
Succinct Representation of General Unlabeled Graphs

Moni Naor

�

IBM Alamden Research Center

650 Harry Road

San Jose CA 95120

Abstract

We show that general unlabeled graphs on n nodes can be represented by

�

n

2

�

�n log

2

n+O(n)

bits which is optimal up to the O(n) term. Both the encoding and decoding require linear time.

1 Introduction

Assume we are given an unlabeled simple graph G on n nodes, and we are to �nd a short representa-

tion of G. This is useful when trying to save storage or when transmitting the graph. An adjacency

matrix representation of a graph requires

�

n

2

�

bits, which is the best possible bound for labeled

graphs. Let C

n

denote the class of unlabeled graphs on n nodes. dlog

2

jC

n

je is a lower bound on

the number of bits in G's representation. From [HP] We know that log

2

jC

n

j =

�

n

2

�

�n logn+O(n).

If e�ciency considerations in �nding the representation are completely ignored, then we can achieve

this bound by deciding on some �xed enumeration of all unlabeled graphs on n nodes; given a graph

G, �nd its rank in the enumeration. Conversely, when given a rank we can enumerate all graphs

until we reach the rank.

The goal of this paper is to give e�cient methods of �nding a succinct representation of a graph.

We assume that the (unlabeled) graph G is given by an adjacency matrix of an arbitrary labeling

�

This work was done while the author was at UC Berkeley and was supported by NSF grants DCR 85-13926 and

CCR 88-13632.

1



of its nodes. This problem was introduced by Turan in [T]. More formally, we are looking for a

pair of mappings (CODE

n

; ENCODE

n

) satisfying:

� CODE

n

: f0; 1g

(

n

2

)

7! f0; 1g

�

� DECODE

n

: f0; 1g

�

7! f0; 1g

(

n

2

)

� Given a graph G with adjacency matrix A(G), DECODE

n

(CODE

n

(A(G))) should be the

adjacency matrix of a graph isomorphic to G.

� CODE

n

and DECODE

n

are polynomial time computable.

The length of a representation is the function l(n) = maxjCODE

n

(G)j.

Turan [T] commented that there is an e�cient method for representing general unlabeled graphs

with strings of length

�

n

2

�

� 1=8n log n+O(n), based on Ramsey theory [GRS]. Here we prove:

Theorem: There is a representation of simple unlabeled graphs satisfying l(n) =

�

n

2

�

� n log

2

n+

O(n), where both CODE

n

and DECODE

n

are computable in linear time.

This is the best possible up to the O(n) term as mentioned at the beginning of the section.

The key idea of the representation is to encode some bits implicitly by a permutation on the

neighborhoods of half of the nodes of the graph. In Section 2 we describe a method for encoding

information in a permutation and in Section 3 we show how to use the encoding to achieve the

bound in the theorem. Section 4 contains remarks and open problems.

We will write CODE

n

(G) instead of CODE

n

(A(G)) for an unlabeled graph G, when we do not

care which of the adjacency matrix representations of G is used as an input for CODE

n

.

2 Encoding Information in a Permutation

Suppose we are given t numbers x

1

; x

2

: : : ; x

t

such that x

1

< x

2

: : : < x

t

and a sequence of k bits

B = b

1

; b

2

; : : : b

k

such that k � log t!. The x

i

's are to be represented explicitly in some permutation

� of their increasing order. We would like to represent B using that permutation, that is given �

we should be able to determine B e�ciently.

2



To achieve this we will use a standard method of random generation of permutations due to

Lehmer (see [D]). There is a 1�1 correspondence between permutations on t elements and sequences

of t� 1 integers of the form a

1

; a

2

; ::a

t�1

where 0 � a

i

� t� i. A sequence a

1

; a

2

; ::a

t�1

determines

the permutation � = �

1

� �

2

: : : � �

t�1

where �

i

is the transposition that swaps i and a

i

+ 1, and the

multiplication is the product of permutations.

Any integer 1 � A � t! de�nes a sequence a

1

; a

2

; ::a

t�1

by having

a

1

= bA=(t� 1)!c

A

1

= A mod (t� 1)!

a

2

= bA

1

=(t� 2)!c

A

2

= A

1

mod (t� 2)!

.

.

.

a

t�1

= A

t�2

mod 2

If we treat B as an integer in [1; t!] then we get a corresponding � which encodes B. We then order

x

1

; x

2

; : : : x

t

according to � .

Decoding: given a sequence x

�

�1

(1)

; x

�

�1

(2)

; : : : x

�

�1

(n)

, determine � by sorting it. � can be

decomposed uniquely into �

1

� �

2

: : : � �

t�1

where �

i

is a transposition that swaps i and a

i

+ 1,

1 � a

i

� t� i. B is then set to be a

1

(t� 1)! + a

2

(t� 2)! + : : :+ a

t�1

+ 1:

This method, though involving a number of operations which is linear in t and achieving the best

possible bound, might not be considered e�cient, since the numbers involved in the computation

when determining the sequence a

1

; a

2

; ::a

t�1

are t bits long. To get around this problem, we will

sacri�ce some encoding power. We divide B into t� 1 successive blocks B

1

; B

2

; : : : B

t�1

, where the

number of bits in B

i

is blog

2

t� ic. Each B

i

will encode a

i

directly. Let f(t) =

P

t�1

i=1

blog

2

(t� i)c.

This method enables us to encode bit sequences of length k � f(t) .

Claim: f(t) = t log

2

t�O(t).

Recall that log

2

t! = t log

2

t�O(t).

f(t) =

t�1

X

i=1

blog

2

(t� i)c �

t�1

X

i=1

log

2

(t� i)� 1

3



�

t�1

X

i=1

log

2

i� t = log

2

t!� t = t log

2

t�O(t):

3 The Representation

We describe the representation for n a power of 2, it can be easily generalized to any n. CODE

n

de-

termines some ordering of the nodes, which is the order of the nodes DECODE

n

(CODE

n

(A(G)))

produces. A given a graph G with n nodes to be coded is partitioned arbitrarily into two subgraphs

on

n

2

nodes, G

1

andG

2

. The nodes ofG

1

will appear in indices 1; : : : ;

n

2

ofDECODE

n

(CODE

n

(A(G))),

and the nodes of G

2

will appear in indices

n

2

+1; : : : ; n. After the partition, some adjacency matrix

representation of G

1

is �xed by computing CODE

n=2

(G

1

) recursively.

For every v 2 G

2

let Y

v

be the binary vector of length

n

2

representing the neighborhood

of v in G

1

, that is Y

v

[i] = 1 if and only if there is an edge between v and the i

th

node in

DECODE

n=2

(CODE

n=2

(G

1

))). After Y

v

is determined for each v 2 G

2

, the Y

v

are sorted un-

der the lexicographical order. The sorting can be done using bucket sort, which is linear in the

total number of bits in the vectors.

Assume �rst that no two nodes in G

2

are connected to the same set of nodes in G

1

i.e all the

Y

v

's are distinct. G

2

will be represented in an adjacency matrix, and following the matrix will be

the Y

v

's in the order the nodes appear in the matrix. We do have the freedom to determine any

order on the nodes in G

2

and their corresponding Y

v

. Let B be the �rst f(

n

2

) bits in CODE

n=2

(G

1

),

and let � : f1; : : :

n

2

g 7! f1; : : : ;

n

2

g be the permutation that represents B as described in Section 2.

We will order the nodes of G

2

by the permutation � on the increasing order of the Y

v

's. The rest of

CODE

n=2

(G

1

) will be represented explicitly. The number of bits saved is f(

n

2

) =

n

2

log

2

n� O(n)

plus the number of bits saved in CODE

n=2

(G

1

).

In case not all Y

v

's are distinct, we have less elements to permute and hence can encode fewer

bits; on the other hand we can save bits by not repeating the description of similar neighborhoods.

Following each Y

v

will be a sequence of 1's ending with a '0' denoting the number of nodes having

the same neighborhood. We call these the barriers. The nodes sharing Y

v

are assumed to be in

successive indices in the adjacency matrix of G

2

. The encoding of all the barriers can add at most

4



n

2

bits all together. If there are m distinct neighborhoods then we can encode f(m) bits, but we

save (

n

2

�m)

n

2

bits in the description of the duplicated neighborhoods. It is easy to verify that

min

1�m�

n

2

ff(m) +

�

n

2

�m

�

n

2

g = f

�

n

2

�

and the minimum is achieved for m =

n

2

. Hence at least f(

n

2

) bits are saved per recursive call.

Claim: l(n) =

�

n

2

�

� n log

2

n+O(n)

Proof: From the description above the CODE

n

(G) contains:

� CODE

n=2

(G

1

) which is l(

n

2

) bits

� the description of the neighborhoods in G

1

of the nodes of G

2

which is

n

2

�

n

2

bits

� adjacency matrix representation of G

2

which is

�

n=2

2

�

bits

�

n

2

bits to determine repetitions of neighborhoods.

On the other hand f(

n

2

) bits of the �rst two items can be saved . Hence we have

l(n) = l

�

n

2

�

+

n

2

�

n

2

+

 

n=2

2

!

+ n� f

�

n

2

�

:

Let c

1

> 0 be a constant such that f(t) � t log

2

t� c

1

� t. Assume inductively that

l

�

n

2

�

�

 

n=2

2

!

�

n

2

log

2

�

n

2

�

+ �

n

2

for some �xed c

2

> 0. Then we can conclude that

l(n) �

 

n=2

2

!

�

n

2

log

2

�

n

2

�

+ c

2

�

n

2

+

n

2

�

n

2

+

 

n=2

2

!

+ n�

n

2

log

2

�

n

2

�

+ c

1

�

n

2

=

 

n

2

!

� n log

2

n+ (

c

2

2

+

c

1

2

+ 1 +

1

2

+

1

2

) � n:

Thus, if c

2

� c

1

+ 4 we have that l(n) �

�

n

2

�

� n log

2

n+ c

2

� n. 2

Time Complexity: The most time consuming stage that is performed at each recursive step

is sorting the Y

v

, but that can be done in linear time in

�

n

2

�

, the size of the input. Since the

5



recursive call to CODE

n=2

is with a graph on

n

2

nodes the whole procedure takes time linear in

�

n

2

�

. Similar consideration hold for DECODE

n

as well. Therefore we have the theorem claimed in

the introduction.

4 Conclusions and Extensions

We have solved an open problem raised in [T]: �nd an e�cient coding method for general graphs

which is optimal up to the O(n). An interesting question is whether the existence of an e�cient

coding method that achieves the dlog

2

jC

n

je lower bound implies an e�cient (randomized) algorithm

for graph isomorphism. If C

n

were a power of 2 this would have been true, since each unlabeled

graph has a unique representation in this case. For a general treatment of the connection between

Complexity theory and Compression see [GS].

More sophisticated methods of encoding information in a permutation and their applications

are presented in [FN], [FNSS] and [FNSSS]. Those methods allow random access decoding, that is

one need not compute the whole permutation to infer what a certain bit is.

References

[D] Devroy, Non-uniform Random Variate Generation, Springer-Verlag, New-York,

1986.

[FN] A. Fiat and M. Naor, Implicit O(1) Probe Search, twenty-�rst ACM Symposium on the

Theory of Computing, 1989, pp. 336-344.

[FNSS] A. Fiat, M. Naor, J. Schmidt and A. Siegel, Non-Oblivious Hashing, twentieth ACM

Symposium on the Theory of Computing, 1988, pp. 367-376.

[FNSSS] A. Fiat, M. Naor, A. Scha�er, J. Schmidt and A. Siegel, Storing and Searching a Multikey

Table, twentieth ACM Symposium on the Theory of Computing, 1988, pp. 344-351.

[GRS] R.L. Graham, B. Rothschild, J.H. Spencer, Ramsey Theory, Wiley, New-York, 1980.

6



[GS] A. Goldberg and M. Sipser, Compression and Ranking, Seventeenth ACM Symposium on

the Theory of Computing, 1985, pp 440-448.

[T] G. Turan, On the succinct representation of graphs, Discrete Applied Math, Vol 15, No.

2, May 1984, pp. 604 { 618.

7


