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Abstract

Fairness queuing has recently been proposed as an effective way
to insulate users of large computer communication datagram networks
from congestion caused by the activities of other (possibly ill-behaved)
users. Unfortunately, fair queuing as proposed by Shenker et al. [DKS89]
requires that each conversation® be mapped into its own queue. While
there are many known methods of implementing this type of mapping,
they are relatively slow, requiring numerous memory references, and
thus do not lend themselves to a software or firmware implementation
capable of operating in high-speed networks.

This paper presents a class of algorithms collectively called “stochas-
tic fairness queuing” that are probabilistic variants of fair queuing.
These algorithms do not require an exact mapping, and thus are suit-

able for high-speed software or firmware implementation. Furthermore,
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3A “conversation” consists of all packets with a given source-destination address pair.
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Figure 1: Fairness Queue

these algorithms span a broad range of CPU, memory, and fairness

tradeoffs.

1 Introduction

Current datagram networks are vulnerable to congestive collapse when of-
fered load approaches network capacity [BG87]. Although several end-to-end
congestion-avoidance algorithms have been proposed [BG87, Hay81, JR87,
RFS90, Jac88], none of them have been shown to perform optimally in to-
day’s high-speed, high bandwidth-delay-product networks [DKS89, BG87].
This has led some researchers to conclude that gateways must participate
in congestion avoidance [Nag87]. To this end, it has been proposed that
gateways use a fair queuing algorithm [Hah86, Nag87, DKS89, DH89].
This fair queuing algorithm operates by maintaining a separate first-
come-first-served (FCFS) queue for each conversation, as shown in Figure 1.
Since the queues are serviced in a manner that approximates bit-by-bit

round-robin,* ill-behaved conversations that attempt to use more than their

4Bit-by-bit round-robin services queues in an order that allocates bandwidth equally



fair share of network resources will face longer delays and larger packet-loss
rates than well-behaved conversations that remain within their fair share.
Shenker et al. have presented results showing that this algorithm performs
well with a variety of topologies and traffic patterns [DKS89].

Maintaining a separate queue for each conversation requires that the
gateway be able to map from source-destination address pair to the corre-
sponding queue on a per-packet basis. There are a number of methods of
accomplishing this [Knu73]; however, they are relatively slow (requiring nu-
merous memory references), and are therefore unsuitable for use in gateways
operating in high-speed networks. See Section 2 for a discussion of possible
implementations of fair queuing.

In summary, although fair queuing exhibits excellent behavior, its com-
putational requirements render it infeasible for use in high-speed networks.>
Since we cannot afford the perfect justice provided by fair queuing, we turn
to stochastic fairness queuing, which will be shown to provide reasonable
justice at a price we can afford.

Stochastic fairness queuing can be most easily understood by compar-
ing it to strict fair queuing. The major differences are that the queues are
serviced in strict round-robin order and that a simple hash function is used
to map from source-destination address pair into a fixed set of queues, as
in the (very small) six-queue example shown in Figure 2. If the number
of queues is large compared to the number of conversations, each conver-

sation is very likely to be assigned to its own queue. If two conversations

to the queues. If all packets are the same size, this degenerates to simple round-robin

service.
5However, fair queuing is quite feasible in low-speed networks, many of which still exist

[Lou89].
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Figure 2: Stochastic Fairness Queue

collide, they will continue to collide, resulting in each conversation of the
pair persistently receiving less than its share of bandwidth. This situation
is alleviated by periodically perturbing the hash function (as described in
McKenney [McK89]) so that conversations that collide during one time pe-
riod are very unlikely to collide during the next.

Simulation results presented in Section 5 show that stochastic fairness
queuing can achieve a performance that approaches that of fairness queuing
and greatly exceeds that of simple FCFS queuing.

Stochastic fairness queuing can act in concert with many end-to-end
congestion-avoidance algorithms, such as the DEC-bit scheme and the Ja-
cobson/Karels TCP [DKS89].

Stochastic fairness queuing can also be combined with resource reser-
vation algorithms such as flows [Zha89], MCHIP [Par90], and ST [Gro90].
These algorithms require per-connection information (such as maximum and
average allowed throughputs), which is obtained from the user, possibly
through negotiation with a network resource scheduler.

A network that provided both best-effort and reservation services would



use a reservation algorithm to control the bandwidth used by predictable
traffic, and stochastic fairness queuing to allocate the remaining bandwidth
fairly. The reservation algorithm would leave some fraction of the total
bandwidth for best-effort services.

Note that this hybrid datagram/connection approach allows so-called

96

“hot pairs”® of hosts to be handled in a natural way; these hosts could use

reservation services to obtain the needed bandwidth.

2 Alternatives for Fair Queuing Implementations

The performance benefits offered by stochastic fairness queuing do not come
for free. The price is loss of determinism and of absolute guarantees of
fairness. Readers with experience in the areas of caches and hash tables
may be very familiar with this tradeoff; these readers may wish to skip to
the next section.

Much of the motivation for stochastic fairness queuing stems from two
aspects of fair queuing that do not lend themselves well to high-speed im-
plementations.

The first aspect is the packet scheduling technique that fair queuing uses
to provide bit-by-bit round-robin service. This technique requires addition
to and deletion from a priority queue of length equal to the number of
conversations flowing through the queue. The best known priority queue
algorithms provide time complexity of O(log(n)), where n is the length of

the priority queue. The number of conversations in a gateway has been

SA “hot pair” of hosts needs to exchange an unusually high volume of traffic. An

example of a hot pair of hosts might be a mail gateway.



measured to be as large as 180 [Fel89] and is expected to grow larger (see
Section 3.2). The average computational cost of just the packet scheduling
part of fair queuing, when applied to this number of conversations, can
exceed the worst-case total computational cost of an efficient version of
stochastic fairness queuing.

The second aspect is the technique of using a one-to-one mapping from
source-destination address pair into the corresponding queue. The remain-
der of this section examines alternative implementations of this mapping
and shows how each is deficient for high-speed networks. In some cases it is
necessary to look at machine-language implementations; in these cases, the
Motorola MC68020 processor will be used.

At first glance, it would appear that whatever strategy was used to look
up routes would suffice for address-pair mapping. However, while routing
updates (which can modify the routing data structure) occur relatively infre-
quently, modifications to the fair queue structure can occur on a per-packet
basis. Therefore, unlike routing, fair queueing cannot amortize the cost of
data structure modifications over a long time period.

Another approach is to rely on hardware assists such as content-addressable
memories. Such assists can work quite well for gateways supporting a single
protocol that is not subject to growth and revision. However, the growing
demand for gateways that support multiple protocols, most of which are still
evolving, render this approach impractical for internetworking gateways for
the foreseeable future.

The simplest and fastest way of mapping from source-destination ad-
dress pair into queue is to use a simple array, indexed directly by the binary

number formed by concatenating the bits representing the source and des-



tination addresses. For example, IP has relatively small 32-bit addresses,
so that the corresponding index would be a 64-bit quantity. Unfortunately,

264 element array, eliminating this approach from

this results in an infeasible
further consideration.

Various types of search trees are heavily used in database applications
[Knu73]. These methods are relatively slow, requiring numerous memory
references for access and complex algorithms for updates, making them un-
suitable for use in switches operating in high-speed networks.

A particularly seductive alternative is the trie [Knu73]; the following
paragraphs examine it in detail. For concreteness, imagine maintaining a
256-way trie indexed by successive bytes of the IP address pair. The first
byte of the IP address pair would be used as an index into a table of 256
possibly NULL pointers. Each non-NULL pointer would point to its own
table of 256 pointers, again possibly NULL, indexed by the second byte of
the IP address. These tables of pointers would form an eight-level tree; non-
NULL pointers at the eighth level would point to a queue header. NULL
pointers at all levels are placeholders for address pairs that do not correspond
to any currently active conversation.

We will assume that conversations average at least three packets in
length; thus an implementation of a fair queuing trie should be optimized for
the second and subsequent packets in a conversation. Since there are only
eight levels in an IP trie, it makes sense to fully unroll the loop that traverses
the trie. Assuming that a pointer to the concatenated IP address pair and
a pointer to the root of the trie are preloaded into registers, each segment of
the unrolled loop will contain three instructions. The first instruction will

load the next byte of the address pair into a register while incrementing the



pointer to the address, the second instruction will use this byte to index
into the current level of the trie, loading a pointer to the next level, and the
third instruction will branch to a special handler if this pointer is NULL.
NULL pointers would be encountered upon receipt of the first packet of a
new conversation; the special handler would allocate and initialize memory
needed to add the new address pair to the trie.

Use of a trie thus requires 24 instructions to map from IP address pair to
the corresponding queue in the best case; this ignores the added instructions
needed to allocate structures for new conversations and needed to scan the
trie periodically to dispose of structures corresponding to conversations that
have ended. In contrast, an efficient implementation of a stochastic fairness
queue requires fewer than 10 MC68020 instructions in the worst case to map
from IP address pair to the corresponding queue.” As noted earlier, IP has
relatively short addresses; stochastic fairness queuing’s advantage is greater
for longer addresses.

A final alternative is the use of hash tables with chaining. The best
case instruction count for a hashed fair queue in an IP network is almost
as good as the worst case for stochastic fairness queuing. The difference
is due to the fact that the hashed fair queue must compare the address in
the packet to that of the first queue header in the chain; fair queuing must

reference address fields three times as often as stochastic fairness queuing.®

"This assumes that the hashing function is implemented in software; the instruction

count might decrease somewhat given a hash function implemented in hardware.
8Stochastic fairness queuing must scan the packet’s address pair once in order to com-

pute the hash function. Fair queuing must in addition scan the packet’s address pair and
the queue header’s address pair in order to compare the two. Protocols with short address

fields such as IP may allow fair queuing implementations that cache the packet’s address



In addition, a hashed fair queue must periodically scan its queues in order to
dispose of those corresponding to conversations that have ended, and must
allocate and initialize new queues upon arrival of a packet that is part of
a new conversation. The overhead due to these activities will depend on
traffic statistics.

In summary, the worst-case execution speed of stochastic fairness queu-
ing is faster than the best-case execution speed of all of these implementa-
tions of fair queuing, and this advantage is larger for protocols with longer

addresses, e.g., the ISO protocol suite.

3 Analysis

The following sections analyze expected queue occupancy and a bound on

the number of conversations passing through a gateway.

3.1 Expected Queue Occupancy

The analysis of stochastic fairness queuing closely parallels that of hash
tables with chaining. The only difference is that a collision in a hash table
causes a search of only half of the linked list (on the average), while a collision
in a stochastic fairness queue causes all of the colliding conversations to share
the queue. An analysis of hash table performance may be found in Graham
et al. [GKP89]. Adapting this analysis to stochastic fairness queues and

assuming a large number of queues gives the number of conversations that

pair in machine registers, but this is not likely to be practical for protocols with longer
address fields. Note that it is not possible to overlap computation of the hash function
with comparison of the address pairs, since the hash function must be computed before

the queue can be located.



a given conversation can expect to share its queue with (counting itself),
represented by
EC=a+1 (1)

and
2

Ve = % ta, 2)
where EC is the expected number of conversations, VC is the variance in
the expected number of conversations, and « is the ratio of the number of
conversations to the number of queues.

Consider a stochastic fairness queue that is empty (its occupancy is zero).
Then a new conversation is guaranteed to be given a queue with exactly
one occupant (the conversation itself). On the other hand, a stochastic
fairness queue with as many conversations as queues (occupancy of one) has
a value of 2 for EC and a value of about 1.17 for VC. This indicates that
a new conversation will share its queue with one other conversation on the
average, but that the actual number of conversations in the queue may vary
considerably from that value.

Note that the expected number and variance of conversations sharing
a given queue will be low when the occupancy is low. This indicates that
the stochastic fairness queue will behave in a very consistent, predictable
manner when given a sufficient number of queues (for instance, about five
or ten times the number of conversations). Feldmeier has collected data
showing that the number of concurrent conversations passing through MIT’s
ARPANET gateway in early 1988 was almost always less than 180 [Fel89].
This would indicate that about 1000 to 2000 queues would suffice; this num-

ber can be easily accommodated by today’s large random-access memories.
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The number of queues needed scales with the speed of the network, as shown
in the next section, and thus more memory is required for higher speed net-
works.

The fact that both EC and VC are continuous with respect to the
occupancy indicates that the algorithm is not prone to sudden failure, but

instead gracefully degrades under overload.

3.2 Bound on Number of Conversations

A fair queueing algorithm such as stochastic fairness queueing can guarantee
fair service only if it maintains separate state for each and every conversa-
tion. If state (such as queues or finish-time counters) is shared between two
conversations, then the algorithm will be unable to distinguish the conver-
sations and will thus be unable to prevent one of the conversations from
stealing resources from the other. The maximum number of conversations
that may through a gateway at a given time is vitally important, as this
number defines the amount of state information needed to allow the fair
queueing algorithm to guarantee fair service.

This number may be calculated given a maximum per-conversation packet
interarrival time. For example, if a three-hour-long conversation contains a
one-hour gap, it is reasonable to model it as two smaller conversations. In
the following, we derive a formula for the maximum number of conversations
as a function of the link bandwidths, average packet size, and maximum
inter-packet gap allowed in a conversation.

The average number of packets per second arriving at the gateway, as-

11



suming that each link is fully utilized, is given by

_ YN, G

P - (3)

where S is the average packet size in bits, NV is the number of interfaces, and
C; is the capacity, in bits per second, of the i** interface. If G is the largest
gap allowed between consecutive packets belonging to a given conversation,
then the maximum number of simultaneous conversations is simply GP,
which expands to

GYN,C
M:ZT—l. (4)

This maximum occurs when each conversation transmits exactly one packet
during each time interval of length G, in other words, when the gateway is
giving the conversations perfectly fair service.

Table 1 shows the maximum number of conversations for a four-interface
gateway under typical (maximum inter-packet gap of 10 seconds, 10% of
conversations accounting for 90% of throughput, and average packet size of
1000 bytes) and worst-case (maximum inter-packet gap of 10 seconds, each
conversation providing equal throughput, average packet size of 50 bytes)
conditions. The number of conversations under typical conditions is given

by

FM )
where By, is the fraction of bandwidth alloted to the high-bandwidth con-
versations, By is the fraction of bandwidth alloted to the low-bandwidth
conversation, and M is computed as shown in the previous equation. These
figures show that congestion-avoidance algorithms must scale well with in-
creasing numbers of simultaneous conversations if they are to be usable in

high-speed networks.
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Table 1: Bounds on Number of Conversations

Medium Typical | Worst-Case
ARPANET (56kbps) 31 5,600
T1 (1.5 Mbps) 853 153,600
T3 (45 Mbps) 25,600 4,608,000
Fiber (1 Gbps) 555,556 | 100,000,000

4 Example Implementation

The following subsections describe the requirements for the hash function,
exhibit a particular function that meets those requirements, and demon-
strate the data structures and algorithms used by a specific implementation

of stochastic fairness queuing.

4.1 Hash Function

The example implementation uses a hash function to map from source-
destination address pair to queue index. This hash function must give a
high information content, as defined by Jain in [Jai89], but must also allow
perturbation such that address pairs that collide for one perturbation value
are very unlikely to collide for a different perturbation value.

Two hash functions were used in simulations. The first is the high-
level data-link control (HDLC) procedure (ISO-3309-1979) cyclic redun-
dancy check (CRC) [Int79]. Hardware implementations of the HDLC CRC
are commercially available. This hash function is perturbed by multiplying

each byte by a sequence number in the range from 1 to 255 before applying
the CRC.
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The second is the simple software algorithm given by
hash = ROL(src, seq) + dst (6)

where “ROL” is the circular rotate-left function implemented as a single
instruction on many computers, “src¢” is the Internet Prococol (IP) source
address, “seq” is a sequence number in the range from zero to 31 that is
used to perturb the hash function, and “dst” is the IP destination address.
Although this hash function does not give as high an information content as
the HDLC CRC, it can be implemented very efficiently on many computers
and performs very well in simulations provided that the number of queues
is not a small integral multiple of a power of two.

Note that this software hashing function is specific to IP; more work is
needed to find a software hash function that can efficiently handle variable-

length addresses such as those found in the ISO protocols.

4.2 Data Structures and Algorithm

A particular algorithm from the class of stochastic fairness-queuing algo-
rithms was simulated in order to provide proof of concept. This section de-
scribes the data structures used by this particular algorithm (see Figure 3);
pseudo-code is given in Reference [McK90]. See Section 6 for discussion of
other instances of stochastic fairness queuing.

The type of stochastic fairness queue simulated consists of an array of
finite-length queues (the lettered boxes in Figure 3); a doubly-linked “active
list” that includes only those queues that are non-empty (in this case, the
queues labeled “A”, “B”, and “D”); a round-robin pointer that points to the

queue that is to be serviced next (currently “D”); an array of doubly-linked

14
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Figure 3: Stochastic Fairness Queuing Data Structures

“number-of-elements lists” (the numbered boxes in Figure 3, one for each
possible non-zero queue length); and a maximum-size pointer to the element
of this array corresponding to the longest queue (currently three). The links
for the number-of-elements lists have been omitted from the figure in the
interest of readability; list one is empty, list two contains queues “A” and
“D”, list three contains queue “B”, and list four is empty. Queue “C” is
empty, and therefore does not appear on either the active list or any of the
number-of-elements lists.

The purpose of the active list and the round-robin pointer is to allow
the next departing packet to be located without wasting time in scanning
over empty queues. The purpose of the number-of-elements list and the
maximum size pointer is to allow the longest queue to be located without

wasting time searching.® The hash function perturbation is done in-place,

9This occurs when the buffer pool is exhausted, in which case buffers will be stolen
from the longest queue in order to accommodate arriving packets. This buffer theft is the

only purpose of the number-of-elements list; eliminating this data structure would allow
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so no special data structure is required to control this operation.

Note that all of the algorithm’s operations are time complexity O(1),'0
suitable for implementation in high-speed software or firmware. In partic-
ular, adding a packet to a queue requires two doubly-linked-list operations
and one singly-linked-list operation (in addition to the hashing operation),
unless the buffer pool was exhausted, in which case it requires an additional
two doubly-linked-list operations and one singly-linked-list operation (for a
total of four doubly-linked-list operations, two singly-linked-list operations,
and one hashing operation). Deleting a packet from a queue always requires
two doubly-linked-list operations and one singly-linked-list operation.

Because of the fact that it is never necessary to do any scanning of
the data structures comprising a stochastic fairness queue or any source-
destination-address-pair comparisons, the operation count is quite small,

compared to that of fair queuing.

5 Simulation

The behavior of stochastic fairness queuing was studied using three different
simulations. The first examines the behavior of the perturbable hash func-
tions in isolation. The second consists of a single overloaded node with no
transport protocol action; this was used to do parametric studies. The third

is a more realistic simulation of multinode networks with several transport

significant speedup. This and other variants of stochastic fairness queuing are discussed

in Section 6.
07he “big-O” notation describes the asymptotic performance of an operation or algo-

rithm within a constant factor [Knu73]. Thus, an O(1) operation is guaranteed to complete

in a fixed amount of time, regardless of the size of the problem.
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protocols [Kes89].

5.1 Hash Functions

The hash functions are tested against 10,000 randomly selected pairs of TP
address-pairs from the HOSTS.TXT file (available from NIC.DDN.MIL).
The address pairs are hashed by the function under test with each possible
perturbation value in turn; the number of perturbation values for which the
address pairs’ hash collides is counted. This process is repeated for each
possible queue header array size in the range from 2 to 512, inclusive. The
value from the hash function is taken module to queue header array size;
collisions are of course checked after the modulo operation.

The output of an ideal hash function would be indistiguishable from an
uniformly-distributed random variable. This would result in M /N collisions
on the average, where M is the number of perturbation values and N is the
queue header array size.

The results of this simulation along with the 95% confidence interval for
the CRC hash are shown in Figure 4. The 95% confidence intervals bracket
the M /N curve; thus the behavior of the CRC hash is very close to ideal.

The results of this simulation for the rotation hash are shown in Figure 5.
The 95% confidence intervals bracket the M /N curve except for those values
of the queue header array size N that are powers of two or small integral
multiples of powers of two. These values of N are where the upward spikes
occur in Figure 5, for example at 128, 160, 192, and 256. The reason for this
poor behavior is that the rotation hash mixes the bit patterns of its input
less thoroughly than does the CRC hash, and thus relies on the modulo

operation to do additional mixing. When the modulus is a small multiple
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of a power of two, the modulo operation acts more to discard bits than to
mix them. In fact, when the modulus is an exact power of two, the modulo
operation simply discards the high-order bits.

This non-ideal behavior of the rotation hash can be avoided simply by
avoiding queue header arrays sizes that are small integral multiples of powers

of two.

5.2 Parametric Studies

The object of the simulation is to determine whether the behavior of stochas-
tic fairness queuing is a good approximation of that of fair queuing. A very
simple simulation suffices for this purpose. The simulation consists of a sin-
gle node with four saturated input lines and one output line. All packets are
pure datagrams of equal length; no transport-layer protocol was simulated.
There are 20 conversations, one of which is ill-behaved, generating as much
input traffic on the average as the other 19 combined. During each time
interval, one packet departs from the node and four are offered to the node.
The conversation to which a given input packet belongs is randomly chosen.

Each queue making up the stochastic fairness queue is a finite FCFS
queue, and a perturbable variant of the HDLC CRC is used as the hash
function. Hash function switching is done in such a way as to avoid packet
reordering; newly occupied queues are appended to the end of the active
list, and buffers are stolen from the beginning of the longest queue to ac-
commodate packets that arrive when the buffer pool is exhausted. A per-
conversation fairness policy is used, and the fairness granularity is irrelevant,
since all packets are of equal size.

The baseline stochastic fairness queuing run used 160 queues (eight times

19



the number of conversations), each with a maximum length of five packets,
a buffer pool containing space for up to 160 packets, and a hash function
switch interval such that the hash function was perturbed for every 1000
input packets. The simulation runs until 10,000 packets have been offered
to the node,!! at which point the number of packets output per conversation
is printed.

The figure of merit used to analyze the results is the ratio of the band-
width granted to the least-fortunate conversation to that granted to the
most-fortunate conversation. A perfectly fair algorithm will have a fairness
of one (since it will treat all conversations exactly equally). As points of
reference, the fairness of fair queuing, baseline stochastic fairness queuing,
and of a length-five FCFS queue!? are 0.98, 0.81, and 0.095 packets per
conversation, respectively.

Increasing the number of queues in the stochastic fairness queue in-
creased its performance, as shown in Figure 6. The lines labeled “SFQ”
show the mean value of the fairness for stochastic fairness queuing taken
over five runs and the 95% confidence interval. The lines labelled “FQ” and
“LQ” show the performance of fair queuing and length-five FCFS queuing,
respectively. The 95% confidence bounds for FQ and LQ are barely wider
than the line itself, and are not shown. The performance of SFQ should
converge to that of LQ as the number of queues approaches one, and should

converge to that of FQ as the number of queues grows without bound. The

"10r, equivalently, until about 2500 packets (125 per conversation, on the average) have
been output from the stochastic fairness queue (since the node is running under four-times

overload).
12Keep in mind that there is no end-to-end protocol action in this simulation, so the

length of the FCFS queue does not affect the results.
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fairness for stochastic fairness queuing given 1000 queues (50 times the num-
ber of conversations) is 0.86, or 88% of that of pure fair queuing and over
nine times that of FCFS queuing.
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Figure 7: Effect of Number of Buffers

Increasing the number of buffers in the stochastic fairness queue in-
creased its performance, as shown in Figure 7. The lines labelled “SFQ”
show the mean value of the fairness for stochastic fairness queuing taken
over five runs and the 95% confidence interval. Since each queue can con-
tain five packets at most, and there can be 20 queues at most (one per
conversation), the algorithm can make use of 100 buffers at most. This can

be seen in Figure 7; the performance levels off above 100 buffers.

22



1.0

FAIRNESS
o
a

0.0

10° 10! 10? 10° 10*
HASH SWITCH INTERVAL
FQ —Fairness Queue

LQ —Limited FCFS Queue
SFQ-Stochastic Fairness Queue

Figure 8: Effect of Hash Function Switch Interval

23



Increasing the length of the hash function switching interval increases
performance up to a point, due to the fact that the transient unfairness
associated with the switchover occurs less frequently.!> However, as the
duration of the switching interval approaches the average length of the con-
versation, performance starts decreasing, as can be seen in Figure 8. This
is due to the fact that conversations that collide do so for most of their
lifetime. Good values for the switch interval appear to lie between twice
the queue-flush time of the stochastic fairness queue and one-tenth of the
average conversation duration.

Additional simulations were run with buffer stealing disallowed and with
a hash-function switching method that allows some packet reordering. Both
of these modifications allow more CPU-efficient implementations. Disallow-
ing buffer stealing has very little effect, given enough memory for each con-
versation to have a full queue. The faster hash-function switching method
has almost no effect on fairness, but is more compatible with existing trans-
port protocols, as will be seen in the next section.

These results demonstrate that the performance of stochastic fairness
queuing can approach that of pure fair queuing and greatly exceed that of

FCFS queuing.

5.3 Transport Protocol Studies

Transport protocol studies were performed using the REAL network simu-

lation package [Kes89]. The scenarios described in Shenker et al. [DKS89]

13The transient unfairness is caused by the fact that an ill-behaved conversation can
have two queues at its disposal during the switchover, while the well-behaved conversations

will limit themselves to a throughput appropriate for a single queue.
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were run using a version of stochastic fairness queuing that used buffer steal-
ing, a per-conversation fairness policy, and a per-byte fairness policy. An
efficient hash-function switching method was used that allowed packets to be
reordered, as the method that avoids reordering can cause occasional packet
loss from low-throughput conversations. This packet loss severely decreases
the throughput when those conversions are using TCP with Van Jacobson’s
modifications. Runs were made using HDLC CRC and using the software
algorithm described earlier for the hash function: as expected, essentially
identical results were obtained. Except as noted below, the FTP throughput
results for stochastic fairness queuing were within ten percent of those for
fair queuing.

The labels appearing in the “Policy” column of the results give the trans-
port protocol and the queuing discipline, separated by a slash. “G” indi-
cates a generic TCP and “VJ” indicates TCP with Van Jacobson’s modifica-
tions. “FCFS”, “FQ”, and “SFQ” indicate first-come-first-served queuing,
fair queuing, and stochastic fairness queuing, respectively. Results for the
G/FCFS and G/FQ queuing disciplines are taken from Reference [DKS89].

Fairness queuing can provide lower delay to small packets than can
stochastic fairness queuing, as a consequence of the greater amount of state
maintained by the former. For example, in scenario 1 (an underloaded gate-
way passing two FTP and two Telnet conversations) fair queuing provides
the Telnet conversations about 17 times lower delay than it provides to
the FTP conversations, while stochastic fairness queuing provides roughly a
factor of four improvement in delay; see Table 2.

None of the scenarios included Telnet and FTP conversations sharing a

large bandwidth-delay-product link; it seems likely that this would greatly
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FTP Telnet
Quantity Policy 1 2 3 4
Throughput | G/FCFS | 1746 | 1746 99 | 96
(packets) G/FQ | 1746 | 1746 | 102 | 94
G/SFQ | 1735 | 1757 98 97
Average G/FCFS | 1.43 | 1.43 | 1.36 | 1.35
Roundtrip G/FQ 1.43 | 1.43 | 0.08 | 0.09
Time G/SFQ | 1.28 | 1.26 | 0.36 | 0.36

Table 2: Scenario 1: Underloaded Gateway

reduce the importance of queuing delay.

Fairness queuing includes a mechanism that actively punishes conver-
sations perceived to be malicious. Since stochastic fairness queuing does
not attempt to judge users’ intents, the results of scenario 3 (an overloaded
gateway passing one well-behaved FTP, one well-behaved Telnet, and one
ill-behaved FTP) differ significantly; see Table 3. Fairness queuing almost
completely shuts down the ill-behaved FTP. However, stochastic fairness
queuing grants both FTPs roughly equal bandwidth; the ill-behaved FTP

gets about 20% more bandwidth in exchange for a packet-loss rate of over

95%.

These results demonstrate that stochastic fairness queuing works well in

the presence of real-world transport protocols.
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FTP | Telnet | Ill-Behaved

Quantity Queue 1 2 3
Throughput | G/FCFS 3 11 3497
(packets) G/FQ 3491 95 5
G/SFQ 1613 93 1883

Average G/FCFS | 1362.00 2.87 2.97
Roundtrip G/FQ 0.72 0.08 903.00
Time G/SFQ 1.28 0.44 2.08

Table 3: Scenario 3: I1l-Behaved Source
6 Alternative Implementations

The stochastic fairness queuing algorithms span a broad range of CPU,
memory, and fairness tradeoffs. This allows an algorithm to be configured
for a specific environment or range of environments. Configuration consists
of selecting values for tuning parameters and structural parameters.

The tuning parameters are (1) number of queues; (2) number of buffers;
(3) maximum queue length; and (4) hash function switching interval.

Each of these parameters was a command-line argument to the simu-
lation program; the observed effects are described in Section 5. Note that
some protocols (in particular, older versions of the Network File System pro-
tocol) place restrictions on the maximum queue length; if the queue length
is too short, very poor performance will result [Hed89].

The structural parameters include (1) queuing discipline; (2) hash func-
tion; (3) hash function switching method; (4) active-list insertion policy; (5)

buffer-theft policy; (6) fairness granularity; and (7) fairness policy.
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The queuing discipline used in the simulation is finite FCFS; a packet
that arrives while its queue is full is discarded. Alternative queuing disci-
plines include the various forms of random-drop queues.

As mentioned earlier, the simulation uses a variant of HDLC CRC and
a simple rotate-and-add function as the hash functions. There are many
possible alternative hash functions, including the Fletcher checksum used
in OSI, other types of CRC, and various ad hoc functions consisting of
sequences of simple functions such as shifts, adds, and exclusive-ORs.

The hash-function switching method simply perturbs the hash function
without modifying the packet queues. This can result in packet reordering.
Experiments with more complex hash-function switching mechanisms that
carefully avoided packet reordering performed poorly when used with buffer-
stealing and Van Jacobson’s TCP. This is due to the fact that any method
that avoids packet reordering while still maintaining O(1) performance must
segregate the packets into one group of all packets arriving before the most
recent switch, and those arriving after. While there are packets in both
groups, the feedback loop from queue length (among the old packets being
output) to the sender is broken. This results in significant numbers of pack-
ets being dropped from low-throughput conversations, which in turn results
in TCP unnecessarily decreasing throughput. Ill-behaved conversations will
of course ignore any drops and continue transmission at full speed.

The simulated algorithm always appends newly occupied queues to the
end of the active list. An alternative method would be to probabilistically
insert newly occupied queues containing small packets onto the head of the

active list.'* This would grant smaller average delay to small packets (which

" Consistently inserting newly occupied queues onto the head of the active list could
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tend to be Telnet and Transmission Control Protocol [TCP] acknowledge-
ment packets), but would increase the complexity of the algorithm.

The buffer-theft policy implemented in the simulation is to always re-
move the next packet that would have been output from the longest queue.
Alternative policies include dropping a randomly selected packet from the
longest queue and simply refusing to do buffer theft. The latter alternative
is particularly attractive, as it allows the number-of-elements lists to be dis-
pensed with, thereby greatly reducing the complexity of the algorithm.'®
Adding a packet to a stochastic fairness queue that does not do buffer
theft requires one singly-linked-list operation, with an additional doubly-
linked-list operation if the queue was initially empty. Deleting a packet
from a queue also requires one singly-linked-list operation, with an addi-
tional doubly-linked-list operation if this was the last packet in the queue.
Queues tend to be long under heavy load, so this configuration of stochas-
tic fairness queuing actually consumes fewer CPU resources when heavily
loaded. On the other hand, this method is likely to require more buffers
than the method simulated to achieve a comparable level of fairness.

The simulation used a packet fairness granularity: that is, a single packet
is output from each queue, regardless of packet length. An alternative would
be an approximate bit or byte fairness granularity. This can be implemented
efficiently using an approach similar to that used in Shenker’s fair queuing
algorithm [DKS89]. This alternative has the advantage of allocating band-

width more fairly in the presence of differing packet sizes, but increases the

result in indefinite postponement of the other queues.
150f course, the individual queues making up the stochastic fairness queue must be

finite queues in order for buffer theft to be safely dispensed with.
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complexity of the algorithm, especially since care must be taken to avoid
indefinitely postponing packets already queued.

The fairness policy used by the simulation was equal allocation per host
conversation. Many other fairness policies can be envisioned, many of which
can be implemented by including different fields from the packet header in
the hash function. For example, a policy of equal allocation per network
conversation can be implemented by hashing only the network portions of
the source-destination address pair. This fairness policy might be used in
transit networks.'® Another example would be a policy of equal allocation
per TCP connection, which could be implemented by including the TCP

port numbers in the hash function.!”

7 Future Work

Additional work needs to be done to evaluate the different possible instances
of the stochastic fairness queuing algorithms presented in Section 6. These
results would provide the information needed to select the algorithm that
best fits a given processor and network architecture.

The high-speed software hash function presented in Section 4.1 relies on
a circular rotate instruction that is not present in some machines. This in-

struction can be easily simulated, but only with a substantial performance

16 At first glance, this policy seems to have the disadvantage of encouraging institutions
to register many different networks to increase their share of bandwidth. The transit
networks can prevent this form of abuse by simply refusing to pass routing information

for the excess networks.
'"This policy might have the disadvantage of requiring very large numbers of queues in

addition to the blatant (but not unprecedented) layering violation.
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penalty. More work is needed to identify a hash function suitable for ma-
chines lacking a circular rotate.

The simulations performed to date used either a single-hop network with
no protocol action (that is, pure datagram switching) and uniform packets,
or a small network with some representative transport protocols. More work
needs to be done to determine the effectiveness of SFQ in large networks

and in real (as opposed to simulated) gateways in real networks.

8 Conclusions

This paper has presented and analyzed a class of probabilistic variants of
Shenker’s, et al., fair queuing algorithm (called “stochastic fairness queuing”
algorithms) that are suitable for use in high-speed computer communications
networks and that span a broad range of CPU, memory, and fairness trade-
offs. A particular instance of this algorithm has been shown to have behavior
approaching that of fair queuing (when given sufficient resources), and to

exhibit graceful degradation under overload, without sudden failure.
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