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Abstract

Searchable symmetric encryption (SSE) enables a client to store a database on an untrusted
server while supporting keyword search in a secure manner. Despite the rapidly increasing interest
in SSE technology, experiments indicate that the performance of the known schemes scales badly
to large databases. Somewhat surprisingly, this is not due to their usage of cryptographic tools,
but rather due to their poor locality (where locality is defined as the number of non-contiguous
memory locations the server accesses with each query). The only known schemes that do not
suffer from poor locality suffer either from an impractical space overhead or from an impractical
read efficiency (where read efficiency is defined as the ratio between the number of bits the server
reads with each query and the actual size of the answer).

We construct the first SSE schemes that simultaneously enjoy optimal locality, optimal space
overhead, and nearly-optimal read efficiency. Specifically, for a database of size N , under the
modest assumption that no keyword appears in more than N1−1/ log logN documents, we con-
struct a scheme with read efficiency Õ(log logN). This essentially matches the lower bound of
Cash and Tessaro (EUROCRYPT ’14) showing that any SSE scheme must be sub-optimal in
either its locality, its space overhead, or its read efficiency. In addition, even without making
any assumptions on the structure of the database, we construct a scheme with read efficiency
Õ(logN).

Our schemes are obtained via a two-dimensional generalization of the classic balanced al-
locations (“balls and bins”) problem that we put forward. We construct nearly-optimal two-
dimensional balanced allocation schemes, and then combine their algorithmic structure with
subtle cryptographic techniques.
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1 Introduction

Outsourcing data storage to remote servers is an extremely useful technology that has been adopted
both by large organizations and by individual users. It offers great benefits, but at the same time,
raises various concerns when dealing with sensitive data. In particular, in order to preserve the
confidentially of the data against an untrusted server, user-side symmetric encryption methods
are typically employed prior to storing the data. As a result, operations as basic as keyword
search become extremely expensive and sometimes even infeasible. This problem has motivated the
cryptographic community to develop encryption methods that enable to search over symmetrically-
encrypted data while not revealing sensitive information.

A searchable symmetric encryption (SSE) scheme [SWP00, CGK+06] is a mechanism that allows
a client to store data on an untrusted server and later perform keyword searches: Given a keyword
w, the client should be able to retrieve all documents that contain w. First, the client encrypts its
database and uploads it to the server. The client can then repeatedly query the server with various
keywords. Informally, the security requirement asks that the server does not learn any information
about keywords for which the client did not issue any queries.

A very productive line of research (see, for example, [SWP00, Goh03, CM05, CGK+06, CK10,
vLSD+10, CGK+11, KO12, KPR12, CJJ+13, KO13, KP13, CJJ+14, CT14, CGP+15] and the ref-
erences therein) has been devoted to the construction of searchable symmetric encryption schemes.
However, implementations and experiments with real-world databases [CJJ+13] indicate that the
performance of the known schemes is quite disappointing and scales badly to large databases. Some-
what surprisingly, it turns out that the main bottleneck is in fact not the cryptographic processing
of the data, but rather lower-level issues resulting from the inefficient memory layouts required by
these schemes.

Specifically, the common drawback in the known schemes is poor locality: the server has to
access a rather large number of non-contiguous memory locations with each query. The only known
schemes that do not suffer from poor locality suffer either from an impractical space overhead (i.e.,
their encrypted databases are much larger than the original databases), or from an impractical read
efficiency (i.e., they read much more data than needed for answering each query).1

This state of affairs naturally poses the challenge of constructing a searchable symmetric en-
cryption scheme that simultaneously enjoys optimal space overhead, locality, and read efficiency.
However, Cash and Tessaro [CT14] elegantly proved that obtaining such optimal efficiency guaran-
tees is in fact impossible: any scheme must be sub-optimal in either its space overhead, its locality,
or its read efficiency. Cash and Tessaro also presented a scheme that significantly improved the
trade-off between the space overhead, locality, and read efficiency of the previously known schemes.
However, although their scheme offers optimal read efficiency, it is far from optimal in both its space
overhead and locality (see Table 1). This leads to the following fundamental problem, introducing
a subtle combination of cryptographic and algorithmic challenges:

Can we construct a searchable symmetric encryption scheme that
simultaneously enjoys nearly-optimal space overhead, locality, and read efficiency?

1In this work we rely on the notions of locality and read efficiency as formalized by Cash and Tessaro [CT14].
Specifically, the locality of a scheme is the maximal number of non-contiguous memory accesses that the server
performs with each query, and the read efficiency of a scheme is the ratio between the number of bits the server reads
with each query and the actual size of the answer. We refer the reader to Section 2.1 for the formal definitions.
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1.1 Our Contributions

We construct searchable symmetric encryption schemes that simultaneously enjoy nearly-optimal
space overhead, locality, and read efficiency. Our main results are obtained by basing searchable
symmetric encryption on a two-dimensional generalization of the classic balanced allocations prob-
lem (also known as the “balls and bins” problem) that we put forward. We construct efficient
two-dimensional balanced allocation schemes, and by combining them with subtle cryptographic
techniques we obtain significant improvements over the previously known searchable symmetric
encryption schemes.

Following the line of research on searchable symmetric encryption, we assume that a database is
represented as a collection DB = {DB(w1), . . . ,DB(wnW

)}, where w1, . . . , wnW
are distinct keywords,

and DB(w) is the list of all documents (or document identifiers) that contain the keyword w. We
denote by N =

∑nW
i=1 |DB(wi)| the size of the database, and for each keyword w we denote by

nw = |DB(w)| the number of documents containing w. We consider the standard unit-cost word-
RAM model, and assume for simplicity that keywords and document identifiers are represented
using a constant number of machine words (thus we measure space usage in machine words)2.

We construct three searchable symmetric encryption schemes whose efficiency guarantees are
summarized in Theorem 1.1 and in Table 1.3 Whereas our first and second schemes are based
on the above mentioned two-dimensional balanced allocations problem, our third scheme follows a
different approach. For our third scheme we show that the recent scheme of Cash and Tessaro [CT14]
can be modified to have optimal locality without hurting its space overhead or read efficiency.

Theorem 1.1. Assuming the existence of one-way functions, there exist searchable symmetric en-
cryption schemes offering the following guarantees for databases of size N :

1. Space O(N), locality O(1), and read efficiency Õ(logN) without any assumptions on the struc-
ture of the database.

2. Space O(N), locality O(1), and read efficiency Õ(log logN) assuming that no keyword appears

in more than N
1− 1

log logN documents.

3. Space O(N logN), locality O(1), and read efficiency O(1) without any assumptions on the
structure of the database.

In Table 1 we compare the efficiency guarantees of our schemes to those of the previously known
schemes that have less than a polynomial space overhead4. Compared to those schemes, our first
and second schemes show that optimal space and locality can be achieved together with a nearly-
optimal read efficiency. Our third scheme shows that by slightly increasing the space overhead, it is
possible to achieve optimal locality and read efficiency.

1.2 Related Work

Searchable symmetric encryption. The notion of searchable symmetric encryption was put
forward by Song, Wagner and Perrig [SWP00] who suggested several practical constructions. Formal
notions of security and constructions satisfying them were later provided by Curtmola, Garay,
Kamara, and Ostrovsky [CGK+06, CGK+11]. Additional work in this line of research developed

2The unit cost word-RAM model is considered the standard model for analyzing the efficiency of data structures
(see, for example, [DP08, Hag98, HMP01, Mil99, PP08] and the references therein).

3Throughout this paper, for any function f(n) we let Õ(f(n)) denote O(f(n)(log f(n))c) for some constant c.
4There are various schemes (e.g. [CGK+06, CK10, vLSD+10, KO12, KP13]) that have a polynomial space overhead,

and offer constant locality and read efficiency. However, for concreteness we compare our schemes only to those with
a potentially practical space overhead.
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Scheme Space Locality Read Efficiency

[CGK+06, KPR12, CJJ+13] O(N) O(nw) O(1)

[CT14] O(N logN) O(logN) O(1)

This work I O(N) O(1) Õ(logN)

This work II O(N) O(1) Õ(log logN)

This work III O(N logN) O(1) O(1)

Lower bound [CT14] ω(N) O(1) O(1)

Table 1: The efficiency guarantees of our schemes and of the previously known schemes that have less than
a polynomial space overhead. Recall that we denote by N the size of the underlying database, and by nw the
number of documents that contain each keyword w (note that nw may be as large as N). The efficiency of
our second scheme is based on the modest assumption that no keyword appears in more than N1−1/ log logN

documents.

searchable symmetric encryption schemes with various efficiency properties [Goh03, CM05, CK10,
vLSD+10, CT14], support for data updates [KPR12, KP13, CJJ+14], authenticity [KO13], and
support for more advanced searches [CJJ+13].

The known constructions can be roughly divided into two, somewhat orthogonal, underlying
approaches. The first approach (see, for example, [CGK+06, KPR12, CJJ+13] and the references
therein) provides schemes with linear space and constant read efficiency, but with very poor locality.
Given a database DB = {DB(w1), . . . ,DB(wnW

)} of size N , the idea underlying this approach is
to allocate an array of size roughly N , and to uniformly map the N elements of the database into
the N entries of the array (one element per entry). For efficiently recovering a list DB(w) given a
keyword w (i.e., recovering the list of documents that contain w), each document identifier in the
list DB(w) is stored in the array together with a pointer to the next document identifier in the list.
Thus, since the elements are uniformly mapped into the array, recovering DB(w) requires the server
to access essentially nw = |DB(w)| random locations in the array.

The second approach (see, for example, [CGK+06, CK10, vLSD+10, CGK+11, KO13, KP13]
and the references therein) provides schemes with optimal locality and read efficiency, but with a
significant space overhead. Given a database DB = {DB(w1), . . . ,DB(wnW

)} of size N , the idea
underlying this approach is to allocate a sufficiently large array, and to uniformly map each list
DB(w) into a contiguous interval of length nw = |DB(w)| in the array, without any overlaps between
different lists. For efficiently recovering a list DB(w) given a keyword w, the server needs to access
only a single random location, and then read nw consecutive entries (thus resulting in optimal
locality and read efficiency). However, since the locations of the lists in the array reveal information
of the structure of the underlying database, some padding must be applied for hiding information
on the lengths of the lists (e.g., padding each list according to the length of the longest list), thus
resulting in a polynomial space overhead. Very recently, Cash and Tessaro showed that the space
overhead can in fact be reduced from polynomial to logarithmic, at the cost of increasing the locality
from constant to logarithmic (see Table 1).

As mentioned above, the work of Cash and Tessaro [CT14] explored the trade-off between locality,
space overhead, and read efficiency. More specifically, instead of considering read efficiency directly,
they considered the measure of overlapping reads, where a scheme has α-overlapping reads if reads
for a new search overlaps in at most α bits with all previous reads. As noted by Cash and Tessaro,
a (somewhat weak) read efficiency requirement is implicit in the condition on overlapping reads,
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and they proved a super-linear space lower bound that ties together locality and overlapping reads
(see [CT14] for further details).

Balanced allocations. Our two-dimensional balanced allocations problem is a novel generaliza-
tion of the classical balanced allocations problem (the “balls and bins” problem), and may be of
independent interest. The classical balanced allocations problem has seen a large number of gener-
alizations over the years, and we refer the reader to [MU05, MRS00] for an overview of this problem
and of some of its generalizations. A multi-dimensional generalization of this problem was first intro-
duced by Broder and Mitzenmacher [BM05]. They considered that task of throwing balls into bins,
where each ball is a random D-dimensional 0-1 vector of weight f (i.e., each vector has exactly f
non-zero entries, and is chosen uniformly from all

(
D
f

)
such vectors). Broder and Mitzenmacher were

interested in the average load in each dimension for each bin. The multi-dimensional generalization
that we consider, as we discuss in Section 1.3, seems completely different.

1.3 Overview of Our Approach

The problem of search on encrypted data offers an interesting challenge in the interface between
data structure design and cryptography. We provide an overview of the main ideas underlying our
schemes and in order to emphasize the news ones, we focus here on the first and second schemes,
as these are based on a completely new approach for constructing searchable symmetric encryption
schemes. Our third scheme follows a more standard approach (based on that of Cash and Tessaro
[CT14]), and the reader is referred to Section 5 for the main ideas underlying that scheme.

As discussed in Section 1.2, the known schemes can be roughly divided into two, somewhat
orthogonal, underlying approaches. The first approach provides schemes with linear space and
constant read efficiency, but with very poor locality. The second approach provides schemes with
optimal locality and read efficiency, but with a significant space overhead. Our approach can be
viewed as a subtle mixture of these two approaches that enables us to enjoy their advantages while
mitigating their disadvantages.

Specifically, given a database DB = {DB(w1), . . . ,DB(wnW
)}, recall that the first approach com-

pletely ignores the structure of the lists, and places each document in a random location (leading
to locality nw = |DB(w)|). The second approach preserves the structure of the lists and places the
documents of each list in consecutive locations (leading to optimal locality and read efficiency, but
with an impractical space overhead). Our approach preserves the structure of the lists, but does
not place documents from the same list in consecutive locations. Instead, we make sure that docu-
ments from the same list are placed sufficiently near each other, yet in a random manner allowing
documents from other lists to be placed between them. This flexibility enables us to enjoy constant
locality in linear space, while only slightly affecting the read efficiency.

In what follows we begin by describing a one-choice scheme that follows this approach, and
then describe a more efficient two-choice scheme. Throughout the exposition, we focus both on the
algorithmic aspect of our schemes, introducing the two-dimensional balanced allocations problem,
and on their cryptographic aspect.

Warm-up: A one-choice scheme. Given a database DB = {DB(w1), . . . ,DB(wnW
)} of size N ,

our one-choice scheme allocates an array of “bins”, and constructs an encrypted database as follows:
For each keyword w we compute a hash value h(w), and place the ith document from the list DB(w)
in the bin h(w) + i − 1. That is, the first document containing w is placed in the bin h(w), the
second document containing w is placed in the bin h(w) + 1, and so on.
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Once this process is completed for all keywords, note that each bin may contain more than a
single document. Specifically, each bin may contain several documents corresponding to different
keywords. This can naturally be viewed as a two-dimensional generalization of the classic “balls and
bins” problem, where one dimension consists of the keywords and the additional dimension consists
of the structure of their lists (i.e., the lengths of their lists).

Equipped with this view of the process, we are interested in upper bounding its maximal load
(that is, the maximal number of documents contained in each bin). However, this random pro-
cess introduces new challenges when compared to its one-dimensional variant: The locations of
the documents in the array are not independent. Specifically, given that a certain bin has many
documents, it is rather likely that its adjacent bins also have many documents. Nevertheless, by
carefully analyzing the dependencies that the lists introduce, we are able to bound its maximal
load. Specifically, we show that for any database of size N , if we allocate an array of N/Õ(logN)
bins each of size Õ(logN) (we make sure that the overall space is linear in N), then with all but a
negligible probability there are no overflowing bins.

This enables us to transform this algorithmic template into a searchable encryption scheme
as follows. First, we pad each bin to contain exactly Õ(logN) documents by adding “dummy”
documents when needed, and we uniformly shuffle the documents in each bin. Then, the documents
in each list DB(w) are each encrypted using an encryption key that is derived from the keyword
w (say, by using a pseudorandom function that also generates the hash value h(w)). We use an
encryption scheme that produces pseudorandom ciphertexts, and has an elusive and verifiable range
(see Section 2.2).

In terms of functionality, by providing the server with the value h(w) and with the decryption
key corresponding to w, the server can recover the entire list DB(w) as follows. The server goes
to the bin h(w), and tries decrypting all of the ciphertexts that are stored there. Since we use an
encryption scheme with an elusive and verifiable range, the server will be successful in decrypting
exactly one of these ciphertexts, and this is the first document that contains w. The server then
proceeds to the bin h(w) + 1 and so on until it reaches a bin in which no ciphertext decrypts.

In terms of efficiency, the locality is optimal: The server goes to the bin h(w), and from that
point it only uses contiguous memory access. In addition, the read efficiency is Õ(logN), since for
retrieving each document the server reads a bin containing Õ(logN) encrypted documents. This
yields a scheme with space O(N), locality O(1), and read efficiency Õ(logN).

Finally, the security of the scheme is based on the observation that the choices of bins for
documents from different lists are statistically-close to being completely independent. Therefore,
the access pattern that the server sees (i.e., the values h(w) for different keywords) does not reveal
any unnecessary information on the database.

An exponential improvement: A two-choice scheme. In the classic balanced allocations
problem it is well known that the “two-choice paradigm” [ABK+99, MU05] exponentially improves
the maximal load for various ranges of the parameters5. This motivates us to consider a two-choice
generalization of the above-described one-choice scheme.

Given a database DB = {DB(w1), . . . ,DB(wnW
)} of size N , our two-choice scheme allocates an

array of bins and constructs an encrypted database as follows. For each keyword w we compute two
independent hash values, h1(w) and h2(w), and place all documents containing w in consecutive
bins (as in our one-choice scheme) starting either from the bin h1(w) or from the bin h2(w) (but

5Roughly speaking, when throwing about N balls into N bins by placing each ball in the currently least loaded bin
out of two possible choices, the maximal load is O(log logN) with high probability (as opposed to a maximal load of
Ω(logN/ log logN) in the one-choice process).
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not from both). We choose between h1(w) and h2(w) as the starting point based on the maximal
load of the bins in the relevant range (i.e., we choose the one with the smaller maximal load at the
time of insertion)6.

This two-choice variant of our two-dimensional balanced allocations problem turns to be sig-
nificantly more challenging to analyze (even when compared to the two-choice one-dimensional
problem). Nevertheless, we are able to show that under the modest assumption that no keyword
appears in more than N1−1/ log logN documents, we indeed obtain an exponential improvement: if
we allocate an array of N/Õ(log logN) bins each of size Õ(log logN) (we again make sure that
the overall space is linear in N), then with all but a negligible probability there are no overflowing
bins. Moreover, we show that the assumption that no keyword appears in more than N1−1/ log logN

documents is in fact essential for obtaining such an exponential improvement.
Our analysis builds upon and generalizes the layered induction technique of Azar et al. [ABK+99].

Since our scheme places all elements of a list according to two random choices that are made
for the entire list (and not for each element), this process introduces many dependencies between
elements, as well as various dependencies between, say, the loads of any two consecutive bins. Such
dependencies make the process significantly more challenging to analyze.

We once again to transform this algorithmic template into a searchable encryption scheme. First,
we pad each bin to contain exactly Õ(log logN) documents by adding “dummy” documents when
needed, and we uniformly shuffle the documents in each bin. Then, the documents in each list
DB(w) are each encrypted using an encryption key that is derived from the keyword w (by using a
pseudorandom function as above). As in our one-choice scheme, we use an encryption scheme that
produces pseudorandom ciphertexts, and has an elusive and verifiable range.

In terms of functionality, note that by providing the server with the values h1(w) and h2(w), as
well as with the number nw of documents that contain the keyword w, the server can simply send
back to the client the content of the nw consecutive bins starting from the location h1(w) and the
content of the nw consecutive bins starting from the location h2(w). The client can then decrypt
the content of these bins and recover the list DB(w) using a decryption key that is derived from the
keyword w. We note that we use an additional linear-space hash table for enabling the server to
recover the value nw on its own, and we emphasize that in this scheme we do not allow the server
to decrypt the content of the bins on its own. This is due to the fact that whether the list DB(w)
is stored starting from h1(w) or h2(w) may reveal unnecessary information on the structure of the
database.

In terms of efficiency, as in our one-choice scheme we obtain optimal locality in linear space, but
here we improve the read efficiency from Õ(logN) to Õ(log logN): for retrieving each document
the server reads the content of two bins, each of which contains Õ(log logN) encrypted documents.

Finally, the security of the scheme is based on the observation that the two possible starting
locations of documents from different lists in the database are statistically-close to being completely
independent. Their actual starting locations are far from being independent, but this information
is not revealed to the server since it cannot decrypt the content of the bins. Therefore, the access
pattern that the server sees (i.e., the values h1(w) and h2(w) for various keywords w) does not reveal
any unnecessary information on the database.

1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we introduce the formal definition
of symmetric searchable encryption schemes, as well as present various tools and tail bounds that

6In fact, our actual allocation rule is a bit more subtle, and we refer the reader to Section 3.2 for the specific details.
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are used in our constructions and proofs. Then, in Section 3 we put forward the two-dimensional
balanced allocation problem, and then present and analyze a one-choice allocation scheme and a two-
choice allocation scheme. In Section 4 we present a unified framework for constructing searchable
symmetric encryption schemes from two-dimensional allocation scheme, obtaining our first and sec-
ond schemes as specific instantiations. Finally, in Section 5 we present our third scheme, improving
the scheme of Cash and Tessaro [CT14].

2 Preliminaries

In this section we present the notation and basic definitions that are used in this work. We denote by
λ ∈ N the security parameter. For a distribution X we denote by x← X the process of sampling a
value x from the distribution X. Similarly, for a set X we denote by x← X the process of sampling
a value x from the uniform distribution over X . For an integer n ∈ N we denote by [n] the set
{1, . . . , n}. A function negl : N→ R+ is negligible if for every constant c > 0 there exists an integer
Nc such that negl(n) < n−c for all n > Nc. All logarithms in this paper are to the base of 2.

2.1 Searchable Symmetric Encryption

Let λ denote the security parameter. We let W = {w1, . . . , wnW
} denote the set of keywords, where

nW is polynomial in λ, and we assume that each keyword wi can be represented using a constant
number of machine words, each of length O(λ) bits, in the unit-cost RAM model. For each keyword
wi, we associate a list DB(wi) = {id1, . . . , idni} of documents (or document identifiers) in which
the keyword wi appears. We assume that each identifier is of length O(λ) bits. We let DB =
{DB(w1), . . . ,DB(wnW

)}, and let N =
∑nW

i=1 ni to denote the total number of keyword/identifier
pairs in DB. Finally, let nid denote the number of unique identifiers.

Searchable symmetric encryption. There are various different syntaxes for SSE schemes in the
literature, where the main differences are the complexity of the interaction between the server and
the client with each query. While some consider an interaction between the two that may consist
of few rounds (where the server learns no information), others consider a single round interaction
where the server also decrypts the data and sends the result to the client (and thus the server learn
the output of each query). Usually, apart from the index of keywords/identifiers, the client uploads
a sequence of encrypted documents, and the index is used to help the client locate the documents
corresponding to its keyword.

Some of our schemes consist of two rounds of interaction, whereas some consist of a single round
(and can thus be easily adapted to two rounds). In a one-round scheme, the client sends a token, the
server performs some computation during which it learns the set of identifiers. It then fetches the
corresponding (encrypted) documents from the database and sends them back to the client, which
decrypts them and learns the result. In a two-round scheme, the server does not decrypt the set of
identifiers on its own, and it sends the client some message, which the client resolves and learns the
set of identifiers and send them back to the server. As in a one-round scheme, given the identifiers
the server fetches the encrypted documents from the database and sends them back to the client.

In fact, two-rounds schemes can be viewed as having one round of interaction, if the server stores
a database of keywords/documents instead of a database of keywords/identifiers. We note that the
lower bound of [CT14] holds in both setting, since their lower bound relates only to the structure
of the database. We proceed to the formal definitions. Although the following definition seems to
relate to one-round schemes, it actually captures both options. This is because the second round is
just the transmission of the identifiers, and fetching them from storage.
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2.1.1 Functionality

A searchable symmetric encryption (SSE) schemeΠ consists of algorithms (KeyGen,EDBSetup,TokGen,
Search,Resolve) such that:

• K ← KeyGen(1λ). The key generation algorithm KeyGen takes as input the security parameter
1λ and outputs a secret key K.

• EDB ← EDBSetup(K,DB). The database-setup EDBSetup algorithm takes as input a key K
and a database DB and outputs an encrypted database EDB.

• (τ, ρ) = TokGen(K,w). The token generator algorithm is a deterministic algorithm that takes
as input the private key K and the keyword w and outputs a token τ to be sent to the server,
and some internal state ρ for the resolving algorithm.

• M = Search(EDB, τ). The searching algorithm Search takes as input the token τ and the
encrypted database EDB, and outputs some list M of results.

• S = Resolve(ρ,M). The resolving algorithm receives the list M and the state, and outputs
the set of decrypted results L.

An SSE scheme for databases of size N = N(λ) is correct if for every ppt adversary A there
exists a negligible function negl(·) such that the output of the experiment correctA,DB(1

λ) is 1 with
probability 1− negl(λ) for all sufficiently large λ ∈ N, where the experiment is defined as follows:

1. The adversary A on input 1λ outputs a database DB of size N = N(λ) together with some
state information state.

2. A key K ← KeyGen(1λ) is chosen and the database is encrypted by computing EDB ←
EDBSetup(K,DB).

3. The adversary A is invoked on input (EDB, state), and can repeatedly issue queries wi, where
each query is answered as follows:

(a) (τi, ρi)← TokGen(K,wi), Mi ← Search(τi,EDB) and Si = Resolve(ρi,Mi).

4. The output of the experiment is 1 if and only if for every query wi it holds that Si = DB(wi).

We note that in case where the database is an index of keywords/documents, then the above
syntax is a one-round protocol. In case where the database is an index of keyword/identifiers, then
this syntax corresponds to a two-round protocol, where the algorithms (TokGen, Search,Resolve)
describes the first round, and in which in the second round has the following fixed structure: The
client sends S, gets back the corresponding documents and then decrypts them. The single-round
syntax for keyword/identifiers index is a sub-case of the above, where there is no Resolve algorithm,
no secret state ρ, and the algorithm Search simply outputs S (and this is known to the server).
Recall that the server then fetches the documents from storage according to the identifiers, and the
client decrypts the actual document.

2.1.2 Locality and Read Efficiency

Our notions of locality and read efficiency follow those introduced by Cash and Tessaro [CT14].

Locality. The search procedure of any SSE scheme can be decomposed into a sequence of contigu-
ous reads from the encrypted database EDB. Specifically, assume that the Search algorithm does
not get the encrypted database as input, but rather only gets oracle access to it. Each query to this
oracle consists of some interval [ai, bi], and the oracle replies with the words that are stored on those
intervals of EDB. The Search algorithm is invoked on some token τ and queries its oracle on some
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interval [a1, b1]. It continues to compute the next intervals to read based on τ and all previously
read intervals from EDB. We denote these intervals by ReadPat(EDB, τ).

Definition 2.1 (Locality). An SSE scheme Π is d-local (or has locality d) if for every λ, DB
and w ∈ W, K ← KeyGen(1λ), EDB ← EDBSetup(K,DB) and τ ← TokGen(K,w) we have that
ReadPat(EDB, τ) consists of at most d intervals with probability 1.

Read efficiency. The notion of locality alone is lacking, since the Search algorithm can read the
whole database with a single interval. The notion of read efficiency measures the overall size of
portion read by a search operation. For a given DB and w, we let ||DB(w)|| denote the number of
words in the encoding of DB(w).

Definition 2.2 (Read efficiency). An SSE scheme Π is r-read efficient (or has read efficiency r) if
for any λ, DB, and w ∈ W, we have that ReadPat(τ,EDB) consists of intervals of total length at
most r · ||DB(w)|| words.

2.1.3 Simulation-Based Security

The standard security definition for SSE schemes follows the ideal/real simulation paradigm. We
consider both static and adaptive security, where the difference is whether the adversary chooses
its queries statically (i.e., before seeing any token), or in an adaptive manner (i.e., the next query
may be a function of the previous tokens). In both cases, some information is leaked to the server,
which is formalized by letting the simulator receive the evaluation of some “leakage function” on
the database itself and the real tokens. We start with the static case.

The real execution. The real execution is parameterized by the scheme Π, the adversary A,
and the security parameter λ. In the real execution the adversary is invoked on 1λ, and outputs
a database DB and a list of queries w = {wi}i. Then, the experiment invokes the key-generation
algorithm and the database setup algorithms, K ← KeyGen(1λ) and EDB ← EDBSetup(K,DB).
Then, for each query w = {wi}i that the adversary has outputted, the token generator algorithm
is run to obtain τi = TokGen(wi). The adversary is given the encrypted database EDB and the
resulting tokens τ = {τi}wi∈w, and outputs a bit b.

The ideal execution. The ideal execution is parameterized by the scheme Π, a leakage func-
tion L, the adversary A, a simulator S and the security parameter λ. In this execution, the adversary
A is invoked on 1λ, and outputs (DB,w) similarly to the real execution. However, this time the
simulator S is given the evaluation of the leakage function on (DB,w) and should output EDB, τ
(i.e., (EDB, τ ) ← S(L(DB,w))). The execution follows by giving (EDB, τ ) to the adversary A,
which outputs a bit b.

Let SSE-RealΠ,A(λ) denote the output of the real execution, and let SSE-IdealΠ,L,A,S(λ)
denote the output of the ideal execution, with the adversary A, simulator S and leakage function
L. We now ready to define security of SSE:

Definition 2.3 (static L-secure SSE). Let Π = (KeyGen,EDBSetup,TokGen,Search) be an SSE
scheme and let L be a leakage function. We say that the scheme Π is static L-secure searchable
encryption if for every ppt adversary A, there exists a ppt simulator S and a negligible function
negl(·) such that

|Pr [SSE-RealΠ,A(λ) = 1]− Pr [SSE-IdealΠ,L,A,S(λ) = 1]| < negl(λ)
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Adaptive setting. In the adaptive setting, the adversary is not restricted to specifying all of its
queries w in advance, but can instead choose its queries during the execution in an adaptive manner,
depending on the encrypted database EDB and on the tokens that it sees. Let SSE-RealadaptΠ,A (λ)
denote the output of the real execution in this adaptive setting. In the ideal execution, the simulator
S is now an interactive Turing machine, which interacts with the experiment by responding to
queries. First, the simulator S is initially invoked on L(DB) and outputs EDB. Then, for every
query wi that A may output, the function L is invoked on DB and all previously queries {wj}j<i

and the new query wi, outputs some new leakage ℓ(wi) which is given to the simulator S. The latter
outputs some ti, which is given back to A, who may then issue a new query. At the end of the
execution, A outputs a bit b. Let SSE-IdealadaptΠ,L,A,S(λ) be the output of the ideal execution. The
adaptive security of SSE is defined as follows:

Definition 2.4 (adaptive L-secure SSE). Let Π = (KeyGen,EDBSetup,TokGen,Search) be an SSE
scheme and let L be a leakage function. We say that the scheme Π is adaptive L-secure searchable
encryption if for every ppt adversary A, there exists a ppt simulator S and a negligible function
negl(·) such that∣∣∣Pr [SSE-RealadaptΠ,A (λ) = 1

]
− Pr

[
SSE-IdealadaptΠ,L,A,S(λ) = 1

]∣∣∣ < negl(λ)

The leakage function. Following the standard notions of security for SSE we consider the leakage
function Lmin for one-round protocols and the leakage function Lsizes for two-round protocols, where

Lmin (DB,w) =
(
N, {DB(w)}w∈w

)
,

Lsizes(DB,w) = (N, {|DB(w)|}w∈w) ,

and N =
∑

w∈W |DB(w)| is the size of the database. That is, both functions return the size of the
database, and the difference between them is that the function Lmin returns the actual documents
that contain each keyword w ∈ w that the adversary has queried, whereas the function Lsizes returns
only the number of such documents.

The leakage functions in the adaptive setting are defined analogously. That is, for a database
DB, a set of “previous” queries {wj}j<i, and a new query wi, we define

Ladapmin (DB, {wj}j<i, wi) =

{
N if ({wj}j<i, wi) = (⊥,⊥)
DB(wi) otherwise

Ladapsize (DB, {wj}j<i, wi) =

{
N if ({wj}j<i, wi) = (⊥,⊥)
|DB(wi)| otherwise

.

2.2 Additional Tools

Pseudorandom encryption schemes with elusive and verifiable range. In our scheme, we
will encrypt the identifiers of list with a different key, and we need to ensure that a decryption of
some ciphertext is valid only when decrypting with the “correct” key. In addition, the client pads its
lists using some random elements, and we want to ensure that by doing so it does not accidentally
introduce valid ciphertexts for some keys, and that ciphertexts seems independent of their keys. We
therefore use an encryption scheme with the following properties.

Definition 2.5. Let (Enc,Dec) be a private-key encryption scheme and denote the range of a key

K ← {0, 1}λ in the scheme by Range(K)
def
={EncK(x)}x∈{0,1}n. Then,
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1. We say that (Enc,Dec) has an elusive range if for every ppt machine A there exists a negligible
function negl(·) such that

Pr
K←{0,1}λ

[
A(1λ) ∈ Range(K)

]
< negl(λ)

2. We say that (Enc,Dec) has an efficiently verifiable range if there exists a ppt machine M such
that M(1λ,K, c) = 1 if and only if c ∈ Range(K).
By convention, for every c ̸∈ Range(K), we have that DecK(c) = ⊥.

3. We say that (Enc,Dec) has pseudorandom ciphertexts if for every ppt adversary A there exists
a negligible function negl(·) such that:∣∣∣Pr [AEncK(·)(1λ) = 1

]
− Pr

[
AR(·)(1λ) = 1

]∣∣∣ ≤ negl(λ)

where R is a probabilistic oracle that given any input outputs a freshly-sampled uniform value
of the appropriate length (i.e., as the output length of EncK(·)), the probability on the left is
taken over the choice K ← {0, 1}λ and the internal randomness of the algorithm Enc, and the
probability on the right is taken over the randomness of the oracle R.

We omit the Gen algorithm since the scheme is a symmetric-key one and thus we can assume
w.l.o.g. that the key is a uniform string (i.e., the randomness for Gen). We note that an encryption
scheme that satisfy all these properties can be constructed from any pseudorandom function (and
therefore from one-way function) PRFK : {0, 1}m → {0, 1}m+λ for K ∈ {0, 1}λ as EncK(x) =
⟨r,PRFK(r)⊕x0λ⟩, where x ∈ {0, 1}m, r ← {0, 1}λ, and x0m denotes the concatenation of x and 0λ.
This scheme satisfy the first two notions [LP09], and it is easy to see that it has also pseudorandom
ciphertexts.

Static hash tables. In our schemes we rely on static hash tables (also known as static dictionar-
ies). These are data structures that given a set S can support lookup operations in constant time in
the standard unit-cost word-RAM model. Specifically, a static hash table consists of a pair of algo-
rithms denoted (HTSetup,HTLookup). The algorithm HTSetup gets as input a set S = {(ℓi, di)}ki=1

of pairs (ℓi, di) of strings, where ℓi ∈ {0, 1}s is the label and di ∈ {0, 1}r is the data. The output of
this algorithm is a hash table HT(S). The lookup algorithm HTLookup on input (HT(S), ℓ) returns
d if (ℓ, d) ∈ S, and ⊥ otherwise.

There exist many constructions of static hash tables that use linear space (i.e., O(k(r+ s)) bits)
and answer lookup queries by reading a constant number of contiguous s-bit blocks and r-bit blocks
(see, for example, [PR04, ANS10], and the many references therein).

2.3 Some Standard Tail Bounds

Our proofs in this paper rely on the following standard tail-bound inequalities for sequences of
random variables (see, for example, [MU05, DP09]).

Lemma 2.6 (Multiplicative Chernoff bound). Suppose X1, . . . , Xn are independent random vari-
ables taking values in {0, 1}. Let X denote their sum and let µ = E[X] denote the sum’s expected
value. Then for any δ > 0,

Pr [X > (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ

.
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Lemma 2.7. Suppose X1, . . . , Xn and Y1, . . . , Yn are random variables such that each Yi takes values
in {0, 1}, Yi = Yi(X1, . . . , Xi) and Pr[Yi = 1|X1, . . . , Xi−1] ≤ p for some p ∈ [0, 1]. Let Z1, . . . , Zn

be independent Bernoulli trials with success probability p. Then for any non-negative coefficients
c1, . . . , cn and a bound k,

Pr

[
n∑

i=1

ciYi > k

]
≤ Pr

[
n∑

i=1

ciZi > k

]
.

Lemma 2.7 can be proved using a standard coupling argument (i.e., defining a joint probability
distribution where always Yi ≤ Zi).

Claim 2.8 (Bernstein bound). Let W1, . . . ,Wn be independent zero-mean random variables. Suppose
that |Wj | ≤M for all j. Then, for any t > 0,

Pr

[
n∑

i=1

Wi > t

]
≤ exp

− 1
2 t

2∑
j E
[
W 2

j

]
+ 1

3Mt

 .

Corollary 2.9. Given Lemma 2.7’s conditions, denote N =
∑n

i=1 ci and M = max ci. Then,

Pr

[
n∑

i=1

ciYi > 2Np

]
≤ exp

(
−3

8

N

M
p

)
.

Proof. Let Z1, . . . , Zn be the i.i.d. variables mentioned in the statement of Lemma 2.7. Set
Wi = ci(Zi − p). Then E[Wi] = 0, |Wi| ≤ cimax(1 − p, p) ≤ ci and E[W 2

i ] = p(1 − p)c2i . Applying
Lemma 2.7 and the Bernstein bound, we get

Pr

[
n∑

i=1

ciYi > 2Np

]
≤ Pr

[
n∑

i=1

ciZi > 2Np

]

= Pr

[
n∑

i=1

Wi > Np

]

≤ exp

(
−

1
2N

2p2

p (1− p)
∑n

i=1 c
2
i +

1
3MNp

)

≤ exp

(
−

1
2N

2p2

pMN + 1
3MNp

)
= exp

(
−3

8

N

M
p

)
,

where we used the fact that
∑n

i=1 c
2
i ≤

∑n
i=1 ciM = NM .

3 Two-Dimensional Balanced Allocations

In this section we analyze the maximal load of two schemes for the two-dimensional balanced alloca-
tion problem, as discussed in Section 1.3. Our first scheme is a one-choice process that is described
and analyzed in Section 3.1, and our second scheme is a two-choice process that is described and
analyzed in Section 3.2.

Recall that the input to the two-dimensional balanced allocation problem is a collection of lists,
L1, . . . , Lk, where the ith list Li is of length ni. The goal in this problem is to allocate an array of bins
and to place each element from these lists in a bin (where a bin may contain several elements), such
that given an index i we can efficiently recover the entire list Li. Motivated by our goal of searchable
symmetric encryption, we would like to design allocation scheme with good space overhead, locality,
and read efficiency (while ignoring any security properties for now).
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3.1 A One-Choice Allocation Scheme

Our one-choice scheme is described as Algorithm 3.1. As discussed in Section 1.3, for each list Li

we choose a uniform bin, and then place the elements of Li in consecutive bins starting from that
bin (one element in each bin).

ALGORITHM 3.1 (Algorithm OneChoiceAllocation(m, (n1, . . . , nk))).

• Input: Number of bins m, and a vector of integers (n1, . . . , nk) representing the length of
the lists L1, . . . , Lk.

• The algorithm:

1. Initialize m empty bins B0, . . . , Bm−1.

2. For each list Li where i = 1, . . . , k:
(a) Sample α← {0, 1, . . . ,m− 1}.
(b) For j = 0, . . . , ni − 1:

i. Place the jth element of the list Li in bin Bα+j mod m.

We show that for an appropriate choice of parameters, the maximal load is very close to its
expectation. This is similar to the one-dimensional problem that considers balls instead of lists,
and the locations of all balls are independent. In our case, the locations of the elements from the
same list are clearly related, and the loads of any two consecutive bins are strongly correlated. This
requires a more subtle analysis, and we prove the following theorem:

Claim 3.2. Fix any m, k, and n1, . . . , nk. Let n =
∑k

i=1 ni and assume that m ≤ n. Then, with
probability at least 1−m ·2−n/m, at the end of Algorithm 3.1 the maximal load of any bin is at most
3n/m.

Proof. For simplicity, we first assume that there is no list with more than m elements. We later
remove this assumption.

For 0 ≤ j ≤ m − 1, let Xj be a random variable denotes the load of bin Bj , and for every
i = 1, . . . , k, let Yj [i] be an indicator that gets 1 if and only if some element of the ith list fells into

bin Bj . Note that Xj =
∑k−1

i=0 Yj [i]. Moreover, for a fixed j ∈ {0, . . . ,m − 1}, i ∈ {1, . . . , k}, we
have:

E(Yj [i]) =
ni

m
.

This holds since there is no list with size greater than m, and therefore there is an element of some
list L in bin Bj if and only if, the chosen placement for the head of the list is one of the values
{j, [(j − 1) mod m], . . . , [(j − ni + 1) mod m]}.

This implies that:

E[Xj ] = E

[
k−1∑
i=0

Yj [i]

]
=

k−1∑
i=0

E [Yj [i]] =

∑k−1
i=0 ni

m
=

n

m
.

Although the random variables X0, . . . , Xm−1 are dependent (i.e., the loads of the bins), and
even for every list the random variables Y0[i], . . . , Ym−1[i] are dependent (i.e., the bins where the
elements of some single list are placed), for every fixed j ∈ {0, . . . ,m − 1} the random variables
Yj [1], . . . , Yj [k] are independent (i.e., the choices of elements inside a given bin) . Also, they all
taking values in {0, 1}. Therefore, we can apply Chernoff’s bound (Lemma 2.6), and get:

Pr
[
Xj ≥ (1 + δ)E [Xj ]

]
≤
(

eδ

(1 + δ)(1+δ)

)E[Xj ]
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For δ ≥ e− 1, we have that:

eδ

(1 + δ)(1+δ)
=

1

1 + δ
·
(

e

1 + δ

)δ

≤ 1

1 + δ
≤ 1

2
,

and thus
Pr
[
Xi ≥ 3 · n

m

]
≤ 2−n/m .

Using union-bound, we conclude that the probability that one of the bins has load greater than
3 · n/m is at most m · 2−n/m.

For case where there exist lists with size greater than m, observe that for each such a list i, each
bin will have at least ⌊ni/m⌋ element of that list, and exactly [ni mod m] bins will have an additional
one element from that list. For each such a list and for each bin Bi, instead of considering the single

random variable Yj [i], we define ⌊ni/m⌋+ 1 random variables Y
(0)
j [i], . . . , Y

(⌊ni/m⌋)
j [i], where Y

(γ)
j [i]

indicates whether at least γ elements of the ith list fell into bin Bj . The first ⌊ni/m⌋ variables are
constant, and always get 1. The random variable Y

(⌊ni/m⌋)
j [i] is 1 with probability [ni mod m]/m.

The expected sum of these random variables is ni/m, and therefore E[Xj ] = n/m, as in the simplified
case. Again, these variables are independent and get values in {0, 1}, so we can apply the Chernoff
bound and get exactly the same result.

When constructing our symmetric searchable encryption schemes, we are interested in having a
negligible failure probability, and we derive the following corollary from Claim 3.2:

Corollary 3.3. Fix any k, and n1, . . . , nk. Let n =
∑k

i=1 ni and m = n
logn·log logn . Then, with

probability at least 1 − n−ω(1), at the end of Algorithm 3.1 the maximal load of any bin is at most
3 log n · log log n.

3.2 A Two-Choice Allocation Scheme

Our next step is generalizing our one-choice allocation scheme into a two-choice one. Before de-
scribing our scheme, we first discuss several possible generalizations that seem very reasonable and
natural, but turn out somewhat insufficient and do not provide the desired properties.

Consider an algorithm that for every list Li chooses two possible bins, Bα1 and Bα2 , and places
the elements of the list in a consecutive manner starting from the least loaded bin Bαi∗ among these
two choices. However, this approach seems insufficient, since the fact that Bαi∗ is the least loaded
bin among the two possible bins Bα1 and Bα2 does not imply that Bαi∗+j is the least loaded bin
among Bα1+j and Bα2+j for any j > 1. That is, the decision we make in order to place the head of
the list does not necessarily apply for the placement of the following element of the list.

Another natural approach is the following. Similarly to the previous proposal, for each list
we choose two possible locations, Bα1 and Bα2 , and place its first element in the least loaded bin
among these two possibilities. However, unlike the previous proposal, we make a similar decision
for each element of the list. Specifically, the jth element of the list is placed in the least loaded bin
among Bα1+j−1 and Bα2+j−1. Unfortunately, this algorithm seems somewhat difficult to analyze as
it introduces many (redundant) dependencies between elements, and there are too many decisions
that are made in the algorithm. A more elegant approach would be to have a single comparison for
the placement of the entire list.

We now turn to describe our two-choice approach. Assume without loss of generality that the
lengths of all lists are powers of two (otherwise we can pad each with dummy elements and thus
increase the database size at most by a factor of 2), and that the number of bins is also a power
of two. In our algorithm, we process the lists according to their length. We first sort the lists in a
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descending order, and then, for a given list of size ni, we view each block of ni consecutive bins as a
single possible “super bin”. As a result, the possible locations for the head of the list is not m (the
overall number of bins), but rather only m/ni, the number of “super bins”. Then, we choose two
possible super bins, and place the entire list, in the least loaded super bin among these two possible
choices. The actual placement is done element by element, in the respective bins that constitute
this super bin (i.e., one element per “standard” bin).

This approach has the following advantages: First, the entire list is placed according to a single
comparison, which significantly simplifies the analysis. Second, all the elements of each list are
placed at the exact same level. That is, our algorithm has the following invariant: Whenever we
place a list, all the bins that constitute a possible super bin have the exact same number of elements.
This is mainly due to the fact that we place the lists in descending order, and in each iteration the
super bins are split into smaller super bins that each matches the size of the current list. A formal
description is presented as Algorithm 3.4.

ALGORITHM 3.4 (Algorithm TwoChoiceAllocation(m, (n1, . . . , nk))).

• Input: Number of bins m and a vector of integers (n1, . . . , nk) representing the length of

the lists L1, . . . , Lk. We let n =
∑k

i=1 ni, and assume for concreteness that m and the ni’s
are powers of two, and that m ≥ n1 ≥ n1 ≥ · · · ≥ nk.

• The algorithm:

1. Initialize m empty bins B0, . . . , Bm−1.

2. For each list Li where i = 1, . . . , k:
(a) Choose α1, α2 ← {0, . . . , m

ni
−1} independently and uniformly at random. Consider

the two super bins B̃α1 = (Bni·α1+j)
nj−1
j=0 and B̃α2 = (Bni·α2+j)

nj−1
j=0 .

(b) Let B̃α be the least loaded7among B̃α1 and B̃α2 . We place the list Li in the super

bin B̃α. That is, for every j = 0, . . . , ni − 1:
i. Place the jth element of the list Li in the bin Bni·α+j .

3.2.1 Bounding the Maximal Load

We prove the following theorem:

Theorem 3.5. Assume that each ni is a power of two and that n1 ≥ · · · ≥ nk. Let S ≥ n1 be some
bound on the sizes, and let m be the number of bins. Then

1. With probability 1 − n−Ω(logn), there are at most S log2 n elements at level greater than 4n
m +

log log n
S+2.

2. Let ϵ > 0, S = n1−ϵ, and assume that m ≥ n
logn . Then for any non-decreasing function f(n)

satisfying f(n) = Ω(log log n), f(n) = O(
√
log n) and f(2n) = O(f(n)), the maximal load is

at most 4n
m +O(log ϵ−1 · f(n)) with probability 1−O(log ϵ−1) · n−Ω(ϵ·f(nϵ)).

For our searchable symmetric encryption schemes, we will rely on the following corollary (say,
with A = 1) that follows from Theorem 3.5:

Corollary 3.6. For any constant A ≥ 1, let ϵ = (log log n)−A (and so the size of the maximal list

is bounded by n1−1/(log logn)A) and m = n
(log logn)A·(log log logn)2 . Then with overwhelming probability

the maximal load is O((log log n)A · (log log log n)2).
7The load of a super bin is defined as the sum of loads of the “standard” bins that constitutes that super bin.

According to the invariant of this algorithm, the load of these standard bins is equal, and therefore the sum is simply
the number of standard bins that constitute the super bin times the load of each one of them.
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Proof overview. The proof is rather subtle, and is inspired by the “layered induction” technique
of the one-dimensional problem [ABK+99] (see also [MRS00, MU05]). The following overview is
rather simplified, and as a result some of its notation is not identical to that of the formal proof
below.

In order to bound the maximal load, we need to approximately bound the number of bins with
j elements for every value of j. The proof defines a sequence of values β1, β2, . . . and shows that
the number of bins with load at least j is bounded by βj with high probability. The proof follows
by induction, where in each step, we show that if the number of bins with load at least j is at most
βj , then with high probability, the number of bins with load at least j + 1 is at most βj+1. The
values β1, β2, . . . are defined according to a recursive relation. Intuitively, the sequence β1, β2, . . .
is monotonic decreasing, and we look for the first j for which βj < 1 (i.e., there are no bins with
load at least j). As we will see, this description is a bit simplified and we cannot actually use the
recursive relation all the way to βj < 1, since the induction does not hold unconditionally. Thus,
we will have to stop at a larger βj and conclude the proof using some additional arguments. We
will elaborate on this point later on.

The recursive relation. According to our algorithm, when we place the ith list, all of its
elements share the exact same level. Therefore, a list will have height (or, level) at least j+1 only if
the two choices for its super bins are of level at least j. Since there are at most βj bins with load at
least j (or, βj/ni super bins of size ni) and m bins (or, m/ni super bins of size ni), the probability
that the two possible choices have level at least j is (βj/m)2. Therefore, the expected number of list
elements of height at least j +1 is at most n · (βj/m)2, and so the number of list elements of height
at least j+1 is no more than twice this amount with high probability (using some tail bound). This
implies that there are no more than 2n · (βj/m)2 bins with height at least j + 1 and this leads to
the following recursive relation:

βj+1
def
= 2n ·

(
βj
m

)2

.

The induction. We confirm the recursive relation by induction. We prove that with high
probability, the number of bins with list elements of height at least j + 1 is bounded by βj+1,
conditioned that the number of bins with load at least j is bounded by βj . This step is somewhat
subtle in the original proof, primarily because one must handle the conditioning appropriately, and
the formal argument requires some care. In our case, the argument is even more subtle. In the
original proof, this step is shown using Chernoff’s bound, however, we cannot use this bound here
due to the fact that the random variables do not take values in {0, 1}, and depend on the lengths
of the lists. We use Bernstein’s bound instead, and this step already introduces our limitation on
the length of the longest list.

Concluding the first part of Theorem 3.5. The proof then proceeds as follows, where for
this high-level overview, we assume for simplicity that m = n. We may set β4 = n/4, since there
cannot be more than n/4 bins with at least 4 elements. As in the original proof, the induction step
does not hold unconditionally, and therefore we cannot use the recursion all the way to the first
index k for which βk < 1. Instead, we have to stop earlier, when βj = S log2 n where S is some
upper bound on the length of the longest list. It turns out that the original proof is a special case
of ours, where this layered induction holds as long as βj ≥ log2 n (i.e., S = 1). The first index j∗

for which βj∗ = S log2 n is when j∗ = O(log log(n/S)). This means that there are no more than
S log2 n list elements at level greater than O(log log(n/S)), proving the first part of Theorem 3.5.
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The second part of Theorem 3.5. At this stage, we cannot use the tail bound any more
and we need a different (more coarse) argument. Clearly, if there is a bin with load at least j∗ + a,
then there are at least a lists with height at least j∗ + 1. Assuming that there are no more than
βj∗ = S log2 n bins with load at least j∗, using a simple union bound argument, we can bound the
probability that there are at least a lists with height at least j∗ + 1 by roughly

(
S2/n

)a
. This is

negligible if a = O(log log n) and S = nδ for some constant δ < 1/2. Combining this with the above,
we conclude that the maximal load of the process is O(log log n) assuming that there are no lists
with more than nδ elements.

A scaling argument. The above shows that the algorithm places lists of length up to nδ

for some constant δ < 1/2 (say, for concreteness, δ = 1/3). We claim that the algorithm actually
succeeds in placing much longer lists, and we show this using a more subtle argument.

Our first observation is that the algorithm can be “scaled”. Namely, consider the following
two executions of the algorithm. In the first execution, we have list of lengths (n1, . . . , nk) and
number of bins m where all are multiples of some s. In the second execution, instead of running
the algorithm on these inputs, we divide the elements to blocks of size s, run the algorithm on the
input (n1/s, . . . , nk/s) and m/s, and then extend each bin to s bins (by placing the blocks in the
respective bins). This, in fact, is what implicitly happens in the first execution, and therefore these
two executions are equivalent.

As a matter of fact, using the behavior of the algorithm on the latter case we can conclude its
properties on the former. Specifically, let n′ = n/s (i.e., n′ is the sum of lengths in the scaled case).
The failure probability of this execution is about (S2/n′)a and it can handle lists of length at most
n′1/3, which implies that the former case in fact fails with probability about (S2/(n/s))a and handles
lists of lengths at most (n/s)1/3. By taking s = n1/3, we obtain that the algorithm can handle lists
of lengths between s = n1−(2/3)1 and n1−(2/3)2 with all but negligible probability. We can repeat
this argument carefully, and show that the algorithm can handle lists of length between n1−(2/3)α

and n1−(2/3)α+1
with all but negligible probability, for any constant α > 0.

Our second observation is that the algorithm can in fact handle all of these possible inputs
simultaneously. This is because the algorithm behaves similarly to an algorithm that divides the
lists into sets of inputs of lengths between n1−(2/3)α and n1−(2/3)α+1

, invokes the algorithm on each
set of inputs independently (i.e., on a different set of bins), and then combines the bins of all these
executions. By carefully defining the number of sets, we conclude that the maximal load of the
latter algorithm is at most Õ(log log n), implying that our algorithm behaves similarly to that as
well.

Proof of Theorem 3.5. We will do our calculations with respect to some bound N ≥ n. We point
out an important loop invariant: Before the loop i, for each 0 ≤ β ≤ m

ni
− 1, the current load of

all the bins in the super bin B̃β = (Bni·β+j)
nj−1
j=0 is the same. So all the elements of the list Li are

placed at the same height. We refer to that common height as the height of the list Li, and denote
it by h(i).

We make further notations: Let ℓ = ⌈4nm ⌉. Xi is where we placed the head of the list Li. We
refer to the stage right after placing the list Li as “time i”. νj(i) is the number of bins with load
≥ ℓ+ j at time i. µj(i) is the number of list elements with height ≥ ℓ+ j at time i (mathematically,∑

s≤i∧h(s)≥ℓ+j ns). We also define νj(0) = µj(0) = 0. Trivially we have νj(i) ≤ µj(i). We define

β0 =
m2

4n , βj+1 = 2n
β2
j

m2 and Ej = {νj(k) ≤ βj}. We have Pr[E0] = 1 since there cannot be more than
m
ℓ bins with height ≥ ℓ.
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Fix a level ℓ+ j. For i ∈ [k] define the random variable Yi as follows,

Yi =

{
1 h(i) ≥ ℓ+ j + 1 ∧ νj(i− 1) ≤ βj

0 else

Conditioned on Ej we have µj+1(k) =
∑k

i=1 niYi. Letting pj =
β2
j

m2 , we have Yi = Yi(X1, . . . , Xi)
and Pr[Yi = 1|X1, . . . , Xi−1] ≤ pj , so by applying Corollary 2.9 we get

Pr

[
k∑

i=1

niYi > βj+1

]
= Pr

[
k∑

i=1

niYi > 2npj

]
≤ exp

(
−3

8

n

S
pj

)
≤ N−c·logN

where the last step holds as long as 2n
S pj ≥ log2N , therefore

Pr[¬Ej+1] ≤ Pr[¬Ej+1 ∧ Ej ] + Pr[¬Ej ]
≤ Pr[µj+1(k) > βj+1 ∧ Ei] + Pr[¬Ej ]

≤ Pr

[
k∑

i=1

niYi > βj+1

]
+ Pr[¬Ej ]

≤ N−c logN + Pr[¬Ej ]

Let j∗ be the minimal j such that pj <
S
2n log2N . We shall estimate j∗. By induction one can

see that

βj ≤
m2

n · 22j
, pj =

β2
j

m2
≤
(

m

n · 22j
)2

.

We have (
m

n · 22j∗−1

)2

≥ pj∗−1 ≥
S

2n
log2N,

and by applying log we get

2j
∗ ≤ log

n

S
− 2 log

n

m
− 2 log logN + 1 ≤ log

n

S

so j∗ ≤ log log n
S . Now we apply the bound one more time with p′j∗ = S

2n log2N > pj∗ . We set

β′j∗+1 = 2np′j∗ = S log2N , F = {µj∗+1(k) ≤ β′j∗+1} and E ′j∗+1 = {νj∗+1(k) ≤ β′j∗+1}. As before

we get Pr[¬F ] ≤ N−c logN + Pr(¬Ej∗), so we conclude by induction that Pr(¬E ′j∗+1) ≤ Pr[¬F ] ≤
(j∗ + 1) ·N−c logN = N−Ω(logN), so

Pr[F ] = Pr
[
µj∗+1(k) ≤ S log2N

]
= 1−N−Ω(logN)

as claimed.
Now we assume m ≥ N

log2 N
and S = N δ for some 0 ≤ δ < 1

2 . For the level ℓ+ j∗ + 1 we simply

define

Y ′i =

{
1 h(i) ≥ ℓ+ j∗ + 2

0 else

then we have

Pr[Y ′i = 1 ∧ E ′j∗+1] ≤
β′2j∗+1

m2
=

S2

m2
log4N ≤ log8N

N2−2δ .
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If νj∗+a+1(k) ≥ 1 then there at least a lists with height ≥ ℓ+ j∗+2, therefore by a union bound we
get

Pr[νj∗+a+1(k) ≥ 1 ∧ E ′j∗+1] ≤ Pr

[
k∑

i=1

Y ′i ≥ a ∧ E ′j∗+1

]

≤
(
k

a

)(
log8N

N2−2δ

)a

≤ Na

(
log8N

N2−2δ

)a

=

(
log8N

N1−2δ

)a

so by taking a = f(N) we get

Pr[νj∗+a+1(k) ≥ 1] ≤ Pr[νj∗+a+1(k) ≥ 1 ∧ E ′j∗+1] + Pr[¬E ′j∗+1]

≤
(
log8N

N1−2δ

)f(N)

+N−Ω(logN) = N−Ω(f(N))

for the level ℓ+ j∗ + a+ 1 = 4n
m +O(f(N)). Note that the constants here depend on δ, but we will

actually consider a specific case, namely δ = 1
3 . We obtain the claim for any ϵ > 0 by the following

scaling argument. First we point out some observations:

• Our algorithm is scalable, i.e., if every list is larger than some power of two s, and we define a
new input by dividing the length of every list, n′i =

ni
s , and also the number of bins is m′ = m

s ,
then the algorithm works on the original input as if it worked on the new input and scaled the
result by duplicating each bin s times.

• Suppose S = N
1
3 , m ≥ N

log2 N
. Then we saw that the maximal load exceeds 4n

m +O(f(N)) with

probability at most N−Ω(f(N)). Moreover, the same argument shows that if we already placed
some other larger lists, we will increase the current maximal load by at least 4n

m + O(f(N))

with probability at most N−Ω(f(N)).

Now we assume S = n1−ϵ and m ≥ n
logn . We may assume that ϵ ≥ 1√

logn
since the claim is vacuously

true for smaller ϵ. We set γ = 2
3 and let z = ⌈logγ ϵ⌉. Then γz ≤ ϵ < γz−1. We divide the lists into

z sets by Vj = {i | n1−γj ≤ ni ≤ n1−γj+1} for j = 0, . . . , z− 1. We scale the lists in Vj by s = n1−γj
,

n′i =
ni
s . Also we scale then number of bins m′ = m

s . Now the input size is n′ =
∑

i∈Vj
n′i. Let

N ′ = n
s ≥ n′. We have N ′ = nγj ≥ nϵ, so

m′ =
N ′

log n
=

N ′

log2N ′
· log

2N ′

log n
≥ N ′

log2N ′
· ϵ2 log n ≥ N ′

log2N ′

Each list is of length at least n1−γj+1

n1−γj
= nγj(1−γ) = (N ′)

1
3 , So by the scaling observation, the lists in

Vj increase the maximal load by at least

4n′

m′
+O(f(N ′)) ≤

4
∑

i∈Vj
ni

m
+O(f(n))

with probability at most (N ′)−Ω(f(N ′)) ≤ n−Ω(ϵ·f(nϵ)). So by a union bound, we get that the maximal
load is at most 4n

m +O(log ϵ−1 · f(n)) with probability 1−O(log ϵ−1) · n−Ω(ϵ·f(nϵ)).
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3.2.2 The Tightness of Our Analysis

The above analysis assumes a bound on the length of the longest list. Specifically, we assumed
an upper bound n1−ϵ(n) on the length of the longest list, where ϵ = (log log n)−A, and proved an
upper bound g(n) on the maximal load of Algorithm 3.4 with an overwhelming probability, where
g(n) = Õ((log log n)A). The following claim shows that this trade-off is in fact tight, namely that
g(n) = ω((log log n)A):

Claim 3.7. For any constants A ≥ 0 and c ≥ 0, and for any sufficiently large enough n, there
exists an input for Algorithm 3.4 such that (1) the number of bins is m = n, (2) the length of the
longest list is n1−ϵ where ϵ = (log log n)−A, and (3) the maximal load is at least c · (log log n)A with
a noticeable probability.

Proof. Consider the following input to Algorithm 3.4. The number of bins is m = n, and the set of

lists consist of L ≤ nϵ lists of the length n′
def
=n1−ϵ, and an arbitrary number of lists (and structure)

for the remaining n− L · n1−ϵ elements (but still with no list longer than n′).
We compute the probability that all two choices of all the L long lists share the exact same super

bin (therefore, the load of each of the bins that constitute that super bin is at least L). Since we
have independence between different lists, this probability is(

n′

m

)2·L
=

(
n1−ϵ

n

)2·L
= n−2Lϵ .

Taking ϵ = (log log n)−A and L = c · (log log n)A, the above occurs with a noticeable probability and
the maximal load is at least c · (log log n)A. Note that n should be large enough such that L ≤ nϵ.

We note that the above argument can be generalized for a similar d-choice process for d > 2,
and for a number of bins which is as large as n log n. In addition, in Section 4.4 we generalize the
above to a more general family of allocation algorithms.

4 SSE Schemes from Two-Dimensional Balanced Allocations

In this section we present a general framework for basing searchable symmetric encryption schemes
on two-dimensional balanced allocations algorithms. First, in Section 4.1 we formally define the
notion of an allocation algorithm, and derive concrete instantiations based on our two-dimensional
allocation schemes from Section 3. Then, in Section 4.2 we show how to transform any allocation
algorithm into a searchable symmetric encryption scheme using cryptographic techniques.

4.1 Allocation Algorithms

An allocation algorithm receives as input a database DB = {DB(w1), . . . ,DB(wnW
)} and places

its elements in an array. For each list DB(wi), we distinguish between its possible locations in
the array, and its actual locations in the array. We restrict our attention to allocation algorithms
in which the possible locations of each list DB(wi) depend only on its length ni = |DB(wi)| and
on the size N =

∑nW
i=1 |DB(wi)| of the database. In particular, the possible locations of different

lists are independent (in contrast, the actual locations of different lists are naturally allowed to be
dependent). We model this property by considering allocation algorithms that follow a two-step
structure. First, they separately generate the possible locations for each list using a procedure
denoted RangesGen. Then, given the entire collection of possible locations of all list, they determine
the actual locations of the lists using a procedure denote Allocation. The structure of the algorithm
is described as Structure 4.1.
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STRUCTURE 4.1 (The structure of the allocation algorithm Allocation-Alg).

• Input: k integer values (n1, . . . , nk) representing the lengths of the lists. Let N =
∑k

i=1 ni.

• The algorithm:

1. For every 1 ≤ i ≤ k let Ri ← RangesGen(N,ni).

(The procedure RangesGen(N,ni) outputs the possible ranges Ri =
{[a1, b1], . . . , [ad, bd]} for the ith list.)

2. Let map← Allocation ((n1, R1), . . . , (nk, Rk)).

(The array map holds the actual locations of the lists. Each entry in this
array contains either a pair (i, j) representing that this entry is the actual
location of the jth element from the ith list, or NULL representing an empty
entry.)

3. Output map.

We sometimes find it convenient to denote by RangesGen(N,ni; r) an invocation of the procedure
RangesGen on input (N,ni) using specific randomness r.

Efficiency measures. We measure the efficiency of an allocation algorithm of the above structure
with respect to its space overhead, its locality, and its read efficiency.

Definition 4.2. We say that Allocation-Alg = (RangesGen,Allocation) is an (s, d, r)-allocation algo-
rithm, for some functions s(·), d(·) and r(·), if the following properties hold:

• Correctness: There exists a negligible function negl(·) such that for every input (n1, . . . , nk)

Pr [(Allocation-Alg (n1, . . . , nk) = ⊥) ∨ invalid-allocation] ≤ negl(N) ,

where N =
∑k

i=1 ni, and invalid-allocation denotes the event in which Allocation-Alg(n1, . . . , nk)
outputs an allocation such that there exists two different actual placements for some element,
or that there exists some element with no actual placement. The probability is taken over the
internal coin tosses of the algorithm Allocation-Alg.

• Space: For every input (n1, . . . , nk), the array produced by Allocation-Alg is of size at most
s(N), where N =

∑k
i=1 ni.

• Locality: For every input (N,ni), the algorithm RangesGen outputs at most d(N) ranges.

• Read efficiency: For every input (N,ni) for the algorithm RangesGen it holds that:∑d
j=1 |bj − aj |

ni
≤ r(N) ,

where {[a1, b1], . . . , [ad, bd]} ← RangesGen(N,ni).

Concrete instantiations. Our two-dimensional balanced allocation schemes described in Sec-
tion 3 have the above-discussed two-step structure (more accurately, they can be easily re-written
as algorithms that follow this structure). From Corollaries 3.3 and 3.6 we obtain that our one-choice
scheme OneChoiceAllocation (Algorithm 3.1) is an (O(N), O(1), Õ(logN))-allocation algorithm, and
that our two-choice scheme TwoChoiceAllocation (Algorithm 3.4) is an (O(N), O(1), Õ(log logN))-
allocation algorithm for databases in which no list has more than N1−1/ log logN elements.
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4.2 From Allocation Algorithms to SSE Schemes

We show a generic transformation from any allocation algorithm Allocation-Alg = (RangesGen,
Allocation) to a searchable symmetric encryption scheme. In our SSE scheme, the client will run the
RangesGen and the Allocation procedures, and then encrypt each of the document identifiers from list
DB(w) with a key that is derived from the keyword w using a pseudorandom function. In addition,
any unused entry in the array will be filled with a uniform random string of the appropriate length.
Then, when issuing a query corresponding to a keyword w, the client will ask the server to retrieve
the encrypted content of all possible locations of the list DB(w). Since these locations are chosen
independently at random, this does not reveal any information on the list except for its length. The
client then decrypts the contents using the respective key for the list. The formal construction is
described in Construction 4.3.

CONSTRUCTION 4.3.

Parameters: A keyword set W = {w1, . . . , wnW
}, and a database DB = {DB(w1), . . . ,DB(wnW

)}.
We denote by N =

∑nW

i=1 |DB(wi)| the size of the database, and for each keyword wi we denote by
ni = |DB(w)| the number of documents containing wi.

Key generator. The algorithm KeyGen(1λ) samples a PRF key K.

Setup. The algorithm EDBSetup(DB,K) proceeds as follows:

1. Initialize an empty set S.

2. For every keyword wi ∈W:

(a) Let DB(wi) =
{
id

(i)
1 , . . . , id(i)ni

}
.

(b) Compute (ℓi, ki, ri,Ki) = PRFK(wi).

(c) Compute n̂i = ni ⊕ ki.

(d) Add the pair (ℓi, n̂i) to the set S.

(e) Compute Ri = RangesGen(N,ni; ri).

3. Pad S until it contains exactly N pairs with random elements. Uniformly shuffle S and
compute HT← HTSetup(S).

4. Compute map← Allocation({(ni, Ri)}nW

i=1). If map = ⊥ then abort and output ⊥. Otherwise,
define the data block Data of size s(N) as follows, where for every 1 ≤ t ≤ s(N):

Data[t] =

{
EncKi(id

(i)
j ) if map[t] = (i, j)

Uℓ otherwise
, (1)

where Uℓ denote a uniformly and independently sampled ℓ-bit string for each entry.

5. Output: EDB = (Data,HT).

Token generator. The algorithm TokGen(K,wi) computes the derived keys (ℓi, ki, ri,Ki) =
PRFK(wi). It outputs τi = (ℓi, ki, ri) as the public token, and ρi = Ki as the secret state for the
algorithm Resolve.

Search. The algorithm Search(τi,EDB), with τi = (ℓi, ki, ri) and EDB = (Data,HT) proceeds as
follows:

1. Obtain n̂i ← HTGet(HT, ℓi) and compute ni = n̂i ⊕ ki.

2. Run RangesGen(N,ni; ri). Let P = {[a1, b1], . . . , [ad, bd]} be the resulting ranges.

3. Output D̃ =
∪

[aj ,bj ]∈P Data[aj , . . . , bj ].

Resolve. The algorithm Resolve(ρi, D̃) with ρi = Ki, decrypts each element in D̃ using the key
Ki, and returns the set for which the decryption was successful.
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Theorem 4.4. Assume that PRF is a pseudorandom function, and that (Enc,Dec) has pseudo-
random ciphertexts, as well as elusive and efficiently verifiable range. Moreover, let Allocation-Alg
be an (s, d, r)-allocation algorithm. Then, Construction 4.3 is an adaptive Ladapsize -secure searchable
symmetric encryption scheme, with space O(s(N), locality O(d(N)), and read efficiency O(r(N)).

Proof. The correctness of the scheme follows from the elusive and verifiable range properties of
the underlying encryption scheme, and from the correctness of the procedure Allocation-Alg. In
particular, from the correctness of the latter procedure and the pseudorandomness of PRF (i.e.,
the ri’s are computationally indistinguishable from uniform values), we have all placeholders for all
elements of all lists in the array map. Then, we use this array to create the array Data. From the
verifiable range property, encryptions under different keys do not “collide”. In addition, since the
encryption scheme has elusive range, the random elements that the client introduces (see Eq. (1)) do
not collide with valid encryptions of any of the actual elements. Furthermore, with all but a negligible
probability, encryptions under one key are not valid for other keys, and the probability that the
same label ℓi or the same key Ki appear more than once is negligible due to the pseudorandomness
of PRF.

Regarding the efficiency, the size of the encrypted database is |Data| + |HT|, where |Data| is of
size s(N) and HT contains exactly N elements of at most logN = O(log λ) bits each (and thus can
be stored using O(N) machine words in the unit-cost RAM model). Therefore, the space usage
is O(s(N) + N) = O(s(N)) (note that s(N) ≥ N always hold). Locality and read efficiency are
straightforward.

We now prove the adaptive security of the scheme with respect to the leakage function Ladapsize .
Recall that in both the real and the ideal executions, the adversary A first outputs DB. In the
real execution, it then receives the encrypted database EDB ← EDBSetup(K,DB). In the ideal

execution, the (interactive) simulator S receives Ladapsize (DB) = N and has to generate EDB. Then,
A adaptively issue queries w. For each query wi ∈ w, in the real execution it receives the token
τi ← TokGen(K,wi), and in the ideal execution the simulator S receives Ladapsize (DB, {wj}j<i, wi) =
|DB(wi)| and has to generate τi. The adversary A should not be able to distinguish between the
real and ideal executions. The simulator S works as follows.

• Input: Initially, Ladapsize (DB) = N .

• The simulator:

– Initialization phase.
1. S creates data block Data containing s(N) elements, each chosen uniformly and in-

dependently at random.

2. It initializes a set S with N random elements (ℓi′ , n̂i′).

3. It uniformly shuffles S and computes HT← HTSetup(S).

4. S then outputs: EDB = (Data,HT).

– Query. With each query that the experiment performs, the simulator receives the leakage
|DB(wi)|.
1. S chooses a pair (ℓi′ , n̂i′) from S and removes the pair.

2. It computes ki = |DB(wi)| ⊕ n̂i′.

3. It uniformly samples ri.

4. S then outputs: τi = (ℓi′ , ki, ri).

We now claim that no adversary can distinguish whether (EDB, τ = {τi}wi∈w) was generated in
the real execution or by the simulator. We show this by the following hybrid experiments:
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• Hyb0. This is the real execution, where the adversary A receives EDB as output of EDBSetup,
and τi = (ℓi, ki, ri) with (ℓi, ki, ri,Ki) = PRFK(wi) for every query wi.

• Hyb1. In this experiment, we run the real world execution, where instead of using PRFK
(where K ← KeyGen(1λ)) in Step 2b of Construction 4.3, we use a truly random function.
Note that as a result, all the keys (ℓi, ki, ri,Ki) are uniform (for every wi ∈ W). In addition,
note that the key K as outputted by KeyGen is redundant.

• Hyb2. In this experiment, we change the value n̂i (in Step 2c of Construction 4.3) to be a
uniform value of the appropriate length. Then, when generating a token we compute ki =
n̂i ⊕ ni instead of using the key ki generated by the truly random function. Note that this
makes the key ki generated by the truly random function redundant.

• Hyb3. Here, for every wi ∈ W, we replace the encryption of each element in DB(wi) (i.e.,
Eq. (1) of Construction 4.3) with an independent truly random value of the appropriate length.
As a result, all elements of the data block Data are uniform and independent.

• Hyb4. The last hybrid is the ideal execution. Here we run the simulator S defined above
instead of the algorithms EDBSetup and TokGen.

Hyb0 and Hyb1 are computationally indistinguishable from the security assumption of the pseu-
dorandom function PRF. The experiments Hyb1 and Hyb2 are identically distributed since for every
wi ∈W, n̂i is uniformly distributed in both experiments, and for every query wi ∈ w, ki is determined
by ki = n̂i ⊕ ni. Hyb2 and Hyb3 are computationally indistinguishable based on the pseudorandom
ciphertexts property of the encryption scheme Enc. Finally, Hyb3 and Hyb4 are statistically close,
where the only difference is the possibility of failure of the algorithm Allocation, which is negligible
in N . This concludes the proof.

Conclusion. By combining Theorem 4.4 with the allocation algorithms OneChoiceAllocation (Al-
gorithm 3.1) and TwoChoiceAllocation (Algorithm 3.4) we obtain the following corollary:

Corollary 4.5. Assuming the existence of one-way functions, there exist searchable symmetric
encryption schemes with the following properties:

1. Space O(N), locality O(1), and read efficiency Õ(logN) without any assumptions on the struc-
ture of the database.

2. Space O(N), locality O(1), and read efficiency Õ(log logN) assuming that no keyword appears

in more than N
1− 1

log logN documents.

4.3 Extensions

We discuss the following extensions of our generic transformation from allocation algorithms to
searchable symmetric encryption schemes (Construction 4.3).

Reducing one round of interaction. When considering the SSE scheme that is based on our
one-choice allocation algorithm OneChoiceAllocation, we can in fact reduce one round of interaction
(as in [CT14]). Specifically, we revisit Construction 4.3 and provide some modifications. We then
claim that under some additional assumptions on the underlying allocation algorithm (which are
satisfied by our one-choice algorithm), the resulting construction is still a secure SSE scheme.

The modifications are as follows. Assume that while the client encrypts the lists, in addition it
shuffles the elements in each bin. Then, we just combine the Resolve algorithm into the algorithm
Search. That is, we also give the server the secret state ρi, so that it can perform the Resolve
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algorithm by itself and will not have to send the additional message to the client. Given the
previous algorithms (KeyGen,EDBSetup,TokGen, Search,Resolve), our new scheme defines EDBSetup
algorithm is modified as above (i.e., shuffles each bin), and for (τi, ρi) = TokGen(K,wi), we define
the new search algorithm as Search′(τi,EDB) = Resolve(ρi, Search(τi,EDB)). The scheme omits the
Resolve algorithm, since the server already obtains the list of identifiers (or, documents).

We note that this is secure since the allocation algorithm satisfies the following (strong) property:
not only that the possible location of each list is independent of the possible locations of other
lists, but rather, the actual location of each list is independent of the structure of the other lists,
conditioned that the allocation was successful (no bin was overflowing, which occurs with all but
negligible probability). However, the security obtained in this manner is only static in the standard
model (or adaptive in the random oracle model) – see Section 5 where we deal with a similar issue
and provide a more elaborate discussion.

On the actual leakage of the scheme. The security obtained in Theorem 4.4 is for the modest
leakage function Ladapsizes . However, this holds as long as the client stores a database of keyword-
document pairs, and the decryption is done by the client and is not revealed to the server. In case
that the database consists of keyword-identifier pairs, then recall that in the second round the client
sends the identifiers and receives back the encrypted documents. As a result, although the first
round of interaction can be simulated using the Ladapsizes -leakage function, this leakage is not enough

for simulating the second round, and the actual leakage is Ladapmin .

4.4 A Limitation of Allocation Algorithms

We prove that any “very efficient” allocation algorithm that follows Structure 4.1, must assume a
certain upper bound on the length of the longest list (this bound essentially matches the bound that
is assumed by our two-choice algorithm). This is a generalization of Section 3.2.2, where here we
consider some more general algorithms, but still follow essentially the same approach.

We note that since we consider a specific and rather restricted structure of allocation algorithms,
we are able to prove a tighter bound than the one presented by Cash and Tessaro [CT14]. In fact, our
construction in Section 5, which is based on a different technique (and not on allocation algorithms),
circumvents this lower bound. This shows some dichotomy with respect to allocation algorithms:
While these algorithms behave nicely while restricting the length of the maximal list (with respect
to all three measures of efficiency), their efficiency becomes somewhat unsatisfying without this
restriction. Adding the same restriction on the length of the maximal list to any of the other SSE
schemes that have appeared in the literature (as well as to our construction in Section 5), does not
seem to improve these constructions by much and they all behave asymptotically the same8.

Our argument here is based on that from Section 3.2.2, where we generalize it in the following
two directions. First, the RangesGen algorithm may choose an arbitrary number of ranges using some
arbitrary distributions, and it is not restricted to choosing only two ranges of the appropriate length
uniformly at random. For instance, the RangesGen may output d dependent ranges for the same
list. Second, in our two-choice allocation scheme we analyzed some specific Allocation algorithm.
Here, we show that the limitation holds for any implementation of the Allocation algorithm.

Proposition 4.6. Let Allocation-Alg = (RangesGen,Allocation) be an (s, d, r)-allocation algorithm
with s(N) = O(N logN) and d(N)2r(N) ≤ logN/(c · log logN) for some constant c ≥ 1, and let

8For example, assuming that there are no lists of length greater than N1−1/ log logN , the space usage of our con-
struction in Section 5 is reduced from O(N logN) to O(N logN(1− 1/ log logN)), which is still O(N logN), while its
locality and read efficiency remain exactly the same.

25



ϵ(N) = c−1 ·d(N)−2r(N)−1. Then, for every N , there exists an input (n1, . . . , nk) with N =
∑k

i=1 ni

and maxni = N1−ϵ, such that Allocation-Alg (n1, . . . , nk) fails with a noticeable probability.

Proof. We modify RangesGen such that it returns exactly d ranges, each of size exactly r ·ni. Surely
this only increases the probability that we will be able to accommodate the lists. Similarly to the
proof of Claim 3.7, we take L ≤ N ϵ lists of size of n′ = N1−ϵ for some ϵ, and an arbitrary number
of lists (and structure) for the remaining N − L ·N1−ϵ elements (but still with no list longer than
n′). From now on we will only refer to the first L lists.

For 1 ≤ ℓ ≤ L, 1 ≤ j ≤ d and 1 ≤ i ≤ s, we define a random variable Xi
ℓ,j ∈ {0, 1}, which

indicates whether the jth range of the ℓth list contains the ith memory cell or not. We also define
Wℓ = (Xi

ℓ,j)j,i of size d × s, which gathers the variables that are related to the ℓth list. We point
out that the variables W1, . . . ,WL are independent and identically distributed (IID).

We now compute the probability that all ranges that are chosen to the L lists share the same
ranges, or at least, share some few memory cells. As we will see, this will imply that there are a lot
of intersections between the ranges and therefore for appropriate choice of parameters, we cannot
accommodate the lists.

We denote the event E ij = {Xi
ℓ,j = 1 : ∀1 ≤ ℓ ≤ L}, i.e., the jth range of all lists contains the

ith memory cell. For all ℓ we have
∑s

i=1X
i
ℓ,1 = r · n′, so

∑s
i=1 Pr[X

i
ℓ,1 = 1] =

∑s
i=1E[Xi

ℓ,1] = r · n′,
therefore there exists i1 with Pr[Xi1

ℓ,1 = 1] ≥ r·n′

s . This i1 is the same for all the lists because
W1, . . . ,WL are identically distributed. Thus, by independency (of choices between different lists)
we get

Pr[E i11 ] =
L∏

ℓ=1

Pr[Xi1
ℓ,1 = 1] ≥

(
r · n′

s

)L

=

(
N

s
· r

N ϵ

)L

.

Let 1 < j ≤ d and suppose that we already defined i1, . . . , ij−1. Conditioned on E i11 , . . . , E ij−1

j−1 , the
variables W1, . . . ,WL are still IID, so applying the same argument, but with respect the conditional
distribution, yields that there exists ij such that

Pr[E ijj | E
i1
1 , . . . , E ij−1

j−1 ] ≥
(
N

s
· r

N ϵ

)L

.

Setting E =
∩d

j=1 E
ij
j we get

Pr[E ] =
d∏

j=1

Pr[E ijj | E
i1
1 , . . . , E ij−1

j−1 ] ≥
(
N

s
· r

N ϵ

)d·L
.

Now if E occurs then we have strictly less than 2d · r · n′ available memory cells to accommodate
the lists. This is due to the fact that we can only use cells in the ranges [ij − r · n′, ij + r · n′ − 1]
for 1 ≤ j ≤ d (this is the point in the proof where we use the consecutiveness of the ranges). On
the other hand, the lists require L · n′ memory cells, so if we take L = 2d · r we get that this event
means failure for the Allocation algorithm. We conclude

Pr[Allocation-Alg(n1, . . . , nk) fails] ≥ Pr[E ] ≥
(
N

s
· r

N ϵ

)2d2r

= 2−2d
2r(ϵ logN+log s

N
−log r) (2)

so if d2r(ϵ logN + log s
N − log r) = O(logN) then this algorithm fails with a noticeable probability.

Note that we need to have 2d · r ≤ N ϵ, since otherwise by taking L = 2d · r lists we will exceed N
elements.
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Finally, we show that under our assumptions on s, d, r, ϵ, the probability of failure of Eq. (2) is
noticeable and that 2d · r ≤ N ϵ. We start with the failure probability. We have ϵ = c · d−2r−1,
d2r ≤ logN/(c · log logN) and s

N = O(logN). So we get that

d2r ·
(
ϵ logN + log

s

N
− log r

)
≤ c−1 · logN + d2r · log s

N
= O(logN) .

It remains to show that 2d · r ≤ N ϵ for a large enough N . This is equivalent to showing that
ϵ−1(1 + log d+ log r) ≤ logN . Indeed, we have that

ϵ−1 · (1 + log d+ log r) = d2r · (1 + log d+ log r)

≤ c · d2r · (1 + log(d2r))

≤ logN

log logN
·
(
1 + log

(
logN

log logN

))
= logN −

(
1− 1

log log logN

)
· logN log log logN

log logN

≤ logN,

where the last inequality holds for N ≥ 16.

Remark. Suppose that every range returned by RangesGen(N,ni) has size at most f(N) · ni

(clearly we can always take f(N) ≤ r(N)). It can be easily seen from the proof, that we can
strengthen Proposition 4.6 by replacing each appearance of r(N) by f(N), that is, we require
d2(N)f(N) ≤ logN/(c · log logN) and set ϵ(N) = c−1 · d(N)−2f(N)−1.

5 Improving the Cash-Tessaro Scheme

In this section we improve the scheme proposed by Cash and Tessaro [CT14]. Their scheme offers
space O(N logN), locality O(logN), and read efficiency O(1). Our improvement reduces the locality
from O(logN) to O(1) while not hurting the space overhead or read efficiency. We begin by first
describing the Cash-Tessaro scheme, and then explain our modification.

The Cash-Tessaro scheme. Let DB = {DB(w1), . . . ,DB(wnW
)} be a database of size N =∑nW

i=1 |DB(wi)|, where each keyword wi appears in ni = |DB(wi)| documents. The scheme consists
of logN hash tables, each of size O(N), where the kth table will store N/2k blocks of length 2k.

For every keyword wi, let
(
s
(i)
logN , . . . , s

(i)
0

)
be the binary representation of ni. Then, each list

DB(wi) is broken into at most logN consecutive blocks, where the kth block consists of 2k document

identifiers for every k for which s
(i)
k = 1. For every k we then insert all blocks of length 2k into the

kth hash table. Note that there can be at most N/2k such blocks, and each hash table is padded
with “dummy” blocks to contain exactly N/2k blocks. The blocks corresponding to each list DB(wi)
are then encrypted using a key that is derived from wi.

Reconstruction of a list DB(wi) can be done easily using the key that is derived from wi by
querying each of the logN hash tables. Therefore, the scheme uses space O(N logN), locality
O(logN) (since one has to query all logN hash tables), and read efficiency O(1).
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Our scheme. As in the Cash-Tessaro scheme, our scheme consists of logN hash tables of size N
each, where the kth tables stores 2k blocks of length N/2k. The main idea underlying our scheme is
to store each list DB(wi) in a single table, instead of splitting it across the logN tables. Specifically,
every list DB(wi) of length ni is stored in the pith table, where 2pi−1 < |DB(wi)| ≤ 2pi . We pad
the list with dummy elements until its length is exactly 2pi , and this increases the overall space by
a factor of 2, but the entire list is now stored in one continuous block. In addition, we include a
separate hash table that contains an encryption of pi for every keyword wi. We therefore obtain a
scheme with space O(N logN), locality O(1), and read efficiency O(1). The scheme is presented as
Construction 5.1.

CONSTRUCTION 5.1.

Parameters. Let t denote the value for which 2t−1 < |DB| = N ≤ 2t. For every word wi ∈ W,
let DB(wi) = {id1, . . . , idni}, and let pi denote the value for which 2pi−1 < ni ≤ 2pi .

Key generator. Algorithm KeyGen(1λ) samples a key K for the PRF.

Setup. Algorithm EDBSetup(DB,K) proceeds as follows:

1. Initialize t + 1 empty sets T0, . . . , Tt, where Tj will store at most 2t−j pairs (ℓ, d), where
|d| = 2j . Initialize a set S, which will be converted to a lookup table.

2. For every keyword wi ∈W

(Let DB(wi) = {id1, . . . , idni}, and recall that 2pi−1 < ni ≤ 2pi . If necessary, pad DB(wi)

with dummy identifiers in order to contain exactly 2pi elements.)

(a) Compute PRFK(wi) = ((ℓi,Ki), (ℓ̂i, K̂i)).

(b) Create the blocks:

di = (EncKi(id1), . . . ,EncKi(id2pi )) and n̂i = Enc
K̂i

(ni) .

(c) Insert the pair (ℓi, di) to the set Tpi and (ℓ̂i, n̂i) to the set S.

3. Pad the list S to contain exactly N elements by adding random elements, and pad each set
Tj to contain exactly 2t−j pairs by adding random elements.

4. For each set S, T0, . . . , Tt, uniformly shuffle the set, generate the respective hash table by
invoking the HTSetup algorithm, and obtain the hash tables HT(S), (HT(L0), . . . ,HT(Lt)).

5. Output EDB = (HT(S), (HT(L0), . . . ,HT(Lt))).

Token generator. Algorithm TokGen(K,wi) outputs the four derived keys

τi = ((ℓi,Ki), (ℓ̂i, K̂i)) = PRFK(wi).

Search. Algorithm Search(τi,EDB), where τi = ((ℓi,Ki), (ℓ̂i, K̂i)) and EDB =
(HT(S),HT(L0), . . . ,HT(Lt)) works as follows:

1. Invoke HTLookup on the hash table HT(S) and label ℓ̂i, receive back n̂i = Enc
K̂i

(ni). Decrypt

ni using the key K̂i, and compute pi.

2. Invoke HTLookup on the hash table HT(Tpi) and the label ℓi. Obtain the block di =
(EncKi(id1), . . . ,EncKi(id2pi )). Decrypt the first ni elements of this block using the key Ki

and return them.

Theorem 5.2. Assume that PRF is a pseudorandom function, and that Enc has pseudorandom
ciphertexts. Then, Construction 5.1 is a static Lmin -secure searchable symmetric encryption scheme
for databases of size N with space O(N logN), locality O(1), and read efficiency O(1).

Proof. It is easy to see that the scheme is correct except for the event where the same label appears
more than once, which occurs in some negligible probability. For proving the security of the scheme,
recall that in the real execution, the adversary A outputs DB,w, and is given the encrypted database
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EDB and the tokens τi = TokGen(K,wi) for every wi ∈ w. In the ideal execution, the simulator S is
given only Lmin (EDB,w) and should output both EDB and τ = {τi}wi∈w such that the adversary
cannot distinguish between these two executions. Observe that the algorithms KeyGen,EDBSetup
and TokGen are not invoked in the ideal execution (by the experiment itself. They may be invoked
by the simulator).

The simulator S works as follows:

• Input: L(DB,w) = (N, {DB(wi)}wi∈w).

• The simulator:

1. The simulator S chooses (uniformly) random keys τi = ((ℓi,Ki), (ℓ̂i, K̂i)) for every wi ∈ w.

2. S initializes the sets L0, . . . , Lt and S to be empty sets. For every wi ∈ w and given
DB(wi), it computes ni and pi. If necessary, it pads DB(wi) to size 2pi with some random
additional id’s.

3. For every wi ∈ w, S computes:

di = (EncKi(id1), . . . ,EncKi(id2pi )) and n̂i = Enc
K̂i
(ni) .

It adds the pair (ℓ̂i, n̂i) to the set S and (ℓi, di) to the set Lpi .

4. After adding all the keywords in w, S adds for each set Lj random elements until it
contains exactly 2t−j elements, and it adds to S random elements until it contains exactly
N elements.

5. S uniformly shuffles each one of the sets S, T0, . . . , Tt. It then generates hash table from
each set using the algorithm HTSetup, and defines EDB = (HT(S), (HT(T0), . . . ,HT(Tt))).

6. S outputs EDB and τ = {τi}wi∈w.

We now claim that the adversary cannot distinguishes between the pair (EDB, τ ) that it receives
in the real execution and in the ideal execution. Consider the following hybrid experiments:

• Hyb0. This is the real execution, where the adversary A receives EDB and τi = PRFK(wi) for
every wi ∈ w.

• Hyb1. This experiment is obtained from Hyb0 by replacing the pseudorandom function
PRFK(·) with a truly random function. Observe that, as a result, the key K that is produced

by KeyGen is redundant and the elements τj = ((ℓj ,Kj), (ℓ̂j , K̂j)) are distributed uniformly.

• Hyb2. This experiment is obtained from Hyb1 as follows: For every wj ∈ W \ w we replace
the values dj and n̂j (in Step 2b of EDBSetup) with independent and uniformly-distributed
values of the appropriate length.

• Hyb3. This is the ideal execution, where we run the simulator S defined above.

We observe that Hyb0 and Hyb1 are computationally indistinguishable based on the security of the
pseudorandom function PRF, and that Hyb1 and Hyb2 are computationally indistinguishable based
on the pseudorandom ciphertexts property of the encryption scheme Enc. Finally, the experiments
Hyb2 and Hyb3 are identical by the definition of the simulator S.

Adaptive security in the random-oracle model. The scheme can be proven with adaptive
security in the programmable random oracle model, using similar techniques as in [CT14]. Towards
this goal, all we need is to instantiate the encryption scheme (Enc,Dec) with an encryption that
allows “explaining” a random ciphertext as the encryption of any particular message (as in [CT14]).
Concretely, we can use EncK(x; r) =

(
r,H(K||r)⊕ x0λ

)
, where H is the random oracle. Then, for
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any derived key k, random (r, c), and a message m, we can program the random oracle such that
Enck(m) = (r, c), by fixing H(k||r) = c⊕m0λ.

For the proof of security, the simulator in the first step creates random sets L0, . . . , Lt and S, ap-
ply the HTSetup on each one of them and outputs the resulting tables as EDB. Later, upon a query wi

with a list DB(wi) = {id1, . . . , idni}, it computes pi, chooses some random pair (ℓi, (d
(1)
i , . . . , d

(2pi )
i ))

from the list Lpi (and removes this pair from Lpi), and chooses some random pair (ℓ̂i, n̂i) from the

set S (and removes it from S). Then, it chooses random keys Ki, K̂i, and programs the random
oracle such that the following hold:

EncKi (idj) = d
(j)
i ∀ 1 ≤ j ≤ ni, and Enc

K̂i
(ni) = n̂i .

If the programming cannot succeed (because the corresponding values are already set for H), the

simulator aborts. Otherwise, it outputs τi = ((ℓi,Ki), (ℓ̂i, K̂i)). We omit a formal analysis of the
above, as it follows standard techniques. We conclude the following theorem:

Theorem 5.3. Construction 5.1 is adaptive Ladapmin -secure searchable encryption scheme for database
of size N , with space O(N logN), locality O(1) and read efficiency O(1) in the random-oracle model.

Adaptive security in the plain model. We note that the usage of random oracle can be avoided
using somewhat similar ideas to our solution in Section 4.2. That is, we modify the scheme such that
the token that the client sends does not give the server the ability to decrypt the elements of the
resulting list, and these decryptions are performed by the client (i.e., the client does not send the key
Ki). The encryption of ni is performed using a one-time pad, similarly to Construction 4.3. However,
in case where the client stores database of keywords/identifiers (and not keywords/documents),
this results in one additional round of interaction, where in the second round the client sends the
decrypted list as a list of documents’ identifiers the server has to fetch from the database.
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