
The 8th™ Programming
Language

Manual version 25.05

Copyright © AHT Associates LLC, All Rights Reserved
8th™ is a trademark of AHT Associates LLC

Ch. 1 What is 8th?

1.1 Requirements

8th is known to run, and is tested, on the following systems:

Microsoft Windows XP/7/8/10+ 64-bit Intel
macOS:

Intel 64-bit only: 10.13 and later
Pro+: Apple Silicon: 11.1 and later

Linux - Ubuntu 14.04 and later, and derivatives or similar systems based on libc6 , 64-bit

Hobbyist+: 32-bit

Raspberry Pi:

32 bit Raspbian etc. ("Buster/Debian 10" equivalent or later)
Hobbyist+: 64 bit Armbian, DietPi, etc. ("Bookworm/Debian 12" equivalent or later)

Android 6 ("Marshmallow", API level 23) or later; ARM devices only

Hobbyist+: 64-bit

iOS 64-bit, 11.0 and later

The “Raspberry Pi” (RPI) version is tested on the Pi Zero W, Pi versions 2-5, and Rock64. It may
also run on other ARM-Linux based boards, but they are not specifically supported.

The Linux versions should run on distributions other than Ubuntu derivatives as long as they are
libc6 based; however, those are not specifically supported.

GUI support for all platforms is based on SDL3 , and generally “just works”. On RPI and Linux
specifically, you can also use KMSDRM for GUI output if you’ve set up the machine correctly to
do so.

•
•

◦

◦

•

◦

•

◦

◦

•

◦

•

https://8th-dev.com/bin/bugs/
https://libsdl.org

Those versions running on Intel (or compatible) hardware, require a CPU which has SSE2
instructions. That covers almost all Intel computers currently running. 8th will not run on older
hardware (it will complain and quit).

Similarly, those versions running on ARM hardware require at least “ARMv6”, and will not run
on older hardware.

Note: Please do not complain that 8th doesn’t run on your system if it’s not one of those
specifically listed above! If you are interested in having 8th ported to a currently
unsupported platform, you can discuss how to fund that development effort by sending an
email to us and we’ll take a look at the feasibility of the port.

1.2 Installing 8th

Please read carefully!

8th is distributed in a ZIP file which contains the 8th runtime core for all the platforms
supported by the version you downloaded, as well as all necessary libraries, samples, and help
files. Your version of 8th is licensed specifically to you and may not be shared.

In order to use 8th on a machine, you must:

Create an empty folder accessible to you to contain this version of 8th, and change to it. For
the purpose of illustration only, I’m assuming you’re installing version 25.03 of 8th on a
Windows system, in the folder C:\8th\25.03 .
Unpack the zip file there. If you have the unzip program, you might do this in a console by
typing unzip -d C:\8th\25.03 8th.zip .
Optionally (but recommended): put the appropriate folder with the 8th executable in your
PATH. For example, on Windows go to “System Settings” and look for “Edit environment
variables” or the like, and add C:\8th\25.03\bin\win64 to the PATH.
Open a console and change directory to where you installed 8th (C:\8th\25.03 in our
example), and run the bin/setup.8th file by typing: 8th bin/setup.8th . This will set up
the help file as well as other database files if your version of 8th has them.

Note: If you install 8th into a folder which is not writable to the user you normally operate
as, you must run the bin/setup.8th as the user with write permissions to that folder. This
is most notably the case if you’re running 8th on a server (e.g. as a CGI handler).

1.

2.

3.

4.

mailto:ron@8th-dev.com?subject=newport
mailto:ron@8th-dev.com?subject=newport
https://www.howtogeek.com/414082/how-to-zip-or-unzip-files-from-the-linux-terminal/

There are a number of folders included in the zip:

folder description

bin 8th executables for all the supported platforms

docs The manual and tutorials

libs 8th support libraries (8th code)

samples Sample code to supplement the tutorials and manual

keys The 'id.blob' containing your keys and registration info

Note: Pro+ The encryption keys in the id.blob are unique to each specific version of 8th
you download, and they are important for the purpose of building encrypted, deployable
applications.

If you move 8th outside of its distribution package and it can't find id.blob , it will print a
message saying Invalid installation, please reinstall . The same message will be printed
for a build generated application whose .dat file is missing. These do not happen for mobile-
device applications, because if the generated appdata is missing or corrupted, they will simply
quit.

Note: Pro+ Several auxiliary databases are shipped in the distribution as SQL files, to save
space in the distribution ZIP file. As stated above, you must run bin/setup.8th in order to
create the correct database files. If you do not, any libraries using those database will not
work.

Note also that regardless of the platform on which you develop, you can produce applications for
any platform supported by 8th.

Once you have unpacked the zip file, you can run 8th directly. For example, if you installed it in
/opt/8th on 64-bit Linux, then you should be able to type /opt/8th/bin/lin64/8th with
whatever parameters you like, and it should work correctly. Do something similar on macOS or
Windows.

Note: As mentioned above, adding the 8th binary’s folder to your system’s PATH
environment variable will allow you to simply type 8th rather than typing its entire path,
and is recommended for ease of use.

1.3 Starting and stopping 8th

8th itself is a command-line program — it is not intended to be started by clicking on a desktop
icon. You can create regular GUI programs with it which can be started that way, but the 8th
compiler itself is a CLI (command-line interface) program, and is run inside a console (terminal
etc).

Note: Windows users: If you are using an MSys or Cygwin shell, then you may also need to
use the freely available winpty program in order for your console mode programs to work
properly. Recent versions of Windows don’t seem to require that.

The 8th command-line looks like this:

8th [options] [[-f] file...] [-e 'code'...]

Where the [-f] file option means “interpret the contents of the file”, and -e code means
“interpret that specific 8th code”. Both options may be given more than once on the command-
line, and the effect is cumulative. In other words:

8th -f first.8th -f second.8th

will interpret the contents of the file first.8th and then interpret the contents of the file
second.8th . Note that if you want to just run one 8th file, you do not need to say 8th -f first.
8th , you can instead just type 8th first.8th .

To quit 8th, do any of the following:

Type bye and hit ENTER . That will tell 8th to quit normally
Type 1 die and hit ENTER . That will tell 8th to quit abnormally and return the status-code 1
to the operating system
Press the key Ctrl+D in the REPL.
In a running application, invoking throw will cause an exception. If you’re running from the
8th console, you will be returned there in most cases; if you’re running a file or a packaged
application, a message will be printed and the app terminated.

1.3.1 Command-line (CLI) options

Here are all the CLI options 8th understands:

•
•

•
•

option description

-a {opts} Invoke bin/makeapk.8th with optional opts

-b {opts} Invoke bin/build with optional opts

-d[0-2] load "debug/cli" library with the given debug level

-D nm Creates a var called ‘nm’ before running other code

-D nm=val Creates a var called ‘nm’ with the given value before running other code

-e str Interpret the string str as 8th code

-ee str Interpret the string str as 8th code and quit afterwards

-f nm Interpret the file called nm

-h Display the help

-i {opts} Invoke bin/makeipa.8th with optional opts

-q Be quiet on startup

-R List the SDL renderers , and quit

-r nm (attempt to) use the SDL renderer named

-S List the built-in SDL drivers and quit

-s nm (attempt to) use the SDL driver named

-v Print the 8th version and quit

-vv Same as -v but with additional information for debugging purposes

-? nm Same as help nm in the REPL

-?? nm Same as apropos nm in the REPL

-- Signals the end of 8th options

The "-d" switch defaults to dbglevel 0. Each higher number activates additional debugging
features. Currently:

0 : loads debug/allocs
1 : loads debug/nicer as well
2 : loads debug/trace as well
3 : loads debug/sed as well

•
•
•
•

If you find you are using command-line switches often, you can use a “shell script” (on macOS or
Linux), or a “batch file” (on Windows; also called a “command file”) to start 8th with the options
you prefer.

You can also create an 8th source file in the app:datadir folder, named settings.8th . If it is
present, the 8th REPL will load it at startup and will print a message to that effect. For security
reasons, that file will not be looked for or loaded in a packaged app.

1.4 Running your programs

8th can run your programs in several modes:

mode description

interactive just start 8th and type your code in the console (e.g. the “REPL”)

script put your code in a text file and run it using 8th mycode.8th (for example). See the tip below…

app convert your code into an packaged application using the build script (or the -b CLI option)

Pro+ You can create encrypted applications to help deter hackers and other nefarious parties

Note: Your “script” must not have improper UTF-8 in the first 16 bytes of the file. If it does,
8th will not run the file; it will print “Invalid” on your terminal, rather cryptically.

In the “script” and “app” scenarios, your code must be in plain-text files (e.g. not a word-
processing format). Any supporting files should be placed in the same or sub-folder of your code.
You can access those other files in 8th by invoking app:asset .

An “app” is a standalone program which runs on its own like any other program for the target
platform, and does not need to be run by 8th via the command-line. The contents may be
encrypted to help deter hackers, as mentioned above. The details of producing standalone
applications may be found in the section on using the build tool.

Note: If you’re running on non-Windows non-mobile-device systems, you can make your
script run like a regular system command by:

Making the file executable: chmod +x scriptname
Make the first line of your code: #! /usr/bin/env 8th
Ensure a relevant 8th executable is on your PATH

1.
2.
3.

1.5 Reporting bugs or other issues

When reporting a bug, please give as much detail as possible in the description. That makes it
easier for us to understand the issue, reproduce, and address it.

Include sample code to reproduce your bug.

If you want us to contact you regarding the issue, please say so and tell us how. It is
recommended you include your email in the bug report, for this purpose.

Note: It is strongly preferred that you report bugs online in the bug-tracker database .
If you do:

we get an email about the issue,
which will be tracked so it doesn’t get lost or forgotten,
and will be prioritized relative to other issues

You may also post a bug report on the forum , but that is likely to result in the bug getting lost in
the shuffle. Please use the bug database instead!

If you must include confidential or proprietary information in your bug report, please send that
information to us via email .

1.5.1 Proper reporting

You probably want the bug you reported to be fixed. For that to happen, we need the following
information (in the bug report):

The output from 8th -vv on the system where the bug occurred
Which OS and version you are running on
A precise description of what the symptoms of the bug are:

what you saw, vs.
what you expected
exactly how you caused the bug to happen

A concise bit of code which demonstrates the bug

•
•
•

•
•
•

◦

◦

◦

•

https://8th-dev.com/bin/bugs/
https://8th-dev.com/forum/
mailto:bugs@8th-dev.com

Please make sure that when you log a bug, you are as clear as possible as to how it should be
reproduced. If you’re reporting anonymously on the bug-tracking database, please include your
email address in the report so we can ask you for more details if needed (the email is only
visible to us, not to other viewers of the bug database).

1.5.2 What’s a bug?

A “bug” is any of:

a Program crashed message, or a program crash even without a message
a word which doesn’t behave as documented
missing or incorrect documentation

Any of those should be reported in the bug database; or, as a last resort, on the forum.

A bug is not an Exception... message, unless you followed the documented SED of a word and
the exception message resulted.

A bug is also not a report that 8th doesn’t work on your non-supported hardware. As mentioned
in the introductory section, you can request we support your hardware, for a development fee.

A “problem” is any difficulty you’re having which isn’t an actual bug. All problems can and
should be posted on the forum, so that others can also chip-in to help solve your issue. For
example, if you don’t know why your code isn’t working as you think it should.

1.6 Updating 8th

When a new release of 8th is available, you can get it by going to the 8th order page and entering
your customer id or the email you registered with. This is one reason it is important to use a
permanent email address when registering, rather than a “throw-away” one.

If you initially registered with a throw-away email, or if you changed your email address,
you can have us update our database by simply sending us an email with your new email
address.

Update your 8th version from within the 8th console by invoking app:current . That starts a web
browser pointing to a page with information on your build and, if appropriate, a link to update
your version to the latest one.

•
•
•

•

https://8th-dev.com/order.html
mailto:emailupd@8th-dev.com

Once you’ve got the new release, simply unpack the ZIP file in a different location from your
current version, and update your PATH variable.

Note: To be kept appraised of new releases, you can:

Look at the canonical 8th version page , or
Check the “Announcements” section of the 8th forum , or
Check our Twitter feed

1.7 Differences between the 8th SKUs

There are several distinct versions (SKUs) of 8th, which differ in their built-in functionality. All
versions have built-in encryption, SQLite database support, big-math and many other features;
however, some features such as Bluetooth support or encrypted executables are only available in
some SKUs.

The current list of SKUs and their features is on our website . You can upgrade to a more capable
SKU at any time, and your license will be extended by a year from its current expiration date or
the current date, whichever is later. If you have difficulties using the upgrade page, or if you
have special needs, please contact us and we will make every effort to help you within two
business days.

Note: All SKUs come with one year of free updates to the software. Once that year is over, if
you wish to continue receiving updates you will need to renew your update service by
visiting the 8th update page and extending your update service. Note further that if more
than 90 days have elapsed since the end of your update year, you will have to purchase a
full license again (rather than pay the substantially lower update fee).

Updates are not required for you to continue using 8th or for your applications to continue to run.
However, if you don’t update 8th you will miss out on bug fixes and new features.

1.8 For “Vim” users

If you’re using the vim editor , you should install the files in the docs/vim folders. syntax/
8th.vim in your local vim runtime syntax folder, and ftplugin/8th.vim in your local ftplugin
folder, and ftdetect/8th.vim in your local ftdetect folder.

•
•
•

https://8th-dev.com/current.php
https://8th-dev.com/forum/index.php/board,15.0.html
https://twitter.com/8th_Dev
https://8th-dev.com/skus.html
mailto:requests@8th-dev.com
https://www.vim.org/

Ch. 2 Introduction to 8th

This chapter is a quick introduction to 8th and the layout of this manual.

2.1 Typographic conventions

The following conventions are used in this manual:

Code samples appear indented from the body text, in a monospace bold font:

: sample

 "Code is monospace!" . ;

In stack-effect diagrams (SED, for short), a stack item in <angle brackets> means that kind of
item is read from the input-stream (either the 8th source code in a file, or from the keyboard, or
standard-input if input is redirected).

SEDs have the format: \ n -- to indicate the data-stack on entry has one item, a number, and
consumes the item. If the r-stack is affected, it is documented identically, but using curly-braces
to indicate the r-stack, e.g. \ { -- m }

Note: A paragraph indented in this manner with a bar on the left, indicates issues to which
you should pay special attention!

In addition, the following markup is used to indicate that a feature is only available in certain
SKUs:

symbol meaning

Hobby+ Available in Hobby, Professional, and Enterprise

Pro+ Available in Professional, and Enterprise

Ent Available in Enterprise

2.2 Glossary

This manual uses terms which are sometimes different from what you may be used to from
other programming environments. To make it clear what is meant, we present a short list of
terms as used by 8th:

term definition

asset anything packaged along with the code (fonts, graphics, other code, etc)

container a type of data item which contains other data items

factor a unit of code which can be extracted to its own word and invoked

invoke “execute”, “run”, or “call” a word

item any of the data types known to 8th

namespace a vocabulary of (usually) related words

phrase a group of words

refcnt the reference-count of a data item

regex a “regular expression”

REPL Read-Eval-Print-Loop: the default input for 8th

scalar a type of data item used for its value; for example a number

SED “stack-effect diagram” — short diagram of how a word affects the stack

task the same as a thread or co-routine in other languages

utility a type of data item which is neither a scalar nor a container

whitespace Unicode points 9–13, 32, 0x00A0, 0x2000-0x200F, 0x202F, 0x205F, 0x2060, 0x3000

word the same as a function, procedure, or routine in other languages

2.3 Some historical background

8th is based upon a much earlier language called Forth, which was initially designed in the early
1970s for controlling telescopes. Forth quickly found its niche in embedded systems because of
its small size, low resource requirements, ease of porting to new hardware, and flexibility.

Despite its many advantages Forth has remained a niche language, partly because of the lack of
true standardization between versions. That lack led directly to the cynical observation, “if
you’ve seen one Forth, you’ve seen one Forth”.

8th’s immediate ancestor is Reva Forth, also written by Ron Aaron. Though 8th shares no source
code with Reva, it was influenced by many of its ideas. Throughout this manual and the
accompanying documentation, we refer to 8th as well as other implementations of the Forth
language as “Forths”. Whether or not you are already familiar with Forths, you may benefit from
working through the 8th tutorials, located in the tutorials sub-folder of the samples folder.

8th came about because Ron was looking for a development tool to help him write an
application which he wanted to deploy on a variety of popular platforms. He searched
intensively for something appropriate. After trying a number of products, he found all of them
lacking for his particular needs. So he started writing his own solution, basing it on ideas from
his previous Reva Forth and from his decades of experience in the software field. The result is
8th.

Though there is a Forth standard (several, in fact), 8th does not adhere to it in any particulars,
choosing instead to be inspired by Forth’s concepts while being more accessible to a wider
audience. Most design decisions were made in the interest of keeping applications secure while
providing freedom to accomplish normal programming tasks in a cross-platform and
reasonable manner.

2.4 Unique features of the 8th language

As a developer, you are probably familiar with a number of programming languages. Most of the
ones in common use today are similar enough that one rarely has difficulty picking up the
essentials. You may be intrigued, then, that 8th is different enough from what you are probably
used to that you will need to pay close attention as you learn it. Take heart from the fact that it is
not a difficult language. Here are some of the concepts which set 8th apart from most other
languages:

2.4.1 Words

The smallest unit of execution in most languages is a “function”, “procedure”, or “routine”.

In Forths, the equivalent is called a “word”. That is because Forths try to interpret any
whitespace-delimited group of characters in the input. If that group of characters is a recognized
“word”, a Forth will execute it. What that means will become clear in the next few sections.

2.4.2 Interpreter or Compiler?

The most popular programming languages are either compiled (like C/C++) or interpreted (like
JavaScript or PHP). Some languages (such as Java) are compiled in a two-phase process; first
interpreting the source into an intermediate format which is then compiled on-the-fly at
runtime (this is known as “JIT”, or “just-in-time” compilation).

8th operates in two modes: “interpretation” and “compilation”. When interpreting (by parsing
words one by one and looking them up), it immediately executes the found code. When
compiling, it packs the information necessary into a code cache. Because of limitations of the
iOS platform, 8th no longer does native-code compilation. The precise details of 8th’s syntax and
how its interpreter works may be found in the syntax reference.

Unlike most current languages, 8th does not perform any optimizations on your code, except for
tail-call elimination. The reason is twofold. First, Ron’s experience is that optimizers can cause
incorrect code: both correctness and predictability of the application suffer as a consequence.
Second, the best optimizer is between the ears of the programmer.

The most significant performance gains are made by choosing an appropriate algorithm, rather
than relying on a compiler to choose an optimum instruction sequence. Of course some
disagree…

2.4.3 Stacks

Like all other Forths, 8th is a stack-based language. This means that parameters to words as well
as results from them are put onto a stack. In this manner, the output of one word is immediately
available as input to the next one. This encourages what is often called a “concatenative”
programming style, because words are “chained together”.

This concatenative style can serve to make code much more readable, since the “noise” of
naming parameters is eliminated. For example, a hypothetical dishwasher controller might look
like:

fill-water rinse-dishes drain-water dry-dishes

On the other hand, because the parameters are not named, code can also become less readable! It
is therefore important to make liberal use of comments, especially those regarding a word’s SED.
It is also very highly recommended to restrict the number of stack items a word uses to three or
fewer, to make code easier to understand. 8th has several words dedicated to manipulating
items on the stack. A full description can be found in the chapter on stacks.

2.4.4 Item types

In 8th, all builtin data-types “know” what they are, and words can (and most do) check to ensure
they are operating on the type (or types) of data they expect.

For example, 123 is a numeric value just as in other Forths. However, it is not just a value on the
stack. Rather, it is an item of the namespace n , and other words can determine that it is in fact a
number and not, for example, a string by using a phrase like:

>kind ns:n n:= if handle-number then

The various builtin types known to 8th are listed in the chapter on data types, and detailed
information about them is there and in subsequent chapters.

2.4.5 Reference counting

8th assumes you are not interested in the drudgery of keeping track of memory allocations and
de-allocations. Not only that — it does not provide you any way to directly allocate memory! It
provides “garbage collection” by means of reference-counting.

Most of the time you are not interested in the reference-counting mechanism either, you just
care that it works. But in case you want more information, it can be found in the reference-
counting section in the data-types chapter.

2.4.6 Exceptions

Rather than let you do something illegal, 8th will throw an exception. There are a number of
different exceptions which 8th knows about, and you can throw your own if you like.

The default handler (called, unsurprisingly, handler) causes 8th to display a message and quit if
an exception occurs. If you prefer to handle exceptions in a different way, you can override the
default handler word using w:is . See the section about words for more information.

You may also use a task-specific handler, using t:handler .

Exceptions are thrown if you underflow the stack, if you pass an incorrect data type to (most)
words and for many other situations. You can also invoke throw yourself and cause an
exception.

8th treats exceptions as fatal errors, so the default behavior of quitting is best.

Note: In the REPL, e.g. when you start 8th and just start typing code, a thrown exception
does not quit the interpreter. The reason for this is to make it easier for you to see what
happened and take corrective steps as you interactively work through your code. However,
the exception is nevertheless a “fatal error”; and 8th may not be able to continue without
crashing. This does not happen when running from a file or an application, since in those
situations 8th will quit (unless you overrode the handler word, in which case caveat
programmer).

Note also that in the case of an exception thrown in the REPL, the stack is not cleaned up and
may contain some “garbage”.

Many words indicate an error condition by returning the value null which can be checked using
the phrase

null? if handle-null-situation then

2.4.7 Getting help and adding your own

This manual, the tutorial and the sample code provided with 8th should be your first source of
help if you have difficulties. If you cannot figure something out, or if you just want to discuss the
matter, you should join in the discussions on the forum .

https://8th-dev.com/forum/

If you are typing code in the console and want some help, there are two useful words at your
disposal: help and apropos . The first lists all words whose names match the text given after it,
along with their documentation. The second does the same, but also matches any help text
which contains the text you type. A further set of helpful words is words and words/ . The first
lists all the words 8th knows about; the second lists all words whose names contain the text
given after it.

It is also possible to get help without being within the REPL, by invoking 8th -? nm on the
command-line to get help on nm , or 8th -?? nm to invoke apropos on nm .

Note: The help file is distributed as a SQL file which must be processed by 8th before the
'help' and 'apropos' words are available. This is why you must run bin/setup.8th the first
time you run the REPL.

You can add help for your own words by using the samples/help/addhelp.8th tool and following
its instructions (seen using 8th samples/help/addhelp.8th -h).

If you are trying to remember a word name, you can find it using words/ , which will list all
words matching the text you entered. words/ xy finds all words with "xy" in their name, while
words/ a: finds all words in the a namespace.

2.4.8 Quick introduction for users of “mainstream” languages

If you’re coming from C or Java (or most common languages), you may find 8th a bit puzzling. To
help set you on the right path, here are some of the primary differences between 8th and “the
mainstream”, as well as some helpful hints:

As a consequence of the way the interpreter looks up items, you must declare a var or a
word prior to its first use. Failure to do so will result in the exception can’t find ...
A var is a named container for other items. It is not the name of the item referred to! So var
x may hold an array, but it is wrong to try to access x as if it were itself an array, and doing
so will cause an exception to be thrown
You cannot declare a var inside (e.g. local to) a word, don’t try it! You can, however, use w:@
and w:! to access word-local variables
Try to write your own words so that they can be chained together with other words. For
example: the “file words” do some operation on a file and leave the file item on the stack
(and perhaps other information) for the next word to work on

•

•

•

•

Keep your words short. Comment them. Be sure, especially, to comment the stack-effect,
and…
… test each word you write (preferably as you write it or shortly thereafter), ensuring it
adheres to its documented SED. This will help you write bug-free code. Re-test if you change
the SED or the code
Consult the help and apropos words for details on the SED action, and side-effects of any
word you aren’t sure of
In 8th, an exception is a fatal error, and will cause the application to quit (this is the default
behavior). Don’t expect to “catch” one and handle it effectively (though it is possible to use
catch to try to do so)
There is no compile/link cycle. Instead, 8th is an engine which first interprets your code
and if necessary compiles it at runtime.

•

•

•

•

•

Ch. 3 Syntax

As in other Forths, 8th plucks whitespace-delimited words from its input and tries to interpret
them, one at a time. However, there are some special lead-in characters which make 8th
interpret the characters which follow in a different manner, and the sequence of events in the
interpreter is important.

8th’s syntax is quite minimal: it is completely described by the few rules listed below. As
mentioned, there are two “modes” as in other Forths: “interpret mode” and “compile mode”.

interpret: The initial mode. Text you enter is interpreted immediately according to the rules
listed below
compile: Initiated by the : or (words, terminated by ; or) respectively. In compile mode,
the words you enter are compiled into the word being created, to be executed when it is
invoked

Note: 8th has no “reserved words”. This means you can override any of its built-in words. Be
careful if you do so, since the old word is then no longer easily seen by the interpreter,
which may have Unusual Consequences™. Also bear in mind that with great power, comes
great responsibility. Just because you can do something, does not mean you should.

3.1 Interpreter rules

Here is what happens inside the 8th interpreter:

Parsing starts by picking up characters one-by-one from the input (which may be a file, an
eval string, redirected standard input, or the keyboard), and collecting them into a word.
Any whitespace stops the word-collection process. Note: in the REPL, console input is line-
by-line, though the parsing of the line is word-by-word.
The parsed word is looked up using the equivalent of w:find , and is case-sensitive:

If only was invoked, only that namespace is searched.

•

•

1.

2.

a.

Otherwise, try in turn until found:

look in each namespace in the “with list”. By default, that list contains just the
user namespace
look in the namespace of the “current item”. In interpret mode, that’s the item on
TOS (top of stack) if there is one. In compile mode, it’s the last item compiled
if it’s a “fully qualified” name, e.g. a name with a namespace-name, colon and word
— such as n:+ — look in that namespace
look in the namespace specified by the last ns:
look in the G namespace

If a word is found, it is immediately executed (in interpret mode) or compiled into the
current word (in compile mode).
If not found, examine the first character of the word to see if it is a special item type (see the
section on “Special characters” below)
If none of the above succeeds, try to interpret as a number using the current base
If that fails, try parsing it as a complex
If that fails, try parsing a date
If all that failed, invoke all the “last gasp” words installed using G:+hook , with a string
containing the offending character sequence. The default behavior is to throw the exception
Unknown: <word>…

Note how the interpretation rules allow you to override any word, since 8th first checks for
existing words. You can, for example, override 8 to print eight :

: 8 "eight" . ;

Since that’s an incredibly bad idea, it’s fortunate that you can undo the damage by telling 8th to
forget your newly created word:

"8" w:forget

When an item has been successfully parsed, the interpreter pushes it on the stack (in interpret-
mode), or compiles it into the current word (in compile-mode). This behavior is the usual case,
but “immediate” words, and likewise use of p: , i: , and l: modify this. Details are provided in
the chapter on words.

b.

i.

ii.

iii.

iv.
v.

3.

4.

5.
6.
7.
8.

3.2 Strings

When interpreting a string, 8th follows the same conventions used in the “C” language. First, a
string is any sequence of characters delimited by double-quotes ("). Second, if a back-slash
character (\) is encountered, the following characters are interpreted specially:

" double-quote, ASCII 34

a alarm, ASCII 7

b backspace, ASCII 8

f form-feed, ASCII 12

n newline, ASCII 10

r carriage-return, ASCII 13

t tab, ASCII 9

v vertical tab, ASCII 11

x the next two characters are hex digits (e.g. \x20 is the space character)

u the next four characters are Unicode hex digits (e.g. \u201c is the typographic “)

U the next eight characters are Unicode hex digits (e.g. \U0000201c is the typographic “)

Any other character following a backslash is inserted literally.

Note that strings are sequences of UTF-8 encoded characters, so they may contain any valid
Unicode character (even if your font doesn’t display it properly).

Note: Windows users: A file name like "C:\Program Files" will not give the results you
desire, because the single backslash \P is interpreted as just P . Instead, use "C:\\Program
Files" , or (preferably) "C:/Program Files" .

Note: 8th is intolerant of malformed UTF-8. So if, for example, you have a buffer
containing text in the CP-1255 encoding and then convert the buffer to a string, it is likely
that an exception will be thrown complaining about invalid UTF-8. 8th can convert
between character encodings using the conv word, but that requires the external libiconv
library in order to work. 8th can also convert between UTF-8 and UCS-2 using ucs2> and
>ucs2 .

All this means you need to be careful accepting string input from outside sources. You can use
s:utf8? to determine whether or not a buffer contains valid UTF-8.

3.3 Special characters

There are characters which have a special meaning when encountered during interpretation of
the input. That is to say, when encountered as the first character of a new word parsed from the
input, they cause 8th to interpret the remaining characters differently. The special characters
and their meanings are:

" string, terminated by a matching "

/ regex, terminated by a matching /

B Big int (bint) number

F Big float (bfloat) number

X buffer, in hex format

[array, following modified JSON syntax

{ map, also following modified JSON syntax

Note: As mentioned above, the special characters are processed only if a matching word
was not found in the dictionary.

3.4 Numbers

Numbers are interpreted using special rules. If the lead-in character is:

+ make number positive

- make number negative

0X or…

0x or…

$ interpret number as hexadecimal (e.g. base 16), regardless of current base

% same, but binary (base 2)

& same, but octal value (base 8)

same, but decimal (base 10)

' The following single character is interpreted as an ASCII character value

B If base is decimal, interpret the rest as a bint

F If base is decimal, interpret the rest as a bfloat

e or

E If base is decimal, number is floating-point and following is the exponent

. (anywhere in the input) means number should use floating-point

Special end-characters (e.g. at the end of the number) are:

i The number is complex (e.g.: 3+4i)

k "kilo" (1k is 1000)

m "mega" (1m is 1000000)

g "giga" (1g is 1000000000)

t "tera" (1t is 1000000000000)

K "kibi" (1K is 1024)

M "mebi" (1M is 1048576)

G "gibi" (1G is 1073741824)

T "tebi" (1T is 1099511627776)

Note: The "kilo" etc. multipliers are only applied if the current base is 10.

Within a number, an underscore "_" may appear anywhere, as a visual grouping aid to the
programmer. The underscores are ignored when 8th parses the number.

For example, 1_234.567_890 is parsed the same as 1234.567890 .

3.5 Regular Expressions

The regular-expression syntax used in 8th is that of PCRE2 , with all its features and limitations.
When entering a new regex, one may either use the slash notation, e.g.

/(cat)|(dog)/

https://pcre.org/

or one may choose to construct a regex from a string, using r:new :

"(cat)|(dog)" r:new

In either case, a new regex item is created. However, the second version may be used to create a
regex from any (appropriate) string, and the parsing rules for strings then also apply. Using
slash-notation, the regular string parsing rules do not apply.

For details on the syntax allowed in a regular-expression, please consult the PCRE2
documentation at the URL listed above.

You can use PCRE escapes in your regex, e.g. (?i) for "ignore case", and (?m) for "multi-line".

3.6 Scoping

8th is unlike most other languages you may be familiar with, in that it has very primitive
“scoping rules”. For example, in the C++ language a variable declared inside curly-brackets is
only visible to code that is also inside those brackets. 8th does not work that way.

In 8th, everything which can be looked-up with w:find must be inside a namespace. That means
that named words and vars may be found in some namespace. If you take no other steps, any
words and variables you create will be put in the “user” namespace, ns:user . That is, if you
create the new word foo , it will be fully-distinguished as user:foo . You can create new
namespaces and use them to distinguish various aspects of your application, and this is in fact
recommended.

Note: You cannot declare a var inside a word. vars are always global in scope.

However, you can easily change the scope of your words to another namespace. First, you can
prefix the word with the namespace-name and colon, which will create it in the given
namespace. Note that the namespace must already exist for 8th to be able to create the new word
there:

: m:xxx 123 ;

That example created a (useless) word called xxx in the m (map) namespace. You can also use
the ns word to let 8th know that you want to create new words in that namespace, e.g.:

ns:m ns

: xxx 123 ;

This has the exact same effect as the previous example, but is much nicer if you have many
words you wish to put into a particular namespace. You can create a namespace of your own in
which you put all your application’s words (or some subset of them) by simply doing:

ns: mycode

This will create a new namespace mycode if it doesn’t already exist, and informs 8th that new
words should be created there. It also makes mycode one of the namespaces searched for words.
However, it does not affect the general search order. For that you need to use with: and ;with .

3.6.1 Word-local Scoping

“word-local variables” are named-variables, whose scope is limited to the word in which they
are declared, and to any non-local-containing words invoked from it.

In order to start a local variable scope, a word must be declared to have locals, using locals:
like so:

locals:

: word-with-locals

 ... ;

Inside that word, and any non-local words invoked by it, you may access an effectively unlimited
number of named local variables by using the w:@ and w:! words:

locals:

: foobar

 1000 "baz" w:! ;

: bar

 120 "baz"

 w:! foobar ;

locals:

: foo

 100 "baz" w:! …

 bar …

 "baz" w:@ ;

In this rather useless example, foo and foobar are declared to begin a word-local-scope, while
bar is a regular word. When foo is invoked, it sets the local variable named baz to the value 100.
At some point it invokes bar, which sets baz to the value 120, and then invokes foobar, which sets
baz to 1000. However, foobar is declared to start a new scope, so its “baz” is not the same as the
“baz” declared by foo. As a result, when foo ends, it pushes the value 120 on TOS which was set
by the subordinate bar.

This demonstrates the scoping rules for word-local variables as implemented by 8th. You may
see this in action in the sample misc/locals.8th .

3.6.2 Task-local variables

8th also implements task-local variables. Those are named-variables whose scope is limited to
the task in which they are declared. They are comparable to “USER” variables in other Forths, or
thread-local variables in other languages. They are accessed using the words t:@ and t:! .

Each task has its own task-local namespace, therefore one may use the same variable name in
different tasks. This means, for instance, that using the same code with the same variable name,
one may parallelize a calculation without worrying about locking — since the same name in
different tasks will access different actual variables. Of course, this only applies if the t:@ and
t:! words are used, rather than the usual @ and ! (e.g. G:@ and G:!). See the sample tasks/
tasklocal.8th .

3.7 Namespaces

A “namespace” is a logical grouping of words, with a dictionary for looking up their actions. For
example, the n namespace groups together all words which act on numbers, the f namespace
words act on files, etc. Generally speaking, namespaces contain words which operate on certain
types of data or have similar actions.

A namespace can also have associated pools of items, if items from that namespace are ever
allocated. The pools are allocated for namespaces on a per-task basis. For example, numbers are
allocated from the n namespace pool, files from the f namespace pool, and so on.

There is a default namespace: G so named because it is “general”. It is the namespace which is
always searched after any other namespace. We’ll explain more below.

To see all the words which belong to a namespace, invoke words/ . For instance, all the array
words are found by typing words/ a: .

3.7.1 Purpose of namespaces

Using namespaces allows us to accomplish a few things. First, we can keep our dictionaries
clean. That means that we don’t stick every word we create into one gigantic dictionary. That
makes the name lookup faster as well, though perhaps not by much.

That also implies that it helps keep us from creating words with conflicting names, thereby
reducing the likelihood we’ll accidentally overwrite an existing word. It also implies that we can
create different words with the same name, in separate namespaces. For example, we have G:@ ,
a:@ , m:@ etc. — all words named @ , with similar semantics, but in different namespaces.

Namespaces also let us control access to words. We can, for instance, use only to make a
particular namespace the only one the interpreter can search, thereby making it safe to allow
access to the interpreter from untrusted code (e.g. user inputted code).

3.7.2 Proper use of namespaces

In interpret mode — that is, when 8th is processing input from the console or from a file outside
of a word-definition — it tries to deduce the namespace from the item on TOS.

For example, if you type: 1 2 + in the console, 8th correctly chooses n:+ because 2 is a number,
from the n namespace’s pool of items. In this case, you don’t have to specify n:+ , because 8th
can correctly figure out what to do.

However, if you were to type [1,2,3] (. drop) each then 8th will complain that it can’t find
each . That is because the item on TOS is a word, and there is no w:each . In this case, you must
specify a:each so 8th can do what you were expecting it to do.

Similarly, in compile mode — when 8th is compiling a new word-definition — the way it finds
words is different, and it is therefore often important to specify the namespace of a word, since
it may not be able to tell which of several words to use.

3.7.3 Namespaces and the search order

The order in which 8th looks for words is listed in the Interpreter rules section above. Using
with: and ;with judiciously means you can modify the order 8th searches for words. That can
reduce the typing and clutter in your code, but may lead to unexpected results at times. So use
with caution.

Note: It is almost never necessary to use the prefix G: to tell 8th that a word is in the general
namespace. That is because it will always look there for a word, eventually.

The only time you must use the G: prefix is when it is possible that a namespace being searched
has the word you are using, in compile mode. For example:

ns: a

var v

: x v @ ;

x

This will throw the exception, expected Number, but got Variable . That is because while
compiling, 8th looked in the a namespace and found a:@ , and compiled a:@ into the word x
instead of G:@ . However, you put the var v on the stack before the @ , expecting that you would
be using G:@ which operates on vars. So in this scenario, you are required to explicitly say G:@ .
However, these scenarios are not very common, and it is preferable to avoid using the G: prefix
so your code is more legible.

The built-in namespaces usually have short names of one or two characters, to save typing and
compress the source. So for example, the namespace s contains the string words, and an item
which has a namespace (numeric) identifier of ns:s is a string. The word >kind may be used to
determine what namespace an item belongs to. It places the numeric value of the item on TOS,
where you may then compare it with the value of the namespace identifier. For example:

: isnumber? \ x -- true|false

 >kind ns:n n:= ;

This example converts TOS to the numeric value of its namespace using >kind , and then
compares that value with the numeric value of ns:n , the namespace identifier of numbers. It
then does a numeric compare (note: n:=).

You may find the notation n:= a bit confusing, but it’s there for a good reason: many other
namespaces also have a word named = (for example, strings may be compared with an equals
sign), but the only real connection between the various “equals” is that they do a comparison of
their respective data types. Because it is convenient to use a similar symbol or word for similar
actions, 8th lets you have both a string = and a numeric = . Since they are nevertheless
completely different, they are in separate namespaces.

If you find yourself using n: (say) very often, you may wish to use the word with: , which lets
8th know it should check for the word you typed in those namespaces first. If you do use with: ,
you should pair it with ;with when you are done, to remove the namespaces from the
impromptu search order. To check on what has been put in the with-list , type .with . The
above example could also have been written:

with: n

: isnumber?

 >kind ns:n = ;

There are three special namespaces: ns , I , and #p . The ns namespace contains the names of
all the namespaces, and invoking any of the names it contains puts the numeric identifier of that
namespace on TOS, as seen above. The I namespace contains internal factors of 8th words
which are useful in various places within 8th, but are not sufficiently useful to be documented.
They are put in a separate namespace to reduce clutter in G. The #p namespace contains the
names of words declared between private and public (or end of file). They are visible only
during the compilation of a file (or library) and will become invisible after the compilation,
meaning that searching for them using w:find will not succeed outside of their file or library.

3.8 JSON Rules

8th uses a modified form of the industry-standard JSON syntax for defining data items. While it
understands standard JSON just fine, it makes a few additions to the standard syntax which are
geared to making it work more conveniently with 8th.

Comments. When declaring an array or map, you may insert an 8th backslash comment in
between elements (or between a key and its value, for an map). So this is legal syntax:

https://json.org/

{

 "key" : \ this comment is perfectly legal (but not in standard JSON)!

 "some value"

}

Note: Remember: in 8th, backslash comments run to the end of the line. Also note that this
syntax modification only works with the single-backslash comment, it does not work with
-- or any other comment words.

Expressions. In an array or map declaration you may use the backtick character ` to bracket an
expression to evaluate. That expression will be evaluated when the JSON is, and its value will be
inserted where you expect the item to appear. This must leave a valid 8th item on TOS to be
inserted into the map; thus the resultant array or map may not be convertible to standard JSON
again! Additionally, the backtick cannot be used to evaluate a value for the key of a map, only for
the key’s value.

Strings in 8th’s version of JSON may be spread over multiple lines, and the line-breaks are then
implicit. So:

"key" : "A long

string" ,

is valid under 8th’s version of JSON, but it doesn’t adhere to the strict standard and may not be
understood by other tools. If you need to interact with other tools, convert CR and LF to the
escape characters using the phrase "\r\n" "\\" s:replace! to conform with standard JSON
rules.

Code. You can also put an anonymous word in the item you’re declaring:

[(123 321 n:+)]

This is different from the backtick-expression because it is compiled code, and the word is held
in the item you declared (array or map). You can then use w:exec to execute the word, or pass it
on to some other word which requires it (a:each for example).

Alternatively, use the tick word ' to find a word and insert it.

Complex numbers. A value such as 1+2i will be interpreted as a complex number just as if it
were entered in the REPL.

Bare key strings. Key strings in maps without enclosing double-quotes are permitted. In such a
case, the key is understood to be from the first non-whitespace value until the colon (:) which
separates the key from the value:

{

 key: "some value",

 complex: 1+2i

}

Note: When a map is converted to string (e.g. for printing or otherwise), keys are always
enclosed in double-quotes. Also, if the key has integral whitespace, it must be enclosed in
double-quotes.

@ expressions. In an array or map, a leading “@” symbol dereferences the variable appearing
immediately after. For example:

123 var, x

{

 key: @x

}

The value of “key” will be 123 in this case. This is particularly useful when creating maps or
arrays which have values which are constants. Note that the interpolation of the “@” occurs at
interpretation time and so the value does not change when the variable value changes!

Buffers. A value beginning with X is treated as a hex buffer, e.g.: [X1234] is an array with a
single value, a 2-byte buffer with the bytes 0x12 and 0x34.

Regex. A value beginning with / is parsed as a regular expression, e.g: [/abc/] .

Here’s an example with all the modifications to standard JSON which 8th knows:

[

 123, \ a number followed by comment

 B123, \ a bint

 F123, \ a bfloat

 ' myword , \ a ticked word

 (myword) , \ an embedded anonymous word

 ` 200 300 n:+ `, \ an evaluated expression

 1+2i, \ a complex number

 X1234, \ a 2 byte buffer

 /abc/, \ a regular expression

 @x \ an “@” interpolation

]

{

 abc: "123" \ “bare” key name

}

3.9 Working more effectively with JSON

Since 8th uses JSON extensively, it is worthwhile discussing some “best-practices”.

First of all, it is best to format your JSON so it’s legible. The parser doesn’t care if your JSON is
illegible, but you will. So use indentation judiciously and keep opening and closing brackets at
the same indentation level (or keep the ending bracket at the same indentation level as the item
which caused the indentation). For example:

{"foo":"abc","bar":[1,2,3],"blah":{"blarg":1000}}

is legal JSON, but difficult to read. It would be better to format it like so:

{

 foo: "abc",

 bar: [1, 2, 3],

 blah: {

 blarg: 1000

 }

}

While JSON data structures can be created in your 8th code, you may also keep them in separate
files to be loaded at runtime. For example, the above JSON could be stored in a file data/
foo.json (relative to your source files). In that case you could load the JSON using assets:

"data/foo.json" app:asset

Having loaded it in this way, the JSON text will be held in a buffer which you must then convert
to its respective data structure using either json> or eval . The word json> converts only
standard JSON. That is, it will not convert the 8th additions to the JSON standard. If your file
contains “enhanced JSON” then you must use json-8th> to convert it, or eval if you trust the
source.

If you choose to store your JSON in some other location (for example: in some global location on
disk), then you can use f:slurp to load the JSON file directly into a buffer; however, you must
use the complete (relative or absolute) path to the file.

To convert a data structure into JSON text for storage or transmission, you can use the >json
word, which can convert to enhanced JSON if you have included non-standard elements in the
data structure (words, for instance).

Pro+ You can use the b:>mpack and b:mpack> words to convert any 8th data item for storage or
transmission.

Ch. 4 The data stack

In common with all Forths, 8th passes data to words, and receives results from words, using the
“data stack”. Because of its importance, programmers must become familiar with how to use it
properly. This chapter will describe in detail the primary words 8th provides to manipulate the
stack. When we say “the stack” we are referring to the default data stack.

By default, the data and R stacks allow 8K items. Memory for the stacks is allocated on-demand
by the underlying OS, so the actual memory footprint will normally be whatever a page-size is
on the OS or some multiple of that. If you need more than 8K items at a time, you must use the
stack-size word before you intend to use the larger stack.

Note: If you find that 8K items on the stack is too few, you are almost certainly abusing the
stack and should really reconsider what you are doing! Consider moving your data to an
array, or to an auxiliary stack created using st:new (which may be as large as available
memory).

4.1 Stack basics

Conceptually, the stack is similar to a stack of dishes: the last dish put on is the first one taken
off. This is known as a LIFO data structure : last in, first out. The 8th stack is exactly that. The act
of putting something on the stack is called “pushing” and taking something off it is called
“popping”. If you push items on the stack, the next action can pop items off and push new ones
on. Of course, a word is not required to push or pop anything at all.

ok\> 123 .s

Stack depth: 1

0 n: 00007fb2e9844a00 1 123

https://www.geeksforgeeks.org/lifo-last-in-first-out-approach-in-programming/

In this example, the number 123 was pushed onto the top of the stack (TOS) simply by typing it
in. The 8th interpreter recognized a number, allocated one, gave it the value 123 , and then
placed it on TOS for further use. The .s word prints up to st:dot-depth stack items (default is
10), in order from top to bottom. Words beginning with “.” are commonly used to indicate “print
something”, though as with almost everything in 8th, that is just a convention and not an
unbreakable rule.

Note: When writing words, it is very strongly recommended that you comment the word’s
stack usage. This is called a “stack-effect diagram” (also called SED) , and is traditionally
written like so: \ in1 in2 -- out1

In this case, the two parameters pushed on the stack were in1 and in2 , where in2 is on TOS.
The word is documented to consume those two and leave out1 on TOS. When you’ve properly
documented your words’ SEDs, you’ll be able to come back later and more easily understand
what the word was intended to do. In 8th’s documentation, a stack item in <angle brackets>
means that kind of item is read from the input-stream (either the 8th source code in a file or
from the keyboard in the REPL, or “standard-input” if input is redirected).

Note: Debugging your code in 8th primarily should be done by verifying that your word’s
implementation matches its SED! You can help yourself immensely by liberal use of .s
during development, to see what is actually happening to the stack when your word is
executed. If you also use the “R-stack”, then the equivalent .r is also helpful.

Note that an incorrect SED (or a word which doesn’t match its SED, or misinterpreting the
documented SED) is the prime cause of bugs in 8th (or any Forth, for that matter).

4.2 Common stack words

The most commonly used words for stack manipulation are:

word SED description

dup x -- x x duplicate TOS

drop x y -- x remove the item on TOS

swap x y -- y x exchange the item on TOS with the second item

over x y -- x y x duplicate the second item and put it on TOS

nip x y -- y remove the second item

word SED description

tuck x y -- y x y duplicate TOS and put it in the third position

rot x y z -- y z x rotate the top three items, making the third TOS

-rot x y z -- z x y rotate the top three items, making the second TOS

2dup x y -- x y x y duplicate the top two items on the stack

2drop x y -- drop the top two items on the stack

2over x y a b -- x y a b x y duplicate the third and fourth items on the stack

pick n -- m pick up the "n"th item on the stack

0 pick has the same effect as dup , and 1 pick has the same effect as over . Try apropos stack
to find other possibilities!

Note: “duplicate” does not mean the same thing as “clone”! Instead, it makes the precise
same item available in another position on the stack, increasing its refcnt . This is
important to keep in mind. Use clone when you want a copy of an item rather than a
reference to the same item.

4.3 Using the stack

8th words take their parameters from the stack, and push any results back onto it. Thus, the SED
mentioned above is important documentation for any word you write, as well as for the words
built-in to 8th.

Because a word’s parameters are not named as they are in most other languages, but simply
reside on the stack, it is recommended to avoid using very large parameter lists. Generally
speaking, if you have more than three or four parameters to a word, you should look at
refactoring your code to break the parameter list into something more manageable, or consider
using an array to store the parameters in one item.

In particular, use of the words pick or roll probably indicates your parameter list is too big,
and you should give some thought to reorganizing your code. Of course, pick and roll are
provided because sometimes you do need long parameter lists.

Note: If you have a deep stack and are using pick , consider instead collapsing the stack
into an array with a:close and accessing the appropriate element using a:@ . You’ll
probably see a significant speed-up (though as always, measuring times is recommended.
d:ticks helps here.).

4.4 Extra stacks

The words >r r> and r@ provide quick access to an additional stack, which is intended to be
used to store temporary values. If you are familiar with other Forths, you need to note that this
is not the same as the “return stack” in those Forths. 8th does not provide access to the actual
return-stack, for security reasons.

Note: The word r@ is not the same as the word r:@ ! The latter accesses matches contained
within a regex after r:match was invoked..

Use these words to stash a value away temporarily. The R-stack is as big as the data-stack, by
default 8K items deep. But you will usually only need to use one or two items at a time on it. If
you do find yourself needing to access arbitrary locations on the R-stack, you can use rpick ,
though as with pick , its use often indicates your code needs refactoring.

You can also create any number of other stacks of any size using st:new and the other stack
words. You can push, pop, peek, and pick just like you can with the data-stack and R-stack;
however, you do not have access to the full complement of stack-words which operate on the
default data-stack (though you can write your own versions of them if you wish).

4.5 Controlling your stack with SED:

The word SED: was introduced to assist 8th’s users with some of the more difficult issues facing
new (and not so new) 8th programmers. It does three things:

Documents a word’s SED
Checks that the stack has the correct number of items on entry and exit from the word
Checks that the parameters on the stack as well as the results returned match the SED
documentation

•
•
•

How does it work? Simply use the SED: word instead of the backslash after your word’s
declaration, and adhere to the simple formatting rules:

Separate the input and output sections with a double-hyphen
Use the namespace identifier of the expected items instead of symbolic names
Use an asterisk to indicate “don’t care” values

For example:

: myword SED: a s -- a

 \ rest of definition...

This indicates that myword expects an array and a string on entry, and leaves an array on exit
(perhaps the same one, but that’s not checked). It also indicates that the stack depth will be one
less on exit than it was on entry.

You can also enable SED checking only for some portions of your code by putting needs debug/
sed in your code file, and then invoking true SED-CHECK before words you wish to check, and
false SED-CHECK afterwards to disable SED checking from that point on.

Active SED checking comes at a price: it’s considerably slower than not having it activated. So it
should only be used while developing new code, in order to help guarantee correctness. It can
also be activated when you encounter bugs in your code, to help track down stack issues.

Note: SED does not yet handle variant SEDs (e.g. with several alternative stack-pictures). It
is still a “work in progress”.

•
•
•

Ch. 5 Data types

8th has many built-in data types. Some are almost self-explanatory, while others are less
familiar. This chapter will acquaint you with the various types, and what they are used for in
general. Further chapters will expand on specific data types. All data types used in 8th are self-
contained, and occupy only one cell on the stack (or in a container).

Some of 8th’s data types come into being by declaration, and others can be created using some
form of the word new . If a namespace has its own new , that will be indicated. All the types
which are available in 8th as of this version are listed in the file docs/words.pdf .

5.1 Scalars, containers, and utilities

8th calls a “scalar” any item which has a value used for calculation or display; for example, a
number or a string. A “container” is an item which is used to hold (or “contain”) other items.
There are still other items, such as files and regexes which are “utilities”.

Scalar types hold a value, which is almost always immutable. That means that when you modify
such an item, you will get a new item of that type, with the value you expect, rather than
modifying the item itself. For example, numbers are scalars, and the phrase 2 1 + results in a
completely new number instance with the value 3 .

Containers, on the other hand, are designed to be modified, because they are typically used to
store other items to be used. Their utility is in their ability to be reused (and accessed or iterated
in some manner).

Utilities are neither scalars nor containers. They are most often stateful, and are not themselves
changed so much as they cause change in other parts of the system.

The following table lists in alphabetical order all the namespaces and data-types which are built-
in to 8th, as well as information about them. Containers are type C , scalars are type S , and
utilities are type U . The “new” column indicates that there is a word new which creates the
given type:

type ns CSU new description

Application app U Encapsulates application-level information and properties

Array a C ✓ A container allowing fast random access by numeric index

Bluetooth bt U Hobby+: bluetooth access

Boolean T S true and false values

BSON bson U Pro+: BSON parsing

Buffer b S ✓ A chunk of memory, byte-wise accessible

Color clr S Color manipulation

Complex c S ✓ Complex number math

Console con U Console I/O

Control ctl U Used internally for flow control

Crypto cr U Cryptographic manipulation

Database db U SQLite, MySQL, and ODBC databases

Date d S ✓ Dates and times

DBUS DBUS U Linux/RPI: DBUS interface

Debug dbg U Debug utilities

DOM DOM C Document Object Model utilities

File f U Disk files, pipes, etc.

Font font U ✓ Text fonts

Global G S ✓ null

Graph gr C ✓ A container describing relationships between items

Hardware hw U Hardware access

Heap h C ✓ A container allowing serial access in sorted order

Image img U ✓ A graphical image (PNG, etc.)

Internal I U Internal factors of words, not documented

Log log U Logging utility words

type ns CSU new description

Map m C ✓ A container allowing fast access by key

Matrix mat S ✓ A mathematical matrix (either numbers or complex)

Namespace ns U Contains all namespaces

Network net U Sockets and internet access

Nuklear nk U ✓ Graphics items

Number n S Math numbers

Object o C Objects which can inherit from other objects

OS os U OS-specific utilities

PDF pdf U Pro+: PDF output

Pointer ptr U A container which holds another item for passing through the FFI

Private #p U Namespace for private items

Queue q C ✓ A container allowing serial FIFO access

Rectangle rect S ✓ Rectangle and point manipulation

Regex r U ✓ PCRE2 regular-expressions support

Serial sio U Hobby+: Access to the serial ports

Solver slv U ✓ Cassowary constraint solver

Sound snd U ✓ Hobby+: Sound playing and recording

SQL sql U SQL queries (used with the DB items)

Stack st C ✓ A container allowing serial LIFO access

String s S ✓ A sequence of UTF-8 characters

Task t U Same as a “thread”; allows multithreaded programming

Tree tree C A container allowing fast ordered search

User user U By default, user-defined words and vars

Variable v C A container holding exactly one item at a time

Word w U The equivalent of a function, procedure, or routine in other languages

X X U Internal: holder for various structures

XML xml S An encapsulation of XML data

5.2 Reference-counting and pools

Each item in 8th comes from a pool of similar items. As new items are needed, 8th first looks for
ones which have been released back into the pool for that item type. If there are any such items,
they will be re-used. If there are no such items, a new item of the requested type will be created.
Each task has its own set of pools.

Each item has a reference-counter (refcnt), which determines whether or not it is available,
and how many “holds” have been placed on it. The refcnt is incremented every time another
item holds a particular item (for example, if it is duplicated on the stack or is put in a var or
other container). The refcnt is decremented whenever a hold on the item is released (for
example, if it is popped off the stack, or a different item replaces it in the var , etc.).

When the reference count of an item is about to transition back to zero, 8th performs whatever
cleanup is necessary for that item (e.g. closing files, releasing memory) so that the soon-to-be-
available item will be ready to be re-used and not leak memory or other resources. It is then put
on the released list of its pool.

If you pass an item from one task to another (e.g. using t:push and t:pop), then if the refcnt
goes to zero on the task which created the item, it is put on that task’s free list. If it happens on a
different task, the item is completely freed. This makes the use of pool-clear etc. as detailed in
the next paragraph unnecessary in this common case.

Note: There may be usage-patterns which create a lot of released items. For example, if
you create a large array of numbers, and then release it. If you are concerned about the
excess memory usage, you can cause it to be reclaimed by invoking pool-clear or pool-
clear-all in the task where the excess items were released.

5.3 Mutability

As mentioned above, scalars are usually immutable. That means that, for example, if you have
two numbers and add them together, the result will be a new number which is the sum of the
two, rather than a modification of either of the original numbers.

Containers are always mutable. That means that, for example, if you have an array and push
some other item into it, the original array is changed (it now has one more item in it).

Most words do not modify the original items, but there are a few exceptions to these rules, and
they are documented in the help. At present these words modify the originals:

a:+ a:op! b:append b:clear b:fill (if original has b:writeable set) b:move img:copy
img:scroll m:op! s:append s:clear

Note: If you do not want a container to be modified, you should invoke const so that you
get a new container with the same (but cloned) contents. Alternatively, use clone-shallow
so you clone the container itself but not its contents.

An important case to bear in mind is that a container embedded in a word will always return the
exact same container. So you must use const after the container in order to avoid modifying the
contents of that container on the next invocation (unless that’s the behavior you actually desire).
For example:

: foo [123] ... ;

The returned array will always be exactly the same one, and if you invoke a:push then the next
time foo is invoked, the modified array is returned.

5.4 A note about data conversion

Implicit data conversions are a major source of subtle bugs. Anyone who has used Python or
JavaScript for any length of time has probably been bitten by this. Therefore, 8th almost never
converts data from one type to another (the sole exception is booleans), relying instead on the
programmer to tell it when a conversion is necessary.

This is also why 8th words often return the value null to indicate error conditions, because null
is not usually a valid value, it is unique in the system, and it can be detected simply with null? .

5.5 Booleans

As mentioned in the previous section, the sole exception to the principle of “no automatic
conversions” in 8th is with respect to the treatment of “boolean” datatypes.

In this case, everything is considered false , except:

the actual boolean value true•

the exact string "true"
any non-zero number

It is a mistake to test existence of an item with if . That is, if you think something might be null ,
you need to test for that with null? .

•
•

Ch. 6 Flow control

8th has a number of words which control program flow; some are familiar to users of other
languages and some are unique to 8th.

6.1 Program-level

When 8th runs your code from a file, it interprets and compiles or runs it as it goes along, as
necessary. When it is done reading your code, it looks for a word app:main , and invokes it if it is
found.

If there is no such word, it will wait for your input at the REPL, unless your code invoked some
other process-starting word first.

If the file did end with a word invocation, that word is invoked as you would expect.

Note: If your program is intended to run on a mobile device (rather than a desktop or
server etc.) then it must contain app:main .

6.2 Conditionals

The standard Forth conditional words if... else... then are implemented in 8th. For
convenience, there also exists !if which is an optimized version of not if .

Note: The conditional words if else then may only be used in compile mode. 8th will
complain if you try to run them outside a word definition.

At run-time, the word if looks at TOS, and if it evaluates true , it continues to the word
following the if . Otherwise, it will skip to the enclosing then or the enclosed else . For
example:

: test if

 "yes!" .

 else

 "no, sorry" .

 then ;

In this case, true test or 1 test will print yes! while false test or 0 test will print no,
sorry . Conditionals can be nested:

: test

 if

 some-condition if

 "yes!" .

 then

 else

 "no, sorry" .

 then ;

Such nesting may be as deep as you need; but if you find yourself writing code with more than a
few nested if statements, you should seriously rethink your code’s design!

Note: Indentation or other text formatting is entirely optional! However, aligning your if/
else/then will make your code easier to read, debug, and maintain.

Another set of conditional words is case , caseof , when , and when! . They operate differently
(and more elegantly) than nested if… then or the switch statement in C and the like, and are
often a good choice.

The caseof word accepts a container, either an array or a map, and a value which is either a
number (if an array was given) or a string (if a map was given). It then looks up the value in the
container; and if that item exists, it is either executed (if it is a word) or put on TOS. For
example:

[' first , ' second , ' third] 1 caseof

The caseof takes 1 as an index into the array, and finds the word second and executes it. If the
array had contained anything other than words, those items would be put on TOS. Note that the
word ' inside JSON requires whitespace after the name of the word it parses! case is similar to
caseof , but the parameters are reversed from caseof , and it expects the values to be words to
invoke; if the key is not present, nothing happens.

The when word takes an array consisting of pairs of words, and iterates over the array, evaluating
the first word of each pair. As soon as it finds a word which returns true , it evaluates the second
word of that pair and stops searching. The when! word is the same, except that it does not stop
searching. In other words, it will iterate the entire array , executing the second pair of words
whenever the first returns true .

[' test1 , ' action1 , ' test2 , ' action2 , ' test3 , ' action3]

when

Assuming test2 is the first one which returns true , when will execute action2 and stop.

Another if...then construct is #if , #else , #then — which are similar to the “C pre-processor”
constructs, and allow you to compile code for a particular platform, for instance:

os 1 = #if

 \ Windows ...

#else

 \ Normal OSes ...

#then`

6.3 Repetition

There are several ways to repeat yourself in 8th. The more familiar words are repeat , again ,
and while . Just like if else then , they may only be used inside a word definition. The phrase
repeat… again is an infinite loop, which will repeatedly do whatever is between repeat and
again . The phrase repeat… while will conditionally repeat until TOS evaluates to false .

Note: Unlike standard Forths, the 8th version of while does not consume TOS. If you want
a “consuming while” you can use while! instead.

: infinite-loop

 repeat

 "Hi" . cr

 again ;

This will print Hi endlessly, because when again is encountered it jumps back to the matching
repeat . In order to leave you need to invoke break , ;; , or similar.

: repeat-while-true

 100 \ give an initial value

 repeat

 dup . space

 n:1- \ the item on TOS is not removed...

 while drop ;

This repeats 100 times and prints the numbers in descending order, because TOS starts at 100
and the while peeks at TOS and returns to the repeat if TOS doesn’t evaluate to false . So until
TOS is 0 (which evaluates as false), it repeats. The while doesn’t remove the item from TOS when
it falls through, either; thus the drop is required to keep the stack balanced.

You can do a counted repetition in one of three ways: times , loop , or loop- . The times word
takes a word to execute and a repetition count. It executes the word as many times as indicated:

: a "hi" . cr ;

' a 10 times

That will print hi on a line of its own, ten times. Note that we use the tick word (') to take the
value of the word a rather than invoking it immediately.

The loop and loop- words are identical, except for the direction of the looping. loop counts up
while loop- counts down. Just like times , they take a word to execute; but they also take a low
and high value, which are the beginning and ending values (inclusive) for which to execute the
loop. For example:

: a . cr ;

' a 10 13 loop

This will print out 10 11 12 13 . loop- would print them in reverse order. The loop index is
passed on TOS to the word being invoked, which must consume that number unless it is
intended to leave the items on the stack. One way to get an array of sequential numbers is to use
loop :

' const 10 19 loop 10 a:close

That gives you an array of 10 sequential numbers, from 10 through 19. Be careful if you use this
kind of trick, since you can overflow the stack — there are better ways to accomplish the same
idea. For example:

' noop 10 19 a:generate

Besides those methods, you may also iterate a known number of times by invoking a:each on an
array , or m:each on a map. Those will iterate the contents of the containers they were given,
allowing you to do something for each item contained.

[1,20,300] (. space drop) a:each

That will print 1 20 300 . The drop is there because you aren’t interested in the index value, and
you do want to keep the stack clean. The array remains on the stack after a:each (and likewise,
the map remains after m:each).

Note: The index loop or loop- (or I , J , or K) puts on TOS is a singleton value. That means
the same actual number instance is reused each time. If you want to save the index as in
our contrived example above, you must clone the value (or use const as in our example).

6.4 Breaking up is easy to do

The various repetition words can be stopped by using break , which signals 8th to terminate the
loop at the next repetition of the loop. It does not terminate the loop immediately, unlike C and
others. You can test for “break” having been invoked in your own loops using break? . The break
word will also terminate iterations in s:eachline , f:eachline , a:each and m:each as well as
db:exec-cb and repeat... again .

Ch. 7 Words, the interpreter and
compilation

Previously we said, “A word is the equivalent of a ‘function’, ‘procedure’, or ‘routine’ in other
languages. It is the smallest unit of execution”. So how do you create a new one?

The word : (ASCII 58, the colon character) tells 8th it should create a new word whose name will
be the following sequence of non-whitespace characters. For example:

: plus1

 1 n:+ ;

This creates a new word called plus1 . The initial : is the word creator; it skips the following
whitespace, scoops up the non-whitespace text, and creates a word with that name.

Whitespace is ignored, so scan for the next words: 1 and n:+ and compile them into the new
word plus1 . The final ; (ASCII 59, the semi-colon character) tells 8th to terminate the new word
and resume interpretation mode. At this point, executing 2 plus1 will result in the number 3 on
TOS. This is because the 2 pushed that number to TOS, and plus1 was then invoked, which itself
pushes 1 and then invokes n:+ to perform a numeric addition. The result is, as expected, 3 on
TOS.

Note: You are encouraged to use meaningful names for the words you create, especially
since you can use any UTF-8 sequence whatsoever, in any human or non-human language,
as long as it doesn’t contain whitespace!

As mentioned in the chapter on syntax, 8th interprets words one at a time and either executes
them or compiles them into new words, depending on the state 8th is in at the time.

7.1 Named versus anonymous words

Words created using : have a name: the whitespace-delimited run of characters after the colon.
But sometimes you don’t need or want to name a word, you just want the action itself to be
available. Such a word may be useful as a callback or in an iterator. You can create such
anonymous words using the (and) words, like this: (1 n:+) . This anonymous word has the
same SED as our previous example plus1 , but it has no name and therefore cannot be found
using w:find .

Anonymous words still take up space in your application! They do not get cleaned-up and
removed as you might be used to with JavaScript or some other languages. Moreover, w:find
cannot find them because they are not inserted into the dictionary, so if you lose your reference
to it, it is permanently “lost” (though the code still exists). If you don’t need to access a word by
name you will have saved a little bit of space (and will also have avoided using up useful names
for other words).

7.2 Deferred words

A deferred word is one whose code can be modified at run-time. That is, the word is declared
using defer: , and its action is assigned later using the word w:is . For example:

defer: some-word

: some-action ... ;

Then, later on: ' some-action w:is some-word …

There are two main uses for deferred words. First, you may need to reference the word before
you can define it. That is, you are compiling word A which uses word B , but you cannot yet
define word B . The deferred word facility allows you to make a “forward declaration” of B so
that 8th can compile A , and you can then fill in B ’s code later on.

A second reason to use a deferred word is that you may want the ability to change the effect a
word has at run-time. For example, you may wish to redirect the normal output words to write to
a string instead of to the screen. Since the words putc and puts are deferred, you can reassign
them to do whatever you like. Of course, you will want to be careful if you do this!

A third reason to use a deferred word is to avoid if...else...then in a tight loop (like a render-
loop in a GUI application). By assigning an appropriate action to the deferred word, you can
seamlessly switch between actions at run-time, without having to use conditional code. If you’re
coming from the “C” language, think of deferred words as similar to “function pointers”.

The help facility informs you if a word is deferred.

The assignment of an action to a deferred word can be undone, using w:undo . Each deferred
word can have one level of undo. That is, invoking w:undo twice will remove all assigned actions,
leaving the word inert (more specifically, G:noop is assigned to it).

7.3 Word attributes

A word may be immediate, which means that it is executed immediately when interpreted, even
in compilation mode. For example, if is immediate because it compiles the action of the if into
the word currently being compiled. Most words aren’t immediate, which means that when you
put them between : and ; they get compiled in. In interpret mode, all words are immediately
executed (whether or not they are marked as “immediate”).

If you want a non-immediate word to behave as if it were immediate for the moment, you can
invoke i: before it, which means “treat the next word as if it were immediate”.

Likewise, p: postpones the action of the otherwise immediate word which follows it. In
addition, you can flag the word you are creating as an immediate word itself, by terminating it
with i; rather than ; — this is the rough equivalent of using IMMEDIATE in ANS Forths.

In addition to p: and i: , there is also l: (provided in the "utils/latebind" library), which makes
the next word “late-bound”. That means that the name of the word is looked up at run-time
instead of interpret-time, so that if it isn’t known when 8th first sees it, it will still compile. Use
this with care, since it is much slower (since the lookup happens every time it is invoked), and
can give seemingly random results (because the word found at run-time may not be the one you
expect). It is far preferable to use the defer: facility instead of late-binding.

7.4 Recursion

The term recursion is used to mean when a word invokes itself. This is possible in two ways:
first, by invoking the name of the word being defined. This, however, is deprecated, meaning
that it may not be supported in future versions of 8th. The second method is to invoke recurse ,
which will work even inside anonymous words.

Ch. 8 Numbers and math

The syntax section described how 8th knows what a number is. 8th gives you a great deal of
flexibility in how you enter numbers, and it keeps you from having to worry about what kind of
number you are working with. It tries to just “do the right thing”. Numbers can be entered in
most any numeric base you like, but 8th provides shortcuts for certain bases.

A simple prefix character (as detailed in the syntax section) can tell 8th you intend hexadecimal
or octal numbers. For instance, assuming the current base is 10, the following all represent the
same number, decimal 16:

16 #16 0x10 $10 &20 %10000

You can change the base currently being used at any time by invoking the word base . Any base
may be specified, but only bases up to 36 are actually useful. Each task has its own idea of the
current base.

Likewise, a simple suffix character (as in the syntax section) can tell 8th you mean to multiply by
a thousand (if and only if the current base is 10):

1k is the same as 1000 and 1_000

1K is the same as 1024 and 1_024

Numbers automatically use a representation which is at least as big as required. So if you type in
100 , a native integer will be used to hold that value. If you type in 100.1 , a native floating-point
number will be used instead. This is internal to 8th, which converts between representations as
needed; you will only rarely need to be aware of this. You can tell the internal representation
used by invoking .s — any number which is a regular float with have a f indicator, a big-float
will have F and a big-integer will have B .

The internal representation of an "int" is a 64-bit integer (even on 32-bit platforms). Similarly, a
"float" is an 8-byte IEEE "double". The "big" variants are up to the size of available memory.

See the section on “Numeric trade-offs” for important information about when you should
specifically use the various kinds of number.

Note: Knowing the internal representation becomes important to you if you are trying to
compare numbers, and you think that the following should be true, for instance:

3.14159 100000 * 314159 =

8.0.1 Modulus

n:mod always returns a positive result. This is because it is often used to provide an index
(clamped to some value). Thus, returning a negative value would be likely to cause a crash, if not
simply an error.

n:fmod always returns a value whose sign is the same as the dividend. This is consistent with the
C function fmod() .

“floored modulus” and “Euclidean modulus” are available in the math/fmod library.

8.1 Big numbers

Sometimes you need to calculate with values which are bigger than the native capacity of even
64-bit machines to handle. For reference, the upper limit on a 64-bit CPU is
9,223,372,036,854,775,807, which is big enough to handle the US deficit in cents (as of FY 2024, a
mere 183,000,000,000,000).

8th has no problems handling really large integers. You could, for example, calculate 30! (30
factorial, or 30 times 29 times 28…) which is an eye-watering
265,252,859,812,191,058,636,308,480,000,000 — far exceeding the upper limit on integers.

When 8th determines that a math calculation will exceed the native CPU’s capacity, it converts
the number’s internal representation to a “big number” format, which is essentially unlimited
precision (as large as your machine’s memory can handle). This does come at a price: big
integers are slower to work with than native ones, and they require more system resources to

process. Big floats are even slower. However, in most cases the convenience outweighs the
penalties, since you then don’t have to be concerned with the internal format of the numbers
you are using. Most of the time, that is.

8th can also use big floating-point to represent high-precision floating point values. The default
uses regular floating point unless the number exceeds the capacity of a regular float, or if you
use the word bfloat to convert it to a big-float. Along those lines, you can force a number to use
a different representation using one of these words:

word converts to

int integer. This will also truncate a floating-point number

bint big integer. Also truncates a FP number

float floating-point number

bfloat big floating-point number

You can also force a particular number to be a “big integer” by prefacing it with B , for example
B123 ; similarly, “big floats” can be created by prefacing with F , for example F1.002 .

8.2 Complex numbers

The built-in complex numbers (namespace c) are native double only. That is, they do not utilize
8th’s flexible “number” type. That makes them very fast, but it also means they do not
automatically overflow to larger data types. If that is not important to you, you should use them
(because they are 4 or more times faster than the library version).

If you do want high-precision complex math, then you need to use the library version of
complex numbers in the math/complex library.

The built-in and library versions of complex numbers are not interoperable! So if you’re going to
use the library, do it before you use any complex words.

A complex can be created using c:new , being passed either an array with two numbers in it, or
two numbers on the stack. For example, 1 2 c:new will create the complex number 1+2i . It is
also possible to enter a complex number in the interpreter (and also in JSON), e.g. 1+2i will
create the same complex as 1 2 c:new . There must be no spaces in the text representing the
value, and it must end with a lowercase “i”, in order to be properly recognized.

8.3 Rational numbers

The library math/rational implements “rational numbers”, meaning numbers which are a ratio
of two integer values. It provides several words for arithmetic operations on them, and allows
parsing a rational value if specified like R1/2 .

8.4 Matrices

Matrix math is supported internally, using native double or complex (two doubles) data types,
just like the complex data type.

A matrix is a fixed-size numeric container, having two or more dimensions. You create one like
this:

[1,2,3,4] [2,2] mat:new

This snippet creates a new 2x2 matrix, and sets its initial values to those in the array . So row 0
consists of the numbers 1 and 2 , and row 1 consists of 3 and 4 . Column 0 consists of 1 and 3 .

The type of a matrix is determined by the first element in the initializing data. So if you want it
to contain complex numbers, you need to make sure the first element in the initializing array is
a complex. All the members of the created matrix are of the same underlying data type, which
may not be changed once the matrix is created.

The dimensions given to mat:new are in the order: columns, then rows (and analogously for
higher dimensions). The words provided have special-cases for two-dimensional matrices, since
those are the most commonly used.

Note: A note of caution: 8th does not implement “sparse matrices”, which means that you
can quickly run out of memory if you use high dimensions with even modest matrix sizes.
For example, a matrix of just 10 dimensions with only 4 entries per dimension will require
over 40 megabytes on a 64-bit system! So think over whether you really want a super-high-
dimension matrix or not, or create your own sparse matrix data type.

8.5 Manipulating numbers

8th has many words which can be used for manipulating numbers. Besides the usual arithmetic
ones, there are some specialties such as the scaling word */ which performs a multiply-and-
divide at once, providing more accuracy than separate multiply, then divide. Or /mod which
returns the quotient and remainder at the same time. A full list appears in docs/words.pdf .

8.6 Limitations

The limitation on 'int' and 'float' types are determined by the CPU of your system, but you don't
usually have to worry about that. 'bint' and 'bfloat' types are only limited by available memory,
but they are therefore not nearly as fast or efficient to use, being several times slower than big
integers.

In normal usage, 8th will promote integers to bigger sizes when there is a need to do so, and
likewise with floats. However, in order for the accuracy of calculations to keep pace with the
enlarging numbers, you must invoke n# with the number of digits of accuracy you require if you
will start using 'bfloat' types. Otherwise, only 32 digits will be retained in big float mode. This is
in order to save memory at runtime.

8.7 Numeric trade-offs

As mentioned above, 8th tries to do the right thing when it comes to numbers, so you can
generally ignore its internal numeric representation. However, it may be the case that you get
unexpected results from your calculations. For example:

0.1 0.2 + 0.3 = .

will print false when you would naively expect true . That is because 8th uses the native double
floating-point representation of these numbers, and powers of 10 are not precisely
representable.

So too:

25 ## 0.1 0.2 + . cr

prints 0.3000000000000000444000000 which, indeed, is not exactly 0.3 . What can you do?

If you find that you are running up against inaccuracies due to native floating-point being
insufficiently precise (which is a real and common issue), you can use big float math explicitly.
Either invoke bfloat on a non-big-float number to convert it into one, or use the leading-F
syntax as mentioned above:

F0.1 F0.2 + F0.3 = . cr

This returns true , because the big-float is as precise as you’ve allowed it to be (the default is 32
digits precision, set using n#).

Note that math between dissimilar types will always return a value of the bigger type (or
perhaps an even bigger type if the result would still overflow). In this context, an “int” (backed
by a 64-bit integer) is smaller than a “float” (backed by a 64-bit IEEE double), both are smaller
than a “bint” (a big-integer representing whole numbers up to a certain limit) which is smaller
than a “bfloat”, which can represent pretty much any rational floating-point value up to the
limits of memory.

8.8 Constraint solver

The slv: namespace contains an implementation of the Cassowary constraint solver . This is an
algorithm which “efficiently solves systems of linear equalities and inequalities” subject to
constraints. The calculations are floating point values.

There are two samples (so far) which demonstrate its use: misc/solver.8th and nk/constraint.
8th . The first sample is very simple, calculating the midpoint of two points while ensuring the
first point is at least 10 units to the top-left of the second.

The second sample shows how to use the solver to constrain a GUI such that a bottom 'bar'
remains at the bottom and has a specific height, and the rest of the space is partitioned relative
to the window dimensions.

There are a lot of words in the slv namespace, which correspond pretty closely to the
underlying library implementation . Unfortunately, that library isn't well documented as of this
writing.

The easy way to create a solver is to use the slv:build word:

https://constraints.cs.washington.edu/cassowary/
https://github.com/starwing/amoeba

{

 vars: { \ Initial points.

 x1: 10, y1: 20, x2: 100, y2: 40

 },

 constraints: [

 \ Ensure (x1,y1) is left and above (x2,y2) by at least 10x10:

 "x1<=x2-10|REQUIRED", "y1<=y2-10|REQUIRED",

 \ Midpoint calculation:

 "2mx=x1+x2", "2my=y1+y2"

]

} slv:build var, solver

The keys it understands are vars and constraints . vars is optional for any variables you don't
want to modify using slv:suggest . constraints is required, and essentially enumerates the
(in)equalities to be solved, and their strength. The strengths can be numeric values or the
predefined values in the slv/constraint library.

You then update any values you want using slv:suggest and then invoke slv:update to
recalculate the set of equations. Read out the values with slv:@ , slv:v[] or slv:v{} depending
on what's most convenient.

Ch. 9 Text and strings

8th has many words which ease working with text. Unlike most Forths and unlike C, a string in
8th is:

dynamic: automatically allocates space for added text
single: a string contains its own length; you do not need to pass the length separately
UTF-8 encoded: may contain any character from any of the spoken languages on Earth
C-syntax: if you know C or C++ or Java, etc., you already know how to declare a string
allows NUL inside the string
not necessarily NUL-terminated as in C

Note: Because a string may not be NUL-terminated, you must use s:zt if you pass an 8th
string to an external API (such as an OS function).

9.1 What is a string?

At the simplest conceptual level, a string is a sequence of characters. As mentioned above, any
Unicode character may be part of a string . To create a new string , you simply declare it as you
would in C: "cat\n" .

Typing that sequence will put the four characters c , a , t , and ASCII 10 into the newly-formed
string . The syntax chapter has much more detail on the actual characters allowed in a string.

9.2 Manipulating a string

String words operate on sequences of characters rather than sequences of bytes. This is an
important distinction, because a string contains UTF-8 encoded characters, each of which may
require multiple bytes to express. If one were to modify an arbitrary byte in a string, an invalid
UTF-8 character sequence might result.

•
•
•
•
•
•

Unlike C strings, an 8th string is (usually) immutable. If you add to it or remove from it and
modify individual characters, a new string is usually created (an exception is s:append). To
concatenate two strings use the s:+ (or s:append) word:

"cats and" " dogs" s:+

This results in the string cats and dogs . Remove characters from the string using s:- :

"cats" 1 2 s:–

This leaves you with the string cs . There are quite a few string manipulation words. A few
examples:

word SED description

s:/ s x – a Split the string on "x"

s:= s1 s2 - f Compares two strings for textual equality (see also s:cmp)

s:lc s - s1 Convert string to all lowercase (s:uc converts to uppercase)

Splitting the string with s:/ is quite flexible. The “x” could be a number, to split at a location in
the string, or a string or regex to split on matches in the string.

9.3 Multilingual support (I18N and L10N)

8th supports easy localization of text using the s:lang and s:intl words. The manner in which
they are used is straightforward.

First you need to create an asset directory called lang , and you further need to create a separate
asset for each language you wish to support. For example, if you want to have English and
Spanish in your application, you would (at least) create an asset lang/es .

That language asset must contain the text to use for long and short day-names and month-
names, as well as a simple JSON map whose keys are the original (e.g. “default”) text, and whose
values are the translated text. For example:

["Ene", "Feb"…] short-months !

…

{

 "hi" : "¡Hola, mundo!",

 "bye" : "Hasta la vista...",

 …

}

To utilize this asset, two steps are required. First, you must tell 8th to use the Spanish language
asset: "es" s:lang . Second, you need to tell 8th that you want to translate a string: "hi"
s:intl . This latter phrase will produce the string ¡Hola, mundo! .

You can support as many languages as you wish, and as many strings as you like. We hope you’ll
agree that the clear JSON syntax makes the translator’s work easier!

The arrays of strings for the localized names of weekdays and months must be loaded by the
asset, and the vars to load into are called short-days , short-months , long-days , and long-
months. If you switch back to English, you should reset those to the same named item suffixed
by -en . For example, short-days-en .

9.4 Search, replace and parameterized
substitutions

8th lets you search and replace in strings in several ways, and you are encouraged to look in the
comprehensive word-list for all the details. However, a few notes are in order:

First, searching and replacing can be done with either a string or a regex . The regular-
expression syntax is that of PCRE2 , and sub-matches are supported. That is to say, one may
search using a regular-expression such as /(c\S+) and (d\S+/) against the string cat and dog
using s:search , and it will say it found the expression at position 0 (the start of the text). Of
course one can also search for a literal string .

Using the same regex and string but with r:match instead, one gets the result 3 , meaning there
are three matches. Match 0 is the entire matched expression, and other matches correspond to
capturing parentheses. In this example, giving the regex and saying 1 r:@ will give the result
cat , just like in Perl or other similar tools.

https://www.pcre.org

Substitution is done using s:replace (to replace just once) and s:replace! (to replace all
occurrences). The pattern may be either a string or a regex, but the replacement must be a
string.

8th also has something called templated substitution, using the word s:tsub . This is a very
powerful substitution mechanism which allows you to replace parameters in the template by
position or by name. For example:

"Hi there, %name%!" { "name" : "Mary" } s:tsub

This will produce the string Hi there, Mary . While this specific example could also trivially be
accomplished using s:+ or s:strfmt , templated substitution can do much more. Localized
sentences often have different word order; the s:tsub approach to building localized strings is
flexible enough to handle that and many other similar problems.

In addition, 8th can do printf style substitutions. For example:

123 "Joe" "%s owes me $%d" s:strfmt

results in the string Joe owes me $123 . You can either put the substitutions on the stack or in an
array, and there are quite a few formatting options. See the sample strings/strfmt.8th for
more details.

9.5 Strings vs. Buffers

8th treats strings and buffers similarly in many respects. In particular, it is possible to ask for the
“n’th” character of a string, or “n’th” byte of a buffer. Though the syntax is similar, there are big
differences between the two.

As mentioned above, strings in 8th are encoded using UTF-8, which is a variable-length
encoding designed to allow every Unicode character to be represented, while requiring only one
byte to encode Latin-1 (e.g. most European language characters). This has important
ramifications.

First is that accessing an arbitrary character of a string requires traversing the entire string up to
that character. It is not possible to know where a particular character will begin until it has been
encountered. Thus, due to the use of UTF-8, the words s:@ and s:! are relatively slow —

especially so as the length of the string grows. An optimization is in place to make random-
character access fast if and only if all characters in the string have the same length in terms of
their UTF-8 encoding, which is a common case for any languages encoded solely in “Latin-1”.

Secondly, arbitrary data should not be stuck into a string. Since it will be interpreted as UTF-8,
unpleasant side-effects will most likely occur.

Buffers do not suffer from these issues, since a buffer is nothing more than a container for a
specific number of bytes. Accessing any particular byte is extremely fast. However, a buffer
makes no assumptions as to its contents’ meaning, so one may not assume the “n’th” byte is the
“n’th” character (unless it can be assumed a Latin-1 or similar encoding was used on the data).

Besides all the above, buffers are fixed in size, while strings are dynamic. Both types accept the
set-wipe word, which tells 8th that the data in this item is sensitive and should be zeroed out
before releasing it back to its pool. This is important when hardening an application for security
reasons. It is the only way to change the actual contents of a specific string.

9.6 Markdown

Parsing Markdown (“MD”) formatted text is useful in many applications, and 8th includes a fast
and capable MD parser implemented via two words: xml:md-init and xml:md-parse . There are
two libraries available to make MD processing easier: md/2html and md/2console .

This manual, the words list, and the help file are all generated from Markdown files processed
with this parser, using 8th.

9.6.1 Initializing an MD parser

The word xml:md-init receives a map with the following keys:

name kind description

enter_block w Invoked when the parser enters a block, for example a paragraph

enter_span w Invoked when the parser enters an inline span, for example “emphasized text”

leave_block w Invoked when the parser leaves a block

leave_span w Invoked when the parser leaves an inline span

opts a Array of strings which are parser options; see opts below

https://commonmark.org/

name kind description

text w Invoked when the parser has a run of text to output

The parser options are all strings, and may be any of:

option description

atx Do not require space in ATX headers (###header)

collapse collapse non-trivial whitespace into single ' '

email Recognize e-mails as autolinks even without '<', '>' and 'mailto:'

github Same as setting links, tables, strike, and task

hardsoft Make soft breaks behave like hard breaks

latex Enable $ and $$ containing LaTeX equations

links Same as setting email, url, and www

nohtml Same as setting nohtmlspans and nohtmlblocks

nohtmlblocks Disable raw HTML blocks

nohtmlspans Disable raw HTML (inline)

noindent Disable indented code blocks. (Only fenced code works)

strike Enable strikethrough extension

tables Enable tables extension

task Enable task list extension

underline Enable underline extension (disable '_') for normal emphasis

url Recognize URLs as autolinks even without '<', '>'

wiki Enable wiki links extension

www Enable WWW autolinks (even without any scheme prefix, if they begin with 'www'

9.6.2 Using an MD parser

The word xml:md-parse takes the MD parser created as above, a user-specific data-item
(whatever you think is useful, or null), and a string containing MD to parse. The parser scans
the text provided and invokes your callback words when appropriate. The SED for your words is

always m -- f where the map received always contains a key tag which determines what is
being parsed, user which is the data you gave the parser (passed through without modification),
and other keys depending on the value of the tag and the kind of callback:

Text callback:

key kind description

text s the actual text

type s What kind of text it is. One of the strings:

br a line-break

code text in a code block, or inlined code

entity an entity like or Ӓ or ካ

html raw HTML

math inside a LaTeX equation

norm normal text

nul a NULL character (s/b replaced with character \uFFFD)

sbr a soft line-break

Span callback:

tag kind description

CODE s <code>

DEL s

EM s

LATEXDISPLAY s LaTeX display math

LATEX s LaTeX math

STRONG s

WIKI s Wiki links (only if the wiki option was given to the parser)

A s Link. Contains additional keys as follows:

href The URL for the link

title Title text for the link

IMG s Image link. Contains additional keys as follows:

tag kind description

src The source URL for the image

title Title text for the image

Block callback:

tag kind description

DOC s <body>

HR s <hr>

HTML s block of raw HTML

P s <p>

QUOTE s <blockquote>

TABLE s <table>

TBODY s <tbody>

THEAD s <thead>

TR s <tr>

CODE s <code>, additional keys:

fence A number indicating fence character, or 0 if indented block

info Information string

lang Contents of lang=

H s <h...>, additional keys:

level Number indicating header level, 1-6

LI s , additional keys:

mark Number if 'task': one of 'x', 'X', or ' '

ofs Number if 'task': offset of mark between '[' and ']'

task Number: 1 if task list

OL s , additional keys:

mark Number: character delimiter, e.g. '.' or ')'

start Number: start index of ordered list

tight Number: non-zero if tight list, 0 if loose

tag kind description

TD or TH s <td> or <th>, additional keys:

align String, one of: 'left', 'right', or 'center'

UL s , additional keys:

mark Number: bullet character, e.g. '-', '+', '*'

tight Number: non-zero if tight list, 0 if loose

9.6.3 pikchr

A code-block can also contain pikchr markup to draw diagrams. For example:

Hello,
World!

That diagram was created with the following code. Note the use of class=pik to assign a CSS
class to the created SVG:

~~~pikchr class=pik

line; box "Hello," "World!"; arrow

~~~

You can use the img:pikchr word to convert any valid pikchr markup into SVG, which you can
then display or save, as you see fit.

Full details on pikchr syntax are at the above link.

9.7 Character encoding

As mentioned before, 8th encodes strings using UTF-8. However, the real world contains text in
a wide variety of encodings, and you may need to read or write in an encoding other than UTF-8.
8th provides the word b:conv to perform these conversions. It is in the buffer namespace
because strings are always UTF-8 encoded.

https://pikchr.org/home/doc/trunk/doc/userman.md

Note: Linux and RPI users: this functionality is only available if you have installed the
libiconv library. You must download, build and install it before b:conv will work! If you
wish to distribute an application for Linux or RPI, note that this is a runtime requirement.

Convert a buffer from one named encoding to another using b:conv , which will return a buffer
with the converted text, or null followed by a numeric error code. The error code will be one of:

The libiconv library is not installed (Linux or RPI only)
The character encoding given was not recognized
The text could not be converted between the given character encodings

The encodings available differ between operating systems, which is a bit of a complication for
you the programmer. The complete list of encodings by platform is in the docs/encodings.txt
file.

9.8 Document Object Model (DOM)

There is minimal DOM support. At present that means there is a DOM namespace, which
provides a data structure which can be used in the manner of a DOM.

Because this is just a start on the DOM namespace, you’ll have to create your own parsers for
HTML, but it is expected that a future release will contain at the least an HTML parser which
fills in a DOM.

Manipulation of a DOM at present consists of adding or removing nodes (with DOM:+ and
DOM:-), getting and setting attributes of a node, and iterating a DOM (using DOM:each) or getting
a list of nodes matching some user-defined criteria (with DOM:find).

Stay tuned for more in future editions…

1.
2.
3.

Ch. 10 Date, time, and calendars

10.1 Dates and times

“Dates” in 8th contain date, time, and timezone information, with millisecond resolution, as
well as an uncertainty value. The word d:new generates a new date initialized with the current
date and time as of its invocation (with no uncertainty), in the local-machine’s timezone.

Note: If you wish to assume GMT instead of local time, invoke 0 d:updatetz . You can
thereby also set the default timezone to any other value.

To initialize a date with a specific date and time, you can

invoke d:parse on a string containing one of the ISO-8601 formats or another format 8th
understands
manually construct one using d:join
enter the date in a format the REPL understands

For example: "2019-10-12" d:parse or 2019/10/12" d:parse or [2019,10,12] d:join .

When entering dates in the console, it is possible to type 2019/10/12 and the interpreter will
parse that as a date, assuming that there is not already a word with that name. Note the use of '/'
rather than '-'!

Note: The date parsing words fill in omitted fields with values from the current date/time.
If you would rather the parser assume "0" (or equivalent) instead, invoke false d:default-
now .

For the purpose of timing short durations, the word d:msec provides the current time in
milliseconds since 01 Jan 1970, and d:ticks provides a high-accuracy timer count whose exact
meaning is OS-dependent.

•

•
•

https://en.wikipedia.org/wiki/ISO_8601

A date can also be “approximate”. That means that it is plus/minus some number of days, which
can be set using d:approx! . An approximate date is considered the same as another date if the
dates plus their uncertainty values overlap.

10.2 Parsing

As mentioned above, dates adhering to the ISO-8601 formats are understood by d:parse . In
addition, several other strings are also understood:

"now" - means the current time as of parsing. Likewise current , and today .
"unk" - means the “unknown date” (a specific value, like null). Likewise "unknown" .
"mmm yyyy" - where 'mmm' is either the short or long month name as specified in G:long-
months and G:short-months -- and therefore, may be easily adapted using s:lang .
"ddd" - where 'ddd' is the short or long day name as specified in G:long-days or G:short-
days .
with the date/approx library, dates with "CA" or "ABT", etc., are properly parsed
with the date/range library, date ranges with "BEF", "AFT", etc. are returned

Missing date components are taken from the current date as of parsing, and the resulting date
will be given an uncertainty accordingly (unless, as stated above, false d:default-now was
invoked prior to parsing).

The 'year' component of a date parsed with d:parse (and likewise via the console) must be
either two or four digits. If you wish to create a date with a year of say, 500, you need to use
d:join or d:fixed> or "0500" in the year portion.

10.3 Calendar manipulations

8th's date libraries contain various calendar manipulations. The Gregorian, Hebrew, and Islamic
calendars are specifically supported. So too are generic date manipulations.

Pro+ “daylight savings time” query is also available.

•
•
•

•

•
•

10.4 Sleeping

8th provides a few words to “sleep” the current task: sleep , sleep-msec , and sleep-nsec . The
first one takes a (possibly float) number of seconds to nominally sleep, and if it is interrupted by
a signal it will stop sleeping. sleep-msec takes an integer number of milliseconds to sleep, and it
will sleep at least that many milliseconds. The sleep-nsec word tries to sleep as many
nanoseconds given, but the lower limit is very much dependent upon the hardware and OS on
the specific device.

Ch. 11 Containers

8th has several built-in container namespaces. “Containers” are items which contain other
items. All the containers in 8th can contain any kind of item:

kind description

array fast random access by numeric index

graph data (nodes) organized by relation (edge: weight and direction)

heap sorted serial access via push and pop

map fast random access by string key

object object which can inherit from other objects

queue FIFO serial access via push and pop

stack LIFO serial access via push and pop

tree fast ordered random access and searching

var a single-item at-a-time container

11.1 Variables

A var (“variable” in other languages) is a single-item container. That means it can contain only
one thing at a time, though that “thing” can be any 8th data type.

You declare a var by invoking either var or var, — the difference being that var first initializes
the variable to the number 0, while var, initializes it to whatever was on TOS at the time of the
declaration. For example:

"A string" var, astr

This creates a new var named astr , and initializes its contents to the string A string . To use
the value inside the var , you must use the word @ :

astr @ . cr

That will print the value currently held in astr . Change the value it holds using ! :

1024 astr !

After this, astr holds the number 1024. So while the name astr is a poor choice, you hopefully
get the idea.

Note: The name which you gave the var does not refer to the contents of the var!

So the following code will throw an exception complaining, Expected Array but got Variable :

[] var, an-array

an-array 100 a:push

What you probably intended in this case was:

[] var, an-array

an-array @ 100 a:push

The first example throws an exception because you are using an array accessor but the item
called an-array is actually a var! Remember to always dereference the var before using its
contents.

The word constant provides a way to have a var which doesn’t change:

123 constant OneTwoThree

OneTwoThree . cr

In this case, unlike the var, the value in the constant is put on TOS by invoking the constant’s
name. Since there’s no option to change the value held by the constant, there is no reason to
require @ .

Note: This is a bit misleading. If you have a container as the value of the constant , then as
always you can change the contents of the container, despite what you might think.

11.2 Arrays

An array is a container which can hold any number, kind, and mix of items (limited only by
available memory), and whose items are accessed by numeric index (starting at 0 for the first
spot). Create an array using JSON, or by invoking ns:a new or a:new or a:close .

[1,2,3] var, a1

a:new var, a2

100 200 2 a:close var, a3

After this, a1 contains an array with three elements, all numbers, while a2 contains an array
with no elements, and a3 has two elements.

Array elements are accessed with a:@ and a:! , as well as with a number of other more
specialized words. For example one may easily iterate over an array:

["one","two","three"]

("Item " . swap . " is " . . cr)

a:each

This will print Item 0 is one , etc. for each item in the array.

Note: 8th’s arrays are not “sparse”, so if you put an item at index 0 and another at index
10,000, 8th will comply (assuming sufficient memory is available) — but the resultant array
will have 9,999 empty spots in it and will take up a lot more memory than you might have
expected.

Note: If you modify an array while you are iterating it (e.g. invoking a:push inside a:each
or the like), 8th will probably crash. This is because the underlying storage of the array will
be modified, and 8th caches that information for efficiency in the iterator. Do not do that!

11.3 Maps

A map is a container which can hold any number, kind, and mix of items (again, subject to
available memory), and whose items are accessed by a key which is usually a string . You declare
an map using JSON or using ns:m new or m:new

{ "one" : 1, "two" : 2 } var, m1

ns:m new var, m2

{ one: 1, two: 2 } var, m3

After this, m1 will contain a map which has two elements, and m2 will contain an empty map. A
map’s key may also be any data type, though to take advantage of that you must use the accessor
words rather than JSON syntax. m3 is the same as m1 , but using “bare key” syntax.

Note: When using a data item as a key in a map, you must ensure that the key-item
remains intact for the lifetime of the map, because when you reference the key (using e.g.
m:keys or m:each or m:@ or m:!) 8th will assume the reference is still valid. It does not
keep track of that internally in the map, for efficiency’s sake; so caveat programmer!

When using a number as a key with m:! , it is converted to a string as if >s were invoked on it.
So the above restriction does not pertain.

In analogy to arrays, maps are accessed using m:@ and m:! , as well as with more specialized
words (such as m:each).

11.4 Stacks, Queues and Heaps

You’re already familiar with “the stack”. The stack data type is simply an independent stack
which can be used in much the same way as the regular data-stack. By default, a stack will throw
an exception if you push too much onto it or pop from it when it’s empty. You can change that
behavior by using the st:throwing word to disable that behavior.

A queue is more or less the same as a stack , except that it forces access to the items placed in it
to be first in, first out, and it is multi-task safe — meaning you can access the same queue from
different tasks without locking first. Queues also have most of the same words as stacks. You can
make a queue behave like a circular buffer using q:overwrite .

Both stacks and queues are of fixed size, established when they are created.

A heap is different in that it does not have a fixed size, and access depends on the items pushed
into it. You provide a word to h:new which is then used to determine the order of the items
pushed. They are then accessed in order based on the ordering imposed by the word you used to
initialize the heap.

11.5 Graphs

A graph is unlike the other container types in that it specifies a relationship between each pair
of contained items. The items are called “nodes” of the graph, and the relationships are called
“edges”. An edge may connect any node to any other, and it may also have a “weight” and a
“direction”. The default edge has neither weight nor direction.

Graphs are created by passing a map to the gr:new word , and the keys optionally permitted in
the map are:

key description

above if true, the calculated weight must be above threshold . Default is true

autoconnect if true, connect all nodes to each other

directed if true indicates that the graph is a directed one

edges an array with an entry for each node, which is itself an array of edges. Each edge is an array of numbers

map additional information to assign to the graph

nodes an array of items which are the initial set of nodes in the graph

threshold a number which the weight must be above (or below) to include the edge. Default is '0'

weight a word which accepts two nodes and returns the weight the edge between them should have

An empty map or the value null passed to gr:new will result in an unweighted, undirected,
and initially empty graph.

Once you’ve populated the graph with data, you can traverse it using gr:traverse , which allows
either depth-first or width-first traversal. You can determine if a node has been visited by testing
with G:mark? .

The G:>s word will convert a graph into a map which can be used to recreate the graph.

11.6 Trees

8th currently implements four kinds of tree:

Tree Description Create with

BST binary search tree tree:binary

https://en.wikipedia.org/wiki/Binary_search_tree

Tree Description Create with

BKTREE Burkhard Keller Tree tree:bk

BTREE B-tree tree:btree

TRIE Trie, or prefix tree tree:trie

All the creator words are passed a comparator word which is used to order the tree. tree:btree
also takes an order parameter as well, which is the number of keys per node, and tree:trie
takes a boolean which determines whether or not the TRIE is case-insensitive.

Trees typically contain items which are all the same type, though that’s not required so long as
the comparator word knows how to handle the data. In the case of a TRIE, the data are usually
strings; but any type may be used, so long as the comparator word converts the item to be added
into a string.

In the cases of a BST or BTREE, the comparator word simply needs to return a comparison of
the two items it is passed. For example, if the items in the tree are strings, then s:cmp would be
a possible choice.

In the case of a BKTREE, the comparator word must also be a “metric function”, e.g. which
satisfies the following conditions:

 w(x,y) >= 0 and integer

 w(x,y) == w(y,x)

 w(x,y) == 0 means x == y

 w(x,y) <= w(x,z) + w(z,y)

A possible choice in that case would be (true s:dist) , which will fold the strings it is
passed, removing diacritics, and return the Levenshtein distance between the strings. Using
this, it is possible to find “close matches” to a given word, for instance.

All trees can be converted to a map (using >s or >json) and restored into from a map using
tree:parse .

Pro+ Trees can be saved in a compact form, and restored with the b:>mpack and b:mpack>
words.

https://en.wikipedia.org/wiki/BK-tree
https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/Trie

11.7 Objects

An “object” in 8th is a data item created from the o: namespace using o:new . The kind of
objects are “single-inheritance”, which means that an object can inherit behavior from one other
kind of object.

Creation of objects may be done in a few ways:

null null o:new -- this creates a new object of class object, the base class.
obj null o:new -- this creates a new object of the same class as obj
obj foo o:new -- this creates a new object of class foo, derived from obj
map o:new -- creates a new object with the settings taken from the map, whose keys are:

key type description

class string the name of the class of the new object

methods map a mapping of names -> words which is the methods for the new object

super object,string an object to use as a super, or the name of the class to use as such

11.8 JSONPath accessors

You can use the words G:json@ and G:json! to access a map or array of arbitrary complexity.
8th implements a subset of the JSONPath specification . In particular, these are supported:

item description

$ root item; only supported at the start of an expression, and may be omitted

* wildcard, match all array or map members at that level

.. recurse: match all items below current level

. map child member

[] array child member

The * matches whole entries, not partial entries.

The [] accessor can have the following variations:

1.
2.
3.
4.

https://goessner.net/articles/JsonPath/

item description

[*] match all array entries

[m] match item 'm' from the array

[m:n] return a slice from 'm' through 'n', using a:slice semantics

[m:] return a slice from 'm' through end of array

[:n] return a slice from start through 'n' of array

[m,n] return items at indices 'm' and 'n' (any number of entries is allowed

Examples of json@ usage:

{ a: 123, b: ["hi", "there"] }

"$.a" json@ \ returns 123

"$.b" json@ \ returns ["hi", "there"]

"$.b[0]" json@ \ returns "hi"

Note: json@ returns true on TOS if the access succeeded, and the item retrieved below TOS.
Otherwise it returns false. In either case, the original container is on the stack.

Examples of json! usage:

{ a: 123, b: ["hi", "there"] }

"$.a" 1000 json! \ the 'a' member now contains 1000

"$.b" (s:uc) json! \ the 'b' member now contains ["HI", "THERE"]

Ch. 12 Files, databases, sockets, etc.

Most programs need to perform some sort of I/O, whether to a local file or database, or over the
internet via sockets. 8th has lots of words to help you do all of the I/O you could want. First we’ll
mention the simplest: . and putc let you write to the console (or to a string or other item if
you’ve reassigned the low-level words).

12.1 Files

Regular files are handled by the various words in the f: namespace. These include the typical
f:open , f:create and f:close words you might expect. They also have the ability to easily
write an entire string or buffer to the file using f:write . If you want to write only a specific
number of bytes you can do that with f:writen . Similarly, you can read directly into a string or
buffer (though you need to specify how much to read).

Two special words are very useful for file processing: f:slurp and f:eachline . The first
“slurps” an entire file into a buffer which is actually memory-mapped to the underlying file,
allowing you to process it quickly in memory. The second lets you process a text file line-by-line.
For example:

"data-file" f:open

' process-line f:eachline

f:close

This snippet opens (the existing) file data-file and passes each of its lines one-by-one to the
word process-line (which you’ve defined somewhere else). It also shows the concatenative
nature of 8th, where the output of one word is passed to the next in line.

The inverse of f:slurp also exists, taking a string or buffer and a file-name, and “spitting” the
item into the file.

A special set of file words deals with ZIP files. You can create them, iterate their directories and
extract their contents.

12.2 Databases

All versions of 8th include a built-in version of SQLite . You can create and use high-speed local
encrypted or non-encrypted SQL databases using the db: namespace words.

Pro+ Additionally, Pro+ versions also support MySQL, ODBC, and key-value (KV) databases.

Note the similarity of operation between the database and file words. You can do parameterized
queries as well as simple ones.

"my-database" db:open

' process-one-row

"SELECT * FROM mytable WHERE id=1"

db:exec-cb db:close

The db:open word has a number of options, make sure to read the help for it before proceeding!

12.2.1 User-defined functions in SQLite

SQLite doesn’t implement functions in its dialect of SQL, but it provides something far more
powerful: a hook to allow SQL statements to call your own functions.

8th offers the db:add-func word, which takes a map with various parameters, and lets you add a
new function in a specific (open) SQLite database. The parameters are documented in the help.

Here is some more information to help you work correctly with user-defined SQLite functions.
There are three kinds of user-defined functions you can add: scalar, which returns a value for
each row based on that row’s values; aggregate, which operates on an entire selection of rows
and returns a value based on the whole set; and window, which may act as either a scalar or
aggregate, on a window within a selection. See the SQLite documentation for more details.

To add a new SQLite function, you invoke db:add-func , passing it a map of options and the
database to which you wish to add the function. The map’s keys may be:

https://sqlite.org/

key description

final required for aggregate and window-aggregate functions, invoked to get the final value of the function

func the 8th word implementing a scalar function (don’t use for other function types)

inverse required for window functions: invoked to perform the inverse of step

name required:the name for the new SQL function

nparams the number of parameters for the SQL function. Defaults to -1, which means “any number of parameters”

step required for aggregate and window-aggregate functions, invoked for each row to process

value required for window functions: invoked to get the current value of the function

window if true , it’s a “window function”

The func word receives an array which contains the parameters passed to the SQL function. It
should process those parameters as appropriate, and leave a value on TOS which will be the
result of the SQL function. SQLite understands a very limited number of types, so what you leave
on TOS is interpreted as follows:

string SQLITE TEXT

buffer SQLITE BLOB

null SQLITE NULL

number SQLITE FLOAT or SQLITE INTEGER

“Big” numbers are not understood, so if you have a big number to return, convert it first to a
string.

All other types are interpreted as an error, which causes the SQL statement to fail with an error
code. So convert any other types to JSON or a buffer first.

The step and inverse words are similar to func , but they are accumulators. So underneath the
parameters array they get the current accumulated value, and they must leave a new
accumulated value on TOS.

The final and value words receive the accumulated value and return the final value, or the
current value, based on the accumulated value (usually it would be the same as the accumulated
value).

All the 8th words are invoked in the same task as the SQL statement, e.g. the db:exec or similar.
The stack is cleaned up automatically after the invocation of any of the words, so do not rely on
leaving a trail of bread-crumbs on the stack.

12.2.2 Encrypted SQLite

Creating an encrypted SQLite database is simple. Give db:open a map with the key kind: "enc" .
For example:

{ kind: "enc", create: true, ro: false, file: "enc.db" }

db:open mykey @ db:key ...

If you just use db:open with a string (as you would a normal SQLite database), 8th will treat the
opened database as non-encrypted and will not encrypt it with db:key . So pass a map with any
of the options:

key value default

create if true, create the database if it doesn't exist false

file database file name

key optional: a buffer containing an encryption key

kind must be “enc” for an encrypted database!

limits a map with SQLite limit values

ro if true, don't allow writes false

Note: The key kind must be "enc" for an encrypted SQLite database!

If “key” was not set in the map, then after the database is opened but before trying to access it,
use db:key to set the encryption key for the database. You must use that same key when opening
the database subsequently, unless you use db:rekey to change the encryption key for the
database.

See the sample database/encrypted.8th for more detail.

Note: The encryption key must be either the result of cr:randkey (in which case you will
need to save it somewhere safe), or the result of cr:genkey . The actual encryption of the
database uses AES-256-GCM. The entire database is encrypted, including all metadata,

making it impossible for an attacker to glean any information from it whatsoever, or
modify it without destroying the data. Needless to say, the encryption key is not stored in
the database, and if you lose or cannot recreate it, you will not be able to access the data!

Encrypted database support is provided solely for local SQLite databases. There is currently no
support for encrypted MySQL or ODBC databases in 8th. Of course you can encrypt individual
fields using the cr: words, prior to storing them in a non-encrypted database.

12.2.3 MySQL / MariaDB / ODBC

Pro+ 8th dynamically loads the “MySQL C Connector” if you want to access a MySQL or
MariaDB database (or any other database using that connection protocol). So you must install
the connector separately in order to connect to such a database, and if you distribute your
application to others you need to ensure they also install the connector.

To open a MySQL database, you provide db:open with a map which describes the specific
settings needed. For example:

{

 "kind" : "mysql",

 "host" : "db4free.net",

 "db" : "eighthdev",

 "user" : "user8th",

 "pwd" : "password"

} db:open

In order to access ODBC connected databases on Windows, the built-in Windows ODBC support
is used. For non-mobile platforms other than Windows, you must install either unixodbc or
iODBC .

Once a suitable connector is installed, any database with an ODBC driver is then available.

To open an ODBC database, you follow the same steps as for the MySQL example above, but
change the kind from mysql to odbc . In addition, you need to add a dsn key which is a string
containing the DSN connection string for your particular ODBC database connection.

12.2.4 KV

Pro+ The “KV” or “key-value” database is a very high-speed single-key to single-value database.
You can think of it as a very large 'map', limited by disk-space. It is implemented using LMDB ,
but is restricted in the 8th implementation to single values per key. If you wish to store multiple
values for a key, store an array or map in the key.

To open a KV database, set kind to kv . You must also provide a file parameter which may be
either a file or a directory. If the file doesn't yet exist, you must also have create: true or the
db:open will fail.

Unlike the various other options, a “KV” database can store keys of any type, and values of any
type. Typically keys are strings, but they don't have to be.

The map used to open the KV database can have the following keys:

key value default

create if true, create the file or dir if it doesn't exist false

dir if false, the 'file' option is a file name not a directory true

file the file or directory where the KV database is

lock if false, don't do any locking true

map if true, write using mmap false

meminit if false, don't ensure memory is zeroed true

mode the permissions for the created database 0664

mapsize if not -1, set the max db size (10485760 default) -1

maxdbs if not 0, allow that many sub databases 0

ro if tr, the database is read-only false

sync if false, don't flush to disk for each transaction true

Storing values is done with db:set and db:set-sub , while retrieving is done with db:get and
db:get-sub . You can iterate the keys using db:each . Unlike the other database types, KV
databases do not support SQL queries.

https://symas.com/lmdb/

12.3 Sockets and network I/O

Sockets are fundamentally the same as files, but the words which deal with sockets have been
placed in the net namespace. This helps clarify for example whether bind is the database or the
network version. If you are familiar with the typical Unix sockets functionality, the 8th
implementation is mostly just a thin layer over that, so it should be familiar.

In addition to the low-level socket words, there are some high-level ones to help make your use
of internet APIs easier. net:get and net:post (from the net/http library) perform HTTP GET
and POST calls, respectively. They may be used as building-blocks for other operations, for
example, the libs/net utility words for JSON-RPC or SOAP. Besides get and post , there are
also delete , put , and head to help you interact with RESTful services. These higher-level words
are not built-in, but rather reside in the various net libraries, e.g. net/http for HTTP GET and
POST.

All the words mentioned in the previous paragraph accept a map with information for the call.
Note that the libs/net words may require additional fields. The fields which may be used by
these net words are:

key description default

bufsize Set the size of the buffer used to read 65536 bytes

cacert file name to PEM file with CA certificates

cacert-mem buffer containing PEM file with CA certificates

cert buffer containing PEM file with the server’s certificate (see also key)

cookies An array of strings which are cookies to be sent to the server

data The data payload (for post/put; required for them)

debug (in net/utils library) If 'true', data read and written is printed as hex dumps false

getheaders If true , retrieve the headers from the call as a map false

headers A map containing key,value pairs of additional headers

key buffer containing key file for the server’s certificate (see also cert)

overwrite If true , put will write over the current item false

proxy-port If present, this is a port number for the HTTP proxy-server

proxy-server This is a host name which is an HTTP proxy

readcb Invoked for each chunk of data. Gets the net item as well as the number of bytes received so far

key description default

redirs Maximum redirects to process. 0 means you need to manually handle redirections 5

sni Do SNI request true

sniname A string which gives the hostname to use for SNI. Implies sni true

staple If true , require OCSP stapling false

tlsver A number or array indicating the TLS version to use [12,13]

to If present, a number of seconds before the connection will time-out 15

url The URL of the service to connect to (required)

verify If false , do not verify the SSL connection true

tlsver may be any one (or combination of) 10,11,12, and 13. The default is the most secure
value, and should be left as-is unless you cannot connect for some reason to a particular server.

The get , delete , and head words may take a string instead of a map , due to their simpler
nature. All the words are executed synchronously, and return a true and perhaps data on
success, or false and an error code on failure. If an error code is returned it will be either an
HTTP code or a negative number, and you should check t:err? for more information.

Note: Because of the synchronous nature of the calls and because network I/O can take a
long time, you should run the query in separate task, and use the synchronization
primitives to handle results.

The net words are proxy-aware, but you need to tell them what proxy to use. Do this using
net:proxy! , which takes a map with proxy parameters proxy-server and proxy-port .

12.3.1 Socket options

When creating a socket using net:socket , one may use a map of various options. The keys
permitted are:

key kind description default

domain number net:INET4 or net:INET6 INET4

proto number net:PROTO_TCP or net:PROTO_UDP TCP

sockopts map values to pass to net:setsockopt

key kind description default

type number net:DGRAM or net:STREAM STREAM

The keys currently understood for the sockopts map are:

key kind description

broadcast number 0 or 1 (SO BROADCAST)

debug number 0 or 1 (SO DEBUG)

dontroute number 0 or 1 (SO DONTROUTE)

keepalive number 0 or 1 (SO KEEPALIVE)

level number defaults to SOL SOCKET

linger map key: “on” (0 or 1) and “time” (a number) (SO LINGER)

oobinline number 0 or 1 (SO OOBINLINE)

rcvbuf number the size of the receive buffer, (SO RCVBUF)

rcvlowat number minimum number of bytes to process for receive (SO RCVLOWAT)

rcvtimeo number number of seconds to wait before timeout on receive (SO RCVTIMEO)

reuseaddr number 0 or 1 (SO REUSEADDR)

sndbuf number the size of the send buffer, (SO SNDBUF)

sndlowat number minimum number of bytes to process for send (SO SNDLOWAT)

sndtimeo number number of seconds to wait before timeout on send (SO SNDTIMEO)

v6only number 0 or 1 (IPV6_V6ONLY)

A map with the sockopts settings may be used on an existing net using net:setsockopt .

The high-level net/connect library (used also by net/http among others) automatically choose
whether to use an IPV6 or IPV4 socket to connect to the target. This makes opening a connected
socket as simple as:

"https://google.com" net:tcp-connect

12.4 Serial I/O

Hobby+ Support for serial I/O is present in Hobbyist or above versions of 8th.

The words in the sio namespace control serial I/O. The sio:open word is passed a string which
is the name of the serial-port to open. This is an OS-specific value: for example, COM1 on
Windows or /dev/ttyS0 on Linux. It is possible to query the system for valid names using
sio:enum . That will return an array of names which are valid.

So in order to successfully use sio:open you must pass it a valid port name; however, that’s not
enough. That port must also be configured to be used, and on Linux at least, you must have
read-write access to its corresponding /dev file. If the name given to sio:open does not meet
those conditions, the return value will be null ; otherwise, it will be a sio which is then passed
to the remaining serial I/O words.

Before one can use the sio:read and sio:write words, the serial port must be configured to use
the correct baud-rate and other settings. This is done using sio:opts! , which takes a map
whose keys represent the values to be modified. You can read the current values with
sio:opts@ , which returns a map with all the values which can be set.

Note that not all settings are applicable to all OS platforms, due to differences in the low-level
handling of serial I/O on various platforms.

The most common settings to modify are:

setting kind description

baud number between 50 and 230400 (on macOS) or 4000000 (other platforms)

bytesize number one of 5,6,7 or 8

parity boolean if true , then paritybits is used

paritybits number one of 0 (none), 1 (odd), 2 (even), 3 (mark), 4 (space). 3 and 4 are invalid on Linux

stopbits number one of 0 (one), 1 (1.5), 2 (two). Note that 1.5 is only valid on Windows

12.5 Bluetooth

Pro+ Support for Bluetooth Classic and BLE is present in the Professional and above versions of
8th. You are urged to consult the sample code in apps/bt/bt.8th , hw/ble.8th , and hw/
bluetooth.8th .

Note: Linux and RPI users:

You must have installed bluez and the bluetooth library, e.g. sudo apt install bluez
libbluetooth3

For BLE, you need to run as the root user (let us know if you find some alternate way of
making BLE work)
Ensure that all the BLE HW works correctly by running e.g. sudo hcitool lescan

At present, BT and BLE only work completely properly on Android. We are continuing to
improve the cross-platform availability of this important feature!

In order to use BT or BLE functionality, you first need to let 8th know you want to do that:

requires bluetooth

This section is still mostly empty, relying on the sample code as documentation. We will be
filling it in in future versions…

12.6 Data persistence

Since you can read and write files and databases and sockets, you may wonder about the best
way to persist data (and to transfer it).

If your data is just a buffer, then it’s simple enough to handle. But more commonly you will have
structured data: a map or array or some other data item.

Here are the methods available to you:

method description comment

>s / eval convert to a (probably) JSON string not valid for all types

>json / json> convert your data to JSON string good for standard JSON, not round-trip for all
types

•

•

•

method description comment

pack / unpack convert to and from binary buffer machine/OS specific, may be difficult to get
right

b:>mpack / b:mpack> convert to and from MessagePack binary
format

Pro+ for all types

Note that you cannot persist all data types, simply because the support has either not yet been
written, or doesn’t make sense. So while you may want to persist a stack, you’ll have to do it
manually; and it makes no sense to try to persist a font.

When persisting a tree or graph, you must use the appropriate words to restore the comparison
or weight functions after reloading the data. For example, tree:cmp! and gr:weight! . That is
because the persistence words cannot necessarily properly restore those.

https://msgpack.org/

Ch. 13 The 8th Console

“Console” is another word for the “terminal” or “command shell”. 8th provides a number of
words in the con namespace, which let you do I/O with the console.

If you are running on Windows, and using an MSys or Cygwin shell, then you might need to use
the freely available winpty program in order for your console mode programs to work. Likewise
if you're using an older version of Windows.

You may set text attributes using color-pairs, such as red onWhite . By default, 8th does not
change your color settings.

Note: red by itself will not work, the onWhite is required! You may set or get the current
text position using gotoxy and getxy . You can also move about the screen with up , down ,
right and left . Look in the word list of the con namespace for the complete list of
capabilities.

If you want to change the default colors in the REPL, you can set the environment variable
EIGHTHCOLOR prior to starting 8th. In bash , for instance:

export EIGHTHCOLOR="red onBlack"

8th ...

Doing this will set the color of the REPL console to red text on a black background.

If you want to grab keys one at a time you can use con:key , and you can query their availability
using con:key? . The most interesting word, perhaps, is con:accept . It lets you input up to a
given amount of text while taking advantage of the console editing keys. It has a sibling,
con:accept-pwd , which does not display the entered text and which marks the returned text as
requiring wipe on release.

The REPL uses a factor of con:accept internally, so the discussion of keys and codes etc. is
relevant both in the REPL and when using con:accept .

13.1 Colors and text attributes

8th includes basic console functionality to begin with. You can use the accept words to get
input, move the cursor around, clear the screen, and print text.

If you want to set colors or text attributes, you need to tell 8th to load more console support:

needs con/loaded

You can, alternatively, use requires:

requires con

That will enable the “foreground” colors (in the con: namespace): black, red, green, blue,
magenta, cyan, white, and yellow. The corresponding “background” colors are prefixed with
“on”, e.g. “onBlack”.

If you wish to have a “bright” color, invoke bright before the color:

with: con

bright blue onWhite

bright red bright onBlue

The attributes 8th knows about are: normal, bold, dim, italic, uscore, blink, fast-blink, reverse,
conceal, strike, frame, encircle, and overline.

Note: Not all of these are available on all terminals! In particular, ‘fast-blink’, ‘strike’,
‘frame’, ‘encircle’, and ‘overline’ are not well supported. Unless you know a terminal
supports the attribute, you should stick with the commonly supported ones.

An attribute is turned off using end

with:con

italic "Hi there" . end italic

However, for some reason I cannot fathom, end bold is not supported on most terminals
(though the others seem to work). Use normal to disable bold, though that also disables all the
attributes!

13.2 Editing keys

The 8th console gives you some editing capabilities which are similar to what you may be used
to from shells like bash . Here is the exhaustive list of editing keys and their function:

key action

BKSP Delete character to the left

Ctrl+A

Ctrl+B

Ctrl+C Cancel the input

Ctrl+D Quit 8th

Ctrl+E

Ctrl+F

Ctrl+H

Ctrl+K Delete from current position to end of line

Ctrl+L Clear the screen

Ctrl+Left Move left one word

Ctrl+N

Ctrl+P

Ctrl+Right Move right one word

Ctrl+T Swap current and previous character

Ctrl+U

Ctrl+V Paste from system clipboard

Ctrl+W Delete previous word

Ctrl+X

Ctrl+Y Copy current line to system clipboard

Ctrl+Z Accept up to eight hex characters as Unicode point

DEL Delete character to the right

Down Next item in history

END Move to end of line

ENTER Accept the input

key action

ESC Delete current line

HOME Move to start of line

Left Move left one character

Right Move right one character

SHIFT+TAB Insert a literal TAB character

TAB Complete the named item immediately before the cursor

Up Previous item in history

When using Ctrl+Z , press ENTER after fewer than 8 characters to accept, Ctrl+C to cancel.

One last thing: if you start 8th in the console, a thrown exception will not quit 8th, unlike the
behavior when 8th is executing a file or an application. This is intended to make it easier to deal
with mistyped JSON (for example), which would cause an exception and dump you at the OS
prompt.

If too many exceptions are thrown in a short time, 8th will quit.

13.3 TAB completion

While in the console, pressing the TAB key will cause 8th to attempt to perform word
completion. It does this by taking the text you entered so far (on the current line), and taking the
last space-delimited part. For example, if you entered 123 n: and pressed TAB , the completion
code would take the n: and attempt to complete it.

The default tab-hook (invoked by pressing TAB in the REPL) uses the words-like word to get a
list of all named items which match the prefix you typed. It then filters that list so only items
whose prefix matches what you typed so far are in the list. If there is only one item in the list,
the completion is that item. If there are no items in the list, your original prefix remains. If there
are multiple items, pressing TAB will cycle through them.

13.4 History

By default, the console remembers up to 100 lines worth of your commands. You can access
previous history items using the up and down arrows, and once accessed you can edit them. By
default, 8th does not save your history, but you can change that behavior by using the word
con:save-history , which will save your history by appending it to the named file.

You can change the number of lines the history tracks by using the -H command-line option
when starting 8th.

You may likewise restore the history to some previously saved (or manually edited) set, by using
con:load-history to read in a named file with one history item per line, and a flag which
indicates whether to overwrite or append to the current history.

13.5 The prompt

The ubiquitous ok> prompt which 8th presents in the console is actually more complex than it
appears. Firstly, you as the user may change the prompt shown, by assigning a different value to
the deferred word prompt . Before you run off and do that, however, you should know what the
default prompt shows.

First of all, the ok> prompt is the normal state of affairs. It shows when 8th is awaiting new input
to interpret in the REPL. If the prompt shows anything other than ok> , it is indicating a state of
incompletion.

If the prompt includes the " character, it means a string was being entered but has not yet been
completed. If it includes the { character, it means a map was not completely defined. Similarly,
if a [is shown, then an array was not completely defined. Finally, if a + is included in the
prompt, a word was being defined but not completed.

These indicators may be expected, for example, if you are entering a long bit of text at the
console and are entering it on multiple lines. They may also indicate an error. For example, if
you typed ". instead of " . to terminate a string and print it.

13.6 Key codes

The con:key word returns a key-code, as mentioned. A “normal” key will return the Unicode
character entered (which depends on the specific keyboard layout and OS language settings).

“Special” keys, such as the function or Ctrl/Alt/Shift modified keys, return a code starting at
0xe000 — the start of the “Unicode Private Use Area”.

Modifier keys are SHIFT, CTRL, and ALT, which are “or-ed” with the key being modified. Shift is
0x0100, Ctrl is 0x0200, and Alt is 0x0400.

The special keys are:

0xe000 ESC

0xe001 TAB

0xe002 - 0xe00d F1 - F12

0xe00e UP

0xe00f DOWN

0xe010 LEFT

0xe011 RIGHT

0xe012 PGUP

0xe013 PGDN

0xe014 HOME

0xe015 END

0xe016 INS

0xe017 DEL

0xe018 - 0xe031 A - Z

0xe032 - 0xe03b 0 - 9

0xe03c =

0xe03d -

0xe03e BKSP

So "Ctrl+LEFT" is 0xe210 , which is the code for LEFT, ORed with the code for CTRL.

Note: Whether or not a key-code shows up on your machine is very much dependent upon
the OS, your keyboard, and whatever shortcuts you’ve set up in your OS or window
manager. You can use the sample console/conio.8th to see what con:key codes are
available on your specific setup.

Also note that the console key-codes are independent of, and not in any way connected with, the
key-codes returned by the nk subsystem!

Ch. 14 Cryptography

8th has excellent built-in facilities for encryption, based upon the LibreSSL library and some
other sources.

Cryptographic settings are task-specific. That means that setting the hash or cipher to use inside a
particular task (including the main task) will affect only that task. The default settings are
aes-256-gcm for the cipher, and blake3 for the hash.

Note: The ciphers and hashes available may change from time to time as new versions of
the LibreSSL library are incorporated. Use the cr:hashes and cr:ciphers words to see the
current list of available hashes and ciphers. See the section “Upgrading crypto from
versions prior to 22.04” for details if you're upgrading from an earlier release of 8th.

The sample crypto/ciphers.8th iterates over all available ciphers and tests them.

Note: It is now possible to use “callback words” to get and save data for the encryption and
hashing words. See the help for cr:>encrypt for details.

14.1 Hashes (Digests)

The default hashing algorithm used in 8th is BLAKE3 , which is a derivative of BLAKE2s . It is
extremely fast and at least as secure as BLAKE2. However, you may need to use other hashes, so
8th lets you easily choose from a number of other hash algorithms. Just use a phrase like: "sha1"
cr:hash! .

The valid values which can be passed to the word cr:hash! vary from time to time as more are
added or removed. The currently supported strings which may be used are found by invoking
cr:hashes . All of the hash functions may also be used with HMAC. After having set the hash,
the chosen hash function remains in force until changed.

https://www.libressl.org
https://github.com/BLAKE3-team/BLAKE3
https://blake2.net/

The word cr:hash commences the computation of a hash, and likewise cr:hmac commences an
HMAC hash. Further data to be hashed are passed to cr:hash+ , and finally either cr:hash>s or
cr:hash>b are invoked to finalize the hash and produce a result (a readable string in the first
case, or a buffer with the hash data in the second).

The sample crypto/hashes.8th iterates over all available ciphers and tests them.

Hashes currently available are:

"blake", "blake2b", "blake3", "md4", "md5", "md5-sha1", "ripemd160", "sha1", "sha224", "sha256",
"sha3-224", "sha3-256", "sha3-384", "sha3-512", "sha384", "sha512", "sha512-224", "sha512-256", "sm3"

14.2 Random data

8th has several words providing random data. They are:

word description

cr:rand A cryptographically strong but relatively slow PRNG based on ChaCha20

rand-jit A very slow CPU-jitter PRNG based on the “jitterentropy ” library

rand-jsf The fastest PRNG, based on Bob Jenkin’s small PRNG

rand-native A PRNG using the OS-specific entropy provider

rand-pcg A fast and strong PRNG using the PCG PRNG

random A deferred word which is initially set to rand-pcg

When 8th starts up, it initializes the entropy for the crypto routines with a combination of the
OS-specific entropy provider, and the “jitter” entropy provider, if it is available on the specific
hardware being used.

Only cr:rand is guaranteed to be cryptographically strong, and should be used if your
application requires that. Using random and setting it to the PRNG desired at runtime is a
convenience for the programmer.

The word cr:randbuf returns a buffer with bytes randomly generated using rand. If you don’t
need cryptographically secure randomness, then cr:randbuf-pcg will be much faster.

https://github.com/smuellerDD/jitterentropy-library
http://burtleburtle.net/bob/rand/smallprng.html
http://www.pcg-random.org/

A random seed for rand-pcg and rand-jsf is generated on startup. If you want repeatable
sequences you need to initialize the PCG PRNG using rand-pcg-seed . Currently, the JSF PRNG
does not have a seed word.

Note: The PRNGs are task-local, meaning that each task has its own seed and PRNG state.
Thus setting the PCG seed in one task will not affect rand-pcg invoked from another task.

14.2.1 The internal cr:rand algorithm

As stated above, cr:rand uses an algorithm based on ChaCha20. It is in fact inspired by Stephan
Mueller’s “chacha20_drng” .

The algorithm has two parts:

“stir”:

initialize a chacha20 state with a random key and iv, taken half from the system random
generator, and half from the jitterentropy generator.
do the same with the internal random buffer
perform one round of ChaCha on the random buffer

“produce”: when bytes are requested, repeat until all bytes have been produced:

if more than 600 seconds or 2^30 bytes have been produced, “stir”
perform three rounds of ChaCha on the random buffer
extract up to three bytes (from beginning, middle, and end of random buffer)

Prior to 22.04, 8th used the "Fortuna" PRNG , but the LibreSSL library doesn't include it, using
arc4random() instead. Since that implementation sometimes relies solely on the OS random
provider, I deemed it insufficiently secure, and sought a solution. The "chacha20_drng"
mentioned above looked promising, and I modified it to make it more random.

As implemented, the current cr:rand seems to be as random as the Fortuna based older
version, but is five times faster. It is also instantiated separately for each task, but is only
initialized if it is used in the task. This means no locking is necessary, and task PRNGs are
entirely independent.

1.

2.
3.

1.
2.
3.

https://github.com/smuellerDD/chacha20_drng
https://github.com/smuellerDD/chacha20_drng
https://en.wikipedia.org/wiki/Fortuna_(PRNG)

14.3 Passwords and key-generation

There are several methods for producing an encryption key in 8th. The simplest is cr:randkey ,
which simply produces a buffer of appropriate size for the current cipher, filled with random
data. One could just as easily use cr:randbuf which takes the number of bytes and returns a
buffer with that many random bytes, though the key returned by cr:randkey is also set to auto-
wipe as a security feature.

If you want to take a user-provided password and convert it to a key, you can use cr:genkey ,
which implements the PBKDF2 algorithm. You provide it the user’s key, a salt string and the
number of iterations, and it will return a 32-byte buffer to use as a key. To input the password in
a console-based application, you can invoke con:accept-pwd .

14.3.1 Best practices: keys and passwords

It is important to realize that the “key” you create from a password is even more sensitive than the
password itself, since it is what is actually used to encrypt or decrypt data. Therefore, you must
always avoid storing the key or password.

What should you do, then?

If you need to validate a password (for example, as part of a log-in sequence), you could store a
hash of the password, suitably salted; then, store both the salt value as well as the hash of the
password for later comparison. Of course, you should use a strong hash like one of the BLAKE
ones, and ensure the password is not a short, weak one.

A better solution is to not store the hashed password at all. Instead, use one of the “boxed”
cryptographic words, such as cr:>aes256gcm to encrypt the data. In that case, the decryption
will fail if the user’s password is not valid, so you know implicitly whether or not the password is
valid. This provides less “attack surface” for a hacker to exploit.

https://www.pbkdf2.com/

14.4 Encryption

14.4.1 Public key encryption (PK)

8th currently supports the RSA public-key (PK) encryption and decryption scheme.

RSA PK encryption is done using cr:rsa_encrypt , which takes an RSA public key and data to
encrypt, returning an encrypted buffer. RSA PK decryption reverses that process using
cr:rsa_decrypt which takes the RSA private key corresponding to the public key used to
encrypt and the encrypted buffer. It returns a decrypted buffer. The SHA256 hash function is
used during the RSA encryption or decryption.

RSA public and private keys are generated using cr:rsagenkey , which takes the size of the key
(1024, 2048 or 4096 bits) and returns a pair of keys to be used with the RSA encryption words.

At present there is no facility for importing RSA keys from third-party systems.

It is also possible to sign using cr:rsa_sign , which takes the hash of a message and a private
RSA key and produces a buffer which is the signature. Then one may verify that signature using
cr:rsa_verify , which takes the hash of the message, the public RSA key and the signature, and
produces a true or false response.

Note that RSA encryption is slow, so the typical usage is to encrypt an encryption key (e.g. an
"AES" key) so then the actual encryption is done using a much faster algorithm.

14.4.2 Symmetric encryption

The ciphers currently available for symmetric encryption are:

"aes-128-cbc", "aes-128-cfb", "aes-128-cfb1", "aes-128-cfb8", "aes-128-ctr", "aes-128-ecb", "aes-128-
gcm", "aes-128-ofb", "aes-192-cbc", "aes-192-cfb", "aes-192-cfb1", "aes-192-cfb8", "aes-192-ctr",
"aes-192-ecb", "aes-192-gcm", "aes-192-ofb", "aes-256-cbc", "aes-256-cfb", "aes-256-cfb1", "aes-256-
cfb8", "aes-256-ctr", "aes-256-ecb", "aes-256-gcm", "aes-256-ofb", "aes128gcm", "aes256gcm", "bf-
cbc", "bf-cfb", "bf-ecb", "bf-ofb", "camellia-128-cbc", "camellia-128-cfb", "camellia-128-cfb1",
"camellia-128-cfb8", "camellia-128-ecb", "camellia-128-ofb", "camellia-192-cbc", "camellia-192-cfb",
"camellia-192-cfb1", "camellia-192-cfb8", "camellia-192-ecb", "camellia-192-ofb", "camellia-256-

cbc", "camellia-256-cfb", "camellia-256-cfb1", "camellia-256-cfb8", "camellia-256-ecb",
"camellia-256-ofb", "cast5-cbc", "cast5-cfb", "cast5-ecb", "cast5-ofb", "chacha", "chacha1305",
"chacha20-poly1305", "des-cbc", "des-cfb", "des-cfb1", "des-cfb8", "des-ecb", "des-ede", "des-ede-
cbc", "des-ede-cfb", "des-ede-ofb", "des-ede3", "des-ede3-cbc", "des-ede3-cfb", "des-ede3-cfb1", "des-
ede3-cfb8", "des-ede3-ofb", "des-ofb", "desx-cbc", "id-aes128-gcm", "id-aes192-gcm", "id-aes256-
gcm", "idea-cbc", "idea-cfb", "idea-ecb", "idea-ofb", "rc2-40-cbc", "rc2-64-cbc", "rc2-cbc", "rc2-cfb",
"rc2-ecb", "rc2-ofb", "rc4", "rc4-40", "sm4-cbc", "sm4-cfb", "sm4-ctr", "sm4-ecb", "sm4-ofb"

Select whichever of them you wish using the word cr:cipher! , which will throw an exception if
the chosen cipher is unknown (thus preventing you from making a typographical error in your
code during development).

14.4.3 Ed25519 and ECC

The Ed25519 elliptic-curve is available using cr:ed25519 (to generate a key-pair) and the
accompanying cr:ed25519-... words to effect signing, verification, and secret exchange. Use
this kind of key for the cr:>edbox etc. words.

Similar words exist for other predefined elliptic-curves. The full list of such curves is returned
by cr:ecc-curves , which is an array of maps. Each map has a key id which is a number, and
desc which is a textual description of the curve. For example:

{"desc":"SECG/WTLS curve over a 112 bit prime field","id":704}

In order to use the cr:ec-keygen word you must give it a valid id from this list. Then, you use
the accompanying cr:ec-... words to sign, etc., just as with the Ed25519 curve.

14.4.4 Boxing words

A number of convenience words have been added to make it much easier and safer for normal
users to take advantage of the strong cryptography features in 8th. We’ll list the most important
high-level boxing words — so named because they put everything in a box which the user
needn’t worry about:

https://ed25519.cr.yp.to

boxing word description

cr:>aes256gcm Given an item and a key, returns a box which is encrypted with AES-256-GCM. The box contains the
generated GCM tag, the random IV which was used for GCM, as well as a box header which (along with
the IV) serves as the “AAD” for GCM. The result is that if any bit of the box is changed, the decryption will
fail. The box is decrypted using cr:aes256gcm> , which will return a buffer if successful, or null if
the decryption failed

cr:>cpe Given an item, a key, and an Ed25519 private key, encrypts the item using ChaCha20Poly1305 and
creates an encrypted box using cr:>cp . Then it signs that using the Ed25519 key and creates a signed
box. The box can be decrypted and verified using cr:cpe> , which takes the box, a key and the
Ed25519 public key

cr:rsabox Takes an item, and an RSA private key, and creates a box with a header and the signature for (item,key).
The signature is verified using cr:rsabox> , which takes the box and the RSA public key

There are more high-level encryption words available, you are encouraged to view the word-list.

14.4.5 Sharing secrets

It is possible to share secret keys using either Ed25519 or ECC keys. The appropriate words are
cr:ed25519-secret and cr:ecc-secret .

You may share secrets using Shamir’s Secret Sharing , which is implemented using the words
cr:shard and cr:unshard . In this process, you “shard” the secret into Y pieces, of which any X
must be used to recreate the secret.

14.5 Upgrading crypto from versions prior to
22.04

In version 22.04, the support libraries for cryptography were changed from "TomCrypt" and
"TomsFastMath" to "LibreSSL". This necessitated a reworking of the crypto layer in 8th, and
resulted in some rethinking of how it should work.

Notable changes:

the cr:dh-... words are gone. DH crypto was already limited to just Curve25519 and
Ed25519. Now, only Ed25519 remains, in the cr:ed25519... words.
selecting a cipher now must use one of the values returned by cr:ciphers .
similarly, selecting a hash now must use one of the values returned by cr:hashes .

•

•
•

https://en.wikipedia.org/wiki/Shamir%27s_secret_sharing

it is no longer possible to select the crypto mode separately from the cipher.
the mode words, e.g. cr:OFB no longer exist.
the default hash is now "blake3" instead of "blake" (BLAKE2s) .
it is now possible to give callback words to the encryption and hash words using a map, in
addition to the prior behavior of taking data from TOS

So, for example in the past you might say cr:OFB "aes" cr:cipher! , you now would say
"aes-256-ofb" cr:cipher! .

The words cr:aesgcm and cr:chachapoly still work as before, as do the boxing words.

If you want the old default hash behavior, invoke "blake" cr:hash! .

•
•
•
•

https://blake2.net/

Ch. 15 Hardware query and control

The hardware interfacing abilities of 8th are relatively simple. The three major areas handled by
8th are general queries, camera control and sensors.

15.1 General queries

There are a number of words whose purpose is to determine the physical nature of the device
8th is running on, for example the amount of installed RAM. They are all in the hw namespace,
and amply described in the words documentation. The device’s operating system is given by
G:os .

15.2 Camera

Hobby+ Camera support is provided in Hobbyist and above.

To use a camera, first query the hardware using hw:camera? which returns null if no cameras
are present, or an array of maps, one per camera. The map provides a description of the
camera, including formats and resolutions permitted.

If there are cameras present, you may request the use of one with hw:camera , passing it one of
the arrays in the fmts key returned from the hw:camera? query for a particular camera. If the
camera is available in the format requested, a hw is returned which is used in subsequent
camera invocations. Otherwise, null is returned.

If a valid hw was returned, you may then request a picture to be taken using hw:camera-img
which will return an img if the camera has one to return, or null if one is not available.

15.2.1 Raspberry Pi

In order to use the camera on a Raspberry Pi, you need first of all to enable the camera with the
raspi-config utility, and select “Enable Camera”. Then you need to load the appropriate kernel
module:

sudo modprobe bcm2835-v4l2

(or whatever is appropriate on your specific hardware) in order for 8th to talk to the camera.

15.3 Sensors

8th can read the following kinds of sensors:

name description

accel The accelerometer, which measures linear acceleration

compass The compass, which measures magnetic fields

gps The GPS or other location service

gyro The gyroscope, which measures rotational acceleration

In order to use any of them, the steps are the same:

Ask for the sensor, passing a string (e.g. “accel”) to hw:sensor
If that returned a hw (and not null), start the sensor using hw:start
Periodically ask for data using hw:poll
When done, relinquish the sensor using hw:close

The string to pass to hw:sensor is any of the ones on the left-side of the above table. If the sensor
does not exist or is unavailable, null will be returned.

The data returned by hw:poll is a map whose keys are specific to the kind of sensor and are
listed in the documentation for hw:poll .

It is your responsibility to poll the hardware, and the polling should be done in a task so as not to
block the main GUI or REPL tasks.

1.
2.
3.
4.

15.4 GPIO

Hobby+ On platforms which support GPIO, you may access that hardware using the words in
the gpio namespace: which are functional only on Linux and RPI.

You must first install libgpiod on your system, because 8th dynamically loads it and uses it to
access the GPIO lines in a hardware-independent manner. In addition: at present only the 1.6.x
versions of libgpiod can be used by 8th, so please ensure the appropriate library is installed on
the target system.

The sample hw/gpio.8th illustrates how to use (some of) the gpio words.

Note: You may need to ensure you have permissions to use GPIO on the specific machine.
By default, once Raspberry Pi machines are set up correctly you should have access.

Furthermore, the physical pin layout corresponding to the GPIO registers may vary between
devices, and so you must know what those values are, in order to safely use these words! For
Raspberry Pi devices, this page is useful .

15.5 I2C

Hobby+ On platforms which support I2C communications with peripheral devices, you may
use hw:i2c , hw:i2c@ and hw:i2c! to perform that communication. Currently only Linux and
Raspberry Pi support I2C.

Just as with GPIO, root access may be required. And just as with GPIO, it is important to know
the details of the hardware device with which you are communicating, since improper access
may destroy the peripheral or otherwise cause damage. In addition, you must run raspi-config
on an RPI to enable the I2C interface, and also run modprobe i2c-dev prior to using I2C
functionality.

Note: 8th and AHT Associates LLC. are not liable for, and take absolutely no responsibility for
any damage or financial loss caused by use of these low-level hardware accessors!

Please be careful to check and double-check any hardware connections and the corresponding
pin numbers or registers before you use the GPIO or I2C words.

https://pinout.xyz

15.6 SPI

Hobby+ On platforms which support SPI communications with peripheral devices, you may
use the hw/spi library.

It creates a namespace spi , and the words open , read , and write as well as various mode and
other control words. The sample hw/bme280.8th is a "work in progress" sample which aims to
demonstrate how to use a peripheral which can be connected with either I2C or SPI interfaces.

Ch. 16 FFI: Foreign Function Interface

The FFI, or “Foreign Function Interface” is how an 8th program communicates with third-party
libraries — whether built-in to the operating system, or from a vendor or other party.

Because 8th’s built-in data types do not and cannot map directly onto those used by external
libraries (usually based on C types), the FFI must hook up some “plumbing” to make the data
flow correctly between the 8th and the external code, and back again.

Fortunately for you, doing this is reasonably straightforward.

16.1 Declaring and invoking FFI routines

In order to access an external routine, 8th must know first of all what library that routine is in.
To do that, declare the library like so:

"user32.dll" lib u32

This declaration creates a new word called u32 , which when invoked will put the identifier of
the external library named user32.dll on TOS. It also makes that library the one which will be
used in subsequent FFI function declarations. The identifier will be null if the library was not
located or could not be loaded for any reason. That fact may be used to perhaps choose a
different library at runtime.

Windows users already have k32 declared (kernel32.dll), while Linux, RPI, and macOS users
already have libc declared (libc.so or libc.dylib).

Note: The name passed to lib may be an OS-specific one, as in the above example:
user32.dll . It may also be just the base name, user32 . In this latter case, the library will
be searched for as follows:

Using the name given: user32 , then1.

With the OS-specific suffix: user32.dll (or .so or .dylib), then
With the lib prefix: libuser32.dll

This allows you to write code which uses a common shared-library across platforms without
worrying about the OS naming details.

Functions within that library are then declared as follows:

u32 drop

"NNN" "SetClipboardData" func: setClipData

The first line tells 8th that subsequent FFI declarations will use the library loaded by u32 . Each
declaration consists of a parameter list, the name of the routine as exported by the library, and
the name of the new word which 8th will use to access that routine.

16.2 Parameters

The parameter list mentioned in the previous section is simply a string, where each letter
indicates the type of the item passed or received. 8th takes care of translating between its
internal data representations and those of the external library, based upon this list.

The first character in the parameter list is the return value. That may be one of:

char description

c “complex-float”, on platforms which have complex types

C “complex-double”, on platforms which have complex types

D “double”, an 8-byte IEEE floating-point value

F “float”, a 4-byte IEEE floating-point value

L number, the system default signed long integer type (4 byte for 32-bit, 8 byte for 64-bit)

N number, the system default signed integer type (4 byte for 32-bit, 8 byte for 64-bit)

P “pointer”, the return value is a pointer (will be returned as a ptr)

T boolean; (any number value other than 0 is true

U number, the system default unsigned integer type (4 byte for 32-bit, 8 byte for 64-bit)

V “void”, or “no return value”

X number, the system default unsigned long integer type (4 byte for 32-bit, 8 byte for 64-bit)

2.
3.

char description

Z string

Any other value will result in an out of bounds exception being thrown.

The rest of the parameter list is the type of each parameter, as expected by the receiving
external function. Conversions from 8th types to these will be performed at run-time. Valid
types and possible modifiers are:

char description

+ The numeric type is the size of a C “long int”

- The numeric type is the size of a C “short int”

= The numeric type is the size of a C “int”

& The numeric type is the size of a C “void *”

? The numeric type is as big as a “size_t”

1 The numeric type is 1 byte long…

2 … 2 bytes

4 … 4 bytes

8 … 8 bytes

b Buffer without the size (C “void *”)

D Double floating-point (C “double”)

F Floating-point (C “float”)

L System-default long number (32 or 64-bit integer, C “long” type)

N System-default number (32 or 64-bit integer, C “int” type)

P Pointer (C “void *”, etc): requires a ptr!

S String with count (“int” string length, then C “char *”)

T Boolean (true, false, or number)

U Unsigned integer

W Word (C function pointer, e.g. “void (*)()”)

X Unsigned-long integer

Z String (C “char *”)

Note that the B and S both accept either buffer or string values, and work as expected. The
string length is the number of bytes of string or buffer data, not the number of characters.

If the function requires a pointer to a standard type (for example, a pointer to an int) then you
must use the ptr data type to safely encapsulate that call. See samples/ffi for proper usage.

If a numeric modifier is given, it must appear before the item it modifies. For example, 8N means
the item is a number which is 8-bytes long. Similarly, ?B means to treat the buffer as a pointer to
the contents, followed by a length which is as big as a size_t .

The parameter list describes what the external function expects. At run-time, the FFI verifies it
can convert between the item on the stack and its corresponding parameter type. If it cannot, an
out of bounds exception is thrown. If you incorrectly describe the FFI signature of the external
function, the likelihood is that 8th will crash. If null is given as a parameter, it will be
considered the equivalent of a NULL pointer.

Note: You may also pass an array of items to be sent over the FFI, rather than just push
them on the stack. This is particularly useful if you want to keep pointers around for
subsequent use after the FFI call.

16.2.1 vararg — C-style variable-argument lists

8th can also handle foreign functions with variable argument lists. The way this works is simple:
declare the func: as usual, but make the parameter list include only the fixed parameters. Then
at runtime, you must use an array to create your parameter list, with the last element being an
array with the variable parameters. That array will have as its first element a string which is a
type-list for the variable parameters, so that 8th can map them correctly. See the ffi/ffi.8th
sample for the practical details.

16.3 Dealing with arbitrary data (“structs”, etc.)

Because the 8th data types do not map directly to external types, you may need to do further
remapping. Specifically, if an external routine returns a C struct, you will probably have to split
it apart in order to get at the data you need. This is easily done using the pack and unpack words,
something like this:

\ Routine returns struct with four 32-bit int values

"iiii" unpack

After this, there will be a number on TOS with the value 16 (the number of bytes processed), and
an array under it containing four integer numbers, corresponding to the format string passed to
unpack . The format could also have been specified as 4i .

Similarly, if you need to pass a “struct” from 8th to an FFI routine, you will need to create a
buffer with appropriate data, using pack to convert an array with the struct’s fields. You then tell
the FFI that the function took a pointer, and 8th’s FFI will convert the buffer appropriately.

The format string for pack and unpack has the syntax: {[0-9]*x}+ . That means that each
element may have a count, which is an integer saying how many times to repeat the element,
followed by x which is the element specifier. This (count, element) group may be repeated as
many times as necessary to complete the layout, and there must be at least one such group (if
count is omitted it defaults to 1).

Valid element specifiers, their meanings and the types they become with unpack are:

char description type

& “pointer” number

* use entire item size (string or buffer)

+ long int number

- short int number

= int number

b byte buf

B byte number

c char string

d 8-byte IEEE float number

f 4-byte IEEE float number

h reverse hex-dump number

I 4-byte BE integer number

i 4-byte integer number

L 8-byte BE integer number

l 8-byte integer number

char description type

p pointer to buffer or string X

P pointer to number,buffer,string ptr

s size bytes (for next specifier; count is number of size bytes)

W 2-byte BE integer number

w 2-byte integer number

x ignore byte

X word pointer (should be an X from w:cb)

If the s or S size-byte specifiers are used, the preceding count, if any, is the number of bytes in
that size (default is 1). If a b or c specifier is used, then the number format becomes x:y , where
x is the repeat count, and y is the number of bytes. If y is * , then the entire buffer or string is
used. In that case, it is recommended to make sure the item is the correct size desired.

Note: If you wish to create a buffer “big enough” to hold arbitrary data from an FFI call,
you can invoke pack with null instead of an array of items; the returned buffer will be as
big as the format string specified.

16.4 Creating callback functions

Some external libraries will call back to your code. 8th has additional functionality to make this
possible.

Creating a callback is rather simple: take a word to be called-back, and a string containing a
description of the parameters the callback will receive as well as the return-type, and then
invoke w:cb . The resultant X is what needs to be passed to the FFI when invoking the external
function which will, in turn, call-back to your 8th word.

See the sample in ffi/ffi.8th for a working example of this. At present, the callback
functionality in 8th is limited:

Does not yet work on ARM systems (RPI,Android,Apple M1)
Only accepts N (int) and Z (char *) parameters
Only returns N (int) or V (void) values

•
•
•

Note too, that the callback is not run in the normal 8th context. That is, it is possibly running in
a different thread (but not a task!). So if you need to modify 8th’s global state, you should take
care to use locking to prevent unexpected results.

16.5 Custom libraries

One use of the FFI interface is to utilize code you’ve written in C in order to do some processing
which might be otherwise cumbersome to do in 8th alone. An example might be image
processing.

When designing your own custom libraries to work with 8th, take into account the fact that 8th
can parse JSON efficiently. Thus, if you wish to transfer a struct from C to 8th, it may be
worthwhile to convert that to a JSON representation first, in your C code, and then return the
JSON string.

16.6 Java interface (Android only)

It is possible to access arbitrary Java code from within 8th, using the Java FFI words jclass ,
jmethod and jcall . These follow the JNI conventions, so you should be familiar with those
before trying to use them. As an example, to call the Thread.sleep method, you could do this:

\ First get the class on the stack:

"java/lang/Thread" jclass

\ And now make a method item:

"sleep" "(J)V" jmethod

\ And finally, invoke the method:

[200] swap jcall

This is particularly useful if you want to enhance your Android application using any APIs which
8th doesn’t expose. Simply write a Java class which performs whatever you need done, modify
the manifest file accordingly if necessary, and include an appropriate Java invocation in your
code to run the Java code. Take advantage of the easy JSON interfaces in both Android and 8th to
ease passing complex results back to 8th.

16.7 Danger!

Note: Passing data across the FFI must be done with care. You have no guarantee that the
external routine will behave nicely, so data returned to you should be checked to ensure you
have been given something reasonable. Certainly you should not pass a returned string to
eval , as that allows the external library direct access to your application’s internals
(unless you’ve restricted the interpreter using only)!

As a rule you will also want to check that the library you desire to load was in fact loaded. A wise
precaution would be to also check that the version of the library is what you expected (if the
external library provides a routine to give that information). If an FFI word is invoked and either
the library is not loaded, or the function cannot be found, 8th will throw an exception.

Furthermore, you must be careful when defining the string used to declare the parameters for
the FFI function. An incorrect parameter declaration can cause 8th to crash as mentioned
above.

Ch. 17 Graphical User Interface: GUI

17.1 Overview

Cross-platform GUI support in 8th is provided by the Nuklear and [SDL])(https://libsdl.org)
libraries. The GUI words are provided in the nk namespace, which is a thin layer on top of
Nuklear and SDL.

This manual refers to Nuklear as “NK” hereafter.

17.2 What is Nuklear?

The Nuklear library is an “immediate-mode UI”. That means that “state” is mostly managed in
your code, and the GUI itself is regenerated on each render. This comports well with 8th’s
architecture, since the GUI generation “flows” with 8th words.

There is a lot of sample code in samples/nk/ , which amply demonstrates how to use the GUI as
presented by NK.

Note: It is possible (but not likely) that a particular device hasn’t got proper support for the
rendering back-ends used by SDL. An exception is thrown if SDL cannot instantiate a
renderer and you try to use the GUI.

17.3 GUI Glossary

The following terms are used throughout all our documentation. Please note:

clr A number, array, or string representing a color value

pt An array of [x,y] values, or an X containing native float values

https://github.com/Immediate-Mode-UI/Nuklear
https://libsdl.org

rect An array of [x,y,w,h] values, or an X as for a pt

screen window An OS-specific outermost window. Created by nk:win to house your UI

screen Like you expect, the physical screen (actually: logical screen)

widget A UI element such as a combo-box or button

window A NK window created with nk:begin . This is required before you can create your UI

17.4 Sample code

You are urged to study the samples in samples/nk/ , they provide explanations of the major
features, and can be used as templates for your own GUI applications.

17.5 Initialization

Your GUI application will probably invoke needs nk/gui . This pulls in a number of support
libraries you’ll find useful, such as the enumeration definitions. In either case, nk:init is
invoked to ensure the NK subsystem is ready to operate.

Within your app:main , you must create at least one screen window which is where your
application will create its UI. You might perform any other necessary initialization (such as
loading fonts or images), and then you’ll invoke nk:render-loop , passing it your rendering word
as well as an event-loop timeout in milliseconds.

Your rendering word will be invoked by nk:render-loop , and it is there that you create and
process your UI.

Note: As stated above, instead of UI items which maintain state on your behalf, you control
all the UI state directly. So logic such as when and what to display is handled directly in
your code and not by widgets.

17.6 RTL (Hebrew/Arabic/Farsi)

8th has some understanding of RTL language display. When displaying text, runs of all LTR are
displayed as is. Runs of RTL text are reversed before display, so that the text shows up correctly.

In addition, the nk:rtl! word tells the Nuklear GUI that the UI is RTL (or not), and handles (in
some cases, still being worked on!) reversing the display appropriately. Using
nk:TEXT_ALIGN_START instead of TEXT_ALIGN_LEFT will ensure that items are displayed correctly.

The nk:grid word is sensitive to the RTL setting, and treats the column value as from the left for
LTR or from the right for RTL.

17.7 Colors

A color (clr) can be represented as a:

number, usually in hex e.g. 0xAARRGGBB (where 'AA','RR', 'GG', and 'BB' are are the alpha, red,
green, and blue components of the color)
string, e.g. "red", from the variable clr:names ; see the list in docs/rgb.txt
string with a colon, e.g. "red:50" where the colon:number indicates the alpha value
string of hex characters; if 3 characters: "rgb"; 4: "argb", 6: "rrggbb", 8: "aarrggbb", 12:
"rrrrggggbbbb", 16: "aaaarrrrggggbbbb"
array of numbers, in "ARGB" order. If the numbers are floats, then they are multiplied by
255 (so 0.5 is roughly the same as 128)

You can add your own color names to clr:names and use them as if they were built-in, if you
like.

17.8 Various

You can get the current screen size with nk:screen-size .

There are also a set of words for doing "move-to" style drawing. The sample samples/nk/
12_move_to.8th shows how to use them.

What you need to know when using them is that you set the pen and fill colors, the pen width,
font for text, radius (for circles and corners of rectangles) just once in your render loop (unless
you want to change them). They remain set.

Similarly, the "current position" set by nk:move-to is the starting point for drawing, and is
updated by the various other such words.

•

•
•
•

•

17.9 UI Components

This is an exhaustive overview of all the UI components provided by the 8th NK layer.

17.9.1 Screen Window

Before you can do any UI work, you need an OS-specific window, called a “screen window”, to
contain your UI. The relevant words are:

word SED description

nk:close-this! nk -- Closes the specified screen window

nk:close-this? nk -- nk T Same as nk:close? for the specified screen window

nk:close? -- T Tells whether the current screen window should be closed

nk:screen-win-close nk -- Flags the specified screen window as needing to close

nk:setwin s -- T Makes the named screen window the current one for rendering

nk:win m -- Creates a screen window

nk:win? s -- T Returns true if there’s a valid screen window

The map given to nk:win may have the following keys:

key type description default

alpha n Opacity of the window, in range [0,1.0] 1.0

bg clr Background color to paint the window between frames 0xFF808080

decorated T Does the window have a title bar etc. true

display n The physical display to use 0

font s Default font for items drawn system

fontheight n Default height of font 13

fonts m Map of (id,filename) of all fonts this window or its children will use [system]

fullscreen T If true, make window fill the screen false (true on mobile)

high n Height of the window in pixels or percentage screen

maxh n Maximum height, in pixels screen

key type description default

maximize T Create the window maximized false

maxw n Maximum width, in pixels screen

minh n Minimum height, in pixels 0

minimize T Create the window minimized false

minw n Minimum width, in pixels 0

name s REQUIRED: The unique name by which this window is known to 8th

onclose w When window closed, SED nk -- T (false to prevent closing)

onenter w When window entered (true) or left, SED nk T --

onfocus w When window got (true) or lost focus, SED nk T --

onminmax w When window maximized (1), restored (0), or minimized (-1) SED nk n --

onmove w When window moved, SED nk x y --

onshow w When window shown (true) or hidden, SED nk T --

onsize w When window resized, SED nk w h --

resizable T Does the window have a resize widget true

title s The title-bar title app:name

topmost T Is the window ‘always on top’ false

unicode-ranges a Ranges of Unicode glyphs to include [low,high],... [0x0020, 0x00FF]

visible T Is the window visible initially true

wide n Width of the window in pixels or percentage screen

x n Position of left in pixels centered

y n Position of top in pixels centered

An exception will be thrown if:

No name is given, or the name already exists
An OS drawing context cannot be created
The window could not be created for some reason
The NK subsystem has not been (or could not be) initialized
The SDL subsystem could not be initialized

Note: The “fonts” key is deprecated in favor of using the global “font atlas”.

•
•
•
•
•

Note: The fullscreen key, if true , makes the entire client area of the window fill the
physical screen, so the title-bar is no longer visible. If you want the title-bar to be visible,
use maximize instead.

The x, y, wide, and high keys are in pixels, unless they are in the range (0,1]. In that case they
represent a fraction of the screen size. If wide or high is omitted, the default is the screen width
or height. If x or y is omitted, the default is to center within the “display” screen.

Note: These screen window coordinates are in the logical space of all physical displays, so
(0,0) will not necessarily be in what you think of as the default window. You can find out all
the information 8th has on your displays by invoking nk:display-info , which returns an
array of maps for each physical display on your system.

Once a screen window has been created, you can create a (NK) window inside it, or use the
drawing primitives.

17.9.2 Window

“Windows” are the NK construct which is the main persistent UI state. You create a window with
nk:begin and terminate its definition with nk:end . The “begin… end” must be within your
render loop, which means you are “creating” your windows all the time.

Note: You must pair nk:begin and nk:end , and you must invoke nk:begin prior to creating
other UI.

The map given to nk:begin may contain any of the following. A default value of “win” means the
value comes from the enclosing screen window:

key type description default

bg clr Color (or image) used to paint this window’s background win

bounds rect Initial size and placement of window win

flags n Some combination of the nk_panel flags 0

font font The font to use for this window’s elements win

id n A unique ID for the window (instead of “title”) win

name s A unique identifier for the window

padding pt Window padding [x,y] in pixels [0,0]

key type description default

style m A “style” to use for this window. See “Style” below

title s A title for the window, and its identifier if “name” isn’t given anon

Throws if nk:win was not invoked first.

Relevant flag values: WINDOW_BACKGROUND WINDOW_BORDER WINDOW_CLOSABLE
WINDOW_MINIMIZABLE WINDOW_MOVABLE WINDOW_NO_INPUT
WINDOW_NO_SCROLLBAR WINDOW_SCALABLE WINDOW_SCALE_LEFT
WINDOW_SCROLL_AUTO_HIDE WINDOW_TITLE

Relevant words: nk:begin nk:end nk:win-bounds nk:win-bounds! nk:win-close nk:win-
closed? nk:win-collapse nk:win-collapsed? nk:win-content-bounds nk:win-focus nk:win-

focused? nk:win-hidden? nk:win-hovered? nk:win-scroll-ofs nk:win-scroll-ofs! nk:win-

show

17.9.3 Fonts

Fonts are created from existing TTF (TrueType), TTC (TrueType Collection), or OTF (OpenType)
font files. They may be specified in a few ways. Assuming the font file is font.ttf and we want a
20 pixel high font, pass a string like:

"font.ttf:20" the full font file name, a colon, and the font size

"font.ttf:50%" the full font file name, a colon, and the font size as a percentage of the default

"*font.ttf:20" starts with an asterisk, meaning “load from asset”

"@font.ttf:20" starts with an “at sign”, meaning “load from libbin item”

"font1.ttf:20;font2.ttf:20"] separated by semicolons means try each font until a good one is found

The font file may be loaded into a buffer first, and passed to font:new as well.

You may use font:system to get a system-specific font in a given size, without having to worry
about the name or location of the font files.

Where a size parameter is given in the string, if the percent character % follows the number,
then the size is that percentage of the default font size (font:default-size , or 12 if not
changed).

To access a font by name (or number) elsewhere in your code (for example, in a window
definition), you can stash the font in the “font atlas”, either by using the word font:atlas! or by
giving the font a name (by passing a “name” key in the map you give font:new). The
font:atlas! word returns a number which is the specific index of that font in the atlas;
however, you can access the font by its name as well (the more common scenario).

17.9.4 Layout

“Layouting” in general describes placing widgets inside a window with a position and size.
There are several APIs for performing layout, each with different trade offs between control and
ease of use.

You start layouts with one of the following (consult the help for SED information):

nk:layout-row-dynamic Lay out rows with a specific number of columns of widgets, and row-
height. Putting more widgets than the number of columns, starts a new row with the same
layout.

nk:layout-row-static Like layout-row-dynamic, but each widget gets the same width, and the
row size doesn’t grow with the window.

nk:layout-row-begin Begins a series of rows using nk:layout-row-push, until nk:layout-row-
end. Unlike the two previous, it does not automatically repeat.

nk:layout-row If the layout of each row is the same, you can use this one to lay out rows in terms
of a ratio, which is an array of numbers. If the values are less than 1, they are a percentage of the
window width. Otherwise they are pixel values. Automatically repeats.

nk:layout-row-template-begin Starts a row template, for a specific row-height in pixels. Once
the template has been established and nk:row-layout-template-end invoked, subsequent
widgets are layed-out according to the established template. You create each widget’s template
within the row by invoking one of nk:layout-push-dynamic, nk:layout-push-static, or
nk:layout-push-variable. See the help for what those specifically do.

nk:layout-space-begin Allows direct placement of widgets within the window. Coordinates
begin at the end of the last row; so you generally would use this for an entire window. Pair with
nk:layout-space-end to terminate the layout, and nk:layout-space-push to position the next
widget either as a pixel location or a ratio of the space.

nk:layout-grid-begin Begins a "grid layout", where rows and columns are layed-out evenly
according to the options given. The grid is in effect until nk:layout-grid-end. Individual sub-
grids (accessed with nk:grid) can be further subdivided with another grid, if desired. Use
nk:grid-push to make a specific grid location "active" for layout.

17.9.5 Group

Groups are basically windows within other windows. They allow you to subdivide space within a
window, and layout widgets as a group. Almost all more complex widget layout requirements
can be solved using groups and basic layout functionality. Groups, just like windows, are
identified by an unique name and internally keep track of scrollbar offsets by default.

Relevant words: nk:(group-begin) and nk:(group-end) , which must be paired.

17.9.6 Tree

Trees represent two different concepts. First, the concept of a collapsible UI section that can be
in either a hidden or a visible state. They allow the UI user to selectively minimize the current
set of visible UI.

The second concept is tree widgets for visual UI representation of trees.

Trees can be nested for tree representations and multiple nested collapsible UI sections. All
trees are started by invoking nk:tree-state-push and ended with nk:tree-pop . Or more
conveniently one may use nk:tree-push , which saves the state in the var given or in the
window’s map under the key string given.

Note: tree-pop must only be invoked if the tree-push words returned true .

17.9.7 Widget

The nk:widget words operate on the current layout slot. nk:widget creates space for a new
widget inside the current layout. If these words are used inside custom widget creation code,
they operate with the previous layout slot, not the custom widget.

Take a look at the nk/widget* samples for ideas on how to implement your own widgets.

17.9.8 Label

Labels are simply read-only text. The words available to create them are: nk:label nk:label-
colored nk:label-wrap nk:label-wrap-colored

17.9.9 Button

Buttons are clickable UI elements which initiate some kind of action. There are a few words to
create them:

nk:button nk:button-color nk:button-label nk:button-symbol nk:button-symbol-label

The workhorse is nk:button , which takes a map of options; see the help for details on what the
options are.

The important bit to remember is that you must provide a word for the button to invoke. If
you’ve used nk:button to create the button, then the map you gave it is also passed down to the
word when it is invoked, allowing you to pass arbitrary information to the button handler word.

17.9.10 Checkbox, Radio button (Option)

These are essentially the same, in that they’re handled by the same underlying code in NK.
However, you create them differently and they look different.

Checkboxes are created using nk:checkbox , while radio-buttons are called “options” in NK, and
are created with nk:option .

17.9.11 Selectable

Creates an item which is like a toggle switch: create with nk:selectable . You can optionally
display an image or a predefined NK symbol along with the text.

17.9.12 Slider

This is a slide-control which allows you to select a range of integer or float values. Implemented
in nk:slider , but ease-of-use wrappers are in the nk/sliders library (nk:slider-int and
nk:slider-float).

17.9.13 Progress bar

A “progress-bar” which goes from [0..max]. Created with nk:progress .

17.9.14 Color picker

A color-picker widget, created using nk:color-picker . You give it a color to start with and it
returns the chosen color (which may be the same as given).

17.9.15 Properties

A “property control” widget, which is similar to a “slider” except that you can directly enter a
value in the associated edit control. Basic implementation in nk:(property) , and ease-of-use
wrappers in the nk/property library (nk:prop-int , nk:prop-float).

17.9.16 Text edit

A fairly versatile text-editing widget created with nk:edit-string . The ‘filter’ provide can be a
word, in which case you can decide what characters to allow. Built-in filters are any of
PLUGIN_FILTER_ASCII, PLUGIN_FILTER_FLOAT, PLUGIN_FILTER_DECIMAL,
PLUGIN_FILTER_HEX, PLUGIN_FILTER_OCT, and PLUGIN_FILTER_BINARY.

The keys which the editors use for special functions are different from the ones used in the
console:

CTRL+A Select all

CTRL+B Move to beginning of line

CTRL+C Copy

CTRL+E Move to end of line

CTRL+R Redo

CTRL+V Paste

CTRL+X Cut

CTRL+Z Undo

CTRL+Left Word left

CTRL+Right Word right

HOME Beginning of text

END End of text

17.9.17 Chart

Several kinds of chart: line and bar, created using nk:(chart-begin) and nk:(chart-begin-
colored) until nk:(chart-end) . More commonly using nk:chart-begin and nk:chart-end
(loaded in the nk/loaded library).

17.9.18 Popup

A “popup-window” which may be a menu or any other sort of window overlayed on the current
window. Start with nk:popup-begin and end with nk:popup-end . Within the popup you define
layout or draw on it as you would a regular window.

17.9.19 Combo box

A “combo-box” created with either nk:combo or nk:combo-cb . You determine the size of the
drop-down and the current selection; the new selection (which may be the same) is returned to
you.

17.9.20 Contextual

A “contextual-menu”, typically initiated with a right-click. Start with nk:contextual-begin and
end with nk:contextual-end . Other words of import: nk:contextual-close nk:contextual-
item-text nk:contextual-item-image-text nk:contextual-item-symbol-text .

17.9.21 Tooltip

Show a “tooltip” using nk:tooltip .

17.9.22 Menu

Full-fledged menu widget. Start with nk:menu-begin until nk:menu-end . In between, use
nk:menu-item-label , nk:menu-item-symbol , or nk:menu-item-image . Also nk:menu-close to
force-close a menu.

17.9.23 Image

Images are handled via the img: namespace. They are created using img:new, which can load a
PNG, BMP, TGA, GIF, PIC or JPEG image. Output formats (with img:>file) can be PNG, BMP, TGA,
or JPEG.

There are a lot of words for manipulating images. See the sample nk/image.8th .

17.9.24 List

A “list control” created with nk:list-new , which keeps list state, and rendered between
nk:list-begin and terminated by nk:list-end . See the database/foodlist.8th sample for
how it’s used.

17.9.25 Drawing

There are a variety of drawing primitives you can use. Currently supported are:

fill-rect fill-rect-color fill-circle fill-arc fill-triangle fill-poly draw-image

draw-text draw-text-high stroke-line stroke-arc stroke-curve stroke-rect stroke-

circle stroke-try stroke-polyline stroke-polygon

(all in the nk namespace):

You can apply affine transforms such as “rotate” etc, bearing in mind that they transform the NK
coordinate system. The sample nk/transform.8th demonstrates their usage.

Note: The ability to get drawing data (paths) directly from fonts is not yet implemented, so
“word-art” is not currently possible.

17.9.26 Input

You can check for various input events using the following nk words:

clicked? hovered? down? released? key-pressed? key-released? key-down? text?

17.9.27 Style

Are you unhappy with the default styling? Is it too dark and depressing?

Well don’t worry! You can easily change the styles used, either on a whole-window basis or for
specific widgets.

The simplest word is nk:style-from-table , which takes an array of numbers which are color
values, and uses it. The values, in order, correspond to:

COLOR_TEXT, COLOR_WINDOW, COLOR_HEADER, COLOR_BORDER, COLOR_BUTTON,

COLOR_BUTTON_HOVER, COLOR_BUTTON_ACTIVE, COLOR_TOGGLE, COLOR_TOGGLE_HOVER,

COLOR_TOGGLE_CURSOR, COLOR_SELECT, COLOR_SELECT_ACTIVE, COLOR_SLIDER,

COLOR_SLIDER_CURSOR, COLOR_SLIDER_CURSOR_HOVER, COLOR_SLIDER_CURSOR_ACTIVE,

COLOR_PROPERTY, COLOR_EDIT, COLOR_EDIT_CURSOR, COLOR_COMBO, COLOR_CHART,

COLOR_CHART_COLOR, COLOR_CHART_COLOR_HIGHLIGHT, COLOR_SCROLLBAR,

COLOR_SCROLLBAR_CURSOR, COLOR_SCROLLBAR_CURSOR_HOVER,

COLOR_SCROLLBAR_CURSOR_ACTIVE, COLOR_TAB_HEADER,

COLOR_KNOB, COLOR_KNOB_CURSOR, COLOR_KNOB_CURSOR_HOVER, COLOR_KNOB_CURSOR_ACTIVE

A much more useful but complex word is nk:make-style , which takes a map describing the
style parameters to be changed, and is used in conjunction with nk:use-style . The map may
contain any or all of these keys (all items default to the style values of the enclosing screen
window if missing).

Note: Text alignment values are listed in the nk/enums library as e.g. TEXT_ALIGN_LEFT etc.
Likewise symbol enums SYMBOL_X etc. and other such values.

key type description

button m A map of button-style entries

chart m A map of chart-style entries

checkbox m A map of toggle-style entries for checkbox items

combo m A map of combo-style entries

contextual-button m A map of button-style entries for contextual items

edit m A map of edit-style entries

font fnt The named font (or fnt) to use

knob m A map of knob-style entries for knobs

menu-button m A map of button-style entries for menu items

key type description

option m A map of toggle-style entries for radio-button (option) items

progress m A map of progress-style entries

property m A map of property-style entries

scrollh m A map of scrollbar-style entries

scrollv m A map of scrollbar-style entries

selectable m A map of selectable-style entries

slider m A map of slider-style entries

tab m A map of tree-tab-style entries

text m A map of text-style entries

window m A map of window-style entries

Button style

key type description

bg clr Normal background color

bg-active clr Active background color

bg-border clr Border background color

bg-hover clr Hovering background color

border n Border width

draw w Word to invoke for custom drawing

draw-end w Word to invoke after custom drawing

img-align n NK_TEXT_ALIGN... constant to align image in button

img-padding pt Padding around the image

img-scale n Percentage of button height for image (<100)

padding pt Padding around the text

rounding n Radius of corners

touch-padding pt Padding around the displayed portion for clicking

txt clr Text normal color

txt-active clr Text active color

txt-align n Text alignment flag

key type description

txt-bg clr Text background color

txt-hover clr Text hover color

Chart style

key type description

bg clr Normal background color

border n border width

border-color clr Normal border color

color clr item color

padding pt padding around charts

rounding n radius of corners

selected-color clr Selected color

Checkbox and option style

key type description

bg clr Normal background color

bg-active clr Active background color

bg-border clr Border background color

bg-hover clr Hovering background color

border n Border width

draw w Word to invoke for custom drawing

draw-end w Word to invoke after custom drawing

padding pt Padding around the text

spacing n Spacing between the selector and the text

touch-padding pt Padding around the displayed portion for clicking

txt clr Text normal color

txt-active clr Text active color

txt-align n Text alignment flag

key type description

txt-bg clr Text background color

txt-hover clr Text hover color

Combo style

key type description

bg clr Normal background color

bg-active clr Active background color

bg-hover clr Hovering background color

border n border width

border-color clr Border color

button m button style

button-padding pt padding of button

button-sym-active n active button symbol

button-sym-hover n hover button symbol

button-sym-normal n normal button symbol

content-padding pt padding of widget

rounding n radius of corners

spacing pt spacing between symbol and text

sym clr symbol color

sym-active clr symbol active color

sym-hover clr symbol hovering color

text clr label text color

text-active clr label active text color

text-hover clr label hovering text color

Edit style

key type description

bg clr Normal background color

key type description

bg-active clr Active background color

bg-hover clr Hovering background color

border n border width

border-color clr Border color

cursor-hover clr hovering cursor color

cursor-normal clr normal cursor color

cursor-size n size of the cursor

cursor-text-hover clr hovering text cursor color

cursor-text-normal clr normal text cursor color

padding pt padding around widget

rounding n radius of corners

row-padding n padding between rows of text

scrollbar m scrollbar style

scrollbar-size pt size of the scrollbar

selected-hover clr hovering selected color

selected-normal clr normal selected color

selected-text-hover clr hovering selected text color

selected-text-normal clr normal selected text color

text-active clr active text color

text-hover clr hovering text color

text-normal clr normal text color

Knob style

key type description

bg clr Normal background color

bg-active clr Active background color

bg-hover clr Hovering background color

border-color clr border color

cursor-active clr Color of active cursor

key type description

cursor-hover clr Color of hovering cursor

cursor-normal clr Color of normal cursor

border n border width

knob-border n knob-border width

padding pt Extra padding

spacing pt spacing inside widget

cursor-width n Width of cursor

color-factor n Color factor

disabled-factor n Disabled factor

draw w Word to invoke for custom drawing

draw-end w Word to invoke after custom drawing

Progress style

key type description

bg clr Normal background color

bg-active clr Active background color

bg-hover clr Hovering background color

border n Border width

border-color clr border color

cursor-active clr Color of active cursor

cursor-border n Cursor border width

cursor-hover clr Color of hovering cursor

cursor-normal clr Color of normal cursor

cursor-rounding n Cursor corner radius

dec-button m Dec button style

draw w Word to invoke for custom drawing

draw-end w Word to invoke after custom drawing

edit m Edit control style

inc-button m Inc button style

key type description

padding pt Extra padding

rounding n Radius of corners

Property style

key type description

bg clr Normal background color

bg-active clr Active background color

bg-hover clr Hovering background color

border n Border width

border-color clr border color

dec-button m Dec button style

draw w Word to invoke for custom drawing

draw-end w Word to invoke after custom drawing

edit m Edit control style

inc-button m Inc button style

padding pt Extra padding

rounding n Radius of corners

sym-left n Left-arrow symbol

sym-right n Right-arrow symbol

txt clr text color

txt-active clr Active text color

txt-hover clr Hovering text color

Scrollbar style

key type description

bg clr Normal background color

bg-active clr Active background color

bg-hover clr Hovering background color

key type description

border n border width

border-color clr Border color

border-cursor n Border around the cursor

cursor-active clr active cursor color

cursor-border-color clr Cursor border color

cursor-hover clr hovering cursor color

cursor-normal clr normal cursor color

dec-button m style of decrement button

dec-symbol n symbol for decrement button

draw w Word to invoke for custom drawing

draw-end w Word to invoke after custom drawing

inc-button m style of increment button

inc-symbol n symbol for increment button

padding pt padding of widget

rounding n radius of corners

rounding-cursor n Radius of corners around the cursor

Selectable style

key type description

bg clr normal active background color

bg-hover clr hovering active background color

bg-pressed clr pressed active background color

bgi clr normal inactive background color

bgi-hover clr hovering inactive background color

bgi-pressed clr pressed inactive background color

draw w Word to invoke for custom drawing

draw-end w Word to invoke after custom drawing

image-padding pt image padding

padding pt widget padding

key type description

touch-padding pt touch padding

txt clr normal active text color

txt-align n text alignment

txt-bg clr text background color

txt-hover clr hovering active text color

txt-pressed clr pressed active text color

txti clr normal inactive text color

txti-hover clr hovering inactive text color

txti-pressed clr pressed inactive text color

Slider style

key type description

bar-active clr active background bar color

bar-filled clr filled background bar color

bar-height n height of bar

bar-hover clr hovering background bar color

bar-normal clr background bar color

bg clr Normal background color

bg-active clr Active background color

bg-hover clr Hovering background color

border n border width

border-color clr border color

cursor-active clr active cursor color

cursor-hover clr hovering cursor color

cursor-normal clr normal cursor color

cursor-size pt cursor size

dec-button m dec button style

dec-symbol n dec button symbol

draw w Word to invoke for custom drawing

key type description

draw-end w Word to invoke after custom drawing

inc-button m inc button style

inc-symbol n inc button symbol

padding pt padding around widget

rounding n radius of corners

show-buttons n whether or not to show buttons

spacing pt spacing inside widget

Tab style

key type description

bg clr Normal background color

border-color clr Border color

text clr Text color

border n border width

padding pt padding of widget

spacing pt spacing from indicator to text

indent n how far to indent each tab

rounding n radius of corners

maximize-button m style of maximize button

minimize-button m style of minimize button

node-maximize-button m style of node maximize button

node-minimize-button m style of node minimize button

sym-minimize n symbol for minimize button

sym-maximize n symbol for maximize button

Text style

key type description

color clr The color to draw the text in

key type description

padding pt The padding [x,y] to apply around the text

Window style

key type description

bg clr Background

border n Width of border

border-color clr Border color

combo-border n Width of combo border

combo-border-color clr Combo border color

combo-padding pt Padding around contents for combos

contextual-border n Width of contextual border

contextual-border-color clr Contextual border color

contextual-padding pt Padding around contents for contextuals

fixed-bg clr Fixed background

group-border n Width of group border

group-border-color clr Group border color

group-padding pt Padding around contents for groups

header m Window header style

menu-border n Width of menu border

menu-border-color clr Menu border color

menu-padding pt Padding around contents for menus

min-row-height-padding n Minimum padding for a row

min-size pt Minimum window size

padding pt Padding around contents

popup-border n Width of popup border

popup-padding pt Padding around contents for popups

rounding n Radius of corners

scaler clr “Scaler” (resize widget) color

scrollbar-size pt Size of the scrollbars

key type description

spacing pt Extra spacing

tooltip-border n Width of tooltip border

tooltip-border-color clr Tooltip border color

tooltip-padding pt Padding around contents for tooltips

Window header style

key type description

align n Alignment of text

bg clr Background

bg-active clr Active background

bg-hover clr Hovering background

close-button m Style for close button

close-symbol n Symbol for close button

label-active clr Color of active header text

label-hover clr Color of hovering header text

label-normal clr Color of header text

label-padding pt Padding around text

maximize-symbol n Symbol for maximize button

minimize-button m Style for min/maximize button

minimize-symbol n Symbol for minimize button

padding pt Padding around header

spacing pt Extra spacing for header

Ch. 18 Tasks and parallelism

18.1 Introduction to tasks

A “task” in 8th is the same as a “thread” in other languages. You create one using either t:task
or t:task-n — the first simply invokes the word it is given on a separate task, while the second
transfers the top N items from the current stack to that of the new task.

: the-task-word ... does something ... ;

' the-task-word t:task

A task will run as long as the word you gave as its starting point continues to run. When that
word terminates, the task is complete; if there are no references to it, it cleans-up after itself and
disappears. If you do hold a reference to it, you can retrieve the last value on its TOS using
t:result (which will be null if there was no result). The auto option is useful for those
instances where you don't want to keep a reference to a task; it will then GC itself when finished.

Using this facility, you can place long-running tasks in the background so they don’t interfere
with your foreground GUI (or console). You can also split tasks into smaller pieces which can be
run independently of each other, and perhaps gain a speedup. If you have a multi-core system,
you will be more likely to experience a speedup than if you don’t. However, placing “blocking” or
long-running tasks in a background task will make your user’s subjective experience better
because the application will be more responsive.

18.2 Creating a task

The word t:task is used to create a new task, as shown above. It can be invoked either with a
single word on TOS, or with a map containing options. In either case, there must be a word
which the task will invoke. Once that word exits, the task is finished and its exit code may be
retrieved using t:result as mentioned in the previous section.

If starting the task using a map, a number of options may be set:

name kind description default

affinity n,a The CPU or CPUs to which this task’s “affinity” should be set

auto T If true , the task will auto-GC when the xt has finished false

name s Sets the initial name of the task xt’s name

num n Number of items to transfer from the creating task’s stack. The new task will start with
those items on its stack

0

qsize n the size of the task’s queue t:def-
queue

stack n the data-stack size for the task t:def-
stack

xt w required: the word invoked as the task’s xt

18.3 Task stacks

Each task receives its own set of data- and r-stacks. This gives you the freedom to do whatever
you need to on the task’s stack without being concerned you might mess up the main stack.

The default size of a task stack is set by t:def-stack , and originally is 128K items. You may also
specify a particular task’s stack size by passing a map to the t:task or t:task-n words as listed
above.

There is usually no need to make the stack size smaller, because the memory for it is only
reserved and not committed until used. So even though the default stack has room for 128K
items, it will only be committed in 4K sized chunks (on most OSes).

18.4 Multitasking and locking

By default, 8th does not lock in most situations! That means that if you have an array which you
access simultaneously from more than one task, you may end up with bugs which are difficult to
diagnose — up to, and including, random crashes. 8th doesn’t lock by default because it doesn’t
need to. Items are allocated from task-specific pools, and those pools are only accessed from
within a particular tasks’s context. This greatly increases 8th’s speed.

However, it is sometimes necessary to lock when you’re running multiple tasks in an
application, to prevent data corruption. The specific case where it’s necessary is when multiple
tasks can access the same item simultaneously:

0 var, counter

: task-word

 counter lock

 1 n:+!

 counter unlock drop ;

' task-word t:task drop

' task-word t:task drop

This shows how task-word may safely increment the global variable counter even though it is
running in two different tasks. By using the lock and unlock words judiciously, you will avoid
data corruption problems.

Note: Be careful that you don’t create a deadlock situation when locking, where one task
has locked an item but did not unlock it before another one needed it.

The queue data type does do locking, since it is generally intended to be used simultaneously
from various tasks. You do not use locking on that data type!

Note: container types generally require locking, since they are mutable. So in the above
example, the var itself is locked, but the item contained within it is not. Similarly, many
utilities such as regexes require locking because they hold state which should only be
modified within a single task.

18.4.1 Critical sections

You may use the critical: and critical; words to delineate a "critical section" (CS) of code.
This is code which multiple tasks should not access at the same time.

For example, if you have code which accesses a regex or container which is embedded in the
code, then enclosing access to it in a CS will ensure that a multitasking app will not
simultaneously enter that section and access the item.

Caveats: a CS works by locking the word it is embedded in. That means that a CS must be
contained entirely within the same word. You cannot start a CS in one word and end it in
another. Likewise, you cannot start it in a word and end it inside an enclosed embedded word.

18.5 Using task queues

A task also includes a queue. That queue’s size is determined by t:def-queue (the default is 8
items), or by a map key qsize given to t:task.

To push an item onto another task’s queue, use t:push . You need to have the task as created by
t:task in order to do that. You can also push onto the main task’s queue by using t:main as the
identifier. 8th always creates one task, the REPL, which is also the main task on which a GUI
application runs its render loop.

Note: If your task consumes data from its queue but doesn’t produce new data, you will
build up a large free-list for the pools of those items which are not created. So for example,
if you push maps to another task, and that task doesn’t create new ones (which will be
allocated from the pool’s free list) then there will be a memory usage increase (not exactly
a leak, but in effect the same as one).

Inside the recipient task, you use t:pop to retrieve any items which have been pushed to it. You
can also determine how many items are in that queue using t:qlen .

Note: Use t:push! to both push an item to a task queue and simultaneously notify the task
it should awaken.

18.6 Being a good citizen

It is good practice to make your task do its work in short bursts. The precise amount of work
depends on a great many things — but if your task never sleeps, you will lose overall system
performance and your users will not be happy.

So you will probably want to work in a loop where you do a 0.1 sleep (or whatever is
appropriate to your application) between bursts of processing. A typical scenario is that the task
waits using the phrase -1 sleep , and is notified by another task that it has data to process.

Alternatively it can use -1 t:q-wait in which case it will awaken as soon as an item has been
pushed to its queue.

18.7 Cautionary note

Tasks are built using "pthreads".

If a task is not "auto" and you do not t:wait for it or decref it to 0, the resources it creates will
not be released and you will have a memory leak.

18.8 Parallelism

If your processing can be profitably broken into chunks which can be worked on independently,
then you can leverage tasks to do your bidding. For example:

0 100 2 ' process t:task-n drop

100 100 2 ' process t:task-n drop

200 100 2 ' process t:task-n drop

This sample partitions the processing into three chunks: one which works from 0 to 99, one
from 100 to 199 and one from 200 to 299, assuming that process uses the TOS as the number of
items to process.

To see a fully-worked example of parallel processing, look at the sample misc/parallel.8th .

18.9 Task best practices

There are several points to be careful of when using multi-tasking. In no particular order:

If you are using global variables, make sure access to them is protected by a lock… unlock
pair, in particular if the variable may be modified by one or another of the tasks. Failure to
do so will result in incorrect results, and possibly crashes.
Avoid accessing global variables from multiple tasks! While you can do that if you properly
lock access, the act of locking slows your program down, and it make your program more
fragile. It is better to take advantage of task-specific variables, and to structure your code so
you don’t need to access a single global variable.
Leverage t:task-n to pass values directly to the task from inception, rather than using
global variables.
Use task-local variables in preference to global-variables.

•

•

•

•

Despite the above warning to lock global variables, if different tasks access different
portions of a container or img (for example), then locking may not be necessary. Not
locking is always faster than locking (but caveat coder)!

•

Ch. 19 Exceptions and error handling

8th distinguishes between “errors” and “exceptions”. An “error” is a condition which is expected
to possibly occur, and which the programmer should handle. An “exception” is an exceptional
condition which the programmer cannot handle safely. Thus, an exception is treated as a “fatal
error” in all cases.

This is in contrast to languages like Java and C++, where a block of code may be surrounded by a
try... catch construct. 8th does not use that approach, since exceptions indicate an error
condition which by definition cannot be handled safely.

That said, one may intercept thrown exceptions by installing a new word for handler, like so:

: my-handler

 … figure out if we should handle this

 true ;

' my-handler w:is G:handler

The true return value means your handler word decided 8th should continue. The default
behavior is to quit the application after having displayed a message. Execution will continue (if
true was returned) from the place where the exception was thrown, so your code needs to know
how to repair the stack or take other corrective measures as needed.

It is also possible to use the G:catch word to invoke some other word and return a flag indicating
whether or not an exception had occurred. It is used in the console-mode REPL for instance so
that exceptions don’t immediately terminate the program. However, the use of this word is not
recommended for normal user code.

Note: Not all exceptions are created equal! If you get a stack underflow or overflow, you
cannot continue processing because the state of the stack is indeterminate at that point.

Your own code can choose to throw a string (which is what 8th always does) or to throw some
other data type which may convey more information which your handler code can then act
upon. It is recommended that you throw exceptions as a way to indicate to the end-user what
the particular fatal error condition is.

In console mode, exceptions thrown will return to the console rather than quitting 8th. This is
so in order that you may interactively debug the issue or re-enter mistyped text. Be aware: the
stack may contain garbage on it because of the throw . So it’s a good idea to invoke .s after an
exception in the console, so you can be certain it contains what you intend.

You may also define a task-specific exception handler using t:handler . That will be invoked in
the task which encountered the exception, allowing you to preferentially terminate just the
specific task, or handle and continue, or the default handler behavior.

19.1 Backtraces

As of 25.03, exceptions thrown are accompanied by a backtrace from each task, with the current
task displaying an asterisk ('*') in front of the task name.

For example:

Exception: stack underflow: at offset 5 in input: *** drop

 ***: ns:m | *REPL: G:(interp) < w:exec

This indicates that the underflow occurred in the word drop , in the REPL task which was using
the interpreter launched from the startup code via w:exec .

You can also invoke dbg:bt to get a backtrace at the moment you issue it, which can be useful to
see what is currently happening in all your tasks.

19.2 User-defined exceptions

As mentioned above, you may choose to throw a simple string, which will then be displayed.
Any other type you throw will be converted to a string for display.

If you choose to throw a number, then you should be careful to use one greater or equal to 1,000
— anything between 0 and 1,000 is reserved for 8th’s internal use.

19.3 Built-in exceptions

8th has a number of built-in exceptions it can throw. Here is a list of all of them. The % character
indicates a place where a sprintf insertion will be made at runtime:

exception text description

%s assertion failed '%s' One of the libraries 8th uses failed an assertion

the namespace name '%s' is invalid Attempt to create a namespace with a ‘:’ character in the name

eval! does not understand the type eval! could not evaluate the value it was given

%s is not a file The “file” given on the command-line was not a valid file

the file given is not valid input You gave 8th a file to interpret and it wasn’t able to understand what format
it was

recursive JSON Self-referencing JSON was encountered

invalid JSON %s An invalid JSON array, map, or string was parsed

unable to parse a word header The header for a word cannot be parsed from the input

probable missing ; or) in %s You forgot to terminate your word definition properly

out of bounds access Trying to access beyond the valid bounds of a buffer,etc.

can't clone a %s That item type is one of the kinds which cannot be cloned

can't use G:new for ns (%u) The namespace identifier does not allow G:new

may only be used in compile mode The word may not be used in interpret mode, only in compile mode

can't get crypto provider Can’t initialize the Windows crypto provider

unknown %s: %s You requested an unknown cipher or hash type

mismatched flow-control: %s A flow-control word was not correctly matched

db not opened as encrypted You tried to perform an encryption operation on a non-encrypted db

deprecated: %s The listed word has been deprecated, and you must not use it any longer

cannot use libev timers or watches on this
platform

the OS doesn't support events properly

ffi for %s expected %c type but got %s The FFI word expected one kind of parameter but got another

ffi for %s doesn’t handle %s The FFI word doesn’t handle the parameter type given

fp overflow Converting a bfloat or bint to a float overflowed the float

GL error %s: %s If an OpenGL error occurred which prevents continuing

%s requires matrix of odd size (%d invalid size) the size of the matrix you supplied for the filter is invalid

exception text description

invalid matrix given in %s The matrix you supplied for the filter is invalid

'%s' is unknown The interpreter couldn't figure out what that text is

%s may only be used in interpret mode The specified word cannot be used inside a word definition

invalid bounds: %s The “bounds” string was incorrectly formatted

invalid regex %s at %d The given regular-expression is invalid, beginning at that offset in the
expression

jni %s expects %d parameters, %d provided Android: the JNI call requires a certain number of parameters, which is not
what was given

cannot jump between tasks “longjmp” cannot jump between tasks

map size beyond system limits The map had to expand its hash-table beyond the limits allowed by the
system

math exception A hardware math exception happened (not recoverable)

this matrix expects '%s' type The matrix required a number and you provided a complex or vice versa

bad memory access or corruption %08x %p A SEGV or similar occurred (not recoverable). Typically because of invalid
stack access

mysql bind requires parameters in an array db:bind for MySQL databases requires the parameters be in an array

don't know how to send item of ns%s to MySQL db:bind does not know how to send the type indicated to MySQL

don't know how to convert MySQL type %d db:exec does not know what to do with the returned MySQL type shown

net:server invalid %s The SSL certificate or key of the net:server is invalid

no locals available You attempted to use a word-local variable but didn’t specify locals: before
the word

only Android The Java interface words are only available on Android

you’re out of memory The system cannot allocate any more memory

queue empty The queue is empty

queue full The queue is full

REPL task died The main task died unexpectedly

%s requires %s Variety of situations; details are given in the message

%s requires a string or a buffer Variety of situations; details are given in the message

%s needs root privileges This functionality requires “root” access

use the specific 'new' word for the ns You are using G:new for a type which has a different method of creation

%sstack overflow You attempted to access above the top of the stack

exception text description

%sstack underflow You attempted to access below the bottom of the stack

format spec %s requires a %s The s:strfmt specification given requires the type given

too few format params were given The s:strfmt word requires more parameters than were given

s:new requires a number, string, or buffer Just as it says

new task requires a word to execute You didn’t provide a word for the new task to invoke

debug breakpoint not allowed Don’t try to use a debugger on me

unhandled exception %08x Windows: an system exception we don’t know how to handle happened

varargs array must have a fmt string and at least
one arg

Just as it says

couldn't initialize WINSOCK Windows: the WINSOCK library could not be initialized

no current window NK doesn’t currently have a defined window

nk:win requires fonts NK requires fonts to be defined

nk:win requires a unique 'name' key for the
window

NK requires windows have a unique name

19.4 Signals

The word app:signal is invoked when certain signals are received by 8th. On all platforms,
SIGINT, SIGTERM, and SIGABRT are trapped. On non-Windows platforms, SIGHUP, SIGUSR1,
and SIGUSR2 are also trapped.

When app:signal is invoked, the name of the signal received is on TOS, e.g. INT or USR1 . The
handler must not assume it is in any particular task, and must do as little as possible. The
default handler just prints the name of the signal received and quits the program.

You can trap additional signals using app:trap , but you must use a signal number rather than a
symbolic name, and signal numbers are OS-specific. Signals you trap in this manner are also
routed to app:signal , and the “name” on TOS will be the number of the signal (as a string).

You can also send a signal to your application using app:raise . Only signals the system
recognizes may be set.

19.5 Error handling

Each word handles errors in its own manner, most frequently returning null as an indication
that an error occurred. You must pay attention to the documented behavior of each word in
order to properly handle errors.

Many will also provide more error information by setting the return value of t:err? . That
returns a map which has a numeric error code as well as an error message in most cases.

In all cases it is up to the programmer to check for error results if there is a possibility that an
error may occur and require handling. A typical trope is:

do-something null? if \ failure…

 drop …

else \ all’s well

 process-something

then

Ch. 20 Debugging

Unlike many other languages and development environments, 8th does not have a dedicated
debugger. Instead, it gives you tools to help you find problems in your code interactively.

20.1 Categories of problems

There are several kinds of problems you might encounter while writing 8th code. They are, in
decreasing order of severity:

crashes : A system-level crash, e.g. SIGSEGV or Access error or something like that. You
should not normally see this, but if you do it is a serious bug which needs to be reported to
us. Please use the bug reporting application to let us know about this kind of problem.
However: if the crash is subsequent to a thrown exception in interactive mode, it is not a
bug in 8th
security : If you have found a way to subvert 8th’s security model (e.g. modify an encrypted
application so it runs without complaint), that is also a serious bug we would like reported
to us
refcnt : This is yet another serious bug: if the refcnt of an item is 0 (or is some largish
number) then unless you were using -ref or +ref , you should report this as a bug
exception : If you get an Exception message (either in the console or in a message box), this
is an error being reported by 8th. In the 8th model, an exception is a condition which is not
tolerable. However, it usually indicates an error in your code rather than a problem in 8th
incorrect : The code compiled without complaint, but it does not give correct results
inconsistent : The code does not behave the same way from one run to the next

•

•

•

•

•
•

20.2 Debugging techniques

While developing your application, you have a number of tools at your disposal for debugging
problems. Since the most common cause of problems is losing control of the stack, your first
line of defense is to keep your words short and comment the SED! Shorter words are easier to
understand, and comments which are accurate are extremely useful.

Whether your words are short or not, you absolutely must ensure the SED is adhered to.
Therefore: your next most important tool is the phrase .s cr , which you can make a little more
fancy by putting it in a word of its own:

: XX log .s cr ;

This XX word would then be used like so:

: some-word...

 "part 1" XX

 …

 "part 2" XX

 … ;

This would print part 1 and (up to) the top ten items of the stack, then do something, then print
part 2 and (up to) the top ten items of the stack at that point. This gives you an annotated real-
time stack-dump, which can help you quickly pinpoint problems related to improper stack
usage.

Note: The .s word truncates the item display so it fits nicely on one line, by default. If you
want to see the entire data item, invoke false .s-truncate before using .s .

Most of the time, the .s cr phrase is enough to track down and eliminate stack problems. The
following hints may also help:

Pay attention to the word’s SED! Make sure you are giving words the correct stack picture to
use. A frequent problem is putting too many or too few items, or the wrong kinds of items
on the stack. Check the documentation, and use .s to validate what you’re sending!
If you are using an iterator like a:each , make sure you consume the correct number of
items from the stack. Again, check the documentation!
Factor your words into smaller pieces, and document their stack-effect with a SED. Then
make sure you adhere to the documented effect for each factored word

•

•

•

Another potential source of problems is using an “unqualified word”; that is, saying + instead of
n:+ (for instance). In fact, you will generally see an exception in such a case, telling you (for
example) that 8th expected a string but got a number. In interpret-mode, 8th will usually pick
the correct word (though not always), while in compile-mode it will more often error. So avoid
ambiguity and use qualified words (with the sole exception of “G:” as mentioned earlier).

In addition to the techniques mentioned in this chapter, 8th provides some rudimentary
debugging words in the dbg namespace and in the debug libraries. They are documented with
the rest of the built-in words and in the libraries chapter.

In particular, dbg:stop can be inserted in your code where you would like to “stop and take a
look”. You will enter a REPL with a dbg> prompt, at which point you can enter any 8th
expression you like (such as .s for example). After you’re done poking and prodding, you can
type dbg:go to continue.

20.3 The logging facility

The words G:log and G:logl are provided for purposes of logging debugging information. The
difference between them is that logl takes a "log level" number which, if log:level is less or
equal to it, allows that item to be logged. By default, the log level is 0, meaning anything with a
level of 0 or above gets logged. The log word always logs the item it’s given

By default, logging is sent to the console only. If you want the system log to be used, invoke true
log:syslog . If you do not want the console to be used, invoke false log:console . You can also
send the log output to a file by invoking log:file with the file-name you want to send to.

In addition, you can assign your own word to log:hook . In that case, your hook will be invoked
with the logging string, and you must return a string (perhaps the same one, perhaps modified
as you wish). This lets you send the string to a remote server for instance.

Ch. 21 How do I?

This chapter contains some tips and tricks to help you figure out how to accomplish some
typically useful tasks with 8th.

21.1 Start 8th?

Check:

You are using the full pathname to the 8th (or 8th.exe) binary
Linux/macOS/RPI: make sure that binary is executable (chmod +x). It is, by default, but you
might have munged it.
Did you put the binary in your PATH (if not using the full path)?

Note: Windows users: You need to run 8th from the console. You cannot just “click on it”,
because it’s a command-line application.

21.2 Get an updated version of 8th?

You can upgrade, update, or re-download 8th at this URL . You can check the current version of
8th and update if necessary by invoking app:current within 8th.

21.3 I used a throw-away email to register, how
do I change it?

Send us your updated email.

•
•

•

https://8th-dev.com/order.html
mailto:emailupd@8th-dev.com

21.4 Open a file

Make sure you gave the correct path to the file, and invoke f:open to open the existing file, or
f:create to create a new file with that name. You can also use f:slurp to get a read-only
memory buffer of the entire file at once.

Note: Windows users: did you recall that a backslash \ must be doubled inside a string?

21.5 Convert a ‘character’ to a ‘string’?

In 8th, a character is a Unicode value, which means it’s a number. A string is a UTF-8 sequence
of bytes representing characters.

When you use ' to create a character, for example 'a , it puts a number on TOS (in this
particular case, 97). To convert that to a string, you need to append the character to an existing
string. So:

: char>s \ n--s

 "" swap s:+ ;

21.6 Print a single character (like EMIT in ANS
Forth)

Use putc .

21.7 Convert text to a number?

Use >n .

21.8 Convert anything to a string?

Use >s (except for single characters, in which case use the phrase "" swap s:+ as mentioned
above).

Ch. 22 Porting code

22.1 Python

If you're used to Python, pay attention to these differences:

8th ignores whitespace and has almost no syntax; Python cares very deeply about
whitespace and syntax
Python strings:

can be delimited with single-quotes, in 8th only double-quotes are allowed
can have line-breaks if delimited with triple-quotes ("""). 8th permits line-breaks inside
a string
“raw strings” are prefixed by "r" or "R". In 8th, you can achieve the same effect using the
quote word

A Python bytearray is an 8th buf, for example b'ABC' is "ABC" b:new or X414243
“functions” in Python start with def: , in 8th they're called “words” and start with a single :
and end with ; or i;
“lambdas” in Python are “anonymous words” in 8th and start with (and end with)
parameters in 8th are implicit by position on the stack, and are not named
8th is not “object-oriented”, but aspects of OO can be emulated in user-code if desired
“dictionaries” in Python are “maps” in 8th. Python's printed (or output) format is different,
though, since it sort of looks like JSON but isn't, quite

In terms of code, a few examples may be helpful:

22.1.1 Cross product of elements in A and elements in B

Python:

•

•

◦

◦

◦

•
•

•
•
•
•

def cross(A, B):

 return [a+b for a in A for b in B]

8th:

: cross \ a b -- aXb

 null s:/ swap null s:/ swap

 ' s:+ a:x ;

22.1.2 Set up some lookup data structures

Python:

digits = '123456789'

rows = 'ABCDEFGHI'

cols = digits

squares = cross(rows, cols)

unitlist = ([cross(rows, c) for c in cols] +

 [cross(r, cols) for r in rows] +

 [cross(rs, cs) for rs in ('ABC','DEF','GHI') for cs in

('123','456','789')])

8th:

"ABCDEFGHI" constant rows

"123456789" dup constant cols constant digits

rows cols cross constant squares

a:new cols ("" swap s:+ rows swap cross a:push) s:each!

 rows ("" swap s:+ cols cross a:push) s:each!

 ["ABC", "DEF", "GHI"] ["123", "456", "789"] ' cross a:x a:+

 constant unitlist

More to come…

Ch. 23 Standalone Applications

A “standalone application” is one which may be run on its own, like any other native application
on the target platform. 8th provides a simple method for producing standalone applications
from a single set of source code. This functionality is available to all versions of 8th.

Such an application is a copy of the 8th binary for that OS, renamed with the build project’s
name, and with a file alongside it with a .dat extension. So if the project name was myproj ,
then on Linux a file myproj and another myproj.dat would be created alongside it.

Note: Pro+ Encrypted standalone applications are only available to users of the
Professional or Enterprise versions, and the .dat file is encrypted.

23.1 Application life-cycle

An application is loaded by the 8th engine and then verified and decrypted (if it was encrypted)
and the plain-text code is then interpreted. After that, assuming the code doesn’t invoke some
other word as its last step, the 8th engine invokes app:main . So a typical application will have
code resembling this, at the end of the code:

: app:main

 initialize

 run-stuff

 shut-down ;

Android applications may handle the OS suspend and resume by hooking their own code
instead of the default (do-nothing) app:suspended and app:resumed . Those will get invoked at
the usual OS-specific times.

You can use onexit to add words to be executed on program shutdown. The usual bye or die
words will cause the onexit chain to be invoked.

23.2 Setting up your application

Before you do anything else, please make sure that you have set up 8th as discussed in the
chapter on installation. Once you have done that you can use the build tool.

Note: You can invoke build with 8th itself, using the -b command-line option. This is
more convenient than invoking bin/build separately, because it ensures proper
invocation of build .

In order to produce a standalone application, build needs your code and associated resources
to be in a folder of their own. It also needs a project description file, which is just a JSON map
with information helpful to build . If you have not created such a file, the build tool will create
a template version of it in the folder you named on the build command-line; it is up to you to
ensure the contents are correct.

For example, if your application is named test.8th , you might put it in a folder called test ,
along with the application icon test.png and other support files. Included in that folder you
could also place test.proj , the project description file. The build tool will create one for you
when you first run it on a project directory (just remember to save the project!).

23.3 Building the application

To create the packaged application, run the build tool which is located in the bin folder. A
typical command to run it would be:

8th -b demo/tictactoe/

Once invoked, the build tool presents a GUI which allows you to enter specific information
about your application, and save the settings in the project description file. Note for macOS
users: due to macOS limitations, you must run 8th from within the usual app folder; otherwise,
you will not be able to enter text!

In the build GUI, you can select the platforms you wish to produce output for. You can select the
program icon and permissions for Android applications (note: selecting the icon and/or
permissions is currently inactive; it will be activated in a future release).

When you are ready to produce the final executables, simply press the “Generate” button, and
within a few seconds your application will be packaged for all the platforms you have selected.
The output will appear in the out subdirectory of the project’s folder.

23.3.1 Build command-line parameters

The bin/build tool recognizes a few parameters:

-h or

-? print a list of possible parameters

-v print the build binary’s version and quit

-g do a CLI build (e.g. without a GUI)

-o d specify the output directory (default is out in the project directory)

-p d specify the project directory

If a directory is specified on the command line (e.g. 8th bin/build somedir) then it overrides
any directory specified with the -p option. If neither is specified, the current directory is
assumed to be the project directory.

If you prefer to use a command-line interface, or if you would like to do so for unattended
builds, you can pass the -g flag before the directory name, like so:

8th -b -g demo/tictactoe/

That will take all its information about what to produce from the JSON map, so make sure you’ve
set the values there as you would like them to be.

23.4 Android

The build process 8th creates a binary which will run on your Android device, but it does not do
the Android-specific signing and packaging. That is handled by the bin/makeapk.8th script. The
full options to it can be found by using the -? or -h options. That also explains what the
prerequisites are.

In order to create a proper APK file which can be installed on your Android device, please follow
these steps:

23.4.1 Building

First make sure you’ve installed the prerequisites (bin/makeapk.8th -h for details)
Using the build tool, click “Generate” for your application, after having chosen “Android” as
an OS target.
Create a subfolder android in your project folder. Copy the out/android/
AndroidManifest.xml there, and edit it to correspond with your project. Ensure you have set
only those permissions your application requires! Also change the “package” and other
parameters to those applicable to your application.
Create a subfolder res in your project folder. Copy any Android-style resources (strings,
layouts, etc) required for your application there.
Copy any external libraries your application needs (.so files) into the out/android/lib/*
folder (as appropriate to the target device, armeabi for 32 bit, arm64-v8a for 64-bit.
Copy any compiled Java classes you've added into the out/android/lib folder.
Run makeapk : 8th -a -v -dir my/project/folder

It will tell you if you’re missing something.

You can deploy to your Android device by using the CLI option -install , or directly using the
command-line utility adb from the Android SDK (or any other method you desire).

If you want to deploy to the Google Play Store, you must create an "AAB" file rather than an
"APK". In that case, specify a file name ending with ".aab" to the -apk CLI option, and make use
of the -keyname etc. options to sign with a proper encryption key. If you've done it all correctly,
you too can deploy to the Play Store!

23.5 iOS

To create a package (IPA file) which can be installed on iOS (or uploaded to the Apple Store), you
use the makeipa.8th script, which can be invoked using 8th -i . Because the signing etc. for
Apple are stringently controlled, you must use a Mac to do the signing and uploading (though
you can nominally create an unsigned IPA on any platform).

1.
2.

3.

4.

5.

6.
7.

https://play.google.com/store/apps/details?id=org.ronware.zemanim.v2

Prerequisites:

An Apple Developer account.
Signing certificates, identifiers, and profiles from them.
A Mac machine running Xcode, and with the certs etc. installed on it.
Install the ideviceinstaller on it.
Run 8th -i -h to get the configuration file location for makeipa.8th , and copy bin/
makeipa.json there as config.json and edit the file as appropriate.

23.5.1 configuration

Open the config.json in a text editor. It is a single map, with these keys:

key description

proj a map containing information on specific projects

default-proj which of the projects in proj is the default

keychain-pwd the password needed to unlock the keychain on the Mac

The proj map contains one key for each project. The default-proj key of the main map
determines the default project. Other projects are used by means of the -proj CLI option. Each
proj map's key value is a map:

key description

proj The path to the project directory

ipa The name of the IPA file (without .ipa)

appid The "Apple app id" (e.g. same as in the Info.plist)

icon The PNG from which the program's icons are generated

logo The 1024x1024 PNG for the startup "logo"

upload-user The username for App Store Connect

upload-pwd The password for App Store Connect

profiles A map with keys dist and dev with profile information

default-profile Which of the profiles is the default

•
•
•
•
•

https://developer.apple.com/
https://libimobiledevice.org/#downloads

Each profile map contains:

key description

info-list The path to the Info.plist

provision The path to the mobileprovision file

entitlements The path to the entitlements plist file

key The signing key

In addition to setting up the overall configuration, your specific project must have an ios folder
containing at least Info.plist and story/main.storyboard , both of which are present in the
bin/ios.zip file. You should edit the Info.plist , changing (only) the "MYAPP" entries as
appropriate. Change other entries only if you know what you're doing! Do not change the
storyboard file (again, unless you know exactly what you're doing).

23.5.2 build / deploy

On your Mac, update all your project files and then:

make sure you run the build script on your project (8th -b myprojectdir) so there is an
out/ios64 folder in it.
run makeipa.8th (8th -i -proj myproj -out tmp -v , or whatever you like).

For testing purposes, you need to use the "dev" profile, which needs a mobileprovision file
targeting the iOS devices you have at hand, as well as the signing key as appropriate. Then you
can use the -install flag to install to your tethered device.

For deployment on the App Store, you need to use the "dist" profile (with appropriate provision
etc files) and then use the -upload flag. That will use Xcode to do the uploading to the store, and
you'll see possibly incomprehensible messages from the Store if it doesn't like your upload.
Possible problems:

not signing with a distribution key
not using a distribution provisioning file
messing up the Info.plist file

Once you've got all your ducks in a row, you too can upload to the Store .

1.

2.

•
•
•

https://apps.apple.com/us/app/zemanim2/id6670266684

23.6 macOS

The story here is much simpler. To get a properly functioning GUI application on macOS, your
application needs to be packaged correctly. Fortunately, it’s not difficult (sorry, Apple: the
osx.app.zip file will stay with that name):

Unzip the osx.app.zip file from 8th to a temporary area. For example, myapp . After that,
you should have a folder myapp/OSX.app .
Convert your application logo.png to the ICNS format (there are online and command-line
tools to do that)
Copy the converted ICNS file over the file Icon.icns in the OSX.app Resources folder.
Copy the build generated file (given in the ‘App name’ field) for macOS (either 32 or 64 bit)
over the file 8th in the MacOS folder
Copy the build-generated file appdata over the file myapp/OSX.app/assets/appdata
Edit the Info.plist as necessary
Rename the OSX.app folder to correspond to the app:name of your application

At this point you should be able to run the application by simply clicking on its icon in the
Finder application. You can also sign it if you wish, prior to distributing it using the codesign
tool from XCode.

1.

2.

3.
4.

5.
6.
7.

Ch. 24 Effective 8th

For most programmers, 8th will be a bit unfamiliar. The paradigm shift can be difficult at times,
but once you are comfortable with it, we believe 8th to be a more powerful and productive
language than many. In this chapter we will try to help you become a more effective 8th
programmer.

24.1 KISS - keep it short, stupid!

The shorter your words are, the easier they will be to understand when you inevitably come
back to debug them later.

It’s not always possible, but if you can keep your words to a maximum of seven lines of short
phrases (between 2 and 5 words each), you’ll find it easier to glance at your code and understand
its purpose (if not its stack-effect).

Short and sweet is easier to grasp.

24.2 Document the SED

This can’t be emphasized enough. You must document the SED of the word you create, in order
to be able to test it against that SED and be sure it behaves like you desire.

It is useful as well, to append a SED for each line of your word’s code, so you can determine what
you were expecting to see at each stage. Even if you’re an advanced user, it is wise to leave
documentation as you go along.

24.3 Document assumptions

The SED explains what you intend the stack-effect to be. But you also need to document any
assumptions the word has. For example, if the input must be a string in a certain format, or if a
particular parameter has values which are meaningful.

This variety of documentation should be placed just before the affected word.

24.4 Don’t be too clever

A strong compulsion among many programmers is to seek out a “clever” solution to a problem.
The problem is that such cleverness is often very difficult to understand, making it also difficult
to debug.

For your first version of a word, opt for the straightforward approach. If you see that it’s too slow
or uses too much memory, then refine and perhaps opt for “clever”.

24.5 Measure, measure, measure!

It’s a painful truth: we are usually quite bad at predicting the speed of code.

If you think a bit of code is slow, well, measure it! 8th has words to help with that, and you may
well be surprised to find out your code isn’t the bottleneck you thought it was.

This is especially true with regards to “improvements”. If you change code (and you’ve already
tested it works the same, right?) then you should also time it to ensure you did in fact improve it.

24.6 Refine code iteratively

If you come from other programming languages, you may be used to the “waterfall model”,
where the coding happens after a great deal of thought went into the design, and once the
design is established the coders write code for a few weeks and then test the code. This is a very
bad approach for writing 8th programs. Why? Because small problems add up, and it can be
very difficult to track down issues in large bodies of code.

Therefore, the recommended approach is to write a word and then test it immediately. Since you
have access to a REPL, you can interactively test words as you write them. Or if you are working
on a GUI based application, you can test via the application. In either case, the key is to
iteratively refine your code. How?

Start with the main code in pseudocode:

: app:main

 initialize

 main-code

 clean-up

 bye ;

Establish the application’s high-level flow. Now implement each of the words you started with as
a place-holder:

: initialize "initialize" log ;

: main-code "main-code" log ;

: clean-up "clean-up" log ;

Verify that when you run your app, you see the appropriate log output. Then proceed to “fill in
the blanks” for each word. As you write each one, document its SED, and then immediately test
it to ensure that the code you wrote does indeed have the stack-effect as well as any side effects it
is supposed to have.

The log word is asynchronous, meaning its output occurs some time after it was invoked. Tell
the logger to print the current time as of the invocation of log , by invoking true log-time .

You will find that spending the time to test while coding will pay off many-fold in reduced time
debugging and lower blood-pressure.

24.7 Factor the code

By the term factoring, we mean “break your code into smaller pieces”. Ideally those pieces will
themselves be useful in their own right. A well-factored 8th program will consist of many small
words instead of a few large ones.

For example, let’s say your task is to write a word which returns the sum of the squares of two
numbers. The word will get two numbers on the stack, and return a single number. So your first
effort may look like this:

: sum-of-squares \ a b -- a2+b2

 dup n:* \ a b2

 swap dup n:* \ b2 a2

 n:+ ;

Nice and simple; it works, and is documented sufficiently well. Factoring really involves
scanning the code and looking for repetitive phrases. In this example, we notice dup n:* is
repeated, so we factor it out into its own word:

: square \ a -- a2

 dup n:* ;

: sum-of-squares \ a b -- a2+b2

 square \ a b2

 swap square \ b2 a2

 n:+ ;

In this specific example, factoring out square may seem to give little benefit. But it serves more
than one purpose. First, the factor square is useful in its own right, and is so simple that it is
easy to see that it works. Second, by using square instead of dup n:* it is clear at a glance what
we are trying to do inside the sum-of-squares word. Finally, by extracting that factor we have
made it much less likely we will have an error caused by dropping a word (accidentally deleting
dup for example).

Don’t be concerned about making too many words. The heavy cost of insufficiently factoring the
code is much greater than the very small cost of adding more words. The benefit of more easily
maintainable and more robust code, usually outweighs any other consideration.

As an added benefit, factoring makes it easier to verify your code. In our example, you can
simply type in some test cases in the console:

10 square . cr

-2 square . cr

If you don’t see 100 and 4 , you’ll know something is amiss with the code. You can (and should)
also verify that in fact the stack depth is the same before and after you invoked square. A
common source of bugs, as we mentioned in the previous chapter, is losing control of the stack.

Avoiding complexity is helped by proper factoring as well. By breaking your code into smaller
factors, you help reduce the size of words, and make it easier for you to grasp at a glance what
the code does.

Write short words! They should be relatively short (3-7 lines of phrases of 3-5 words). This makes
it much easier for you to debug them and ensure they do what you want.

Interactively debug your words as you write them. Do not wait until you’ve built a colossal
program to debug the components. Given 8th’s interactive nature, it is very easy to simply invoke
a word and see if it does what you intend. Better yet, write a test-suite for your words which
loads and tests them.

24.8 help and apropos

It is important to know what the documented behaviors of 8th’s words are, when you use them.
Be sure you look at the documented SED for any word you’re not 100% familiar with, and then
make sure you’re using it correctly.

24.9 Test the code!

You’ve documented the SED, you’ve documented the assumptions, you’ve factored until your
fingers bleed… but does your word actually work?

It’s important to test your code, preferably as soon as you’ve written it. You might do that
interactively at the REPL, but I prefer writing a separate test-suite to check my code.

does the code give the proper results for expected inputs?
what about for unexpected inputs?
does it handle error conditions correctly?

It must be said, writing a test-suite in parallel to your word is extremely useful, to ensure that as
you modify your code, you can guarantee your changes haven’t bunged things up.

24.10 Use the stack

One of the most difficult habits to break for programmers coming from more well-known
languages, is the reliance on variables. 8th is built around a stack, and data is passed back and
forth on it — you get the stack for free, it makes sense to use it. In the example we gave before of
sum of squares, someone with experience in C-type languages may very well write something
like this:

1.
2.
3.

var sq1

var sq2

: sum-of-squares \ a b -- a2+b2

 \ b2 -> sq1

 \ a2 -> sq2

 dup n:* sq1 !

 dup n:* sq2 !

 sq1 @ sq2 @ n:+ ; \ get sq1 and sq2 and add them

This code does work, but is inferior to the example we gave earlier in a couple ways. First,
moving data from the stack to a var and back again takes extra time and extra code. Second, the
vars take up space. Third, the code is less clear because of all the noise of moving data back and
forth. And finally, the code is larger than it should be by quite a bit.

Obviously you may use variables in 8th, since they are part of the language! And there are
indeed occasions where you must use them: for example, if you have global state you need to
keep track of. However, the words you write should ideally get everything they need from the
stack and put their results back on the stack as far as possible.

As mentioned, one reason for this is that moving data back and forth to variables is expensive.
However, another reason is that using the stack makes your words re-entrant, while if you use
variables your words will not be. This may be important, particularly in GUI applications where
callbacks may occur simultaneously (or nearly so).

If you find yourself using variables to store intermediate results, you probably need to factor
your code a bit more. Even if the factors don’t make sense as standalone words, they may vastly
simplify the stack-picture in your code.

In order to use the stack effectively, you should restrict your words to using no more than three
items at a time from the stack, and attempt to factor to reduce stack juggling. In particular, if
you find you must use pick or roll much, you probably need to factor the code some more.

24.11 Faster code

If your goal is to produce the fastest code possible, you should consider the following:

Pick the fastest algorithm which matches your constraints
Avoid store and fetch from variables (or other containers)
Juggle the stack less

•
•
•

Use fewer words. Yes, this will make your code less readable and violates the principle of
factoring. Each word invoked takes time.
Utilize the built-in data types rather than creating your own parallel versions
Utilize built-in words rather than creating your own. Check to see if there isn’t a native word
which does what you want.
Consider breaking your code into tasks which can be run in parallel, particularly if you are
running on a multi-core machine
Consider using the FFI to offload CPU intensive work to an optimized library

24.12 Formatting rules

Yes, it’s true! 8th has no standardized formatting rules. However, following a few “rules” can
make your code easier to read.

Rule #1: as mentioned elsewhere, keep your words short. If you see a word getting long, be
ruthless and split it up.

corollary to Rule #1: splitting words up can lead to clear opportunities to optimize factorization of
the code.

Rule #2: align things which correspond. So for example, when you’re writing a JSON structure,
have opening and closing items vertically aligned, and the content indented. Like this:

{

 "key" :

 [

 1, 2, 3

],

 "whatever" : "you want"

}

No, I don’t always follow that advice, but it does make it much easier to spot potential problems
and fix them before runtime.

Rule #3: align "if", "else", and "then", like this:

if do-this

else do-that

then cleanup

•

•
•

•

•

Admittedly, I've only been doing this fairly recently, but I find it makes scanning the code much
easier.

Rule #4: similarly, align repeat and while or similar paired words.

Rule #5: Don't be afraid of extra whitespace. Yes, extra characters do take a little bit longer to
parse, but you won't notice the difference in interpretation time, and your code will be easier to
follow.

24.13 Utilize tags

If you're using a programmer's editor such as vim or emacs which supports ctags , you can help
yourself by using Universal Ctags and creating the following 8th.ctags file, installed
appropriately:

--langdef=8th

--map-8th=+.8th

--kinddef-8th=w,word,user-defined words

--kinddef-8th=v,var,variables

--kinddef-8th=c,constant,constants

--regex-8th=/^\s*:\s+(\S+)/\1/w/

--regex-8th=/\wvar,?\s+(\S+)/\1/v/

--regex-8th=/\wconstant?\s+(\S+)/\1/v/

--guess-language-eagerly

Then, running ctags on your 8th sources will tag all named words (as long as the word
declaration is on a line by itself), variables, and constants. You can likewise tag the 8th libraries
as well for convenience' sake.

https://ctags.io

Ch. 25 Libraries

8th includes quite a bit of code as externally-loadable libraries, accessible using the word
needs . So for example, to utilize the code in the 8th library net/soap , include a line like this in
your code: needs net/soap

After that, the words in that library will be available to be used in your 8th program.

Note: The library name should not be enclosed in quotes.

25.1 8th libraries, include files, and your code

When you use the word needs , 8th looks for a source-code 8th library of the name you give it. So
needs net/soap will look for the library soap in the net subdirectory of the 8th libs directory.
If the file you specify is not found there, 8th will also attempt to find the file in the directory
specified in the EIGHTHLIB environment variable, if there is one. This lets you add your own
libraries to 8th without modifying the distribution files.

If instead of needs you use f:include , 8th looks for the file in the path you give it, perhaps
relative to the invoking file. It also will look for that file in the incs subdirectory relative to your
main file.

Note: needs and f:include provide similar, but not identical, functionality.

When you use the bin/build utility to package an executable, it packages your code as well as
any 8th libraries required to make it run, as determined by needs , into assets in the packaged
executable, and is available no matter what platform you are running the package on. In order
for your files loaded with f:include to be similarly packaged, you must have them located in the
incs asset folder (that is, the incs subdirectory relative to your main source file).

25.2 Private and Public words

8th lets you create “private” words in a library. That is, words which are not findable once that
library has been loaded. You declare that the following words being created are private by
simply invoking private (usually on a line by itself, though that’s not required).

Once private has been invoked, the following words are accessed normally until either public
is invoked, or the end of the library file has been reached. Once public has been invoked, the
private words can be accessed in the special namespace#p :

private

: mum "is the word" . cr ;

public

: say-mum #p:mum ;

Once the library file has been loaded completely, the private words are no longer accessible in
the #p namespace, though of course their code remains.

Ch. 26 Security

“8th is designed with security in mind”. What does that mean, in practice?

It means we’ve taken a number of precautions to make it difficult for hackers to access your
code’s inner workings or to subvert your running programs. We do that in a few ways, among
them by:

reducing the “attack surface”
controlling access to memory
controlling access to the REPL
running a “watchdog task” which shuts down the app if it becomes unresponsive
attempting to dissuade external debugging tools
using various obfuscation techniques
Pro+: encrypting and signing built executables

26.1 Reducing attack surface and memory
control

By “attack surface”, we mean any exposed entry points to the 8th core.

One common method of subverting applications is through intercepting calls to shared-library
functions, by using a subverted DLL (or .so). Therefore, the support libraries 8th uses are
statically linked into its core, making it impossible to subvert them in that manner.

Another common method hackers use is “stack smashing” or “buffer overflows”. These typically
work by writing more data into a variable than it is supposed to contain. The effects can be as
simple as disruption of the program, to subtly rewriting portions of the code. The 8th model
does not permit writing more data into a variable than it can contain, nor do variables reside on
the OS stack. So neither of these attacks is possible.

•
•
•
•
•
•
•

Likewise, pointers to memory are an avenue for corruption or manipulation of a running
program (or the OS in general), and so 8th does not (in general) allow access to memory pointers
directly. The exception to this rule is when using the “FFI” (the foreign-function interface, e.g.
for calling into the OS or other third-party libraries dynamically). In that case, it is possible for a
malicious library to possibly circumvent 8th’s memory controls.

Note: Using the FFI with third-party libraries, while extremely useful, is also a possible
security risk. Be careful to vet such libraries.

26.2 REPL control

The REPL is probably the most widely used component of 8th, but it is also a wide-open door for
hackers. If your application gives unfettered access to the REPL (via eval or the like), then you
could potentially expose your application to hacking.

Therefore, an important component of a secure 8th application is use of only to restrict REPL
access to one namespace only, and forget , which removes the given named word or
namespace from the dictionary so find can’t find it (and therefore the user of the REPL can’t
invoke it).

26.3 Debugging and obfuscation

If 8th detects that it is being run under a debugger, it modifies its behavior. It additionally
disables the crypto subsystem, rendering a significant part of 8th useless even if a hacker
bypasses the exception somehow.

It is also worth noting that debugging the generated 8th code is difficult, even for the developer
of 8th; that is because it doesn’t correspond to anything the usual debuggers are familiar with, so
low-level assembly debugging is the only way open to hackers. Of course, that’s what they do…

Obfuscation is used in several ways, which will not be fully disclosed here. However, the core
8th code (e.g. the parts of 8th written in 8th) are compressed so that even if one bypasses the
debugging traps, a part of the core is not easily intelligible.

26.4 Encryption of built applications

In the Pro+ versions of 8th, it is possible to create an encrypted-and-signed application. What
that is, is an encrypted ‘blob’ which is decrypted at runtime, and signature verified, before being
run.

This means that any alteration of the app is detected, and 8th will not run it. It also means that
any ‘hex dump’ or ‘strings’ utility run against the app will not uncover any of the encrypted app’s
information, because it is completely scrambled (with ChaCha20Poly1305 encryption,
currently).

Note: It is important to note that the decryption key for the ‘blob’ is embedded in an
obfuscated manner in the core for the specific built application (and that key will be
different for every built version). So it is possible for a dedicated hacker to eventually
uncover the key, and decrypt the application. However, we’ve made that as difficult as we
know how. You’re welcome to prove us wrong, though.

Ch. 27 PDF Output

Pro+ Professional and Enterprise versions of 8th include built-in PDF output capability based
on the PDFGen library . It is still in its initial stages, and lacks features.

The words implementing PDF output are in the pdf namespace, and there is a simple sample,
pdf/hello-world.8th which shows how to create a simple document.

Note: All dimensions and sizes are in points and not pixels, mm, in, etc.!

At present the limitations are:

only supports the PDF built-in fonts
obviously, no embedding fonts
only supports Latin1 codepage (does not yet support all UTF-8)
measurements are in points, from bottom-left of page (as per PDF spec)
no encryption etc of PDF
no bookmarks/indices etc
no arbitrary PDF commands

Fine, so what is supported?

Regular text output (including changing font size/name/color)
Select size of document (helper library pdf/utils has page sizes for convenience)
Change font/color
Graphics:

lines
Bezier curves (cubic and quadratic)
circles
ellipses
rectangles
images

•
•
•
•
•
•
•

•
•
•
•

◦

◦

◦

◦

◦

◦

https://github.com/AndreRenaud/PDFGen

More features and documentation coming in future releases…

	1 What is 8th?
	1.1 Requirements
	1.2 Installing 8th
	1.3 Starting and stopping 8th
	1.3.1 Command-line (CLI) options

	1.4 Running your programs
	1.5 Reporting bugs or other issues
	1.5.1 Proper reporting
	1.5.2 What’s a bug?

	1.6 Updating 8th
	1.7 Differences between the 8th SKUs
	1.8 For “Vim” users

	2 Introduction to 8th
	2.1 Typographic conventions
	2.2 Glossary
	2.3 Some historical background
	2.4 Unique features of the 8th language
	2.4.1 Words
	2.4.2 Interpreter or Compiler?
	2.4.3 Stacks
	2.4.4 Item types
	2.4.5 Reference counting
	2.4.6 Exceptions
	2.4.7 Getting help and adding your own
	2.4.8 Quick introduction for users of “mainstream” languages

	3 Syntax
	3.1 Interpreter rules
	3.2 Strings
	3.3 Special characters
	3.4 Numbers
	3.5 Regular Expressions
	3.6 Scoping
	3.6.1 Word-local Scoping
	3.6.2 Task-local variables

	3.7 Namespaces
	3.7.1 Purpose of namespaces
	3.7.2 Proper use of namespaces
	3.7.3 Namespaces and the search order

	3.8 JSON Rules
	3.9 Working more effectively with JSON

	4 The data stack
	4.1 Stack basics
	4.2 Common stack words
	4.3 Using the stack
	4.4 Extra stacks
	4.5 Controlling your stack with SED:

	5 Data types
	5.1 Scalars, containers, and utilities
	5.2 Reference-counting and pools
	5.3 Mutability
	5.4 A note about data conversion
	5.5 Booleans

	6 Flow control
	6.1 Program-level
	6.2 Conditionals
	6.3 Repetition
	6.4 Breaking up is easy to do

	7 Words, the interpreter and compilation
	7.1 Named versus anonymous words
	7.2 Deferred words
	7.3 Word attributes
	7.4 Recursion

	8 Numbers and math
	8.0.1 Modulus
	8.1 Big numbers
	8.2 Complex numbers
	8.3 Rational numbers
	8.4 Matrices
	8.5 Manipulating numbers
	8.6 Limitations
	8.7 Numeric trade-offs
	8.8 Constraint solver

	9 Text and strings
	9.1 What is a string?
	9.2 Manipulating a string
	9.3 Multilingual support (I18N and L10N)
	9.4 Search, replace and parameterized substitutions
	9.5 Strings vs. Buffers
	9.6 Markdown
	9.6.1 Initializing an MD parser
	9.6.2 Using an MD parser
	9.6.3 pikchr

	9.7 Character encoding
	9.8 Document Object Model (DOM)

	10 Date, time, and calendars
	10.1 Dates and times
	10.2 Parsing
	10.3 Calendar manipulations
	10.4 Sleeping

	11 Containers
	11.1 Variables
	11.2 Arrays
	11.3 Maps
	11.4 Stacks, Queues and Heaps
	11.5 Graphs
	11.6 Trees
	11.7 Objects
	11.8 JSONPath accessors

	12 Files, databases, sockets, etc.
	12.1 Files
	12.2 Databases
	12.2.1 User-defined functions in SQLite
	12.2.2 Encrypted SQLite
	12.2.3 MySQL / MariaDB / ODBC
	12.2.4 KV

	12.3 Sockets and network I/O
	12.3.1 Socket options

	12.4 Serial I/O
	12.5 Bluetooth
	12.6 Data persistence

	13 The 8th Console
	13.1 Colors and text attributes
	13.2 Editing keys
	13.3 TAB completion
	13.4 History
	13.5 The prompt
	13.6 Key codes

	14 Cryptography
	14.1 Hashes (Digests)
	14.2 Random data
	14.2.1 The internal cr:rand algorithm

	14.3 Passwords and key-generation
	14.3.1 Best practices: keys and passwords

	14.4 Encryption
	14.4.1 Public key encryption (PK)
	14.4.2 Symmetric encryption
	14.4.3 Ed25519 and ECC
	14.4.4 Boxing words
	14.4.5 Sharing secrets

	14.5 Upgrading crypto from versions prior to 22.04

	15 Hardware query and control
	15.1 General queries
	15.2 Camera
	15.2.1 Raspberry Pi

	15.3 Sensors
	15.4 GPIO
	15.5 I2C
	15.6 SPI

	16 FFI: Foreign Function Interface
	16.1 Declaring and invoking FFI routines
	16.2 Parameters
	16.2.1 vararg — C-style variable-argument lists

	16.3 Dealing with arbitrary data (“structs”, etc.)
	16.4 Creating callback functions
	16.5 Custom libraries
	16.6 Java interface (Android only)
	16.7 Danger!

	17 Graphical User Interface: GUI
	17.1 Overview
	17.2 What is Nuklear?
	17.3 GUI Glossary
	17.4 Sample code
	17.5 Initialization
	17.6 RTL (Hebrew/Arabic/Farsi)
	17.7 Colors
	17.8 Various
	17.9 UI Components
	17.9.1 Screen Window
	17.9.2 Window
	17.9.3 Fonts
	17.9.4 Layout
	17.9.5 Group
	17.9.6 Tree
	17.9.7 Widget
	17.9.8 Label
	17.9.9 Button
	17.9.10 Checkbox, Radio button (Option)
	17.9.11 Selectable
	17.9.12 Slider
	17.9.13 Progress bar
	17.9.14 Color picker
	17.9.15 Properties
	17.9.16 Text edit
	17.9.17 Chart
	17.9.18 Popup
	17.9.19 Combo box
	17.9.20 Contextual
	17.9.21 Tooltip
	17.9.22 Menu
	17.9.23 Image
	17.9.24 List
	17.9.25 Drawing
	17.9.26 Input
	17.9.27 Style

	18 Tasks and parallelism
	18.1 Introduction to tasks
	18.2 Creating a task
	18.3 Task stacks
	18.4 Multitasking and locking
	18.4.1 Critical sections

	18.5 Using task queues
	18.6 Being a good citizen
	18.7 Cautionary note
	18.8 Parallelism
	18.9 Task best practices

	19 Exceptions and error handling
	19.1 Backtraces
	19.2 User-defined exceptions
	19.3 Built-in exceptions
	19.4 Signals
	19.5 Error handling

	20 Debugging
	20.1 Categories of problems
	20.2 Debugging techniques
	20.3 The logging facility

	21 How do I?
	21.1 Start 8th?
	21.2 Get an updated version of 8th?
	21.3 I used a throw-away email to register, how do I change it?
	21.4 Open a file
	21.5 Convert a ‘character’ to a ‘string’?
	21.6 Print a single character (like EMIT in ANS Forth)
	21.7 Convert text to a number?
	21.8 Convert anything to a string?

	22 Porting code
	22.1 Python
	22.1.1 Cross product of elements in A and elements in B
	22.1.2 Set up some lookup data structures

	23 Standalone Applications
	23.1 Application life-cycle
	23.2 Setting up your application
	23.3 Building the application
	23.3.1 Build command-line parameters

	23.4 Android
	23.4.1 Building

	23.5 iOS
	23.5.1 configuration
	23.5.2 build / deploy

	23.6 macOS

	24 Effective 8th
	24.1 KISS - keep it short, stupid!
	24.2 Document the SED
	24.3 Document assumptions
	24.4 Don’t be too clever
	24.5 Measure, measure, measure!
	24.6 Refine code iteratively
	24.7 Factor the code
	24.8 help and apropos
	24.9 Test the code!
	24.10 Use the stack
	24.11 Faster code
	24.12 Formatting rules
	24.13 Utilize tags

	25 Libraries
	25.1 8th libraries, include files, and your code
	25.2 Private and Public words

	26 Security
	26.1 Reducing attack surface and memory control
	26.2 REPL control
	26.3 Debugging and obfuscation
	26.4 Encryption of built applications

	27 PDF Output

