Secret Sharing for NP

Ilan Komargodski Moni Naor Eylon Yogev

Weizmann Institute of Science

Asiacrypt, Dec 11th 2014

Secret Sharing

 $\Pi(X,S)$

- Dealer has secret S.
- Gives to users $P_1, P_2, ..., P_n$ shares $\Pi_1, \Pi_2, ..., \Pi_n$.
 - The shares are a probabilistic function of S.
- A subset of users X is either authorized or unauthorized.

Goal:

- An authorized X can reconstruct S based on their shares.
- An unauthorized X cannot gain any knowledge about S.
- Introduced by Blakley and Shamir in the late 1970s.
 - Threshold secret sharing

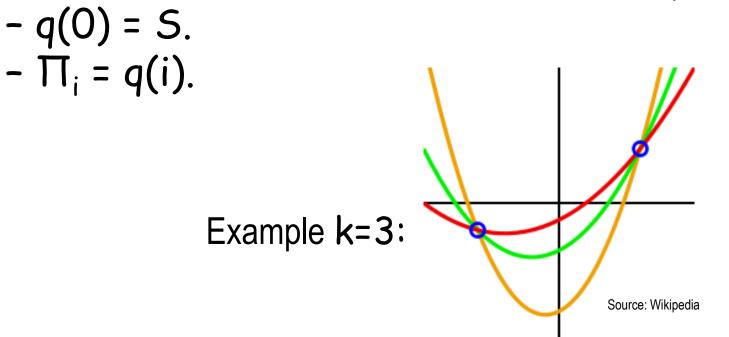
Source: Wikipedia

authorized

unauthorized

Example - Threshold

- Shamir's famous example Threshold Secret Sharing
 - Authorized: any k out of the n parties.
 - Unauthorized: any set of less than k parties.
- Solution: based on a random degree k-1 polynomial q, s.t.:



Access Structures

Access Structure M:

- An indicator function of the authorized subsets.

To make sense: M should be monotone:
 if X' ⊂ X and M(X')=1 then M(X)=1

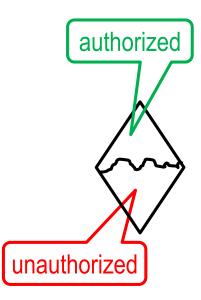
Perfect secret sharing scheme:

For any two secrets S₀, S₁, subset X s.t. M(X)=0:

 $Dist(\Pi(X,S_0)) = Dist(\Pi(X,S_1)).$

Or equivalently: for any distinguisher A: $Pr[A(\Pi(X,S_0)) = 1] - Pr[A(\Pi(X,S_1)) = 1]|=0$

The **complexity** of the scheme: the **size** of the largest share. 4



Example – undirected connectivity

- Parties correspond to edges in a graph G.
- Two special nodes: **s**,**t**.
- Authorized sets: those graphs containing a path from s to t.
- Solution:
 - Give vertices random values $r_1, ..., r_n$.
 - Set $r_t = S \oplus r_s$.
 - For edge $\Pi_{u,v}$ = $r_u \oplus r_v$.
- Reconstruction:
 - XOR all shares.

What about directed connectivity?

Ð

5 E

W Y Z

Ð

 $r_s \oplus r_u \quad r_v \otimes r_v$

Known Results

Theorem [Ito, Saito and Nishizeki 1987] : For every **M** there exists a perfect secret sharing scheme

- might have exponential size shares in the number of parties.

Theorem [Benaloh-Leichter 1988] :

If **M** is a **monotone formula** Φ : there is a perfect secret sharing scheme where the size of a share is proportional to $|\Phi|$.

Karchmer-Wigderson generalized this results to **monotone span programs** [1993]

Major question: can we prove a lower bound on the size of the shares for *some* access structure?

- Even a non constructive result is interesting

Computational Secret Sharing

• **Perfect** secret sharing scheme:

Any unauthorized subset X gains absolutely **no** information:

- For any A, secrets S_0 , S_1 , subset X s.t. M(X)=0: $|Pr[A(\Pi(X,S_0)) = 1]-Pr[A(\Pi(X,S_1)) = 1]|=0.$
- **Computational** secret sharing scheme:

Any unauthorized subset X gains no **useful** information: $\Pi(X,S_0) \approx \Pi(X,S_1)$

In the **indistinguishability** of encryption style:

For any PPT A, two secrets S_0 , S_1 , subset X s.t. M(X)=0: $|Pr[A(\Pi(X,S_0)) = 1] - Pr[A(\Pi(X,S_1)) = 1]| < neg$

Computational Secret Sharing

Theorem [Yao~89]:

If **M** can be computed by a **monotone** poly-size circuit **C** then:

There is a **computational** secret sharing scheme for **M**.

- Size of a share is proportional to |C|.
- Assuming one-way functions.

Construction similar to Yao's garbled circuit

- What about monotone access structure that have small non-monotone circuits?
 - Matching:
 - Parties correspond to edges in the complete graph.
 - Authorized sets: the subgraphs containing a perfect matching.

Open problem: do all monotone functions in P have computational secret sharing schemes?

Secret Sharing for NP

Rudich circa 1990

What about going beyond P?

- Efficient verification when the authorized set proves that it is authorized
 - Provide a witness

Example:

- Parties correspond to edges in the **complete graph**.
- Authorized sets: subgraphs containing a Hamiltonian Cycle.
- The reconstruction algorithm should be provided with the witness: a cycle. 9

Secret Sharing and Oblivious Transfer

Theorem:

If one-way functions exist and a computationally secret sharing scheme for the Hamiltonian problem exists then:

Oblivious Transfer Protocols exist.

- In particular Minicrypt = Cryptomania
- Construction is non-blackbox
- No hope *under standard assumptions* for perfect or statistical scheme for Hamiltonicity

Witness Encryption Includes y [Garg, Gentry, Sahai, Waters 2013]

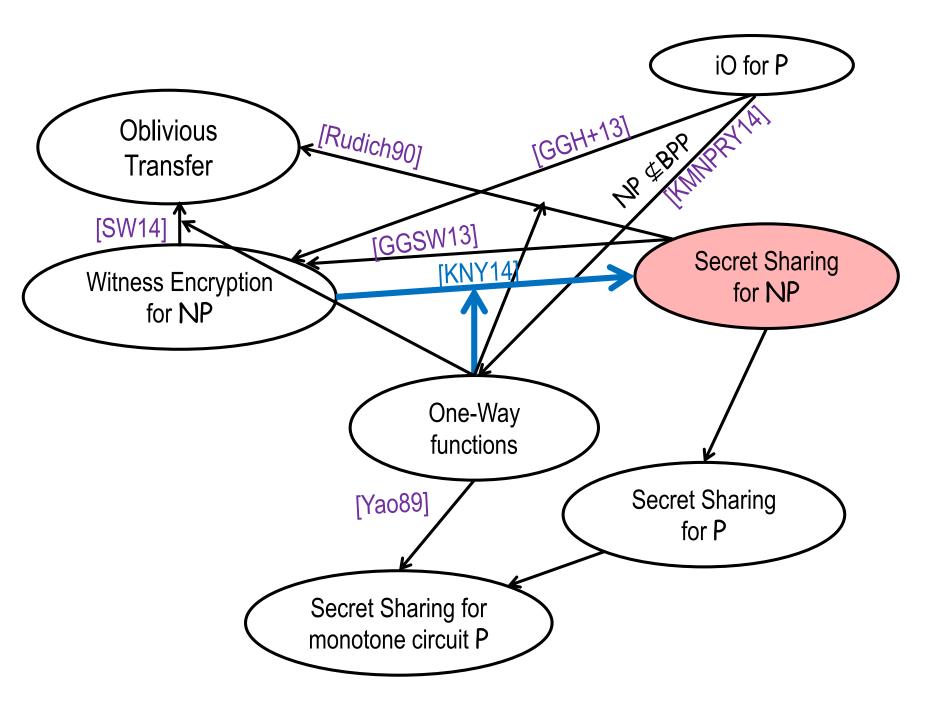
- A witness encryption (Enc_L , Dec_L) for a language $L \in NP$:
 - Encrypt message m relative to string y: cf = Enc_L(x,m)
 - For any y ∈ L: let ct = Enc_L(y,m) and let w be any witness for x. Then Dec_L(ct,w) = m.
 - For any y ∉ L: ct = Enc_L(y,m) computationally hides the message m.
- Gave a candidate construction for witness encryption.
- Byproduct: a candidate construction for secret sharing for a specific language in NP (Exact Cover).

Multilinear Maps, Indistinguishability Obfuscation (iO)...

Our Results

If one-way functions exist then:

- Secret Sharing for NP and Witness Encryption for NP are (existentially) equivalent.
- If there is a secret sharing scheme for one NP-complete language, then there is one for all languages in NP.



Definition of secret sharing for NP

Let **M** be a monotone access structure in **NP**.

Completeness:

For any X s.t. M(X)=1, any witness w (for X), and any secret S:

 $recon(\Pi(X,S),w) = S.$

- All operations polytime

Definition of secret sharing for NP: Security

• Let **M** be a monotone access structure in **NP**.

Security:

For any adversary $A = (A_{samp}, A_{dist})$ such that A_{samp} chooses two secrets S_0, S_1 and a subset X it holds that: $|Pr[M(X)=0 \land A_{dist}(\Pi(S_0,X)) = 1] - Pr[M(X)=0 \land A_{dist}(\Pi(S_1,X)) = 1]| < neq.$

This is a static and uniform definition

• A weaker possible definition is to require that X is **always** unauthorized.

The Construction

For access structure $M \in NP$.

- Define a new language $M' \in NP$:
 - Let $c_1, ..., c_n$ be n strings.
 - Then $M'(c_1,...,c_n) = 1$ iff M(X) = 1 where:

$$X_{i} = \begin{cases} 1 \text{ if exist } r_{i} \text{ s.t. } c_{i} = com(i, r_{i}) \\ 0 \text{ otherwise} \end{cases}$$

Computationally hiding: $com(x_1) \approx com(x_2)$ Perfect Binding: $com(x_1)$ and $com(x_2)$ have disjoint support.

Can be constructed from one-way functions in the CRS model with high probability.

The Construction... String y Dealer(S):

- Choose $r_1, ..., r_n$ uniformly at random.

- For $i \in [n]$, compute $c_i = com(i, r_i)$.
- Compute $ct = WE.Enc_{M'}((c_1, ..., c_n), S).$

Reconstruction: authorized subset X of parties: M(X)=1 and witness w witness for X.

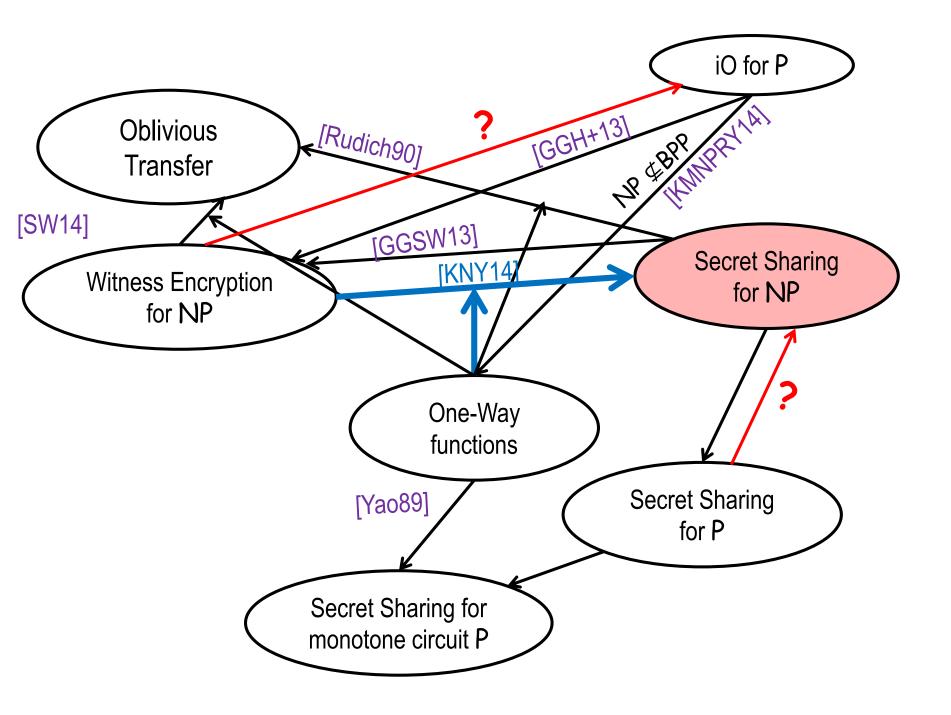
- Witness for **M**' consists of openings r_i such that $X_i=1$.
- Set w'=($r'_1, ..., r'_n, w$).
- Compute $S = WE.Dec_{M'}(ct,w')$.

Message m

Security

Suppose an adversary $A = (A_{samp}, A_{dist})$ breaks the system.

- Construct an algorithm D that breaks the commitment scheme:
 - For a list of commitments $c_1, ..., c_n$ distinguish between two cases:
 - They are commitments of 1, ..., n.
 - They are commitments of n+1, ..., 2n.



Open Problems

Brakerski: diO

- Adaptive choice of the set X.
- Perfect Secret-Sharing Scheme for directed connectivity.
 How to cope with the fan-out
- Computational Secret Sharing Scheme for Matching.
 How to cope with negation?
- A secret sharing scheme for P based on less heavy cryptographic machinery.