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Abstrat

Many data strutures give away muh more information than they were intended to. Whenever

privay is important, we need to be onerned that it might be possible to infer information from the

memory representation of a data struture that is not available through its \legitimate" interfae. Word

proessors that quietly maintain old versions of a doument are merely the most egregious example of a

general problem.

We deal with data strutures whose urrent memory representation does not reveal their history.

We fous on ditionaries, where this means revealing nothing about the order of insertions or deletions.

Our �rst algorithm is a hash table based on open addressing, allowing O(1) insertion and searh. We

also present a history independent dynami perfet hash table that uses spae linear in the number of

elements inserted and has expeted amortized insertion and deletion time O(1). To solve the dynami

perfet hashing problem we devise a general sheme for history independent memory alloation. For

�xed-size reords this is quite eÆient, with insertion and deletion both linear in the size of the reord.

Our variable-size reord sheme is eÆient enough for dynami perfet hashing but not for general use.

The main open problem we leave is whether it is possible to implement a variable-size reord sheme

with low overhead.

1 Introdution

Computer folklore is rife with stories about �les ontaining information that their reators assumed had been

erased only to be revealed in embarrassing irumstanes. In general, if proteting privay is an issue, then if

some piee of information annot be retrieved via the legitimate interfae of a system, then it should not be

retrieveable even when there is full aess to the system. For instane, if the order of insertion of elements to

a system is not part of the interfae, then the system should protet this information in the data's internal

representation, in ase this representation beomes available (e.g. by losing the laptop, sending a �le or some

other proess gaining information about the alloation in main memory or disk).

This work deals with data strutures that are history independent, i.e. it is impossible to dedue from the

memory representation of the data struture any information not revealed by its urrent state. This problem

was �rst expliitly onsidered by Miianio [13℄ who showed a variant of 2-3 trees with this property. We

onsider hash tables where the ost of eah operation is O(1). Our model of history independene is stronger
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than the one in [13℄ in that we onsider the memory representation of the ditionary and not just the \shape"

of the data struture

1

.

We fous on ditionaries, i.e. data strutures that support insert, lookup and delete from a set. Here the

only history not ontained in the urrent state is the order of insertions and deletions that led to it. There

are many situations where it is important to keep this seret. For example, if we are maintaining a list of

people invited to some event (suh as invited speakers at a onferene, guests at a wedding or members of

a football team), then it might be useful to publish the data but it would be very embarrassing if people

disovered that another speaker had been invited before them but delined, or that they were the last to be

added to the wedding guest list.

1.1 Summary of Results

We provide de�nitions of history independent data struture (Setion 2). These de�nitions are appliable to

any abstrat data struture. We deal mostly with �nding history independent implementations of ditionaries

where the goal is to obtain O(1) performane per operation for any sequene of operations. We provide two

types of suh tables | with and without pointers. For the �rst, in setion 3, we develop a framework

for hashing shemes based on open addressing (no pointers). We give a suÆient ondition for a sheme

in our framework to be history independent (that the priority funtion indues a total order in eah ell).

We suggest a partiular sheme with good performane: the expeted amortized ost of insertion and the

expeted ost of searh are O(1). The big advantage of this sheme is spae utilization - the spae wasted an

be as small as we want. The sheme uses only pair-wise independent funtions (whereas all previous shemes

of this type had to resort to logn-wise independene) and requires only O(log n) of them. The disadvantage

is that it does not support deletions. We then move to data strutures with pointers (Setion 4). Here we

must �rst resolve the issue of memory management. We show shemes for memory alloation; these work in

O(1) time per alloation or deletion for �xed reord size, but are more expensive for variable sized reords

(Setions 4.1 and 4.2). In Setion 4.3 we have a history independent dynami perfet hashing sheme where

lookup takes O(1) and insert and delete take expeted amortized O(1) steps. Finally we address the famous

union �nd problem and show a history independent sheme where �nd always takes O(1) operation and

union takes O(log n) amortized work (Appendix A)

1.2 Related Work

As mentioned above, Miianio [13℄ was the �rst to have dealt with history independene expliitly, in the

ontext of searh trees; the issue ame up impliitly in investigations regarding data strutures with unique

representation (see [2℄). In the ontext of lookup tables, the ordered hashing algorithm of Amble and Knuth

([1℄) has this uniqueness property. Ordered hashing falls into the open addressing framework we develop in

Setion 3.

There is a large body of literature trying to make data strutures persistent, i.e. to make it possible to

reonstrut previous states of the data struture from the urrent one ([6℄). We are aiming for the opposite,

that no information whatsoever an be dedued about the past, hene an alternative name ould have been

anti-persistene.

There is onsiderable researh on methods for proteting memories. Oblivious RAM [8℄ makes the address

pattern of a program independent of the atual sequene; it inurs a ost of polylog n. Note however that it

does not provide history independene sine it assumes that the CPU stores some seret information; this is

an inappropriate model for ases where the adversary gains omplete ontrol.

The ditionary problem is one of the most widely studied problems in omputer siene. Open addressing

hashing shemes are overed in detail in Knuth [10℄. More reent analysis showed that double hashing where

the hash funtions are logn-wise independent is good [9, 12, 14, 17℄. However, getting suh funtions requires

either investing logn work per evaluation or using large amounts of randomness and storage (but not more

than linear in the table size) to desribe the funtion [16, 4℄.

1

However, our performane guarantee is slightly weaker | we prove our results with respet to any (worst-ase) sequene

of operations hosen without knowing the internal oin ips of the data struture, whereas [13℄ assumed that the adversary

hoosing the sequene had aess to those hoies. Note that for this type of adversary no O(1) ditionary is known, even

without the history independene requirement.
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A di�erent approah for ahieving O(1) performane is via perfet hashing shemes. Here we rely on

Dietzfelbinger et al.'s ([5℄) dynamization of the FKS sheme [7℄.

2 Preliminaries and De�nitions

An abstrat data struture (ADS) is de�ned by a list of operations. Any operation returns a result (whih

may be null) and the spei�ation de�nes the results of a sequene of operations. We say that two sequenes

S

1

and S

2

of operations on an ADS yield the same ontent

2

if for all suÆxes T , the results returned by T

when the pre�x is S

1

are the same as those returned when the pre�x is S

2

. In a ditionary, two sequenes

have the same ontent i� the set they de�ne is the same.

An implementation of a data struture maps the sequene of operations to a memory representation, i.e.

an assignment to the ontent of the memory. The goal of a history independent implementation is to make

this assignment depend only on the ontent of the data struture and not on the path that led to this ontent.

That is, we imagine that there is a period of ativity in the data struture (e.g. insertions, deletions and

searh in the ditionary example). At some point the adversary gains ontrol of the data struture, i.e. sees

exatly what is in the memory representing it. There are no serets left. The adversary should not be able

to dedue any more about the sequene of operations that led to the ontent than the ontent itself yields.

Sine we use randomization in our implementation (both for eÆieny and to ahieve history independene),

for a given implementation eah sequene of operations indues a distribution on the assignments to the

memory. Therefore the de�nition of history independene is:

De�nition 2.1 A data struture implementation is history independent if any two sequenes S

1

and S

2

that

yield the same ontent indue the same distribution on the memory representation.

Stronger de�nition: Note that the above de�nition assumed that the adversary gaining ontrol is a

one-time event (e.g. losing a laptop). However, in some irumstanes it may be that the adversary gains

periodi ontrol and at several points along the sequene of operations it obtains a \memory dump" i.e. the

ontents of the memory at given points. The requirement is that for any two sequenes of operations and

two lists of points that yield the same ontent for all the orresponding points when the memory dumps are

made, the distributions on the memory are idential.

De�nition 2.2 Let S

1

and S

2

be sequenes of operations and let P

1

= fi

1

1

; i

1

2

; : : : i

1

`

g and P

2

= fi

2

1

; i

2

2

; : : : i

2

`

g

be two lists of points suh that for all b 2 f1; 2g and 1 � j � ` we have that 1 � i

b

j

� jS

b

j and the

ontent of data struture following the i

1

j

pre�x of S

1

and the i

2

j

pre�x of S

2

are idential. A data struture

implementation is strongly history independent if for any suh sequenes the distributions of the memory

representations at the points of P

1

and the orresponding points of P

2

are idential.

A large lass of data strutures an have a history independent implementation and even one satisfying

De�nition 2.2: if it is possible to deide the lexiographially �rst sequene that yields the same ontent as

the urrent one, then we an simply store that �rst sequene in the implementation. This may of ourse

be rather time onsuming, so the questions explored in this paper are whih data strutures have eÆient

history independent implementations.

There are various ways in whih the above de�nitions an be extended and relaxed. One is to make

the two distributions omputationally indistinguishable, rather than idential.

3

Another is to allow some

information to be leaked. For example we ould all a data struture n-history independent if, for any two

sequenes S

1

and S

2

, if S

1

and S

2

yield the same ontent and their last n operations are idential, then the

distributions on their assignments to memory are idential. In this work we do not resort to these relaxations.

The de�nition of history independene an also be extended to underde�ned abstrat data strutures

(UADSs), that is data strutures where the same query after the same sequene of operations is permitted

several di�erent responses (for example, a priority queue allowing any one of the �n top elements to be

2

We will use the term ontent to denote the ontent of the data struture as opposed to memory representation or assignment.

3

This de�nition ould be utilized in erasing. We ould say that a �le is erased whenever the bloks alloated for it are

omputationally indistinguishable from randomness. This would allow us, for instane, to delete an enrypted �le by deleting

its key.
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returned). In this ase we need only to rethink the de�nition of ontent. We say that two sequenes S

1

and S

2

of operations on a UADS yield the same ontent if there is no suÆx T where the set of sequenes

of results permitted to be returned by T when the pre�x is S

1

is di�erent from the set permitted when the

pre�x is S

2

.

Ditionaries: The main data struture that we deal with is the ditionary:

De�nition 2.3 A ditionary over a universe U = f0; 1; : : : ; U � 1g is a partial funtion S from U to some

set I. The operations Lookup(x); Insert(x); and Delete(x) are available on a ditionary S; Lookup(x) returns

i = S(x) if x is in the domain of S, Insert(x) adds x to the domain of S and sets the value of S(x), and

Delete(x) removes x from the domain of S.

Strategies for produing history independene: There are two pratial ways to make a data struture

history independent. One is to ensure that the representation of the struture is determined by its urrent

ontent | for example, an array of elements an be kept in a history independent way by sorting the

elements and always plaing them as lose to the 0-th ell as possible. Then the array's ontents are exatly

the urrent elements in sorted order, arranged at the beginning of the table, regardless of their insertion (or

deletion) order. The seond way is to introdue seret randomness into the data struture in suh a way that

an observer who does not know the random hoies annot infer anything about the history. An example of

this is storing elements in an array in some order whih is a random permutation of their insertion order,

where the permutation is seret and never stored expliitly.

In Setion 3 we apply the �rst idea to onstrut a history independent hash table. We hoose hash

funtions at the beginning of the operation and at any point the urrent ontent of the table and the

hash funtions uniquely determine the memory representation. The advantage of the approah is that it

yields strong history independene. In Setion 4.1 we use the randomization idea to show how to implement

history independent memory alloation of �xed-size reords. In Setion 4.2 we use a ombination of the two

tehniques to implement history independent memory alloation for reords of variable size, whih we use

in Setion 4.3 to obtain dynami perfet hashing.

3 Data Strutures without Pointers: open addressing

In this setion we desribe a history independent ditionary (without deletion) based upon an open addressing

hash table. In open addressing, every element is stored within the table, so there is no need for pointers.

The main advantage is that it an be very spae eÆient. In the traditional version, if there is a lash

between two elements, the seond one to arrive at the ell is moved to elsewhere aording to its sequene of

possible positions. Our version also resolves lashes by inserting one element and moving the other, but we

don't neessarily move the seond element to arrive. Our table has a �xed size of N entries. Its performane

depends on the load, whih we denote by �, so the ditionary ontains �N elements (and the waste is

(1� �)N). The performane will be given as a funtion of �.

De�ne the on�guration of a hash table to be the set of (index; value) pairs stored in the table.

De�nition 3.1 Let P = h

1

; h

2

; : : : be a sequene of probe funtions suh that h

j

: U ! f0; : : : ; N � 1g. Then

we say that P de�nes the probe sequene of an element x as the sequene (h

1

(x); h

2

(x); : : :).

If the hash table on�guration is uniquely determined one we have �xed P for a given set of input values

fx

1

; x

2

; : : : ; x

n

g, then the hash table is history independent (in fat, it is strongly history independent), sine

in partiular, it is independent of the order of insertion of the fx

1

; x

2

; : : : ; x

n

g.

3.1 Desription of the hash table algorithm

Unlike traditional hash tables, where an element is inserted into the �rst empty ell in its probe sequene

and never moved unless deleted, we allow elements to be shifted after they have been plaed in a ell (as

in [1, 3℄). When element x is being inserted and the next ell probed is already oupied by element x

0

, we

either move x to the next ell in its probe sequene, or plae x in this ell and move x

0

. We use a \priority

funtion" whih, for any ell and for any pair of elements, determines whih of the two elements has higher

4



priority at that ell. If two elements hash to the same ell during insertion, the element with higher priority

is plaed there while the other is moved, regardless of whih was inserted �rst. The lower-priority element is

plaed in the next ell in its probe sequene that is empty or ontains an element of lower priority than it.

De�nition 3.2 Let p(i; x; y) : f0; : : : ; N � 1g�U �U ! fTrue;Falseg. We say that p is a priority funtion

if for all i, the relation f(x; y) : p(i; x; y) = Trueg is a total order. We write p

i

for p(i;

q

;

q

).

We say that x has a higher priority than y at ell i if p(i; x; y) is true. A speial ase is a global priority

funtion, i.e. one where for all ells i the funtion p

i

is the same. (This is the ase with ordered hashing,

[1℄.)

Note that priority funtions an be hosen so that at a partiular ell, elements further along in their

probe sequene have a lower priority than those not so far along.

The spae our algorithm requires inludes that diretly used for the table, that used to desribe the hash

funtions h

1

; h

2

; : : : and that used to desribe the priority funtions p

1

; p

2

; : : :. The only randomness ours

in the hoies of hash funtions h

i

for i = 1; 2; : : : and possibly of priority funtions, (if a probabilisti priority

funtion is being used) | given these, the rest of the omputation is deterministi.

The insertion algorithm, insert-A is as follows: Given an element x to insert into table t, probe the ells

in x's probe sequene until reahing either an empty ell or a ell i ontaining element y where p

i

(x; y) is

true (i.e. the urrent item has lower priority than x). If the ell is empty, plae x there and halt. If it

is oupied by a lower-priority element y, plae x there and reursively apply the insertion algorithm to y,

using y's probe sequene from i onwards. Pseudo-ode for insert-A is inluded in the Appendix.

Searhing in our hash table is idential to doing so in an ordinary hash table, but there is an optimization

for unsuessful searh:

Claim 3.1 When searhing for an element x, it is safe to stop as soon as we �nd an element y of lower

priority than x.

This follows from history independene (whih we prove in the next setion). We may assume that if

x were in the table then it would have been the last element inserted and therefore would have bumped y

(or, by transitivity, any element oupying that ell before y) and taken its plae. It then ould have been

bumped only by a higher-priority element during rearrangements aused by reursive appliations of insert-A.

3.2 Proof of history independene

We desribe a table-onstrution algorithm, insert-B, that is stati and learly history independent, then

show that the table's on�guration after applying insert-B to fx

1

; x

2

; : : : ; x

n

g is idential to that obtained

by repeatedly applying insert-A to the elements of that set, in any order.

insert-B deals with sets of elements at a time. Denote the initial set of elements to be inserted by B

0

and the set of unplaed elements at the end of the i-th pass by B

i

. The i-th pass of insert-B, for i � 1,

begins by �nding the next ell in the probe sequene for eah element in B

i�1

and provisionally plaing the

element there, then hoosing the highest-priority element at eah ell (inluding possibly one plaed there in

a previous pass) and atually plaing it there. There must be a unique highest-priority element at eah ell

beause B

i

is �nite and the p

i

de�nes a total order (by de�nition 3.2). Let B

i

be the set of all elements that

were not atually plaed, or were removed (beause a higher-priority element lashed at the same loation).

This is the end of pass i. This is repeated for i = 1; 2; : : : until all elements have been plaed in the table

(i.e. until jB

i

j = 0). We keep a reord of how far along its probe sequene eah element has reahed, so that

an element that is plaed for a few passes and then moved again an be moved orretly into the next ell

in its probe sequene.

Beause an element may be plaed in one pass of insert-B and then pushed out later, it may be that the

elements in B

i

have not all reahed the same distane along their probe sequenes. However, for one priority

funtion desribed later, an element one plaed is never moved again and all elements in B

i

are up to the

i+ 1-th element of their probe sequene.

Theorem 1 Given a set of n input values B

0

= fx

1

; x

2

; : : : ; x

n

g and a orresponding set of probe funtions

P = fh

1

; h

2

; : : : g, the hash table on�guration of insert-B(B

0

) is equal to the on�guration that results from

using insert-A to insert the same n elements in any order.
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Proof: For any element x

i

2 B

0

, x

i

is moved no further along its probe sequene by algorithm insert-B than

it is by the n appliations of insert-A. The proof is by indution on the rounds of insert-B. Any element x

in B

k

must, in the k-th round, have lashed at some ell j with a higher-priority element y. By indution

x and y must both reah ell j during repeated exeution of insert-A, so x will be moved another step by

insert-A also.

Conversely, any element x

i

2 B

0

is moved no further along its probe sequene by the n appliations of

insert-A than it is by insert-B. Proof by indution: let x be the �rst element whih, during insert-A, is moved

further along its probe sequene than it was during insert-B. Suppose at the end of insert-B, x is loated in

ell h

i

(x) and onsider when it is moved to h

i+1

(x) in insert-A. Then there must be some element y in ell

h

i

(x) with higher priority there than x. But sine x reahed h

i

(x) during insert-B and remained there, y

must not have reahed this ell during insert-B|if it had, it would have aused x to move or been replaed

by a higher-priority element z whih, by transitivity of p

h

i

(x)

, would have moved x also. Therefore x is not

the �rst element to be moved further along its probe sequene than it was during insert-B.

Therefore every element in B

0

reahes the same ell at the end of insert-B as it does after the n alls to

insert-A. }

Corollary 2 For any hoie of priority funtion (satisfying de�nition 3.2), the hash table on�guration

produed after using insert-A is independent of the order of insertion of the elements. The sheme is strongly

history independent.

3.3 Choie of priorities and hash funtions

In order to ompletely speify a sheme in our framework we must desribe (i) how the funtions h

1

; h

2

; : : :

for the probe sequene are hosen (ii) What priority rules are used.

The following de�nition is slightly non standard in that it emphasizes the properties we need

De�nition 3.3 A family H = fh : U 7! f0 : : :N � 1gg of hash funtions is �-almost pairwise independent

if (i) for all x 2 U and random h 2

R

H we have that h(x) is uniformly distributed in f0 : : :N � 1g (ii) for

all x

1

; x

2

2 U suh that x

1

6= x

2

and for a random h 2

R

H we have Pr[h(x

1

) = h(x

2

)℄ � 1=N + �.

In order to get good run time analysis we propose hoosing eah h

i

independently from the previous

h

1

; h

2

; : : : h

i�1

and from an �-almost pair-wise independent family. In more detail, use hash funtions of the

form: h

i

(x) = (a

i

x mod U + b

i

) mod N , where a

i

2

R

U and b

i

2

R

f0; : : : ; N � 1g are randomly hosen and

U is a prime. This produes an �-almost pair-wise independent family with � � N=U .

There is nothing in the hoie of hash funtions that guarantees that we will not yle on a given

element. However we employ the following strategy: we hoose O(log n) hash funtions and then resort to

linear probing. For all Æ > 0, the probability of an element needing more than O(log

n

Æ

) probes is less than

Æ (see setion 3.4), so we use linear probing with negligible probability.

We now present some examples of priority funtions. Our analysis in Setion 3.4 is based upon youth-

rules.

global A single priority funtion independent of ell. For all ells i, let p(i; x; y) = p

0

(x; y) for some p

0

produing a total order. We reommend hoosing p

0

from a pairwise independent family.

youth-rules Call an element \younger" if it has moved less far along its probe sequene and give \younger"

elements higher priority. Assume some total order �

t

for breaking ties. More preisely, let age(i; x) =

minfjjh

j

(x) = ig and

p(i; x; y) =

8

>

>

<

>

>

:

True if age(i; x) < age(i; y)

True if age(i; x) = age(i; y)

and x �

t

y

False otherwise

age-rules The opposite of youth-rules.

random Choose a random order of the elements at eah node. Equivalently, hoose a random winner in

the ase of eah lash, subjet to the total order onstraints.
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One advantage of global is that it an be used to manipulate the searh times of elements | elements

with higher priority are likely to travel less far along their probe sequenes and hene have a shorter suessful

searh time than those with lower priority. It is shown in [1℄ to be very eÆient. If we use age-rules then

most elements are likely to be about the same distane along their probe sequene, and onsequently take

about the same time to searh for. By ontrast, youth-rules tends to inrease the spread of probe distanes.

In the next setion we will analyze insertion and searh times for youth-rules.

3.4 Running time analysis

If we had a set of independent and random hash funtions then our algorithm would perform during the

insertions as well as \traditional" uniform hashing: we analyze algorithm insert-B (see below); there it is lear

that eah hash funtion is evaluated on a given point only one and hene does not \loose" its randomness.

In ontrast to the omplete independene of eah hash funtion needed for this argument, we require only

almost pairwise independene from eah of the hash funtions in the following analysis.

Let h

1

; h

2

; : : : be hosen from an �-almost pairwise independent family where � � 1=N(N �1) and let the

priority funtion be youth-rules. We now show that the amortized per operation expeted running time

for any sequene of insertion, suessful searh and unsuessful searh is at most

1

1��

. The expetations

are over the hoie of the hash funtions. We alulate the expeted running time of insert-A by analyzing

insert-B. Our analysis relies on the following observation about the relationship between them:

Remark 3.1 Every time an element x is unplaed at the beginning of a pass in insert-B orresponds to

x making one move along its probe sequene at some time during insert-A. (This move may be during the

insertion of x or during the insertion of some other element that displaes it.) Hene the total number of

steps taken by all elements during insert-A is equal to

P

1

i=0

jB

i

j.

To analyze insert-B, let �

i

= jB

i

j=N , so �

i

N is the number of unplaed elements at the end of pass i in

insert-B. Sine jB

0

j = n, we have �

0

= �. Then the average number of steps for eah insertion of one element

is

1

n

P

1

i=0

�

i

N . The signi�ane of using youth-rules is that all elements in B

i

are up to the (i + 1)-th

element in their probe sequene. We will show that in this ase �

i

dereases quikly as a funtion of i, so

that

P

1

i=0

�

i

is O(1).

Lemma 3 For all i � 0, if �

i

N is the number of unplaed elements at the end of pass i in insert-B, then

E(�

i+1

) � ��

i

.

Proof: The advantage of using youth-rules is that all members of B

i

are applying the same funtion h

i+1

at this stage and this funtion is independent of B

i

and the loations that have been settled so far. We

will ompute a lower bound on the expeted number of members of B

i

that are plaed into empty ells in

the table during pass i+ 1. For eah ell j in the table that is unoupied at the beginning of the i+ 1-th

pass, the probability that it is oupied at the end of the pass is Pr[[

x2B

i

A

x;j

℄ where A

x;j

is the event that

h

i+1

(x) = j. By the inlusion-exlusion priniple and the pair-wise independene of h

i+1

, this is at least

X

x2B

i

Pr[A

x;j

℄�

X

x; x

0

2 B

i

x < x

0

Pr[A

x;j

^A

x

0

;j

℄

�

�

i

N

N

�

�

�

i

N

2

�

1

N

(

1

N

+ �)

� �

i

� �

2

i

=2 whenever � � 1=N(N � 1)

Sine there are (1� �+ �

i

)N suh empty ells j, the total ontribution is at least

(1� �+ �

i

)(�

i

� �

2

i

=2)N

= [(1� �)�

i

+ �

i

(�

i

� �

2

i

=2)� (1� �)�

2

i

=2℄N

� [(1� �)�

i

+ �

i

(�

i

� �

2

i

=2� �

i

=2)℄N

� (1� �)�

i

N

and we onlude that E[�

i

� �

i+1

℄ � (1� �)�

i

}
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Corollary 4 The expeted number of unsettled elements �

i

N dereases exponentially in i. More preisely,

E(�

i

) = �

i+1

Proof: We know that �

0

= � and that E[�

i+1

j�

i

= ℄ � �. Therefore E[�

i+1

℄ � �E[�

i

℄ and the orollary

follows by indution. }

De�nition 3.4 De�ne the probe-time of an algorithm to be the number of probes required by that algorithm.

Note that in many appliations the probe time dominates other omputation suh as the hash funtions,

but to implement youth-rules it is neessary when onsidering displaing element x from ell j to �nd the

least i suh that h

i

(x) = j. It is possible to show that the additional work required is also a onstant.

Theorem 5 For any sequene of insertions the expeted amortized insertion probe-time for an element is

1

1��

Proof: This follows from orollary 4 and remark 3.1, whih implies that the amortized insertion probe-time

is

1

n

P

1

i=0

�

i

. }

Theorem 6 For any element x 2 U and any set S, the expeted probe-time for suessful or unsuessful

searh is

1

1��

.

Proof: The ases x 2 S and x 62 S are idential. Assuming the searh reahes step i, it stops at that step

if h

i

(x) does not lash with any of the settled loations or any of the elements in B

i

in pass i of insert-B.

(This is not an only if ondition.) The �rst happens with probability � � �

i

, the seond with probability

at most �

i

, so one of the two happens with probability at most �. Therefore the hanes of stopping are at

least 1� � and from the independene of the hash funtions from eah other the proess is dominated by a

geometri distribution and the expeted time to stop is at most 1=(1� �). }

The number of hash funtions required: There is a neglibible probability of needing more than

O(log n) hash funtions sine the probability that any partiular element will need more is negligible. To

see this, let E

i

x

be the event that element x is still unplaed at the end of round i of insert-B. Then for all

x;Pr[E

i

x

jE

i�1

x

℄ � � beause when onduting round i, at most �N ells may be oupied by other elements.

Hene for all x 2 B

0

and i � 0, Pr[E

i

x

℄ � �

i

, so the probability that there is an element requiring more than

i hash funtions is:

Pr[9x 2 B

0

; E

i

x

℄ = Pr[

[

x2B

0

E

i

x

℄ �

X

x2B

0

Pr[E

i

x

℄ � n�

i

For any real Æ > 0, the probability of needing more than log

1=�

n

Æ

is less than Æ, beause if l > log

1=�

n

Æ

then

Pr[9x 2 B

0

; E

l

x

℄ < n�

log

1=�

n

Æ

= Æ

In general our analysis in this setion was pessimisti and it is probably possible to show better dependeny

on �. See for example Yao's bound on retrieval time for open addressing shemes ([18℄). We have

implemented our hash table using a variety of di�erent priority funtions and found that the performane

varies with di�erent priority funtions, but that most give an average insertion and searh time of O(log

1

1��

).

4 Memory management

Data strutures ontaining pointers are more diÆult to make history independent than those without

pointers, sine the way in whih memory was alloated to the data struture's parts may reveal something

about the order in whih they were reated.

In this setion we desribe an algorithm that will make the memory alloation of parts of a data struture

history independent. This is neessary beause memory alloation of a data struture's parts may reveal

information about its history, even if the data struture is arefully designed so that the struture itself

(inluding pointers, array orders et.) is history independent apart from memory alloation. If the data

8



struture is history independent when ignoring memory alloation and regarding it as a direted graph

where two nodes are onneted if one has a pointer to the other, then the same data struture using our

memory alloation algorithm will be history independent. We require only that the data struture has

bounded indegree. This is neessary beause the algorithm sometimes moves previously stored reords, so

it is neessary to update all pointers pointing to a partiular reord.

We �rst disuss a simple memory alloation algorithm for �xed size reords. Making the algorithm history

independent at most doubles the time for insertion and deletion of reords. We then generalize this algorithm

to reords of any size and prove that the worst-ase ost is O(s log s) per deletion and insertion, where s

is the size of the reord being inserted or deleted. The generalized form allows us to implement history

independent dynami perfet hashing, relying upon 4-wise independene of the hash funtions involved. In

this ase, the expeted amortized ost is O(1) per deletion or insertion and the probe-ost of searh is always

2.

We view memory as a large one-dimensional array whih may be extended (by alloation) at one end

only.

4.1 Fixed size reords

Suppose we reeive a sequene of requests, eah of whih is a request either to alloate new storage or to free

a spae previously alloated. It is not known a priori how many reords will be required, though we do have

an upper bound, sine there is only a �xed maximum amount of memory available. History independene

requires that, given a \dump" of the memory at any point after an insertion or deletion, it is impossible for

an adversary to determine anything about the order the elements were inserted in or whether any have been

deleted.

Let t be the table in whih the reords are alloated and let k be the number of reords urrently alloated,

i.e. the number inserted but not deleted. Whenever an update is not in progress, all k elements are stored

in the �rst k ells of t and their order is random. All other memory is set to zero. Insertion and deletion are

arried out as follows:

Insert: To insert reord r

1

, hoose a number l 2

R

f0; : : : ; kg at random. If l = k then insert r

1

at t[k℄.

If l < k, insert r

1

at t[l℄ and move the element previously loated at t[l℄ to t[k℄. Inrement k by one.

Delete: To delete the reord at loation t[i℄, overwrite t[i℄ with the reord in t[k℄, zero t[k℄ and derement

k by one.

History independene relies on the following lemmas:

Lemma 7 (Insertion preserves randomness) If � is a random permutation of f0, 1,. . . ,k-2g, then the

permutation �

0

obtained by hoosing l 2 f0; : : : ; k � 1g uniformly at random and taking

�

0

(i) =

8

<

:

k � 1 if i = l

�(l) if i = k � 1 > l

�(i) otherwise

for i 2 f0; : : : ; k � 1g, is a random permutation of f0; 1; : : : ; k � 1g.

Lemma 8 (Deletion preserves randomness) If �

2

is a random permutation of f0, 1,. . . ,k-1g, then the

permutation �

00

obtained by hoosing any l

0

2 0; : : : ; k � 1 and taking

�

00

(i) =

�

�

2

(k � 1) if i = l

0

� k � 2

�

2

(i) otherwise

for i 2 f0; : : : ; k � 2g, is a random permutation of f0; 1; : : : ; k � 2g.

Theorem 9 After any sequene of insert or delete operations, the memory representation is history inde-

pendent and the spae used is equal to the total size of reords urrently alloated.

Proof: To prove history independene, it suÆes to show that after any sequene of insert or delete requests,

the order of reords in memory is a random permutation of their insertion order. This follows by indution

from lemmas 7 and 8. }
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Making pointer-based data strutures history-independent: Using this method, we an make

the memory map of any bounded-indegree, �xed-size reord data struture history independent, provided

that the shape of the original data struture is history independent. This is the ase with Miianio's trees

[13℄ as well as with treaps [15℄ (as was noted in [15℄, one the priority funtion is �xed and di�erent for all

values then the treap of a set of values is unique). The only deliate part is to ensure that when a reord is

moved (during the insertion or deletion of another reord), all pointers pointing to that reord are updated.

Under the assumption of bounded indegree, this update takes onstant time. It an easily be implemented

using doubly-linked pointers. Also, during insertion or deletion, at most one other element (whih has the

same size) is moved. Hene the insertion or deletion of any element takes time O(s) where s is its size. When

the original struture is a tree we an skip the doubly linked pointers, sine there is only one node leading

to any given node and we have aess to it via the searh.

4.2 Variable Reord Size

Most data strutures use reords of a variety of di�erent sizes. The algorithm desribed above does not

work for reords of variable sizes beause we an no longer guarantee that insertion or deletion runs in time

proportional to the reord's size.

The main idea of this setion is to use a separate table for eah range of reord sizes, eah of whih

behaves like the �xed-size reord tables desribed above. Inserting or deleting elements into or from one

table may require rearranging other tables. In the worst ase, insertion into or deletion from this struture

an take O(s log s) where s is the size of the reord being inserted or deleted.

The master table t is omposed of a number of smaller tables t

n

; t

n�1

; : : : ; t

0

, stored ontiguously in that

order. Table t

i

stores reords with size greater than b2

i�1

 and less than or equal to 2

i

, with eah reord

padded up to size 2

i

. We assume that we an alloate new memory after the end of t

0

, but not before the

beginning of t

n

. If we need to insert an element into a table t

i

with no spare spae, we �rst rearrange the

other tables so as to add one more spae of size 2

i

to t

i

, then do �xed-size insertion; for deletion we �rst do

�xed-size deletion then rearrange the other tables. The rearrangement works as follows:

adding spae pre-insertion: Let jt

i

j denote the total size of t

i

, i.e. jt

i

j = 2

i

�(number of reords in t

i

)

and s the size of the reord to be inserted. Then we need to make spae of size s

0

= 2

dlog

2

se

in table t

dlog

2

se

.

Begin by alloating spae of size s

0

immediately after t

0

. Working from t

0

to t

dlog

2

se�1

, (\right" to \left"),

do the following: for eah table t

i

, if jt

i

j � s

0

, move all of t

i

into the rightmost bloks in the urrent spae.

If jt

i

j > s

0

, move the �rst s

0

=2

i

reords in t

i

into the urrent spae, whih they exatly �ll.

removing spae post-deletion: This is very similar to adding spae, exept that we shift bloks to

the left, working from table t

dlog

2

se�1

to table t

0

.

Theorem 10 The running time for insertion or deletion is at most s

0

log

2

s

0

= O(s log s) where s is the size

of the element to be inserted or deleted. The memory used is at most 2s.

To prove history independene taking into aount the rearrangement of tables, we use the following

lemma.

Lemma 11 (Rearrangement preserves randomness) If �

3

is a random permutation of f0, 1,. . . ,k-1g,

then the permutation �

000

m

obtained by letting

�

000

m

(i) =

�

�

3

(i+m) if i � k �m� 1

�

3

(i� k +m) otherwise

for i 2 f0; : : : ; k � 1g, is a random permutation of f0, 1,. . . ,k-1g.

Theorem 12 At any time after an insert or delete operation, the order of reords in memory is history

independent.
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4.3 Appliation: Dynami Perfet Hashing

In this setion we use history independent memory alloation to onstrut an eÆient method for dynami

perfet hash funtions. Reall that for a set S � f1; : : : ;mg a perfet hash funtion is a mapping of f1; : : : ;mg

onto f1; : : : ; ng whih is 1-1 on S. We are given a set of n elements out of f1; : : : ;mg and the goal is to build a

perfet hash funtion from f1; : : : ;mg to a range whih is O(n) with the properties of suint representation,

eÆient evaluation and eÆient onstrution.

Current implementations of dynami perfet hashing are not history independent beause they use non

history independent memory alloation, whih we replae with our sheme from setion 4.2. They also do

not erase elements as soon as they are deleted, instead tagging them and only erasing during rehashing.

There is another, more subtle, way in whih urrent implementations of dynami perfet hashing violate

history independene. To see the problem in the abstrat, suppose we have a set of states �, a set of objets

H and a funtion G : ��H ! f0; 1g. For eah � 2 �, we hoose an objet h

�

in H

�

= fh 2 H jG(�; h) = 1g.

In our hashing sheme, � will be the set of possible ontents of the hash table, H a set of hash funtions, and

G a prediate that deides whether a given h 2 H is \good" for a given � 2 �. Suppose that when moving

from state � to state �

0

we only hange h when neessary. That is, we hek whether G(�

0

; h

�

) = 1 and, if

it is, assign h

�

0

to h

�

and otherwise hoose h

�

0

uniformly at random from H

�

0

. Then the data struture will

not in general be history independent sine h

�

0

is biased towards H

�

\H

�

0

and so h

�

0

and �

0

together yield

information about �. We will refer to this as the intersetion-bias problem.

Outline of the FKS sheme: Our sheme has the same struture as the famed Fredman, Koml�os and

Szemer�edi [7℄ sheme whih we now review: The FKS sheme onsists of two levels. The top-level funtion,

denoted by h, maps the elements of f1; : : : ;mg into a range of size O(n); all the elements that were sent to

the same loation i are further hashed using a lower-level hash funtion h

i

. The lower-level hash funtion h

i

should be 1-1 on the subset that was hashed to loation i by h. For every i in the range of h we alloate as

muh spae as the range of h

i

whih we denote by r

i

. The perfet hash funtion is now de�ned as follows:

if x 2 f1; : : : ;mg is mapped to i by h, then the sheme maps x to h

i

(x) +

X

1�j<i

r

j

. The size of the range is

therefore

P

i

r

i

.

Let S

i

(h) = fxjx 2 S and h(x) = ig and s

i

(h) = jS

i

(h)j, i.e. s

i

= s

i

(h) denotes the number of elements

mapped to i. The property we require h to satisfy is that

P

n

i=1

�

s

i

(h)

2

�

should be O(n). The size of the range

of h

i

will be O(

�

s

i

2

�

). The funtions suggested by [7℄ for both levels were of the form (k � x mod p) mod r

where p is an appropriate prime, r is n for the top level and s

2

i

for the lower level.

The FKS sheme was made dynami in [5℄ who showed that hoosing the �rst level hash funtion as

well as the seond level ones an be done \on the y" and in the ase that they are not appropriate (i.e.

P

n

i=1

�

s

i

(h)

2

�

is not O(n) or h

i

is not 1-1 on s

i

(h)) then new ones are hosen and rehashing is done. The

amortized work is O(1) per operation (searh is always O(1) in the worst ase).

Desription of the new sheme: Our sheme is very similar to that desribed in [5℄; the main di�erenes

are:

Top-level hash funtions: We use a 4-wise independent funtion for the top level hash funtion h (rather

than a pair-wise one). This an be realized using a random degree 3 polynomial mod p.

Memory alloation: When we alloate spae for the range of h

j

, we do so using the memory alloation

algorithm desribed in setion 4.2. Eah spae of size s

2

j

is regarded as one reord in table t

dlog

2

s

2

j

e

. If the

reord beomes too big or too small to be in this table, it is deleted and a orresponding reord is inserted

into the appropriate table. We will show that most s

i

are small, so only O(jSj) spae is used even though

the size of eah buket is squared. We keep a top-level table with one entry for eah element in the range of

h, ontaining a pointer from that element to the reord in the master table. This is used for insertion and

searh for elements of S, and is updated when reords are deleted and re-inserted elsewhere.

Erase upon deletion: When a new hash funtion h

i

is hosen then all mappings done by the previous h

i

are erased. Whenever an element is deleted it is erased.

Low-level intersetion bias: We hoose a new h

i

every time an element x with h(x) = i is deleted.

This defeats the intersetion-bias problem for the low-level hash funtions. If an element x is inserted then

fh

i

jh

i

perfet on S

i

g � fh

i

jh

i

perfet on S

i

[ fxgg, so the bias does not ause a problem | we always use

an h

i

in the intersetion of the two sets.

11



Top-level intersetion-bias: Solving the intersetion-bias problem for the top-level hash funtion h is more

ompliated beause it is too expensive to rehash upon every deletion. At the beginning of the algorithm

we generate two di�erent possible top-level hash funtions �

1

and �

2

. We all a top-level hash funtion

h \good" for set S if

P

jSj

i=1

�

s

i

(h)

2

�

< 2jSj. We will maintain the ondition that the urrent top-level hash

funtion is

h = �

^

j

where

^

j = minfjj�

j

is \good" for Sg (1)

If h = �

1

then this is learly satis�ed. If h = �

2

then for �

1

we still maintain an \alternative" top-level

table with one entry for eah element in the range of �

1

. The i-th entry ontains the number s

i

(�

1

). This

is updated every time an insertion or deletion is performed. Every time an element is deleted, we use this

top-level table to hek whether �

1

is \good" for S. If it is, we set h to �

1

(thus satisfying ondition 1),

otherwise we retain the urrent h, whih must still satisfy the ondition. We will ensure that the size of eah

top-level table is O(jSj). When we insert, if h = �

1

and is no longer \good" but �

2

is, we assign h to �

2

and rehash. If neither �

1

nor �

2

is \good" for S, we selet a new h at every deletion until we reah an S for

whih either �

1

or �

2

is \good". This is very expensive, so we wish to ensure that it happens with very low

probability.

Top-level rehashes due to size: As S grows and shrinks, it will probably beome neessary to re-hoose

the top-level hash funtion, h, so that the size oupied by the master tables and the top-level tables remains

O(jSj). One way to do this would be to rehash as jSj reahes powers of two, beause then on random

insertions and deletions we would expet to have to do only O(1) work per operation to rehash. However,

this is suseptible to an adversary inserting 2

i

elements, then deleting and reinserting one repeatedly, ausing

us to rehash on every operation. Our solution is to hoose a seret random number �

i

in eah interval

l

i

= f2

i

; : : : ; 2

i+1

� 1g (for i larger than some arbitrary starting value) to use as the rehashing point.

Whenever jSj reahes �

i

via an insertion, or reahes �

i+1

� 1 via a deletion, we rehash, rereating all the

top-level tables and giving them size �

i+1

. Eah �

i

is independent of the others. If n urrently falls in the

interval l

i

then we store �

i�1

; �

i

and �

i+1

. In partiular we erase any �

k

for k > i + 1 beause this would

reveal that n has previously attained a higher value and so would violate history independene. This sheme

defeats the deleting and reinserting attak beause an adversary who does not know the �

i

is unlikely to be

able to guess them.

4

Theorem 13 This hash table is history independent

Proof: The hash table's state is determined by S, the top-level hash funtions, the low-level hash funtions,

the seret random numbers f�

1

; : : :g and the arrangement of the S

i

in memory, so it suÆes to show that

these are history independent.

No information is revealed by f�

1

; : : :g beause they are hosen uniformily from a �xed range and �

i

is

erased as soon as jSj beomes small enough that its existene would reveal anything.

Consider the top-level hash funtions. At any time we have two funtions �

1

and �

2

hosen at random

in a way independent of S, and possibly a third funtion h hosen uniformly at random from the set of

funtions \good" for S. Likewise, eah low-level hash funtion h

i

is hosen uniformly at random from the

set of funtions perfet on S

i

.

The method of memory alloation does not a�et the other variables, and we maintain no information

in the hash table that reveals previous memory alloations. Hene by theorem 12, the order of reords is

history independent. }

We will prove that the expeted (over the hoie of hash funtions) ost of an insertion or deletion of an

element in this sheme is O(1) and that the spae oupied by the table is O(jSj).

Lemma 14 The total spae required for the hash table is O(jSj). Searh, suessful or not, is always O(1).

Lemma 15 The expeted time required for eah top-level rehash is O(jSj).

4

However, an adversary with aess to timing information an still perform this attak, by waiting until it �nds an insertion

that takes a long time|see [11℄ for a desription of related attaks.
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Proof: If neessary, a new h satisfying

P

jSj

i=1

�

s

i

2

�

< k

1

jSj an be found in O(jSj) time as in [5℄.

Choosing h

i

takes expeted time s

i

beause eah has a range of s

2

i

, so there is a onstant probability over

hoies of h

i

that there will be no ollisions.

Erasing the old hash table takes time O(jSj) beause the total spae oupied by it is O(jSj). }

Lemma 16 For any S, the probability that a randomly hosen top-level hash funtion h is \good" for S is

at least 1� 1=jSj.

Proof: Let S = fx

1

; : : : x

n

g and letX

(i;j)

be the event that h(x

i

) = h(x

j

). Then

P

jSj

i=1

�

s

i

(h)

2

�

=

X

(i;j):i<j

X

(i;j)

sine both ount the total number of ollisions. The

�

n

2

�

random variables X

(i;j)

are pairwise indpendent

beause h is 4-wise independent. Eah X

(i;j)

has probability 1=n. Hene the expetation and variane of

X

(i;j):i<j

X

(i;j)

are linear in n and so by Chebyhe�'s inequality we an show that

Pr

2

4

jSj

X

i=1

�

s

i

(h)

2

�

< 2jSj

3

5

� 1=n

}

Lemma 17 Performing a top-level rehash whenever h = �

1

is no longer \good" for the urrent set jSj takes

expeted amortized time O(1) per insertion or deletion.

Lemma 18 Performing a top-level rehash at every operation in the ase that neither �

1

nor �

2

is \good"

for S osts expeted amortized time O(1) per insertion or deletion.

Lemma 19 The expeted amortized time spent on top-level rehashing due to jSj reahing any of the �

i

from

below (or rossing from above) is O(1) per insertion and deletion.

Proof:

We will prove that for a given sequene of insertions and deletions f

1

; : : : ; 

^

j

g, the total expeted work

(over hoies of the �

i

) is O(

^

j).

For eah j �

^

j, let n

j

be the size of S after exeuting operation 

j

. Let L

i

= f

j

j

j

is an insertion and n

j

2

l

i

g [ f

j

j

j

is a deletion and n

j

2 (l

i

[ f2

i

� 1g) n f2

i+1

� 1gg. These are all the operations that ould ause

a top-level rehash due to �

i

. Sine the probability of �

i

taking any partiular value in the interval l

i

is 1=2

i

and sine by lemma 15, one top-level rehash by an operation in this set takes time at most O(2

i+1

), the

expeted total work due to top-level rehashing aused by operations in L

i

is O(L

i

). Sine the �

i

are hosen

independently, we an sum over i to prove the lemma. }

One di�erene between our sheme and that in [5℄ is that when s

i

grows and is alloated a larger blok

we need to perform more work to assure history independene. In order to prove that this results in expeted

O(1) work per operation we need the following:

Lemma 20 For any set S � f1; : : :mg of n elements and any element x 2 S, if h is 4-wise independent

and  = s

h(x)

is the number of elements olliding at h(x) we have that E[

2

log ℄ is O(1).

Proof: We know that for any S and x 2 S and funtion h we have



2

log  � 

3

� 2 � 3! �

�



3

�

+O(1)

� 2 � 3! �

X

x

1

; x

2

; x

3

2 S

jfx; x

1

; x

2

; x

3

gj = 4

Æ(h(x); h(x

1

); h(x

2

); h(x

3

)) +O(1)
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where Æ(h(x); h(x

1

); h(x

2

); h(x

3

)) = 1 i� all 4 values are equal and 0 otherwise and where the O(1) term is

to handle the ase that  is smaller than 3. Letting p = Pr[h(x) = h(x

1

) = h(x

2

) = h(x

3

)℄, it follows that

E[

2

log ℄ � 2 � 3! �

X

x

1

; x

2

; x

3

2 S

jfx; x

1

; x

2

; x

3

gj = 4

p+O(1) = 2 � 3!

�

n

3

�

n

3

+O(1)

whih is O(1). The equality follows from the 4-wise independene of h. }

Theorem 21 The amortized expeted time taken to insert or delete an element is O(1).

Proof: We have already onsidered top-level rehashing in lemmas 17{19. We now prove the result for an

operation that does not ause a top-level rehash.

Consider inserting x where h(x) = j. If h

j

is no longer perfet on S

j

then we an rehoose it and

rehash that reord in time O(s

2

j

). If there is not enough room to insert x in the urrent reord, (i.e. if

(s

j

+1)

2

> 2

dlog

2

s

2

j

e

), then that reord must be deleted and a new one of size s

0

= 2

dlog

2

(s

j

+1)

2

e

inserted into

table t

dlog

2

(s

j

+1)

2

e

. By Theorem 10, this takes time at most 2s

0

log s

0

so the total work is O(s

2

j

log s

j

) whih

by Lemma 20 has expeted value O(1). A similar argument holds for deletion, exept that then we always

rehoose h

j

. Note that moving reords happens rarely though the result still holds even if it happens every

time. }

Rehoosing randomness: Rehoosing �

1

; �

2

and �

1

; : : : at eah step with probability O(1=jSj) would

not violate history independene, sine their distribution is independent of S. This would be advantageous

beause, although it would not signi�antly hange the amortized expeted work per operation, it would

redue the variane by breaking the sequene of operations up into several independent sequenes. This

also gives us something somewhat similar to strong history independene|as long as the adversary's many

queries are all from periods with di�erent randomness, no information about history is leaked.

5 Open Problems

One of the major problems we have left open is whether it is possible to get a memory alloation sheme (of

variable size) with a low overhead, in partiular one that takes advantage of the eÆieny of storing a �le in

a large blok. This may be signi�ant for �le systems, where even if the �les are enrypted the positions of

the �les in the disk might leak undesirable information.

Another issue that we have not addressed is that of loking or timing attaks | for instane if the

adversary knows the time it takes the system to respond to the queries it might dedue some information.

This point was raised for performane purposes in [4℄ and [11℄. However it is not lear how to make the

tehniques history independent.

One interesting theoretial question is whether there is a separation between strong and weak history

independene. For example, for queues there is an easy implementation with weak history independene

| hoose a random starting point in the array and grow the queue from there using the usual algorithm.

However, we have not been able to devise an equally fast, strongly history independent version. It is

interesting to note that all the strongly history independent data strutures we have found have the property

that eah data struture ontent (in the sense de�ned in setion 2) has a unique representation. We would

be interested to know whether unique representation is neessary for strong history independene. It would

also be interesting to �nd a problem for whih there is a separation between the standard version and the

history independent one.

Various weakenings of the de�nition of history independene may be useful for partiular appliations.

For example, when onsidering a ahe system it is neessary to expose some information about the frequeny

of the di�erent requests (otherwise the ahe would be ompletely ine�etive). However, we ould require

that only frequeny-related information would be released.

It would also be interesting to know whether persistene and (omputational) anti-persistene ould exist

in the same data struture|in this ase it should be impossible to retrieve any history information exept

with a seret key, though ordinary operations ould be performed without it.

14



Finally there are many data strutures for whih the issue of history independene may be relevant. In

Appendix A we disuss union-�nd. The interesting question is whether history independene ontradits

good performane for ertain problems. We have seen that it does not for hashing.
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A History Independent Union-Find

The Union-Find problem requires maintaining a data struture representing a olletion of disjoint dynami

sets. Eah set is represented by one of its members. The data struture must support the reation of a

new set (ontaining only a spei�ed element), the uniting of two sets (Union) and �nding the set ontaining
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proedure insertA(x; t)

begin

k := 0; /* Index into its probe sequene */

/* of the urrent element */

urr elt := x; /* Element we are urrently moving */

�nished := false

while(not �nished) do

if t[h

k

(urr elt)℄ is empty /* Probed ell is empty. */

/* plae x here and halt */

t[h

k

(urr elt)℄ := urr elt;

�nished := true;

else if p(h

k

(urr elt); t[h

k

(urr elt)℄; urr elt)

/* Cell is oupied by a higher-priority */

/* element, so keep moving x. */

k := k + 1;

else /* Cell is oupied by a lower-priority element. */

/* Put x here and move the other element*/

swap(t[h

k

(urr elt)℄; urr elt)

Find the least k

0

so that h

k

0

(urr elt) = i.

k := k

0

+ 1;

done

end

Figure 1: Pseudo-ode for insertA

a spei�ed element (Find), where a set is identi�ed by one of its elements. In order to make this history-

independent, we need to ensure that the answers returned are independent of the order in whih sets were

reated and united and elements were searhed for.

When de�ning Union-Find we must be areful about the name of the subset returned from the Find, sine

we do not want to leak information through this hannel. We therefore make two proposals. One is to return

the name of the smallest element in the subset. The other is to make Find a query of the form, \Are x and

y in the same subset?"

We now sketh a history independent implementation of Union-Find at the ost of O(1) per Find and

expeted amortized O(log n) omputations per Union. The idea is to use two global lookup tables whih will

be maintained in a history independent manner, as desribed above. In one table for eah element x a reord

(x; s) is stored, where s is the (urrent) set to whih x belongs. The reord is searhable by x. (Having

a \sophistiated" data struture for this table is redundant, in ase the set of elements is �xed as 1::n.)

The seond table has for eah set s and index i � jsj a reord (s; i; x) searhable by (s; i). The mapping of

members of s to indies is random. There is also an entry (s; 0; jsj) to indiate how many elements are in s.

The Find operation is trivial: simply look it up in the �rst table. The Union of two sets s

1

and s

2

is done

by taking the smaller set s

1

, �nding all its elements x via the seond table and hanging their entry in the

�rst table to (x; s

2

), then hanging in the seond table the entries of the form (s

1

; i; x) to (s

2

; js

2

j+ i; x) and

then hoosing for eah i a random element j between 1 and js

2

j + i and ipping the j-th element and the

js

2

j+ i-th element.

The number of modi�ations in the table is proportional to the size of the smaller set and therefore the

\lassial" analysis yields a total work of O(n logn) insertions and deletions from the lookup table for any

number of Union operations, using the sheme of setion 4.3.
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