time, and comparing the one-way
hash of each to passwords in the encrypted password file (see §10.2.1(ii)). This is theoreti-
cally possible since both the one-way mapping and the (guessed) plaintext are known. (This
could be precluded by keeping any or all of the details of the one-way mapping or the pass-
word file itself secret, but it is not considered prudent to base the security of the system on
the assumption that such details remain secret forever.) The feasibility of the attack depends
on the number of passwords that need be checked before a match is expected (which itself
depends on the number of possible passwords), and the time required to test each (see Ex-
ample 10.4, Table 10.1, and Table 10.2). The latter depends on the password mapping used,
its implementation, the instruction execution time of the host processor, and the number of
processors available (note exhaustive search is parallelizable). The time required to actu-
ally compare the image of each trial password to all passwords in a password file is typically
negligible.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

392 Ch. 10 Identification and Entity Authentication

10.4 Example (password entropy) Suppose passwords consist of strings of 7-bit ASCII char-
acters. Each has a numeric value in the range 0-127. (When 8-bit characters are used, val-
ues 128-255 compose the extended character set, generally inaccessible from standard key-
boards.) ASCII codes 0-31 are reserved for control characters; 32 is a space character; 33-
126 are keyboard-accessible printable characters; and 127 is a special character. Table 10.1
gives the number of distinct n-character passwords composed of typical combinations of
characters, indicating an upper bound on the security of such password spaces. �

→ c 26 36 (lowercase 62 (mixed case 95 (keyboard
↓ n (lowercase) alphanumeric) alphanumeric) characters)

5 23.5 25.9 29.8 32.9
6 28.2 31.0 35.7 39.4
7 32.9 36.2 41.7 46.0
8 37.6 41.4 47.6 52.6
9 42.3 46.5 53.6 59.1
10 47.0 51.7 59.5 65.7

Table 10.1: Bitsize of password space for various character combinations. The number of n-
character passwords, given c choices per character, is cn. The table gives the base-2 logarithm
of this number of possible passwords.

→ c 26 36 (lowercase 62 (mixed case 95 (keyboard
↓ n (lowercase) alphanumeric) alphanumeric) characters)

5 0.67 hr 3.4 hr 51 hr 430 hr
6 17 hr 120 hr 130 dy 4.7 yr
7 19 dy 180 dy 22 yr 440 yr
8 1.3 yr 18 yr 1400 yr 42000 yr
9 34 yr 640 yr 86000 yr 4.0× 106 yr
10 890 yr 23000 yr 5.3× 106 yr 3.8× 108 yr

Table 10.2: Time required to search entire password space. The table gives the timeT (in hours,
days, or years) required to search or pre-compute over the entire specified spaces using a single
processor (cf. Table 10.1). T = cn · t · y, where t is the number of times the password mapping
is iterated, and y the time per iteration, for t = 25, y = 1/(125 000) sec. (This approximates
the UNIX crypt command on a high-end PC performing DES at 1.0 Mbytes/s – see §10.2.3.)

(iii) Password-guessing and dictionary attacks

To improve upon the expected probability of success of an exhaustive search, rather than
searching through the space of all possible passwords, an adversary may search the space in
order of decreasing (expected) probability. While ideally arbitrary strings of n characters
would be equiprobable as user-selected passwords, most (unrestricted) users select pass-
words from a small subset of the full password space (e.g., short passwords; dictionary
words; proper names; lowercase strings). Such weak passwords with low entropy are easily
guessed; indeed, studies indicate that a large fraction of user-selected passwords are found
in typical (intermediate) dictionaries of only 150 000 words, while even a large dictionary
of 250 000 words represents only a tiny fraction of all possible n-character passwords (see
Table 10.1).

Passwords found in any on-line or available list of words may be uncovered by an ad-
versary who tries all words in this list, using a so-called dictionary attack. Aside from tradi-
tional dictionaries as noted above, on-line dictionaries of words from foreign languages, or

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§10.2 Passwords (weak authentication) 393

on specialized topics such as music, film, etc. are available. For efficiency in repeated use
by an adversary, an “encrypted” (hashed) list of dictionary or high-probability passwords
may be created and stored on disk or tape; password images from system password files
may then be collected, ordered (using a sorting algorithm or conventional hashing), and
then compared to entries in the encrypted dictionary. Dictionary-style attacks are not gen-
erally successful at finding a particular user’s password, but find many passwords in most
systems.

10.2.3 Case study – UNIX passwords

The UNIX2 operating system provides a widely known, historically important example of a
fixed password system, implementing many of the ideas of §10.2.1. A UNIX password file
contains a one-way function of user passwords computed as follows: each user password
serves as the key to encrypt a known plaintext (64 zero-bits). This yields a one-way function
of the key, since only the user (aside from the system, temporarily during password veri-
fication) knows the password. For the encryption algorithm, a minor modification of DES
(§7.4) is used, as described below; variations may appear in products outside of the USA.
The technique described relies on the conjectured property that DES is resistant to known-
plaintext attacks – given cleartext and the corresponding ciphertext, it remains difficult to
find the key.

The specific technique makes repeated use of DES, iterating the encipherment t = 25
times (see Figure 10.2). In detail, a user password is truncated to its first 8 ASCII char-
acters. Each of these provides 7 bits for a 56-bit DES key (padded with 0-bits if less than
8 characters). The key is used to DES-encrypt the 64-bit constant 0, with the output fed
back as input t times iteratively. The 64-bit result is repacked into 11 printable characters
(a 64-bit output and 12 salt bits yields 76 bits; 11 ASCII characters allow 77). In addition,
a non-standard method of password salting is used, intended to simultaneously complicate
dictionary attacks and preclude use of off-the-shelf DES hardware for attacks:

1. password salting. UNIX password salting associates a 12-bit “random” salt (12 bits
taken from the system clock at time of password creation) with each user-selected
password. The 12 bits are used to alter the standard expansion functionE of the DES
mapping (see §7.4), providing one of 4096 variations. (The expansion E creates a
48-bit block; immediately thereafter, the salt bits collectively determine one of 4096
permutations. Each bit is associated with a pre-determined pair from the 48-bit block,
e.g., bit 1 with block bits 1 and 25, bit 2 with block bits 2 and 26, etc. If the salt bit is 1,
the block bits are swapped, and otherwise they are not.) Both the hashed password
and salt are recorded in the system password file. Security of any particular user’s
password is unchanged by salting, but a dictionary attack now requires 212 = 4096
variations of each trial password.

2. preventing use of off-the-shelf DES chips. Because the DES expansion permutation
E is dependent on the salt, standard DES chips can no longer be used to implement
the UNIX password algorithm. An adversary wishing to use hardware to speed up an
attack must build customized hardware rather than use commercially available chips.
This may deter adversaries with modest resources.

The value stored for a given userid in the write-protected password file/etc/passwd
is thus the iterated encryption of 0 under that user’s password, using the salted modification
of DES. The constant 0 here could be replaced by other values, but typically is not. The
overall algorithm is called the UNIX crypt password algorithm.
2UNIX is a trademark of Bell Laboratories.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

394 Ch. 10 Identification and Entity Authentication

64

56

64

12

12

user
password

keyK

I1 = 0 · · · 0

data
Ii

user salt

next input Ii,

O25

/etc/passwd

into eleven

7-bit characters

ASCII chars;
0-pad if
necessary

truncate to 8

output
Oi

repack 76 bits

“encrypted” password

DES∗

2 ≤ i ≤ 25

Figure 10.2: UNIX crypt password mapping. DES* indicates DES with the expansion mapping E
modified by a 12-bit salt.

10.5 Remark (performance advances) While the UNIX crypt mapping with t = 25 iterations
provided a reasonable measure of protection against exhaustive search when introduced in
the 1970s, for equivalent security in a system designed today a more computationally in-
tensive mapping would be provided, due to performance advances in both hardware and
software.

10.2.4 PINs and passkeys

(i) PINs

Personal identification numbers (PINs) fall under the category of fixed (time-invariant)
passwords. They are most often used in conjunction with “something possessed”, typically
a physical token such as a plastic banking card with a magnetic stripe, or a chipcard. To
prove one’s identity as the authorized user of the token, and gain access to the privileges
associated therewith, entry of the correct PIN is required when the token is used. This pro-
vides a second level of security if the token is lost or stolen. PINs may also serve as the
second level of security for entry to buildings which have an independent first level of se-
curity (e.g., a security guard or video camera).

For user convenience and historical reasons, PINs are typically short (relative to fixed
password schemes) and numeric, e.g., 4 to 8 digits. To prevent exhaustive search through
such a small key space (e.g., 10 000 values for a 4-digit numeric PIN), additional procedural
constraints are necessary. For example, some automated cash dispenser machines accessed

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§10.2 Passwords (weak authentication) 395

by banking cards confiscate a card if three incorrect PINs are entered successively; for oth-
ers, incorrect entry of a number of successive PINs may cause the card to be “locked” or
deactivated, thereafter requiring a longer PIN (e.g., 8 digits) for reactivation following such
suspicious circumstances.

In an on-line system using PINs or reusable passwords, a claimed identity accompanied
by a user-entered PIN may be verified by comparison to the PIN stored for that identity in
a system database. An alternative is to use the PIN as a key for a MAC (see Chapter 9).

In an off-line system without access to a central database, information facilitating PIN
verification must be stored on the token itself. If the PIN need not be user-selected, this may
be done by defining the PIN to be a function of a secret key and the identity associated with
the token; the PIN is then verifiable by any remote system knowing this master key.

In an off-line system, it may also be desirable to allow the PIN to be user-selectable, to
facilitate PIN memorization by users. In this case, the PIN may be encrypted under a master
key and stored on the token, with the master key known to all off-line terminals that need
to be capable of verifying the token. A preferable design is to store a one-way function of
the PIN, user identity, and master key on the token.

(ii) Two-stage authentication and password-derived keys

Human users have difficulty remembering secret keys which have sufficient entropy to pro-
vide adequate security. Two techniques which address this issue are now described.

When tokens are used with off-line PIN verification, a common technique is for the
PIN to serve to verify the user to the token, while the token contains additional independent
information allowing the token to authenticate itself to the system (as a valid token repre-
senting a legitimate user). The user is thereby indirectly authenticated to the system by a
two-stage process. This requires the user have possession of the token but need remember
only a short PIN, while a longer key (containing adequate entropy) provides cryptographic
security for authentication over an unsecured link.

A second technique is for a user password to be mapped by a one-way hash function
into a cryptographic key (e.g., a 56-bit DES key). Such password-derived keys are called
passkeys. The passkey is then used to secure a communications link between the user and
a system which also knows the user password. It should be ensured that the entropy of the
user’s password is sufficiently large that exhaustive search of the password space is not more
efficient than exhaustive search of the passkey space (i.e., guessing passwords is not easier
than guessing 56-bit DES keys); see Table 10.1 for guidance.

An alternative to having passkeys remain fixed until the password is changed is to keep
a running sequence number on the system side along with each user’s password, for use as
a time-variant salt communicated to the user in the clear and incremented after each use. A
fixed per-user salt could also be used in addition to a running sequence number.

Passkeys should be viewed as long-term keys, with use restricted to authentication and
key management (e.g., rather than also for bulk encryption of user data). A disadvantage of
using password-derived keys is that storing each user’s password within the system requires
some mechanism to protect the confidentiality of the stored passwords.

10.2.5 One-time passwords (towards strong authentication)

A natural progression from fixed password schemes to challenge-response identification
protocols may be observed by considering one-time password schemes. As was noted in
§10.2.2, a major security concern of fixed password schemes is eavesdropping and subse-
quent replay of the password. A partial solution is one-time passwords: each password is

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

396 Ch. 10 Identification and Entity Authentication

used only once. Such schemes are safe from passive adversaries who eavesdrop and later
attempt impersonation. Variations include:

1. shared lists of one-time passwords. The user and the system use a sequence or set of t
secret passwords, (each valid for a single authentication), distributed as a pre-shared
list. A drawback is maintenance of the shared list. If the list is not used sequen-
tially, the system may check the entered password against all remaining unused pass-
words. A variation involves use of a challenge-response table, whereby the user and
the system share a table of matching challenge-response pairs, ideally with each pair
valid at most once; this non-cryptographic technique differs from the cryptographic
challenge-response of §10.3.

2. sequentially updated one-time passwords. Initially only a single secret password is
shared. During authentication using password i, the user creates and transmits to the
system a new password (password i + 1) encrypted under a key derived from pass-
word i. This method becomes difficult if communication failures occur.

3. one-time password sequences based on a one-way function. Lamport’s one-time
password scheme is described below. This method is more efficient (with respect to
bandwidth) than sequentially updated one-time passwords, and may be viewed as a
challenge-response protocol where the challenge is implicitly defined by the current
position within the password sequence.

One-time passwords based on one-way functions (Lamport’s scheme)

In Lamport’s one-time password scheme, the user begins with a secretw. A one-way func-
tion (OWF)H is used to define the password sequence: w,H(w),H(H(w)), . . . ,Ht(w).
The password for the ith identification session, 1 ≤ i ≤ t, is defined to be wi = Ht−i(w).

10.6 Protocol Lamport’s OWF-based one-time passwords

SUMMARY: A identifies itself to B using one-time passwords from a sequence.

1. One-time setup.

(a) User A begins with a secret w. Let H be a one-way function.
(b) A constant t is fixed (e.g., t = 100 or 1000), defining the number of identifica-

tions to be allowed. (The system is thereafter restarted with a new w, to avoid
replay attacks.)

(c) A transfers (the initial shared secret) w0 = Ht(w), in a manner guaranteeing
its authenticity, to the system B. B initializes its counter for A to iA = 1.

2. Protocol messages. The ith identification, 1 ≤ i ≤ t, proceeds as follows:

A→ B : A, i, wi (= Ht−i(w)) (1)

Here A→ B: X denotesA sending the messageX to B.
3. Protocol actions. To identify itself for session i, A does the following.

(a) A’s equipment computes wi = Ht−i(w) (easily done either from w itself, or
from an appropriate intermediate value saved during the computation ofHt(w)
initially), and transmits (1) to B.

(b) B checks that i = iA, and that the received password wi satisfies: H(wi) =
wi−1. If both checks succeed, B accepts the password, sets iA ← iA + 1, and
saves wi for the next session verification.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§10.3 Challenge-response identification (strong authentication) 397

10.7 Note (pre-play attack) Protocol 10.6 and similar one-time password schemes including
that of Note 10.8 remain vulnerable to an active adversary who intercepts and traps (or im-
personates the system in order to extract) an as-yet unused one-time password, for the pur-
pose of subsequent impersonation. To prevent this, a password should be revealed only to
a party which itself is known to be authentic. Challenge-response techniques (see §10.3)
address this threat.

10.8 Note (alternative one-time password scheme) The following one-time-password alterna-
tive to Protocol 10.6 is suitable if storing actual passwords on the system side is acceptable
(cf. Figure 10.1; compare also to §10.3.2(iii)). The claimant A has a shared password P
with the system verifierB, to which it sends the data pair: (r, H(r, P)). The verifier com-
putes the hash of the received value r and its local copy of P , and declares acceptance if
this matches the received hash value. To avoid replay, r should be a sequence number, time-
stamp, or other parameter which can be easily guaranteed to be accepted only once.

10.3 Challenge-response identification (strong
authentication)

The idea of cryptographic challenge-response protocols is that one entity (the claimant)
“proves” its identity to another entity (the verifier) by demonstrating knowledge of a secret
known to be associated with that entity, without revealing the secret itself to the verifier dur-
ing the protocol.3 This is done by providing a response to a time-variant challenge, where
the response depends on both the entity’s secret and the challenge. The challenge is typi-
cally a number chosen by one entity (randomly and secretly) at the outset of the protocol.
If the communications line is monitored, the response from one execution of the identifi-
cation protocol should not provide an adversary with useful information for a subsequent
identification, as subsequent challenges will differ.

Before considering challenge-response identification protocols based on symmetric-
key techniques (§10.3.2), public-key techniques (§10.3.3), and zero-knowledge concepts
(§10.4), background on time-variant parameters is first provided.

10.3.1 Background on time-variant parameters

Time-variant parameters may be used in identification protocols to counteract replay and
interleaving attacks (see §10.5), to provide uniqueness or timeliness guarantees, and to pre-
vent certain chosen-text attacks. They may similarly be used in authenticated key estab-
lishment protocols (Chapter 12), and to provide uniqueness guarantees in conjunction with
message authentication (Chapter 9).

Time-variant parameters which serve to distinguish one protocol instance from another
are sometimes called nonces, unique numbers, or non-repeating values; definitions of these
terms have traditionally been loose, as the specific properties required depend on the actual
usage and protocol.

10.9 Definition A nonce is a value used no more than once for the same purpose. It typically
serves to prevent (undetectable) replay.
3In some mechanisms, the secret is known to the verifier, and is used to verify the response; in others, the secret

need not actually be known by the verifier.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

398 Ch. 10 Identification and Entity Authentication

The term nonce is most often used to refer to a “random” number in a challenge-response
protocol, but the required randomness properties vary. Three main classes of time-variant
parameters are discussed in turn below: random numbers, sequence numbers, and time-
stamps. Often, to ensure protocol security, the integrity of such parameters must be guar-
anteed (e.g., by cryptographically binding them with other data in a challenge-response
sequence). This is particularly true of protocols in which the only requirement of a time-
variant parameter is uniqueness, e.g., as provided by a never-repeated sequential counter.4

Following are some miscellaneous points about time-variant parameters.

1. Verifiable timeliness may be provided through use of random numbers in challenge-
response mechanisms, timestamps in conjunction with distributed timeclocks, or se-
quence numbers in conjunction with the maintenance of pairwise (claimant, verifier)
state information.

2. To provide timeliness or uniqueness guarantees, the verifier in the protocol controls
the time-variant parameter, either directly (through choice of a random number) or
indirectly (through information maintained regarding a shared sequence, or logically
through a common time clock).

3. To uniquely identify a message or sequence of messages (protocol instance), nonces
drawn from a monotonically increasing sequence may be used (e.g., sequence or se-
rial numbers, and timestamps, if guaranteed to be increasing and unique), or random
numbers of sufficient size. Uniqueness is often required only within a given key life-
time or time window.

4. Combinations of time-variant parameters may be used, e.g., random numbers con-
catenated to timestamps or sequence numbers. This may guarantee that a pseudoran-
dom number is not duplicated.

(i) Random numbers

Random numbers may be used in challenge-response mechanisms, to provide uniqueness
and timeliness assurances, and to preclude certain replay and interleaving attacks (see §10.5,
including Remark 10.42). Random numbers may also serve to provide unpredictability, for
example, to preclude chosen-text attacks.

The term random numbers, when used in the context of identification and authentica-
tion protocols, includes pseudorandom numbers which are unpredictable to an adversary
(see Remark 10.11); this differs from randomness in the traditional statistical sense. In pro-
tocol descriptions, “choose a random number” is usually intended to mean “pick a number
with uniform distribution from a specified sample space” or “select from a uniform distri-
bution”.

Random numbers are used in challenge-response protocols as follows. One entity in-
cludes a (new) random number in an outgoing message. An incoming message subsequen-
tly received (e.g., the next protocol message of the same protocol instance), whose construc-
tion required knowledge of this nonce and to which this nonce is inseparably bound, is then
deemed to be fresh (Remark 10.10) based on the reasoning that the random number links
the two messages. The non-tamperable binding is required to prevent appending a nonce
to an old message.

Random numbers used in this manner serve to fix a relative point in time for the parties
involved, analogous to a shared timeclock. The maximum allowable time between protocol
messages is typically constrained by a timeout period, enforced using local, independent
countdown timers.
4Such predictable parameters differ from sequence numbers in that they might not be bound to any stored state.

Without appropriate cryptographic binding, a potential concern then is a pre-play attack wherein an adversary
obtains the response before the time-variant parameter is legitimately sent (see Note 10.7).

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§10.3 Challenge-response identification (strong authentication) 399

10.10 Remark (freshness) In the context of challenge-response protocols, fresh typically means
recent, in the sense of having originated subsequent to the beginning of the current protocol
instance. Note that such freshness alone does not rule out interleaving attacks using parallel
sessions (see §10.5).

10.11 Remark (birthday repetitions in random numbers) In generating pseudorandom numbers
for use as time-variant parameters, it suffices if the probability of a repeated number is ac-
ceptably low and if numbers are not intentionally reused. This may be achieved by selecting
the random value from a sufficiently large sample space, taking into account coincidences
arising from the birthday paradox. The latter may be addressed by either using a larger sam-
ple space, or by using a generation process guaranteed to avoid repetition (e.g., a bijection),
such as using the counter or OFB mode of a block cipher (§7.2.2).

10.12 Remark (disadvantages of random numbers) Many protocols involving random numbers
require the generation of cryptographically secure (i.e., unpredictable) random numbers.
If pseudorandom number generators are used, an initial seed with sufficient entropy is re-
quired. When random numbers are used in challenge-response mechanisms in place of
timestamps, typically the protocol involves one additional message, and the challenger must
temporarily maintain state information, but only until the response is verified.

(ii) Sequence numbers

A sequence number (serial number, or counter value) serves as a unique number identify-
ing a message, and is typically used to detect message replay. For stored files, sequence
numbers may serve as version numbers for the file in question. Sequence numbers are spe-
cific to a particular pair of entities, and must explicitly or implicitly be associated with both
the originator and recipient of a message; distinct sequences are customarily necessary for
messages from A to B and from B to A.

Parties follow a pre-defined policy for message numbering. A message is accepted only
if the sequence number therein has not been used previously (or not used previously within
a specified time period), and satisfies the agreed policy. The simplest policy is that a se-
quence number starts at zero, is incremented sequentially, and each successive message
has a number one greater than the previous one received. A less restrictive policy is that
sequence numbers need (only) be monotonically increasing; this allows for lost messages
due to non-malicious communications errors, but precludes detection of messages lost due
to adversarial intervention.

10.13 Remark (disadvantages of sequence numbers) Use of sequence numbers requires an over-
head as follows: each claimant must record and maintain long-term pairwise state infor-
mation for each possible verifier, sufficient to determine previously used and/or still valid
sequence numbers. Special procedures (e.g., for resetting sequence numbers) may be neces-
sary following circumstances disrupting normal sequencing (e.g., system failures). Forced
delays are not detectable in general. As a consequence of the overhead and synchronization
necessary, sequence numbers are most appropriate for smaller, closed groups.

(iii) Timestamps

Timestamps may be used to provide timeliness and uniqueness guarantees, to detect mes-
sage replay. They may also be used to implement time-limited access privileges, and to
detect forced delays.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

400 Ch. 10 Identification and Entity Authentication

Timestamps function as follows. The party originating a message obtains a timestamp
from its local (host) clock, and cryptographically binds it to a message. Upon receiving a
time-stamped message, the second party obtains the current time from its own (host) clock,
and subtracts the timestamp received. The received message is valid provided:

1. the timestamp difference is within the acceptance window (a fixed-size time interval,
e.g., 10 milliseconds or 20 seconds, selected to account for the maximum message
transit and processing time, plus clock skew); and

2. (optionally) no message with an identical timestamp has been previously received
from the same originator. This check may be made by the verifier maintaining a list
of all timestamps received from each source entity within the current acceptance win-
dow. Another method is to record the latest (valid) timestamp used by each source
(in this case the verifier accepts only strictly increasing time values).

The security of timestamp-based verification relies on use of a common time reference.
This requires that host clocks be available and both “loosely synchronized” and secured
from modification. Synchronization is necessary to counter clock drift, and must be appro-
priate to accommodate the acceptance window used. The degree of clock skew allowed,
and the acceptance window, must be appropriately small to preclude message replay if the
above optional check is omitted. The timeclock must be secure to prevent adversarial re-
setting of a clock backwards so as to restore the validity of old messages, or setting a clock
forward to prepare a message for some future point in time (cf. Note 10.7).

10.14 Remark (disadvantages of timestamps) Timestamp-based protocols require that time-
clocks be both synchronized and secured. The preclusion of adversarial modification of
local timeclocks is difficult to guarantee in many distributed environments; in this case,
the security provided must be carefully re-evaluated. Maintaining lists of used timestamps
within the current window has the drawback of a potentially large storage requirement, and
corresponding verification overhead. While technical solutions exist for synchronizing dis-
tributed clocks, if synchronization is accomplished via network protocols, such protocols
themselves must be secure, which typically requires authentication; this leads to a circular
security argument if such authentication is itself timestamp-based.

10.15 Remark (comparison of time-variant parameters) Timestamps in protocols offer the ad-
vantage of fewer messages (typically by one), and no requirement to maintain pairwise
long-term state information (cf. sequence numbers) or per-connection short-term state in-
formation (cf. random numbers). Minimizing state information is particularly important for
servers in client-server applications. The main drawback of timestamps is the requirement
of maintaining secure, synchronized distributed timeclocks. Timestamps in protocols may
typically be replaced by a random number challenge plus a return message.

10.3.2 Challenge-response by symmetric-key techniques

Challenge-response mechanisms based on symmetric-key techniques require the claimant
and the verifier to share a symmetric key. For closed systems with a small number of users,
each pair of users may share a key a priori; in larger systems employing symmetric-key
techniques, identification protocols often involve the use of a trusted on-line server with
which each party shares a key. The on-line server effectively acts like the hub of a spoked
wheel, providing a common session key to two parties each time one requests authentication
with the other.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§10.3 Challenge-response identification (strong authentication) 401

The apparent simplicity of the techniques presented below and in §10.3.3 is misleading.
The design of such techniques is intricate and the security is brittle; those presented have
been carefully selected.

(i) Challenge-response based on symmetric-key encryption

Both the Kerberos protocol (Protocol 12.24) and the Needham-Schroeder shared-key pro-
tocol (Protocol 12.26) provide entity authentication based on symmetric encryption and in-
volve use of an on-line trusted third party. These are discussed in Chapter 12, as they addi-
tionally provide key establishment.

Below, three simple techniques based on ISO/IEC 9798-2 are described. They assume
the prior existence of a shared secret key (and no further requirement for an on-line server).
In this case, two parties may carry out unilateral entity authentication in one pass using
timestamps or sequence numbers, or two passes using random numbers; mutual authen-
tication requires, respectively, two and three passes. The claimant corroborates its identity
by demonstrating knowledge of the shared key by encrypting a challenge (and possibly ad-
ditional data) using the key. These techniques are similar to those given in §12.3.1.

10.16 Remark (data integrity) When encipherment is used in entity authentication protocols,
data integrity must typically also be guaranteed to ensure security. For example, for mes-
sages spanning more than one block, the rearrangement of ciphertext blocks cannot be de-
tected in the ECB mode of block encryption, and even CBC encryption may provide only
a partial solution. Such data integrity should be provided through use of an accepted data
integrity mechanism (see §9.6; cf. Remark 12.19).

9798-2 mechanisms: Regarding notation: rA and tA, respectively, denote a random num-
ber and a timestamp, generated by A. (In these mechanisms, the timestamp tA may be re-
placed by a sequence number nA, providing slightly different guarantees.) EK denotes a
symmetric encryption algorithm, with a key K shared by A and B; alternatively, distinct
keysKAB andKBAmay be used for unidirectional communication. It is assumed that both
parties are aware of the claimed identity of the other, either by context or by additional (un-
secured) cleartext data fields. Optional message fields are denoted by an asterisk (*), while
a comma (,) within the scope of EK denotes concatenation.

1. unilateral authentication, timestamp-based:

A→ B : EK(tA, B∗) (1)

Upon reception and decryption,B verifies that the timestamp is acceptable, and op-
tionally verifies the received identifier as its own. The identifier B here prevents an
adversary from re-using the message immediately on A, in the case that a single bi-
directional keyK is used.

2. unilateral authentication, using random numbers:
To avoid reliance on timestamps, the timestamp may be replaced by a random num-
ber, at the cost of an additional message:

A← B : rB (1)
A→ B : EK(rB , B∗) (2)

B decrypts the received message and checks that the random number matches that
sent in (1). Optionally, B checks that the identifier in (2) is its own; this prevents
a reflection attack in the case of a bi-directional key K. To prevent chosen-text at-
tacks on the encryption scheme EK , A may (as below) embed an additional random
number in (2) or, alternately, the form of the challenges can be restricted; the critical
requirement is that they be non-repeating.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

402 Ch. 10 Identification and Entity Authentication

3. mutual authentication, using random numbers:

A← B : rB (1)
A→ B : EK(rA, rB, B∗) (2)
A← B : EK(rB , rA) (3)

Upon reception of (2),B carries out the checks as above and, in addition, recovers the
decrypted rA for inclusion in (3). Upon decrypting (3), A checks that both random
numbers match those used earlier. The second random number rA in (2) serves both
as a challenge and to prevent chosen-text attacks.

10.17 Remark (doubling unilateral authentication) While mutual authentication may be obtain-
ed by running any of the above unilateral authentication mechanisms twice (once in each
direction), such an ad-hoc combination suffers the drawback that the two unilateral authen-
tications, not being linked, cannot logically be associated with a single protocol run.

(ii) Challenge-response based on (keyed) one-way functions

The encryption algorithm in the above mechanisms may be replaced by a one-way or non-
reversible function of the shared key and challenge, e.g., having properties similar to a MAC
(Definition 9.7). This may be preferable in situations where encryption algorithms are oth-
erwise unavailable or undesirable (e.g., due to export restrictions or computational costs).
The modifications required to the 9798-2 mechanisms above (yielding the analogous mech-
anisms of ISO/IEC 9798-4) are the following:

1. the encryption function EK is replaced by a MAC algorithm hK ;
2. rather than decrypting and verifying that fields match, the recipient now indepen-

dently computes the MAC value from known quantities, and accepts if the computed
MAC matches the received MAC value; and

3. to enable independent MAC computation by the recipient, the additional cleartext
field tA must be sent in message (1) of the one-pass mechanism. rA must be sent as
an additional cleartext field in message (2) of the three-pass mechanism.

The revised three-pass challenge-response mechanism based on a MAC hK , with ac-
tions as noted above, provides mutual identification. Essentially the same protocol, called
SKID3, has messages as follows:

A← B : rB (1)
A→ B : rA, hK(rA, rB , B) (2)
A← B : hK(rB , rA, A) (3)

Note that the additional field A is included in message (3). The protocol SKID2, obtained
by omitting the third message, provides unilateral entity authentication.

(iii) Implementation using hand-held passcode generators

Answering a challenge in challenge-response protocols requires some type of computing
device and secure storage for long-term keying material (e.g., a file on a trusted local disk,
perhaps secured under a local password-derived key). For additional security, a device such
as a chipcard (and corresponding card reader) may be used for both the key storage and
response computation. In some cases, a less expensive option is a passcode generator.

Passcode generators are hand-held devices, resembling thin calculators in both size
and display, and which provide time-variant passwords or passcodes (see Figure 10.3). The
generator contains a device-specific secret key. When a user is presented with a challenge
(e.g., by a system displaying it on a computer terminal), the challenge is keyed into the gen-
erator. The generator displays a passcode, computed as a function of the secret key and the

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§10.3 Challenge-response identification (strong authentication) 403

challenge; this may be either an asymmetric function, or a symmetric function (e.g., encryp-
tion or MAC as discussed above). The user returns the response (e.g., keys the passcode in
at his terminal), which the system verifies by comparison to an independently computed
response, using the same information stored on the system side.

For further protection against misplaced generators, the response may also depend on a
user-entered PIN. Simpler passcode generators omit the user keypad, and use as an implicit
challenge a time value (with a typical granularity of one minute) defined by a timeclock
loosely synchronizedautomatically between the system and the passcode generator. A more
sophisticated device combines implicit synchronization with explicit challenges, presenting
an explicit challenge only when synchronization is lost.

A drawback of systems using passcode generators is, as per §10.2.1(i), the requirement
to provide confidentiality for user passwords stored on the system side.

passcode
generator

PIN
(optional)

sA

f

display
(response)

y

(challenge)

A

A (user) B (system)

A

(optional)

REJECT

secret database

sA

PINA

e e

no

(login request)

sA

PINA

user-entered

yes

f

=

challenge
generator

ACCEPT

Figure 10.3: Functional diagram of a hand-held passcode generator. sA isA’s user-specific secret.
f is a one-way function. The (optional) PIN could alternatively be locally verified in the passcode
generator only, making y independent of it.

10.3.3 Challenge-response by public-key techniques

Public-key techniques may be used for challenge-response based identification, with a
claimant demonstrating knowledge of its private key in one of two ways (cf. §12.5):

1. the claimant decrypts a challenge encrypted under its public key;
2. the claimant digitally signs a challenge.

Ideally, the public-key pair used in such mechanisms should not be used for other pur-
poses, since combined usage may compromise security (Remark 10.40). A second caution
is that the public-key system used should not be susceptible to chosen-ciphertext attacks,5

5Both chosen-ciphertext and chosen-plaintext attacks are of concern for challenge-response techniques based
on symmetric-key encryption.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

404 Ch. 10 Identification and Entity Authentication

as an adversary may attempt to extract information by impersonating a verifier and choos-
ing strategic rather than random challenges. (See Notes 8.13 and 8.58 regarding the Ra-
bin/Williams and Blum-Goldwasser schemes.)

Incorporating a self-generated random number or confounder (§10.5) into the data over
which the response is computed may address both of these concerns. Such data may be
made available to the verifier in cleartext to allow verification.

(i) Challenge-response based on public-key decryption

Identification based on PK decryption and witness. Consider the following protocol:

A← B : h(r), B, PA(r,B) (1)
A→ B : r (2)

B chooses a random r, computes the witness x = h(r) (x demonstrates knowledge of r
without disclosing it – cf. §10.4.1), and computes the challenge e = PA(r,B). Here PA
denotes the public-key encryption (e.g., RSA) algorithm of A, and h denotes a one-way
hash function. B sends (1) to A. A decrypts e to recover r′ and B′, computes x′ = h(r′),
and quits if x′ 6= x (implying r′ 6= r) or ifB′ is not equal to its own identifierB. Otherwise,
A sends r = r′ to B. B succeeds with (unilateral) entity authentication of A upon verify-
ing the received r agrees with that sent earlier. The use of the witness precludes chosen-text
attacks.

Modified Needham-SchroederPK protocol for identification. The modified Needham-Schr-
oeder public-key protocol of Note 12.39 provides key transport of distinct keys k1, k2 from
A toB andB toA, respectively, as well as mutual authentication. If the key establishment
feature is not required, k1 and k2 may be omitted. With PB denoting the public-key encryp-
tion algorithm for B (e.g., RSA), the messages in the modified protocol for identification
are then as follows:

A→ B : PB(r1, A) (1)
A← B : PA(r1, r2) (2)
A→ B : r2 (3)

Verification actions are analogous to those of Note 12.39.

(ii) Challenge-response based on digital signatures

X.509 mechanisms based on digital signatures. The ITU-T (formerly CCITT) X.509 two-
and three-way strong authentication protocols specify identification techniques based on
digital signatures and, respectively, timestamps and random number challenges. These are
described in §12.5.2, and optionally provide key establishment in addition to entity authen-
tication.

9798-3 mechanisms. Three challenge-response identification mechanisms based on signa-
tures are given below, analogous to those in §10.3.2(i) based on symmetric-key encryption,
but, in this case, corresponding to techniques in ISO/IEC 9798-3. Regarding notation (cf.
9798-2 above): rA and tA, respectively, denote a random number and timestamp generated
byA. SA denotesA’s signature mechanism; if this mechanism provides message recovery,
some of the cleartext fields listed below are redundant and may be omitted. certA denotes
the public-key certificate containingA’s signature public key. (In these mechanisms, if the
verifier has the authentic public key of the claimant a priori, certificates may be omitted;
otherwise, it is assumed that the verifier has appropriate information to verify the validity
of the public key contained in a received certificate – see Chapter 13.) Remark 10.17 also
applies here.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§10.4 Customized and zero-knowledge identification protocols 405

1. unilateral authentication with timestamps:

A→ B : certA, tA, B, SA(tA, B) (1)

Upon reception,B verifies that the timestamp is acceptable, the received identifierB
is its own, and (using A’s public key extracted from certA after verifying the latter)
checks that the signature over these two fields is correct.

2. unilateral authentication with random numbers: Reliance on timestamps may be re-
placed by a random number, at the cost of an additional message:

A← B : rB (1)
A→ B : certA, rA, B, SA(rA, rB, B) (2)

B verifies that the cleartext identifier is its own, and using a valid signature public key
forA (e.g., from certA), verifies thatA’s signature is valid over the cleartext random
number rA, the same number rB as sent in (1), and this identifier. The signed rA
explicitly prevents chosen-text attacks.

3. mutual authentication with random numbers:

A← B : rB (1)
A→ B : certA, rA, B, SA(rA, rB, B) (2)
A← B : certB , A, SB(rB , rA, A) (3)

Processing of (1) and (2) is as above; (3) is processed analogously to (2).

10.4 Customized and zero-knowledge identification
protocols

This section considers protocols specifically designed to achieve identification, which use
asymmetric techniques but do not rely on digital signatures or public-key encryption, and
which avoid use of block ciphers, sequence numbers, and timestamps. They are similar
in some regards to the challenge-response protocols of §10.3, but are based on the ideas
of interactive proof systems and zero-knowledge proofs (see §10.4.1), employing random
numbers not only as challenges, but also as commitments to prevent cheating.

10.4.1 Overview of zero-knowledge concepts

A disadvantage of simple password protocols is that when a claimantA (called a prover in
the context of zero-knowledge protocols) gives the verifier B her password, B can there-
after impersonate A. Challenge-response protocols improve on this: A responds to B’s
challenge to demonstrate knowledge of A’s secret in a time-variant manner, providing in-
formation not directly reusable byB. This might nonetheless reveal some partial informa-
tion about the claimant’s secret; an adversarial verifier might also be able to strategically
select challenges to obtain responses providing such information (see chosen-text attacks,
§10.5).

Zero-knowledge (ZK) protocols are designed to address these concerns, by allowing
a prover to demonstrate knowledge of a secret while revealing no information whatsoever
(beyond what the verifier was able to deduce prior to the protocol run) of use to the verifier

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

406 Ch. 10 Identification and Entity Authentication

in conveying this demonstration of knowledge to others. The point is that only a single bit
of information need be conveyed – namely, that the prover actually does know the secret.

More generally, a zero-knowledge protocol allows a proof of the truth of an assertion,
while conveying no information whatsoever (this notion can be quantified in a rigorous
sense) about the assertion itself other than its actual truth. In this sense, a zero-knowledge
proof is similar to an answer obtained from a (trusted) oracle.

(i) Interactive proof systems and zero-knowledge protocols

The ZK protocols to be discussed are instances of interactive proof systems, wherein a prov-
er and verifier exchange multiple messages (challenges and responses), typically dependent
on random numbers (ideally: the outcomes of fair coin tosses) which they may keep secret.
The prover’s objective is to convince (prove to) the verifier the truth of an assertion, e.g.,
claimed knowledge of a secret. The verifier either accepts or rejects the proof. The tradi-
tional mathematical notion of a proof, however, is altered to an interactive game wherein
proofs are probabilistic rather than absolute; a proof in this context need be correct only
with bounded probability, albeit possibly arbitrarily close to 1. For this reason, an interac-
tive proof is sometimes called a proof by protocol.

Interactive proofs used for identification may be formulated as proofs of knowledge.
A possesses some secret s, and attempts to convince B it has knowledge of s by correctly
responding to queries (involving publicly known inputs and agreed upon functions) which
require knowledge of s to answer. Note that proving knowledge of s differs from proving
that such s exists – for example, proving knowledge of the prime factors of n differs from
proving that n is composite.

An interactive proof is said to be a proof of knowledge if it has both the properties of
completeness and soundness. Completeness may be viewed as the customary requirement
that a protocol functions properly given honest participants.

10.18 Definition (completeness property) An interactive proof (protocol) is complete if, given
an honest prover and an honest verifier, the protocol succeeds with overwhelming probabil-
ity (i.e., the verifier accepts the prover’s claim). The definition of overwhelming depends
on the application, but generally implies that the probability of failure is not of practical
significance.

10.19 Definition (soundness property) An interactive proof (protocol) is sound if there exists an
expected polynomial-time algorithmM with the following property: if a dishonest prover
(impersonating A) can with non-negligible probability successfully execute the protocol
with B, thenM can be used to extract from this prover knowledge (essentially equivalent
toA’s secret) which with overwhelming probability allows successful subsequent protocol
executions.

An alternate explanation of the condition in Definition 10.19 is as follows: the prover’s se-
cret s together with public data satisfies some polynomial-time predicate, and another so-
lution of this predicate (possibly the same) can be extracted, allowing successful execution
of subsequent protocol instances.

Since any party capable of impersonating A must know the equivalent of A’s secret
knowledge (M can be used to extract it from this party in polynomial time), soundness guar-
antees that the protocol does indeed provide a proof of knowledge – knowledge equivalent
to that being queried is required to succeed. Soundness thus prevents a dishonest prover
from convincing an honest verifier (but does does not by itself guarantee that acquiring the

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§10.4 Customized and zero-knowledge identification protocols 407

prover’s secret is difficult; see Remark 10.23). A standard method to establish the sound-
ness of a particular protocol is to assume the existence of a dishonest prover capable of suc-
cessfully executing the protocol, and show how this allows one to compute the real prover’s
secret.

While an interactive proof of knowledge (or protocol based thereon) must be sound
to be of cryptographic use, the main property of zero-knowledge protocols is the zero-
knowledge aspect itself. For what follows, define a transcript (or view) to be the collection
of messages resulting from protocol execution.

10.20 Definition (zero-knowledge property) A protocol which is a proof of knowledge has the
zero-knowledge property if it is simulatable in the following sense: there exists an expected
polynomial-time algorithm (simulator) which can produce, upon input of the assertion(s)
to be proven but without interacting with the real prover, transcripts indistinguishable from
those resulting from interaction with the real prover.

The zero-knowledge property implies that a prover executing the protocol (even when in-
teracting with a malicious verifier) does not release any information (about its secret knowl-
edge, other than that the particular assertion itself is true) not otherwise computable in
polynomial time from public information alone. Thus, participation does not increase the
chances of subsequent impersonation.

10.21 Remark (simulated ZK protocols and protocol observers) Consider an observer C who
witnesses a zero-knowledge interactive proof (ZKIP) involving a prover A convincing a
verifier B (B 6= C) of some knowledge A has. The “proof” to B does not provide any
guarantees to C. (Indeed, A and B might have a prior agreement, conspiring against C,
on the challenges to be issued.) Similarly, a recorded ZKIP conveys no guarantees upon
playback. This is fundamental to the idea of the zero-knowledge property and the condition
that proofs be simulatable by a verifier alone. Interactive proofs convey knowledge only to
(interactive) verifiers able to select their own random challenges.

10.22 Definition (computational vs. perfect zero-knowledge) A protocol is computationally
zero-knowledge if an observer restricted to probabilistic polynomial-time tests cannot dis-
tinguish real from simulated transcripts. For perfect zero-knowledge, the probability dis-
tributions of the transcripts must be identical. By convention, when not further qualified,
zero-knowledge means computational zero-knowledge.

In the case of computational zero-knowledge, real and simulated transcripts are said
to be polynomially indistinguishable (indistinguishable using polynomial-time algorithms).
Any information extracted by a verifier through interaction with a prover provides no ad-
vantage to the verifier within polynomial time.

10.23 Remark (ZK property and soundness vs. security) The zero-knowledge property (Defini-
tion 10.20) does not guarantee that a protocol is secure (i.e., that the probability of it being
easily defeated is negligible). Similarly, the soundness property (Definition 10.19) does not
guarantee that a protocol is secure. Neither property has much value unless the underlying
problem faced by an adversary is computationally hard.

(ii) Comments on zero-knowledge vs. other asymmetric protocols

The following observations may be made regarding zero-knowledge (ZK) techniques, as
compared with other public-key (PK) techniques.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

408 Ch. 10 Identification and Entity Authentication

1. no degradation with usage: protocols proven to have the ZK property do not suffer
degradation of security with repeated use, and resist chosen-text attacks. This is per-
haps the most appealing practical feature of ZK techniques.
A ZK technique which is not provably secure may or may not be viewed as more
desirable than a PK technique which is provably secure (e.g., as difficult as factoring).

2. encryption avoided: many ZK techniques avoid use of explicit encryption algo-
rithms. This may offer political advantages (e.g., with respect to export controls).

3. efficiency: while some ZK-based techniques are extremely efficient (see §10.4.5),
protocols which formally have the zero-knowledge property typically have higher
communications and/or computational overheads than PK protocols which do not.
The computational efficiency of the more practical ZK-based schemes arises from
their nature as interactive proofs, rather than their zero-knowledge aspect.

4. unproven assumptions: many ZK protocols (“proofs of knowledge”) themselves rely
on the same unproven assumptions as PK techniques (e.g., the intractability of fac-
toring or quadratic residuosity).

5. ZK-based vs. ZK: although supported by prudent underlying principles, many tech-
niques based on zero-knowledge concepts fall short of formally being zero-knowled-
ge and/or formally sound in practice, due to parameter selection for reasons of ef-
ficiency, or for other technical reasons (cf. Notes 10.33 and 10.38). In fact, many
such concepts are asymptotic, and do not apply directly to practical protocols (Re-
mark 10.34).

(iii) Example of zero-knowledge proof: Fiat-Shamir identification protocol

The general idea of a zero-knowledge (ZK) proof is illustrated by the basic version of the
Fiat-Shamir protocol. The basic version is presented here for historical and illustrative pur-
poses (Protocol 10.24). In practice, one would use a more efficient variation, such as Pro-
tocol 10.26, with multiple “questions” per iteration rather than as here, whereB poses only
a single one-bit challenge per iteration.

The objective is forA to identify itself by proving knowledge of a secret s (associated
with A through authentic public data) to any verifierB, without revealing any information
about s not known or computable byB prior to execution of the protocol (see Note 10.25).
The security relies on the difficulty of extracting square roots modulo large composite in-
tegers n of unknown factorization, which is equivalent to that of factoring n (Fact 3.46).

10.24 Protocol Fiat-Shamir identification protocol (basic version)

SUMMARY: A proves knowledge of s to B in t executions of a 3-pass protocol.
1. One-time setup.

(a) A trusted centerT selects and publishes an RSA-like modulusn = pq but keeps
primes p and q secret.

(b) Each claimant A selects a secret s coprime to n, 1 ≤ s ≤ n − 1, computes
v = s2 mod n, and registers v with T as its public key.6

2. Protocol messages. Each of t rounds has three messages with form as follows.

A→ B : x = r2 mod n (1)
A← B : e ∈ {0, 1} (2)
A→ B : y = r · se mod n (3)

6Technically, T should verify the condition gcd(s, n) = 1 or equivalently gcd(v, n) = 1, for this to be a
sound proof of knowledge; andB should stop with failure if gcd(y, n) 6= 1, where y is A’s response in the third
message. But either condition failing would allow the factorization of n, violating the assumption that n cannot
be factored.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§10.4 Customized and zero-knowledge identification protocols 409

3. Protocol actions. The following steps are iterated t times (sequentially and indepen-
dently). B accepts the proof if all t rounds succeed.

(a) A chooses a random (commitment) r, 1 ≤ r ≤ n − 1, and sends (the witness)
x = r2 mod n to B.

(b) B randomly selects a (challenge) bit e = 0 or e = 1, and sends e to A.
(c) A computes and sends to B (the response) y, either y = r (if e = 0) or y =
rs mod n (if e = 1).

(d) B rejects the proof if y = 0, and otherwise accepts upon verifying y2 ≡ x · ve

(mod n). (Depending on e, y2 = x or y2 = xv mod n, since v = s2 mod n.
Note that checking for y = 0 precludes the case r = 0.)

Protocol 10.24 may be explained and informally justified as follows. The challenge (or
exam) e requires thatA be capable of answering two questions, one of which demonstrates
her knowledge of the secret s, and the other an easy question (for honest provers) to prevent
cheating. An adversary impersonating A might try to cheat by selecting any r and setting
x = r2/v, then answering the challenge e = 1 with a “correct” answer y = r; but would
be unable to answer the exam e = 0 which requires knowing a square root of x mod n.
A prover A knowing s can answer both questions, but otherwise can at best answer one
of the two questions, and so has probability only 1/2 of escaping detection. To decrease
the probability of cheating arbitrarily to an acceptably small value of 2−t (e.g., t = 20 or
t = 40), the protocol is iterated t times, withB acceptingA’s identity only if all t questions
(over t rounds) are successfully answered.

10.25 Note (secret information revealed byA) The responsey = r is independent ofA’s secret s,
while the response y = rs mod n also provides no information about s because the random
r is unknown to B. Information pairs (x, y) extracted from A could equally well be simu-
lated by a verifier B alone by choosing y randomly, then defining x = y2 or y2/v mod n.
While this is not the method by whichAwould construct such pairs, such pairs (x, y) have
a probability distribution which is indistinguishable from those A would produce; this es-
tablishes the zero-knowledge property. Despite the ability to simulate proofs, B is unable
to impersonate A because B cannot predict the real-time challenges.

As a minor technical point, however, the protocol does reveal a bit of information: the
answer y = rs provides supporting evidence that v is indeed a square modulo n, and the
soundness of the protocol allows one to conclude, after t successful iterations, that this is
indeed the case.

(iv) General structure of zero-knowledge protocols

Protocol 10.24 illustrates the general structure of a large class of three-move zero-knowl-
edge protocols:

A→ B : witness
A← B : challenge
A→ B : response

The prover claiming to be A selects a random element from a pre-defined set as its secret
commitment (providing hidden randomization or “private coin tosses”), and from this com-
putes an associated (public) witness. This provides initial randomness for variation from
other protocol runs, and essentially defines a set of questions all of which the prover claims
to be able to answer, thereby a priori constraining her forthcoming response. By protocol
design, only the legitimate party A, with knowledge of A’s secret, is truly capable of an-
swering all the questions, and the answer to any one of these provides no information about

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

410 Ch. 10 Identification and Entity Authentication

A’s long-term secret. B’s subsequent challenge selects one of these questions. A provides
its response, which B checks for correctness. The protocol is iterated, if necessary, to im-
prove the bound limiting the probability of successful cheating.

Zero-knowledge interactive protocols thus combine the ideas of cut-and-choose pro-
tocols (this terminology results from the standard method by which two children share a
piece of cake: one cuts, the other chooses) and challenge-response protocols. A responds
to at most one challenge (question) for a given witness, and should not reuse any witness;
in many protocols, security (possibly of long-term keying material) may be compromised
if either of these conditions is violated.

10.4.2 Feige-Fiat-Shamir identification protocol

The basic version of the Fiat-Shamir protocol is presented as Protocol 10.24. This can be
generalized, and the Feige-Fiat-Shamir (FSS) identification protocol (Protocol 10.26) is a
minor variation of such a generalization. The FFS protocol involves an entity identifying
itself by proving knowledge of a secret using a zero-knowledge proof; the protocol reveals
no partial information whatsoever regarding the secret identification value(s) ofA (cf. Def-
inition 10.20). It requires limited computation (a small fraction of that required by RSA –
see §10.4.5), and is thus well-suited for applications with low-power processors (e.g., 8-bit
chipcard microprocessors).

10.26 Protocol Feige-Fiat-Shamir identification protocol

SUMMARY: A proves its identity to B in t executions of a 3-pass protocol.
1. Selection of system parameters. A trusted center T publishes the common modulus
n = pq for all users, after selecting two secret primes p and q each congruent to
3 mod 4, and such that n is computationally infeasible to factor. (Consequently, n
is a Blum integer per §2.4.6, and −1 is a quadratic non-residue mod n with Jacobi
symbol +1.) Integers k and t are defined as security parameters (see Note 10.28).

2. Selection of per-entity secrets. Each entity A does the following.
(a) Select k random integers s1, s2, . . . , sk in the range 1 ≤ si ≤ n − 1, and k

random bits b1, . . . , bk. (For technical reasons, gcd(si, n) = 1 is required, but
is almost surely guaranteed as its failure allows factorization of n.)

(b) Compute vi = (−1)bi · (s2i)
−1 mod n for 1 ≤ i ≤ k. (This allows vi to range

over all integers coprime to n with Jacobi symbol+1, a technical condition re-
quired to prove that no secret information is “leaked”; by choice of n, precisely
one signed choice for vi has a square root.)

(c) A identifies itself by non-cryptographic means (e.g., photo id) to T , which
thereafter registersA’s public key (v1, . . . , vk;n), while onlyA knows its pri-
vate key (s1, . . . , sk) and n. (To guarantee the bounded probability of attack
specified per Note 10.28, T may confirm that each vi indeed does have Jacobi
symbol +1 relative to n.) This completes the one-time set-up phase.

3. Protocol messages. Each of t rounds has three messages with form as follows.

A→ B : x (= ±r2 mod n) (1)
A← B : (e1, . . . , ek), ei ∈ {0, 1} (2)
A→ B : y (= r ·

∏
ej=1
sj mod n) (3)

4. Protocol actions. The following steps are executed t times;B acceptsA’s identity if
all t rounds succeed. AssumeB hasA’s authentic public key (v1, . . . , vk;n); other-
wise, a certificate may be sent in message (1), and used as in Protocol 10.36.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§10.4 Customized and zero-knowledge identification protocols 411

(a) A chooses a random integer r, 1 ≤ r ≤ n − 1, and a random bit b; computes
x = (−1)b · r2 mod n; and sends x (the witness) to B.

(b) B sends to A (the challenge,) a random k-bit vector (e1, . . . , ek).

(c) A computes and sends toB (the response): y = r ·
∏k
j=1 s

ej
j mod n (the prod-

uct of r and those sj specified by the challenge).

(d) B computes z = y2 ·
∏k
j=1 v

ej
j mod n, and verifies that z = ±x and z 6= 0.

(The latter precludes an adversary succeeding by choosing r = 0.)

10.27 Example (Feige-Fiat-Shamir protocol with artificially small parameters)

1. The trusted center T selects the primes p = 683, q = 811, and publishes n = pq =
553913. Integers k = 3 and t = 1 are defined as security parameters.

2. Entity A does the following.

(a) Selects 3 random integers s1 = 157, s2 = 43215, s3 = 4646, and 3 bits b1 = 1,
b2 = 0, b3 = 1.

(b) Computes v1 = 441845, v2 = 338402, and v3 = 124423.
(c) A’s public key is (441845, 338402, 124423; 553913) and private key is (157,
43215, 4646).

3. See Protocol 10.26 for a summary of the messages exchanged.
4. (a) A chooses r = 1279, b = 1, computes x = 25898, and sends this to B.

(b) B sends to A the 3-bit vector (0, 0, 1).
(c) A computes and sends to B y = r · s3 mod n = 403104.
(d) B computes z = y2 ·v3 mod n = 25898 and acceptsA’s identity since z = +x

and z 6= 0. �

10.28 Note (security of Feige-Fiat-Shamir identification protocol)

(i) probability of forgery. Protocol 10.26 is provably secure against chosen message at-
tack in the following sense: provided that factoring n is difficult, the best attack has
a probability 2−kt of successful impersonation.

(ii) security assumption required. The security relies on the difficulty of extracting square
roots modulo large composite integersn of unknown factorization. This is equivalent
to that of factoring n (see Fact 3.46).

(iii) zero-knowledge and soundness. The protocol is, relative to a trusted server, a (sound)
zero-knowledge proof of knowledge provided k = O(log logn) and t = Θ(logn).
See Remark 10.34 regarding the practical significance of such constraints. A simplis-
tic view for fixed k is that the verifier, interested in soundness, favors larger t (more
iterations) for a decreased probability of fraud; while the prover, interested in zero-
knowledge, favors smaller t.

(iv) parameter selection. Choosing k and t such that kt = 20 allows a 1 in a million
chance of impersonation, which suffices in the case that an identification attempt re-
quires a personal appearance by a would-be impersonator (see §10.5). Computation,
memory, and communication can be traded off; 1 ≤ k ≤ 18was originally suggested
as appropriate. Specific parameter choices might be, for security 2−20: k = 5, t = 4;
for 2−30: k = 6, t = 5.

(v) security trade-off. Both computation and communication may be reduced by trading
off security parameters to yield a single iteration (t = 1), holding the product kt
constant and increasing k while decreasing t; however, in this case the protocol is no
longer a zero-knowledge proof of knowledge.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

412 Ch. 10 Identification and Entity Authentication

10.29 Note (modifications to Feige-Fiat-Shamir)

(i) As an alternative to step 1 of Protocol 10.26, each user may pick its own such modulus
n. T is still needed to associate each user with its modulus.

(ii) The communication complexity can be reduced ifA sendsB (e.g., 128 bits of) a hash
value h(x) instead of x in message (1), with B’s verification modified accordingly.

(iii) The scheme can be made identity-based as follows (cf. §13.4.3). T assigns a disting-
uished identifying string IA to each party A (e.g., A’s name, address, or other infor-
mation which a verifier may wish to corroborate). A’s public values vi, 1 ≤ i ≤ k
are then derived by both T and other parties B as vi = f(IA, i) using an appropri-
ate function f . Then the trusted center, knowing the factorization of n, computes a
square root si of each vi and gives these to A.
As an example of f , consider, for a randomly chosen but known value c, f(IA, i) =
IA + i + c mod n. Since a square root of fi = f(IA, i) is required, any fi with
Jacobi symbol −1 mod n may be multiplied by a fixed number with Jacobi symbol
−1. A non-residue fi with Jacobi+1may be either discarded (A must then indicate
to B, e.g., in message (3), which values i allow computation of the vj); or mapped
to a residue via multiplication by −1, again with an indication to B of this to allow
computation of vj . Note that both cases for dealing with a non-residue fi with Jacobi
+1 reveal some (non-useful) information.

(iv) The parallel version of the protocol, in which each of three messages contains the
respective data for all t rounds simultaneously, can be shown to be secure (it releases
no “transferable information”), but for technical reasons loses the zero-knowledge
property. Such parallel execution (as opposed to sequential iteration) in interactive
proofs allows the probability of error (forgery) to be decreased without increasing the
number of rounds.

10.30 Note (converting identification to signature scheme) The following general technique may
be used to convert an identification scheme involving a witness-challenge-response sequen-
ce to a signature scheme: replace the random challenge e of the verifier by the one-way
hash e = h(x||m), of the concatenation of the witness x and the messagem to be signed (h
essentially plays the role of verifier). As this converts an interactive identification scheme to
a non-interactive signature scheme, the bitsize of the challengeemust typically be increased
to preclude off-line attacks on the hash function.

10.4.3 GQ identification protocol

The Guillou-Quisquater (GQ) identification scheme (Protocol 10.31) is an extension of the
Fiat-Shamir protocol. It allows a reduction in both the number of messages exchanged and
memory requirements for user secrets and, like Fiat-Shamir, is suitable for applications in
which the claimant has limited power and memory. It involves three messages between a
claimantA whose identity is to be corroborated, and a verifier B.

10.31 Protocol GQ identification protocol

SUMMARY: A proves its identity (via knowledge of sA) to B in a 3-pass protocol.

1. Selection of system parameters.
(a) An authority T , trusted by all parties with respect to binding identities to public

keys, selects secret random RSA-like primes p and q yielding a modulus n =
pq. (As for RSA, it must be computationally infeasible to factor n.)

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§10.4 Customized and zero-knowledge identification protocols 413

(b) T defines a public exponentv ≥ 3with gcd(v, φ) = 1whereφ = (p−1)(q−1),
and computes its private exponent s = v−1 mod φ. (See Note 10.33.)

(c) System parameters (v, n) are made available (with guaranteed authenticity) for
all users.

2. Selection of per-user parameters.
(a) Each entity A is given a unique identity IA, from which (the redundant iden-

tity) JA = f(IA), satisfying 1 < JA < n, is derived using a known redun-
dancy function f . (See Note 10.35. Assuming that factoring n is difficult im-
plies gcd(JA, φ) = 1.)

(b) T gives to A the secret (accreditation data) sA = (JA)−s mod n.
3. Protocol messages. Each of t rounds has three messages as follows (often t = 1).

A→ B : IA, x = rv mod n (1)
A← B : e (where 1 ≤ e ≤ v) (2)
A→ B : y = r · sAe mod n (3)

4. Protocol actions. A proves its identity to B by t executions of the following;B ac-
cepts the identity only if all t executions are successful.

(a) A selects a random secret integer r (the commitment), 1 ≤ r ≤ n − 1, and
computes (the witness) x = rv mod n.

(b) A sends to B the pair of integers (IA, x).
(c) B selects and sends to A a random integer e (the challenge), 1 ≤ e ≤ v.
(d) A computes and sends to B (the response) y = r · sAe mod n.
(e) B receives y, constructs JA from IA using f (see above), computes z = JA

e ·
yv mod n, and accepts A’s proof of identity if both z = x and z 6= 0. (The
latter precludes an adversary succeeding by choosing r = 0.)

10.32 Example (GQ identification protocol with artificially small parameters and t = 1)
1. (a) The authority T selects primes p = 569, q = 739, and computes n = pq =

420491.
(b) T computes φ = (p − 1)(q − 1) = 419184, selects v = 54955, and computes
s = v−1 mod φ = 233875.

(c) System parameters (54955, 420491) are made available for all users.
2. (a) Suppose that A’s redundant identity is JA = 34579.

(b) T gives to A the accreditation data sA = (JA)−s mod n = 403154.
3. See Protocol 10.31 for a summary of the messages exchanged.
4. (a) A selects r = 65446 and computes x = rv mod n = 89525.

(b) A sends to B the pair (IA, 89525).
(c) B sends to A the random challenge e = 38980.
(d) A sends y = r · sAe mod n = 83551 to B.
(e) B computes z = JA

e ·yv mod n = 89525 and acceptsA’s identity since z = x
and z 6= 0. �

10.33 Note (security of GQ identification protocol)
(i) probability of forgery. In Protocol 10.31, v determines the security level (cf. Fiat-

Shamir where v = 2 but there are many rounds); some values such as v = 216+1may
offer computational advantages. A fraudulent claimant can defeat the protocol with
a 1 in v chance by guessing e correctly a priori (and then forming x = JA

e ·yv as the
verifier would). The recommended bitlength of v thus depends on the environment
under which attacks could be mounted (see §10.5).

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

414 Ch. 10 Identification and Entity Authentication

(ii) security assumption required. Extracting vth roots modulo the composite integer n
(i.e., solving the RSA problem – §3.3) appears necessary to defeat the protocol; this is
no harder than factoring n (Fact 3.30), and appears computationally intractable with-
out knowing the factors of n.

(iii) soundness. In practice, GQ with t = 1 and a k-bit prime v is often suggested. For
generalized parameters (n, v, t), the probability of forgery is v−t. If v is constant,
then technically for soundness, tmust grow asymptotically faster than log logn. (For
soundness, v−t = O(e−kt) must be smaller than inverse-polynomial in logn; only
polynomial security is provided if for a constant c, vt = O((log n)c). See also Re-
mark 10.34.)

(iv) zero-knowledge property. In opposition to the soundness requirement, for GQ to be
zero-knowledge apparently requires tv = O((log n)c) for constant c, imposing an
upper bound on t asymptotically: for v constant, tmust be no larger than polynomial
in logn.

10.34 Remark (asymptotic concepts vs. practical protocols) The asymptotic conditions for
soundness specified in Note 10.33 have little meaning in practice, e.g., because big-O nota-
tion is not applicable once fixed values are assigned to parameters. Indeed, zero-knowledge
is a theoretical concept; while complexity-theoretic definitions offer guidance in selecting
practical security parameters, their significance diminishes when parameters are fixed. Re-
garding Note 10.33, if t = 1 is viewed as the instantiation of a non-constant parameter
(e.g., the iterated logarithm of n), then t = 1 will suffice for all practical purposes; con-
sider n = 1024, t = dlg4 ne = 1.

10.35 Note (redundancy function for identity-based GQ)

(i) The protocol as given is an identity-based version (cf. Note 10.29), whereA’s public
key is reconstructed from identifier IA sent in message (1). Alternatively, a certified
public key may be used, distributed in a certificate as per Protocol 10.36.

(ii) One example of the redundancy function f is the redundancy mapping of the prepro-
cessing stage of ISO/IEC 9796 (see §11.3.5). A second example is a single function
value of f as in Note 10.29, for an appropriate value i.

(iii) The purpose of the redundancy is to preclude an adversary computing false accredi-
tation data corresponding to a plausible identity; this would be equivalent to forging
a certificate in certificate-based schemes.

10.4.4 Schnorr identification protocol

The Schnorr identification protocol is an alternative to the Fiat-Shamir and GQ protocols.
Its security is based on the intractability of the discrete logarithm problem. The design al-
lows pre-computation, reducing the real-time computation for the claimant to one multi-
plication modulo a prime q; it is thus particularly suitable for claimants of limited com-
putational ability. A further important computational efficiency results from the use of a
subgroup of order q of the multiplicative group of integers modulo p, where q|(p− 1); this
also reduces the required number of transmitted bits. Finally, the protocol was designed to
require only three passes, and a low communications bandwidth (e.g., compared to Fiat-
Shamir).

The basic idea is thatA proves knowledge of a secret a (without revealing it) in a time-
variant manner (depending on a challenge e), identifying A through the association of a
with the public key v via A’s authenticated certificate.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§10.4 Customized and zero-knowledge identification protocols 415

10.36 Protocol Schnorr identification protocol

SUMMARY: A proves its identity to B in a 3-pass protocol.

1. Selection of system parameters.

(a) A suitable prime p is selected such that p − 1 is divisible by another prime q.
(Discrete logarithms modulo p must be computationally infeasible – see §3.6;
e.g., p ≈ 21024, q ≥ 2160.)

(b) An element β is chosen, 1 ≤ β ≤ p − 1, having multiplicative order q. (For
example, for α a generator mod p, β = α(p−1)/q mod p; see Note 4.81.)

(c) Each party obtains an authentic copy of the system parameters (p, q, β) and the
verification function (public key) of the trusted party T , allowing verification
of T ’s signatures ST (m) on messagesm. (ST involves a suitable known hash
function prior to signing, and may be any signature mechanism.)

(d) A parameter t (e.g., t ≥ 40), 2t < q, is chosen (defining a security level 2t).

2. Selection of per-user parameters.

(a) Each claimantA is given a unique identity IA.
(b) A chooses a private key a, 0 ≤ a ≤ q − 1, and computes v = β−a mod p.
(c) A identifies itself by conventional means (e.g., passport) to T , transfers v to T

with integrity, and obtains a certificate certA = (IA, v, ST (IA, v)) from T
binding IA with v.

3. Protocol messages. The protocol involves three messages.

A→ B : certA, x = βr mod p (1)
A← B : e (where 1 ≤ e ≤ 2t < q) (2)
A→ B : y = ae+ r mod q (3)

4. Protocol actions. A identifies itself to verifier B as follows.

(a) A chooses a random r (the commitment), 1 ≤ r ≤ q−1, computes (the witness)
x = βr mod p, and sends (1) to B.

(b) B authenticates A’s public key v by verifying T ’s signature on certA, then
sends to A a (never previously used) random e (the challenge), 1 ≤ e ≤ 2t.

(c) A checks 1 ≤ e ≤ 2t and sends B (the response) y = ae+ r mod q.
(d) B computes z = βyve mod p, and accepts A’s identity provided z = x.

10.37 Example (Schnorr identification protocol with artificially small parameters)

1. (a) The prime p = 48731 is selected, where p−1 is divisible by the prime q = 443.
(b) A generator mod 48731 is α = 6; β is computed as α(p−1)/q mod p = 11444.
(c) The system parameters are (48731, 443, 11444).
(d) The parameter t = 8 is chosen.

2. (b) A chooses a private key a = 357 and computes v = β−a mod p = 7355.
3. See Protocol 10.36 for a summary of the messages exchanged.
4. (a) A chooses r = 274 and sends x = βr mod p = 37123 to B.

(b) B sends to A the random challenge e = 129.
(c) A sends B the number y = ae+ r mod q = 255.
(d) B computes z = βyve mod p = 37123 and accept’s A’s identity since z = x.

�

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

416 Ch. 10 Identification and Entity Authentication

10.38 Note (security of Schnorr identification protocol)

(i) probability of forgery. In Protocol 10.36, t must be sufficiently large to make the
probability 2−t of correctly guessing the challenge e negligible. t = 40, q ≥ 22t =
280 was originally suggested in the case that a response is required within seconds
(see §10.5); larger q may be necessary to preclude time-memory trade-offs, and q ≥
2160 is recommended to preclude other off-line discrete log attacks. Correctly guess-
ing e allows an adversary to impersonate A by choosing any y, sending x = βyve

modp to B in (1), then sending y in (3).
(ii) soundness. It can be shown that the protocol is a proof of knowledge of a, i.e., any

party completing the protocol as A must be capable of computing a. Informally, the
protocol reveals “no useful information” abouta becausex is a random number, and y
is perturbed by the random number r. (However, this does not prove that adversarial
discovery of a is difficult.)

(iii) zero-knowledge property. The protocol is not zero-knowledge for large e, because
through interaction,B obtains the solution (x, y, e) to the equation x = βyve mod p,
which B itself might not be able to compute (e.g., if e were chosen to depend on x).

10.39 Note (reducing transmission bandwidth) The number of bits transmitted in the protocol
can be reduced by replacing x in message (1) by t pre-specified bits of x (e.g., the least
significant t bits), and having B compare this to t corresponding bits of z.

10.4.5 Comparison: Fiat-Shamir, GQ, and Schnorr

The protocols of Feige-Fiat-Shamir, Guillou-Quisquater, and Schnorr all provide solutions
to the identification problem. Each has relative advantages and disadvantages with respect
to various performance criteria and for specific applications. To compare the protocols, a
typical set of selected parameters must be chosen for each providing comparable estimated
security levels. The protocols may then be compared based on the following criteria:

1. communications: number of messages exchanged, and total bits transferred;
2. computations: number of modular multiplications for each of prover and verifier

(noting on-line and off-line computations);
3. memory: storage requirements for secret keys (and signature size, in the case of sig-

nature schemes);
4. security guarantees: comparisons should consider security against forgery by guess-

ing (soundness), possible disclosure of secret information (zero-knowledge prop-
erty), and status regarding provable security; and

5. trust required in third party: variations of the protocols may require different trust
assumptions in the trusted party involved.

The number of criteria and potential parameter choices precludes a comparison which
is both definitive and concise. The following general comments may, however, be made.

1. computational efficiency. Fiat-Shamir requires between one and two orders of mag-
nitude fewer full modular multiplications (steps) by the prover than an RSA private-
key operation (cf. §10.3.3). When kt = 20 and n is 512 bits, Fiat-Shamir uses from
about 11 to about 30 steps (k = 20, t = 1; and k = 1, t = 20); GQ requires about
60 steps (for t = 1,m = 20 = log2(v)), or somewhat fewer if v has low Hamming
weight; and full exponentiation in unoptimized RSA takes 768 steps.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§10.5 Attacks on identification protocols 417

2. off-line computations. Schnorr identification has the advantage of requiring only a
single on-line modular multiplication by the claimant, provided exponentiation may
be done as a precomputation. (Such a trade-off of on-line for off-line computation is
possible in some applications; in others, the total computation must be considered.)
However, significant computation is required by the verifier compared to Fiat-Shamir
and GQ.

3. bandwidth and memory for secrets. GQ allows the simultaneous reduction of both
memory (parameter k) and transmission bandwidth (parameter t) with k = t = 1,
by introducing the public exponent v > 2 with the intention that the probability of
successful cheating becomes v−kt; this simultaneous reduction is not possible in Fiat-
Shamir, which requires k user secrets and t iterations for an estimated security (prob-
ability of cheating) of 2−kt. Regarding other tradeoffs, see Note 10.28.

4. security assumptions. The protocols require the assumptions that the following un-
derlying problems are intractable, for a composite (RSA) integer n: Fiat-Shamir –
extracting square roots mod n; GQ – extracting vth roots mod n (i.e., the RSA prob-
lem); Schnorr identification – computing discrete logs modulo a prime p.

10.5 Attacks on identification protocols

The methods an adversary may employ in an attempt to defeat identification protocols are a
subset of those discussed in Chapter 12 for authenticated key establishment, and the types
of adversaries may be similarly classified (e.g., passive vs. active, insider vs. outsider); for
a discussion of attacks on simple password schemes, see §10.2.2. Identification is, how-
ever, less complex than authenticated key establishment, as there is no issue of an adver-
sary learning a previous session key, or forcing an old key to be reused. For conciseness,
the following definitions are made:

1. impersonation: a deception whereby one entity purports to be another.
2. replay attack: an impersonation or other deception involving use of information from

a single previous protocol execution, on the same or a different verifier. For stored
files, the analogue of a replay attack is a restore attack, whereby a file is replaced by
an earlier version.

3. interleaving attack: an impersonation or other deception involving selective combi-
nation of information from one or more previous or simultaneously ongoing protocol
executions (parallel sessions), including possible origination of one or more protocol
executions by an adversary itself.

4. reflection attack: an interleaving attack involving sending information from an on-
going protocol execution back to the originator of such information.

5. forced delay: a forced delay occurs when an adversary intercepts a message (typically
containing a sequence number), and relays it at some later point in time. Note the
delayed message is not a replay.

6. chosen-text attack: an attack on a challenge-response protocol wherein an adver-
sary strategically chooses challenges in an attempt to extract information about the
claimant’s long-term key.
Chosen-text attacks are sometimes referred to as using the claimant as an oracle, i.e.,
to obtain information not computable from knowledge of a claimant’s public key
alone. The attack may involve chosen-plaintext if the claimant is required to sign,

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

418 Ch. 10 Identification and Entity Authentication

encrypt, or MAC the challenge, or chosen-ciphertext if the requirement is to decrypt
a challenge.

Potential threats to identification protocols include impersonation by any of the follow-
ing attacks: replay, interleaving, reflection, or forced delay. Impersonation is also trivial if
an adversary is able to discover an entity’s long-term (secret or private) keying material, for
example, using a chosen-text attack. This may be possible in protocols which are not zero-
knowledge, because the claimant uses its private key to compute its response, and thus a
response may reveal partial information. In the case of an active adversary, attacks may in-
volve the adversary itself initiating one or more new protocol runs, and creating, injecting,
or otherwise altering new or previous messages. Table 10.3 summarizes counter-measures
for these attacks.

Type of attack Principles to avoid attack

replay use of challenge-response techniques; use of nonces; embed tar-
get identity in response

interleaving linking together all messages from a protocol run (e.g., using
chained nonces)

reflection embed identifier of target party in challenge responses; construct
protocols with each message of different form (avoid message
symmetries); use of uni-directional keys

chosen-text use of zero-knowledge techniques; embed in each challenge re-
sponse a self-chosen random number (confounder)

forced delay combined use of random numbers with short response time-outs;
timestamps plus appropriate additional techniques

Table 10.3: Identification protocol attacks and counter-measures.

10.40 Remark (use of keys for multiple purposes) Caution is advised if any cryptographic key is
used for more than one purpose. For example, using an RSA key for both entity authenti-
cation and signatures may compromise security by allowing a chosen-text attack. Suppose
authentication here consists ofB challengingAwith a random number rB RSA-encrypted
under A’s public key, and A is required to respond with the decrypted random number. If
B challenges A with rB = h(x), A’s response to this authentication request may (unwit-
tingly) provide toB its RSA signature on the hash value of the (unknown toA) message x.
See also Example 9.88, where a DES key used for both CBC encryption and CBC-MAC
leads to a security flaw; and Remark 13.32.

10.41 Remark (adversary acting “as a wire”) In any identification protocol between A and B,
an adversaryC may step into the communications path and simply relay (without changing)
the messages between legitimates parties A and B, itself acting as a part of the communi-
cations link. Typically in practice, this is not considered a true “attack”, in the sense that it
does not alter the aliveness assurance delivered by the protocol; however, in some special
applications, this may be a concern (see Remark 10.42).

10.42 Remark (grandmaster postal-chess problem) Identification protocols do not provide as-
surances about the physical location of the authenticated party. Therefore, Remark 10.41
notwithstanding, a concern may arise in the special case that the following is possible: an
adversaryC attempts to impersonateB, is challenged (to prove it isB) byA, and is able to

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§10.5 Attacks on identification protocols 419

relay (in real time, without detection or noticeable delay, and pretending to beA) the chal-
lenge on to the real B, get a proper response from B, and pass this response along back to
A. In this case, additional measures are necessary to prevent a challenged entity from elic-
iting aid in computing responses. This is related to the so-called grandmaster postal-chess
problem, whereby an amateur’s chess rating may unfairly be improved by engaging in two
simultaneous chess games with distinct grandmasters, playing black in one game and white
in the second, and using the grandmaster’s moves from each game in the other. Either two
draws, or a win and a loss, are guaranteed, both of which will improve the amateur’s rating.

For further discussion of protocol attacks including specific examples of flawed entity
authentication protocols, see §12.9.

(i) Maintaining authenticity

Identification protocols provide assurances corroborating the identity of an entity only at
a given instant in time. If the continuity of such an assurance is required, additional tech-
niques are necessary to counteract active adversaries. For example, if identification is car-
ried out at the beginning of a communications session to grant communications permis-
sions, a potential threat is an adversary who “cuts in” on the communications line immedi-
ately after the successful identification of the legitimate party. Approaches to prevent this
include:

1. performing re-authentication periodically, or for each discrete resource requested
(e.g., each file access). A remaining threat here is an adversary who “steps out” ev-
ery time re-authentication is performed, allowing the legitimate party to perform this
task, before re-entering.

2. tying the identification process to an ongoing integrity service. In this case, the iden-
tification process should be integrated with a key establishment mechanism, such that
a by-product of successful identification is a session key appropriate for use in a sub-
sequent ongoing integrity mechanism.

(ii) Security level required for on-line vs. off-line attacks

The security level required for identification protocols depends on the environment and the
specific application at hand. The probability of success of “guessing attacks” should be
considered, and distinguished from the amount of computation required to mount on-line
or off-line attacks (using the best techniques known). Some illustrative notes follow (see
also Note 10.28).

1. Local attacks. Selecting security parameters which limit the probability of successful
impersonation of a guessing attack (an adversary simply guesses a legitimate party’s
secret) to a 1 in 220 chance (20 bits of security) may suffice if, for each attempted
impersonation, a local appearance is required by the would-be impersonator and there
is a penalty for failed attempts. Depending on the potential loss resulting relative to
the penalty, 10 to 30 bits or more of security may be required.

2. Remote attacks. A higher level of security is required in environments where unlim-
ited identification attempts, each involving minimal computational effort, are pos-
sible by remote electronic communications, by an anonymous claimant interacting
with an on-line system, with no penalties for failed attempts. 20 to 40 bits of security
or more may be called for here, unless the number of interactions may be somehow
limited.

3. Off-line or non-interactive attacks. Selecting security parameters such that an attack
requires 240 computations in real-time (during a protocol execution) may be accept-
able, but a bound of 260 to 280 computations (the latter should be adequate in all

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

420 Ch. 10 Identification and Entity Authentication

cases) may be called for if the computations can be carried out off-line, and the at-
tack is verifiable (i.e., the adversary can confirm, before interacting with the on-line
system, that his probability of successful impersonation is near 1; or can recover a
long-term secret by off-line computations subsequent to an interaction).

10.6 Notes and further references
§10.1

Davies and Price [308] and Ford [414] provide extensive discussion of authentication and
identification; see also the former for biometric techniques, as well as Everett [380]. The
comprehensive survey on login protocols by de Waleffe and Quisquater [319] is highly rec-
ommended. Crépeau and Goutier provide a lucid concise summary of user identification
techniques with Brassard [192]. For standardized entity authentication mechanisms, see
ISO/IEC 9798 [598, 599, 600, 601, 602].

§10.2
See the §9.2 notes on page 377 for historical discussion of using a one-way function (one-
way cipher) for “encrypted” password files. Morris and Thompson [907] introduce the no-
tion of password salting in their 1979 report on UNIX passwords; in one study of 3289 user
passwords unconstrained by password rules, 86% fell within an easily-searched subset of
passwords. Feldmeier and Karn [391] give an update 10 years later, indicating 30% of pass-
words they encountered fell to their attack using a precomputed encrypted dictionary, sorted
on tapes by salt values. See also Klein [680] and Lomas et al. [771]. Password salting is
related to randomized encryption; the idea of padding plaintext with random bits before en-
cryption may also be used to prevent forward search attacks on public-key encryption with
small plaintext spaces. Password rules and procedures have been published by the U.S. De-
partments of Commerce [399] and Defense [334].

Methods for computing password-derived keys (§10.2.4) are specified in the Kerberos Au-
thentication Service [1041] and PKCS #5 [1072]. A concern related to password-derived
keys is that known plaintext allows password-guessing attacks; protocols specifically de-
signed to prevent such attacks are mentioned in Chapter 12 notes on §12.6. The idea
of chaining one-time passwords by a one-way function (Protocol 10.6) is due to Lam-
port [739]; for related practical applications, see RFC 1938 [1047]. Davies and Price
[308, p.176] note a questionnaire-based identification technique related to fixed challenge-
response tables, wherein the user is challenged by a random subset of previously answered
questions.

§10.3
Needham and Schroeder [923] stimulated much early work in the area of authentication pro-
tocols in the late 1970s, and Needham was again involved with Burrows and Abadi [227] in
the BAN logic work which stimulated considerable interest in protocol analysis beginning
in the late 1980s; see Chapter 12 notes for further discussion.

Gong [501] provides an overview of both time variant parameters and message replay;
see also Neuman and Stubblebine [925], and the annexes of parts of ISO/IEC 9798 (e.g.,
[600]). For security arguments against the use of timestamps and a discussion of implemen-
tation difficulties, see Bellovin and Merritt [103]; Gaarder and Snekkenes [433]; Diffie, van
Oorschot, and Wiener [348]; and Gong [500], who considers postdated timestamps. See
also §12.3 notes. Lam and Beth [734] note that timestamp-based protocols are appropriate

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§10.6 Notes and further references 421

for connectionless interactions whereas challenge-response suits connection-oriented com-
munications, and suggest challenge-response techniques be used to securely synchronize
timeclocks with applications themselves using timestamp-based authentication.

ISO/IEC 9798 [598] parts 2 through 5 specify entity authentication protocols respectively
based on symmetric encryption [599], digital signatures [600], keyed one-way functions
[601], and zero-knowledge techniques [602]; a subset of these are presented in this chapter.
FIPS 196 [407] is a subset of 9798-3 containing the unilateral and mutual authentication
protocols involving challenge-response with random numbers.

Several parts of 9798 were influenced by the SKID2 and SKID3 (Secret Key IDentification)
protocols from the RACE/RIPE project [178], which leave the keyed hash function unspec-
ified but recommend RIPE-MAC with 64-bit random-number challenges. Diffie [342, 345]
notes that two-pass challenge-response identification based on encryption and random chal-
lenges has been used since the 1950s in military Identification Friend or Foe (IFF) systems
to distinguish friendly from hostile aircraft. Mao and Boyd [781] discuss the danger of im-
properly using encryption in authentication protocols, specifically the CBC mode without
an integrity mechanism (cf. Remark 10.16). Stubblebine and Gligor [1179] discuss attacks
involving this same mode; see also the much earlier paper by Akl [20].

Davies and Price [308] give a concise discussion of password generators. The identification
technique in §10.3.3(i) based on public-key decryption and witness is derived from a Dan-
ish contribution to the 4th Working Draft of ISO/IEC 9798-5, specifying a protocol called
COMSET and motivated in part by Brandt et al. [188], and related to ideas noted earlier by
Blum et al. [163].

§10.4
A refreshingly non-mathematical introduction to zero-knowledge proofs is provided by
Quisquater, Guillou, and Berson [1020], who document the secret of Ali Baba’s legendary
cave, and its rediscovery by Mick Ali. Mitropoulos and Meijer [883] give an exception-
ally readable and comprehensive survey (circa 1990) of interactive proofs and zero knowl-
edge, with a focus on identification. Other overviews include Johnson [641]; Stinson [1178,
Ch.13]; and Brassard, Chaum, and Crépeau [193] (or [192]) for a discussion of minimum
disclosure proofs, based on bit commitment and the primitive of a blob. Brassard and
Crépeau [195] provide a user-friendly discussion of various definitions of zero-knowledge,
while Goldreich and Oren [475] examine properties and relationships between various def-
initions of ZK proof systems.

Rabin [1022] employed the idea of cut-and-chooseprotocols for cryptographic applications
as early as 1978. While Babai (with Moran) [60, 61] independently developed a theory of
randomized interactive proofs known as Arthur-Merlin games in an attempt to “formalize
the notion of efficient provability by overwhelming statistical evidence”, interactive proof
systems and the notion of zero-knowledge (ZK) proofs were formalized in 1985 by Gold-
wasser, Micali, and Rackoff [481] in the context of an interactive proof of membership of
a string x in a language L; they showed that the languages of quadratic-residues and of
quadratic non-residues each have ZK interactive proof (ZKIP) systems revealing only a
single bit of knowledge, namely, that x ∈ L. Goldreich, Micali, and Wigderson [473, 474]
prove likewise for graph non-isomorphism(known not to be in NP) and graph isomorphism,
and that assuming the existence of secure encryption schemes, every language in NP has a
ZKIP; see also Chaum [244], and Brassard and Crépeau [194].

Motivated by cryptographic applications and identification in particular, Feige, Fiat, and
Shamir [383] adapted the concepts of interactive proofs of membership to interactive proofs

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

422 Ch. 10 Identification and Entity Authentication

of knowledge, including reformulated definitions for completeness, soundness, and zero-
knowledge; while proofs of membership reveal one bit of set membership information,
proofs of knowledge reveal only one bit about the prover’s state of knowledge. The defini-
tions given in §10.4.1 are based on these. These authors refine the original scheme of Fiat
and Shamir [395] to yield that of Protocol 10.26; both may be converted to identity-based
schemes (Note 10.29) in the sense of Shamir [1115]. The Fiat-Shamir scheme is related
to (but more efficient than) an earlier protocol for proving quadratic residuosity (presented
at Eurocrypt’84, but unpublished) by Fischer, Micali, and Rackoff [412]. The Fiat-Shamir
protocol as per Protocol 10.24 includes an improvement noted by Desmedt et al. [340] to
avoid inverses in the derivation of user secrets; this optimization may also be made to Pro-
tocol 10.26.

Related to definitions in §10.4.1, Bellare and Goldreich [87] noted that Goldwasser, Mi-
cali, and Rackoff [481] did not formally propose a definition for a proof of knowledge, and
suggested that the formal definitions of Feige, Fiat, and Shamir [383] and Tompa and Woll
[1194] were unsatisfactory for some applications. To address these issues they proposed
a new definition, having some common aspects with that of Feige and Shamir [384], but
offering additional advantages.

Micali and Shamir [868] provide preliminary notes on reducing computation in the Fiat-
Shamir protocol by choosing the public keys vi, 1 ≤ i ≤ k to be the first k prime numbers;
each user then has an independent modulus n. A modification of Fiat-Shamir identifica-
tion by Ong and Schnorr [957] decreases computational complexity, signature size, and the
number of communications required, condensing t Fiat-Shamir iterations into one iteration
while leaving each user with k private keys (cf. the k = 1 extension below); for computa-
tional efficiency, they suggest using as secret keys (not too) small integers.

The idea of generalizing Fiat-Shamir identification in other ways, including “replacing
square roots by cubic or higher roots”, was suggested in the original paper; using higher
roots allows users to reduce their number of private keys k, including to the limiting case
k = 1. Guillou and Quisquater [524] proposed a specific formulation of this idea of “using
deep coin tosses” as the GQ scheme (Protocol 10.31); apparently independently, Ohta and
Okamoto [945, 944] proposed a similar formulation, including security analysis.

The Ohta-Okamoto (OO) version of this extended Fiat-Shamir scheme differs from the GQ
version (Protocol 10.31) as follows: (1) in OO, rather than T computing sA from identity
IA, A chooses its own secret sA ∈ Zn and publishes IA = sAv mod n; and (2) the verifi-
cation relation x ≡ JA

e ·yv (mod n) becomes yv ≡ x·IA
e. OO is more general in that, as

originally proposed, it avoids the GQ (RSA) constraint that gcd(v, φ(n)) = 1. Subsequent
analysis by Burmester and Desmedt [221] suggests that additional care may be required
when v is not prime. While the OO version precludes an identity-based variation, a further
subsequent version of extended Fiat-Shamir (GQ variation) by Okamoto [949] (“Scheme
3” of 5 protocols therein) is provably as secure as factoring, only slightly less efficient, and
is amenable to an identity-based variation.

The zero-knowledge interactive protocols of Chaum et al. [248, 249] for proving possession
of discrete logarithms, provided a basis for Protocol 10.36 which is due to Schnorr [1097,
1098]. Schnorr also proposed a preprocessing scheme to reduce real-time computation, but
see de Rooij [314] regarding its security. The Schnorr identification and signature schemes
must not both be used with the same parameters β, p [1098] (cf. Remark 10.40). Schnorr’s
protocol is related to the log-based identification scheme of Beth [123] also proven to be
zero-knowledge. Burmester et al. [223] analyze (cf. Note 10.33) a generalized identification
protocol encompassing all the well-known variations related to Fiat-Shamir and including

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

§10.6 Notes and further references 423

those of both Chaum et al. and Beth noted above. Van de Graaf and Peralta [1200] give a
ZK interactive protocol for proving that a Blum integer is a Blum integer.

Brickell and McCurley [207] propose a modification of Schnorr’s identification scheme, in
which q is kept secret and exponent computations are reduced modulo p− 1 rather than q;
it has provable security if factoring p − 1 is difficult, and moreover security equivalent to
that of Schnorr’s scheme otherwise; a drawback is that almost 4 times as much computa-
tion is required by the claimant. Another variant of Schnorr’s scheme by Girault [458, 461]
was the first identity-based identification scheme based on discrete logs; it uses a composite
modulus, and features the user choosing its own secret key, which remains unknown to the
trusted party (cf. implicitly-certified public keys, §12.6.2). A further variation of Schnorr’s
identification protocol by Okamoto [949] (“Scheme 1”) uses two elements β1 and β2, of or-
der q, and is provably secure, assuming the computational infeasibility of computing theZp
discrete logarithm logβ1 β2 of β2 relative to β1; it does, however, involve some additional
computation.

Aside from the above protocols based on the computational intractability of the standard
number-theoretic problems (factoring and discrete logarithms), a number of very efficient
identification protocols have more recently been proposed based on NP-hard problems.
Shamir [1116] proposed a zero-knowledge identification protocol based on the NP-hard
permuted kernel problem: given an m × n matrix A over Zp, p prime (and relatively
small, e.g., p = 251), and an n-vector V , find a permutation π on {1, . . . , n} such that
Vπ ∈ ker(A), where ker(A) is the kernel of A consisting of all n-vectorsW such that
AW = [0 . . . 0] mod p. Patarin and Chauvaud [966] discuss attacks on the permuted ker-
nel problem which are feasible for the smallest of parameter choices originally suggested,
while earlier less efficient attacks are presented by Baritaud et al. [73] and Georgiades [447].
Stern [1176] proposed a practical zero-knowledge identification scheme based on the NP-
hard syndrome decoding problem, following an earlier less practical scheme of Stern [1174]
based on intractable problems in coding theory. Stern [1175] proposed another practi-
cal identification scheme based on an NP-hard combinatorial constrained linear equations
problem, offering a very short key length, which is of particular interest in specific applica-
tions. Pointcheval [983] proposed another such scheme based on the NP-hard perceptrons
problem: given an m × n matrix M with entries ±1, find an n-vector y with entries ±1
such thatMy ≥ 0.

Goldreich and Krawczyk [469] pursue the fact that the original definition of ZK of Gold-
wasser, Micali, and Rackoff is not closed under sequential composition (this was noted ear-
lier by D. Simon), establishing the importance of the stronger definitions of ZK formulated
subsequently (e.g., auxiliary-input zero-knowledge – see Goldreich and Oren [475]), for
which closure under sequential composition has been proven. They prove that even these
strong formulations of ZK are not, however, closed under parallel composition (thus moti-
vating the definition of weaker notions of zero-knowledge), and that 3-pass interactive ZK
proofs of membership that are black-box simulation ZK exist only for languages in BPP
(Definition 2.77); while the definition of “black-box simulation ZK” is more restrictive than
the original definition of ZK, all known ZK protocols are ZK by this definition also. Conse-
quently, protocols that are (formally) ZK are less practical than their corresponding 3-pass
parallel versions.

As a replacement for the security requirement of zero knowledge in many protocols, Feige
and Shamir [384] proposed witness indistinguishability and the related notion of witness
hiding protocols. Unlike zero knowledge, witness indistinguishability is preserved under
arbitrary composition of protocols.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.

424 Ch. 10 Identification and Entity Authentication

Methods have been proposed to reduce the communication complexity of essentially all
customized identification protocols, including the use of hash values in the first message (cf.
Note 10.29; Note 10.39). Girault and Stern [462] examine the security implications of the
length of such hash values, note that collision-resistance of the hash function suffices for the
typically claimed security levels, and examine further optimizations of the communication
complexity of such protocols, including use of r-collision resistant hash functions.

Blum, Feldman, and Micali [163] introduced the idea of non-interactive (or more clearly:
mono-directional) ZK proofs, separating the notions of interactive proof systems and zero-
knowledge protocols; here the prover and verifier share a random string, and communica-
tion is restricted to one-way (or the prover may simply publish a proof, for verification at
some future time). De Santis, Micali, and Persiano [317] improve these results employing a
weaker complexity assumption; Blum et al. [162] provide a summary and further improve-
ments. While the technique of Remark 10.30, due to Fiat and Shamir [395], allows a zero-
knowledge identification scheme to be converted to a signature scheme, the latter cannot be
a sound zero-knowledge signature scheme because the very simulatability of the identifica-
tion which establishes the ZK property would allow signature forgery (e.g., see Okamoto
[949]).

A further flavor of zero-knowledge (cf. Definition 10.22) is statistical (or almost perfect)
zero-knowledge; here the probability distributions of the transcripts must be statistically
indistinguishable (indistinguishable by an examiner with unlimited computing power but
given only polynomially many samples). Pursuing other characterizations, interactive pro-
tocols in which the assurance a verifier obtains is based on some unproven assumption may
be distinguished as arguments (see Brassard and Crépeau [195]), with proofs then required
to be free of any unproven assumptions, although possibly probabilistic.

For performance comparisons and tradeoffs for the Fiat-Shamir, Guillou-Quisquater, and
Schnorr schemes, see Fiat and Shamir [395], Schnorr [1098], Okamoto [949], and Lim and
Lee [768], among others. For an overview of chipcard technology and the use thereof for
identification, see Guillou, Ugon, and Quisquater [527]; an earlier paper on chipcards is by
Guillou and Ugon [526]. Knobloch [681] describes a preliminary chipcard implementation
of the Fiat-Shamir protocol.

§10.5
Bauspiess and Knobloch [78] discuss issues related to Remark 10.41, including taking over
a communications line after entity authentication has completed. Bengio et al. [113] discuss
implementation issues related to identification schemes such as the Fiat-Shamir protocol,
including Remark 10.42. Classes of replay attacks are discussed in several papers, e.g.,
see Syverson [1182] and the ISO/IEC 10181-2 authentication framework [610]. For further
references on the analysis of entity authentication protocols and attacks, see the §12.9 notes.

c©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.

