Secret Sharing for NP

Ilan Komargodski Moni Naor Eylon Yogev

Weizmann Institute of Science

Asiacrypt, Dec 11th 2014

Secret Sharing

- Dealer has secret S.
- Gives to users $P_{1}, P_{2}, \ldots, P_{n}$ shares $\Pi_{1}, \Pi_{2}, \ldots, \Pi_{n}$. - The shares are a probabilistic function of S.
- A subset of users X is either authorized or unauthorized.

Goal:

- An authorized X can reconstruct S based on their shares.
- An unauthorized X cannot gain any knowledge about S.
- Introduced by Blakley and Shamir in the late 1970s.
- Threshold secret sharing

Example - Threshold

- Shamir's famous example - Threshold Secret Sharing
- Authorized: any k out of the n parties.
- Unauthorized: any set of less than k parties.
- Solution: based on a random degree k-1 polynomial q, s.t.:
$-q(0)=S$.
$-\Pi_{i}=q(i)$.

Example $\mathrm{k}=3$:

Access Structures

Access Structure M:

- An indicator function of the authorized subsets.
- To make sense: M should be monotone: if $X^{\prime} \subset X$ and $M\left(X^{\prime}\right)=1$ then $M(X)=1$

Perfect secret sharing scheme:

- For any two secrets S_{0}, S_{1}, subset X s.t. $M(X)=0$:

$$
\operatorname{Dist}\left(\Pi\left(X, S_{0}\right)\right)=\operatorname{Dist}\left(\Pi\left(X, S_{1}\right)\right)
$$

Or equivalently: for any distinguisher A :

$$
\left|\operatorname{Pr}\left[A\left(\Pi\left(X, S_{0}\right)\right)=1\right]-\operatorname{Pr}\left[A\left(\Pi\left(X, S_{1}\right)\right)=1\right]\right|=0
$$

The complexity of the scheme: the size of the largest share.

Example - undirected connectivity

- Parties correspond to edges in a graph G.
- Two special nodes: s,t.
- Authorized sets: those graphs containing a path from sto t.
- Solution:
- Give vertices random values r_{1}, \ldots, r_{n}.
- Set $r_{t}=S \oplus r_{s}$.
- For edge $\Pi_{u, v}=r_{u} \oplus r_{v}$.
- Reconstruction:
- XOR all shares.

What about directed connectivity?
0

Known Results

Theorem [lto, Saito and Nishizeki 1987] :
For every M there exists a perfect secret sharing scheme

- might have exponential size shares in the number of parties.

Theorem [Benaloh-Leichter 1988] :
If M is a monotone formula Φ : there is a perfect secret sharing scheme where the size of a share is proportional to $|\Phi|$.
Karchmer-Wigderson generalized this results to monotone span programs [1993]

Major question: can we prove a lower bound on the size of the shares for some access structure?

- Even a non constructive result is interesting

Computational Secret Sharing

- Perfect secret sharing scheme:

Any unauthorized subset X gains absolutely no information:

- For any A, secrets S_{0}, S_{1}, subset X s.t. $M(X)=0$:

$$
\left|\operatorname{Pr}\left[A\left(\Pi\left(X, S_{0}\right)\right)=1\right]-\operatorname{Pr}\left[A\left(\Pi\left(X, S_{1}\right)\right)=1\right]\right|=0 .
$$

- Computational secret sharing scheme:

Any unauthorized subset X gains no useful information:
$\Pi\left(X, S_{0}\right) \approx \Pi\left(X, S_{1}\right)$
In the indistinguishability of encryption style:
For any PPT A, two secrets S_{0}, S_{1}, subset X s.t. $M(X)=0$:

$$
\left|\operatorname{Pr}\left[A\left(\Pi\left(X, S_{0}\right)\right)=1\right]-\operatorname{Pr}\left[A\left(\Pi\left(X, S_{1}\right)\right)=1\right]\right|<\text { neg }
$$

This is a non-uniform definition

Computational Secret Sharing

Theorem [Yao~89]:

If M can be computed by a monotone poly-size circuit C then:
There is a computational secret sharing scheme for \mathbf{M}.

- Size of a share is proportional to $|C|$.
- Assuming one-way functions.

Construction similar to Yao's garbled circuit

- What about monotone access structure that have small non-monotone circuits?
- Matching:
- Parties correspond to edges in the complete graph.
- Authorized sets: the subgraphs containing a perfect matching.

Open problem: do all monotone functions in P have computational secret sharing schemes?

Secret Sharing for NP Rudich circa 1990

What about going beyond P ?

- Efficient verification when the authorized set proves that it is authorized
- Provide a witness

Example:

- Parties correspond to edges in the complete graph.
- Authorized sets: subgraphs containing a Hamiltonian Cycle.
- The reconstruction algorithm should be provided with the witness: a cycle.

Secret Sharing and Oblivious Transfer

Theorem:
If one-way functions exist and a computationally secret sharing scheme for the Hamiltonian problem exists then:

Oblivious Transfer Protocols exist.

- In particular Minicrypt = Cryptomania
- Construction is non-blackbox
- No hope under standard assumptions for perfect or statistical scheme for Hamiltonicity

Witness Encryption [Garg, Gentry, Sahai, Waters 2013]

- A witness encryption $\left(E n c_{L}, D e c_{L}\right)$ for a fenguage $L \in N P$:
- Encrypt message m relative to string $y: c t=E n c_{L}(x, m)$
- For any $y \in L$: let $c t=E n c_{L}(y, m)$ and let w be any witness for x. Then $\operatorname{Dec}_{L}(c t, w)=m$.
- For any y $\notin L: c \dagger=E n c_{L}(y, m)$ computationally hides the message m .
- Gave a candidate construction for witness encryption.
- Byproduct: a candidate construction for secret sharing for a specific language in NP (Exact Cover).

Multilinear Maps, Indistinguishability Obfuscation (iO)...

Our Results

If one-way functions exist then:

- Secret Sharing for NP and Witness Encryption for NP are (existentially) equivalent.
- If there is a secret sharing scheme for one NP-complete language, then there is one for all languages in NP.

Definition of secret sharing for NP

Let M be a monotone access structure in NP.

- Completeness:

For any X s.t. $M(X)=1$, any witness w (for X), and any secret S :

$$
\operatorname{recon}(\Pi(X, S), w)=S
$$

- All operations polytime

Definition of secret sharing for NP: Security

- Let M be a monotone access structure in NP.

Security:
For any adversary $A=\left(A_{\text {samp }}, A_{\text {dist }}\right)$ such that $A_{\text {samp }}$ chooses two secrets S_{0}, S_{1} and a subset X it holds that:

$$
\begin{aligned}
& \mid \operatorname{Pr}\left[M(X)=0 \wedge A_{\text {dist }}\left(\Pi\left(S_{0}, X\right)\right)=1\right]- \\
& \operatorname{Pr}\left[M(X)=0 \wedge A_{\text {dist }}\left(\Pi\left(S_{1}, X\right)\right)=1\right] \mid<\text { neg. }
\end{aligned}
$$

This is a static and uniform definition

- A weaker possible definition is to require that X is always unauthorized.

The Construction

For access structure $M \in N P$.

- Define a new language $M^{\prime} \in N P$:
- Let c_{1}, \ldots, c_{n} be n strings.
- Then $M^{\prime}\left(c_{1}, \ldots, c_{n}\right)=1$ iff $M(X)=1$ where:

$$
X_{i}=\left\{\begin{array}{l}
1 \text { if exist } r_{i} \text { s.t. } c_{i}=\operatorname{com}\left(i, r_{i}\right) \\
0 \text { otherwise }
\end{array}\right.
$$

Computationally hiding: $\operatorname{com}\left(x_{1}\right) \approx \operatorname{com}\left(x_{2}\right)$
Perfect Binding: $\operatorname{com}\left(x_{1}\right)$ and $\operatorname{com}\left(x_{2}\right)$ have disjoint support.
Can be constructed from one-way functions in the CRS model with high probability.

The Construction...

Dealer(S):

- Choose r_{1}, \ldots, r_{n} uniformly at random
- For $i \in[n]$, compute $c_{i}=\operatorname{com}\left(i, r_{i}\right)$.

- Compute $c t=$ WE.Enc $_{M}\left(\left(c_{1}, \ldots, c_{n}\right), S\right)$.
- Set $\Pi_{i}=\left(r_{i}, c \dagger\right)$.

Reconstruction: authorized subset X of parties: $M(X)=1$ and witness w witness for X.

- Witness for M^{\prime} consists of openings r_{i} such that $X_{i}=1$.
- Set $w^{\prime}=\left(r_{1}^{\prime}, \ldots, r_{n}^{\prime}, w\right)$.
- Compute S = WE. Dec ${ }_{M}\left(c t, w^{\prime}\right)$.

Security

Suppose an adversary $A=\left(A_{\text {samp }}, A_{\text {dist }}\right)$ breaks the system.

- Construct an algorithm D that breaks the commitment scheme:
- For a list of commitments c_{1}, \ldots, c_{n} distinguish between two cases:
- They are commitments of $1, \ldots, n$.
- They are commitments of $n+1, \ldots, 2 n$.

Open Problems

- Adaptive choice of the set X . Brakerski: diO
- Perfect Secret-Sharing Scheme for directed connectivity.
- How to cope with the fan-out
- Computational Secret Sharing Scheme for Matching.
- How to cope with negation?
- A secret sharing scheme for P based on less heavy cryptographic machinery.

