
Search Problems in the Decision Tree Model

L�aszl�o Lov�asz

�

Moni Naor

y

Ilan Newman

z

Avi Wigderson

x

November 19, 2001

Abstract

We study the relative power of determinism, randomness and nondeterminism

for search problems in the Boolean decision tree model. We show that the gaps

between the nondeterministic, the randomized and the deterministic complexi-

ties can be arbitrary large for search problems. We also mention an interesting

connection of this model to the complexity of resolution proofs.

1 Introduction

Ramsey's theorem asserts that every graph on n vertices has either a complete graph

or an independent set of size

1

2

logn. A natural search problem associated with this

theorem is to �nd such a subgraph. Many other problems, like the ones below, have a

similar avor: Given an assignment of n pigeons into n�1 pigeonholes, �nd two pigeons

assigned to the same hole. Given a k-chromatic graph and a coloring of its nodes with

fewer than k colors, �nd two neighbors which got the same color. Given an unsatis�able

3-CNF formula and an assignment to its variables, �nd a clause which is not satis�ed.

How hard is it to solve such search problems? The answer depends of course on their

representation and the computational model. We assume that the input is encoded in

binary, and that we are only allowed to probe input bits. This gives the familiar Boolean

�

Princeton University and E�otvos Lor�and University Budapest

y

Weizmann Institute. Part of this work was done while the author was at the IBM Almaden Research

Center.

z

DIMACS center and Hebrew U. Jerusalem

x

Princeton University and Hebrew U. Jerusalem

1

decision tree model, adapted to solving search problems rather than computing Boolean

functions. We study the relationship between the standard nondeterministic, probabilis-

tic and deterministic variants of this model, and discover that it is drastically di�erent

from the case of function computation, where all three measures are polynomially re-

lated (see [2, 7, 18, 13]). In all the examples listed above it is easy to guess and verify

the solution; hence the nondeterministic decision tree complexity is small (a constant or

polylog). If the decision tree was computing a function, this would imply that both the

randomized and deterministic complexities are small, by the fact that the gap is at most

quadratic [2, 7, 18]. It turns out that for search problems these gaps can be arbitrary

large.

Our investigation is partly motivated by a similar study of search problems in the

communication complexity setting [11, 17], where a similar phenomenon occurs but not

to the same extent. Another study of search problems was carried out by Papadimitriou

[14] where complexity classes de�ned by search problems were investigated. Some of our

examples are inspired by this work and [8, 10].

The examples above may remind the readers of resolution proofs. Indeed, resolution

proofs viewed top down yield Boolean decision trees to the search problems above. (this

fact seems to be folklore and is elaborated in the appendix).

Thus, the exponential length lower bounds on resolution proofs (see e.g. [4]) pro-

vide linear deterministic lower bounds even when the nondeterministic complexity is a

constant. However, the distinction between the resolution and the decision tree points

of view becomes clear when trying to make sense out of the probabilistic model. In

resolution, one proves simultaneously that every assignment falsify some clause in an

unsatis�able formula. This has no natural probabilistic analog. The decision tree ap-

proach, where one must �nd for a given input assignment a clause that it falsi�es, has a

natural randomized version. Indeed, we will be primarily concerned with the power of

probabilistic computation for such problems.

We prove that the probabilistic complexity can be at both ends of the spectrum.

We give an explicit search problem for which the probabilistic (and nondeterministic)

complexity is constant, but the deterministic is linear. On the other hand we provide

two explicit problems for which there is a large gap between the nondeterministic and

probabilistic complexities: one in which the �rst is constant and the second is
(n

1

6

),

and another in which the �rst is O(logn) while the second is nearly linear. Finally, we

present an explicit problem for which there is a simultaneous exponential gap between

the nondeterministic vs. the randomized vs. the deterministic complexities. This last

example uses an upper bound due to Irani [9] on online coloring algorithms to provide

a lower bound on the deterministic complexity. We note here that as far as we know,

no such simultaneous gaps are known for any other model of computation.

The special case of nondeterministic complexity 2 deserves a special interest. It cor-

responds to unsatis�able 2-CNF formulae. We characterize the deterministic complexity

2

by the structure of the formula, and note that it can never exceed 1+logn. We show that

here too the gap between the randomized complexity and the nondeterministic, and the

gap between the randomized complexity and the deterministic can be arbitrarily large.

The paper is organized as follows; in section 2 we give the formal de�nitions of search

problems, decision trees and show that the CNF search problem is 'complete' for all the

variants of decision trees. In section 3 we construct search problems with a large gap

between the deterministic and the randomized complexity, randomized and nondeter-

ministic complexity, and simultaneous nondeterministic - randomized - deterministic

complexity gaps. In section 4 we discuss the special case of nondeterministic complexity

2. The exact relationship to the resolution problem appears in the appendix.

2 De�nitions

De�nition 2.1 A search problem on n variables is a relation F � f0; 1g

n

�W , such

that 8x 2 f0; 1g

n

; 9w 2 W for which (x; w) 2 F . W is a �nite set, called the set of

witnesses.

The search problem for input x 2 f0; 1g

n

is to �nd a w 2 W such that (x; w) 2 F ,

(we call such a w a valid witness for x).

A monomial m is a conjunction of literals (over the variable set fx

1

; ::; x

n

g). With

every monomial m we associate the subcube C

m

of all the points in f0; 1g

n

that are

consistent with m (i.e evaluate to '1' on m). The length of a monomial is the number

of literals in it.

De�nition 2.2 Let F � f0; 1g

n

�W be a search problem.

1. The set of monomials of F , denoted by M

F

is de�ned by m 2 M

F

if 9w 2

W such that 8x 2 C

m

; (x; w) 2 F . In words, m 2 M

F

if all inputs x that are

consistent with m share a mutual witness w.

2. De�ne the search problem F

0

� f0; 1g

n

�M

F

as the set of pairs (x;m) such that

x satis�es m. De�ne the Boolean formula g(F) = _

m2M

F

m.

Clearly F

0

is a valid search problem since every input x has a witness in F . (In particular,

the subcube that contains the single point x de�nes a monomial m 2 M

F

that is a

witness for x in F

0

). Thus g(F) is a DNF tautology and F

0

may be restated as: on

input x �nd a satis�ed clause. It will be convenient though, for historical reasons, to

consider f(F) = g(F) which is an unsatis�able CNF formula. Observe that there is a

natural correspondence between witnesses of F and F

0

. Throughout the paper we will

not distinguish between F and its associated F

0

.

3

2.1 Decision tree complexity for search problems

Let F � f0; 1g

n

�W be a search problem. A deterministic decision tree for F is a rooted

binary tree in which every internal node is labeled by a variable and the two outgoing

edges are labeled by the two possible values to that variable. Each leaf is labeled with

a witness w 2 W . Every assignment of the variables determines a path from the root

to a leaf in a natural way. The tree is a valid decision tree, if for every assignment this

path ends in a leaf labeled by a valid witness.

The deterministic complexity of F , D(F), is the minimum depth of any decision tree

for F .

The nondeterministic complexity of F , N(F), is the minimum number of variables

that must be probed in order to �nd a valid witness for the worst case input. Alterna-

tively, it is easy to see that it is exactly the maximum size of the smallest monomial in

M

F

that satis�es x over all inputs x.

A randomized decision tree for F is a distribution over deterministic decision trees

for F . The complexity of a randomized decision tree is the expected path length for

the worst case input. The randomized complexity of F , R(F), is the minimum over all

randomized decision trees for F .

Facts:

1. Let F � f0; 1g

n

� W be a search problem and F

0

� f0; 1g

n

� M

F

the associ-

ated search problem. Then D(F) = D(F

0

); R(F) = R(F

0

) and N(F) = N(F

0

).

Furthermore, there is a natural correspondence between any decision tree for F

(deterministic, randomized or nondeterministic) and a (corresponding) decision

tree for F

0

.

2. For every decision problem F : N(F) � R(F) � D(F).

An observation of Chvatal and Szemer�edi [5] is that for a search problem F , lower

bounds on the (regular) resolution process for the unsatis�able formula f(F) imply lower

bounds on the deterministic decision tree complexity for F . We elaborate on that point

in the appendix.

3 The relative power of determinism and random-

ization vs. non-determinism

In this section we present some explicit search problems which achieve large gaps between

the di�erent decision tree complexity measures. Our main task is to construct search

problems for which N(F) << D(F), R(F) << D(F) or N(F) << R(F) << D(F)

4

simultaneously. Another parameter to consider in each case is D(F) vs. the number of

variables n, which is the obvious upper bound for all the three measures of complexity.

3.1 Gaps between R(F) and D(F)

We present here an explicit search problem for which R(F) = O(1) and D(F) =
(n).

Note that the existence of such a problem follows from [4] by probabilistic arguments.

Let G(U; V; E) be a bipartite graph with maximum degree d, jU j = 2n; jV j = n and

with the following expansion property: For every S � U; jSj � n=4) jN(S)j � 2jSj.

(N(S) = fvj (u; v) 2 E and u 2 Sg).

Such a graph exists for large enough d and in�nitely many n

0

s and can be e�ciently

constructed using expander graphs [12] (d can be taken to be 30).

De�ne the search problem DEG on jEj = O(n) variables in the following way. Each

0-1 assignment to the variables is interpreted as a subgraph G

0

of G, de�ned by those

edges that are assigned '1'. The search problem is to �nd a vertex r whose degree in G

0

is not one. Clearly such a vertex exists.

The nondeterministic complexity N(DEG) � d since for every input (subgraph G

0

)

one must only check the incident edges of the guessed vertex.

Theorem 3.1 R(DEG) = O(1) and D(DEG) =
(n).

Proof: The proof will be established by the following two lemmata:

Lemma 3.1 R(DEG) � 2d(d+ 1)

Lemma 3.2 D(DEG) =
(n)

Proof of lemma 3.1: Consider the following random decision tree. Pick at random a

vertex u 2 U and independently a vertex v 2 V ask all edges that are incident to each

of the two vertices (i.e 2d edges are being checked). If u or v produce a witness stop,

otherwise repeat this process until done.

We claim that the probability that a witness is discovered in each iteration is at least

1

d+1

: If there are more than

2nd

d+1

edges in the subgraph G

0

de�ned by the '1'-edges, then

at least

n

d+1

of the vertices in V are of degree at least 2. In this case the fact that v 2 V

is chosen at random proves the claim. If, on the other hand, G

0

has less then

2nd

d+1

edges,

then at least

2n

d+1

of the vertices in U are of degree 0 in G

0

. Thus, the fact that u 2 U is

chosen at random proves the claim in this case.

We get that the expected number of iterations is d+ 1, in each of them 2d edges are

probed which yields the above upper bound. 2

5

Proof of lemma 3.2: We show an adversary strategy that is going to cause any

deterministic decision tree to probe
(n) edges. The adversary will be limited to produce

a subgraph for which 8v 2 V; deg

G

0

(v) = 1 and 8u 2 U; deg

G

0

(u) � 1. Thus, the answer

the decision tree has to �nd is a vertex in U .

We need some de�nitions. For any S � U and subgraph G

0

of G; N

G

0

(S) =

fv 2 V j (u; v) 2 G

0

; u 2 Sg. For stage i (after i edges were probed) let E

0

i

=

feje was assigned '0' g and E

"

i

= fej e was not probed and 9e

0

; e

0

assigned '1' and

e \ e

0

6= ;g. De�ne G

i

= G � (E

0

i

[E

"

i

). In words, G

i

contains all the edges that are

still possible for the adversary to use in its �nal subgraph without violating the above

limitation.

For each S � U , de�ne N

i

(S) = N

G

i

(S). For any subgraph G

0

of G, de�ne S � U

to be unmatchable if N

G

0

(S) < jSj. Let S

�

G

0

denote a minimum cardinality unmatchable

set in G

0

. Finally call S

�

i

= S

�

G

i

a minimal unmatchable set in step i.

By the above limitation on the adversary, at step i the subgraph G

i

contains a partial

matching from U to V . The decision tree cannot know the answer as long as there is no

isolated vertex in G

i

. Obviously such a vertex is, by itself, a minimum unmatchable set.

Initially, by the de�nition of the graph, jS

�

0

j � n=4. The strategy of the adversary is to

make sure that the minimum unmatchable set size does not decrease too fast. Formally,

in step i an edge e = (u; v); u 2 U; v 2 V is probed. The adversary computes

1. S

0

(e) = S

�

(G

i

� e) i.e the minimum unmatchable set that occurs on '0' answer on

e.

2. S

1

(e) = S

�

(G

i

� ff = (x; v)j f was not probed and x 2 Ug), i.e the minimum

unmatchable set that occurs on '1' answer on e.

He then chooses the answer on e so as to make S

�

i+1

the larger of S

0

(e); S

1

(e).

The heart of the argument is the following claim.

Claim: If jS

�

i+1

j = s then there is a minimal unmatchable set S

�

i

with jS

�

i

j � 2s.

Proof: (of the claim) Assume e is asked in step i + 1. By the above strategy, jS

�

i+1

j =

max(jS

0

(e)j; jS

1

(e)j). It is easy to see that S = S

0

(e) [S

1

(e) cannot be matched into

V in G

i

. Thus, S contains an unmatchable set for step i of cardinality no more then

jS

0

(e) [S

1

(e)j � 2 �max(jS

0

(e)j; jS

1

(e)j) = 2s. 2

We can now complete the proof of lemma 3.2 by the following argument. At the

beginning jS

�

0

j � n=4, at the end jS

�

i

j = 1 and by the claim the cardinality of the

minimal unmatchable set does not decrease by more then a factor of 2. We conclude

that at some step j; n=16 � jS

�

j

j � n=8, with jN

j

(S

�

j

)j < jS

�

j

j. However, by the

expansion property of G, jN

G

(S

�

j

)j � 2jS

�

j

j. Since at each step, N

i

(S) can drop by at

most d for any set S, at least jS

�

j

j=d =
(n) edges were probed up to step j. 2

6

3.2 Gaps between N(F) and R(F)

In this section we construct two search problems for which the randomized complexity is

large while the nondeterministic complexity is small. The nondeterministic complexity

of the �rst problem is constant while its randomized complexity is
(n

1

6

). The second

problem has O(logn) nondeterministic complexity and its randomized complexity is

(n= logn). The proof of the lower bound on the randomized complexity of the �rst

problem is by proving a lower bound on the distributional complexity. (Yao [20] has

shown that this is su�cient.) The proof for the second is by an indirect reduction to a

communication complexity game.

3.2.1 A problem with N(F) = 3 and R(F) 2
(n

1

6

)

Let GRID be the following problem on n = m

2

� 1 variables. Consider an (m + 1) �

(m+1) matrix where the entry at the bottom left corner contains a one and the top row

and rightmost column are all zero. The n input bits determine the rest of the entries of

the matrix.

For any 0-1 assignment to the rest of the matrix, the goal is to �nd an entry such

that it is one and its upper and right neighbors are zero. It is not hard to see that such

a con�guration always exists.

This example is inspired by the lower bound argument of Hirsch, Papadimitriou and

Vavasis [8] for �nding Brouwer �xed points and discussions with Noga Alon on extending

it to the random case.

Theorem 3.2 N(GRID) = 3, R(GRID) =
(n

1

6

) and D(GRID) = �(

p

n).

Proof: The fact that N(GRID) = 3 is clear. The theorem is established by the

following lemmata.

Lemma 3.3 R(GRID) =
(n

1

6

)

Proof: A basic result of Yao [20] asserts that in order to prove lower bounds on

randomized decision tree complexity it is su�cient to show a distribution on the inputs

such that any deterministic algorithm requires a high expected number of queries. The

distribution for which we claim the lower bound is de�ned as follows: A random upward

and rightward path starting from the bottom left corner of the matrix and ending at the

top row or right column is picked uniformly from all such paths. The entries along the

path receive the value '1' and the rest receive the value '0'.

We claim that any deterministic algorithm requires
(m

1

3

) =
(n

1

6

) queries on the

average to discover the endpoint of the path, which is the only point where the desired

con�guration occurs. We need the following claim.

7

Claim 3.1 Let A;B;C

1

; ::; C

k

be points in the matrix such that B is of manhattan dis-

tance at least d from A in the downward and left direction, and each of C

i

; 1 � i � k is

of manhattan distance at least d from B.

For the above distribution on paths, and 1 � k �

p

d

2

the probability that a path passes

through A given that it passes through B and avoids C

1

; ::; C

k

is at most

2

p

d

.

Proof (of the claim)

Let A be the event that the path passes through point A, B the event that it passes

through B and C

i

; 1 � i � k the event that it passes through C

i

.

Prob(AjB; C

1

; ::; C

k

) =

Prob(A\ C

1

\; ::;\C

k

jB)

Prob(C

1

\; ::;\C

k

jB)

�

Prob(AjB)

1� Prob((C

1

[; ::;[C

k

)jB)

�

�

Prob(AjB)

1� k �max

1�i�k

f(Prob(C

i

jB) g

�

1

p

d

1�

k

p

d

�

2

p

d

(Prob(AjB) and Prob(C

i

jB) are bounded by

1

p

d

since they correspond to max

1�j�d

0

(

d

0

j

)

2

d

0

).

2

Let T be any deterministic decision tree for GRID. We will give additional infor-

mation to queries of T; At any stage i we provide T with a pre�x of the path of length

j

i

m

2=3

, i.e. with all the points on the path up to manhattan distance j

i

m

2=3

from the

origin (the bottom left corner). The length of the pre�x is determined as follows: We

start with j

0

= 0. If by the ith stage ` � 0 is the largest number such that there exists

a set of ` queries q

1

; q

2

; : : : q

`

such that for all 1 � h � ` q

h

is to a point of distance

(j

i�1

+ h� 1)m

2=3

+ 1 to (j

i�1

+ h)m

2=3

from the origin, then we provide all the points

on the path up to distance (j

i�1

+ `)m

2=3

and set j

i

to be j

i�1

+ `. It follows that for all

i we have that j

i

� i.

Consider now what happens whenever an execution of T discovers the endpoint of the

path with less than

1

4

m

1=3

steps. There must be the �rst step k such that: (i) up to the

kth step for all the queries i < k whenenver the i query was of distance larger than j

i

m

2=3

then the answer was '0'. (ii) the kth query is at distance larger than (j

k�1

+1) �m

2=3

and

was answered '1'. By Claim 3.1 we have that for any 1 � k � 1=4m

1=3

the probability

that such an event will occur is at most

2

p

m

2=3

=

2

m

1=3

. Therefore the probabiltiy that

such an event will occur for some 1 � k � 1=4m

1=3

is at most 1=2 and therefore the

expected number of queries is at least
(m

1=3

). 2.

By replacing the grid with an expander we can get a problem with sharper bounds.

Let G be a 3-regular expander with n edges and let u be some node in G. Associate the

n inputs with the edges of G. Thus every assignment to the inputs de�nes a subgraph

G

0

by the edges that are assigned '1'. The problem ODD is: �nd a node with an odd

degree in G

0

or �nd that u has even degree in G

0

.

8

ODD is a valid search problem by the fact that every graph has an even number of

odd degreed nodes. Therefore N(ODD) = 3. Using the fact that expanders are rapidly

mixing, i.e. that a random walk in expander gets to a node that is almost random

after O(logn) steps, we can show that R(ODD) is
(n

1

3

). We conjecture however that

R(ODD) is �(n).

Lemma 3.4 D(GRID) = O(m) = O(

p

n)

Proof: There is a deterministic decision tree of complexity O(m) that solves the

problem. It asks all entries in the b

m

2

c-row. If there is any '1' entry, there must be an

answer in the upper half of the matrix. Otherwise, there must be an answer in the lower

part of the matrix. The decision tree probes next the relevant half of the b

m

2

c-column

and recurse respectively. 2

Lemma 3.5 D(GRID) =
(m)

Proof: There is a simple adversary strategy that can force any deterministic algorithm

to query at least m�1 locations. The adversary maintains a contiguous path of 1's from

the bottom left location (initially this path contains just the bottom left point). It also

maintains a direction for the path which is either horizontal or vertical. Given a query,

if it is not in the same row or column as the endpoint of the path or it is on the same

row (column) and the direction is horizontal (vertical), the adversary answers 0. If it is,

say, in the same row as the endpoint of the path and the direction is horizontal, then

if in all the columns between the endpoint and current query point a query has been

made, then the adversary answers 1 and gives away 1's for all the locations between the

endpoint and query point. If not, he answers the query by 0, �nds the �rst column in

which a query has not been yet made, �lls the row with 1's up to that point and switch

the direction to vertical. The other case is treated similarly.

It is easy to see that this strategy maintains the invariant that, at any step, the

current path can be augmented to the top raw or right column. Moreover, the adversary

answers 1 in a raw (column) only if all columns (rows) between the current endpoint

and the query have points that had already been queried. So, every 1 in (i; j) position

is discovered after at least max(i; j)� 1 steps. 2

3.2.2 A problem with N(F) = O(logn) and R(F) =
(n= logn)

Our next example is of nondeterministic complexityO(logn) and randomized complexity

of
(n= logn). The lower bound on the randomized complexity is based on a reduction

from a problem in communication complexity.

9

Let K

3m

be the complete graph on 3m vertices. Let P

m

be the set of allm-matchings

in K

3m

i.e, the set of all m pairwise disjoint edges. Let Q

m

denote the set of all (m� 1)-

subsets of vertices of K

3m

. Note that for every member p 2 P

m

and every member

q 2 Q

m

there is an edge e 2 p such that e \ q = ;. Our search problem is essentially

to �nd such an edge on an input (p; q) 2 P

m

� Q

m

. However, we use some Boolean

encoding of the problem. We encode the sets by permutations (as explained below)

and permutations by permutation networks. A permutation network is a directed graph

with k inputs nodes and k outputs nodes (and some other nodes) such that for any

permutation � on k elements there is a set of k disjoints paths connecting the ith input

node to the �(i)th output node for 1 � i � k. For an exact de�nition and details of

construction of permutation networks see [15].

Fact: For every k, a k-permutation network of size O(k log k), depth O(log k) and

bounded degree can be constructed e�ciently. (The shu�e-exchange network is a simple

such construction).

We can formally de�ne now our n variables search problem MATCH: let k = 3m.

Fix two disjoint k-permutation networks and let n be the total number of switches (n =

O(m logm)). The input is an assignment to the switches of each network, interpreted as

two permutations �

1

; �

2

on k elements. The �rst permutation encodes an m-matching

p by; �

1

(i) is matched to �

1

(i+m) for every 1 � i � m. The second encodes a set q of

size m� 1 by q = f�

2

(1); ::; �

2

(m� 1)g. The search problem is to �nd an edge as above.

Theorem 3.3 N(MATCH) = O(logn) and R(MATCH) =
(n= logn)

Proof : N(F) = O(logm) since all one has to do is to 'guess' i and �nd j; r such that

�

1

(i) = j; �

1

(i + m) = r (this is an edge in p). In addition, check that j; r =2 q by

'guessing' s; t > m� 1 such that �

2

(s) = j; �

2

(t) = r. This takes O(logm) probes.

The lower bound on the randomized complexity follows from: (i) the result of Raz

and Wigderson [17] on the complexity of the problem of �nding the desired edge in the

communication complexity setting where one party has p 2 P

m

as its input and the

other party has q 2 Q

m

as its input. They showed that
(k) bits must be transmitted.

(ii) The fact that any lower bound in the communication complexity model is also a

lower bound in the decision tree model, since the players can simulate the decision tree

for each other (transmit the current bit being probed). We don't give here a detailed

de�nition of the communication complexity model, for further information see [11], [17]

and [1].

3.3 Simultaneous large gaps; N(F) << R(F) << D(F)

In this section we construct a problem with simultaneous exponential gaps between

N(F); R(F) and D(F). We remark here that the deterministic lower bound is based on

an interesting application of an upper bounds for an online coloring algorithm.

10

Let r be an integer (to be speci�ed latter). Let G = (V;E) be an m vertex graph

that is not r colorable and n = m log r. The r-coloring search problem for G, denoted

by COL

r

(G), is the following n variable problem: Every assignment of the n = m log r

variables is interpreted as an r-coloring of G. The goal is to �nd two neighbors with the

same color. Clearly such a con�guration always exists; we call such a con�guration a

'monochromatic edge').

Let r = (logm)

2

, d = 16r

2

. Let G = (V;E) be a d-regular m-vertex Ramanujan

expander as constructed by Lubotzky, Phillips and Sarnak [12].

Theorem 3.4

1. N(COL

r

(G) = O(log r) = O(log logm)

2. R(COL

r

(G)) =
(

p

r) and R(COL

r

(G)) = O(r log r)

3. D(COL

r

(G)) =
(2

1

6

p

r

) =
(m

1=6

)

Proof: We �rst have to show that the search problem is indeed valid, that is, to prove

that G is not r-colorable. This, as well as the rest of the proof will follow from the

lemmata below.

Lemma 3.6 For every r-coloring of G there exist at least 8 �r �m monochromatic edges.

Proof: For a set S � V let E(S) = f(u; v)j u; v 2 Sg. Let S

i

; 1 � i � r be the color

classes under a coloring of V with r colors. The number of monochromatic edges is thus

P

i=r

i=1

jE(S

i

)j. However by the expansion properties of G, for every S

0

� V; jE(S

0

)j �

d�jS

0

j

2

m

� 2

p

djS

0

j. Thus, the number of monochromatic edges is at least

i=r

X

i=1

(

d � jS

i

j

2

m

� 2

p

djS

i

j) �

d

m

(

i=r

X

i=1

js

i

j

2

) � 2

p

dm �

d

mr

(

X

i

jS

i

j)

2

� 2

p

dm =

dm

r

� 2

p

dm = 8 � r �m 2

Lemma 3.7 R(COL

r

(G)) = O(r log r) and R(COL

r

(G)) =
(

p

r).

Proof: The upper bound follows from lemma 3.6: there are at least 8 �r �m 'monochro-

matic' edges for every r-coloring; thus selecting an edge at random and probing the

2 log r bits that de�ne its end points' colors results in a witness with probability at least

8mr=dm 2
(1=r). Therefore we get that the expected number of queries is O(r log r).

The lower bound follows by showing a \hard" distribution (as in Yao [20]). The

distribution is uniform on all r-coloring. It is easy to see (by the 'birthday paradox'),

11

that any deterministic tree must probe at least

p

r vertices in order to hit the same

color twice with constant probability. (In particular to �nd two neighbors with the same

color).

Lemma 3.8 Let k =

2

3

log

d�1

m. For every integer s, every induced subgraph G

0

of G

on at most t = s

k�1

vertices has a vertex of degree of at most s.

Proof: By [12] G has no cycles of length less than 2k =

4

3

log

d�1

m. Let G

0

be the

smallest subgraph for which every vertex has degree at least s+ 1. For a vertex v 2 G

0

let S

0

= fvg and S

i

= fuj(u; v) 2 G

0

; and v 2 S

i�1

g. Every u 2 S

i

; i < k has just

one neighbor in S

i�1

since otherwise G

0

has a cycle of length smaller than 2k. However,

since the degree of every such u is at least s+ 1 we get that jS

i

j � s � jS

i�1

j for all i < k

which gives that G

0

contains at least s

k�1

vertices. 2.

Lemma 3.9 D(COL

r

(G)) =
(2

1

6

p

r

) =
(m

1=6

)

Proof: Let s =

p

r. By lemma 3.7 every induced subgraph G

0

of size at most

t = s

k�1

=
(2

1

6

p

r

) has a vertex of degree of at most s. It follows that it can be online

colored by s � log t < r colors, since Irani [9] has shown that the greedy algorithm has this

performance. This means that as long as the decision tree probes no more then t nodes,

the adversary can correctly online color the induced subgraph of the probed nodes so

that no monochromatic edge occurs. 2

4 The case of N (F) = 2

In this section we investigate decision problems for which N(F) = 2, i.e those which

correspond to unsatis�able 2-CNF formulae. It turns out that in that case the situation

is di�erent from the general case. Namely, D(F) can be nearly characterized. It follows

also that for n-variables problems D(F) = O(logn) for any such F . However, R(F) may

still be small in comparison to D(F).

Let f be an unsatis�able CNF formula. We say that a subformula f

0

of f is critical

if it is unsatis�able but deletion of any clause makes it satis�able.

Theorem 4.1 Let F be an n-variables search problem represented by a 2-CNF formula

f(F). Let f

0

be a critical subformula with minimum number of clauses. Let k be the

number of variables in f

0

and m the number of clauses in f

0

. Then k � m=2 and

logm � D(F) � 2 + logm.

Proof: Let T be a decision tree for F . Look at the set of clauses in its leaves. Every

input reaches one of those clauses and falsi�es it. So, the subformula F

0

de�ned by the

12

clauses of the tree is unsatis�able. i.e, it has at least m clauses. We conclude that the

size of T is at least m and its depth is at least logm which proves the lower bound on

D(F).

To prove the upper bound de�ne for any unsatis�able 2-CNF formula F the (stan-

dard) directed graph G(F), associated with F : V (G) is the set of 2n literals. For every

clause (� _ �); (� ! �); and(� ! �) are edges in E(G(F)). For every single variable

clause x; (x! x) is an edge of G(F).

Claim 4.1 For any unsatis�able 2-sat formula F let G(F) be its graph, then there is a

variable x such that there is a directed path from x to x and a directed path from x to x

in G(F).

Proof: The proof is by induction on the number of variables of F . The claim is

easily checked for 2 variables formulae. Assume F is unsatis�able. Chose any variable

x in F and for any possible two clauses (x _ y); (x _ z) produce the 'resolvant' (y _ z).

The formula F

1

obtained by deleting every clause that contains x or x and adding the

new clauses is unsatis�able. By induction hypothesis there is some y such that G(F

1

)

has a path P

1

, from y to y and a path P

2

, from y to y. However every edge (u; v) in

G(F

1

) is either an edge in G(F) or is the result of resolving two clauses of the form

(x _ u) and (x _ v). But then, the associated edges (u; x); (x; v) are a path from u to v

in G(F). Thus every path from a to b in G(F

1

) has a corresponding path from a to b in

G(F), in particular so do P

1

; P

2

. 2

Let f

0

be a critical subformula of F and let G(f

0

) be its associated directed. By

the claim there is a variable x for which there is a directed path P

1

from x to x and a

directed path P

2

from x to x. This leads to the following decision tree for F . First x is

being probed. If x = 1 the decision tree will �nd an edge in P

1

which is directed from

'1' to '0' by binary search along P

1

. If x = 0 it will do the same thing on P

2

. Such an

edge (u; v) corresponds to a clause (u _ v) which is falsi�ed (since u = 1; v = 0). Every

clause contributes two edges to the graph so, the length of each of the paths is no more

then 2m. We get the bound of 2 + logm on the number of probes in the binary search.

We may take P

1

, P

2

above to be simple paths, in particular the length of the paths

is bounded by k too. So, one gets an upper bound of 1 + log k as well, and so k � m=2

by the lower bound. 2

Corollary 4.1 For every 2-CNF search problem F on n variables, D(F) = O(logn) 2.

We show now that the randomized complexity can be still very much smaller then

the deterministic, and in other cases the largest possible.

Let G

1

be a constant degree Ramanujan expander on n vertices of the type con-

structed by [12]. COL

2

(G) is the 2-coloring search problem as de�ned section 3.3.

13

Theorem 4.2 N(COL

2

(G

1

)) = 2; R(COL

2

(G

1

)) = O(1); D(COL

2

(G

1

)) =
(log logn).

Proof: The fact that N(COL

2

(G

1

)) = 2 is clear from the de�nition of the problem.

The fact that G

1

is not two colorable and R(COL

2

(G

1

)) = O(1) follows from the same

arguments as in the proof of 3.6, 3.7 with r = 2. The proof that D(COL

2

(G

1

)) =

(log logn) follows from theorem 4.1 above since a critical subformula for COL

2

(G

1

)

corresponds to the edges of a non-two colorable subgraph og G

1

(in particular it must

contain an odd cycle). However the cycles of G

1

are of length
(logn) [12].

Let G

2

be the odd cycle of length n.

Theorem 4.3 N(COL

2

(G

2

)) = 2; R(COL

2

(G

2

)) =
(logn).

Proof N(COL

2

(G

2

)) = 2 is obvious. Following Yao's technique, the distribution will

be uniformly concentrated on the n di�erent inputs coloring, the i-th being the one that

colors correctly all edges except the i-th edge.

A deterministic tree of average depth d must have at least 1=2 of the inputs reaching

leaves of depth no more then 2d (from our special set of n inputs). Since there are no

more then 2

2d

leaves of depth 2d, at least

n

2

2d+1

inputs arrive at the same leaf. However,

no two inputs from our special set can arrive at same leaf since every such input has a

di�erent witness. So, n � 2

2d+1

or d =
(logn) 2

References

[1] L. Babai, P. Frankl, J. Simon, Complexity classes in communication complexity

theory, Proc. 27th Annual IEEE Symp. on Foundation of computer science, 1986,

337-347

[2] M. Blum and R. Impagliazzo, Generic Oracles and Oracles Classes, Proc. 28th

IEEE Symp. on Foundations of Computer Science, 1987, pp. 118-126.

[3] A. Blake, Canonical expressions in Boolean algebra. Ph.D. dissertation U. Chicago,

1937.

[4] V. Chvatal, E. Szemer�edi, Many hard examples for resolution, JACM, Vol. 35 No.

4,(1988), 759-768.

[5] E. Szemer�edi, Personal communication. (1991).

[6] M. Davis, H. Putnam, A computing procedure for quanti�cation theory, JACM 7

No. 3 (1960) 210-215.

14

[7] J. Hartmanis and L. A. Hemachandra, One-way functions, robustness and the non-

isomorphism of NP-complete sets, Proc. of 2nd Structure in Complexity Theory

Conference, 1987, pp. 160{173.

[8] M.D. Hirsch, C. H. Papadimitriou and S. Vavasis, Exponential lower bound for

�nding Brouwer �xed points, J. of Complexity, 5, pp. 379-416, 1989.

[9] S. Irani. On-line coloring inductive graphs. In Proc. 31 IEEE Annual Symp. Found.

of Comp. Sci. pages 470{479, Oct 1990.

[10] R. Impagliazzo and M. Naor, Decision trees downward closure, Proc. 3rd Structure

in Complexity Theory Conference, 1988, pp. 29-38.

[11] M. Karchmer, A. Wigderson, Monotone circuits for connectivity require super- log-

arithmic depth, Proceedings of 20th Annual ACM Symposium on Theory of Com-

puting, (1988) 539-550.

[12] A. Lubotzky, R. Phillips, P. Sarnak, Explicit expanders and the Ramanujan con-

jecture, Proceedings of 18th Annual ACM Symposium on Theory of Computing,

(86), 240-246.

[13] N. Nisan, CREW PRAMS and decision trees, Proc. 21st ACM Symp. on Theory of

Computing, 1989, pp. 327{335.

[14] C. H. Papadimitriou graph theoretic lemmata and complexity classes, Proc. 31st

IEEE Symp. on Foundations of Computer Science, 1990, pp. 794{801.

[15] N. Pippenger, Communication Networks, Ch-15 in Handbook of theoretical

computer science, edited by J. van Leeuwen, MIT press, 1990, pp. 807{833.

[16] J. A. Robinson, A machine-oriented logic based on the resolution principle, JACM

12, No. 1 (1965) 23-41.

[17] R. Raz, A. Wigderson, Monotone circuits for matching require linear depth, Proc.

22th ACM Symp on theory of computing, 1990,

[18] G. Tardos Query complexity, or why is it di�cult to separate NP

A

\CONP

A

from

P

A

by a random oracle?, Combinatorica 9, 1989, 385{392.

[19] L.G. Valliant, General purpose parallel architectures, Ch-18 in Handbook of theo-

retical computer science, MIT press 1990, 945-971.

[20] A. C. Yao, Probabilistic computation, towards a uni�ed measure of complexity,

Proc. 18th IEEE Symp. on Foundation of Computer Science, 1977, 222-227.

15

5 Appendix

5.1 The connection to the Resolution problem

We present here an observation of V. Chvatal and E. Szemer�edi [5] that relates the

complexity of the resolution process for an unsatis�able formula F and its deterministic

decision tree, via a generalization of decision trees (branching programs).

A resolution for an unsatis�able CNF formula F is a process that proves the formula

to be unsatis�able. It generates additional clauses which should be satis�able if F is

unsatis�able until a contradiction is obtained (the empty clause). The resolution process

was �rst de�ned by Blake [3] and became popular as a theorem proving technique by

Robinson [16] and Davis and Putnam [6].

Formally, let F be an unsatis�able CNF formula with clauses C = fC

1

; ::; C

m

g. The

resolution is a straight line program. In each step l produces a clause C

l

if either C

l

2 C

or there exist i; j < l; and a variable x; s:t C

i

= (x_�); C

j

= (x_�) and C

l

= (�_�)

where � and � are disjunctions of literals. In that case we say that C

l

was obtained by

resolving on x. The resolution is indeed a proof for F if it ends with the empty clause.

The size of the resolution is the smallest number of steps to reach the empty clause,

denoted here by RES(F). The resolution process for F may be described as a directed

acyclic graph G of in degree 0 or 2. The vertices are the clauses that are generated by

the resolution process. If C

i

; C

j

are resolved to obtain C

l

then the two corresponding

nodes are connected by directed edges into C

l

. The 'output' node is the empty clause.

A resolution is said to be regular if in every directed path form input to the output

node, every variable is resolved at most once.

Theorem 5.1 [6] For every unsatis�able CNF formula F there is a �nite regular reso-

lution that proves F .

We denote by RRES(F) the minimum size of a regular resolution for F .

A branching program for an unsatis�able CNF formula F is a directed acyclic

graph G with outdegree 0 or 2 and a special source vertex s. Each vertex of out degree 2

is labeled by a variable. The two out-going edges are labeled by the two possible values

the variable can take. Every 0-1 assignment of the variables de�nes a path from the

source to a leaf (a vertex of out-degree 0) in a natural way. Each leaf is labeled by a

clause of F such that for every assignment of the variables, the path from the source

ends in a leaf labeled with a clause that is unsatis�ed by the assignment.

The size of branching program for an unsatis�able CNF formula F , BP (F), is the

smallest size (number of vertices) of a branching program for F .

A branching program is said to be Read-Once, (ROBP), if in any source-leaf path

every variable appears at most once. Ths size of the smallest ROBP for F is denote by

16

ROBP (F).

Note: A decision tree for F is also a ROBP for F .

Theorem 5.2 [5] Let F be an unsatis�able CNF formula, then RRES(F) = ROBP (F).

Corollary 5.1 D(F) � log(RRES(F)).

We will present here a proof for the above theorem for the sake of completeness.

Proof: Assume �rst that T is a ROBP for F . We will associate a clause to every vertex

of T such that T becomes a resolution graph for F . A vertex v labeled by a variable x

will be associated with a clause C(v) with the property that every input that reaches v

in T falsi�es C(v). We associate clauses inductively from the leaves backwards. To each

leaf we associate the clause it is labeled with by T . By de�nition of T as a branching

program for F , this has the above property for every leaf. Let v be the next vertex to

be associated with a clause. v is labeled with a variable x in T and has edges (v; u

0

) for

x = 0 and (v; u

1

) for x = 1. By induction we may assume that u

0

; (u

1

) is labeled with

C

0

; (C

1

) respectively.

Claim; C

0

does not contain x and C

1

does not contain x.

Proof: Otherwise, if C

0

contains x, take an input with x = 0 that reaches v. Such an

input exists since by the read-once assumption on T , x was not asked along the path

from the source to v. This input can reach u

0

, and it satis�es C

0

, in contradiction to

the inductive hypothesis. (The proof of the case that C

1

contains x is similar).

We conclude that either C

0

= (x_�); C

1

= (x_�) or one of C

0

; C

1

does not contain

x; x at all. In the �rst case label v with C(v) = (� _ �). In the second case label v with

the clause that does not contain x; x (If both clauses do not contain x; x chose any of

them). It is easy to see that the inductive hypothesis holds for C(v). Moreover, from the

de�nition of the labeling, it is clear that the source node is labeled by the empty clause

(since every input reaches it). Thus, the tree represents a regular resolution process

for F (possibly with some redundant steps that correspond to the second case of the

labeling above).

Assume now that we have a resolution graph G for F . G can be transformed to be a

branching program for F by reversing the direction of the edges, and labeling each node

by the variable used to resolve the clause it is associated with. (except the leaves which

are labeled by their clauses).

It can be seen that it gives a branching program for F by asserting the following

property that can be proved by induction from the root to the leaves. For every node

v originally associated with a clause C(v), all inputs that arrive to v (from the root),

falsify C(v). Furthermore, if G represented a regular resolution, then it results in a

ROBP since along a path each variable appears at most once. 2.

17

Note that the above also proves BF (F) � RES(F). We remark that in general

there can be an exponential gap between these two measures. (Since any unsatis�able

CNF has a BP of the size of F while RES(F) might be exponential). It is an interesting

question to �nd a concrete model of computation that is polynomially equivalent to

resolution.

18

